
Pairing-based Accountable Subgroup Multi-signatures with

Verifiable Group Setup

Ahmet Ramazan Ağırtaş

Oğuz Yayla

Institute of Applied Mathematics,

Middle East Technical University,

06800, Çankaya, Ankara, Turkey

{agirtas.ramazan, oguz}@metu.edu.tr

January 6, 2022

Abstract

An accountable subgroup multi-signature is a kind of multi-signature scheme in which any sub-

group S of the group G of potential signers jointly sign a message m, ensuring that each member

of S is accountable for the resulting signature. In this paper we propose three novel pairing-based

accountable subgroup multi-signature (ASM) schemes. In the first one, we use Feldman’s verifi-

able secret sharing scheme as an implicit authentication and proof-of-possession for setting up the

group G. In the second one, the members participating in authentication is decided by the subgroup

itself. In the third one, we consider a designated combiner managing the authentication process.

All schemes that we propose here require fewer computations in signature generation, signature ag-

gregation and verification phases than the pairing-based ASM scheme proposed by Boneh, Drijvers

and Neven. Moreover, our first and the third ones solve the open problem of constructing an ASM

scheme in which the subgroup S of signers is not known before the signature generation. Besides, we

give a method of eliminating the combiner in case of knowing the subgroup of signers S in advance.

Further we extend our proposed schemes to aggregated versions. For n accountable subgroup multi-

signatures, aggregated versions of our proposed schemes output an aggregated signature with size of

a single group element and require n + 1 pairings in aggregated signature verification, whereas the

partial aggregated ASM scheme of Boneh, Drijvers and Neven gives an aggregated signature with

size of n + 1 group elements and requires 2n + 1 pairings in aggregated signature verification.

1 Introduction

Digital signature schemes play key role in modern cryptographic protocols for verifying the authenticity

of any message, such as official documents, financial transactions, e-mails, etc. In particular, increasing

popularity of cryptocurrencies [5, 15, 16] in the last decade make the digital signature schemes more

significant than before. The structures of signature schemes differ according to the using area, system

requirements, and users’ needs.

1

A multi-signature [1, 12, 17, 18, 19, 20] is a kind of digital signature in which a group of signers sign

the same message jointly. In literature, there are some notions related to multi-signatures for different

scenarios. A group signature [6, 7] includes a group G of potential signers, where any member i can

anonymously sign a message on behalf of the entire group. In fact, it is not exactly anonymous signature.

Because there is a group manager in G who knows the identities of all of the signers. Besides, it does

not support subgroup of signers with more than one member [14]. A threshold signature [1, 8, 10, 11]

is a variant of multi-signature schemes in which t signers are needed among n = |G| potential signers in

order to create a legitimate signature on behalf of the entire group G. It ensures anonymity, i.e. signers

are unknown to any verifier. There is a more general notion called aggregate signature [3] which provides

an aggregation for different signatures on different messages into a single signature.

Neither group signatures nor threshold signatures and aggregate signatures provide sufficient flexibil-

ity and accountability at the same time. An accountable multi-signature (ASM) [2, 14] is a multi-signature

scheme in which any subgroup S ⊆ G jointly sign a message m, ensuring that each member of S is ac-

countable for the resulting signature. This notion was firstly defined by Micali et al. in [14] by proposing

the first ASM scheme. In a more recent paper [2], Boneh, Drijvers and Neven proposed another ASM

scheme which is based on BLS signature [4] and solves the open problem in [14], i.e. constructing an

ASM scheme in which the subgroup S ⊆ G is not determined before the signature generation.

In this paper we focus on accountable subgroup multi-signatures (ASM). We propose three novel

accountable subgroup multi-signature schemes. The first one is vASM (verifiable ASM) scheme which is

indeed a modified BLS signature. We give a method of generating a membership key via VSS protocol

[9], which transforms BLS signature scheme into an ASM scheme. The proposed vASM scheme, which

also solves the open problem in [14], requires fewer group operations and bilinear pairings than the

ASM schemes proposed in [2]. The second one is ASMwSA (ASM with Subgroup Authentication) in

which the subgroup of the signers is known before the protocol starts, and so the members participating

in authentication is decided by the subgroup itself. The third one is ASMwCA (ASM with Combiner

Authentication) which also provides a solution to the open problem in [14]. The ASMwSA and ASMwCA

schemes also require fewer group operations and bilinear pairings than the schemes in [2]. Moreover, we

give a method of consecutive and cumulative signing which eliminates the designated combiner in the

case that the subgroup S is known before the signature generation. Further we discuss the aggregated

versions of vASM, ASMwSA and ASMwCA schemes. The aggregated versions of our schemes, i.e.

AvASM, AASMwSA and AASMwCA output aggregated signatures with size of a single group element,

and require n+1 pairings for aggregated signature verification, in comparison with the partial aggregated

AASM scheme proposed in [2] with the signature size of n+1 group elements and verification with 2n+1

pairings.

The outline of the paper is as follows. In Section 2 we give a brief background information, including

definitions of bilinear pairings, Computational co-DHP/ψ-co-DHP, Feldman’s Verifiable Secret Sharing

(VSS) protocol and BLS signature scheme. In Section 3 we summarize the ASM scheme given in [2]. Then

we give our vASM scheme which is infact a modified BLS signature in Section 4. Moreover, in Section

5 we propose ASMwSA and ASMwCA schemes which are based on subgroup authentication instead of

global authentication. In Section 6, we summarize the partial aggregated ASM (AASM) scheme given

in [2], and discuss the aggregated versions of our proposed schemes. Finally, in Section 7, we compare

our new schemes with ASM and AASM schemes in terms of the number of operations required in the

phases of the schemes and costs of transmission, broadcasting and storage.

2

2 Background

In order to provide sufficient background information for readers, we give the definitions of notions which

we mainly use throughout this paper. Namely, we give the definitions of bilinear pairings, Feldman’s

VSS protocol, and BLS signature scheme.

2.1 Bilinear Pairings

Let G1,G2 be two cyclic additive groups of prime order q and GT be cyclic multiplicative groups with

the same order.

Definition 2.1. A pairing is a map e : G1×G2 −→ GT which satisfies the bilinearity and non-degeneracy

properties:

• Bilinearity: e(Aα, Bβ) = e(A,B)αβ for all α, β ∈ Z, A ∈ G1 and B ∈ G2.

• Non-degeneracy: e 6= 1.

The definitions of underlying hard problems of the schemes in this paper, i.e. computational co-Diffie-

Hellman and computational ψ-co-Diffie-Hellman problems are given below.

Definition 2.2 (Computational co-Diffie-Hellman Problem [2]). For groups G1 = 〈g1〉 and G2 = 〈g2〉 of

prime order q, define Advco−CDHG1,G2
of an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− A(gα1 , g

β
1 , g

β
2)

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A
(τ, ε)-breaks the co-CDH problem if it runs in time at most τ and has Advco−CDHG1,G2

≥ ε. co-CDH is

(τ, ε)-hard if no such adversary exists.

Definition 2.3 (Computational ψ-co-Diffie-Hellman Problem [2]). For groups G1 = 〈g1〉 and G2 = 〈g2〉
of prime order q, let Oψ(.) be an oracle that on input gx2 ∈ G2 returns gx1 ∈ G1. Define Advψ−co−CDHG1,G2

of an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− AO

ψ(.)(gα1 , g
β
1 , g

β
2)

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A
(τ, ε)-breaks the ψ-co-CDH problem if it runs in time at most τ and has Advψ−co−CDHG1,G2

≥ ε. ψ-co-CDH

is (τ, ε)-hard if no such adversary exists.

2.2 Feldman’s VSS Protocol

Feldman’s verifiable secret sharing (VSS) scheme [9] is a protocol which is used for sharing a secret

among some predetermined players in a verifiable fashion, where Shamir’s secret sharing scheme [21]

was directly used to share and reconstruct the secret. In addition to Shamir’s scheme, the shares can

be checked for consistency in Feldman’s scheme. To this end, dealer computes commitments with the

coefficients of the secret polynomial. By this way, users can verify that they receive the consistent shares

from the dealer.

Assume that we have n players. Let Fq be a finite field with prime order q and g be a primitive

element in Fq. The dealer shares a secret as follows:

3

• Chooses a polynomial of degree t− 1 (< q),

f(x) = αt−1x
t−1 + . . .+ α1x+ α0

with distinct and nonzero αk ∈ F∗q for k = 0, . . . , t− 1, where α0 is the secret to be shared.

• Computes a set of commitments COM = {Ck : Ck = gαk , k = 0, 1, . . . , t− 1}.

• Sends f(i) and COM to the i-th player for i = 1, 2, . . . , n.

After receiving a share and the set of commitments, the i-th player checks

gf(i)
?
=

t−1∏
k=0

Ci
k

k . (2.1)

The received share is consistent with the shared secret only if (2.1) is satisfied. If at least any t or

more players perform Lagrange interpolation with their shares, they can uniquely determine the secret

polynomial and f(0) will yield the secret.

In Section 4 we use this protocol as an implicit authentication and the proof of possession method.

We use only the sharing, committing and verifying phases of this protocol.

2.3 BLS Signature Scheme

Let e be an efficient, non-degenerate bilinear map, e : G1 × G2 −→ Gt, in groups (G1,G2, and Gt) and

(g1, g2) are generators of the group pair (G1,G2) respectively. Let H : {0, 1}∗ −→ G1 be a function which

maps any arbitrary binary string onto the group G1. BLS signature scheme has three phases, which we

give below shortly.

1. Key Generation:

Pick a random secret key sk
$←− Zq, and compute the public key pk ←− gsk2 .

2. Signature Generation:

Compute the signature σ = H(m)sk, where m is the message.

3. Verification:

Accept if and only if e(H(m), pk) = e(σ, g2) holds.

The BLS signature was proved to be secure against existential forgery under adaptive chosen message

attacks in the random oracle model in [4]. But it is not safe to use it as a multi-signature scheme

directly, because of the “rogue-key” attacks [1, 2]. In order to avoid these attacks, there are some

standard defenses, such as either using proof-of-possession (PoP) or ensuring that the messages are

distinct. Both methods have some advantages and disadvantages. Signing distinct messages hinders

users to perform efficient verification [2], and using PoP is not fully compatible with the applications in

cryptocurrencies [13]. In order to eliminate these disadvantages, Boneh, Drijvers and Neven proposed in

[2] a multi-signature scheme, called MSP, which is indeed a modified version of BLS scheme. Moreover,

they proposed an accountable subgroup multi-signatures (ASM) scheme which is a composition of the

schemes BLS and MSP.

4

3 Boneh-Drijvers-Neven ASM Scheme

Throughout this section we follow the notation given in both [2] and the previous sections. Let PK :=

{pk1, · · · , pkn} be the set of public keys of the group members in G, and let H0, H2 : {0, 1}∗ −→ G1 and

H1 : {0, 1}∗ −→ Zq be the hash functions. The BLS based ASM scheme given in [2] can be stated as

follows.

1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the corresponding

public key pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each member i ∈ G performs group setup by participating in 1-round interactive

protocol for i = 1, 2, . . . , n.

• Computes aggregated public key apk of the group as apk =
n∏
i=1

pkaii , where ai = H1(pki,PK).

• Sends µij = H2(apk, j)aiski to j-th user for j = 1, 2, . . . , n and j 6= i.

• After receiving µji, computes µii = H2(apk, i)aiski .

• The membership key of user i is mki =
n∏
j=1

µji.

3. Signature Generation: A signer i ∈ G computes his/her individual signature on the message m

si = H0(apk,m)ski ·mki (3.1)

and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ = (s, pk), where s =
∏
i∈S

si and pk =
∏
i∈S

pki.

5. Verification: Any verifier who is given {par, apk,S,m, σ} can verify the signature σ = (s, pk) by

checking

e

(
H0(apk,m), pk

)
· e
(∏
j∈S

H2(apk, j), apk

)
?
= e(s, g2). (3.2)

ASM scheme in [2] is nothing but a composition of a BLS signature and a group-specific membership

key mki of the signer i ∈ G. Namely, the first part H0(apk,m)ski of the signature equation (3.1) is a

BLS signature on (apk,m) by |S| signers, on the other hand the second part mki is a MSP signature on

(apk, i) by all the members j ∈ G for i = 1, 2, . . . , n.

The proof of possession (PoP) of the secret keys is also discussed in [2]. The ASM scheme with

PoP includes each user’s signature on their own public keys. The i-th user first chooses a secret key

ski ∈ Zq, then computes yi = gski2 , and constructs the PoP by πi = H3(yi)
ski , where H3 : {0, 1}∗ −→ G1

for i = 1, 2, . . . , n. Then each user has a secret key ski and the public key pair (yi, πi). In order to

compute the aggregated public key (apk) of the group, they first check e(H3(yi), yi)
?
= e(πi, g2), then

they compute Y =
∏
i∈G

pki and h = H4(PK), where H4 : {0, 1}∗ −→ Zq is another hash function. And

then the aggregated public key is apk = (Y, h). The signature generation, aggregation and verification

phases are same with the original ASM scheme.

It is known that using PoP brings additional costs such as the growth in public key size and extra

checks. In the PoP variant of ASM scheme [2], each user’s public key consists of 2 group elements and

each user computes extra 2 pairings before computing apk .

5

4 vASM: An ASM scheme with VSS based group setup

In this section, we set a special signing key and its public companion for a multi-signature. First of all,

each user generates his secret and public key pair independently. Then all users jointly perform a group

setup in which they participate in a VSS protocol. At the end of this procedure, each user obtains his

membership key, which satisfies a common public commitment generated in the group setup phase. We

give the steps of the vASM scheme below.

1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the public key

pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each user i ∈ G proceeds as follows:

• Chooses a polynomial fi(x) = α
(i)
n−1x

n−1 + . . . + α
(i)
1 x + α

(i)
0 ∈ Zq[x], where α

(i)
0 = ski and

α
(i)
k ’s are all nonzero and distinct, for k = 1, . . . , n− 1.

• Computes the set of commitments COMi := {C(i)
k = g

α
(i)
k

2 |k = 0, . . . , n− 1}.

• Sends (fi(j),COMi) to j-th user in G, for j = 1, . . . , n.

• After receiving (fj(i),COMj),

– computes the membership key mki =
∑
j∈G

fj(i).

– computes COM := {Ck =
∏
j∈G

C
(j)
k |k = 0, . . . , n− 1}.

• Checks:

(a) C0
?
=
∏
i∈G

pki

(b) gmki2
?
=
n−1∏
k=0

Ci
k

k

• If either (a) or (b) fails, then she aborts. Else, she makes COM public.

3. Signature Generation: A signer i ∈ G computes his/her individual signature si = H0(m)mki on the

message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ =
∏
i∈S

si.

5. Verification: Anyone, who is given {par,COM,S,m, σ}, can verify the signature σ by checking

e
(
H0(m),

n−1∏
k=0

C

∑
i∈S

ik

k

) ?
= e(σ, g2).

4.1 Remarks on vASM

1. Unlike the threshold multi-signatures [10], ASM schemes [2, 14] provide accountability. Further, in

ASM schemes any subgroup S ⊆ G can sign a message on behalf of the whole group G, whereas in

threshold schemes only subgroups with a sufficient cardinality can sign. Moreover, one can easily

transform an ASM scheme into a threshold scheme by setting the threshold as |S| [14].

2. Since the membership key mki of each group member consists of the shares fj(i) of the secret key

of all group members for i, j = 1, 2, . . . , n, the signature σ authenticates the subgroup S ⊆ G and

shows that each member of S is authenticated by the other members of G. Hence, the signature is

created by S on behalf of the whole group G.

6

3. Notice that C0
?
=
∏
i∈G

pki can be satisfied only if the users know their secret keys. Therefore the

consistency checks (a) and (b) in the group setup phase provide proof of possession for each user

and force all users to be honest. Hence, in vASM scheme, no user can set a special rogue key.

4. If the members in the group G change, the group setup phase must be reset with new random

polynomials fi for i ∈ G. Otherwise, any n corrupted users can obtain any users secret key since

the secret polynomials are of degree n − 1 (see Section 2.2). In order to avoid this vulnerability,

the polynomials fi in the group setup phase of the vASM scheme can be set of degree r ≥ n − 1.

In this way, at most r − n+ 1 new comers can be registered to the group G without resetting the

group setup phase. On the other hand, this costs extra computational complexity at the group

setup phase.

5. The membership key mki in vASM scheme is used to sign the message m instead of the secret

key ski by each member i ∈ G so that one can easily check the accountability of the signer at

the verification step. For example, consider the case that Bob has two distinct identities, i.e. his

individual identity “Bob”, and his corporate identity “CFO of Company X ”. Assume that skB

and mkB are Bob’s secret and the membership keys, respectively. In this case, Bob uses skB

for spending his own money, besides he signs by mkB for spending on behalf of the Company X.

As this example shows, user i uses his secret key ski to sign messages and to participate in any

multi-signatures, on the other hand, he participates in the vASM scheme with his membership key

mki.

4.2 Security of vASM

An accountable subgroup multi-signature (ASM) scheme is defined to be secure if no legitimate signature

on any message makes an honest user accountable without participating in signature generation.

For vASM scheme, we assume a dishonest majority, which means that an adversary can corrupt at

most (n− 1) users in a group of n users at any phase of the scheme. In order to conduct the rogue-key

attack, he can choose the corrupted users’ keys as he wants.

We use Boldyreva’s reduction method [1]. We will show that the security of the proposed vASM

scheme given in Section 4 depends on the security of BLS scheme [4].

Theorem 4.1. Our vASM scheme is a secure accountable multi-signature scheme in the random oracle

model.

Proof. Let A be a PPT adversary with the advantage AdvvASMpar,(G1,G2)
, that is the probability of A to

output a legitimate (m,σ,S) triple. We construct a PPT adversary B against BLS signature scheme

with the AdvBLSpar,(G1,G2)
, i.e. the probability of B to output a valid (m,σ) pair. Moreover B has access to

the hash oracle and the signing oracle. Therefore, it suffices show that AdvvASMpar,(G1,G2)
= AdvBLSpar,(G1,G2)

,

which is equivalent to saying if BLS signature scheme is secure then our vASM scheme is secure.

Without loss of generality, we say that the honest user’s indice is 1. Adversary B sends gmk12 to the

adversary A. Then A outputs (n− 1) pairs of (mkj , g
mkj
2) for j = 2, . . . , n. Adversary A starts to send

the hash and signing queries. Adversary B answers all queries of adversary A. Eventually A outputs a

valid signature σL on the message m with the subgroup S and 1 ∈ L, where L is the set of indices of the

7

users in the subgroup S. Then adversary B computes

σ = σL.
∏
j∈L\1

H0(m)−mkj

= H0(m)mk1 .

It is clear that the signature σ is nothing but a BLS signature on the message m.

5 Accountable Subgroup Multi-signature Scenarios with Sub-

group Authentication

In some cases, a signer i ∈ S wants to know other signers S ⊆ G in advance. In the ASM scheme in

Section 3, any subgroup S ⊆ G of signers are authorized to sign any message on behalf of the whole

group. Consider that 2 subgroups make 2 opposite decisions. Since either of the subgroups signs on

behalf of the entire group G, this causes a conflict. In order to avoid such a case, the legal entities could

presume a unique authorized signer (CEO, CFO etc.) in S.

In this section, we consider to replace ski with aiski and mki with smki in the equation (3.1) for

an identifier ai and a subgroup specific membership key smki of the signer i ∈ S ⊆ G. Then, we can

combine two pairings on the left hand side of the verification equation (3.2). In the following we describe

two scenarios.

5.1 ASMwSA: Accountable Subgroup Multi-signature with Subgroup Au-

thentication

In ASMwSA, we consider the case that the subgroup S is known before the protocol starts. We discard

the interactive protocol in the group setup phase and make simple modifications on the ASM scheme

given in Section 3. The ASMwSA is as follows:

1. Key Generation: Identical to the Key Generation in Section 3.

2. Group Setup: Each group member i ∈ G computes

• Aggregated public key apk =
∏
i∈G

pkaii , where ai = H1(pki,PK).

• Components of the membership keys µij = H2(apk, j)aiski for j = 1, . . . , n, and stores them.

3. Signature Generation: A signer i ∈ G computes his/her subgroup-specific membership key smki =∏
j∈S

µij and individual signature si = H0(apk,m)aiskismki on the message m and sends si to the

combiner.

4. Signature Aggregation: After receiving the individual signatures, the combiner computes the ag-

gregated subgroup multi-signature σ =
∏
i∈S

si and spk =
∏
i∈S

pkaii .

5. Verification: Anyone who is given {par, apk, spk,S,m, σ} can verify the signature σ by checking

e

(
H0(apk,m).

∏
j∈S

H2(apk, j), spk

)
?
= e(σ, g2).

8

5.1.1 Remarks on ASMwSA

1. In the group setup phase, the signers only compute µij and store them, but they do not send

those µij to anyone. In ASMwSA, the i-th signer multiplies her signature si = H0(apk,m)aiski

with smki =
∏
j∈S

µij , instead of mki as in Section 3, which also results in a legitimate aggregated

signature. We note that this eliminates 1 round transmission cost.

2. The signature of the subgroup can be written as below

σ = H0(apk,m)

∑
i∈S

aiski∏
i∈S

smki

=

(
H0(apk,m) ·

∏
j∈S

H2(apk, j)

)∑
i∈S

aiski

which is indeed a MSP signature on

(
H0(apk,m) ·

∏
j∈S

H2(apk, j)

)
. Therefore, the security of the

ASMwSA follows from the security of MSP scheme.

5.2 ASMwCA: Accountable Subgroup Multi-signature with Combiner Au-

thentication

In ASMwCA, each user i ∈ G sends the membership key components, i.e. µij for j 6= i, to the com-

biner. Hence, the signers perform fewer computation, and main work load passes to the combiner. The

ASMwCA is as follows:

1. Key Generation: Identical to the Key Generation in Section 3.

2. Group Setup: Each group member i ∈ G computes:

• The aggregated public key apk of G as apk =
∏
i∈G

pkaii , where ai = H1(pki,PK).

• µii = H2(apk, i)aiski and stores it.

• µij = H2(apk, j)aiski for j = 1, . . . , n and j 6= i, and sends them to the combiner.

3. Signature Generation: A signer i ∈ G computes individual signature si = H0(apk,m)aiskiµii on

the message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms S ⊆ G. Then, she computes the aggregated subgroup multi-signature σ =
∏
i∈S

si.
∏
i∈S

∏
j∈S

µij

for j 6= i, and aggregated public key spk of the subgroup S as spk =
∏
i∈S

pkaii .

5. Verification: Anyone who is given {par, apk, spk,S,m, σ} can verify the signature σ by checking

e

(
H0(apk,m).

∏
j∈S

H2(apk, j), spk

)
?
= e(σ, g2).

5.2.1 Remarks on ASMwCA

1. The subgroup S ∈ G of the signers is determined by the combiner from the set of the received

individual signatures. Hence, no signer knows her co-signers.

9

x

H0(spk,m)
ak1

skk1 · smkk1

x

H0(spk,m)
ak2

skk2 · smkk2

x

H0(spk,m)
akl

skkl · smkkl

sk0 = 1G1 s1 . . . σ

x

pk
ak1
k1

x

pk
ak2
k2

x

pk
akl
kl

spkk0 = 1G2 spk1 . . . spk

Figure 1: ASM scheme without a combiner

2. In the signature generation phase, H0(apk,m) may be replaced by H0(spk,m) so that the signer

could set the subgroup S in advance. This also eliminates combiner’s corruption at the signature

aggregation phase. Namely, the combiner can not discard the signature si of any user i ∈ S from σ.

But in this case computing spk brings additional cost, i.e. l multi-exponentiations for each signer.

3. Each user i ∈ G sends µij to the combiner for i, j = 1, 2, . . . , n and j 6= i. Unlike to scenarios in

Sections 3 and 5.1, any signer i ∈ G does not compute the membership key, but uses only µii for

the signature generation. The other components, µij for i, j = 1, 2, . . . , n and j 6= i, are taken into

account by the combiner as she forms the subgroup S ⊆ G. Therefore, each user’s computational

cost is reduced, but the work load of the combiner is increased by the number of signers.

4. We note that the user i ∈ G may compute her individual signature as

si =

(
H0(apk,m)H2(apk, i)

)aiski
instead of computing and storing µii in the group setup phase. However, this costs extra compu-

tation of the hash H2 at the signature generation of each message.

5. Similar to the discussion in Subsection 5.1.1, the security of the ASMwCA can be reduced to the

security of MSP scheme.

5.3 Eliminating the combiner

Consider the case that the subgroup S := {ki : i = 1, 2, . . . , l} is determined before the signature protocol

starts. In order to eliminate the designated combiner, the signer ki for i = 1, 2, . . . , l proceeds as follows:

• Computes the i-th aggregated signature ski = ski−1
·
(
H0(spk,m)akiskki · smkki

)
, where ski−1

is

the (i− 1)-th aggregated signature computed by the signer ki−1 ∈ S and sk0 = 1G1 .

• Computes the i-th aggregated public key spkki = spkki−1 · pk
aki
ki

, where spkki−1 is the (i − 1)-th

aggregated public key computed by the signer ki−1 ∈ S and spkk0 = 1G2
.

• Sends (ski , spkki) to the signer ki+1 for i < l.

• Finally the last signer kl outputs the pair skl , spkkl . Then, the aggregated signature and the public

key pair for S will be σ := skl and spk := spkkl . This process is shown in Figure 1.

In ASMwSA and ASMwCA, each signer sends her individual signature to the combiner. On the other

hand, in this scenario, each signer sends the signature to another signer. Hence, this reduces the cost

of network traffic and makes the channel traffic intermittent. However, in this case, each user sends two

group elements instead of one group element, that is, the transmission size is doubled.

10

5.4 Advantages of subgroup-specific membership key

1. Group-specific membership keys in Boneh-Drijvers-Neven ASM scheme given in Section 3 are gen-

erated by 1 round of interactive protocol in which all members participate. But in case of using

subgroup-specific ones given in Sections 5.1 and 5.2, no interactive protocol is needed.

2. Even if one user registers/unregisters to/from the group, the apk and the membership key mk need

to be recomputed. This means a new interactive protocol to be held by all the group members

again, which is a big deal for large |G|. Consider using H2(pkj) instead of H2(apk, j) for computing

the components of membership keys. In the case of using subgroup-specific membership key smk,

registering/unregistering a member to/from the group G does not change anything.

3. Users in S ⊆ G do group operations to get smk; but all group members in G need to do group

operations to get mk. If |S| is very small with respect to |G|, then the computation of smk is

easier. Similarly, spk can be calculated by less number of multi exponentiation than apk.

6 Aggregated versions of ASM schemes

The ASM scheme is extended to partial aggregated version AASM scheme in [2] by the help of the key

aggregation technique given in [13]. Remember that the ASM signature scheme described in Section 3

outputs a signature σ = (s, pk). Consider n-ASM signatures (apk1,S1,m1, σ1), . . . , (apkn,Sn,mn, σn).

The AASM scheme outputs the partial aggregated signature Σ = (pk1, . . . , pkn, s), where s is the aggre-

gation of s1, . . . , sn. In Section 6.1, we describe the AASM scheme that is given in [2].

6.1 Partially Aggregated ASM Scheme (AASM)

The aggregation of several ASM signatures is discussed in [2], in which they aggregate only the second

component of the signature. The first components are used in the verification phase. On the other

hand, it is noted that the ASM scheme cannot be partially aggregated directly because of the irrelevancy

between membership keys and messages [2]. In addition to the phases of ASM scheme, two more phases

defined in [2]. The signature aggregation and aggregated signature verification phases are as follows. Let

H5 : {0, 1}∗ −→ Zq be another hash function.

• Signature Aggregation: Given (par, {(apki,Si,mi, σi)
n
i=1}).

– Parse σi as (si, pki).

– For i = 1, . . . , n, compute bi ←− H5

(
(apki,Si,mi, pki), {(apkj ,Sj ,mj , pkj)

n
j=1}

)
.

– compute s←−
n∏
i=1

sbii and output Σ←− (pk1, . . . , pkn, s).

• Aggregate Signature Verification: Given (par, {(apki,Si,mi)
n
i=1},Σ).

– Parse Σ as (pk1, . . . , pkn, s).

– For i = 1, . . . , n, compute bi ←− H5

(
(apki,Si,mi, pki), {(apkj ,Sj ,mj , pkj)

n
j=1}

)
.

– Accept if and only if

n∏
i=1

(
e
(
H0(apki,mi), pk

bi
i

)
· e
(∏
j∈Si

H2(apki, j), apk
bi
i

)) ?
= e(s, g2). (6.1)

11

Since the AASM scheme cannot be fully aggregated, the size of the resulting partial aggregated

signature grows linearly by the number of ASM signatures. Besides, the verification (6.1) of the AASM

scheme requires (2n+ 1) pairings.

6.2 Aggregated versions of proposed schemes

Our schemes can also be further extended as aggregated versions. Unlike the partial aggregation in

AASM scheme, the schemes that we propose in Sections 4 and 5 can be fully aggregated, resulting in a

single signature size.

6.2.1 Aggregated vASM Scheme (AvASM)

The vASM scheme described in Section 4 can be extended to aggregated version AvASM as in Section

6.1.

• Signature Aggregation: Given (par, {(COMi,Si,mi, σi)
n
i=1}), compute Σ←−

n∏
i=1

σi.

• Aggregate Signature Verification: Given (par, {(COMi,Si,mi)
n
i=1},Σ). Accept if and only if

n∏
i=1

e

(
H0(mi),

|COMi|∏
k=0

C

∑
j∈Si

jk

ik

)
= e(Σ, g2). (6.2)

where Cik is a commitment in COMi for k = 0, . . . , |COMi|.

6.2.2 Aggregated versions of ASMwSA/ASMwCA Schemes (AASMwSA/AASMwCA)

The ASMwSA and ASMwCA schemes described in Section 5 can be extended to aggregated versions

AASMwSA and AASMwCA as in Section 6.1. In addition to the phases of the described schemes in

Section 5, signature aggregation and aggregate signature verification phases are given below:

• Signature Aggregation: Given (par, {(apki, spki,Si,mi, σi)
n
i=1}), compute Σ←−

n∏
i=1

σi.

• Aggregate Signature Verification: Given (par, {(apki, spki,Si,mi)
n
i=1},Σ), accept if and only if

n∏
i=1

e

(
H0(apki,mi).

∏
j∈Si

H2(apki, j), spki

)
= e(Σ, g2). (6.3)

As seen in (6.2) and (6.3), the aggregated versions of the schemes vASM, ASMwSA and ASMwCA provide

more practical verifications than AASM [2]. In other words, AvASM, AASMwSA and AASMwCA

schemes require (n+ 1) pairings for verification whereas AASM requires (2n+ 1).

7 Comparison

In Table 1, we compare ASM, ASM-PoP and the schemes that we propose in this paper. Our comparison

contains the number of operations required in each phases of those schemes. For example, consider a

comparison of group setup phases of the schemes ASM and vASM. It is seen in Table 1 that the ASM

scheme costs of n H2 hashes , n scalar multiplications and (n− 1) group operations in the group setup

phase. On the other hand, the vASM scheme has 2n scalar multiplications and (n2 + n − 2) group

operations in the group setup.

12

It is easily seen from the Table 1 that the vASM scheme requires fewer operations than ASM and

ASM-PoP in the verification phase. On the other hand, since the set of commitments COM is public,

the broadcasted data size in vASM grows with the size of the group G.

The ASMwSA scheme provides efficient group setup, signature aggregation and verification phases;

however, its signature generation requires more group operations and extra storage for (n − 1) group

elements.

The ASMwCA scheme has efficient group setup and verification phases, but it requires more com-

putations in signature aggregation phase. On the other hand, it requires extra storage for (n2 − n− 1)

group elements.

8 Conclusion

In this work we propose a novel BLS based ASM scheme (vASM) which is more efficient than ones in [2]

in terms of signature generation, signature aggregation and verification. On the other hand, our vASM

scheme requires a one-time group setup with more group operations. We propose two more accountable

subgroup multi-signature schemes with subgroup authentication (ASMwSA) and combiner authentica-

tion (ASMwCA) which are also more efficient, but they have storage and transmission disadvantages in

comparison with the ones in [2]. According to the requirements of the system involving an ASM scheme,

our schemes could be pretty good alternatives, especially when a faster verification is desired. It would

be a good future work to add accountability to known multi-signature schemes by the methods given in

this paper.

References

[1] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the

gap-diffie-hellman-group signature scheme. pages 31–46, 01 2003.

[2] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.

In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,

pages 435–464, Cham, 2018. Springer International Publishing.

[3] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT

2003, pages 416–432, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptol.,

17(4):297–319, September 2004.

[5] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application plat-

form. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[6] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In Burton S.

Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 410–424, Berlin, Heidelberg, 1997.

Springer Berlin Heidelberg.

[7] David Chaum and Eugène van Heyst. Group signatures. In Advances in Cryptology - EUROCRYPT

’91, Workshop on the Theory and Application of of Cryptographic Techniques, Brighton, UK, April

13

https://github.com/ethereum/wiki/wiki/White-Paper

Table 1: Comparison of the schemes

Phases ASM [2] ASM with PoP [2] vASM ASMwSA ASMwCA

Key Generation 1 S.Mul.

For pk:

1 S.Mul.

For proof:

1 Hash (H3)

1 S.Mul.

1 S.Mul. 1 S.Mul. 1 S.Mul.

Key Aggregation

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

For proof:

n Hash (H3)

2n pairings

For apk:

1 Hash (H4)

(n− 1) G.Ops.

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

Group Setup

n Hash (H2)

n S.Mul.

(n− 1) G.Ops.

n Hash (H2)

n S.Mul.

(n− 1) G.Ops.

2n S.Mul.

(n2 + n− 2)

G.Ops.

n Hash (H2)

n S.Mul.

n Hash (H2)

n S.Mul.

Signature

Generation

1 Hash (H0)

1 S.Mul.

1 G.Ops.

1 Hash (H0)

1 S.Mul.

1 G.Ops.

1 Hash (H0)

1 S.Mul.

1 Hash (H0)

1 S.Mul.

l G.Ops.

1 Hash (H0)

1 S.Mul.

1 G.Ops.

Signature

Aggregation
(2l − 2) G.Ops. (2l − 2) G.Ops. (l − 1) G.Ops. (l − 1) G.Ops. (l2 − l) G.Ops.

Verification

For apk(c):

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

For verification:

1 Hash (H0)

l Hash (H2)

(l − 1) G.Ops.

3 Pairings

For proof:

n Hash (H3)

n S.Mul.

2n pairings

For apk(c):

1 Hash (H4)

(n− 1) G.Ops.

For verification:

1 Hash (H0)

l Hash (H2)

(l − 1) G.Ops.

3 Pairings

1 Hash (H0)

n S.Mul.

(n− 1) G.Ops.

2 Pairings

For apk/spk(a):

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

For verification:

1 Hash H0

l Hash (H2)

l G.Ops.

2 Pairings

For apk/spk(a):

n Hash (H1)

n S.Mul.

(n− 1) G.Ops.

For verification:

1 Hash (H0)

l Hash (H2)

l G.Ops.

2 Pairings

Transmission

For group setup:

(n− 1) G.Elt.

For signature:

2 G.Elt.

For group setup:

(n− 1) G.Elt.

For signature:

2 G.Elt.

For signature:

1 G.Elt.

For signature:

1 G.Elt.

For group setup:

(n− 1) G.Elt.

For signature:

1 G.Elt.

Broadcasting
For pk:

1 G.Elt.

For pk:

1 G.Elt.

For Proof:

1 G.Elt.

For pk:

1 G.Elt.

For COMi:

n G.Elt.

For COM(b):

n G.Elt.

For pk:

1 G.Elt.

For pk:

1 G.Elt.

Storage

For sk:

1 integer

For mk:

1 G.Elt.

For sk:

1 integer

For mk:

1 G.Elt.

For mk:

1 integer

For sk:

1 integer

For mk:

n G.Elt.

For sk:

1 integer

For mk:

1 G.Elt.

Combiner:

(n2 − n) G.Elt.

(a) As apk contains the components of spk, no extra cost is needed for computing spk.
(b) Since all the users compute the same commitment set COM, it is enough to be broadcast by only one user.
(c) apk is computed by the verifier. But for avoiding the extra cost, it would be given to the combiner.

S.Mul. Scalar Multiplication

G.Ops. Group Operations

G.Elt. Group element

H1, H2, H3, H4, H5 Hash functions are as in the schemes.

14

8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer,

1991.

[8] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, Advances in

Cryptology — CRYPTO’ 89 Proceedings, pages 307–315, New York, NY, 1990. Springer New York.

[9] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual Sym-

posium on Foundations of Computer Science (sfcs 1987), pages 427–438, Oct 1987.

[10] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold dss signa-

tures. In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 354–371, Berlin,

Heidelberg, 1996. Springer Berlin Heidelberg.

[11] L. Harn. Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEE

Proceedings - Computers and Digital Techniques, 141:307–313(6), September 1994.

[12] K. Itakura. A public-key cryptosystem suitable for digital multisignatures. 1983.

[13] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-

signatures with applications to bitcoin. Designs, Codes and Cryptography, 87, 09 2019.

[14] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Extended

abstract. In Proceedings of the 8th ACM Conference on Computer and Communications Security,

CCS ’01, page 245–254, New York, NY, USA, 2001. Association for Computing Machinery.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin

and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, USA,

2016.

[17] K. Ohta and T. Okamoto. Multi-signature schemes secure against active insider attacks (special

section on cryptography and information security). IEICE Transactions on Fundamentals of Elec-

tronics, Communications and Computer Sciences, 82:21–31, 1999.

[18] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the fiat-shamir

scheme. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in Cryptology

— ASIACRYPT ’91, pages 139–148, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[19] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo Kim

and Tsutomu Matsumoto, editors, Advances in Cryptology — ASIACRYPT ’96, pages 252–265,

Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[20] C. P Schnorr. Journal of Cryptology, 4:161–174, 1991.

[21] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

15

	Introduction
	Background
	Bilinear Pairings
	Feldman's VSS Protocol
	BLS Signature Scheme

	Boneh-Drijvers-Neven ASM Scheme
	vASM: An ASM scheme with VSS based group setup
	Remarks on vASM
	Security of vASM

	Accountable Subgroup Multi-signature Scenarios with Subgroup Authentication
	ASMwSA: Accountable Subgroup Multi-signature with Subgroup Authentication
	Remarks on ASMwSA

	ASMwCA: Accountable Subgroup Multi-signature with Combiner Authentication
	Remarks on ASMwCA

	Eliminating the combiner
	Advantages of subgroup-specific membership key

	Aggregated versions of ASM schemes
	Partially Aggregated ASM Scheme (AASM)
	Aggregated versions of proposed schemes
	Aggregated vASM Scheme (AvASM)
	Aggregated versions of ASMwSA/ASMwCA Schemes (AASMwSA/AASMwCA)

	Comparison
	Conclusion

