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Abstract
Asynchronous Byzantine fault-tolerant (BFT) protocols as-

suming no timing assumptions are inherently more robust than
their partially synchronous counterparts, but typically have
much weaker security guarantees—achieving no information-
theoretic security, quantum security, or adaptive security, and
using trusted setup.

We design and implement WaterBear, a family of new and
efficient asynchronous BFT protocols matching all security
guarantees of partially synchronous protocols. To achieve the
goal, we have developed the local coin (flipping a coin locally
and independently at each replica) based BFT approach—one
long deemed as being inefficient—and designed more effi-
cient asynchronous binary agreement (ABA) protocols and
their reproposable ABA (RABA) versions from local coins.
Our techniques on ABA and RABA are of independent inter-
ests and also allow us to build more efficient ABA protocols
from common coins (distributively generating the same ran-
dom coins for all replicas), helping improve various other
protocols such as distributed key generation and BFT assum-
ing trusted setup.

We implemented in total five BFT protocols in a new
golang library, including four WaterBear protocols and BEAT.
Via extensive evaluation, we show that our protocols are effi-
cient under both failure-free and failure scenarios, achieving
at least comparable or superior performance to BEAT with
much weaker security guarantees. Specifically, the most effi-
cient WaterBear protocol consistently outperforms BEAT in
terms of all metrics. For instance, when the number of replicas
is 16, the latency of our protocol is about 1/8 of that of BEAT
and the throughput of our protocol is 1.23x that of BEAT.

Our work pushes the boundaries of asynchronous BFT,
showing the strongest security levels that we know of and
high performance can co-exist.

1 Introduction
Byzantine fault-tolerant state machine replication (BFT),

a technique traditionally used to build mission-critical sys-
tems, has nowadays been the standard model for permissioned

blockchains [9, 19, 63] and is used in various ways in hy-
brid blockchains. Due to their inherent robustness against
performance and DoS attacks, asynchronous BFT protocols—
relying on no timing assumptions—have been receiving sig-
nificant attention [11]. While one line of works focuses on
performance [28,43,44,54], some other works aim at improv-
ing their "security." For instance, BEAT [35] and PACE [64]
eliminated the less-established pairing assumption in these
protocols; EPIC aimed at providing adaptive security [50];
DAG-Rider strived to achieve quantum safety (though not
quantum liveness) [47]; recent works studied how to avoid
trusted setup [5, 30, 48].

Table 1 summarizes the security levels that can be achieved
for asynchronous BFT protocols implemented. The situation
is in sharp contrast to their partially synchronous BFT coun-
terparts (relying on timing assumptions): for example, the
classic PBFT protocol [23]—based on authenticated channels
only—easily achieves all the properties listed in the table. It is
thus our goal to design and implement practical asynchronous
BFT protocols achieving all these properties in Table 1—the
same security guarantees as in partially synchronous BFT.

1.1 Background
IT security. In computational security, the adversary is re-
stricted to probabilistic polynomial-time. In IT (information-
theoretic) security, the adversary is unbounded. Computa-
tional protocols assume the hardness of some intractability
problems (e.g., RSA, DL). These mathematical problems may,
in the future, be proven to be broken or weakened due to newly
developed techniques. In contrast, IT security provides ever-
lasting security, typically assuming secure or authenticated
channels only (that minimize the attack surface).
No PKC; quantum security. It is an important problem to
design Byzantine-resilient protocols relying on no public key
cryptography (PKC), considering the efficiency and quantum
resilience of symmetric cryptography. For instance, PBFT is
known as the first PKC-free partially synchronous BFT [23].
Byzantine-resilient protocols in various other settings are
known too [31, 34, 45]. It remains an open problem whether
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IT secure no pkc quantum secure no trusted setup adaptive security high WAN throughput

SINTRA [17]
RITAS [55]

√ √ √ √

HoneyBadger [54]; BEAT [35]
√

Dumbo family [39, 43, 44]
√

EPIC [50]
√ √

Tusk [28]; Bullshark [41]
√

PACE [64]
√

SodsBC [32]
√ √ √

WaterBear-QS (this work)
√ √ √ √ √

WaterBear (this work)
√ √ √ √ √ √

Table 1: Comparison of efficient asynchronous BFT protocols.

one could design practical PKC-free asynchronous BFT. Note
IT security implies quantum security; the reverse does not
hold. Likewise, symmetric cryptography such as blockciphers
and hash functions are quantum secure, but quantum secure
cryptography may use other PKC primitives (e.g., lattices).

1.2 Why Matching Security Guarantees of Par-
tially Synchronous BFT Hard?

Unlike partially synchronous BFT protocols, asynchronous
BFT protocols must be randomized to achieve liveness (due
to the celebrated FLP impossibility result [38]). Existing asyn-
chronous BFT protocols rely critically on cryptographic com-
mon coin protocols (a distributed object that generates the
same random coins to all replicas) which are inefficient if no
trusted setup is assumed (see Sec. 2 for detailed discussion).
Even if relaxing to quantum security, we currently lack effi-
cient common coin instantiations from quantum secure primi-
tives (e.g., lattices). Note while SodsBC is a quantum-secure
BFT protocol, it directly relies on trusted setup to generate
the common coins and thus bypasses the core problem of
generating common coins efficiently [32].

Meanwhile, achieving stronger security in asynchronous
BFT typically comes with a higher cost. For instance, adding
adaptive security in [50] makes the original BFT system much
slower. We must guarantee that ensuring these properties
altogether would not incur too much overhead.

1.3 Our Approach
Reducing the problem to local coin RABA then to ABA.
Instead of using common coins, we revisit the local coin based
BFT approach that has been long viewed as being inefficient.
In the local coin based approach, replicas need to indepen-
dently and locally flip coins and existing protocols terminate
in exponential expected rounds and fail to scale [25, 55].

We thus take a detour and develop the PACE BFT frame-
work [64] in IT and quantum security settings. (Recall ex-
isting instantiations in PACE use trusted setup, achieving
computational security and static security only.) PACE uses a
variant of asynchronous binary Byzantine agreement (ABA)
called reproposable ABA (i.e., RABA). It is also shown that
some ABA protocols can be efficiently converted to RABA
protocols. Crucially, RABA in PACE enables a fast path for

consensus. We observe that while PACE was designed with
common coin based RABA, the protocol, even with local coin
based RABA, can—on average—terminate within a single
RABA round with high probability. So the exponential rounds
in local coin based ABA is no longer a major efficiency obsta-
cle, and the per-round complexity of ABA protocols becomes
critical. Our strategy is to reduce BFT to RABA with local
coins and then to ABA with local coins and then improve the
per-round complexity of them.
Improving the per-round complexity. As reported in almost
all asynchronous BFT systems [35,44,64], ABA is their major
performance bottleneck. It is shown that the concrete steps
per round of ABA protocols are vital to the performance of
asynchronous BFT: even a single step improvement in ABA,
the resulting BFT protocol could be improved by, say, 2x [64].

To our knowledge, only two local coin based ABA pro-
tocols have been proposed: Ben-Or’s ABA [11] assuming
n > 5 f , and Bracha’s ABA [13] with n > 3 f (the most effi-
cient protocol for nearly three decades). Bracha’s ABA, un-
fortunately, has a large number of steps (12 steps) and O(n3)
messages per round [13]. (The situation is in sharp contrast to
ABA assuming common coins which has 3 steps and O(n2)
messages per round.) Our main technical contributions are
indeed efficient local coin based ABA and RABA protocols.

1.4 Our Contributions
1.4.1 Technical Contributions

Efficient local coin based ABA. Table 3 shows two novel
local coin based ABA protocols that we introduce in the pa-
per: Cubic-ABA and Quadratic-ABA. Cubic-ABA is easy
to understand and implement, and can be viewed as an op-
timized version of Bracha’s ABA. Cubic-ABA has 7 steps
per round in the worst case, while Bracha’s ABA uses 12
steps, almost doubling the number of steps of Cubic-ABA. In
contrast, Quadratic-ABA adopts a novel design, having 4 or 5
steps per round only and being the first local coin based ABA
with O(n2) messages per round.
Tackling a subtle liveness issue for RABA. We go on to
design Cubic-RABA and Quadratic-RABA based on Cubic-
ABA and Quadratic-ABA, respectively. Unlike prior trans-
formations following a generic approach in [64], we iden-
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protocol reference implementation RBC RABA authenticated channels

WaterBear WaterBear-C Bracha’s RBC [14] Cubic-RABA (this paper) HMAC∗

WaterBear-Q Bracha’s RBC [14] Quadratic-RABA (this paper) HMAC∗

WaterBear-QS WaterBear-QS-C CT RBC [18] Cubic-RABA (this paper) HMAC
WaterBear-QS-Q CT RBC [18] Quadratic-RABA (this paper) HMAC

Table 2: WaterBear-QS and WaterBear instantiations. ∗HMAC is quantum secure but not IT secure; we simply used HMAC in
our reference implementation for WaterBear to demonstrate the overhead of WaterBear itself, because all other protocols in this
paper and PBFT use MAC for authentication. As in PACE, both WaterBear-QS and WaterBear have a fast path allowing them to
terminate in O(logn) time. As shown in PACE, the probability of triggering fast paths is high. WaterBear-C and WaterBear-QS-C
have O(n4) messages on average due to the usage of Cubic-RABA, while WaterBear-Q and WaterBear-QS-Q have O(n3)
messages on average due to the usage of Quadratic-RABA—matching those of HoneyBadger, BEAT, and PACE.

ABA (local coins) messages/round steps/round

Bracha’s ABA [14] n3 9 to 12

Cubic-ABA (this work) n3 5 to 7
Quadratic-ABA (this work) n2 4 or 5

Table 3: Local coin based ABA protocols with optimal re-
silience. We consider the messages and steps in each round.
Messages/round and steps/round denote number of messages
and steps among all replicas per round.

ABA (weak common coins) steps/round rounds

MMR15 [57, 2nd alg] 9 to 13 d +1
Crain [26, 1st alg] 5 to 7 d +1

CC-ABA (this work) 4 or 5 d +1

Table 4: ABA protocols using weak common coins. Rounds
denote the expected number of rounds. The total number of
steps is a product of steps/round and rounds.

ABA (common coins) steps/round rounds good-case-coin-free

MMR15 [57, 2nd alg] 9 to 13 3 yes
Cobalt [53] 3 or 4 4 no

Crain [26, 1st alg] 5 to 7 3 yes
Crain [26, 2nd alg] 2 or 3† 4 no

Pillar [64] 2 or 3 4 no

CC-ABA (this work) 4 or 5 3 yes

Table 5: ABA protocols using perfect common coins. †The
second algorithm of Crain relies high threshold common coins
and is less efficient than Pillar. Compared to Pillar, CC-ABA
has the good-case-coin-free property that is vital for the asyn-
chronous distributed key generation protocol [30].

tify and tackle a subtle liveness problem when transforming
Quadratic-ABA to Quadratic-RABA. The issue that we iden-
tify demonstrates the subtlety of transforming ABA to RABA,
and once again underlines the importance of a full proof when
designing Byzantine-resilient protocols.
ABA from weak common coins and perfect common coins.
The techniques we introduce for Quadratic-ABA are of inde-
pendent interests, allowing us to obtain CC-ABA that works
for both weak common coins and perfect common coins. Here
weak common coins mean all correct replicas output 0 and 1,
both with probability 1/d, where d is a constant and d ≥ 2. If
d = 2, weak common coins become perfect common coins.
We compare ABA protocols using common coins in Table 4
and Table 5: in both cases, CC-ABA compares favorably with
existing protocols. CC-ABA with weak coins can be used

to improve the distributed key generation protocol [5] and
VABA protocols [40, 52], while CC-ABA with perfect coins
can be used to improve various BFT protocols such as PACE
and Dumbo [44], and the recent distributed key generation
protocol requiring the good-case-coin-free property [30].

1.4.2 Practical Contributions
The WaterBear family of BFT protocols. Table 2 sum-
marizes the characteristics of WaterBear protocols. We use
Cubic-RABA to build WaterBear-C and Quadratic-RABA to
build WaterBear-Q. WaterBear has all desirable properties a
BFT protocol one could think of, being optimally resilient,
achieving unconditional and adaptive security, and not relying
on trusted setup—matching the security guarantees of the
classic PBFT protocol.

We also build WaterBear-QS that does not achieve IT se-
curity but achieves quantum security for both safety and
liveness properties. The only difference between Water-
Bear and WaterBear-QS is that WaterBear-QS additionally
uses a collision-resistant hash function. Similar to Water-
Bear, WaterBear-QS family also consists of two protocols:
WaterBear-QS-C and WaterBear-QS-Q, quantum secure ver-
sions of WaterBear-C and WaterBear-Q, respectively.
A new BFT platform. Starting from HoneyBadger, exist-
ing asynchronous BFT protocols, including BEAT, Dumbo,
and EPIC, use the HoneyBadger programming framework
using Python 2.7 (end of life and end of support on January
1, 2020). We instead build a new platform using Golang that
is more modular and developer-friendly than existing ones.
Our platform currently supports WaterBear-C, WaterBear-Q,
WaterBear-QS-C, WaterBear-QS-Q, and BEAT (one of the
most efficient open-source asynchronous BFT) [1,35]. Due to
its modularity, the library only contains about 11,000 LOC.
Large-scale experiments and robustness evaluation. With
deployment in 5 continents, we show our protocols offer com-
parable performance as the state-of-the-art asynchronous BFT
protocols, while achieving much stronger security (IT or quan-
tum security, adaptive security, and no trusted dealer used).
We also design and evaluate various failure and attack scenar-
ios, showing all our protocols are highly robust during failures
and attacks. Specifically, one of our protocols, WaterBear-
QS-Q, consistently outperforms BEAT (with much weaker
security guarantees); for instance, when n = 16, the latency of
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WaterBear-QS-Q is about 1/8 that of BEAT and the through-
put of WaterBear-QS-Q is 1.23x that of BEAT. The peak
throughput of WaterBear-QS-Q (as n grows larger) is about
1.47x that of BEAT.

Our system pushes the limits of asynchronous BFT, show-
ing that high performance and the strongest security levels
that we know of can co-exist.

2 Related Work
IT BFT in partially synchronous environments. There exist
several partially synchronous BFT protocols that are IT secure
or can be made IT secure. In particular, PBFT (the journal ver-
sion) [23], PBFT (in Castro’s PhD thesis) [22], and Cachin’s
formulation for PBFT [15] assume authenticated channels
but use cryptographic hash functions. These protocols are
quantum resistant but not IT secure. They can, however, be
modified to achieve IT security if removing the usage of the
hash functions. Recently, Stern and Abraham proposed IT
HotStuff, an IT secure, partially synchronous BFT protocol
that uses O(1) persistent storage and O(n2) messages, each
message containing a constant number of words [62].
Adaptive vs. static security for BFT. Most asynchronous
BFT protocols implemented, including SINTRA, HoneyBad-
gerBFT, BEAT, and Dumbo, defend against static adversary
only. These protocols rely critically on efficient but statically
secure threshold cryptography. EPIC is an asynchronous BFT
that uses adaptively secure threshold pseudorandom function
(PRF) to achieve adaptive security but is not as efficient as
its statically secure counterparts. RITAS [55] contains an
adaptively secure BFT protocol, but as it relies on inefficient
local coin based ABA, it is less efficient than other protocols
in large-size networks. DAG-Rider [47] achieves adaptive
security if using adaptively secure common coin protocols.

The situation for asynchronous environments is in sharp
contrast to that of partially synchronous BFT protocols, most
of which attain adaptive security [8, 23, 24, 33, 42, 46, 61].
WaterBear achieves adaptive security and IT security and
significantly outperforms EPIC that is not IT secure.
Quantum safety (but no quantum liveness). A BFT protocol
is quantum secure if its safety is quantum resistant (quantum
safety) and its liveness is quantum resistant (quantum live-
ness) [47]. DAG-Rider [47] achieves quantum safety, even
if when being instantiated using a cryptographic common
coin protocol (e.g., [16, 49]). The BKR protocol and their
descendants (e.g., HoneyBadger [54], MiB [51], PACE [64])
achieve quantum safety if using techniques from EPIC [50].
All the above-mentioned protocols, however, do not achieve
quantum liveness. Tusk [28] and Bullshark [41] are variants
of DAG-Rider; they extensively use signatures and hashes
and achieve neither quantum safety nor quantum liveness.
SodsBC. SodsBC [32] is a quantum-secure asynchronous
protocol relying on trusted setup to build common coins for
the first epoch, and each subsequent epoch uses common
coins from its previous epoch. Moreover, unlike WaterBear,

SodsBC does not achieve adaptive security. While achieving
weaker security guarantees, SodsBC appears less efficient
than WaterBear-QS-Q: SodsBC outperforms HoneyBadger
when n grows large, but WaterBear-QS-Q significantly and
consistently outperforms BEAT, which is more efficient than
HoneyBadger. SodsBC also provides a variant without us-
ing trusted setup, though the protocol works in partially syn-
chronous environments only and requires running n parallel
PBFT instances. The variant has not yet been implemented.
(IT) Byzantine agreement and common coins. Byzantine
agreement (BA) is a central tool for both distributed comput-
ing and cryptography. The condition n≥ 3 f +1 is both neces-
sary and sufficient for both synchronous and asynchronous BA
protocols [59]. The celebrated impossibility result of Fischer,
Lynch, and Paterson [38] implies that a randomized BA pro-
tocol must have non-terminating executions. A BA protocol
may be (1−ε)-terminating, where correct replicas terminate
the protocol with an overwhelming probability, or almost-
surely terminating, where replicas terminate with probability
one.

For our purpose, we focus on ABA protocols in the IT set-
ting with a computationally unbounded adversary. For almost-
surely ABA, Ben-Or’s ABA requires n≥ 5 f +1 [11], while
Bracha’s ABA [13] achieves optimal resilience. The two pro-
tocols use local coins and require an exponential expected
running time. Feldman and Micali propose a BA protocol
having a constant expected running time in synchronous en-
vironments and extend it to build a polynomial-time ABA
protocol requiring n ≥ 4 f + 1 [37]. Abraham, Dolev, and
Halpern [4] provide the first almost-surely ABA with poly-
nomial efficiency (concretely, O(n2) expected running time)
and optimal resilience. Bangalore, Choudhury, and Patra [10]
improve the expected running time of [4] by a factor of n.

For (1−ε)-terminating ABA, Canetti and Rabin [21] build
an expected constant-round ABA protocol with optimal re-
silience. Patra, Choudhury, and Rangan [58] build a more
efficient construction in terms of communication complexity.

Both almost-surely ABA and (1− ε)-terminating ABA fol-
low the classic framework of Feldman and Micali [37] that re-
duces ABA to asynchronous verifiable secret sharing (AVSS).
The framework uses AVSS to build common coins. (The
original idea of using common coin for ABA is due to Ra-
bin [60].) Unfortunately, the framework of using AVSS for
common coins is prohibitively expensive. For instance, to
build AVSS, the approach of Canetti and Rabin [21] needs
to begin with an information checking protocol (resembling
signatures but working in the IT setting), then asynchronous
recoverable sharing, then asynchronous weak secret sharing,
and finally AVSS. The improved approach of Patra, Choud-
hury, and Rangan [58] remains complex, following the route
of information-checking protocol, then asynchronous weak
commitment, and then AVSS. Moreover, the transformation
from AVSS to ABA is equally expensive, requiring running
n2 AVSS instances to generate a single (weak) coin. Patra,
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Choudhury, and Rangan [58] also propose an approach for
sharing multiple secrets simultaneously. While such an ap-
proach is useful for building more efficient multi-valued BA
(MBA), it is unknown if it would yield more efficient ABA
protocols. While, for instance, the CNV framework [25] does
use MBA, it may run O(n) consecutive MBA instances (which
is inefficient).

3 System Model and Definitions
3.1 System and Threat Model

This section describes the system model for distributed
computing protocols, where f out of n replicas may fail arbi-
trarily (Byzantine failures). Unless specified otherwise, the
protocols we consider have the following properties:

• Optimal resilience: The protocols in this work assume
f ≤ ⌊ n−1

3 ⌋, which is optimal. A (Byzantine) quorum is a
set of ⌈ n+ f+1

2 ⌉ replicas. For simplicity, we may assume
n = 3 f +1 and a quorum size of 2 f +1.
• Asynchronous network: We consider completely asyn-

chronous systems making no timing assumptions on mes-
sage processing or transmission delays. In contrast, par-
tially synchronous systems assume that there exist an up-
per bound on message processing and transmission delays
but the bound may be unknown to anyone [36].
• No dealer/trusted setup: We do not assume the existence

of a trusted dealer or trusted setup. Neither do we assume
there exists an interactive protocol for any public keys,
reference strings, or public parameters.
• Unbounded adversary: Depending on the capacities of

the adversary, a protocol may achieve computational secu-
rity, where the adversary is bounded and restricted to prob-
abilistic polynomial-time (PPT), or achieve information-
theoretic (IT) security, where the adversary is unbounded.
• Adaptive corruptions: Depending on how the adver-

sary decides to corrupt parties, there are two types of
corruptions: static corruptions and adaptive corruptions.
In the static corruption model, the adversary is restricted
to choose its set of corrupted replicas at the start of the
protocol and cannot change this set later on. An adaptive
adversary can choose its set of corrupted replicas at any
moment during the execution of the protocol, based on the
information it has accumulated thus far (i.e., the messages
observed and the states of previously corrupted replicas).
There is a strong separation result that statically secure
protocols are not necessarily adaptively secure [20, 27].

Existing asynchronous BFT protocols implemented assume
trusted setup, achieving computational security and static se-
curity only. None of them achieve quantum security either.

We may associate a protocol instance with a unique iden-
tifier id, tagging each message in the instance with id. If no
ambiguity arises, we may omit the identifiers.

3.2 Definitions and Background
BFT. In a BFT protocol, a replica a-delivers (atomically de-
liver) transactions, each submitted by some client. The client
computes a final response to its submitted transaction from the
responses it receives from replicas. We consider the following
properties:
• Agreement: If any correct replica a-delivers a transaction

tx, then every correct replica a-delivers tx.
• Total order: If a correct replica a-delivers a transaction tx

before a-delivering tx′, then no correct replica a-delivers
a transaction tx′ without first a-delivering tx.
• Liveness: If a transaction tx is submitted to all correct

replicas, then all correct replicas eventually a-deliver tx.
Asynchronous binary Byzantine agreement (ABA). An
ABA protocol is specified by propose and decide. Each replica
proposes an initial binary value (called vote) for consensus
and replicas will decide on some value. ABA should satisfy
the following properties:
• Validity: If all correct replicas propose v, then any correct

replica that terminates decides v.
• Agreement: If a correct replica decides v, then any correct

replica that terminates decides v.
• Termination: Every correct replica eventually decides

some value.
• Integrity: No correct replica decides twice.

RABA. Reproposable ABA (RABA) is a new distributed
computing primitive introduced in PACE [64]. In contrast to
conventional ABA protocols, where replicas can vote once
only, RABA allows replicas to change their votes. Formally, a
RABA protocol tagged with a unique identifier id is specified
by propose(id, ·), repropose(id, ·), and decide(id, ·), with the
input domain being {0,1}. For our purpose, RABA is “biased
towards 1." Each replica can propose a vote v at the beginning
of the protocol. Each replica can propose a vote only once. A
correct replica that proposed 0 is allowed to change its mind
and repropose 1. A replica that proposed 1 is not allowed to
repropose 0. If a replica reproposes 1, it does so at most once.
A replica terminates the protocol identified by id by generat-
ing a decide message. RABA (biased toward 1) satisfies the
following properties:
• Validity: If all correct replicas propose v and never repro-

pose v̄, then any correct replica that terminates decides v.
• Unanimous termination: If all correct replicas propose v

and never repropose v̄, then all correct replicas eventually
terminate.
• Agreement: If a correct replica decides v, then any correct

replica that terminates decides v.
• Biased validity: If f +1 correct replicas propose 1, then

any correct replica that terminates decides 1.
• Biased termination: Let Q be the set of correct replicas.

Let Q1 be the set of correct replicas that propose 1 and
never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q = Q1∪Q2, then

5



each correct replica eventually terminates.
• Integrity: No correct replica decides twice.

Validity is slightly different from those for ABA. They
are modified to accommodate the RABA syntax. Integrity is
defined to ensure RABA decides once and once only.

Unanimous termination and biased termination are care-
fully introduced to help achieve RABA termination in certain
scenarios. External operations would have to force the proto-
col to meet these termination conditions.

Biased validity in RABA requires that if f +1 replicas, not
simply all correct replicas, propose 1, then a correct replica
that terminates decides 1. The property guarantees the PACE
framework to have sufficient transactions delivered.
RBC. A Byzantine reliable broadcast (RBC) protocol [7, 14,
18, 29] is specified by r-broadcast and r-deliver such that the
following properties hold:

• Validity: If a correct replica p r-broadcasts a message m,
then p eventually r-delivers m.
• Agreement: If some correct replica r-delivers a message

m, then every correct replica eventually r-delivers m.
• Integrity: For any message m, every correct replica r-

delivers m at most once. Moreover, if the sender is correct,
then m was previously r-broadcast by the sender.

Bracha’s broadcast [13] has a bandwidth of O(n2|m|) and
is IT secure, and CT RBC due to Cachin and Tessaro [18] uses
hash functions (with output length λ) to reduce the bandwidth
to O(n|m|+λn2 logn). Recent works proposed various IT and
quantum RBC protocols with lower communication [6, 29].
PACE framework. PACE uses RBC and RABA in a black-
box manner to construct efficient asynchronous BFT. The
framework allows all ABA instances to run in parallel, re-
moving a well-known bottleneck in the original framework of
Ben-Or, Kemler, and Rabin [12]. PACE also provides a fast
path for consensus, allowing the protocol to terminate using a
single RABA round. It is an interesting research problem to
improve RABA (and the underlying ABA) protocols in terms
of message and communication complexity.
Steps, phases, and rounds. In asynchronous environments,
the network delay is unbounded. To measure the latency of
asynchronous protocols, we use the standard notion of asyn-
chronous steps [21], where a protocol runs in x asynchronous
steps if its running time is at most x times the maximum
message delay between honest replicas during the execution.

We also use the notion of phases for ease of description,
where a phase in a protocol consists of a fixed number of
steps. When describing some of our protocols, we may divide
a protocol into several phases, each of which has several steps.

In this paper, the notion of rounds is restricted to ABA
protocols: an ABA protocol proceeds in rounds, where an
ABA round consists of a fixed number of steps. For instance,
local coin ABA protocols terminate in expected exponen-
tial rounds, while ABA assuming common coins (including
CC-ABA we introduce in this paper) terminates in expected

constant rounds. An ABA round may consist of several phases
and each phase consists of several steps.

4 ABA from Local Coins and Common Coins
The state-of-the-art local coin based ABA protocol,

Bracha’s ABA [13], has O(n3) messages and 12 steps in each
round. We design two new ABA protocols from local coins,
Cubic-ABA and Quadratic-ABA, with two goals in mind—
being more efficient than Bracha’s ABA and being compatible
with RABA.

We begin with the simpler one, Cubic-ABA, that achieves
the same message complexity as Bracha’s ABA but has only
7 steps in each round. Cubic-ABA admits a clean and intu-
itive proof of correctness. We then present Quadratic-ABA
that reduces the messages from O(n3) to O(n2) and reduces
the number of steps to 5 in each round. The improvement is
significant, allowing WaterBear to attain the same average
message complexity as PACE—O(n3). Both ABA protocols
can be modified to efficient RABA protocols.

As an important by-product, extending the idea of
Quadratic-ABA and assuming the existence of (weak or per-
fect) common coins, we can present ABA protocols that have
expected constant rounds and outperform the state-of-the-art
protocols, as shown in Table 4 and Table 5 in Sec. 1.

4.1 Cubic-ABA
Figure 1 describes the pseudocode of Cubic-ABA and Fig-

ure 2 illustrates the workflow. Cubic-ABA uses the broadcast
primitive of best-effort broadcast and the r-broadcast and r-
deliver primitives of RBC. The protocol proceeds in rounds,
beginning with round 0. Each round consists of three phases.
In the first phase, a replica pi broadcasts a pre-voter(ivr) mes-
sage, where ivr ∈ {0,1} is the input value of pi for round r (ln
07). At ln 08-09, if pi receives f + 1 pre-voter(v) for some
v ∈ {0,1} and has not previously broadcast pre-voter(v), it
also broadcasts pre-voter(v).

At ln 10-14, pi enters the second phase. If pi receives 2 f +1
pre-voter(v), it adds v to its bsetr, a set consisting only 0 and
1 (ln 10-11). Letting v be the first value added to bsetr for pi,
pi broadcasts a main-voter(v) message (ln 12-14).

In the third phase, a correct replica pi accepts a
main-voter(v) message only if v has already been added lo-
cally to bsetr (ln 15). If pi has received n− f main-voter(v),
pi r-broadcasts a final-voter(v) message (ln 16-17). Oth-
erwise, pi r-broadcasts final-voter(∗), where ∗ is a distin-
guished symbol that is neither 0 nor 1 (ln 18).

A correct pi accepts a final-voter() message, if one of the
following two conditions holds (ln 23):
• For a final-voter(v) message with v ∈ {0,1}, v has been

added to bsetr for pi.
• For a final-voter(∗) message, bsetr contains both 0 and 1.

Upon r-delivering n− f valid final-voter() messages, we
distinguish three cases:
• Ln 20-21: If pi r-delivers n− f valid final-voter(v) for the
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01 initialization
02 r← 0 {round}
03 func propose(vinput )
04 iv0← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f +1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2 f +1 replicas {� phase 2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= /0

13 if main-voter() has not been sent
14 broadcast main-voter(v) where v ∈ bsetr
15 upon receiving n− f main-voter() such that for each received
main-voter(b), b ∈ bsetr {� phase 3}
16 if there are n− f main-voter(v)
17 r-broadcast final-voter(v)
18 else r-broadcast final-voter(∗)
19 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0,1}
20 if there there are n− f final-voter(v)
21 ivr+1← v, decide v
22 else if there are f +1 final-voter(v)
23 ivr+1← v
24 else
25 c← Random() {obtain local coin}
26 ivr+1← c
27 r← r+1

Figure 1: Cubic-ABA. The code for pi. v ∈ {0,1}.

same v ∈ {0,1}, pi decides v and uses v as ivr+1 to enter
the next round. Each correct replica that decides in round r
continues for one more round (up to the final-voter() step)
and terminates the protocol.
• Ln 22-23: If pi r-delivers at least f +1 valid final-voter(v)

for some v ∈ {0,1}, pi uses v as input for the next round.
• Ln 24-26: Otherwise, a replica generates a local random

coin and uses it as input for the next round.
Intuition and discussion. Our motivation for Cubic-ABA is
to reduce the number of parallel RBCs in Bracha’s ABA. We
recall Bracha’s ABA in Appendix A. In each round, Bracha’s
ABA has three phases, where in each phase, replicas run n
parallel RBCs, with 12 steps and O(n3) messages.

In our approach, the first two phases of Cubic-ABA resem-
ble those of common coin based ABA protocols [26,53,56,57,
64], where we ask replicas to broadcast their values. In partic-
ular, the first phase ensures that all correct replicas eventually
acknowledge the same set of values bsetr; the second phase
ensures that no two correct replicas will vote for opposite
values in the third phase, though one correct replica may vote
for b ∈ {0,1} and one may vote for ∗ (a distinguished vote).
Accordingly, we do not have to rely on RBC for the first two
phases, as our first two phases already guarantee that correct
replicas will not vote for conflicting values for the third phase.

RBC0

RBC1

RBC2

RBC3

1

0

1

1

1

pre-vote:
0 or 1

main-vote:
0 or 1

final-vote:
v or  

accept any value accept main-
vote(v) if v is in 

bset

accept final-vote(v) 
if v is in bset

*

Figure 2: The workflow of Cubic-ABA.

In the third phase, we need to ensure that if a correct replica
receives n− f votes (i.e., final-voter(v)) for the same v in the
same phase, any correct replica will either decide v or vote for
v in the following round. Note for the case where f +1 correct
replicas vote for v and f correct replicas vote for ∗, we need to
guarantee that if a correct replica receives n− f final-voter(v),
any correct replica will receive at least f + 1 final-voter(v)
and therefore vote for v in the following round. Thus, we rely
on RBC, ensuring that all correct replicas eventually receive
consistent values, even in the presence of Byzantine replicas.

As a result, the number of n parallel RBC instances is 1
instead of 3, and the number of steps is reduced from 12 to 7.

4.2 Quadratic-ABA
In Quadratic-ABA, we replace the only parallel RBC phase

used in Cubic-ABA using a novel two-step all-to-all broadcast.
The goal is to ensure that at the end of each round, if a correct
replica receives n− f matching votes for a value v, any correct
replica will receive either n− f votes for v or at least f +1
matching v. This will guarantee that all correct replicas will
vote for v in the following round.

The pseudocode of Quadratic-ABA is shown in Figure 3.
The Quadratic-ABA protocol is round-based, starting from
round 0. In each round, there are four phases—pre-voter(),
voter(),main-voter(), and final-voter(), as shown in Figure 4.
The pre-voter() and voter() phases (ln 07-14) are similar to
the pre-voter() and main-voter() phases in Cubic-ABA. In
the first phase, every replica pi broadcasts a pre-voter(ivr)
message, where ivr is the value pi votes for in round r (ln 07).
After receiving f +1 pre-voter(v) and pi has not previously
broadcast pre-voter(v), pi also broadcasts pre-voter(v) (ln 08-
09). At ln 10-11, upon receiving n− f pre-voter(v), pi adds
v to bsetr. For the first value v added to bsetr, pi broadcasts a
voter(v) message (ln 12-14).

For each voter(v) message, pi accepts it only if v has been
added to bsetr. Upon receiving n− f voter() messages, one
of the following two conditions holds.

• Ln 16-17: If pi receives n− f voter(v) messages, it broad-
casts a main-voter(v) message.
• Ln 18: Otherwise, pi broadcasts a main-voter(∗) message.

Every correct replica pi accepts a main-voter(v) mes-
sage only if pi has received f + 1 voter(v) messages. Ev-
ery correct replica accepts a main-voter(∗) message only if
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01 initialization
02 r← 0 {round}
03 func propose(vinput )
04 iv0← vinput {set input for round 0}
05 start round 0
06 round r
07 broadcast pre-voter(ivr) {� phase 1}
08 upon receiving pre-voter(v) from f +1 replicas
09 if pre-voter(v) has not been sent, broadcast pre-voter(v)
10 upon receiving pre-voter(v) from 2 f +1 replicas {� phase 2}
11 bsetr ← bsetr ∪ {v}
12 wait until bsetr ̸= /0

13 if voter() has not been sent
14 broadcast voter(v) where v ∈ bsetr
15 upon receiving n− f voter() such that for each voter(v), v ∈
bsetr {� phase 3}
16 if there are n− f voter(v)
17 broadcast main-voter(v)
18 else broadcast main-voter(∗)
19 upon receiving n − f main-voter() such that for each
main-voter(v), at least f + 1 voter(v) have been received and for
each main-voter(∗), bsetr = {0,1} {� phase 4}
20 if there there are n− f main-voter(v)
21 broadcast final-voter(v)
22 else broadcast final-voter(∗)
23 upon receiving n − f final-voter() such that for each
final-voter(v), at least f +1 main-voter(v) have been received and
for each final-voter(∗), bsetr = {0,1}
24 if there there are n− f final-voter(v)
25 ivr+1← v, decide v
26 else if there are only final-voter(v) and final-voter(∗)
27 ivr+1← v
28 else
29 c← Random() {obtain local coin}
30 ivr+1← c
31 r← r+1

Figure 3: The Quadratic-ABA protocol. The code for pi.

bsetr = {0,1}. Upon receiving n− f main-voter() messages,
one of the following two conditions holds.

• Ln 20-21: If pi receives n− f main-voter(v) messages, it
broadcasts a final-voter(v) message.
• Ln 22: Otherwise, pi broadcasts final-voter(∗) message.

Every correct replica accepts a final-voter(v) message only
if it has received f +1 main-voter(v) messages. Every correct
replica accepts a final-voter(∗) message only if bsetr = {0,1}.
Upon receiving n− f final-voter() messages, there are three
cases:

• Ln 24-25: If pi receives n− f final-voter(v), it decides v
and also sets ivr+1 as v. It participates in the protocol for
one more round and terminates the protocol.
• Ln 26-27: If pi receives n− f final-voter() messages that

carry only value v and ∗, it uses v for round r+1.
• Ln 28-30: Otherwise, pi generates a local random coin

and uses it as input for the next round.

Figure 4: The workflow of Quadratic-ABA.

Intuition and discussion. The pre-voter() phase and
voter() phase are similar to the pre-voter() phase and the
main-voter() phase in Cubic-ABA. In Quadratic-ABA, we
use the main-voter() phase and the final-voter() phase to
replace the parallel RBC phase of Cubic-ABA. Hence,
Quadratic-ABA achieves O(n2) messages and O(n2) com-
munication.

Our goal is to guarantee that if a correct replica re-
ceives n− f final-voter(v), any correct replica will set ivr+1
as v. First, if a correct replica sends main-voter(v), no
correct replica will send main-voter(v̄) (which we prove
in Lemma 13 in Appendix E). In particular, if a correct
replica sends main-voter(v), it must have received n− f
voter(v). If another correct replica sends main-voter(v̄), at
least n− f replicas have sent voter(v). Therefore, at least
one correct replica has sent both voter(v) and voter(v̄), con-
tradicting the fact that each correct replica only sends a
single voter() message in each round. Furthermore, if a
correct replica sends final-voter(v), no correct replica will
send final-voter(v̄) or even accept final-voter(v̄) from other
replicas (Lemma 14 and Lemma 19). This is because if
a correct replica accepts final-voter(v̄), at least one cor-
rect replica has sent main-voter(v̄). Meanwhile, if a correct
replica accepts final-voter(v), at least one correct replica
has sent main-voter(v), contradicting Lemma 13. Hence,
at the end of each round, if a correct replica receives only
final-voter(v1) and final-voter(∗), another correct replica re-
ceives only final-voter(v2) and final-voter(∗), it holds that
v1 = v2. This result is crucial for agreement and termination.

Furthermore, if a correct replica decides v in round r, it
must have received n− f final-voter(v). Among them, at
least f + 1 correct replicas have sent final-voter(v). With
3 f + 1 replicas in total, there are at most 2 f final-voter(v̄)
or final-voter(∗). Hence, every correct replica receives at
least one final-voter(v). As no correct replica will ac-
cept final-voter(v̄), every correct replica will only have
final-voter(v) and final-voter(∗). Thus, every correct replica
either decides in round r, or enters round r+1 and sets ivr+1
to v. Doing so ensures agreement.

4.3 CC-ABA
Both Cubic-ABA and Quadratic-ABA can be transformed

to ABA from weak common coins [21, 57] and perfect com-
mon coins. Here by weak common coins, we mean that all
correct replicas output 0 with probability 1/d and output 1
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with probability 1/d where d is a constant and d ≥ 2, and
the probability that correct replicas obtain different values is
(d−2)/d. By perfect common coins, we mean that all correct
replicas always output the same random coin. Note perfect
coins are a special case of weak coins (by setting d = 2).

As Quadratic-ABA is more efficient, we here focus on
Quadratic-ABA. Our main result is that by replacing local
coins of Quadratic-ABA with weak (or perfect) common
coins, we immediately obtain CC-ABA terminating in O(1)
time. CC-ABA reduces the expected number of steps of prior
constructions, as shown in Table 4 and Table 5. Note that
ABA is the major bottleneck in asynchronous BFT protocols
as reported in [35, 43, 44]. The improvement is significant
and has practical implications, as the recent work of PACE
has shown that even a single step improvement can lead to a
drastic performance improvement (for instance, easily 2x) in
BFT protocols [64].

5 RABA from Local Coins
As shown in PACE [64], the PACE framework with RABA

significantly outperforms the conventional BKR diagram
and enables a fast path for termination. Our goal here is to
use local coin based ABA to design RABA without trusted
setup. We use Cubic-ABA and Quadratic-ABA to build Cubic-
RABA and Quadratic-RABA, respectively. Here, we focus on
Quadratic-RABA and present Cubic-RABA in Appendix B.

5.1 The Subtlety of Building Quadratic-RABA

PACE introduced a general approach to converting ABA to
RABA [64]. Following their approach, we present Quadratic-
RABA in Figure 5. Quadratic-RABA is identical to Quadratic-
ABA except for the first round (round 0), where we make the
following changes. First, we use a propose() event and a re-
propose() event (ln 03-07). Upon propose(v), a replica pi
starts round 0 and executes the broadcast-vote(v) function.
Upon repropose(1) event, regardless of which round a replica
is in, pi still executes the broadcast-vote(v) function. The
propose() and repropose() events are crucial for biased termi-
nation. So if a quorum of correct replicas either propose 1 or
repropose 1, the protocol will eventually terminate.

Second, in the broadcast-vote(v) function, replica pi broad-
casts a pre-vote0(v) message (ln 09). At ln 10-14, if v = 1,
pi immediately adds 1 to bset0, and broadcasts vote0(1),
main-vote0(1), and final-vote0(1).

Third, the coin value in round 0 is set to 1 (ln 38). The
second and the third modifications guarantee both biased
validity property and a fast path of terminating in only one
step. Namely, if f +1 correct replicas propose 1, no correct
replica will receive 2 f +1 final-vote0(0). As we will show in
the proof, every correct replica will either directly decide 1 or
set iv1 as 1, so all correct replicas decide within two rounds.
Furthermore, our protocol has a fast path: if all correct replicas
propose 1, they will directly send vote0(1), main-vote0(1),

01 initialization
02 r← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if vote0() has not been sent, broadcast vote0(1)
13 if main-vote0() has not been sent, broadcast main-vote0(1)
14 if final-vote0() has not been sent, broadcast final-vote0(1)
15 round r
16 if r > 0, broadcast pre-voter(ivr)
17 upon receiving pre-voter(v) from f +1 replicas
18 if pre-voter(v) has not been sent, broadcast pre-voter(v)
19 upon receiving pre-voter(v) from 2 f +1 replicas
20 bsetr ← bsetr ∪ {v}
21 wait until bsetr ̸= /0

22 if voter() has not been sent
23 broadcast voter(v) where v ∈ bsetr
24 upon receiving n− f voter() such that for each received
voter(b), b ∈ bsetr
25 if there are n− f voter(v)
26 broadcast main-voter(v)
27 else broadcast main-voter(∗)
28 upon receiving n − f main-voter() such that for each
main-voter(v): 1) if r = 0, v∈ bsetr, 2) if r > 0, at least f +1 voter(v)
have been received; for each main-voter(∗), bsetr = {0,1}
29 if there there are n− f main-voter(v)
30 broadcast final-voter(v)
31 else broadcast final-voter(∗)
32 upon receiving n − f final-voter() such that for each
final-voter(v), 1) if r = 0, v ∈ bsetr, 2) at least f +1 main-voter(v)
have been received; for each final-voter(∗), bsetr = {0,1}
33 if there there are n− f final-voter(v)
34 ivr+1← v, decide v
35 else if there are only final-voter(v) and final-voter(∗)
36 ivr+1← v
37 else
38 if r = 0, c← 1 {coin in the first round is 1}
39 else c← Random() {obtain local coin}
40 ivr+1← c
41 r← r+1

Figure 5: The Quadratic-RABA protocol. The code for pi.

final-vote0(1), allowing correct replicas to decide in one step.
The above modifications largely follow the generic trans-

formation. We find that these modifications are sufficient for
a secure Cubic-ABA, just as all known ABA protocols that
can be transformed into their secure RABA counterparts (as
shown in [64]). Surprisingly and unexpectedly, we find that
for Quadratic-ABA, however, there is still a subtle liveness
issue for round 0. We illustrate the issue via an example.
Suppose f correct replicas propose 1 and f +1 correct repli-
cas propose 0. The f replicas directly broadcast vote0(1),
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01 upon selecting mi for pi using the technique of EPIC
02 r-broadcast([e, i],mi) for RBCi
03 upon r-deliver([e, j],m j) for RBC j
04 if RABA j has not been started
05 propose([e, j],1) for RABA j
06 else
07 repropose([e, j],1) for RABA j
08 upon delivery of n− f RBC instances
09 for RABA instances that have not been started
10 propose([e, j],0)
11 upon decide([e, j],v) for any value v for all RABA instances
12 let S be set of indexes for RABA instances that decide 1
13 wait until r-deliver([e, j],m j) for all RABA j where j ∈ S
14 a-deliver(∪ j∈S{m j})

Figure 6: The WaterBear family. The code for replica pi in
epoch e. WaterBear uses the technique of EPIC to select
transactions.

main-vote0(1), and final-vote0(1). Even if the f +1 correct
replicas that proposed 0 may later repropose 1, they may have
already sent vote0(0), main-vote0(0), and final-vote0(0). In
this case, no correct replica will accept final-vote0(1) as they
do not receive f + 1 main-vote0(1). In summary, the issue
is, in essence, caused by the fact that each correct replica
accepts a main-voter(v) message only if it has previously
received f + 1 voter(v), and each correct replica accepts a
final-voter(v) message only if it has previously received f +1
main-voter(v).

To resolve the above issue, we introduce another change to
round 0 of the protocol. In particular, we relax the conditions
for round 0: for each main-voter(v) (ln 28) and final-voter(v)
(ln 32), a correct replica accepts it as long as v ∈ bset0. With
this modification, the set of f + 1 correct replicas that pro-
posed 0 will repropose 1, so every correct replica will even-
tually put 1 in pre-vote.(0) Hence, every correct replica will
eventually accept main-vote0(1) and final-vote0(1).

Our result underlines the subtlety of constructing RABA
from ABA and the importance of a full proof for a new proto-
col (proof in Appendix H).

6 The WaterBear Family
This section describes our asynchronous BFT protocols—

WaterBear (WaterBear-C and WaterBear-Q), and WaterBear-
QS (WaterBear-QS-C, and WaterBear-QS-Q). All the proto-
cols are quantum secure, and WaterBear-C and WaterBear-Q
are additionally information-theoretically secure.

6.1 The WaterBear Protocols
WaterBear follows the PACE paradigm but uses the trick in

EPIC [50] to avoid the usage of threshold encryption (needed
for achieving adaptive security). In particular, WaterBear uses
r-broadcast and r-deliver primitives of Bracha’s broadcast,
and propose, repropose and decide primitives of WaterBear
RABA. Figure 6 depicts the pseudocode of WaterBear. In
terms of transaction selection strategy, we follow EPIC and

ask replicas to select random transactions in plaintext for most
epochs and periodically switch to the FIFO selection, where
replicas maintain a log of transactions according to the order
transactions are received and replicas select the first group
of transactions in the buffer as input. As shown in EPIC, the
approach shares similar performance to the random selec-
tion approach used in HoneyBadger and BEAT. Following
the PACE paradigm, for each epoch e, WaterBear consists
of n parallel RBC instances and n parallel RABA instances.
In the RBC phase, each replica pi r-broadcasts a proposal
mi for RBCi. If pi r-delivers a proposal from RBC j, it pro-
poses 1 for RABA j. Upon delivery of n− f RBC instances,
instead of waiting for n− f RABA instances to terminate,
pi proposes 0 for all RABA instances that have not been
started. If pi later delivers a proposal from some RBC j, it
has proposed 0 for RABA j, and has not terminated RABA j,
it reproposes 1 for RABA j. We let S be the set of indexes
where RABA j decides 1. When all RABA instances termi-
nate and all RBCi (i∈ S) instances are delivered, pi a-delivers
∪ j∈S{m j}. The security of WaterBear directly follows from
that of the PACE paradigm. As we propose two RABA pro-
tocols Cubic-RABA and Quadratic-RABA. We use Cubic-
RABA to build WaterBear-C and Quadratic-RABA to build
WaterBear-Q.

6.2 The WaterBear-QS Protocols
We now describe WaterBear-QS, also consisting of two

asynchronous BFT protocols. We use Cubic-RABA to build
WaterBear-QS-C and Quadratic-RABA to build WaterBear-
QS-Q. WaterBear-QS does not achieve information-theoretic
security but achieves quantum security for both safety and
liveness properties. Prior to our work, no such BFT proto-
col had been implemented. The difference between Water-
Bear and WaterBear-QS is that WaterBear-QS leverages CT
RBC [18] to reduce the communication complexity of RBC.
Jumping ahead, we show the modification leads to a dramatic
performance improvement compared to WaterBear protocols.

7 Implementation and Evaluation
Implementation. We implemented WaterBear-C, WaterBear-
Q, WaterBear-QS-C, and WaterBear-QS-Q in a new Golang
library. For comparison, we choose to implement BEAT in our
library. BEAT [1, 35] was originally implemented in Python
2.7 using MMR ABA [56]. We implemented a new version
of BEAT, replacing MMR ABA with Cobalt-ABA, as Cobalt
ABA addressed the liveness issue of MMR. Our implementa-
tion involves more than 11,000 LOC for the protocol imple-
mentations and about 1,000 LOC for evaluation.

All the protocols use authenticated channels, and
WaterBear-QS additionally uses hash functions. We use
HMAC to realize the authenticated channel. HMAC is quan-
tum secure but not IT secure; we used HMAC in our reference
implementation for WaterBear to demonstrate the overhead
of WaterBear itself, because all other protocols introduced
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Figure 7: Latency of the protocols.

in this paper use HMAC for authentication. The situation is
the same as PBFT, which is also IT secure and implemented
authenticated channels via MACs. We use SHA256 as the
hash function. We use gRPC as the communication library.

All the protocols use RBC in their RBC phases, and
WaterBear-C and WaterBear-QS-C additionally use RBC in
the ABA phase. For WaterBear-C and WaterBear-Q, we use
Bracha’s broadcast (which is IT secure) in the RBC phase. For
WaterBear-QS-C and WaterBear-QS-Q, we use CT RBC [18]
(using erasure coding and hash functions) in the RBC phase.
In ABA phases of WaterBear-C and WaterBear-QS-C, we
directly use Bracha’s broadcast because there is no bulk data
(and no need to use erasure coding). To implement CT RBC,
we use a Golang Reed-Solomon code library [3].

There are several reasons we chose BEAT as the baseline
protocol. First, BEAT is one of the most efficient open-source
asynchronous BFT implementations. As shown in PACE [64],
BEAT is more efficient than Dumbo [44] for n≤ 46. Second,
all WaterBear protocols achieve adaptive security, and EPIC is
the only known adaptively secure asynchronous BFT protocol
implemented. It is shown that BEAT significantly outperforms
EPIC in both LAN and WAN settings [50]. Hence, as long as
we demonstrate the performance difference between BEAT
and our protocols, we can argue which is the most efficient
adaptively secure asynchronous BFT protocol among EPIC
and WaterBear protocols. Note EPIC neither achieves quan-
tum security nor IT security. We do not attempt to compare
our protocols with other BFT protocols in Table 1, as those
protocols neither achieve adaptive nor quantum security, rely-
ing on PKC and trusted setup. Indeed, our goal is not to claim

WaterBear protocols are the most efficient asynchronous BFT
protocols, but we aim at refuting the conventional wisdom that
asynchronous BFT protocols cannot match the security guar-
antees of partially synchronous protocols while preserving
performance.
Overview of evaluation. We evaluate the performance of
our protocols on Amazon EC2 utilizing up to 61 virtual ma-
chines (VMs) from different regions in five continents. We use
both t2.medium and m5.xlarge instances for our evaluation.
The t2.medium type has two virtual CPUs and 4GB memory
and the m5.xlarge has four virtual CPUs and 16GB memory.
Unless otherwise mentioned, we use m5.xlarge instances by
default. We deploy our protocols in both LAN and WAN set-
tings. In the LAN setting, the replicas are run in the same
region of EC2 (e.g., US Virginia), but these replicas may be
located in different physical datacenters. In the WAN setting,
the replicas are evenly distributed across different continents.

We conduct the experiments under different network sizes
and contention levels (batch size). We use f to denote the
network size; in each experiment, we use 3 f + 1 replicas
in total. We let b denote the contention level; in particular,
each replica proposes b transactions in each epoch. For each
experiment, we vary the batch size b from 1 to 25,000. For
each experiment, we report the average performance (for both
throughput and latency). We use two different transaction
sizes. We evaluate the performance for transactions with 100
bytes by default and also evaluate it with 250 bytes.

We assess the performance of the protocols under failure-
free and failure scenarios. While our failure-case evaluation is
not the first such evaluation for asynchronous BFT protocols,
the testbed we built aims to be comprehensive, encompassing
realistic failure and attack scenarios we can envision. We
roughly summarize our main results in the following:
• The WaterBear protocols using Quadratic-RABA

(WaterBear-QS-Q and WaterBear-Q) are much more effi-
cient than the protocols using Cubic-RABA (WaterBear-
QS-C and WaterBear-C), as Quadratic-RABA has O(n2)
messages and much fewer steps than Cubic-RABA (with
O(n3) messages). The result justifies the importance of
designing Quadratic-RABA and Quadratic-ABA.
• The quantum secure WaterBear protocols (WaterBear-

QS-C and WaterBear-QS-Q) drastically outperform their
IT counterparts (WaterBear-C and WaterBear-Q), as the
RBC used for WaterBear-QS-C and WaterBear-QS-Q is
more bandwidth-efficient than that for WaterBear-C and
WaterBear-Q. The finding highlights the cost of achieving
IT security from quantum security for our protocols.
• Regarding latency, all WaterBear protocols have lower

latency (under no contention) than BEAT. Regarding
throughput, all our protocols, except WaterBear-QS-Q
(our most efficient protocol), share similar performance as
BEAT.
• WaterBear-QS-Q consistently and significantly outpaces

BEAT. For instance, when n = 16, WaterBear-QS-Q has

11



about 1/8 the latency that of BEAT and 1.23x the through-
put of BEAT. As n grows larger, the peak throughput
of WaterBear-QS-Q is about 1.47x that of BEAT. The
peak throughput of WaterBear-QS-Q (as n grows larger)
is about 1.47x that of BEAT.
• All four protocols we propose are highly robust against

various crash and Byzantine failures, just as BEAT.

7.1 Performance in Failure-Free Cases
Latency. We report the latency of the protocols in both LAN
and WAN settings for f = 1,2, and 5 in Figure 7 with for
b = 1 and 100. All WaterBear protocols consistently achieve
lower latency than BEAT in both LAN and WAN environ-
ments, mainly because our protocols have a coin-free fast
path. Among the protocols, WaterBear-QS-Q has consistently
lower latency than all other protocols, as WaterBear-QS-Q
has the lowest communication complexity among the Water-
Bear protocols. As f increases, the latency difference between
WaterBear-QS-Q and other protocols becomes more visible.
For instance, when f = 5 in the WAN setting, BEAT achieves
3.47x latency of that for WaterBear-QS-Q; in the LAN setting,
the latency for BEAT is 8.78x of that for WaterBear-QS-Q.
Throughput and scalability. We report throughput and
throughput vs. latency in Figure 8 by varying the network
size f from 1 to 20.

First, we find that the throughput of WaterBear-C and
WaterBear-Q are consistently lower than the other protocols.
As WaterBear-C (resp. WaterBear-Q) and WaterBear-QS-C
(resp. WaterBear-QS-Q) differ in RBC only, RBC is clearly
one performance bottleneck. The result highlights the cost of
achieving IT security.

We assess the throughput of all five protocols for f = 1
in WAN as depicted in Figure 8b: the peak throughput of
WaterBear-QS-Q is slightly higher in most experiments. We
also conduct a separate experiment in LANs, as shown in
Figure 8a. Unlike the results in WANs, the throughput of
BEAT in LANs is marginally higher than WaterBear-QS-C,
and the throughput of WaterBear-QS-Q is marginally higher
than BEAT: the peak throughput of BEAT is 2.3% higher
than WaterBear-QS-C, and the peak throughput of WaterBear-
QS-Q is 3.9% higher than BEAT. The peak throughput of
WaterBear-QS-C is 65.7 ktx/sec in LANs and 37.8 ktx/sec in
WANs, and the peak throughput of WaterBear-QS-Q is 69.9
ktx/sec in LANs and 38.4 ktx/sec in WANs.

When f increases, in general, WaterBear-QS-Q and
WaterBear-QS-C outpace all the other protocols. The peak
throughput of WaterBear-QS-C is higher than BEAT when
f = 5 and f = 10 but lower when f = 20 only. Meanwhile,
WaterBear-QS-Q is consistently more efficient than all other
protocols (higher throughput and lower latency). For instance,
when f = 10, the peak throughput of WaterBear-QS-Q is
47.4% higher than BEAT. The reason why WaterBear-QS-Q
is more efficient than WaterBear-QS-C is that WaterBear-QS-
Q uses a more communication-efficient RABA protocol.

Additional evaluation results. We show in Appendix Sec. C
additional evaluation results, including performance on dif-
ferent types of VMs, performance with different transaction
sizes, and memory and CPU usage for the protocols imple-
mented.

7.2 Performance under Failures
To assess the protocol performance under failures and at-

tacks, we carefully design various experiments as follows.
• S0: (failure-free) In this scenario, all replicas are correct.

S0 is the baseline scenario used to compare with failure
scenarios.
• S1: (crash) In this scenario, we let f replicas crash by not

participating in the protocols.
• S2: (Byzantine; keep voting 0) In this scenario, we con-

trol all f faulty replicas to keep voting for 0 in each step
of (R)ABA. For all the five protocols, doing so would intu-
itively make fewer ABA and RABA instances decide 1 and
would likely decrease the throughput of the protocols. We
aim to observe the throughput reduction in this scenario
compared to the failure-free scenario.
• S3: (Byzantine; flipping the (R)ABA input) In this sce-

nario, we let f replicas exhibit Byzantine behavior in the
(R)ABA phase. The strategy is to vote for a flipped value
in (R)ABA. In other words, in each (R)ABA step, each
Byzantine replica inputs b̄ when it should have input b.
Doing so could potentially force each (R)ABA instance to
experience more steps to terminate for all five protocols.
For WaterBear and WaterBear-QS, the strategy would, at
first glance, likely be more fruitful. For both protocols, a
RABA instance may terminate in round 0, thanks to the
biased validity property of RABA. The flipping strategy
illustrated above may make them not decide in round 0
and force them to enter the second round of RABA, where
the two protocols start to query the local coins.

We assess the performance of the five protocols imple-
mented under failures for f = 1 (Figure 9a), f = 2 (Figure 9b),
and f = 5 (Figure 9c).
Performance under crash failures (S1). The throughput of
all the five protocols implemented under crash failures is
higher than that in the failure-free case, except for f = 1,
where all protocols share similar performance between the
two scenarios. Our result echoes those of previous works. The
reason is that under crash failures, the network bandwidth
consumption is much lower (about 33% lower) than in the
failure-free case. Note that when f = 1, the network band-
width consumption is not as dominating as in other cases;
hence, the performance difference among the protocols for
f = 1 is less visible.
Performance under Byzantine failures (S2 and S3). The
performance of all the protocols under Byzantine failures is
slightly lower than that in the failure-free scenario and the
crash failure scenario. WaterBear-QS-C and WaterBear-QS-Q
suffer from slightly higher performance degradation under
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Figure 8: Throughput vs latency on m5.xlarge instances for f = 1 to f = 20.
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Figure 9: Performance of the protocols in failure scenarios.

Byzantine failures compared to BEAT. The higher perfor-
mance degradation is due to the use of local coins. As replicas
start to use local coins in round r > 0, the RABA protocol
may decide in more rounds. In all cases, WaterBear-QS-C
and WaterBear-QS-Q remain more efficient than BEAT.

The difference between S2 and S3 is that faulty replicas
broadcast 0 in S2 but broadcast the flipped value in S3. For
BEAT, the performance in S3 is higher for f = 1 and f = 5
but lower for f = 2; the difference in all the cases is not signif-
icant though. In contrast, for WaterBear-QS-C and WaterBear-
QS-Q, the performance in S3 is consistently lower than S2,
showing that the flipping strategy in S3 works slightly better
than that in S2.

8 Conclusion
This paper designs and implements a family of practical

asynchronous BFT protocols matching the security guaran-

tees of their partially synchronous counterparts. Our exper-
iments demonstrate that our protocols are efficient in both
failure and failure-free scenarios. In particular, one of our pro-
tocols, WaterBear-QC-Q, consistently outperforms the state-
of-the-art asynchronous protocols with much weaker security
guarantees. We also build in different settings more efficient
ABA and RABA protocols that can be used to improve var-
ious high-level Byzantine-resilient protocols. Our work, for
the first time, shows that the strongest security models and
high performance can co-exist for asynchronous BFT.
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A Bracha’s ABA
We present Bracha’s ABA [13]. The pseudocode is shown

in Figure 10. Bracha’s ABA has three phases. In each phase,
each replica broadcasts its value via a RBC instance, i.e., there
are n parallel RBC instances in each of the three phases. As
the underlying RBC has O(n2) messages and 4 steps, Bracha’s
ABA has O(n3) messages and 12 steps in each round.

In Bracha’s ABA, every replica maintains a set vset con-
taining valid values. In each phase, every replica only accepts
messages that carry valid values. The valid values vset must
be congruent with the values each replica receives from the
previous phase (or the last phase of the previous round). In
the first phase of round 0, both 0 and 1 are considered valid.
In the second and third phases, a value is added to vset only
if the replica receives the value from enough replicas.

In the first phase, every replica pi r-broadcasts a
pre-voter(ivr) message (ln 08), where ivr is the input value
of pi for round r.

In the second phase, pi waits for n− f pre-voter() mes-
sages such that for each pre-voter(v), v ∈ vset. There are two
cases:
• Ln 10-13: If pi has received n− f pre-voter(v) for some

v ∈ {0,1}, pi decides v and sets both vset and ivr+1 as v.
Replica pi continues for one more round and terminates

01 Initialization
02 r← 0 {round}
03 func propose(v)
04 iv0← v
05 vset←{0,1} {valid binary values that will be accepted}
06 start round 0
07 round r
08 r-broadcast pre-voter(ivr) {� phase 1}
09 upon r-delivering n − f pre-voter() such that for each
pre-voter(v), v ∈ vset {� phase 2}
10 if there are n− f pre-voter(v)
11 decide v
12 ivr+1← v
13 vset←{v}
14 else
15 v← majority value in the set of pre-voter() messages
16 r-broadcast main-voter(v)
17 upon r-delivering n − f main-voter() such that for each
main-voter(v), v ∈ vset {� phase 3}
18 if there are at least n/2 main-voter(v)
19 vset←{v}
20 else
21 v←{⊥}
22 vset←{0,1}
23 r-broadcast final-voter(v)
24 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ vset; for each final-voter(∗), vset = {0,1}
25 if there are at least 2 f +1 final-voter(v)
26 decide v
27 ivr+1← v
28 vset←{v}
29 else if there are f +1 final-voter(v)
30 ivr+1← v
31 vset←{0,1}
32 else
33 c← Random() {obtain local coin}
34 ivr+1← c
35 vset←{0,1}
32 r← r+1

Figure 10: The Bracha’s ABA protocol [13]. The code for pi.

the protocol (up to either ln 10 or ln 25 before pi decides
some value again).
• Ln 14-15: Otherwise, pi sets v as the majority value in the

set of pre-voter() messages it receives. The set vset is not
changed, i.e., vset = {0,1}.

In both cases, pi r-broadcasts a main-voter(v) message (ln
16).

In the third phase, every replica pi waits for n− f valid
main-voter() messages (ln 17). There are two cases:
• Ln 18-19: If pi receives at least n/2 main-voter(v), it sets

vset as {v}.
• Ln 20-22: Otherwise, pi sets v as ∗ and vset as {0,1}.

In both cases, pi r-broadcasts a final-voter(v) message (ln
23). Then every replica waits for n− f valid final-voter()
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messages (ln 24). Note that final-voter(∗) is considered valid
only if vset = {0,1}. There are three cases:
• Ln 25-28: If pi receives at least 2 f + 1 final-voter(v), it

decides v and sets ivr+1 as v. Replica pi continues for one
more round (up to either ln 10 or ln 25) and terminates the
protocol.
• Ln 29-31: If pi receives at least f +1 final-voter(v), it sets

ivr+1 as v and vset as {v}.
• Ln 32-35: Otherwise, pi uses the local coin value as ivr+1

and vset as {0,1}, i.e., pi accepts both 0 and 1 in the first
phase of the following round.

B Cubic-RABA
The pseudocode of Cubic-RABA protocol is shown in Fig-

ure 11. Cubic-RABA is identical to Cubic-ABA, except for
round 0 (the first round). We have made the following changes
for round 0. First, both propose() and repropose() events are
allowed. Upon the propose(v) event (ln 03), a replica pi exe-
cutes the broadcast-vote(v) function and starts round 0. Upon
the repropose(v) function (ln 06), pi executes broadcast-
vote(v). Note that upon a repropose() event, pi must have
already started the protocol and may even proceed to a round
greater than 0. In this case, regardless of which round the
replica is in, it executes the broadcast-vote(v) function and
broadcasts a pre-vote0(v) message.

Second, in the broadcast-vote(v) function (ln 08-13), pi
broadcasts a pre-vote0(v) message. If v = 1, pi adds 1 to
bset0 (ln 11). If pi has not previously broadcast main-vote0(),
it broadcasts main-vote0(1) (ln 12). If pi has not r-broadcast
final-vote0(), it r-broadcasts final-vote0(1) (ln 13). Further-
more, in round 0, if pi receives f +1 pre-vote0(1) messages
and has not broadcast main-vote0() or final-vote0() (ln 18),
it also broadcasts main-vote0(1) (ln 20-21) and r-broadcasts
final-vote0(1) (ln 22-23).

Finally, the coin value for round 0 is set to 1 (ln 39). In
round r ≥ 1, Cubic-RABA is identical to Cubic-ABA.
Analysis. The proof of Cubic-RABA is shown in Appendix G.
We show that the changes we have made on top of Cubic-
ABA can transform Cubic-ABA into a RABA protocol. The
first change can ensure the biased termination property. In
particular, it guarantees that if a quorum of correct replicas
either directly propose 1 or propose 0 and later on repropose
1, the protocol will terminate. The second and third changes
ensure the biased validity property. If f + 1 correct repli-
cas propose 1, they will directly add 1 to bset0, broadcast
pre-vote0(1), main-vote0(1), and r-broadcast final-vote0(1).
Namely, no correct replica can receive n− f main-vote0(0)
or r-broadcast final-vote0(0). Furthermore, no correct replica
can receive n− f final-vote0(0) or f +1 final-vote0(0). Fur-
thermore, for the case where a correct replica uses the local
coin to enter the next round, the coin value is also 1. Accord-
ingly, Cubic-RABA achieves biased validity. Other properties
of Cubic-RABA follow from Cubic-ABA, as we only modify
round 0 of the protocol.

01 initialization
02 r← 0 {round}
03 func propose(v)
04 broadcast-vote(v)
05 start round 0
06 func repropose(v)
07 broadcast-vote(v)
08 func broadcast-vote(v)
09 if pre-vote0(v) has not been sent, broadcast pre-vote0(v)
10 if v = 1
11 bset0 ← bset0 ∪ {1}
12 if main-vote0() has not been sent, broadcast main-vote0(1)
13 if final-vote0() has not been sent, r-broadcast final-vote0(1)
14 round r
15 if r > 0, broadcast pre-voter(ivr)
16 upon receiving pre-voter(v) from f +1 replicas
17 if pre-voter(v) has not been sent, broadcast pre-voter(v)
18 if r = 0 and v = 1
19 bset0 ← bset0 ∪ {1}
20 if main-vote0() has not been sent
21 broadcast main-vote0(1)
22 if final-vote0() has not been sent
23 r-broadcast final-vote0(1)
24 upon receiving pre-voter(v) from 2 f +1 nodes
25 bsetr ← bsetr ∪ {v}
26 wait until bsetr ̸= /0

27 if main-voter() has not been sent
28 broadcast main-voter(v) where v ∈ bsetr
29 upon receiving n− f main-voter() such that 1) final-voter()
has not been sent; 2) for each received main-voter(b), b ∈
30 if there are n− f main-voter(v)
31 r-broadcast final-voter(v)
32 else r-broadcast final-voter(∗)
33 upon r-delivering n − f final-voter() such that for each
final-voter(v), v ∈ bsetr; for each final-voter(∗), bsetr = {0,1}
34 if there are n− f final-voter(v)
35 decide v
36 else if there are f +1 final-voter(v)
37 ivr+1← v
38 else
39 if r = 0, ivr+1← 1
40 else ivr+1← Random()
41 r← r+1

Figure 11: Cubic-RABA. The code for pi.

C Additional Evaluation Results
Performance on different types of VMs. Different from
prior protocols (HoneyBadger, BEAT, Dumbo, EPIC) that all
evaluate the performance on t2.medium instances, we evaluate
the performance of the protocols using both t2.medium (t2
in the figures) and m5.xlarge (m5 in the figures) instances.
In particular, we evaluate the throughput with b = 15,000
for f = 1, f = 2, and f = 5, the results of which are shown
in Figure 12a. For all the protocols, the peak throughput on
m5.xlarge instances is about 2× that on t2.medium.

17



f = 1 f = 2 f = 5
0

50

100

19.33

11.09
4.7

34.77

20.6

9.94

19.71

11.31
4.91

35.55

21.39

10.23

38.79
33.16

24.03

65.09
59.41

52.95

40.64

33.28

24.18

69.87

60.2

53.39

36.28
30.66

24.01

67.21

58.46

48.43

Pe
ak

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C (t2) WaterBear-C (m5)
WaterBear-Q (t2) WaterBear-Q (m5)
WaterBear-QS-C (t2) WaterBear-QS-Q (m5)
WaterBear-QS-C (t2) WaterBear-QS-Q (m5)
BEAT (t2) BEAT (m5)

(a) Peak throughput of protocols running on different EC2 instances.

f = 1 f = 2 f = 5
0

50

100

14.94
9.73

4.55

34.77

20.6

9.94
15.27

9.85
4.6

35.55

21.39

10.23

29.15
25.87 23.82

65.09
59.41

52.95

30.93
25.99 23.98

69.87

60.2

53.39

28.23
25.2

22.4

67.21

58.46

48.43

Pe
ak

T
hr

ou
gh

pu
t(

kt
x/

se
c)

WaterBear-C (250) WaterBear-C (100)
WaterBear-Q (250) WaterBear-Q (100)
WaterBear-QS-C (250) WaterBear-QS-C (100)
WaterBear-QS-Q (250) WaterBear-QS-Q (100)
BEAT (250) BEAT (100)

(b) Peak throughput for transaction size of 100 bytes and 250 bytes.

Figure 12: Performance of the protocols for f = 1,2, and 5.

Performance with different transaction sizes. We also re-
port the throughput of the protocols by fixing b to 15,000 but
using different sizes of transactions (100 bytes and 250 bytes),
the results of which are shown in Figure 12b. For all five pro-
tocols, the performance using transaction size of 100 bytes
is consistently higher, being at least twice as efficient as that
with 250 bytes. The finding highlights the main bottleneck
for the protocols for large transaction sizes is RBC.
Memory and CPU usage. We present in Figure 13 mem-
ory and CPU usage for n = 16 and varying batch sizes. The
results are obtained by using the top Linux monitoring tool.
For the memory usage, all protocols consume higher memory
when b increases. This is expected, since replicas need to pro-
cess more transactions as the batch size grows. Meanwhile,
WaterBear-C and WaterBear-Q consistently consume slightly
higher memory than the other protocols, because the RBC for
both protocols require more bandwidth. For the CPU usage,
WaterBear-QS-C and WaterBear-QS-Q have lower CPU us-
age than other protocols, as these two protocols are PKC-free
and only use symmetric key cryptography.

D Proof of Cubic-ABA
We show that Cubic-ABA achieves validity, agreement,

termination, and integrity.

Lemma 1. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+1 sets ivr+1 as
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v.

Proof. If all correct replicas propose v in round r, every
correct replica broadcasts pre-voter(v). No correct replica
will forward pre-voter(v̄), as there are no more than f + 1
pre-voter(v̄) messages. Hence, no correct replica will add
v̄ to bsetr. Furthermore, all correct replicas will eventually
send main-voter(v) and r-broadcast final-voter(v). No cor-
rect replica accepts final-voter(v̄) or final-voter(∗), since they
only have v in their bsetr. Hence, any correct replica that en-
ters round r+1 sets ivr+1 as v. ■

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 2. If all correct replicas propose v in round r, then
for any r′ > r, any correct replica that enters round r′ sets
ivr′ as v.

Proof. The proof is by induction on the round number. The
base case holds for r according to Lemma 1. For the induction
step, we show that the lemma holds for round r′+1. In other
words, if all correct replicas propose ivr′ = v in round r′, then
in round r′+1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄), no
correct replica can receive f +1 pre-voter′(v̄) messages. In
other words, no correct replica will forward pre-voter′(v̄).
Meanwhile, no correct replica will accept final-voter′(v̄) or
final-voter′(∗) since correct replicas only have v in their
bsetr′ . Furthermore, every correct replica will r-broadcast
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final-voter′(v). Therefore, any correct replica that enters
round r′+1 sets ivr′+1 as v. ■

Theorem 3 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter round
1 with iv1 = v̄. This is a contradiction with Lemma 1, as if
all correct replicas propose v, any correct replica that enters
round 1 sets iv1 as v. If pi terminates and decides v̄ in round
r > 0, it r-delivers n− f final-voter(v̄). Similarly, it has put
v̄ in its bsetr. Therefore, at least one correct replicas has set
ivr = v̄ and broadcast pre-voter(v̄). This is a contradiction
with Lemma 2 since any correct replica that enters round r
sets ivr as v. This completes the proof of the theorem. ■

Lemma 4. If a correct replica pi decides v in round r, any
correct replica that enters round r+1 sets ivr+1 as v.

Proof. If pi decides v in round r, it r-delivers n − f
final-voter(v). In other words, at least f +1 correct replicas r-
broadcast final-voter(v). We assume that a correct replica pk
enters round r+1 using value ivr+1 = v̄ and prove the lemma
by contradiction. If pk sets ivr+1 as v̄, there are three condi-
tions: A) pk r-delivers at least n− f final-voter(v̄); B) pk r-
delivers f +1 final-voter(v̄); C) none of the conditions holds.
In other words, pk has received fewer than f +1 final-voter(v)
and fewer than f +1 final-voter(v̄). We now show that none
of the three conditions is possible.

Condition A): Replica pk r-delivers n− f final-voter(v̄).
We already know that at least n− f replicas r-broadcast
final-voter(v). Therefore, at least one correct replica r-
broadcast both final-voter(v) and final-voter(v̄), a contradic-
tion.

Condition B): Replica pk r-delivers f + 1 final-voter(v̄).
We already know that pi r-delivers n− f final-voter(v). There-
fore, at least one replica (correct or Byzantine) r-broadcast
both final-voter(v̄) and final-voter(v) such that pk r-delivers
final-voter(v̄) and pi r-delivers final-voter(v). This is a viola-
tion of the agreement property or RBC.

Condition C): Replica pk r-delivers n− f final-voter() mes-
sages (let the set of replicas be S1). Among the messages from
S1, fewer than f +1 are final-voter(v̄) and fewer than f +1 are
final-voter(v). Other messages can only be final-voter(∗). We
already know that pi r-delivers n− f final-voter(v) (let the set
of replicas be S2). S1 and S2 have at least n−2 f ≥ f +1 repli-
cas in common. Therefore, at least one replica r-broadcasts
both v and ∗ (or v̄) such that pi r-delivers final-voter(v) and
pk has r-delivers final-voter(∗) (or final-voter(v̄)), a violation
of agreement property of RBC. ■

Theorem 5 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and
another correct replica p j decides v̄ and prove the theorem by
contradiction. There are two cases: 1) pi and p j decide in the
same round r; 2) pi and p j decide in different rounds.

We first prove case 1). If replica pi decides v in round r,
it r-delivers n− f final-voter(v). If p j decides v̄, it r-delivers
n− f final-voter(v̄). The two sets of n− f replicas have at
least f + 1 replicas in common. Among the f + 1 replicas,
at least one is correct. Therefore, at least one correct replica
must have r-broadcast both final-voter(v) and final-voter(v̄),
a contradiction.

We now prove case 2) by assuming that pi decides value v
in round r and p j decides v̄ in round r′ where r′ > r.

According to Lemma 4, any correct replica enters round
r+1 sets ivr+1 as v. Furthermore, according to Lemma 2, for
any round r′′ ≥ r+1, any correct replica sets enters round r′′

sets ivr′′ as v. If replica p j decides value v̄ in round r′, at least
one correct replica has set ivr′ as v̄ and sent pre-voter′(v̄), a
contradiction with Lemma 2. ■

Lemma 6. Let v1 ∈ {0,1} and v2 ∈ {0,1}. If a correct replica
pi r-delivers f + 1 final-voter(v1) and enters round r + 1,
another correct replica p j r-delivers f + 1 final-voter(v2)
and enters round r+1, then it holds that v1 = v2.

Proof. If pi r-delivers f + 1 final-voter(v1), at least one
correct replica r-broadcasts final-voter(v1). According
to the protocol, the correct replica has received n − f
main-voter(v1). Therefore, for any other correct replicas,
among the n− f main-voter() messages, at least one must be
main-voter(v1). They either receive n− f main-voter(v1) and
r-broadcast final-voter(v1), or receive both main-voter(v1)
and main-voter(v̄1) and r-broadcast final-voter(∗). No cor-
rect replica will r-broadcast final-voter(v̄1). For replica p j, if
it r-delivers f +1 final-voter(v2), at least one correct replica
r-broadcasts final-voter(v2). Therefore, it must hold that
v1 = v2. ■

Theorem 7 (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter the
next round. In each round, every replica sets ivr as either 0 or
1 in Cubic-ABA. Accordingly, at least f +1 correct replicas
have the same ivr = v. Therefore, all correct replicas will
eventually receive 2 f + 1 pre-voter(v) for some v and send
main-voter() message. Correct replicas will have at least v in
their bsetr and r-broadcast either final-voter(v) for some v or
final-voter(∗). Similarly, any correct replica will eventually r-
deliver n− f final-voter() messages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
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malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi r-delivers
f +1 final-voter(v); B) pi r-delivers n− f final-voter() mes-
sages. In the final-voter() messages, fewer than f + 1 are
final-voter(v) and fewer than f + 1 are final-voter(v̄). For
condition B, a correct replica enters the next round with its
local coin c. The c value is independent with the value cho-
sen by any correct replica. We now prove that the value v in
condition A cannot be manipulated.

According to Lemma 6, if a correct replica receives f +1
final-voter(v1) and another correct replica receives f + 1
final-voter(v2), then it holds that v1 = v2. If correct repli-
cas use local coins to enter the next round, with a probabil-
ity of 1

2n− f , replicas will enter the next round with the same
value. The protocol will reach a state where agreement can
be reached in 2n− f expected rounds. After that, it takes an-
other round for each replica to terminate, i.e., the protocol
terminates in 2n− f +1 expected rounds. ■

Theorem 8 (Integrity). No correct replica decides twice.

Proof. According to the protocol, after a correct replica de-
cides some value, it participates in one more round of the pro-
tocol. However, it terminates the protocol after it r-broadcasts
a final-voter() message. Thus, the replica does not decide
again in the following round. This completes the proof of the
theorem. ■

E Proof of Quadratic-ABA
We show that Quadratic-ABA achieves validity, agreement,

termination, and integrity.

Lemma 9. If all correct replicas propose ivr = v in round r,
then any correct replica that enters round r+1 sets ivr+1 as
v.

Proof. If all correct replicas propose ivr = v in round r, every
correct replica broadcasts pre-voter(v). No correct replica
will receive more than f +1 pre-voter(v̄) messages. Hence,
no correct replica will add v̄ to bsetr. Furthermore, all cor-
rect replicas will eventually send voter(v) and receive n− f
voter(v). As no correct replica ever has v̄ in bsetr, all cor-
rect replica will not accept voter(v̄). Therefore, all correct
replicas will send main-voter(v). No correct replica will ac-
cept main-voter(v̄) or main-voter(∗) as v̄ ̸∈ bsetr and it can-
not receive more than f + 1 voter(v̄). Accordingly, every
correct replicas will send final-voter(v) and receive n− f
final-voter(v). No correct replica accepts final-voter(v̄) as
they only have v in their bsetr. Hence, any correct replica that
enters round r+1 sets ivr+1 as v. ■

Note that the lemma above holds for the case where a
correct replica decides v in round r.

Lemma 10. If all correct replicas propose ivr = v in round
r, then for any r′ > r, any correct replica that enters round r′

sets ivr′ as v.

Proof. The proof is by induction on the round number. The
base case holds for r according to Lemma 9. For the induction
step, we show that the lemma holds for round r′+1. In other
words, if all correct replicas propose ivr′ = v in round r′, then
in round r′+1, any correct replica sets ivr′+1 as v.

In round r′, as no correct replica sends pre-voter′(v̄), no cor-
rect replica can receive f +1 pre-voter′(v̄) messages. In other
words, no correct replica will put v̄ to bsetr′ . Therefore, all cor-
rect replicas will send voter′(v) and no correct replicas will
receive f +1 voter′(v̄). Accordingly, all correct replicas will
send main-voter(v) and will not accept main-voter′(v̄). Any
correct replica then only sends final-voter′(v). Meanwhile,
no correct replica will accept final-voter′(v̄) or final-voter′(∗)
since correct replicas only have v in their bsetr′ and no cor-
rect replica can receive f + 1 main-voter′(v). Furthermore,
every correct replica will receive n− f final-voter′(v). It is
now clear that any correct replica that enters round r′+1 sets
ivr′+1 as v. ■

Lemma 11. If a correct replica pi sends final-voter(v), at
least one correct replica has proposed ivr = v̄ and broadcast
pre-voter(v̄).

Proof. If pi sends final-voter(v), it must have received n− f
main-voter(v̄). Among the replicas that sent main-voter(v̄),
at least f +1 are correct. The correct replicas must have sent
voter(v̄) and put v̄ to bsetr. Each replica puts v̄ to bsetr only if
it receives n− f pre-voter(v̄). Therefore, at least one correct
replicas has proposed ivr = v̄ and broadcast pre-voter(v̄). ■

Theorem 12 (Validity). If all correct replicas propose v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction.

If pi terminates and decides v̄ in round 0, it will enter round
1 with iv1 = v̄. This is a contradiction with Lemma 9. If pi
terminates and decides v̄ in round r > 0, it receives n− f
final-voter(v̄). Among the replicas that sent final-voter(v̄), at
least f +1 are correct. According to Lemma 11, at least one
correct replica has broadcast pre-voter(v̄). This is a contra-
diction with Lemma 10 since any correct replica that enters
round r sets ivr as v. ■

Lemma 13. If a correct replica pi sends main-voter(v),
any correct replica p j only sends main-voter(v) or
main-voter(∗).

Proof. If pi sends main-voter(v), it has received n − f
voter(v). We assume that p j sends main-voter(v̄) and prove
the lemma by contradiction. If p j sends main-voter(v̄), it has
received n− f voter(v̄). According to the protocol, every cor-
rect replica only sends voter() message once and each replica
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only sends either voter(v) or voter(v̄). Therefore, at least one
correct replica has sent voter(v) to pi and sent voter(v̄) to p j,
a contradiction. ■

Lemma 14. If a correct replica pi sends final-voter(v), any
correct replica p j only sends final-voter(v) or final-voter(∗).

Proof. If pi sends final-voter(v), it has received n − f
main-voter(v). We assume that p j sends final-voter(v̄) and
prove the lemma by contradiction. If p j sends final-voter(v̄),
it has received n− f main-voter(v̄). According to the protocol,
every correct replica only sends main-voter() message once.
Therefore, at least one correct replica has sent main-voter(v)
to pi and sent main-voter(v̄) to p j, a contradiction. ■

Lemma 15. If a correct replica pi decides v in round r, any
correct replica that enters round r+1 sets ivr+1 as v.

Proof. If pi decides v in round r, it receives n − f
final-voter(v). In other words, at least f + 1 correct repli-
cas have broadcast final-voter(v). We assume that a correct
replica pk enters round r + 1 sets ivr+1 = v̄ and prove the
lemma by contradiction. If pk sets ivr+1 as v̄, there are three
conditions: A) pk receives at least n− f final-voter(v̄); B) pk
only receives final-voter(v̄) and final-voter(∗); C) none of the
above holds. In other words, pk receives only final-voter(∗)
or receives both final-voter(v) and final-voter(v̄). We now
show that none of the three conditions is possible.

Condition A): Replica pk receives n− f final-voter(v̄).
We already know that at least n − f replicas have sent
final-voter(v) as pi receives n− f final-voter(v). Therefore,
at least one correct replica has sent both final-voter(v) and
final-voter(v̄), a contradiction.

Condition B): Replica pk receives n− f final-voter(∗) and
final-voter(v̄) and has not received final-voter(v). We already
know that pi receives n− f final-voter(v). Therefore, at least
one correct replica has sent final-voter(v) to pi and either
final-voter(∗) or final-voter(v̄) to pk, a contradiction.

Condition C): Replica pk receives only final-voter(∗) or
receives both final-voter(v) and final-voter(v̄). We know
that pi receives n − f final-voter(v). Therefore, at least
f +1 correct replicas have sent final-voter(v). If pk receives
n− f final-voter() messages, at least one of them must be
final-voter(v). In this case, if pk enters round r+1 with ivr+1
as v̄, pk must have received at least one final-voter(v̄), as if
pk only receives final-voter(v) and final-voter(∗), it will set
ivr+1 as v̄. If pk accepts final-voter(v), it has received f +1
main-voter(v), among which at least one is sent by a cor-
rect replica. If pk accepts final-voter(v̄), it has received f +1
main-voter(v̄), among which at least one is sent by a correct
replica. This is a contradiction with Lemma 13. ■

Theorem 16 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and
another correct replica p j decides v̄ and prove the theorem by

contradiction. There are two cases: 1) pi and p j decide in the
same round r; 2) pi and p j decide in different rounds.

We first prove case 1). If replica pi decides v in round r, it
receives n− f final-voter(v). If p j decides v̄, it receives n− f
final-voter(v̄). The two sets of n− f replicas have at least
f +1 replicas in common. Among the f +1 replicas, at least
one is correct. Therefore, at least one correct replica must have
sent both final-voter(v) and final-voter(v̄), a contradiction.

We now prove case 2) by assuming that pi decides value v
in round r and p j decides v̄ in round r′ where r′ > r.

According to Lemma 15, if pi decides v, any correct replica
enters round r + 1 sets ivr+1 as v. Furthermore, according
to Lemma 10, for any round r′′ ≥ r+1, any correct replica
that enters round r′′ sets ivr′′ as v. If replica p j decides value
v̄ in round r′, it has received n− f final-voter(v) so at least
f +1 correct replicas have sent final-voter(v). According to
Lemma 11, at least one correct replica has set ivr′ as v̄ and
sent pre-voter′(v̄), a contradiction with Lemma 10. ■

Lemma 17. If a correct replica pi sends voter(v) for v ∈
{0,1}, any correct replica eventually accepts voter(v).

Proof. If pi sends voter(v) message, it has received n− f
pre-voter(v), among which at least f +1 are sent by correct
replicas. Accordingly to the protocol, any correct replica that
has not sent pre-voter(v) will also send pre-voter(v) upon
receiving f +1 pre-voter(v). Therefore, every correct replica
eventually sends pre-voter(v), receives n− f pre-voter(v),
and then adds v to bsetr. Hence, every correct replica eventu-
ally accepts voter(v). ■

Lemma 18. If a correct replica pi broadcasts a
main-voter(v) or a main-voter(∗) message given that v ∈
{0,1}, any correct replica accepts the main-voter() message.

Proof. If pi sends a main-voter(v) message, it has received
and accepted n− f voter(v), among which at least f +1 are
sent by correct replicas. Therefore, any correct replica even-
tually receives f +1 voter(v) and accept voter(v).

If pi sends a main-voter(∗) message, it must have received
and accepted both voter(v) and voter(v̄), or it has received
at least one voter(∗). In any of the cases, pi has put both 0
and 1 to bsetr. If pi puts v to bsetr, it has received 2 f + 1
pre-voter(v), among which at least f + 1 are sent by cor-
rect replicas. Then any correct replica eventually receives
f + 1 pre-voter(v) and sends pre-voter(v). Every correct
replica eventually receives n− f pre-voter(v) and adds v
to bsetr. Therefore, every correct replica eventually accepts
main-voter(∗). ■

Lemma 19. If a correct replica pi broadcasts a final-voter(v)
or a final-voter(∗) message given that v ∈ {0,1}, any correct
replica accepts the final-voter() message.

Proof. The lemma can be proved similarly as in Lemma 18.
■
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Lemma 20. Let v1 ∈ {0,1} and v2 ∈ {0,1}. If a cor-
rect replica pi receives only n − f final-voter(∗) and
final-voter(v1) messages, another correct replica p j only
receives n− f final-voter(v2) and final-voter(∗) messages,
v1 = v2.

Proof. If pi accepts final-voter(v1), it has previously received
f +1 main-voter(v1), among which at least one is sent by a
correct replica. If p j accepts final-voter(v1), it has previously
received f +1 main-voter(v2), among which at least one is
sent by a correct replica. According to Lemma 13, it holds
that v1 = v2. ■

Theorem 21 (Termination). Every correct replica eventually
decides some value.

Proof. The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter
the next round. In each round, every replica sets ivr to either
0 or 1 in Quadratic-ABA. Accordingly, at least f + 1 cor-
rect replicas have the same ivr = v. All correct replicas will
eventually receive 2 f + 1 pre-voter(v) for some v and send
a voter() message. Correct replicas will send either voter(0)
or voter(1) and receive at least n− f main-voter() messages.
For any correct replica, if it sends voter(v) for v ∈ {0,1},
any correct replica will eventually accept voter(v), accord-
ing to Lemma 17. All correct replicas will then send either
main-voter(v) for v ∈ {0,1} or main-voter(∗). According
to Lemma 18, every correct replica eventually accepts any
main-voter() message sent by a correct replica. Then every
correct replica either sends final-voter(v) or final-voter(∗).
According to Lemma 19, every correct replica accepts any
final-voter() message from a correct replica. Therefore, any
correct replica will eventually receive n− f final-voter() mes-
sages and enter the next round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by a
malicious network scheduler such that correct replicas always
enter the next round with inconsistent values. If pi does not
decide in round r, there are two conditions: A) pi receives
n− f final-voter(v) and final-voter(∗); B) pi receives both
final-voter(v) and final-voter(v̄) messages, or receives n− f
final-voter(∗). For condition B, a correct replica enters the
next round with its local coin c. The c value is independent
with the value chosen by any correct replica. We now prove
that the value v in condition A cannot be manipulated.

According to Lemma 20, if pi receives n− f final-voter(v1)
and final-voter(∗) and p j receives n− f final-voter(v1) and
final-voter(∗), v1 = v2. In other words, the value v used by
any correct replica cannot be manipulated by the network
scheduler.

If correct replicas use local coins to enter the next round,
with a probability of 1

2n− f , replicas will enter the next round

with the same value. Replicas will reach a state where agree-
ment can be reached in 2n− f expected rounds and execute the
protocol for another round before terminating the protocol.
Therefore, the protocol will terminate in 2n− f +1 expected
rounds. ■

Theorem 22 (Integrity). No correct replica decides twice.

Proof. According to the protocol, after a correct replica de-
cides some value, it participates in one more round of the
protocol. However, it terminates the protocol after it receives
a final-voter() message. Hence, the replica does not decide
again in the following round. ■

F Proof of CC-ABA
We prove the correctness of CC-ABA that simply re-

places the local coins of Quadratic-ABA with weak common
coins (or perfect common coins). According to the proofs of
Quadratic-ABA, the validity, agreement, and integrity proper-
ties do not depend on the values of the coins. Therefore, valid-
ity, agreement and integrity follow those of Quadratic-ABA.
We now present the following lemma and prove termination.

Lemma 23. If a correct replica receives and accepts both
final-voter(v1) and final-voter(v2) such that v1,v2 ∈ {0,1},
v1 = v2.

Proof. If a correct replica accepts final-voter(v1), it has previ-
ously received at least f +1 main-voter(v1). If the replica ac-
cepts final-voter(v2), it has previously received at least f +1
main-voter(v2). Therefore, at least one correct replica has
sent main-voter(v1) and at least one correct replica has sent
main-voter(v2). According to Lemma 13, if a correct repli-
cas sends main-voter(v1), any correct replicas will only send
main-voter(v1) or main-voter(∗). Therefore, we conclude
that v1 = v2. ■

The proof consists of two parts. First, in each round r,
correct replicas will enter the next round. Second, the value
ivr used by any correct replica cannot be manipulated by the
adversary.

We first show that in round r, correct replicas will enter the
next round. In each round, every replica sets ivr as either 0 or
1. Accordingly, at least f +1 correct replicas have the same
ivr = v. All correct replicas will eventually receive 2 f + 1
pre-voter(v) for some v and send voter() message. Correct
replicas will send either voter(0) or voter(1) and receive at
least n− f main-voter() messages. For any correct replica, if
it sends voter(v) such that v ∈ {0,1}, any correct replica will
eventually accept voter(v), according to Lemma 17. All cor-
rect replicas will then send either main-voter(v) (v ∈ {0,1})
or main-voter(∗). According to Lemma 18, every correct
replica eventually accepts any main-voter() message sent
by a correct replica. Then every correct replica either sends
final-voter(v) or final-voter(∗). According to Lemma 19, ev-
ery correct replica accepts any final-voter() message from
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a correct replica. Therefore, any correct replica will eventu-
ally receives n− f final-voter() messages and enter the next
round.

We then show that if a correct replica pi does not decide
in round r, the value ivr+1 = v cannot be manipulated by
a malicious network scheduler such that correct replicas al-
ways enter the next round with inconsistent values. If pi does
not decide in round r, there are two conditions: A) pi re-
ceives n− f final-voter() messages with only final-voter(v)
and final-voter(∗); B) pi receives both final-voter(v) and
final-voter(v̄) messages, or receives n− f final-voter(∗).

If condition A applies to at least two correct replicas, ac-
cording to Lemma 20, if pi receives n− f final-voter(v1)
and final-voter(∗) and p j receives n− f final-voter(v1) and
final-voter(∗), v1 = v2. In other words, the value v used by
any correct replica cannot be manipulated by an adversary.

If condition B applies to at least two correct replicas, the
correct replicas enter the next round with the weak common
coin. With a probability of 2/d, all correct replicas will have
the same ivr+1 value. This value cannot be manipulated by an
adversary.

We now show that if condition A applies to a correct replica
pi and condition B applies to a correct replica p j, the values
cannot be manipulated by an adversary. If p j sets ivr+1 as
the weak common coin value, it has either received n− f
final-voter(∗) or both final-voter(v) and final-voter(v̄). Ac-
cording to Lemma 23, the latter case is impossible. Therefore,
p j receives n− f final-voter(∗). Accordingly, at least f +1
correct replicas have sent final-voter(∗). The correct replicas
have previously sent either main-voter(v) or main-voter(∗)
for some v ∈ {0,1} according to Lemma 13. No correct
replica will send main-voter(v̄). If condition A applies to
pi and pi sets ivr+1 as v1 (v1 ∈ {0,1}), pi has received at least
f + 1 main-voter(v1). Since at least one correct replica has
sent main-voter(v1), this value v1 can only be v as we already
know that no correct replica will send main-voter(v̄). In other
words, the value ivr+1 cannot be manipulated by an adversary.

CC-ABA uses weak common coins. If correct replicas
begin the protocol with different input values, replicas will
reach a state where decisions can be made in expected
1−Σ∞

r=1
r
d (1−

1
d )

r−1 = d rounds. After that, it takes another
round for replicas to terminate the protocol, so the expected
number of rounds is d + 1. For the special case that uses
perfect common coins, the expected number of rounds is 3.

G Proof of Cubic-RABA
We now show that Cubic-RABA achieves validity, unani-

mous termination, agreement, biased validity, biased termina-
tion, and integrity.

Lemma 24. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round 1
sets iv1 as v.

Proof. In round 0, all replicas send pre-vote0(v). No correct

replica will receive f +1 pre-vote0(v̄) and send pre-vote0(v̄).
Similarly, all correct replicas will send main-vote0(v) and
will never accept main-vote0(v̄). All correct replicas will r-
broadcast final-vote0(v) and will never accept final-vote0(v̄).
Therefore, any correct replica that enters round 1 sets iv1 as
v. ■

Theorem 25 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi
terminates and decides v̄ in round 0, correctness follows from
Lemma 24. We now prove the case where pi decides in round
r > 0.

Since Cubic-RABA follows Cubic-ABA starting from
round 1, Lemma 2 holds for r > 0. If pi terminates and decides
v̄ in round r > 0, it r-delivers n− f final-voter(v̄). Addition-
ally, pi has added v̄ to its bsetr. Therefore, at least one correct
replica has set ivr as v̄ and broadcast pre-voter(v̄). This is a
contradiction with Lemma 2 since any correct replica that
enters round r sets ivr as v. This completes the proof of the
theorem. ■

Theorem 26 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof. If all correct replicas propose v and never repropose
v̄, all correct replicas only send pre-vote0(v). No correct
replica will add v̄ to bset0. Furthermore, no correct replica
will accept main-vote0(v̄) or final-vote0(v̄). Eventually all
correct replicas will receive 2 f + 1 pre-vote0(v), add v to
bset0, and broadcast main-vote0(v). Similarly, all correct
replicas will eventually receive n− f main-vote0(v) and r-
broadcast final-vote0(v). All correct replicas will r-deliver
n− f final-vote0(v). In other words, all correct replicas will
terminate and decide v. ■

Lemma 27. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof. If pi decides v in round 1, it r-delivers n − f
final-vote0(v), among which at least f + 1 replicas are cor-
rect. We assume that a correct replica pk enters round 1 with
iv1 = v̄ and prove the correctness by contradiction. If pk
enters round r + 1 and sets iv1 as v̄, there are three condi-
tions: A) pk r-delivers at least n− f final-voter(v̄); B) pk
r-delivers f +1 final-vote0(v̄); C) pk has not received more
than f +1 final-vote0(v) and pk has not received more than
f + 1 final-vote0(v̄). We now show that none of the three
conditions is possible.

Condition A): Replica pi r-delivers n− f final-vote0(v̄).
We already know that at least f +1 corect replicas r-broadcast
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final-vote0(v). Therefore, at least one correct replica r-
broadcasts both final-vote0(v) and final-vote0(v̄), a contra-
diction.

Condition B): Replica pk r-delivers f + 1 final-vote0(v̄).
We already know that pi r-delivers n− f final-vote0(v). There-
fore, at least one replica (correct or Byzantine) r-broadcasts
both final-vote0(v̄) and final-vote0(v) such that pk r-delivers
final-vote0(v̄) and pi r-delivers final-vote0(v), a violation of
the agreement property of RBC.

Condition C): Replica pk r-delivers n− f final-vote0()
messages (let the set of replicas be S1). In the messages,
fewer than f + 1 are final-vote0(v̄) and fewer than f + 1
are final-vote0(v). Other messages must be final-vote0(∗).
We already know that pi r-delivers n− f final-vote0(v) (let
the set of replicas be S2). S1 and S2 have at least n− 2 f ≥
f + 1 replicas in common. In other words, at least one
replica r-broadcasts a final-vote0() message such that pi r-
delivers final-vote0(v) and pk r-delivers final-vote0(v̄) (or
final-vote0(∗)), a violation of the agreement property of
RBC. ■

Theorem 28 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and a
correct replica p j decides v̄ and prove the theorem by con-
tradiction. Since Cubic-RABA follows Cubic-ABA starting
from round r > 0, if both pi and p j decide in round r > 0, cor-
rectness follows from the agreement property of Cubic-ABA.
We now show the correctness in the following cases: 1) both
pi and p j decide in round 0; 2) pi decides in round 0 and p j
decides in round r > 0.
Case 1): If pi decides v, it r-delivers n− f final-vote0(v). If p j
decides v̄, it r-delivers n− f final-vote0(v̄). The two quorum
of replicas have at least n−2 f replicas in common. Among
the n− 2 f replicas, at least one is correct since n− 2 f ≥
f + 1. Therefore, at least one correct replica r-broadcasts
both final-vote0(v) and final-vote0(v̄), a contradiction since
each replica only r-broadcasts a final-voter() message once
in each round.
Case 2): If p j decides v̄ in round r = 1, it has received at
least 2 f +1 pre-vote1(v̄), where at least one correct replica
has sent pre-vote1(v̄), a contradiction with Lemma 27. Start-
ing from round 1, Cubic-RABA follows Cubic-ABA so that
Lemma 2 holds. If p j decides v̄ in round r > 1, at least one
correct replica must have sent pre-voter(v̄), a contradiction
with Lemma 2 since any correct replica sets ivr as v.

This completes the proof of the theorem. ■

Lemma 29. If f + 1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof. If a correct replica pi enters round 1, there are three
conditions: A) pi r-delivers n− f final-vote0(v) with the same
v; B) pi r-delivers at least f +1 final-vote0(v) for some v; C)

none of condition A or B holds. We show that v = 1 for all
three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f +1 correct
replicas have broadcast final-vote0(1). Therefore, pi must
have received n− f final-vote0(1). This is because if pi
receives n− f final-vote0(0), at least one correct replica r-
broadcasts both final-vote0(1) and final-vote0(0), a contra-
diction. In other words, pi decides 1.

For condition B, we assume pi r-delivers f + 1
final-vote0(0) and prove the correctness by contradiction.
If pi r-delivers f + 1 final-vote0(0), at least one correct
replica r-broadcasts final-vote0(0). If the correct replica r-
broadcasts final-vote0(0), the replica must have received
n− f main-vote0(0). We already know that at least f + 1
correct replicas have sent main-vote0(1). Any correct replica
broadcasts main-vote0() message once. In other words, at
least one correct replica has broadcast both main-vote0(0)
and main-vote0(1), a contradiction. Therefore, in this condi-
tion, pi must have r-delivered f +1 final-vote0(1). It is now
clear that any correct replica uses iv1 = 1 to enter round 1.

For condition C, any correct replica will use 1 as iv1 since
the local coin value is set as 1 in round 0. This completes the
proof of the lemma. ■

Theorem 30 (Biased validity). If f +1 correct replicas pro-
pose 1, then any correct replica that terminates decides 1.

Proof. We assume that a correct replica pi decides 0 and
prove the correctness by contradiction. If pi decides in round
0, correctness follows from Lemma 29. If pi decides 0 in
round r > 0, at least one correct replica has set ivr as 0 and
broadcast pre-voter(0). Since Cubic-RABA follows Cubic-
ABA starting from round 1, Lemma 2 holds. Therefore, the
claim that at least one correct replica has set ivr as 0 is a
contradiction with Lemma 2. This completes the proof of the
theorem. ■

Theorem 31 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q=Q1∪Q2, then each
correct replica eventually terminates.

Proof. The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a cor-
rect replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the next
round. Since Cubic-RABA follows Cubic-ABA starting from
round 1, this part follows from termination of Cubic-ABA. We
only need to prove that every correct replica eventually enters
round 1. For replicas in Q1, they broadcast pre-vote0(1) and
add 1 to bset0. For replicas in Q2, they broadcast pre-vote0(0)
upon the propose(0) function, broadcast pre-vote0(1) upon
the repropose(1) function, and eventually add 1 to bset0.
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There are two cases: 1) the size of Q1 is greater than f +1; 2)
the size of Q1 is smaller than f +1.

For the first case, at least f +1 replicas in Q1 will directly
broadcast main-vote0(1) and r-broadcast final-vote0(1). For
any correct replica pi in Q2, it may send main-vote0(1) or
main-vote0(0). There are two sub-cases: none of the cor-
rect replicas send main-vote0(0); at least one correct replica
has sent main-vote0(0). For the first sub-case, it is clear that
every correct replica eventually receives and accepts n− f
main-vote0(1), as every correct replica has 1 in its bset0. Sim-
ilarly, every correct replica will r-broadcast final-vote0(1)
and accept n− f final-vote0(1). For the second sub-case, if
a correct replica pi sends main-vote0(0), it receives 2 f + 1
pre-vote0(0), among which at least f + 1 are sent by cor-
rect replicas. Therefore, every correct replica will eventually
receive f + 1 pre-vote0(0) and broadcast pre-vote0(0). Ev-
ery replica eventually adds 0 to bset0. Since every correct
replica has both 1 and 0 in bset0, every correct replica accepts
both main-vote0(0) and main-vote0(1). Similarly, every cor-
rect replica accepts both final-vote0(0) and final-vote0(1). In
other words, every correct replica eventually enters the next
round.

For the second case, replicas in Q2 will send pre-vote0(0)
upon propose(0). They will send pre-vote0(1) upon
repropose(1) and add 1 to bset0. Since the size of Q2 is
greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1∪Q2), every replica will receive f +1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, it holds that ev-
ery correct replica eventually adds 1 to bset0. Therefore,
every replica will accept main-vote0(0) and main-vote0(1),
final-vote0(0), and final-vote0(1). In other words, every cor-
rect replica eventually enters the next round.

We now prove the second part that the value iv used by any
correct replica cannot be manipulated by the adversary. Since
Cubic-RABA follows Cubic-ABA starting from round 1, cor-
rectness follows from Lemma 6 and termination of Cubic-
ABA. ■

Theorem 32 (Integrity). No correct replica decides twice.

Proof. In each round, every replica only sends a main-voter()
message and a final-voter() message once. Hence, only one
value will be decided and integrity thus follows. ■

H Proof of Quadratic-RABA
We now show that Quadratic-RABA achieves validity,

unanimous termination, agreement, biased validity, biased
termination, and integrity.

Lemma 33. If all correct replicas propose v in round 0 and
never repropose v̄, then any correct replica enters the round 1
sets iv1 as v.

Proof. If all correct replicas propose v in round 0, every
correct replica broadcasts pre-vote0(v). No correct replica
will receive more than f +1 pre-vote0(v̄) messages. Hence,
no correct replica will add v̄ to bset0. Furthermore, all cor-
rect replicas will eventually send vote0(v) and receive n− f
vote0(v). As no correct replica ever has v̄ in bset0, all correct
replica will not accept vote0(v̄). Therefore, all correct repli-
cas will send main-vote0(v). No correct replica will accept
main-vote0(v̄) or main-vote0(∗) as v̄ ̸∈ bset0 and there are no
more than f +1 vote0(v̄). Accordingly, every correct replicas
will send final-vote0(v) and receive n− f final-vote0(v). No
correct replica accepts final-voter(v̄) as they only have v in
their bsetr and no correct replica can receive more than f +1
final-vote0(v̄). Hence, any correct replica that enters round
r+1 sets ivr+1 as v. ■

Theorem 34 (Validity). If all correct replicas propose v and
never repropose v̄, then any correct replica that terminates
decides v.

Proof. We assume that a correct replica pi terminates and
decides v̄ and prove the correctness by contradiction. If pi
terminates and decides v̄ in round 0, correctness follows from
Lemma 33. We now prove the case where pi decides in round
r > 0.

Since Quadratic-RABA follows Quadratic-ABA starting
from round 1, Lemma 10 holds for r > 0. If pi terminates
and decides v̄ in round r > 0, it receives n− f final-voter(v̄).
Among the replicas that sent final-voter(v̄), at least f + 1
are correct. According to Lemma 11, at least one correct
replica has broadcast pre-voter(v̄). This is a contradiction
with Lemma 10 since any correct replica that enters round r
sets ivr as v. This completes the proof of the theorem. ■

Theorem 35 (Unanimous termination). If all correct replicas
propose v and never repropose v̄, then all correct replicas
eventually terminate.

Proof. If all correct replicas propose v and never repropose
v̄, all correct replicas only send pre-vote0(v). No correct
replica will add v̄ to bset0. Furthermore, no correct replica
will accept vote0(v̄), main-vote0(v̄), or final-vote0(v̄). Even-
tually all correct replicas will receive n− f pre-vote0(v),
add v to bset0, and broadcast vote0(v). Similarly, all correct
replicas will eventually receive n− f vote0(v) and broad-
cast main-vote0(v). All correct replicas will receive n− f
main-vote0(v) and broadcast final-vote0(v). In other words,
all correct replicas will eventually receive n− f final-vote0(v)
and decide v. ■

Lemma 36. If pi decides v in round 0, any correct replica
that enters round 1 sets iv1 as v.

Proof. If pi decides v in round 1, it receives n − f
final-vote0(v), among which at least f + 1 are sent by cor-
rect replicas. We assume that a correct replica pk enters round
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1 with iv1 = v̄ and prove the correctness by contradiction. If
pk enters round r+ 1 and sets iv1 as v̄, there are three con-
ditions: A) pk receives at least n− f final-voter(v̄); B) pk
receive only final-vote0(v̄) and final-vote0(∗); C) none of the
above applies. In case C), as p j will use the common coin
value 1 as iv1, the case is impossible. We now show that none
of the first two conditions is possible.

Condition A): Replica pi receives n− f final-vote0(v̄). We
already know that at least f + 1 correct replicas have sent
final-vote0(v). Therefore, at least one correct replica sends
both final-vote0(v) and final-vote0(v̄), a contradiction.

Condition B): Replica pk receives final-vote0(v̄) and
final-vote0(∗). We already know that pi receives n − f
final-vote0(v). Therefore, at least one replica has sent
final-vote0(v) to pi and a final-vote0(v̄) (or final-vote0(∗)
message) to p j, a contradiction.

■

Theorem 37 (Agreement). If a correct replica decides v, then
any correct replica that terminates decides v.

Proof. We assume that a correct replica pi decides v and a
correct replica p j decides v̄ and prove the theorem by con-
tradiction. Since Quadratic-RABA follows Quadratic-ABA
starting from round r > 0, if both pi and p j decide in round
r > 0, correctness follows from the agreement property of
Quadratic-ABA. We now show the correctness in the follow-
ing cases: 1) both pi and p j decide in round 0; 2) pi decides
in round 0 and p j decides in round r > 0.
Case 1): If pi decides v, it receives n− f final-vote0(v). If
p j decides v̄, it receives n− f final-vote0(v̄). The two quo-
rum of replicas have at least n− 2 f replicas in common.
Among the n− 2 f replicas, at least one is correct since
n−2 f ≥ f +1. Therefore, at least one correct replica sends
both final-vote0(v) and final-vote0(v̄), a contradiction since
each replica only sends a final-voter() message once in each
round.
Case 2): If p j decides v̄ in round r = 1, it has received at least
n− f pre-vote1(v̄), where at least one correct replica has sent
pre-vote1(v̄), a contradiction with Lemma 36. Starting from
round 1, Quadratic-RABA follows Quadratic-ABA so that
Lemma 10 holds. If p j decides v̄ in round r > 1, at least one
correct replica must have sent pre-voter(v̄), a contradiction
with Lemma 10 since any correct replica sets ivr as v. ■

Lemma 38. If f + 1 correct replicas propose 1 in round 0,
every replica either directly decides 1 in round 0 or/and enters
round 1 with iv1 = 1.

Proof. If a correct replica pi enters round 1, there are three
conditions: A) pi receives n− f final-vote0(v) with the same
v; B) pi receives at least a final-vote0(v) message for some v;
C) none of condition A or B holds. We show that v = 1 for all
three conditions and replicas will set iv1 as v = 1.

For condition A, we already know that at least f +1 cor-
rect replicas have broadcast final-vote0(1). If pi receives

n− f final-vote0(0), at least one correct replica has sent both
final-vote0(1) and final-vote0(0), a contradiction. In other
words, in this condition pi decides 1.

For condition B, we pi receives only final-vote0(0) and
final-vote0(∗). We already know that at least f + 1 cor-
rect replicas have sent final-vote0(1). Therefore, at least
one correct replica must have sent both final-vote0(1) and
final-vote0(0) (or final-vote0(∗)), a contradiction.

For condition C, any correct replica will use 1 as input for
round 1 since the local coin value is set as 1 in round 0. ■

Theorem 39 (Biased validity). If f +1 correct replicas pro-
pose 1, then any correct replica that terminates decides 1.

Proof. If pi decides in round 0, correctness follows from
Lemma 38. If pi decides 0 in round r > 0, at least one
correct replica has set ivr as 0 and broadcast pre-voter(0).
Since Quadratic-RABA follows Quadratic-ABA starting from
round 1, Lemma 10 holds. Therefore, the claim that at least
one correct replica has set ivr as 0 is a contradiction with
Lemma 10. This completes the proof of the theorem. ■

Lemma 40. If f +1 correct replicas propose 1 in round 0,
every correct replica eventually accepts final-vote0(1).

Proof. If f + 1 correct replicas propose 1, they will di-
rectly broadcast pre-vote0(1), vote0(1), main-vote0(1), and
final-vote0(1). Every correct replica will eventually receive
f + 1 pre-vote0(1). For those correct replicas that have
not sent pre-vote0(1), they will also broadcast pre-vote0(1).
Therefore, every correct replica eventually adds 1 to bset0.
As f + 1 correct replicas broadcast vote0(1), every correct
replica eventually accepts main-vote0(1) message. Similarly,
as f +1 correct replicas broadcast main-vote0(1), every cor-
rect replica eventually accepts final-vote0(1). ■

Lemma 41. If a correct replica sends final-voter(0) or
final-voter(∗), every correct replica eventually accepts the
final-voter() message.

Proof. Case 1: If a correct replica sends final-voter(0), it has
received n− f main-voter(0), among which at least f +1 are
sent by correct replicas. Furthermore, the correct replica has
put 0 in its bsetr so it receives n− f pre-voter(0). As f + 1
correct replicas have sent pre-voter(0), every correct replica
eventually receives f +1 pre-voter(0) and send pre-voter(0).
Accordingly, every correct replica puts 0 in bsetr. As every
correct replica also eventually receives f +1 main-voter(0),
every correct replica will accept final-voter(0).

Case 2: If a correct replica sends final-voter(∗), its bsetr is
{0,1}, i.e., it has received both n− f pre-voter(0) and n− f
pre-voter(1). Following the prior case, every correct replica
eventually has bsetr = {0,1}, so every correct replica accepts
final-voter(∗). ■

Theorem 42 (Biased termination). Let Q be the set of correct
replicas. Let Q1 be the set of correct replicas that propose 1
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and never repropose 0. Let Q2 be correct replicas that propose
0 and later repropose 1. If Q2 ̸= /0 and Q=Q1∪Q2, then each
correct replica eventually terminates.

Proof. The proof consists of two parts. First, every replica
correct eventually enters the next round. Second, if a cor-
rect replica enters the next round with input v, v cannot be
manipulated by the adversary.

We first prove that every replica eventually enters the next
round. Since Quadratic-RABA follows Quadratic-ABA start-
ing from round 1, this part follows from termination of Cubic-
ABA. We only need to prove that every correct replica eventu-
ally moves to round 1. For replicas in Q1, they broadcast
pre-vote0(1) and add 1 to bset0. For replicas in Q2, they
broadcast pre-vote0(0) upon the propose(0) event, broadcast
pre-vote0(1) upon the repropose(1) event, and eventually add
1 to bset0. There are two cases: 1) the size of Q1 is greater
than f +1; 2) the size of Q1 is smaller than f +1.

For the first case, at least f + 1 replicas in Q1 will di-
rectly broadcast vote0(1), main-vote0(1), and final-vote0(1).
For any correct replica pi in Q2, it may send vote0(1) or
vote0(0). There are two sub-cases: none of the correct replicas
send vote0(0); at least one correct replica has sent vote0(0).
For the first sub-case, it is straightforward to see that ev-
ery correct replica eventually receives and accepts n− f
vote0(1), as every correct replica has 1 in its bset0. Simi-
larly, every correct replica will send main-vote0(1) and accept
n− f main-vote0(1). Similarly, every correct replica will send
final-vote0(1). According to Lemma 40, every correct replica
eventually accepts final-vote0(1) so correct replicas will enter
the next round. For the second sub-case, if a correct replica pi
sends vote0(0), it receives n− f pre-vote0(0), among which
at least f + 1 are sent by correct replicas. Therefore, every
correct replica will eventually receive f +1 pre-vote0(0) and
broadcast pre-vote0(0). Every replica eventually adds 0 to
bset0. Since every correct replica has both 1 and 0 in bset0,
every correct replica accepts both vote0(0) and vote0(1). Sim-
ilarly, every correct replica accepts both main-vote0(0) and
main-vote0(1). In other words, every correct replica may send
a final-vote0() message with any value, i.e., 1, 0, or ∗. Accord-
ing to Lemma 40, every correct replica eventually accepts
final-vote0(1). According to Lemma 41, any correct replica
accepts the final-vote0() message sent by any correct replica.
Therefore, every correct replica eventually enters the next
round.

For the second case, replicas in Q2 will send pre-vote0(0)
upon propose(0). They will send pre-vote0(1) upon
repropose(1) and add 1 to bset0. Since the size of Q2 is
greater than f + 1 (the size of Q1 is smaller than f + 1 and
Q = Q1∪Q2), every replica will receive f +1 pre-vote0(0),
send pre-vote0(0), and add 0 to bset0. Furthermore, every cor-
rect replica in Q2 broadcasts pre-vote0(1) upon repropose(1).
Since the size of Q2 is greater than f + 1, every correct
replica eventually adds 1 to bset0. According to the protocol,
in round 0, every correct replica accepts main-vote0(v) and

final-vote0(v) if v is added to bset0. Therefore, every replica
will accept both vote0(0) and vote0(1), and main-vote0()
and final-vote0() with any value. Accordingly, every correct
replica eventually enters the next round.

We now prove the second part where the value iv used by
any correct replica cannot be manipulated by the adversary.
Since Quadratic-RABA follows Quadratic-ABA starting from
round 1, correctness follows from Lemma 20 and termination
of Quadratic-ABA. ■

Theorem 43 (Integrity). No correct replica decides twice.

Proof. In each round, every replica only sends a final-voter()
message once. Hence, only one value will be decided and
integrity thus follows. ■
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