
Time-Traveling Simulators Using Blockchains and Their
Applications?

Vipul Goyal1,2, Justin Raizes1, and Pratik Soni1

1 Carnegie Mellon University
vipul@cmu.edu, jraizes@andrew.cmu.edu, psoni@andrew.cmu.edu

2 NTT Research

Abstract. Blockchain technology has the potential of transforming cryptography. We study the prob-
lem of round-complexity of zero-knowledge, and more broadly, of secure computation in the blockchain-
hybrid model, where all parties can access the blockchain as an oracle.

We study zero-knowledge and secure computation through the lens of a new security notion where the
simulator is given the ability to “time-travel” or more accurately, to look into the future states of the
blockchain and use this information to perform simulation. Such a time-traveling simulator gives a novel
security guarantee of the following form: whatever the adversary could have learnt from an interaction,
it could have computed on its own shortly into the future (e.g., a few hours from now).

We exhibit the power of time-traveling simulators by constructing round-efficient protocols in the
blockchain-hybrid model. In particular, we construct:
1. Three-round zero-knowledge (ZK) argument for NP with a polynomial-time black-box time-traveling

simulator.
2. Three-round secure two-party computation (2PC) for any functionality with a polynomial-time

black-box time-traveling simulator for both parties.

In addition to standard cryptographic assumptions, we rely on natural hardness assumptions for Proof-
of-Work based blockchains. In comparison, in the plain model, three-round protocols with black-box
simulation are impossible, and constructions with non-black-box simulation for ZK require novel cryp-
tographic assumptions while no construction for three-round 2PC is known. Our three-round 2PC result
relies on a new, two-round extractable commitment that admits a time-traveling extractor.

1 Introduction

We are seeing a surging interest in blockchain as a vibrant technology: it powers cryptocurrencies
like Bitcoin [38], Ethereum [47] and ZCash [10] which are valued in hundreds of billions of dollars,
and it enables removing the central point of trust in existing banking infrastructure.

In a blockchain protocol, the goal of parties is to maintain a globally ordered sequence of
records that are referred to as blocks. New blocks can only be added via a special mining procedure
that simulates a puzzle solving race between participants and can be run by any participant or
miner. For example, in Bitcoin, the puzzle is selected so that a block is mined (on average) every
10 minutes. The two widely used puzzles are Proof-of-Work (PoW) and Proof-of-Stake (PoS). A
sequence of works [23,34,19,42,40,43,44,24,25] have analysed the security of current PoW- and PoS-
based blockchains, and also proposed new ones. Understanding the security properties offered by
these blockchains, and applications that such properties enable is a rapidly progressing direction.

Since its inception, blockchain has proven a successful testbed for a number of beautiful concepts
in cryptography such as zero-knowledge proofs, digital signatures and hash functions. But, the

? A preliminary version of this work appears at ITCS 2022. This is the full version.



blockchain itself offers several attractive properties which are conducive to build cryptography, e.g.,
provides a decentralized alternative to a trusted setup, which traditionally is performed by a central
trusted authority and is inherent for constructing important cryptographic primitives like non-
interactive zero-knowledge. In fact, several works view blockchains as an “enabler” for cryptography,
much like one-way functions, trapdoor permutations and indistinguishability obfuscation, leading
to constructions of concurrent multi-party computation [17], one-time programs [30], time-lock
encryption [37] and fair secure multi-party computation [18,3,11]. In this work, we take this direction
and focus on understanding the round-complexity of two fundamental cryptographic objects: zero-
knowledge proofs and secure computation. To study zero-knowledge and secure computation in the
world of blockchains, we study the blockchain-hybrid model.

The Blockchain-Hybrid Model. Here, the blockchain is modelled as a ledger functionality, and
all participants of the cryptographic protocol can access it as an oracle. In particular, the parties
(including the adversary) can access the blockchain by posting and reading content, but no single
party has any control over the blockchain. Our modeling follows the work of [17] who introduce the
blockchain-hybrid model, who in turn adopt the blockchain ledger model from [5].

Compared to the plain model, the presence of blockchain as an oracle is, as we will shortly
see, quite empowering. But we emphasize that this is distinct from trusted-setup models explored
in cryptography where some trusted party samples a reference string from some good distribu-
tion, and then all parties are given access to the string. In particular, in the security proofs, the
reduction/simulator is given the power to choose the reference string (e.g., sample along with a
trapdoor to aid simulation). This is in sharp contrast with the blockchain-hybrid model where the
reduction/simulator has no control over the blockchain.

Simulation-security in the Blockchain-Hybrid Model. Zero-knowledge proofs are a corner-
stone of modern cryptography. Informally, they are interactive protocols between two parties prover
and a verifier, where the prover is trying to convince the verifier that some string x (also known as
an instance) belongs to a language. We want two security properties: (a) Soundness - no cheating
prover can convince the verifier on false statements, and (b) Zero-knowledge. The philosophy be-
hind the notion of Zero-Knowledge [29] is that: whatever an adversary can learn from the proof of
a true statement, it could have learnt by itself in polynomial-time. This counter-intuitive notion of
security is formalized by asking the existence of an efficient simulator that can simulate the view
of any malicious verifier.

While some works [30,17] have considered zero-knowledge with blockchains, we take a different
philosophical approach. We refer the reader to Section 2.3 for more details on these works.

Time-Traveling Simulation. We present a novel idea to quantify the knowledge an adversary
learns. Following is our philosophy: whatever the adversary could have learnt from this interaction,
it could have computed on its own after some T units of time have passed. Passage of T units of time
results in some new blocks being added to the blockchain. E.g., for ZK, our guarantee would mean
that whatever the adversarial verifier could have learnt from the given interaction today, it could
have computed on its own tomorrow (once the new blocks have been added to the blockchain).
More precisely, to prove the ZK property, we require the existence of a simulator who would be
“capable of doing time travel”, get information about the future blocks, and come up with an
indistinguishable transcript. To model this, our simulator will be a given as auxiliary input any

2



valid continuation of the current state of the blockchain for time T . We refer to such a simulator
as T -time-traveling simulator, and the resulting notion as T -time-traveling zero-knowledge. We
remark that T -time-traveling zero-knowledge coincides with the standard notion of zero-knowledge
when T = 0, and becomes weaker as T increases.

The above time-traveling zero-knowledge guarantee is almost as meaningful as the original zero-
knowledge guarantee as far as the “long-term knowledge” is concerned. As an example, consider
the GMW compiler [28] which uses ZK proofs of “honest behavior” to compile a semi-honest secure
computation protocol into one that achieves malicious security. Here the witness consists of the
private input and the randomness of a party. Hence, passage of T units of time will not give the
adversary any further advantage in gaining any knowledge related to the witness. However if a
statement is such that for some reason, its witness will inherently be leaked tomorrow (e.g, a time-
locked puzzle [45]), our ZK proofs could cause this witness to be leaked to the adversary today (at
least as far as the security proofs are concerned). Our ideas can also be seen as being inspired by the
construction of Dwork and Naor [20] who used the opening of a timed commitment as the trapdoor
witness in a Zap. However, in contrast to their work which focuses on realizing the standard ZK
definition, we propose a new notion of security and justify it in the blockchain model. In Section 1.2,
we provide a detailed comparison of time-traveling simulation with other weakenings of standard
simulation including super-polynomial simulation and majority simulation.

1.1 Our Results

Zero-Knowledge with Time-traveling Simulators. First, we address the round-complexity
of zero-knowledge with time-traveling simulation. We show that there exists a simple three-round
Zero-knowledge Argument with a strict polynomial time, black-box time-traveling simulator. In the
plain model, all of these properties are known to be impossible to achieve using the standard zero-
knowledge definition w.r.t. black-box simulation [27]. Even w.r.t. non-black-box simulation, known
three round zero-knowledge argument protocols require novel cryptographic assumptions [12].

Informal Theorem 1 (Zero-Knowledge (See Theorem 1)) Assuming existence of injective
one-way functions, there exists a three-round ZK argument for NP with a polynomial-time black-
box time-traveling simulator.

Looking ahead, we remark that zero-knowledge of our protocol is based on the assumption that
injective one-way functions exist. For soundness, we need to rely on a natural assumption on the
mining procedure of the underlying blockchain. Informally, we require that an adversary controlling
minority of the computational power cannot be too far ahead of the honest miners. Specifically, such
an adversary cannot compute k2 blocks in time the honest miners compute k blocks. We emphasize
that if this assumption is violated, then the adversary controls majority of the computing power
over the network. This means that the adversary can effectively take over, e.g., the Bitcoin network.
Our exact assumption is a variant of this natural assumption for PoW-based blockchains and is
described in Assumption 1.

Secure Two-Party Computation with Time-traveling Simulators. We also study the task
of secure two-party computation in the blockchain hybrid model. Intuitively, it allows two mutually
distrustful parties to compute a joint function over their secret inputs such that neither party
learns anything about other party’s input beyond what can be learnt already by the function

3



output. Secure computation is foundational task, and round-complexity is an important measure of
efficiency. We focus on building two-party protocols between a sender and a receiver where only the
receiver gets the output, but guarantee security against both a malicious sender and a malicious
receiver.

Our main result is a three-round protocol for any two-party functionality where we achieve
time-traveling simulation security for both parties.

Informal Theorem 2 (2PC (See Theorem 2)) Assuming the existence non-interactive statis-
tically binding commitments, IND-CPA secure public-key encryption, EUF-CMA secure public-key
signatures, and two-round oblivious transfer, there exists a three-round two-party protocol for any
efficiently computable functionality that exhibits a time-traveling strict polynomial-time black-box
simulator against malicious adversaries.

As before, the security is based on standard cryptographic primitives and a natural assumption
on the underlying mining procedure of the blockchain as described above (see Section 3 for a
formal description). We note that three-round 2PC in the plain model was constructed by [2]
based on sub-exponential hardness of indistinguishability obfuscation but they achieve standard
simulation security only for adversaries with bounded non-uniformity. Further, in the blockchain-
hybrid model, [17] rule out even constant-round 2PC w.r.t. standard simulation.

The core technical challenge in achieving simulation-security in three rounds is extracting the
input from an adversary. We develop a new two-round commitment scheme that satisfies a weak
form of extraction. Specifically, we show that for every cheating committer, there exists a time-
traveling extractor that can extract the value committed by the committer. We show that such
weak time-traveling extraction guarantees are sufficient to achieve time-traveling simulation.

1.2 Relation of Time-traveling Simulation to Other Security Notions

Super-Polynomial Time Simulation. In super-polynomial simulation or angel-based security
models [41,8], the simulator is given access to a specific form of super-polynomial computing power.
For example in [16], the simulator is given access to an “angel” which can break the security of
certain commitment schemes. While such power allows for obtaining strong results by bypassing
various impossibility results, a key downside is that it can be challenging to argue that such a
computing power does not break the security of honest parties (since their security is computational
and can potentially be broken using any super-polynomial computation). Arguing the security of
other protocols or even that of the ideal functionality (in case the functionality is cryptographic in
nature) is even more tricky.

Our simulator can be seen as having access to a very specific super polynomial time angel
which can instantaneously compute and provide future blocks on the blockchain. However the key
advantage is the guarantee that any security the angel breaks is limited to whatever would anyway
automatically be broken shortly in the future. This arguably makes our security guarantee stronger,
and easier to understand and work with. For example, regardless of which commitment scheme the
parties use, the commitment to their input can never be broken by our simulator.

Simulation with a Common Reference String. In the Common Reference String (CRS)
model, a trusted party publishes a CRS before the start of the protocol. In the blockchain-hybrid
model, the blockchain serves much the same purpose, by allowing parties to agree on the blockchain

4



state. Basing security on blockchains instead of a CRS makes use of existing real-world infrastructure
which is already trusted with securing hundreds of billions of dollars. This pre-existing infrastructure
does not need to be modified for every secure protocol we wish to run using it, whereas the CRS
format may change significantly from protocol to protocol.

A second point of similarity is the extra power provided to the simulator. When formalizing
security using the real/ideal world paradigm, often this trusted party also provides the simulator
with some trapdoor information related to the CRS, or the simulator itself is able to control the
trusted party. This is similar to how a time-traveling simulator receives a future state to aid in
simulation. However, a time-traveling simulator does not have power over the blockchain and is not
able to “program” the common state. More compellingly, whatever security our simulator breaks is
limited to what would have anyway been broken shortly into the future. During the natural course
of the blockchain execution, every party will eventually see a state which could have been used to
simulate in the past.

Majority Simulation. Goyal and Goyal [30] proposed the notion of majority simulation for
protocols based on the blockchain. In it, the simulator controls all honest parties on the blockchain,
which is assumed to be the majority of parties. This notion is philosophically very similar to honest
majority simulation except that it borrows a pre-existing honest majority setup (the blockchain).
In contrast, time-traveling simulators control only a single party. In fact, majority simulation seems
strictly stronger than time travel simulation, because control over all honest parties in the blockchain
may allow computation of future states.

The ledger functionality in the majority simulation model must be local (or “private”) to the
protocol. This is because otherwise, a majority simulator for protocol Π1 who controls the bulletin
board can break the security of another protocol Π2 that uses the same bulletin board. In contrast,
we identify an achievable set of properties which allow multiple different protocols to use a global
ledger functionality at the same time under time-travel simulation (see Section 2.2). Furthermore,
the extent of “broken” security in time-travel simulation is very limited: anything which is leaked
the adversary would anyway have become automatically public shortly into the future.

Time-Based Primitives Dwork and Naor [20] proposed using the opening of a timed commitment
as the trapdoor witness in a Zap. Since time-based primitives open only with significant computation
effort (or with the help of the committer), the simulator needs to put in quite a bit of computational
resources. Equivalently, the proofs could reveal information which can only be obtained by using
high computation. This information may not automatically be available in the future. On the other
hand, in our model, any information which the adversary learns is automatically available in the
future (without the adversary putting in large computational resources).

2 Technical Overview

In Section 2.1, we introduce time-traveling simulators through the lens of zero-knowledge and
sketch our three round zero-knowledge argument construction. Then, in Section 2.2, we discuss
time-traveling simulators in the context of two-party computation and sketch our three-round
2PC construction. Along the way, we highlight several technical issues specific to simulating in
the blockchain hybrid model and constructing time-traveling simulators specifically. For simplicity
of exposition, we assume all parties see the most recent Gledger state here and delay ephemeral
consensus issues until the technical sections.

5



2.1 Time-Traveling Simulators for Zero-Knowledge

A zero-knowledge argument aims to prove the validity of an NP statement without revealing any-
thing about the witness other than what the verifier could have computed on its own. Informally,
this is realized by requiring a simulator which can simulate the view of the adversary without having
access to the witness. Slightly more formally, the adversary’s view in the following two experiments
should be computationally indistinguishable. In the real experiment, the adversary interacts with
the honest prover and any honest parties in the blockchain. In the simulated experiment, the ad-
versary interacts only with the simulator, which acts as an interface between the adversary and the
rest of the world.

Time-traveling simulation for zero-knowledge aims to capture the notion that the verifier does
not learn anything other than what it could have computed on its own after waiting for some time.
We formalize this using the same experiments as the standard definition in the blockchain hybrid
model, except that the simulator is additionally provided with a future state of the blockchain (e.g.
24 hours into the future). Specifically, if the state of the blockchain at the start of the protocol is
stS , the simulator receives a state stF which is recognized by blockchain’s chain validity predicate
as a valid extension of stS by F blocks. Since the blockchain will, if left alone, generate extensions
of itself which are independent of x or its witnesses, stF is effectively harmless and contains no
information about the witness beyond what is naturally leaked with the passage of time.

Dependence on Blockchains Though it may be extended to other contexts, the notion of time-
traveling simulation pairs particularly well with blockchains. Blockchains give a natural notion of
time, since blocks are continually added to the chain. Furthermore, since blockchains provide a
method of checking whether new blocks are a valid extension of the chain, what it means to be a
future state can be quantified as an NP language. Finally, blockchains provide the guarantee that
an adversary cannot be too far ahead of the rest of the blockchain (e.g. 24 hours worth of blocks).
In contrast, a time-traveling simulator gets a future state for free. This increased power difference
allows us to overcome impossibility results for standard simulation.

Three Round Zero-Knowledge A variety of impossibility results are known for three round
zero-knowledge both in the plain model and the blockchain-hybrid model. Time-travel simulation
bypasses these impossibility results and gives rise to a remarkably simple three round construction
with a strict-polynomial-time blackbox time-traveling simulator. To prove x ∈ L, the prover and
verifier engage in a three round witness indistinguishable proof of knowledge (WIPoK)3 for the
statement “x ∈ L or I know a blockchain state F blocks ahead of the current state stS”.

Given the future state stF , the time-traveling simulator can easily compute the proof using
a witness for the latter half of the statement. Witness indistinguishability guarantees that the
adversarial verifier cannot distinguish between this and a proof using a real witness for x.

Soundness Despite how much time-travel simulation simplifies the simulation itself, soundness
becomes more subtle. First off, note that such proofs can only be sound if it finishes within an
a-priori bounded time.4 To ensure soundness, we need to ensure that the adversarial prover cannot

3 Here we refer to a WIPoK construction for the plain model. The proof of knowledge property is more complicated
in the blockchain-hybrid model [17].

4 If the prover is allowed to wait until F blocks are added then it immediately gets access to a trapdoor, and can
break soundness.

6



produce an accepting proof using the trapdoor branch. We base this on the assumption that no
adversary can get F blocks ahead of the global blockchain, even given access to an oracle which
computes a small number of blocks (e.g.

√
F ) identically distributed to those mined by honest

miners. Intuitively, in order to break this assumption, the adversary would need to compute k+F
blocks in the time it takes the honest miners to compute k blocks. This requires significantly more
computational power than the honest miners have, contradicting the PoW assumption that the
adversary has less computational power than the honest miners [38,23,34,24,43]. Even given the
ability to generate, say,

√
F blocks for free, the adversary would still need to mine the remaining

F −
√
F + k blocks on its own.5 This is formalized in Assumption 1.

Using this assumption, a natural approach to proving soundness is to rely on the oracle in
conjunction with the proof of knowledge property of the WIPoK to extract a witness for the
adversary’s proof. Then an adversarial prover which breaks soundness must be able to produce a
state F blocks ahead of the global blockchain, violating its security.

The WIPoK knowledge extraction works by rewinding the adversarial prover and replaying
messages to obtain two different accepting proofs with the same first message. A witness can be
efficiently computed from these. However, as observed by Choudhuri et. al. [17], an adversary may
attempt to maintain state across rewinding by posting messages on the blockchain. Any extractor
must therefore also rewind the blockchain in order to rewind the adversary. The extractor can do
this by using the oracle to compute an indistinguishable fork of the blockchain (i.e. a private chain
of blocks which differs from the global blockchain) which it presents to the rewound adversarial
prover.6 Using only a single rewinding, the probability of getting two accepting transcripts from an
adversarial prover which breaks soundness is noticeable. Since two accepting transcripts define a
witness, an adversarial prover which breaks soundness can also violate the security of the blockchain.

2.2 Time-Traveling Simulators for Secure Two-Party Computation

In two-party secure computation, P1 and P2 compute a function f of their inputs x1, x2 where P2

learns the f(x1, x2) but nothing else, and P1 learns nothing. This is formalized using the real/ideal
world paradigm. In the real experiment, the adversary interacts directly with the honest party
and the blockchain in an execution of the protocol. In the ideal world, the adversary interacts
only with the simulator, which acts as an interface to the rest of the world. In turn, the simulator
interacts with the blockchain and a trusted third party which reveals only the prescribed output.
It is required that the joint distribution of the adversary’s view and the honest party’s output (as
given by the trusted third party) are computationally indistinguishable across the two experiments.
Time-traveling simulators additionally receive a future state stF which is F blocks longer than the
current blockchain state.

A unique property of the blockchain-hybrid model which will become relevant later on is that
a distinguisher might attempt to use the number of blocks mined during an execution as side
channel information to distinguish the two experiments. Since the simulator cannot rewind the
global blockchain, it cannot hide how long the simulation takes. Thus a good simulator must be
careful not to take more time than a real execution.
5 In blockchains such as Bitcoin where the difficulty parameter may vary, the adversary might attempt to use the

oracle to decrease the difficulty parameter. However, because the oracle’s blocks are identically distributed to those
mined by honest miners, the change in difficulty parameter will be identically distributed to an execution where
the adversary attempts to directly modify the blockchain’s difficulty parameter.

6 Without the oracle, the adversary might attempt to use data in the blocks about who the miners are (e.g. signatures)
is to determine if is being rewound.

7



Extraction of Inputs To guarantee security against malicious adversaries, which can behave
arbitrarily, the simulator must extract the adversaries input so it can force the appropriate output.
In the case of three round protocols, extracting an adversarial P2’s input is particularly challenging
for standard simulators, since P2 sends only a single message. Current solutions rely on non-black-
box simulation and only hold for adversaries with bounded auxiliary input [2], or require a simulator
which runs in super-polynomial time [6,7]. Intriguingly, extracting an adversarial P1’s input also
appears to be quite challenging in the blockchain-hybrid model. As discussed previously, rewinding
based extraction approaches require computing an indistinguishable fork for each rewinding. Even
assuming the simulator could do so on its own, the number of rewindings required would blow up
the running time of the simulator. This makes the outputs of simulators based on such approaches
quite easy to distinguish.

Time-Traveling Extractors (Proposition 1) To solve the issue of timely knowledge extraction,
we introduce time-traveling extractors. We design a two round commitment scheme with a time-
traveling knowledge extractor.7 Looking ahead, this will allow parties to commit to their input
without revealing any information about it (hiding), while also ensuring they cannot change it
later on (binding). A time-traveling extractor for a commitment scheme intuitively shows that any
committer will eventually “know” the value that they committed to. Informally, we require the
existence of an efficient extractor that, upon receiving a state stF which is F blocks ahead of the
current blockchain, produces both a commitment transcript indistinguishable from a real execution
as well as the value committed to in that transcript. This concept naturally synergizes with time-
travel simulation, which is our main use case. A key point is that hiding must continue to hold even
after the passage of any (polynomial) amount of time.

To construct a two round commitment scheme with a time-traveling extractor, we start from
a two round Conditional Disclosure of Secrets (CDS) protocol. A CDS protocol is associated with
an NP relation RL for the language L and a statement x. In a CDS protocol for a language L, one
party P1 inputs a witness w, and the other party P2 inputs a secret. If (x,w) ∈ RL, then P1 gets
the secret as output. However, if x /∈ L, then P1 learns nothing about the secret. Furthermore, P2

learns nothing about the witness input by P1.

The commitment scheme proceeds as follows. The receiver sends a non-interactive commitment
comni to the committer and begins the 2 round CDS for the statement “comni is a commitment to
a future state of the blockchain”. To commit to a message m, the committer inputs m to the CDS
as the secret. Additionally, to ensure binding, the committer non-interactively commits to m and
sends this to the receiver as well.

To extract the message m, time-traveling extractor can commit to the received stF in comni and
provide the witness to the CDS that comni is a commitment to a future state of the blockchain.
Then the CDS will output m to the extractor.

Hiding is more difficult to ensure. To do so, we need to guarantee that an adversarial receiver
cannot commit to a future state. If this is the case, then the CDS statement is false, so an adversarial
receiver can learn nothing about the CDS secret m. Similarly to our zero-knowledge protocol’s
soundness, making this guarantee seems to require some form of extraction from comni. Goyal and
Goyal [30] encounter a similar problem in their construction of non-interactive zero-knowledge using
majority simulation. We are able to leverage their insights to extract from comni in a way which

7 This construction may be of independent interest.

8



should not break the blockchain - therefore, if comni contains a future state, the extractor would
have produced a future state in a short period of time, violating the security of the blockchain.

They construct such commitments by secret-sharing the message and encrypting the shares
under the public keys of parties which have recently mined blocks. This provides hiding against
adversaries with static corruptions. Then, given the secret keys of parties which have recently
mined blocks, it is straightforward to decrypt and recombine the shares to recover the message.
Since access to only a few extra secret keys should not provide the computational power required
to get significantly ahead of the global blockchain (see Assumption 2), we are able to show that an
adversary which breaks hiding also violates the security of the blockchain.

Note that this extractor requires power which is denied to time-travel simulators. Specifically,
time-travel simulators must make do with control over only a single party that has minimal com-
putational power compared to the other miners. As such they cannot gain access to even a small
number of other parties’ secret keys.8 However, this method of extraction is sufficient to show hiding
for our two round commitment.

Three Round Two-Party Secure Computation (Theorem 2) Given the tools we have
constructed so far, a natural approach to three round two-party secure computation is to compile
a two round semi-malicious two-party secure computation protocol (which can be implemented
using a garbled circuit and oblivious transfer) into the malicious setting. In the first two rounds, P2

commits to its input using the two round commitment with a time-traveling extractor. In the last
two rounds, P1 also commits to its input using the two round commitment with a time-traveling
extractor. Additionally, the parties run the semi-malicious protocol in the last two rounds. To ensure
that P2 behaves honestly, in the last two rounds the parties participate in a CDS protocol where
P2 receives the third message if and only if it inputs a witness to its honesty in the second round.
To ensure that P1 behaves honestly, it proves its honesty using the three round zero-knowledge
argument with a time-traveling simulator. The zero-knowledge argument is run in parallel with
everything.

The ideas behind simulation are simple, though we will discuss some subtleties later. For time-
travel simulation against a corrupted P2, the simulator can use its future state to extract P2’s
input in round two. Then in round three, it uses the extracted input to simulate the semi-malicious
protocol and the future state to simulate the zero-knowledge argument. The case for time-travel
simulation against P1 is similar. Using the future state, the simulator extracts P1’s input in round
3, then provides it to the trusted third party. Otherwise, it behaves honestly using a fixed input
(since P1 does not receive output, there is no need to simulate the semi-malicious protocol).

Malleability Unfortunately, relying on time-traveling simulators for security both against mali-
cious P1 and against malicious P2 introduces malleability issues. In round two, P2 commits to its
input in com2, which has a time-traveling extractor. In round three, P1 commits to its input in
com3, which also has a time-traveling extractor. When simulating against a malicious P ∗2 , we need
to rely on the hiding of com3 while simultaneously extracting P ∗2 ’s input from com2. This suggests
that com3’s hiding needs to be “stronger” than com2’s hiding (com3 >> com2).

To achieve this, we give an analogue of complexity leveraging for time-traveling simulators. We
assume that for times F1 << F2 (e.g. k and k2), knowledge of a state stF1

which is F1 blocks ahead

8 We assume that honest parties continue to maintain the semantic security of encryption under their secret keys
indefinitely.

9



of the current blockchain does not allow the adversary to get F2 blocks ahead of the blockchain
(see Assumption 2). As in our previous assumption, the adversary would still need to compute
F2−F1 +k blocks in the time the honest miners compute k blocks, requiring the adversary to have
much more computational power than the honest miners.

Complexity leveraging for time-traveling simulators can be applied to ensure com3 >> com2 in
much the same way that ordinary complexity leveraging can. We set the parameters of com3 so that
it has an F2-time-traveling extractor but remains hiding against F1-time-traveling receivers9, and set
the parameters of com2 so that it has an F1-time-traveling extractor. With this setting, a simulator
against a malicious P ∗2 can use stF1

to break com2 without disturbing com3’s hiding. Looking ahead,
in our secure two-party computation construction we will set up a hierarchy F1 << F2 << F3,
where messages in round one use the parameter F1, messages in round two use the parameter F2,
and messages in round three use the parameter F3.

When simulating against a malicious P ∗1 , we have the opposite problem from before - we need
to rely on the hiding of com2 while simultaneously extracting from com3. Combining this with our
previous requirement, we need both com3 >> com2 and com3 << com2. However, complexity lever-
aging for time-traveling simulators only allows hardness in one direction. To break the circularity,
we observe that the extractor for com2 requires knowledge of the future state in round one, but
com3 doesn’t start until round two. In other words, com2’s period of vulnerability is over before
com3 even begins! We formalize the idea of a limited period of vulnerability using the following
security game:

1. The adversary interacts with a challenger who commits in com2 to either m0 or m1.

2. The distinguisher receives com2 and a future state stF which is F blocks ahead of the blockchain.
It wins if it can determine which message the challenger committed to.

If no efficient adversary/distinguisher pair can win this game with noticeable advantage, we say
com2 has hiding against a time-traveling distinguisher. To show hiding of com2 while simultaneously
extracting from com3 during simulation against a malicious P ∗1 , we can reduce to this property. At
a high level, the reduction participates in the above security game, then in step two uses stF to
extract from a locally computed com3 before deciding which message com2 contains. To show that
com2 has this property, we rely on the security of the underlying components in the plain model as
well as the observation that the ledger (and therefore knowledge of a future state) can be efficiently
emulated in the plain model.

Two-Party Computation Construction We summarize the final construction here. It makes
use of the following tools, where F1 << F2 << F3.

– A two round commitment com2 with a F1-time-traveling extractor and hiding against time-
traveling distinguishers.

– A two round commitment com3 with a F2-time-traveling extractor and hiding against time-
traveling distinguishers.

– A three round zero-knowledge argument with a F3-time-traveling simulator.

– A two round semi-malicious secure two-party computation protocol.

– A two round conditional disclosure of secrets protocol.

9 F1 time-traveling receivers which break hiding of com2 can be used to obtain an F2 future state (breaking assump-
tion 2) using the same ideas we developed for showing hiding of the commitments.

10



In the first two rounds, P2 commits to its input in com2. It also begins the semi-malicious
two-party computation protocol and the com3, as well as provides a witness to its honest behavior
into the CDS. P1 completes the semi-malicious protocol and inputs the resulting message into the
CDS as the secret. Additionally it commits to its input in com3 during the third round and proves
its honesty using the zero-knowledge argument, which is run in parallel with everything.

2.3 Related Works

Zero-knowledge Round-complexity of zero-knowledge protocols is a fundamental measure of effi-
ciency, and a heavily research topic in the plain model. In fact, in the plain model, we can construct
four-round zero-knowledge protocols with black-box expected polynomial-time simulators assum-
ing only one-way functions [9].10 This result is tight w.r.t. black-box simulation [27], and known
three-round zero-knowledge protocols with non-black-box simulation require novel cryptographic
assumptions [12].

In the blockchain-hybrid model, the complexity of zero-knowledge was only recently considered
by Choudhari et al. [17]. Quite surprisingly, they show that constant-round zero-knowledge pro-
tocols are impossible in the blockchain-hybrid model even for expected polynomial-time black-box
simulators. Although they give a super-constant round protocol assuming one-way functions, their
lower-bound hints that low-interaction protocols are quite hard to come by in the blockchain hybrid
model unless simulator is given more power. In another work, Goyal and Goyal [30] present a sig-
nificant strengthening of simulator’s power that allows to achieve non-interactive zero-knowledge.
In particular, in their notion of simulation the simulator is given control of all honest miners in the
blockchain protocol. Although non-trivial, we believe such a notion of honest-majority simulation
as described in [30] to be quite weak.

Secure Two-Party Computation The round complexity of secure two-party computation is
another vibrant area of research. In the plain model, we can construct four-round secure two-party
computation protocols (where a single party receives output) with black-box expected-polynomial-
time simulators, though three-round protocols with respect to black-box simulation do not ex-
ist [33]. Known three-round protocols with non-black-box simulation hold only against adversaries
with bounded non-uniformity [2]. Furthermore, in the blockchain-hybrid model, [17] rule out even
constant-round protocols w.r.t. standard black-box simulation.

A variety of works have achieved protocols with less than four rounds by considering relaxed
security notions such as the common reference string model [32,1] and super-polynomial time sim-
ulation [41,7,6].

Organization The rest of the paper is organized as follows: In Section 3 we define our modelling of
the blockchain, and describe the hardness assumptions we need from PoW-based blockchains, and
in Section 4 we detail standard definitions. In Section 5 we give our two-round commitment with
a time-traveling extractor. Then, in Section 6 we present our three-round zero-knowledge protocol
(and also an extension to satisfy proof-of-knowledge property). Finally, in Section 7 we present our
two-round secure computation protocol.

10 A simulator is black-box if it only makes uses of the underlying malicious verifier as a black-box.

11



3 Blockchain Model

In a blockchain protocol, mutually distrustful parties attempt to maintain and agree upon a global
append-only ledger. The ledger consists of an ordered set of blocks which each contain some data.
New blocks can only be added by using a special mining procedure which any party (called a
miner) can run. Currently, two broad categories of mining procedures exist: Proof of Work (PoW)
and Proof of Stake (PoS). In this work, we primarily consider PoW instantiations, though it may
be possible to extend our ideas to PoS instantiations.

As in previous work [17,35,4], we model the blockchain as a global ledger Gledger which internally
keeps track of the agreed-upon sequence of blocks. Parties may interact with the ledger via one of
the queries specified by the ledger functionality. We follow the ledger functionality of [5] as described
by [17]. Similarly to [17], data is trivially validated, and so we do not need the Validate predicate.

The functionality maintains several variables internally. state represents the sequence of blocks
which have become buried under enough later blocks to be considered agreed-upon by all parties.
buffer consists of messages which parties wish to post to the ledger but which are not yet perma-
nently part of it. When an adversary proposes a next block candidate, the functionality records
it in NxtBC for update on the next clock tick. Periodically the functionality validates (and poten-
tially modifies) NxtBC using ExtendPolicy and appends the result to state after formatting it using
Blockify. When it does so, it updates the list of block add times ~τstate according to the current time
τL. Common policies include NxtBC not being empty too often and it being “honestly generated”
(e.g. satisfying such properties as including all messages from buffer) with some regularity. We refer
readers to [5] for a further discussion of ExtendPolicy.

Any registered party may see the state at any time, but is only guaranteed a sufficiently long
prefix of it. Each party Pi is associated with a monotonically increasing pointer ptri which represents
that Pi may see up to block ptri in state. However, ptri may not be more than windowSize behind the
true state for synchronized parties. A party is said to be desynchronized if it was recently registered
or de-registered from the clock. Due to network delays, the adversary can make desynchronized
parties believe any value of the state until they receive further messages, which must be delivered
within Delay time. The ledger uses the predict-time function to ensure that the ideal world execution
advances with the same pace as the real world execution.

Functionality Gledger

The functionality is parameterized by three algorithms ExtendPolicy, Blockify, and predict-time,
along with two parameters windowSize,Delay ∈ N. The functionality manages variables state,
NxtBC, buffer, τL, and ~τstate, as described above. Initially, state := ~τstate := NxtBC := ε, τL = 0.

The functionality maintains a set of registered parties P, the (sub–)set of honest parties
H ⊆ P, and the (subset) of desynchronized honest parties PDS ⊂ H (following the definition
in the previous paragraph). The sets P,H,PDS are all initially set to ∅. When a new honest
party is registered at the ledger, if it is registered with the clock already than is added to the
party sets H and P and the current time of registration is also recorded; if the current time is
τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it is removed from both
P (and therefore also from PDS or H). The letter maintains the invariant that it is registered
(as a functionality) to the clock whenever H 6= ∅. A party is considered fully registered if it is
registered with the letter and the clock.

12



For each party Pi ∈ P the functionality maintains a pointer ptri (initially set to 1) and a
current–state view statei := ε (initially set the empty). The functionality keeps track of the
timed honest input sequence ~ITH (initially ~ITH := ε).

Upon receiving any input I from any party or from the adversary, send (CLOCK-READ, sidC)
to Gclock and upon receiving response (CLOCK-READ, sidC , τ) set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered
continuously since time τ ′ < τL − Delay to both the ledger and clock. Set PDS := PDS\P̂.
On the other hand, for any synchronize party P ∈ H\PDS , if P is not registered with the
clock, then set PDS := PDS ∪ {P}.

2. If I was received from an honest party Pi ∈ P:
(a) Set ~ITH = ~ITH ||(I, Pi, τL;

(b) Compute ~N) ~N1, . . . , ~N` := ExtendPolicy(~ITH , state,NxtBC, buffer, ~τstate) and if ~N 6= ε

set state := state||Blockify( ~N1)|| . . . ||Blockify( ~N`) and ~τstate := ~τstate||τ `L where τ `L =
τL|| . . . ||τL.

(c) If there exists Pj ∈ H\PDS such that |state|−ptrj > windowSize or ptrj < |statej |, then
set ptrk := |state| for all Pk ∈ P\PDS .

(d) If ~N 6= ε, send state to A; else send (I, Pi, τL) to A.
3. Depending on the above input I and its sender’s ID, Gledger executes the corresponding code

from the following list:
– Submitting data:

If I = (SUBMIT, sid, x) and is received from a party Pi ∈ P or from A (on behalf of
corrupted party Pi) do the following
(a) Choose a unique identifier uid and set y := (x, uidτL, Pi)
(b) buffer := buffer ∪ {y}
(c) Send (SUBMIT, y) to A if not received from A.

– Reading the state:
If I = (READ, sid) is received by an honest Pi ∈ P then set statei := state �min{ptri,|state|}
and return (READ, sid, statei) to the requester. If the requester isA then send state, buffer.

– Maintain ledger state:
If (MAINTAIN-LEDGER, sid) is received by an honest Pi∈P and predict-time(~ITH) =
τ̃ > τL then send (CLOCK-UPDATE, sidC) to Gclock. Else send I to A.

– The adversary proposing the next block :
If I = (NEXT-BLOCK, hflag, (uid1, . . . , uid`)) is sent from the adversary, update NxtBC
as follows:
(a) Set listOfUid← ε
(b) For i ∈ [`], if there exists y := (x, uid, τL, Pi) ∈ buffer with ID uid = uidi, then set

listOfUid := listOfUid||uidi.
(c) Finally, set NxtBC := NxtBC||(hflag, listOfUid).

– The adversary setting state-slackness:
If I = (SET–SLACK, (Pi1 , p̂tri1), . . . , (Pi` , p̂tri`)) with {Pi1 , . . . , Pi`} ⊆ H\PDS is re-
ceived from the adversary, do the following:
(a) If ∀j ∈ [`]: |state| − p̂trij ≤ windowSize and p̂trij ≥ |stateij |, set ptrij = p̂trij for

every j ∈ [`] and return (SET-SLACK, ok) to A.

13



(b) Otherwise set ptrij = |state| for all j ∈ [`].
– The adversary setting the state for desynchronized parties:

If I = (DESYNC-STATE, (Pi1 , state′i1), . . . , (Pi` , state′i`)) with {Pi1 , . . . , Pi`} ⊆ PDS is
received from the adversary, set stateij := state′ij for every j ∈ [`].

Remarks We remark on a few properties of Gledger and the blockchain which implements it.

– For simplicity of exposition, we ignore the notion of desynchronized parties. This can be made
explicit by requiring a waiting period of Delay at the beginning of each protocol so that the
participants can synchronize. We also consider Gclock to be local to Gledger and ignore it.

– The blockchain implementing Gledger is associated with a predicate isvalidchain(st1, st2) which
decides whether st2 is a valid extension of st1. For example, in Bitcoin this consists of verifying
that st1 is a prefix of st2 and that all later blocks have an accepting proof of work with respect
to the previous blocks. We overload this notation as isvalidchain(st1, st2, k) to also check that
st2 is at least k blocks longer than st1 (i.e. |st2| − |st1| ≥ k).

– Define Dfut(T, F ) to be the distribution over the future states of the blockchain with length
T+F, where the current state is Gledger’s state at time T. Concretely, the distribution is over
the random coins of the miners and parties submitting messages to the blockchain. Every state
stF drawn from Dfut(T, F ) satisfies isvalidchain(Gledger.st, stF , F ) = 1.

Simulation in the Gledger-Hybrid Model We consider simulators with the same power as other
parties while accessing Gledger, with the exception of being given a future state. Unlike the setting
considered in [30,18], the simulator does not have full control over the blockchain and cannot
“rewind” it by discarding and re-creating blocks. It also cannot quickly compute future states
beyond what it was given (see Assumption 2).

The simulator acts as an interface between any parties (e.g. the adversary) it runs internal to
itself and Gledger. It can therefore choose which messages to deliver. Note that the adversary may
attempt to post messages to Gledger as well as base its behavior on its view of Gledger.

Since the protocols we construct begin at a specified time (in terms of the number of blocks
in Gledger’s state), the simulator begins at the same time. Without loss of generality, it knows the
pointers of all parties at this time. Observe that for every adversary which exists before the protocol,
there is another adversary which produces an identical ledger state and tracks the pointers of all
parties, by forwarding and tracking messages between the original and Gledger. Since the simulator
inherits the state of the adversary upon starting, it also inherits the pointers of all parties at this
time.

First, let us introduce some notation. We use Gledger.st denotes the current state of the Gledger,
and it is a sequence (B1, B2, . . . , ) of blocks where each Bi contains some m, a proof-of-work π
and we also assume the block contains the public-key of the miner who mined the block.11 We
denote by |Gledger.st| the number of blocks in the Gledger, and use the shorthand Gledger.size to refer
to |Gledger.st|. For any natural number i ≤ Gledger.size, we denote by Gledger.st[: i] as the state of
the Gledger including only the first i blocks. Finally, we have a predicate isledgerstate that takes a
candidate state st as input, and outputs 1 iff there exists i ≤ Gledger.size such that Gledger.st[: i] = st.

11 We believe our ideas can also be applied to proof-of-stake blockchains, though we only provide formalization for
proof-of-work blockchains.

14



By EXECGledger(Z,A, 1λ) be the random variable denoting an execution of the Gledger with the envi-
ronment Z and some adversary A on security parameter λ. We let (st, z, y)←$ EXECGledger(Z,A, 1λ)
denote the random process of running an execution of Gledger with (Z,A) until A outputs y where
st is the current state of Gledger and z is output of Z.

Hardness Assumptions. In this section, we describe the specific hardness we require from the
underlying mining procedure. For this, first consider the following relation RGledger = {Rλ}λ∈N
containing pairs defined by Gledger functionality.

R
Gledger
λ =

{
((sts, T ), stf ) :

isledgerstate(sts) = 1, T ∈ N,
isvalidchain(sts, stf , T )

}
. (1)

Intuitively, we want to capture that any adversary, performing bounded number of operations,
cannot compute F blocks by the time k << F blocks are added to Gledger by the honest miners.
We refer to this as (k, F )-security of Gledger, and in Definition 1 we formalize the notion of what
it means for an adversary performing t operations to break (k, F )-security of Gledger. To allow the
adversary to choose the starting state, we consider a two-stage adversary A = (A0, A1) where A0

is arbitrary PPT and participates in an execution of Gledger (with the honest miners) to arrive at a
starting state sts, and A1 is supposed to find an extension of sts by F blocks, by the time k blocks
are added to Gledger. We overload notation of EXEC by giving it an fourth parameter k which it
uses to terminate the execution if k additional blocks are added.

Definition 1. We say that A = (A0, A1) t-breaks the (k, F )-security of Gledger if there exists some
non-negligible function ε such that for all λ ∈ N

Pr

[
((sts, F ), stf ) ∈ R :

(sts, z, a)←$ EXECGledger(Z,A0, 1
λ)

(sti, z
′, stf )←$ EXECGledger,Oblockify(Z(z), A1(sts), 1

λ, k(λ))

]
≥ ε(λ) (2)

where A0 is arbitrary PPT, and A1 performs at most t(λ) operations and makes at most k queries
to Oblockify, where Oblockify takes as input a block B and a message m, and outputs a new block B′

that contains message m such that isvalidchain(B,B′) = 1, and R is as defined in Equation (1).

Assumption 1 For all polynomially bounded functions k, t, there exists some polynomially bounded
function F such that no PPT adversary A = (A0, A1) t-breaks the (k, F )-security of Gledger (as
per Definition 1.

Remark 1. Intuitively, t represents the number of mining operations that an adversary can perform
in the time it takes the honest miners to mine k blocks. For the adversary to be able to produce
F > k blocks (e.g. F = k2 or even ck, for large enough constant c) in this time, t should be
significantly larger than the honest mining power. This would violate the PoW assumption that
the adversary controls less mining power than the honest miners. Even given access to an oracle
which mines up to k blocks for free (either in the past or currently), the computational requirement
on the adversary does not change too much. The adversary would still need to mine the remaining
F − k blocks on its own. Since the oracle creates blocks according to the same distribution that
honest parties would have, the adversary also cannot use it to decrease the difficulty parameter
from what it would have been in a real execution, meaning the work it needs to do for each block
does not change.

15



In fact, for some of security proofs, we will require a stronger notion of security from Gledger.
Specifically, we want it to be computationally hard for A1 to compute a state F blocks ahead
even if its given as auxiliary information (a) some F ′ << F future blocks, and (b) secret-keys of
the most recent miners. As before, we first formalize what it means for such an A1 to break the
security of Gledger, and next state the exact assumption which we conjecture to hold for PoW-based
blockchains, e.g., Bitcoin.

Let t, `, F ′, k, F : N→ N be polynomially bounded functions.

Definition 2. We say that A = (A0, A1) (t, `, F ′)-breaks the (k, F )-security of Gledger if there exists
some non-negligible function ε such that for all λ ∈ N

Pr

((sts, F ), stf ) ∈ R :

(sts, z, a)←$ EXECGledger(Z,A0, 1
λ)

sti←$S(sts, F
′(λ))

(stj , a
′, stf )←$ EXECGledger,Oblockify(Z(a), A1(sts, sti, ~sk`), 1

λ, k(λ))

 ≥ ε(λ)

(3)
where A0 is arbitrary PPT, A1 performs at most t(λ) operations and makes at most k queries to
Oblockify, where Oblockify takes as input a block B and a message m then outputs a new block B′ which
contains message m such that isvalidchain(B,B′) = 1, S on input a starting state sts outputs an
intermediate future state state sti such that isvalidchain(sts, sti, F

′) = 1 and ~sk` are the secret-keys
of the miners mining the last ` blocks in sts.

Assumption 2 For all polynomially bounded functions k, t, `, F ′, there exists polynomially bounded
functions F such that no PPT adversary A = (A0, A1) (t, `, F ′)-breaks the (k, F )-security of Gledger
(as per Definition 2).

Although Assumption 2 is a strengthening of Assumption 1 we believe, especially in the context
of bitcoin, that having access to the secret-keys of the miners and/or some of the future states
doesn’t make computing states much further in the future any easier. For PoW blockchains such as
Bitcoin, having the private keys of recent miners does not make the computational puzzle (based
on hashing) any easier to solve. Knowledge of the future state can be seen as a special case of the
oracle provided in Assumption 1.

3.1 Chain Quality

Chain quality is a thoroughly analyzed property for many blockchains which is closely related to
the fraction of mining power which the adversary controls [23,34,24,43]. Intuitively, it requires that
the blockchain consists of a minimal fraction of honestly mined blocks (commonly proportional to
the honest fraction of total mining power).

We define the predicate quality(st, β, `) such that quality(st, β, `) = 1 if and only if the last `
blocks of st were mined by honest miners.

Definition 3 (Chain Quality). Gledger satisfies (β, `)-chain quality with environment Z and ad-
versary A if for all i ∈ N and all `′ > `, the following holds:

Pr[quality(st, β, `) = 1|(sts, z, a)←$ EXECGledger(Z,A, 1λ)] ≥ 1− negl(λ)

16



4 Definitions and Preliminaries

The security parameter is λ. We denote cryptographic indistinguishability by ≈c. Two distributions
X0, X1 satisfy this if for all PPT D,∣∣Pr[D(x) = 1 : x←$X0]− Pr[D(x) = 1 : x←$X1]

∣∣ ≤ negl(λ)

Though our definitions specify the circuit class for sake of generality, in this work we only
consider adversaries which are unable to break security of the blockchain. Distinguishers, however,
are allowed to be arbitrary PPT machines.

We provide definitions directly relating to time traveling simulators and extractors below. See
appendix A for standard definitions.

Blockchain Awareness Unless otherwise specified, we consider adversaries which have access
to the global functionality Gledger. For indistinguishability of two distributions, this means the
distinguisher also has access to Gledger as soon as the samples are generated. One consequence of
this is that the distinguisher can check the time an interaction ends as well as wait for future states
to become available before attempting to distinguish. Additionally, this means that the distinguisher
can immediately distinguish any view generated by a simulator using a privately initialized Gledger
from the real execution by checking the state of the global Gledger.

Many of our protocol definitions require some quantification of the time an execution is started,
with respect to Gledger. We denote that an execution of an algorithm or protocol Π is started when
the internally held state of Gledger has T blocks (“time T”) by ΠT . The algorithm may not be aware
of the actual state or time of Gledger.

Similar to [30], we only consider statically corrupting adversaries, though the blockchain may
be secure against adaptive corruptions. We believe our assumptions and results also hold against
adaptive corruptions with erasures. Achieving our results against adaptively corrupting adversaries
without erasures is an interesting open question.

4.1 Time-Travel Simulation for Zero Knowledge

For interactive algorithms P1, P2, we denote by outP1(P1(x), P2(y)) the output of P1 in an inter-
action with P2 where P1 has input x and P2 has input y. The corresponding view is denoted by
viewP1(P1(x), P2(y)).

Definition 4 (Argument Systems). Let C be a circuit class. An interactive protocol (P, V ) is a
C-argument system for a language L with NP relation RL if it satisfies the following properties:

– Completeness: For every (x,w) ∈ RL,

Pr
[
outV (P (1λ, x, w), V (1λ, x)) = 1

]
= 1

– C-Soundness: For every x /∈ L and every adversary P ∗ ∈ C,

Pr
[
outV (P ∗(1λ, x), V (1λ, x)) = 1

]
= negl(λ)

17



This definition is in the plain model. If these properties hold in the Gledger-hybrid model and
(P, V ) may require interaction with Gledger, then we call (P, V ) a blockchain-aware argument system.
If soundness holds against unbounded provers, (P, V ) is called a proof system. If the prover may
choose the statement to be proven in the last round, it is called a delayed-input argument/proof
system.

A time-traveling simulator is given a randomly sampled future state of the blockchain and must
produce an indistinguishable transcript from the real-world protocol.

Definition 5 (Zero Knowledge with Time-Travel Simulation). Let C be a circuit class.
An argument system (P, V ) for a language L is C-Zero Knowledge with an F-Time-Traveling
Simulator if there is a PPT algorithm Sim such that for all adversaries V ∗ ∈ C, every (x,w) ∈ RL,
and all times T , the following holds in the Gledger-hybrid model:

{viewV ∗(PT (1λ, x, w), V ∗T (1λ, x))} ≈c {SimT (1λ, x, stF ) : stF ←$Dfut(T, F )}

Proofs of time-traveling knowledge intuitively show that the prover will soon “know” the witness
to the statement they proved. We formalize this by a time-traveling extractor which receives a future
state and must produce both a transcript indistinguishable from the real world and a valid witness.

We denote the decision bit for whether a proof π for a statement x is accepted by Acc(x, π).

Definition 6 (Arguments of Time-Traveling Knowledge). Let C be a circuit class. A delayed-
input argument system (P, V ) for a language L with relation RL is a C-argument of time-
traveling knowledge if there exists a PPT extractor Ext such that for all adversaries P ∗ ∈ C and
all times T the following two properties hold:

1. C-View Indistinguishability.

{viewP ∗(P
∗
T (1λ, x, w), VT (1λ, x))} ≈c {π̃ : (π̃, w)← ExtT (1λ, x, P ∗, stF ), stF ←$Dfut(T, F )}

2. C-Extraction.

Pr[outV (P ∗(1λ, x), V (1λ, x)) = 1] ≤ Pr[ExtT (1λ, x, P ∗, stF ) ∈ RL(x) : stF ←$Dfut(T, F )]+negl(λ)

We emphasize that the witness-extraction process must not take too long, or else view indistin-
guishability will fail.

For our secure two-party computation construction, we will also require this to be a delayed-
input argument, where the adversary may choose the statement x in the last round. Without loss
of generality, x is included in the transcript in the last round.

4.2 Time-Travel Simulation for Secure Computation

A secure two-party computation protocol for a functionality f is carried out by two parties P1, P2

with inputs x1, x2, respectively. At the end of the protocol, P2 gets the output f(x1, x2). We
formalize security using the real/ideal world paradigm in the Gledger-hybrid model.

18



Ideal World The ideal world contains P1, P2, and a trusted third party. At most one of P1 and
P2 are controlled by the adversary. Between any messages, parties may do a polynomial amount of
interaction with Gledger. The ideal world execution proceeds as follows:

1. Input Distribution: P1 and P2 receive their respective inputs x1 and x2 from the environment.
2. Inputs to Trusted Third Party: P1 and P2 send their inputs to the trusted third party.

An honest party always immediately sends the input they received from the environment. The
corrupted party may send any input of their choice.

3. Optional Abort: The adversary may send a message to the trusted third party instructing
it to abort. Immediately upon receiving this, the trusted third party terminates the execution.
Otherwise the execution continues.

4. Trusted Third Party Answers P2: If it is not been instructed to abort, the trusted third
party sends f(x′1, x

′
2) to P2, where x′1 and x′2 are the inputs it received in step 2.

5. Output: If P2 is honest, it outputs f(x′1, x
′
2) as received from the trusted third party. If P1 is

honest, it outputs ⊥. The adversarial party always outputs its entire view.

We define IdealT,f,A(x1, x2) to be the joint distribution over the outputs of the adversary A and
the honest party according to the above ideal execution started at time T .

Real World Let Π be a two-party protocol computing f . In the real process, both parties execute
the protocol Π. This may involve some amount of communication with Gledger. At most one of P1

and P2 are controlled by the adversary. Between any messages, parties may do a polynomial amount
of interaction with Gledger. As in the ideal process, they receive inputs from the environment. The
honest party outputs according to the Π specification, while the adversary outputs its entire view.

We define RealT,Π,A(x1, x2) to be the joint distribution over the outputs of the adversary A and
the honest party according to the above real execution started at time T .

Definition 7 (Secure Computation with Time-Travel Simulation). Let C be a circuit class.
Let Π be a two party protocol computing the two party functionality f . We say Π C-securely
computes f with F -time-traveling simulation if there is a stateful PPT algorithm Sim such
that for all A ∈ C, all inputs x1, x2, and all times T , the following holds:

{RealT,Π,A(x1, x2)} ≈c {IdealT,f,Sim(stF )(x1, x2) : stF ←$Dfut(T, F )}

As mentioned previously, the distinguisher has access to Gledger, and is able to time the interac-
tions. This includes the time of the honest party’s output, which is included in the joint distribution.
Since an honest P2’s output in the ideal world depends on the ideal functionality, the simulator
against P1 must therefore extract the corrupted P1’s output and provide it to the ideal functionality
without wasting too much time.

4.3 Time-Travel Extraction for Commitments

Definition 8 (Statistically Binding Commitment Scheme). A two round commitment scheme
is a triple (Com,Rec,Open) of three algorithms with the following syntax:

1. Rec is a PPT algorithm that on input 1λ outputs the first message c1.
2. Com is a PPT algorithm that on inputs 1λ, the receiver message c1, and a value m outputs a

message c2 for the receiver and retains decommitment information d.

19



3. Open is a deterministic function that on input a commitment τ = (c1, c2) (transcript of the
interaction between Com and Rec), value m and decommitment information d outputs a decision
bit.

We need the following properties:

– Binding. For every cheating (potentially unbounded) adversary C∗, we have

Pr[∃m0, d0,m1, d1 such that m0 6= m1 ∧ (Open(τ,m0, d0) = Open(τ,m1, d1) = 1)] ≤ negl(λ)

where the probability is taken over the random coins used in sampling the transcript τ between
C∗ and the honest receiver Rec.

– C-Hiding. For every adversary R∗ ∈ C, and every pair of strings m0,m1{
viewR∗

(
ComT (1λ,m0), R

∗
T

)}
≈c
{

viewR∗

(
ComT (1λ,m1), R

∗
T

)}
The above definition is in the plain model. If these properties hold in the Gledger-hybrid model,

then (Com,Rec,Open) is a commitment scheme in the Gledger-hybrid model.

A non-interactive commitment scheme consists only of (Com,Open), but otherwise follows the
above definition.

Definition 9 (Value of Commitment). Given a commitment transcript c = (c1, c2) generated
by an interaction between cheating committer C∗ and an arbitrary receiver R∗ (which may not be
the honest receiver), we define the value of the commitment val(c) as m if there exists a unique
value m such that c2 = Com(c1,m; r) for some random tape r, otherwise val(c) = ⊥.

Definition 10 (Time-Travel Extraction). Let C be a circuit class. We say that a two round
commitment scheme (Com,Rec,Open) has an F -time-traveling C-extractor if there exists a PPT
extractor Ext such that for all adversaries C∗ ∈ C and all times T :

1. C-View Indistinguishability.

{viewC∗(C
∗
T (1λ),RecT (1λ))} ≈c {τ̃ : (τ̃ , m̃)←$ ExtT (1λ, C∗, stF ), stF ←$Dfut(T, F )}

2. Over-extraction.

Pr[m̃ 6= val(τ̃) ∧ val(τ̃) 6= ⊥ : (τ̃ , m̃)←$ ExtT (1λ, C∗, stF ), stF ←$Dfut(T, F )] ≤ negl(λ)

Remark 2. We emphasize that our extractor is allowed to sample a transcript/view from a distri-
bution that is only computationally close to viewC∗(C

∗,Rec). In particular, the distribution can be
statistically far away from viewC∗(C

∗,Rec). This is different from the extractability notions con-
sidered in prior works [31,13,14] where extractor is required to sample from a distribution that is
statistically close to viewC∗(C

∗,Rec). Some works also consider the stronger notion where extractor
is given a transcript from viewC∗(C

∗,Rec) and asked to recover the underlying value.

20



4.4 Indistinguishability Against Time-Traveling Distinguishers

A time-traveling distinguisher receives both a sample from the distribution and a randomly sampled
future state. Given these, it may interact with the ledger in order to learn more information, or
immediately attempt to distinguish the samples. Note that the distinguisher is an arbitrary PPT
machine, and so may have significantly more mining power than the honest miners. However,
it cannot necessarily create future states from the same distribution as a real execution of the
blockchain (where the adversary controls strictly less than half of the mining power), e.g. because
it cannot forge signatures of frequently successful or otherwise well-known honest miners.

Definition 11 (Indistinguishability Against Time-Traveling Distinguishers). Let C be a
circuit class. We say two time-parameterized distributions X0(T ), X1(T ) are C-time-traveling
indistinguishable if for all PPT distinguishers D, all times T , and all F = poly(λ):∣∣Pr[D(x, stF ) = 1 : x←$X0(T ), stF ←$Dfut(T, F )]

F − Pr[D(x, stF ) = 1 : x←$X1(T ), stF ←$Dfut(T, F )]
∣∣ ≤ negl(λ)

The distributions are parameterized by a time T (i.e. number of blocks in the ledger). The
distinguisher receives a future state which extends the state of the blockchain at time T by F
blocks. Note that hiding is required against distinguishers which receive states extended by any
polynomial number of blocks.

Definition 12. (Hiding Against Time-Traveling Distinguishers) Let C be a circuit class. We say
a commitment scheme (Com,Rec,Open) is C-hiding against time-traveling distinguishers if
for all R∗ ∈ C the following two distributions are C-time-traveling indistinguishable:

– {viewR∗
(
ComT (1λ,m0), R

∗
T

)
}

– {viewR∗
(
ComT (1λ,m1), R

∗
T

)
}

Definition 13. (Extraction Against Time-Traveling Distinguishers) Let C be a circuit class. We
say an commitment scheme (Com,Rec,Open) with an F -time-traveling C-extractor has an F -time-
traveling C-extractor against time-traveling distinguishers if for all C∗ ∈ C the following
two distributions are C-time-traveling indistinguishable:

– {viewC∗(C
∗
T (1λ),RecT (1λ))}

– {τ̃ : (τ̃ , m̃)←$ ExtT (1λ, C∗, stF ), stF ←$Dfut(T, F )}

Note that both hiding and extraction commitments against time-traveling distinguishers imply
their non-time-traveling-distinguisher counterparts.

5 Two-Round Commitments with Time-Traveling Extractors

We construct a 2 round commitment which has an F-time-traveling extractor against time-traveling
distinguishers and is hiding against time-traveling distinguishers. At a high level, the receiver non-
interactively commits to an empty string using ideas from [30], which we informally refer to as a
“GG commitment”. It makes use of a threshold secret sharing scheme and a public key integrated
encryption-signature scheme. Then the receiver and committer engage in a CDS protocol where
the receiver gets the committer’s message if and only if they can provide a witness that their
non-interactive commitment was to a future state. Additionally, the committer sends a separate
non-interactive commitment to their message.

21



5.1 Protocol

Our construction makes use of a threshold secret-sharing scheme SS = (Share,Rec), a public key
integrated encryption-signature scheme HS = (Setup,Enc,Dec, Sign,Vf), a Conditional Disclosure
of Secrets scheme CDS, and a non-interactive statistically-binding commitment (Comni,Openni).

Given a state st, letM`(st) be the set of miners which mined the last ` blocks of st. Also, let pkid
be the public key of party Pid. The protocol parameters params are the length of the future state
F , the window size windowSize, the chain-quality parameters (`, β), and the security parameter λ.

The language Lparams used for CDSparams is defined as follows:

Lparams =

(ggcom, st) :

∃(stF , rss, (rid)id∈M`(st)) such that

(shid)id∈M`(stR)
= Share(stF , `, (1− β)`+ 1; rss)

ggcom = (Enc(pkid, shid; rid))id∈M`(stR)

isvalidchain(st, stF ) = 1
|stF | ≥ |st|+ F (λ) + 2windowSize

 . (4)

Protocol (Rec,Com,Open)

Let iC = |stC | and iR = |stR| denote the size of the respective states of the committer and the
receiver at the start of the protocol. Let iV = |stV | denote the size of the state of the verifier,
who runs Open. Let params = (F,windowSize, `, β, λ) be the parameters of the protocol.

Rec(params) The receiver does the following:
– Compute the secret-sharing (shid)id∈M`(stR)

← Share(0|iR|+F (λ)+2windowSize, `, (1−β)`+1)
– Compute ggcom← (Enc(pkid, shid))id∈M`(stR)

– Compute cds1 ← CDS1,params(1
λ, (ggcom, stR),⊥)

– Send (ggcom, cds1, iR) to the committer.
Com(m, τ1, params) Upon receiving the first message τ1 = (ggcom, cds1, i), the committer

checks if iC − i > windowSize, and aborts if so. Otherwise, it waits until the size of its state
stC is at least i, then does the following:
– Sample fresh randomness rcds.
– Compute cds2 ← CDS2,params(1

λ, (ggcom, stC [: i]), cds1,m; rcds)
– Compute (comni, dni)← Comni(1

λ,m)
– Send (cds2, comni) to the receiver and keep (rcds, dni) as the decommitment information.

Open(τ,m, d, params) Given the transcript τ = ((ggcom, cds1, i), (cds2, comni)), decommit-
ment information d = (rcds, dni), and message m, the verifier waits until iV ≥ i. It outputs
1 if

cds2 = CDS2,params(1
λ, (ggcom, stV [: i]), cds1,m; rcds) ∧ Openni(1

λ, comni,m, d)

and 0 otherwise.

5.2 Analysis

Proposition 1. Assume that HS is a public key integrated encryption-signature scheme, that CDS
is a Conditional Disclosure of Secrets protocol, that (Comni,Openni) is a non-interactive statistically-
binding commitment scheme, that SS is a threshold secret-sharing scheme, and that Gledger has

22



(β, `)-chain-quality. Let t, F ′ be polynomially bounded functions as in Assumption 2 and let Ct,F ′ be
the class of adversaries which receives an F ′-future state and performs at most t(λ) operations.

Assuming that no PPT adversary (2t, ` + 2windowSize, F ′)-breaks the (1, F )-security of Gledger
(Assumption 2), the protocol (Com,Rec,Open) is a statistically binding commitment scheme in the
Gledger-hybrid model with Ct,F ′-hiding against time-traveling distinguishers. Furthermore, it has an
(F + 2windowSize)-time-traveling extractor against time-traveling distinguishers.

Proof. Statistical binding follows immediately from the statistical binding of Comni. We divide the
remainder of the proof (hiding and time-traveling extraction) into two lemmas.

Lemma 1. For every cheating (receiver, time-traveling distinguisher) pair that breaks hiding while
performing t operations, there exists an adversary that (2t, ` + 2windowSize, F ′)-breaks the (1, F )-
security of Gledger.

Proof. It suffices to show only hiding against time-traveling distinguishers, since hiding against
non-time-traveling distinguishers follows from this. Consider any PPT R∗ ∈ Ct,F ′ . Without loss
of generality, we can ignore those which would cause the committer to abort with 1 − negl(λ)
probability. First we show that

Pr [(ggcom, stC [: i]) ∈ Lparams : (ggcom, cds1, i, cds2, comni)← 〈R∗, C〉(params)] ≤ negl(λ)

where stC [: i] is the first i blocks of the committer’s state at the point when they send their message.
Note that the experiment is only over the executions where the committer does not abort.

Assume that this is not the case. Then we construct an adversaryA which (2t, `+2windowSize, F ′)-
breaks the (1, F )-security of Gledger. Given an F ′-future state stF ′ ,A computes (ggcom, cds1, i, cds2, comni)←
〈R∗(stF ′), C〉(params) by internally simulating R∗ and C. By assumption, (ggcom, stC [: i]) ∈ Lparams

with noticeable probability. When this occurs, there exists randomness rss and shares (shid)id∈M`(stR)

such that (shid)id∈M`(stR)
= Share(stF , `, (1− β)`; rss) where stF is a valid extension of stC [: i] with

F + 2windowSize more blocks (i.e. isvalidchain(stF , stC [: i], F + 2windowSize) = 1). Furthermore,
these shares are encrypted under the public keys (pkid)id∈M(`)(stC [:i])

of the miners of the last `

blocks of stC [: i] = Gledger.st[: i]. Since the committer does not abort, iC − i ≤ windowSize. Since
Gledger.size− iC ≤ windowSize, we have i ≥ Gledger.size− 2windowSize.

Recall that in the (2t, ` + 2windowSize, F ′)-breakage of (1, F )-security experiment, A is given
the secret keys (skid)id∈M(`+2windowSize)(Gledger.st) of the miners for the last ` + 2windowSize blocks of

Gledger. Since i ≥ Gledger.size − 2windowSize, these include the secret keys of (pkid)id∈M(`)(stC [:i])
.

Using these secret keys, A decrypts the shares (shid)id∈M`(stR)
and uses them to reconstruct stF . We

assume t to be large enough that the rest of A’s computations (in particular decrypting ciphertexts
and reconstructing the shares) take at most t operations. Since A is allowed 2t operations before
the honest miners mine a single block, it can finish its computations before that occurs. Since
(ggcom, stC [: i]) ∈ Lparams by assumption, the state obtained is F + 2windowSize blocks longer than
i, which is at most 2windowSize blocks behind Gledger.st. Thus A obtains an F -future state stF which
is F blocks ahead of the global blockchain within the parameters of the (2t, ` + 2windowSize, F ′)-
breakage (1, F )-security security game.

The rest of the proof proceeds in 3 hybrids, where H0 is the commitment to m0.

H1 The committer computes cds2 using m1 instead of m0, i.e.

cds2 ← CDS2,params(1
λ, (ggcom, stC [: i], cds1,m1; r)

23



Indistinguishability against time-traveling distinguishers follows from the previous claim and
the security of CDSin the plain model. In more detail, we can construct an adversary A for CDS
in the plain model if this is not the case. A internally emulates the ledger, pausing the hybrid
adversary and distinguisher to compute whatever future states they require. It computes the
commitment transcript, forwarding the CDS messages between the commitment adversary and
the CDS challenger. It outputs the distinguishers output.

H2 In Com, compute comni using m1 instead of m0, i.e.

(comni, d)← Comni(1
λ,m1)

Indistinguishability against time-traveling distinguishers follows from a similar argument to the
previous hybrid.

Observe that H2 is an honest commitment to m1.

Lemma 2. The protocol (Com,Rec,Open) has an (F+2windowSize)-time-traveling extractor against
time-traveling distinguishers.

Proof. Without loss of generality, the extractor knows the Gledger pointer for every party, since it
acts as the adversary with respect to Gledger. In particular, it knows iR = |stR| for the honest receiver
R (this also implies it knows stR, since stR = Gledger.st[: iR]). Note that it could be the case that
iR = Gledger.size exactly.

When given a future state stF such that isvalidchain(stF ,Gledger.st, F +2windowSize), the extrac-
tor computes ggcom using stF instead of 0s during Rec, i.e. it secret-shares stF

12 and encrypts the
resulting shares using the public keys of miners who mined the last ` blocks of stR. Let r be the
randomness it uses in the secret sharing and encryption. The extractor computes cds1 using the
witness (stF , r), then sends (ggcom, cds1, iR). It internally runs C∗ and receives the Com message
(cds2, comni). Finally, it computes the CDS output for cds1, cds2 and outputs this alongside the
transcript.

Over-Extraction It suffices to show that conditioned on the extracted transcript having a non-
⊥ value, the extracted message is the value of the transcript. Consider the extracted transcript
τ = ((ggcom, cds1, i), (cds2, comni)) If τ has a value val(τ) 6= ⊥, then for some randomness rcds2 it
holds that cds2 = CDS2,params(1

λ, (ggcom,Gledger.st[: i]), cds1, val(τ); rcds2). Note that for extracted
transcripts it holds that (ggcom,Gledger.st[: i]) ∈ Lparams with witness (stF , r). Therefore, by the
correctness of CDS, the extracted message is val(τ) with probability 1.

View Indistinguishability To show view indistinguishability against time-traveling distinguish-
ers, we proceed in 4 hybrids, where H0 is the real interaction.

H1 Let MH
` (stC) be a set of honest miners which mined blocks in the last ` blocks of stC . The

committer encrypts 0s under the keys of these parties instead of the shares.

Indistinguishability against time-traveling distinguishers follows from the semantic security of
the public key integrated encryption-signature scheme HS in the plain model. In more detail,

12 Without loss of generality we assume stF is exactly F + 2windowSize blocks longer than stR, since it can be
truncated without affecting its validity.

24



we can construct an adversary A for HS in the plain model if this is not the case. A internally
simulates the ledger, pausing the hybrid adversary and distinguisher to compute whatever future
states they require. The public keys it uses for the honest parties in the ledger are chosen by the
HS challenger, which also provides any signatures or ciphertexts under these keys required to
indistinguishably emulate the ledger. It computes the commitment transcript, forwarding the
appropriate ciphertexts from the HS challenger, which encrypts either 0s or the shares under
the public keys pkid for id ∈MH

` (stC). Finally, it outputs the output of the hybrid distinguisher.
H2 In this hybrid, the committer receives and secret-shares stF instead of sharing 0|iR|+F (λ)+2windowSize.

Note that these have the same length.
Indistinguishability against time-traveling distinguishers follows from a similar argument as
above, relying on the perfect security of secret-sharing and the (β, `)-chain-quality of Gledger.
If this is not the case, we construct an adversary A for secret-sharing in the plain model by
internally emulating the ledger, the hybrid adversary, and the hybrid distinguisher, including
the future states provided to them. Note that the internally emulated ledger is indistinguishable
from a real one, so it obeys the (β, `)-chain-quality property of Gledger. Therefore there are at
least β` honest miners in MH

` (stC). Since this is the case, A requires no more than (1 − β)`
shares from the secret-sharing challenger, which is what it receives. A therefore can compute
the transcript and output what the hybrid distinguisher does.

H3 In this hybrid, the receiver computes cds1 using the witness (stF , rss, (rid)id∈M`(st)), where rss
is the randomness used to secret-share stF and rid is the randomness used to encrypt the share
shid for each id ∈M`(st).
Indistinguishability against time traveling distinguishers follows from the CDS receiver’s security
in the plain model. As before, if this does not hold, we can construct an adversary A that breaks
the CDS receiver’s security in the plain model. It internally emulates the ledger, computing
future states as necessary to compute the hybrid adversary’s view while forwarding messages
to and from the CDS challenger.

Observe that H3 precisely produces the transcripts produced by the extractor.

6 Three-Round Time-Traveling Zero-Knowledge

In Section 6.1 we describe a three-round argument that satisfies time-traveling ZK. Looking ahead,
this protocol is not an argument of knowledge. In Section 6.2, we extend the protocol from Sec-
tion 6.1 to be a time-traveling argument of knowledge.

6.1 Three-Round Time-Traveling Zero-Knowledge Argument

We follow the FLS [21] paradigm that allows to transform a proof for x ∈ L into a witness-
indistinguishable proof for “x ∈ L or I know a trapdoor”. To construct a three-round argument for
L, we use a three-round WI proof-of-knowledge (WIPOK) and use the current state of the Gledger
to generate a trapdoor. In particular, for some parameter F , prover gives a three-round WI for
the statement “x ∈ L OR I know a valid state stF of Gledger that extends the current state by F
blocks”. We give a formal version of the protocol below.

First we define the NP language Lwipok which is used in the protocol.

Lwipok =

(i, F, x) :
∃(st, w) such that
either R(x,w) = 1

or (isvalidchain(Gledger.st[: i], st, F + 2windowSize)

 . (5)

25



Protocol 〈P, V 〉

Common input: An instance x from L with witness relation RL, security parameter λ, time-
out parameter k and parameter F .

Auxiliary input to Prover: witness w such that RL(x,w) = 1, and size of prover’s lo-
cal state from Gledger iP = |stP |.

Auxiliary input to Verifier: size of verifier’s local state from Gledger iV = |stV |.

Protocol: Before sending any message, either party checks whether their state has expanded
by more than k blocks. If so, they abort.

1. P → V : On input iP , P sends over iP along with the first message π1 of WIPOK to V .
2. V → P : Upon receiving (iP , π1), V checks whether |iP − iV | > windowSize, if so it aborts.

It then sends the second message π2 of WIPOK.
3. P → V : P computes the third message as follows:
• P samples an instance and a witness (x,w) such that (x,w) ∈ R.
• P computes the third message π3 of WIPOK for the statement (iP , F, x) ∈ Lwipok. The

honest prover uses w as the witness. Looking ahead, our time-traveling simulator will use
a valid extension stF of stP .

4. Output of V : If the size of current state of V is less than iP , V waits until the size of its
state is at least iP .a V verifies the WIPOK proof w.r.t. the statement (iP , F, x).

a This ensures that it has the statement defined by (iP , F ).

Theorem 1. Let k be an upper-bound on the numbers of blocks added in an honest execution of
〈P, V 〉. Let t, F be polynomially bounded function such that no PPT A 3t-breaks the (k, F )-security
of Gledger (as per Definition 1). Further, assuming the witness-indistinguishability of WIPOK, the
protocol 〈P, V 〉 is a 3-round argument in the Gledger model where soundness holds against cheat-
ing prover P ∗ performing t operations and (F + 2windowSize)-time-traveling zero-knowledge holds
against all PPT V ∗.

Completeness. The time-out parameter is set so that honest parties will complete the execution
within k blocks being added. Given this, the completeness follows from the completeness of the
WIPOK.

Time-traveling Zero-Knowledge. Let V ∗ be a cheating prover such that its initial state is stV .
Let x be some statement in L. Then, we design a simulator Sim that gets the current states stP
and stV ∗ of the parties, and a valid extension stF of stP as advice. Such a simulator interacts with
V ∗ identically to the honest prover on state stP except

• it computes the third message of WIPOK for the statement (|stP |, F, x) using stF as witness.

• it forwards all queries by V ∗ to the ledger to its own oracle Gledger.

Sim then outputs the entire transcript of the interaction. We claim that the transcript output by
Sim is indistinguishable from the real world interaction to even distinguishers that have access to

26



the Gledger. If there exists a (V,D) pair for which the above is not true, then we can construct an
adversary that breaks the WI of the WIPOK: such an A internally emulates the ledger, acting as
the adversary in the WI game.

Soundness. Let us assume for simplicity that the cheating prover P ∗ promises to not access the
Gledger during the execution of the protocol. Such a P ∗ cannot use the ledger to maintain state
during the execution (e.g., prover sends the third message only if the transcript so far is not present
on the ledger, and submits the partial transcript to be posted on the ledger), and hence can be
freely rewound. Then, keeping the first message same we run two executions of the prover sending
different second messages. If P ∗ succeeds in convincing V about x with probability ε, then with
probability roughly ε2 the two transcripts are accepting. This allows us to, via special-soundness
of WIPOK, extract a witness for WIPOK with probability ε2. It remains to show that the extracted
witness is a witness for x. We claim that the extracted witness cannot be a future state as otherwise
we would have constructed an A that contradicts the hardness of the underlying mining puzzle.
However, note that the above reduction crucially relies on being able to rewind P ∗. As discussed
before, this is not straightforward for P ∗ that query the Gledger.

To prove soundness against provers that have access to Gledger, we take almost the same approach,
except that we mimic rewinding by relying on two things (a) given oracle access to Oblockify, a miner
can compute a fork of size k that is indistinguishable from the one maintained by Gledger to P ∗, (b)
such a miner (by (k, F )-security of the Gledger) cannot mine blocks way ahead in the future, thereby
allowing us to argue correctness of the extracted witness. A more formal analysis follows.

Lemma 3. For every cheating prover that breaks soundness while performing t operations, there
exists an A = (A0, A1) that 3t-breaks the (k, F )-security of Gledger.

Proof. Given P ∗ with state stP , let iP = |stP |. We build a ledger adversary A that internally runs
two copies of P ∗ acting as the verifier. Let the two copies be P ∗1 and P ∗2 , let O1 and O2 be the
ledger functionality that A = (A0, A1) simulates for P ∗1 and P ∗2 . Specifically, A = (A0, A1) behaves
as follows:

– A0 ensures that O1 and O2 behave identically as Gledger until P ∗1 and P ∗2 send their first message.
Note that this ensures that the first message sent by P ∗1 and P ∗2 is the same, in fact their entire
view is identical so far. Let i be the current state of P ∗1 and P ∗2 and let π1 be the first message.

– From this point on, A1 takes over: in particular, it continues the execution with P ∗1 and P ∗2 . It
forwards any query to O1 by P ∗1 to Gledger, and answers queries to O2 by locally simulating a
ledger consistent with i by relying on access to Oblockify.

– A1 sends two different messages π2 6= π′2 and receives ((x, iP , F ), π3) and ((x′, iP , F ), π′3).

– If either of the two transcripts (π1, π2, π3) and (π1, π
′
2, π
′
3) is rejecting then A1 aborts. Otherwise,

A1 computes a witness w from x using the two transcripts, and outputs w.

To conclude the soundness proof, we claim that w cannot be a witness for the statement (iP , F ).
To argue this, we first note that A1 performs at most 2t operations in running the two instances
of P ∗ and we assume that t is large enough so that rest of A1’s computation (in particular, the
computing the witness from the two transcripts) takes at most t operations. Overall, A performs
3t operations. Furthermore, since the verifier did not abort, iP ≥ iV − windowSize, and since
iV ≥ Gledger.size − windowSize, we have iP ≥ Gledger.size − windowSize. Therefore if w is a witness

27



for the statement (ip, F ), it contains a future state stF such that isvalidchain(Gledger.st, stF , F +
2windowSize − 2windowSize). Now, the claim follows by the assumption that no PPT A 3t-breaks
the (k, F )-security of Gledger (as per Definition 1).

Remark 3 (On achieving knowledge-soundness.). For knowledge-soundness, we need a construct
a knowledge-extractor that given access to the cheating prover, outputs a witness along with an
accepting transcript that is indistinguishable from the real world to a distinguisher that has access
to Gledger. This, in particular, means that the extractor should finish in roughly the same time (in
terms of number of blocks) as the cheating prover. In particular, rewinding-based extractor will
need to run all threads in parallel. Given that rewinding-based extraction in constant rounds is
known to require an expected polynomial time extractor, there is no fixed polynomial upper-bound
on the number of threads needed for extraction. Running an exponential number of threads in
parallel will allow extraction, but such an exponential-sized reduction can take over the ledger and
we cannot argue correctness of the witness like before.

6.2 Three-Round Time-Traveling Zero-Knowledge Argument-of-Knowledge

To obtain an argument-of-knowledge, we combine the 3-round ZK argument 〈P, V 〉 from Section 6.1
with the 2-round extractable commitment (Com,Rec) from Section 5 in a natural way: prover
commits to the witness using (Com,Rec) and proves using 〈P, V 〉 that it has indeed committed to
the witness.

For some functions F ′ < F , let 〈P, V 〉 be a 3-round F -time-traveling zero-knowledge for the
language L′

L′ = {(com1, com2, x) : ∃(w, d) such that Open((com1, com2), w, d) = 1 ∧R(x,w) = 1} . (6)

Further, let (Com,Rec) be 2-round F ′-time-traveling extractable commitment from Section 5.

Protocol 〈Pzkaok, Vzkaok〉

Common input: An instance x from L with witness relation RL, security parameter λ, time-
out parameter k and parameter F .

Auxiliary input to Prover: witness w such that RL(x,w) = 1, and size of prover’s lo-
cal state from Gledger iP = |stP |.

Auxiliary input to Verifier: size of verifier’s local state from Gledger iV = |stV |.

Protocol: Before sending any message, either party checks whether their state has expanded
by more than k blocks. If so, they abort.

1. Pzkaok → Vzkaok: On input iP , Pzkaok sends over iP along with the first message π1 of 〈P, V 〉
to Vzkaok acting as P .

2. Vzkaok → Pzkaok: Upon receiving (iP , π1), Vzkaok checks whether |iP − iV | > windowSize, if
so it aborts. It then sends the second message π2 of 〈P, V 〉 acting as V , and sends the first
message com1 acting as Rec.

3. Pzkaok → Vzkaok: P computes the third message as follows:

28



• Pzkaok samples an instance and a witness (x,w) such that (x,w) ∈ R.
• Pzkaok commits to the witness w acting as Com, let com2 be the message computed by

Com and d be the corresponding decommitment.
• Pzkaok computes the third message π3 of 〈P, V 〉 for the statement (com1, com2, x) ∈ L′.

The honest prover uses (w, d) as the witness.
4. Output of Vzkaok: If the size of current state of Vzkaok is less than iP , Vzkaok waits until

the size of its state is at least iP . Vzkaok verifies the WIPOK proof w.r.t. the statement
(com1, com2, iP , F, x).

Proposition 2. Let k be an upper-bound on the numbers of blocks added in an honest execution of
〈P, V 〉. Let t, `, F ′, F be polynomially bounded functions such that no PPT A (3t, `, F ′)-breaks the
(k, F )-security of Gledger (as per definition 2). Assume (Com,Rec,Open) is hiding against all PPT
receivers which perform at most t(λ) operations and that it has an F ′-time-traveling extractor.

Then 〈Pzkaok, Vzkaok〉 is a 3-round argument in the Gledger model such that (F + 2windowSize)-
time-traveling zero-knowledge holds against all PPT verifiers which perform at most t(λ) operations.
Furthermore, it has an F ′-time-traveling extractor against every cheating prover P ∗ performing at
most t(λ) operations.

Time-Traveling Zero-Knowledge. Let V ∗ be a cheating prover such that its initial state is stV .
Let x be some statement in L. Then, we design a simulator Sim that gets the current states stP
and stV ∗ of the parties, and a valid extension stF = (B1, . . . , BF ) of stP as advice. Such a simulator
interacts with V ∗ identically to the honest prover on state stP except

• it runs the (F + 2windowSize)-time-traveling simulator for 〈P, V 〉 to compute the third message
of 〈P, V 〉.
• it commits to a random string inside com2 (note the honest prover commits to the witness for x

inside com2).
• it forwards all queries by V ∗ to the ledger to its own oracle Gledger.

Sim then outputs the entire transcript of the interaction. We claim that the transcript output by
Sim is indistinguishable from the real world interaction to even distinguishers that have access to
the Gledger. This follows from (F + 2windowSize)-time-traveling ZK against all PPT verifiers, and
the hiding of 〈C,R〉 against R∗ that performs t(λ) operations.

Argument-of-Knowledge. Let P ∗ be some cheating prover. We need to exhibit a knowledge-
extractor K that on input the current state stP of P ∗, and a future state st′ such that
isvalidchain(stP , st′, F ′) = 1, outputs a tuple (τ ′, w′) of transcript and a witness such that

1. τ ′ is indistinguishable from 〈P ∗, Vzkaok〉 to even distinguishers having access to Gledger,
2. Pr[R(x′, w′) = 1] ≈ Pr[〈P ∗, Vzkaok〉 = 1] where x′ is the statement sampled by P ∗ in τ ′.

The extractor K is as follows: it interacts with P ∗ as the honest verifier Vzkaok except that
instead of computing com1 acting as the honest receiver Rec, it uses the F ’-time-traveling extractor
of (Com,Rec) to compute com1 using st′. Let τ ′ = (π1, (π2, com1), (π3, x, com2)) be the transcript
of the interaction between K and P ∗. K then runs the extractor for (Com,Rec) on (com1, com2)
and outputs whatever it extracted as w′.

Claim 1 τ ′ is indistinguishable from 〈P ∗, Vzkaok〉 to even distinguishers having access to Gledger.

29



Proof. The only difference in both distributions is the second message received by P ∗, and more
specifically the first message com1 of (Com,Rec). In 〈P ∗, Vzkaok〉, com1 is computed by R whereas
K computes com1 acting as the extractor for (Com,Rec). Then, the claim follows from the indis-
tinguishability of the transcripts produced by the extractor of 〈C,R〉.

Claim 2 Pr[R(x′, w′) = 1] ≈ Pr[〈P ∗, Vzkaok〉 = 1] where x′ is the statement sampled by P ∗ in τ ′.

Firstly, note again by indistinguishability of the transcripts produced by the extractor of 〈C,R〉,
we have

| Pr[τ ′ is accepting ]− Pr[〈P ∗, Vzkaok〉 = 1] |≤ negl(λ) . (7)

All it remains to show is that whenever τ ′ is accepting, w′ is actually the witness. Assume that P ∗

doesn’t break soundness of 〈P, V 〉 while interacting withK. Then, since τ ′ is accepting, we know that
com2 is well-formed and furthermore is a commitment to the witness for x′. Then, by the correctness
of the extractor of 〈C,R〉, we have that R(x′, w′) = 1. All that remains to be shown is that P ∗

doesn’t break soundness of 〈P, V 〉 when interacting with K. For sake of contradiction, assume that
P ∗ indeed breaks soundness of 〈P, V 〉. Then we can construct an adversary A = (A0, A1) that
(3t, `, F ′)-breaks the (k, F )-security of Gledger, similar to the proof of Lemma 3. The only difference
from the previous proof is that the constructed adversary A1 must have access to an F ′-future state
in order to run the extractor.

7 Three Round Secure Two-Party Computation with a Time-Traveling
Simulator

At a high level, our approach is to compile a two round semi-malicious secure two-party computation
protocol into a malicious one using the tools with built so far. We instantiate the semi-malicious
protocol using a two round oblivious transfer protocol and a garbled circuit. This blueprint was
also followed in [2].

7.1 Building Blocks

We use protocols with various future state parameters as building blocks. Consider the following
hierarchy of polynomially bounded functions,

F1 < F2 < F3 (8)

We use the following building blocks:

1. three round delayed-input ZKAoK 〈P, V 〉 (from Section 6.2) such that
(a) F3-time-traveling simulator for ZK,
(b) F2-time-traveling knowledge-extractor for cheating provers doing t operations.

2. two round commitment scheme (Com,Rec,Open) (from Section 5) such that
(a) Hiding against (R∗, D∗) where R∗ performs t operations and D∗ is F2-time-traveling dis-

tinguisher.
(b) An F1-time-traveling extractor, produces transcripts indistinguishable to F3-time-traveling

distinguishers.
3. Standard cryptographic tools: a two round oblivious transfer protocol OT = (OT1,OT2), two

round conditional disclosure of secret protocol CDS = (CDS1,CDS2), garbled circuit GC =
(Garble,Eval), a PRF family F , a statistically binding non-interactive commitment SBCom.

30



7.2 NP languages.

We consider two NP languages. First, Lcds parameterized by OT, (Com,Rec,Open) and PRF family
F

Lcds =

(ot1, com1, com2, c) :

∃(K,x, r) such that
com2 = Com(1λ, com1,K; r)

ot1 = OT1(x;F (k, 1))
c = x⊕ F (K, 2)

 . (9)

Intuitively, Lcds contains the transcripts of the first two rounds where P2 behaves honestly.

Second, Lzk parameterized by OT, CDS and GC

Lzk =

(c1, ot1, ot2, cds1, cds2, stmt) :

∃(x, rgc, rcds, rot, rsbcom) such that

ot2 = OT2(1
λ, ot1, {~li}i∈[n]; rot)

cds2 = CDS2(cds1, stmt, C; rcds)

((~l1, . . . ,~ln), C) = Garble(f(x, ·); rgc)
c1 = SBCom(x; rsbcom)

 . (10)

Intuitively, Lzk contains the transcripts where P1 behaves honestly.

7.3 Protocol

Protocol Π

1. P1, on input x1, computes a non-interactive commitment c1←$ SBCom(x1; rsbcom) to its
input, samples the first message com1 of the two-round commitment by running Rec, and
computes the first message zk1 of ZKAoK acting as P . It sends m1 = (c1, com1, zk1) to P2.

2. On receiving m1, P2 runs Com computes a commitment com2 = Com(com1,K; r) to a
random PRF key K using randomness r. It derives randomness r1 = F (K, 1) and r2 =
F (K, 2) from the PRF key K. It then prepares first message ot1 = OT1(x2; r1) of OT w.r.t.
its input while using randomness r1. Further, it computes c = x2 ⊕ r2. Next, it computes
the first message of CDS for the statement stmt = (ot1, com1, com2, c) ∈ Lcds using witness
w = (K,x2, r), that is, cds1 ← CDS1(stmt, w) It also prepares the second message zk2 of
ZKAoK acting as V . It sends m2 = (com2, c, ot1, cds1, zk2).

3. On receiving m2, P3 runs ((~l1, . . . ,~ln), Ĉ)←$ Garble(C) where ~li = (l0i , l
1
i ) are the two wire-

labels for i-th input wire, and C is a garbled circuit for a circuit that computes f(x1, ·). It
then prepares ot2←$ OT2(ot1,~l) , and computes cds2←$ CDS2(stmt, Ĉ). Finally, it computes
the third message of zk3 for the statement (c1, ot1, ot2, cds1, cds2, stmt) ∈ Lzk. It sends
m3 = (ot2, cds2, zk3)

4. Output Computation: P2 learns wire-labels {lbii }i∈[n] where bi is the i-th bit of x2 via

OT, learns the CDS secret Ĉ from (cds1, cds2), and then evaluates the garbled circuit Ĉ
using these labels to learn the output y.

Theorem 2. Assuming the building blocks with appropriate security as described in Section 7.1,
there exists a two-party protocol Π that securely computes any 2-party functionality f with F3-time-
traveling simulation.

31



7.4 Security Proof

We prove Theorem 2 in two parts. First, we consider the case that P2 is corrupted, and then discuss
the case that P1 is corrupted.

Case 1: P2 is corrupted. Let A be the adversary that corrupts P2. We describe a F3-time-
traveling simulator Sim2 next. Let st1 and st2 be the state of P1 and P2 respectively. Sim2 is given
(st1, st2) as inputs and stF3

as auxiliary input where isvalidchain(st1, stF3
) = 1 and |stF3

|−|st1| ≥ F3.
.

Simulator Sim2: Let stF1
be a prefix of stF3

such that |stF1
|−|st1| = F1. It runs the F3-time-traveling

simulator to simulate the 3-round ZK argument. In parallel, it uses the F1-time-traveling extractor
for 〈C,R〉 to extract from P2. Let the extracted value be K. If K = ⊥, then Sim2 aborts. Otherwise,
it extracts from P2 in two ways:

1. First computes x′2 = s⊕ F (K, 2) where s is the string sent by P2 in the second round.
2. Next, it recovers x′′2 from the transcript of OT using F (K, 1) as the randomness.

If x′2 6= x′′2 then set Ĉ to ⊥. Otherwise, query the ideal functionality on x′2 to get response y. Then
the rest of the simulation proceeds as follows: It runs the simulator for the Garbled Circuit to
generate a simulated circuit along with wire labels. Specifically, (Ĉ, {li}i∈[n])←$ Simgc(1

λ, φ(C), y)
where φ(C) is topology of the circuit C that computes f(x1, ·). It computes the second message of
OT using labels {~li}i∈[n] where ~li = (li, li). Finally the CDS messages are honestly computed using

Ĉ as the secret. Finally, all queries by P2 (or A) to the Gledger are forwarded by Sim2 to its own
oracle.

Lemma 4. The joint view of P1 and A in the real world is computationally indistinguishable from
view of Sim2 and A in the ideal world, even to distingusihers having access to Gledger.

Proof. The proof follows via a sequence of hybrids.

Hybrid H0: This hybrid corresponds to the real world. The output of this hybrid is the joint view
of P1 and A.

Hybrid H1(stF3
): This hybrid is identical to H0 except we run the F3-time-traveling simulator for

3-round ZK argument using stF3
as advice. Note that the simulator for 〈P, V 〉 requires stF3

only in
the third message, and in particular, the first message identical to P .

Claim 3 Hybrids H0 and H1 are computationally indistinguishable assuming the F3-time-traveling
ZK of 〈P, V 〉.

Hybrid H2(stF3
): This hybrid is identical to H1 except we use the prefix stF1

of stF3
as advice to

the time-traveling extractor for (Com,Rec) to compute the first message. In particular, P1 acts as
Rec in H1 but in H2 it acts as the time-traveling extractor of (Com,Rec). After receiving the second
message from P2, the hybrid runs the extractor of (Com,Rec) to extract a value from P2. Let the
extracted value be K. If K 6= ⊥ then define x′2 and x′′2 as defined by Sim2.

Claim 4 Hybrids H1 and H2 are computationally indistinguishable assuming the F3-time-traveling
indistinguishability of transcripts produced by F1-time-traveling extractor of (Com,Rec).

32



Proof. For every distinguisher D2pc that distinguishes H1 and H2, we build a cheating committer
C∗ and a F3-time-traveling distinguisher D that together distinguish the transcripts produced by
F1-time-traveling extractor of (Com,Rec) from an interaction of 〈C∗,Rec〉.

C∗ on input com1, internals simulates an interaction with P2. Upon receiving message m2 =
(com2, c, ot1, cds1, zk2) it outputs com2. Now, the distinguisher D on input stF3

can complete the
interaction with P2. Note that, when com1 is sampled by Rec (C∗, D) simulate H1, and when com1

is sampled by the extractor of (Com,Rec), (C∗, D) simulate H2. The claim follows.

Claim 5 If x′2 6= x′′2 in H2, then assuming the correctness of extractor of (Com,Rec) and uniqueness
property of OT transcripts,13 then the CDS statement stmt in H2 is such that stmt /∈ Lcds.

Proof. Let us assume that stmt ∈ Lcds. This means that (com1, com2) is well-formed commitment,
and furthermore com2 commits to a PRF key k and uses F (k, 1) as the randomness to compute ot2.
By the over-extractability of the extractor for (Com,Rec), we have that it correctly extracts the
value k. Let x′2 be the value recovered from ot2 using randomness F (k, 1). Finally, let x′′2 = c⊕F (k, 2)
where c is the string that P2 sends in the second round. Since stmt ∈ Lcds, we can then infer that
x′2 = x′′2, which contradicts the hypothesis.

Hybrid H3(stF3
): This hybrid is identical to H2 except that the non-interactive commitment sent

in the first round. In particular, in this hybrid c1 computed as a commitment to 0 (whereas in H2

it was a commitment to x1).

Claim 6 Assuming the hiding of SBCom, the output of H2 and H3 are indistinguishable.

Further, we also have that if x′2 6= x′′2 in H3 then the CDS statement is false. The following
claim follows from almost the same argument as done in the proof of Claim 5

Claim 7 If x′2 6= x′′2 in H3, the CDS statement stmt is such that stmt /∈ Lcds.

Hybrid H4(stF3
): This hybrid is identical to H3, except that the second message of CDS is computed

differently. In particular, whenever x′2 6= x′′2, we compute cds2 using the secret ⊥. The indistinguisha-
bility follows from (a) if x′2 6= x′′2 then the cds statement is false, (b) for false statements, cds2 doesn’t
reveal the secret to even malicious receivers.

Claim 8 Assuming the security of CDS, the output of H3 and H4 are indistinguishable.

Hybrid H5(stF3
): This hybrid is identical to H4, except that the second message of OT is computed

differently. In particular, let (Ĉ, {~li}i∈[n]) be the output of Garble. Then, whenever, x′2 = x′′2, we

compute ot2 using labels corresponding to x′2. In particular, define ~ki = (lbii , l
bi
i ) where bi is the i-th

bit of x′2 and ~li = (l0i , l
1
i ). Then, we compute ot2 as OT2(ot2, {~ki}i∈[n]). Note that in H4, ot2 was

computed as OT2(ot1, {~li}i∈[n]).

Claim 9 Assuming OT is secure against malicious senders, the output of H4 and H5 are indistin-
guishable.

13 OT1 not only binds the Sender’s choice bit but also the randomness used by the Sender. This is true for the
two-round OT by Naor-Pinkas [39]

33



Hybrid H6(stF3
): This hybrid is identical to H5, except that the garbled circuit used as the secret

for CDS statement is simulated. In particular, whenever x′2 = x′′2, we query the ideal functionality
on x′2 to get back y and then compute (Ĉ, (k1, . . . , kn)) using the simulator for garbled circuit Simgc

on input y.

Claim 10 Assuming the security of (Garble,Eval), the output of H5 and H6 are indistinguishable.

Finally, to conclude the proof, we observe that H6 is identical to the ideal world where A
interacts with Sim2.

Case 2: P1 is corrupted. Let A be the adversary that corrupts P1. We describe a F2-time-
traveling simulator Sim1 next. Let st1 and st2 be the state of P1 and P2 respectively. Sim2 is given
(st1, st2) as inputs and stF2

as auxiliary input where isvalidchain(st2, stF2
) = 1 and |stF2

|−|st1| ≥ F2.

Simulator Sim1: It runs the knowledge-extractor for 〈P, V 〉 to extract the witness from P1 while
computing the rest of messages sent by P2 w.r.t. a fixed input, that is, x2 = 0. In particular, it
samples a uniformly random PRF key K and commits to it inside com2, computes ot2 w.r.t. input
x2 = 0 and uniform randomness, samples a uniformly random string c, computes cds1 with witness
⊥.

Lemma 5. The joint view of P2 and A in the real world is computationally indistinguishable from
view of Sim1 and A in the ideal world, even to distinguishers having access to Gledger.

Proof. The proof follows via a sequence of hybrids.

Hybrid H0: This hybrid corresponds to the real world. The output of this hybrid is the joint view
of P2 and A along with the output of P2.

Hybrid H1(stF2
): This hybrid is identical to H0 except that we run the F2-time-traveling knowledge

extractor of 〈P, V 〉 using stF2
as advice. Note that the knowledge extractor is straightline extractor.

Let w′ be the witness output by P1, further, let x′1 be the input of P1 implicit in w′. P2 computes
its output as f(x′1, x2).

Claim 11 Assuming the correctness of F2-knowledge-extractor of 〈P, V 〉, the outputs of H0 and
H1 are computationally indistinguishable.

Hybrid H2(stF3
): This hybrid is identical to H1 except that the first message cds1 is computed

using the witness ⊥. In particular, note that in H1, it was computed using the correct witness as
described in the protocol.

Claim 12 Assuming the security of CDS against malicious senders, the output of H2 and H1 are
computationally indistinguishable.

Hybrid H3(stF2
): This hybrid is identical to H2 except that P2 commits to an independent PRF

key K ′ inside com2. In particular, note that in H2, com2 was a commitment to a PRF key K which
derived the randomness for computing ot1 and c.

Claim 13 Assuming the hiding of (Com,Rec) against (R∗, D∗) where R∗ does t operations and D∗

is F2-time-traveling distinguisher, the output of H2 and H3 are computationally indistinguishable.

34



Hybrid H4(stF2
): This hybrid is identical to H3 except that we use uniform randomness to compute

ot1 and c. In particular, note that in H3 the randomness were sampled using F (K, 0) and F (K, 1).

Claim 14 Assuming the PRF security of F , the output of H3 and H4 are computationally indis-
tingusihable.

Hybrid H5(stF2
): This hybrid is identical to H4 except that we compute ot1 differently. In particular,

we compute ot1 as OT1(0) whereas in H4, ot1 was computed as OT1(x2).

Claim 15 Assuming the security of OT against malicious senders, the output of H4 and H5 are
computationally indistingusihable.

Finally, the conclude the proof, we observe that H5 is identical to the ideal world where A interacts
with Sim1.

Acknowledgements. We thank the anonymous reviewers of ITCS 2022 for their helpful com-
ments. The authors were supported by the NSF award 1916939, DARPA SIEVE program, a gift
from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial
services innovation award, and a Cylab seed funding award.

References

1. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation based on
cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 387–404. Springer, Heidelberg, May 2014. doi:10.1007/978-3-642-55220-5_22.

2. Prabhanjan Ananth and Abhishek Jain. On secure two-party computation in three rounds. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 612–644. Springer, Heidelberg,
November 2017. doi:10.1007/978-3-319-70500-2_21.

3. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure multiparty compu-
tations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 443–458. IEEE Computer Society
Press, May 2014. doi:10.1109/SP.2014.35.

4. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 913–930. ACM Press, October 2018. doi:10.1145/
3243734.3243848.

5. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A
composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 324–356. Springer, Heidelberg, August 2017. doi:10.1007/978-3-319-63688-7_11.

6. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-message witness
indistinguishability and secure computation in the plain model from new assumptions. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer,
Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_10.

7. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit Sahai. Round optimal
concurrent MPC via strong simulation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 743–775. Springer, Heidelberg, November 2017. doi:10.1007/978-3-319-70500-2_25.

8. Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent composition
via super-polynomial simulation. In 46th FOCS, pages 543–552. IEEE Computer Society Press, October 2005.
doi:10.1109/SFCS.2005.43.

9. Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge arguments based on any
one-way function. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 280–305. Springer,
Heidelberg, May 1997. doi:10.1007/3-540-69053-0_20.

35

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-70500-2_21
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1109/SFCS.2005.43
https://doi.org/10.1007/3-540-69053-0_20


10. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474, 2014. doi:10.1109/SP.2014.36.

11. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 421–439. Springer, Heidelberg, August
2014. doi:10.1007/978-3-662-44381-1_24.

12. Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm for keyless hash
functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 671–684.
ACM Press, June 2018. doi:10.1145/3188745.3188870.

13. Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box barrier. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091–1102. ACM Press, June 2019. doi:

10.1145/3313276.3316382.
14. Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In Konstantin Makarychev,

Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, 52nd ACM STOC, pages
269–279. ACM Press, June 2020. doi:10.1145/3357713.3384324.

15. G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer Conference,
48:313–317, 1979.

16. Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain model
from standard assumptions. In 51st FOCS, pages 541–550. IEEE Computer Society Press, October 2010. doi:

10.1109/FOCS.2010.86.
17. Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding secure computation on blockchains. In Yuval

Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 351–380. Springer,
Heidelberg, May 2019. doi:10.1007/978-3-030-17656-3_13.

18. Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers. Fairness in an unfair
world: Fair multiparty computation from public bulletin boards. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 719–728. ACM Press, October / November 2017.
doi:10.1145/3133956.3134092.

19. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and applications to
provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors, Financial Cryptography and Data
Security, pages 23–41, Cham, 2019. Springer International Publishing.

20. Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293. IEEE Computer
Society Press, November 2000. doi:10.1109/SFCS.2000.892117.

21. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge proofs under general assumptions.
SIAM J. Comput., 29:1–28, 1999.

22. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM STOC, pages
416–426. ACM Press, May 1990. doi:10.1145/100216.100272.

23. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–
310. Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_10.

24. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
291–323. Springer, Heidelberg, August 2017. doi:10.1007/978-3-319-63688-7_10.

25. Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the blockchain, with
applications to consensus and fast PKI setup. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II,
volume 10770 of LNCS, pages 465–495. Springer, Heidelberg, March 2018. doi:10.1007/978-3-319-76581-5_16.

26. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private information
retrieval schemes. In 30th ACM STOC, pages 151–160. ACM Press, May 1998. doi:10.1145/276698.276723.

27. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM J. Comput.,
25(1):169–192, February 1996. doi:10.1137/S0097539791220688.

28. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-knowledge, and
a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 171–185. Springer, Heidelberg, August 1987. doi:10.1007/3-540-47721-7_11.

29. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

30. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using blockchains. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 529–561. Springer, Heidelberg,
November 2017. doi:10.1007/978-3-319-70500-2_18.

36

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1145/3313276.3316382
https://doi.org/10.1145/3313276.3316382
https://doi.org/10.1145/3357713.3384324
https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1007/978-3-030-17656-3_13
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1145/100216.100272
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1145/276698.276723
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-319-70500-2_18


31. Vipul Goyal and Silas Richelson. Non-malleable commitments using goldreich-levin list decoding. Cryptology
ePrint Archive, Report 2019/1195, 2019. https://eprint.iacr.org/2019/1195.

32. Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two rounds. In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 111–129. Springer, Heidelberg, August 2007.
doi:10.1007/978-3-540-74143-5_7.

33. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer, Heidelberg, August 2004. doi:10.1007/
978-3-540-28628-8_21.

34. Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols. Cryptology ePrint
Archive, Report 2015/1019, 2015. https://eprint.iacr.org/2015/1019.

35. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a global
transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_25.

36. Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way function. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 705–714. ACM Press, June 2011. doi:10.1145/

1993636.1993730.
37. Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-lock encryption. 86(11), 2018.

doi:10.1007/s10623-018-0461-x.
38. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, page 21260,

2008.
39. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st ACM STOC, pages 245–254.

ACM Press, May 1999. doi:10.1145/301250.301312.
40. R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless model. In DISC, 2017.
41. Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In Eli Biham,

editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 160–176. Springer, Heidelberg, May 2003. doi:10.

1007/3-540-39200-9_10.
42. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. In

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 643–673. Springer, Heidelberg, April / May 2017. doi:10.1007/978-3-319-56614-6_22.

43. Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. In Elad Michael Schiller and Alexander A. Schwarz-
mann, editors, 36th ACM PODC, pages 315–324. ACM, July 2017. doi:10.1145/3087801.3087809.

44. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer, Heidelberg, December 2017. doi:
10.1007/978-3-319-70697-9_14.

45. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical report, USA,
1996.

46. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612–
613, November 1979.

47. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2014.

A Standard Definitions

The following definitions are all in the plain model.

A.1 Argument Systems

Witness indistinguishability was introduced by Feige and Shamir [22] as a natural weakening of
zero-knowledge. Informally, an argument system is witness indistinguishable if no adversarial verifier
can tell the difference between the prover using a witness w1 and using another witness w2.

Definition 14 (Witness Indistinguishability). A proof/argument system (P, V ) for NP lan-
guage L with relation RL is witness indistinguishable if for all PPT adversaries V ∗, all auxiliary
inputs z, all statements x ∈ L, and all witnesses w0, w1 such that RL(x,w0) = RL(x,w1) = 1, the
following holds:

{viewV ∗(P (1λ, x, w0), V
∗
T (1λ, x, z))} ≈c {viewV ∗(P (1λ, x, w0), V

∗
T (1λ, x))}

37

https://eprint.iacr.org/2019/1195
https://doi.org/10.1007/978-3-540-74143-5_7
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-540-28628-8_21
https://eprint.iacr.org/2015/1019
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1145/1993636.1993730
https://doi.org/10.1145/1993636.1993730
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1145/301250.301312
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-70697-9_14


An argument of knowledge intuitively allows a prover to show they “know” a witness for the
statement being proved. This is formalized by the existence of an extractor which extracts the
witness from the prover. We recall the definition described by [36].

Definition 15 (Arguments of Knowledge). A proof/argument system (P, V ) for NP language
L with relation RL is a proof/argument of knowledge if there exists a PPT extractor Ext such that
for all adversarial provers P ∗, all auxiliary inputs z, and all statements x ∈ {0, 1}λ, the following
holds:

Pr[〈P ∗(z), V 〉(1λ, x) = 1] ≤ Pr[ExtP
∗(1λ,x,z)(x) ∈ RL(x)] + negl(λ)

A.2 Conditional Disclosure Of Secrets

A Conditional Disclosure of Secrets protocol [26] allows a sender S to reveal a secret s to a receiver
R conditioned on R having a witness w for a shared NP statement x. If x is not in the language, then
R should receive no information about s. Furthermore, in any case S should receive no information
about R’s input to the protocol.

Definition 16 (Conditional Disclosure Of Secrets). Conditional Disclosure of Secrets protocol
is associated with an NP language L with relation RL. Both S and R hold the same instance x.
Additionally, S holds a secret s and R holds a string w ∈ {0, 1}∗. At the end of the protocol, R
outputs s′, which we denote by s′ ← 〈S(1λ, x, s), R(1λ, x, w)〉. We require the following properties:

Correctness: If (x,w) ∈ RL, then it holds with probability 1 that s← 〈S(1λ, x, s), R(1λ, x, w)〉.
Soundness: If x /∈ L, then for any adversarial receiver R∗, any s0, s1 ∈ {0, 1}λ, and for any

auxiliary input z, it holds that

{viewR∗(S(1λ, x, s0), R
∗(1λ, x, w, z))} ≈c {viewR∗(S(1λ, x, s1), R

∗(1λ, x, w, z))}

Receiver Privacy: For any adversarial sender S∗, any strings w0, w1, and for any auxiliary input
z, it holds that

{viewS∗(S
∗(1λ, x, z), R(1λ, x, w0))} ≈c {viewS∗(S

∗(1λ, x, z), R(1λ, x, w1))}

For a two-round CDS protocol, the receiver sends the first message cds1 ← CDS(1λ, x, w) and
the sender sends the second message cds2 ← CDS(1λ, x, cds1, s).

A.3 Public Key Integrated Encryption-Signature Scheme

A public key integrated encryption-signature scheme works as both an IND-CPA secure public key
encryption scheme and an unforgeable public key signature scheme. We recall the definition from
[30].

Definition 17 (Public Key Integrated Encryption-Signature Scheme). A public key inte-
grated encryption-signature scheme for encryption message space M1 and signing message space
M2 consists of the following polynomial time algorithms:

Setup(1λ): The setup algorithm takes as input the security parameter λ. An outputs a master public-
secret key pair (mpk,msk).

38



Enc(mpk,m): The encryption algorithm takes as input master public key mpk and a message m,
and outputs a ciphertext c.

Dec(msk, c): The decryption algorithm takes as input master secret key msk and a ciphertext c, and
outputs a message m.

Sign(msk,m): The signing algorithm takes as input master secret key msk and a message m, and
outputs a signature σ.

Vf(mpk,m, σ): The verification algorithm takes as input master public key mpk, a message m, and
a signature σ, and outputs a bit.

It must also satisfy the following properties:

Correctness: For all λ,m1 ∈M1,m2 ∈M2 and (mpk,msk)← Setup(1λ) we have that Dec(msk,Enc(mpk,m1)) =
m1 and Vf(mpk,m2,Sign(msk,m2) = 1).

Integrated Security: For every PPT adversary A = (A0,A1,A2), for all λ ∈ N the following
holds:∣∣∣∣∣Pr

[
A1(c, st) = b

∣∣ (mpk,msk)←$ Setup(1λ); b←$ {0, 1}
(m0,m1, st)← ASign(msk,·)

0 (mpk); c← Enc(mpk,mb)

]
− 1

2

∣∣∣∣∣ ≤ negl(λ)

and

Pr

[
Vf(msk,m∗, σ∗) = 1

∣∣ (mpk,msk)←$ Setup(1λ)

(m∗, σ∗)← ASign(msk,·)
2 (mpk)

]
≤ negl(λ)

where A2 must never have queries m∗ to the signing oracle.

A.4 Threshold Secret Sharing

Threshold secret sharing [15,46] allows the secret to be split into a number of shares such that it
can be reconstructed using a number of shares at least as big as the threshold, but any collection
containing less shares than the threshold reveals nothing about the secret.

Definition 18 (Threshold Secret Sharing). Threshold secret sharing scheme consists of a pair
of probabilistic algorithms (Share,Recon) with the following syntax.

Share(s, n, k): On input a secret s, an integer s, and a threshold k, the sharing algorithm outputs
n shares (shi)i=1,...,n.

Recon(I, {shi}i∈I): On input a set I and the corresponding shares, the reconstruction algorithm
outputs the secret s′ if |I| ≥ k and ⊥ otherwise.

We require the following properties:

Correctness: For all secrets s and sets I ⊆ [n] such that |I| ≥ k, it holds that Recon(I, {shi}i∈I |(shi)i=1,...,n ←
Share(s, n, k)) = s.

Secrecy: For all secrets s0, s1 and sets I ⊆ [n] such that |I| < k, it holds that

{{shi}i∈I : (shi)i=1,...,n ← Share(s0, n, k)} ≈s {{shi}i∈I : (shi)i=1,...,n ← Share(s1, n, k)}

A.5 Semi-Malicious Secure Two-Party Computation

A semi-malicious adversary follows the protocol, but may choose their input and randomness arbi-
trarily at any time during the execution. After each message, they output the input and randomness
which result in that message to a side tape.

Semi-malicious secure two-party computation is defined using the real/ideal world paradigm.

39



Ideal World The ideal world contains P1, P2, and a trusted third party. At most one of P1 and
P2 are controlled by the adversary. The ideal world execution proceeds as follows:

1. Input Distribution: P1 and P2 receive their respective inputs x1 and x2 from the environment.
2. Inputs to Trusted Third Party: P1 and P2 send their inputs to the trusted third party. An

honest party always sends the input they received from the environment. The corrupted party
may send any input of their choice.

3. Trusted Third Party Answers P2: The trusted third party sends f(x′1, x
′
2) to P2, where x′1

and x′2 are the inputs it received in step 2.
4. Output: If P2 is honest, it outputs f(x′1, x

′
2) as received from the trusted third party. If P1 is

honest, it outputs ⊥. The adversarial party always outputs its entire view.

We define Idealf,A(x1, x2) to be the joint distribution over the outputs of the adversary A and
the honest party according to the above ideal execution.

Real World Let Π be a two-party protocol computing f . In the real process, both parties execute
the protocol Π. As in the ideal process, they receive inputs from the environment. At most one
of P1 and P2 are controlled by the adversary. After each message from the adversary, it outputs
the input and randomness which result in that message to a side tape. The honest party outputs
according to the Π specification, while the adversary outputs its entire view.

We define RealΠ,A(x1, x2) to be the joint distribution over the outputs of the adversary A and
the honest party according to the above real execution.

Definition 19 (Semi-Malicious Secure Two-Party Computation). Let Π be a two party
protocol computing the two party functionality f . We say Π is a semi-malicious two-party compu-
tation protocol for f if there is a stateful PPT algorithm Sim such that for all semi-malicious A,
all auxiliary inputs z, and all inputs x1, x2 the following holds:

{RealΠ,A(x1, x2)} ≈c {Idealf,Sim(x1, x2)}

40


	Time-Traveling Simulators Using Blockchains and Their Applications

