
ABE Squared: Accurately Benchmarking
Efficiency of Attribute-Based Encryption

Antonio de la Piedra1, Marloes Venema2 and Greg Alpár2,3

1 Kudelski Security Research Team, Cheseaux-sur-Lausanne, Switzerland
2 Radboud University, Nijmegen, the Netherlands

3 Open University of the Netherlands, Heerlen, the Netherlands
antonio.delapiedra@kudelskisecurity.com,{m.venema,g.alpar}@cs.ru.nl

Abstract. Measuring efficiency is difficult. In the last decades, several works have
contributed in the quest to successfully determine and compare the efficiency of
pairing-based attribute-based encryption (ABE) schemes. However, many of these
works are limited: they use little to no optimizations, or use underlying pairing-
friendly elliptic curves that do not provide sufficient security anymore. Hence, using
these works to benchmark ABE schemes does not yield accurate results. Furthermore,
most ABE design papers focus on the efficiency of one important aspect. For instance,
a new scheme may aim to have a fast decryption algorithm. Upon realizing this
goal, the designer compares the new scheme with existing ones, demonstrating its
dominance in this particular aspect. Although this approach is intuitive and might
seem fair, the way in which this comparison is done might be biased. For instance,
the schemes that are compared with the new scheme may be optimized with respect
to another aspect, and appear in the comparison consequently inferior.
In this work, we present a framework for accurately benchmarking efficiency of
ABE: ABE Squared. In particular, we focus on uncovering the multiple layers of
optimization that are relevant to the implementation of ABE schemes. Moreover, we
focus on making any comparison fairer by considering the influence of the potential
design goals on any optimizations. On the lowest layer, we consider the available
optimized arithmetic provided by state-of-the-art cryptographic libraries. On the
higher layers, we consider the choice of elliptic curve, the order of the computations,
and importantly, the instantiation of the scheme on the chosen curves. Additionally,
we show that especially the higher-level optimizations are dependent on the goal of the
designer, e.g. optimization of the decryption algorithm. To compare schemes more
transparently, we develop this framework, in which ABE schemes can be justifiably
optimized and compared by taking into account the possible goals of a designer. To
meet these goals, we also introduce manual, heuristic type-conversion techniques where
existing techniques fall short. Finally, to illustrate the effectiveness of ABE Squared,
we implement several schemes and provide all relevant benchmarks. These show that
the design goal influences the optimization approaches, which in turn influence the
overall efficiency of the implementations. Importantly, these demonstrate that the
schemes also compare differently than existing works previously suggested.
Keywords: attribute-based encryption · implementation · benchmarking · ciphertext-
policy attribute-based encryption

1 Introduction
Since attribute-based encryption (ABE) was introduced in 2005 by Sahai and Waters
[SW05], much progress has been made in the development of pairing-based ABE schemes.
As is common in the field of cryptography, whenever a new scheme is presented, its efficiency

mailto:antonio.delapiedra@kudelskisecurity.com, {m.venema,g.alpar}@cs.ru.nl

2 ABE Squared: Accurately Benchmarking Efficiency of ABE

is compared to that of other state-of-the-art schemes. For ABE, the Charm framework
[AGM+13] is used in many cases [RW13, RW15, AC17a, ABGW17], which simplifies the
prototyping of new pairing-based schemes and provides benchmarking tools. However,
because Charm mainly aims at usability in this endeavor, it uses several abstraction
layers between the schemes and the necessary arithmetic. As a result, not all available
optimizations can be used in benchmarking efforts, even though these might be significant
in any comparisons. Furthermore, by default, the Charm framework builds on the PBC
library [Lyn13], which only supports outdated elliptic curves that have been proven not
to provide 128 bits of security [KB16, BD19]. Consequently, many implementations and
efficiency comparisons use these outdated curves. By extension, those implementations do
not provide realistic estimates of computational costs in practice. When implemented for
practice, curves that currently provide 128 bits of security should be used. Because these
might provide different trade-offs in efficiency, the implementations may incur different
computational costs than the curves used in the old benchmarks [Ara17, CDS20].

Oftentimes, works that do not use Charm in their efficiency analyses have similar
issues. For instance, they may not use all, if any, optimized arithmetic or other lower-
level optimization techniques [Zeu20, AHM+16, TKN20, PRMV21]. Such techniques
allow for faster computations of exponentiations, such as fixed-base exponentiations or
multiple-base exponentiations [Sco11, Möl01]. These are often used when elliptic-curve
schemes are deployed in practice, and provide a significant computational advantage over
regular variable-base exponentiations. Other implementations may be targeted for specific
platforms such as certain embedded devices [SR13, WZSI14, MTP+21]. Hence, they are
difficult to use in future efficiency comparisons without implementing the schemes for
those specific devices. On the other hand, software implementations that do optimize the
arithmetic used in the schemes [ZPM+15] have implemented all underlying arithmetic for
some specific elliptic curve, and are therefore difficult to adapt to other, more up-to-date,
curves. This is problematic, since this particular curve, e.g., the BN254 curve [BN05], may
turn out to provide e.g., only 100 bits of security [SKSW20].

Another common denominator of these implementations is the absence of a clearly-
defined design rationale when the schemes are instantiated in pairing-friendly elliptic-curve
groups. For instance, choosing a suitable pairing-friendly group providing 128 bits of
security [Gui20b] is important for the overall efficiency [Sco11, CDS20]. However, not every
curve may be a good choice for every scheme. Moreover, at the protocol level, schemes are
often designed in the symmetric, type-I setting [Sco11]. That means that the used pairing
operation ê : G × H → GT—which maps two source groups G and H to a target group
GT—is assumed to be symmetric, i.e., the two source groups are isomorphic, and thus,
G = H. On the other hand, in practice, it is better to use asymmetric, type-III pairings
due to their efficiency [GPS08] and security [Gal14], such that no efficiently computable
isomorphism exists between the two source groups, i.e., e : G × H → GT with G 6= H.
While such schemes can be converted from the type-I to the type-III setting [RCS12],
existing works that facilitate this [AGH13, AGOT14, AGH15, AHO16] are often not used
in the implementation of ABE schemes.

Nevertheless, such a design rationale determines the groups in which the computations
are performed during key generation, encryption and decryption, and is therefore crucial
when analyzing the efficiency of the scheme. This rationale heavily influences the choice
of pairing-friendly groups and the type conversion, and by extension, the efficiency of
the scheme. For instance, operations in G are generally more efficient than those in H
[Ara17, AGM+, CDS20]. Consequently, if a designer places all ciphertext components
in G, then the encryption efficiency is optimized at the expense of the key generation
efficiency. Another designer might want to optimize the key generation efficiency, and
therefore places all key components in G, and the ciphertext components in H. Because
not all implementations take into account and specify these considerations, they cannot be

A. de la Piedra, M. Venema G. Alpár 3

effectively and meaningfully compared [VAH21]. In fact, a somewhat unethical cryptogra-
pher who, for instance, wants to promote their new scheme’s fast encryption algorithm
could place all ciphertext components of their own scheme in G, while they place the
compared scheme’s ciphertext components in H. As a result, their own scheme might
outperform the other scheme, even though the other scheme would have outperformed
the new scheme if its ciphertext components had also been placed in G. In summary, for
various efficiency goals, a different distribution of the key and ciphertext components over
the two source groups may be optimal.

In this work, we aim to resolve the aforementioned issues. In particular, we provide a
framework for benchmarking and comparing efficiency of ABE schemes that takes into
account important features such as optimized arithmetic and conversion techniques. Along
the way, we introduce novel conversion techniques to obtain e.g., a type conversion with
an optimized decryption algorithm. We also show how this framework can be applied to
existing schemes by implementing and benchmarking them. Lastly, we illustrate how these
benchmarks can be compared fairly, by comparing the variants that are optimized in the
same way, e.g., the variants with an optimized decryption algorithm.

1.1 Our contribution
We set up ABE Squared, a general framework for accurately benchmarking efficiency
of ABE. This framework describes optimization approaches in the implementation of
ABE schemes based on various design goals, by unifying multiple established areas in
optimization. By choosing one design goal, multiple schemes can be optimized in a uniform
way, and thus be fairly compared. Concretely,

• we identify four optimization layers that are important in the implementation of the
schemes:

– the used arithmetic and group operations;
– the choice of pairing-friendly curve;
– the order of computations;
– the type-conversion techniques;

• we formulate various optimization approaches for several clearly defined design goals:

– optimized key generation;
– optimized encryption;
– optimized decryption;
– balanced (in any combination of the algorithms, e.g., balanced key genera-

tion/encryption, balanced encryption/decryption);

• as part of the optimization approaches, we introduce new heuristic, manual conversion
techniques from the type-I to the type-III setting, which takes into account the other
optimization layers. This is especially important for optimizing the decryption
algorithm, for which the existing frameworks fall short.

To illustrate the effectiveness of our framework, we provide the implementations of several
important ciphertext-policy attribute-based encryption (CP-ABE) [BSW07] schemes:

• Wat11-I [Wat11];

• Wat11-IV [Wat08]—which is Wat11-I using a full-domain hash;

• RW13 [RW13]—the “unbounded” version of Wat11-I;

• AC17 [AC17b]—the more efficient version of Wat11-I (which can also be employed
with a full-domain hash).

4 ABE Squared: Accurately Benchmarking Efficiency of ABE

1.2 Background
We provide further background information and motivate our choices and some of the
features of the new framework.

Pairing-based ABE. Currently, pairing-based ABE is the most established type of ABE.
In addition, ABE schemes based on the hardness of the learning with errors problem
[Boy13]—which is believed to be hard in the post-quantum setting—may also be efficient
enough for practice [DDP+18]. However, the most expressive and secure lattice-based
scheme was only recently introduced [ABN+21, DKW21], and it is considerably less
expressive and less secure than the most expressive and most secure pairing-based schemes
[LL20]. Because of its maturity, we focus only on pairing-based ABE in this work.

Ciphertext-policy ABE. In ABE, the key pairs are associated with attributes. Specifically,
in ciphertext-policy ABE (CP-ABE) [BSW07], the secret keys are associated with a set of
attributes. Subsequently, the messages are encrypted under some access policy defined
over the attributes. The resulting ciphertext can be decrypted by some key, if the attribute
set associated with some key satisfies this policy. Conversely, in key-policy ABE (KP-
ABE) [GPSW06a], the keys are associated with policies and the ciphertexts with attribute
sets. Since CP-ABE can implement a fine-grained (attribute-based) data access control
[HFK+19] mechanism on a cryptographic level [ETS18, MJ18] and is thus of much practical
interest, we focus on and implement several CP-ABE schemes. Because the European
Telecommunications Standards Institute has put efforts in standardizing CP-ABE for e.g.,
cloud and mobile services, we focus on the implementation of ABE on high-performance
devices such as smartphones and computers.

RELIC. Our framework uses the RELIC toolkit [AGM+], which is a cryptographic library
that can be used for building elliptic-curve and pairing-based cryptographic schemes. In
particular, it implements pairing-friendly elliptic curves that provide at least 128 bits
of security, such as BLS12-381 and BLS12-446 [BLS02, Bow, BD19, WB19]. It provides
high-speed implementations of frequently used arithmetic and group operations. In general,
using a library for the lowest level of optimizations, i.e., arithmetic and groups operations,
allows us to easily instantiate the schemes with new—possibly more secure or more
efficient—curves, in the case that it is necessary to do so. We chose RELIC because it is
actively maintained, and compared to other libraries such as MIRACL [Sco03], it supports
more pairing-friendly curves providing 128 bits of security. This allows us to compare the
efficiency of the implemented schemes on multiple curves with the same security level. In
this way, we can investigate which trade-offs the various curves incur.

BLS12-381. A specific elliptic curve of interest supported by RELIC is the BLS12-381
curve [Bow, WB19], which is an instantiation of the curves designed by Barreto, Lynn and
Scott (BLS) [BLS02]. In the last few years, BLS12-381 has established itself as a popular
curve. For example, it is used in the Algorand blockchain [GHM+17, BKLS02] and by the
privacy-oriented Zcash blockchain in the implementation of zk-SNARKS [BCCT12, ZCa21].

Other pairing-friendly curves. We show that the chosen pairing-friendly curve influences
the overall efficiency of the scheme, and is thus an important aspect in the optimization.
To illustrate this, we benchmark the schemes on various curves, at the same security levels
(see Section 3.2 for a selection of the curves). As part of the optimization approaches, we
pick the best curve, given the chosen design goal.

A. de la Piedra, M. Venema G. Alpár 5

OpenABE. In addition to Charm, we also compare our implementations with the Open-
ABE [Zeu20] implementation of the scheme by Waters [Wat11, Wat08]. It is a publicly
available software implementation of ABE that is actively maintained, and that is specifi-
cally designed for practical application rather than for benchmarking efforts. Furthermore,
OpenABE also relies on RELIC for the curve arithmetic. However, it is specifically
configured to only support the BN254 curve.

The implemented schemes. We implement several variants of three schemes: Wat11
[Wat11, Wat08], RW13 [RW13] and AC17 [AC17b]. Specifically, we consider two versions
of Wat11 and AC17: their small-universe and large-universe variants. In small-universe
schemes, the number of attributes that can be used in the system is bounded, while
in large-universe schemes, this number is unbounded. We have chosen these schemes,
in part, due to their popularity in follow-up work (see Section 4.1). By benchmarking
and comparing these constructions, we obtain a better understanding of their efficiency.
Compared to Charm, their efficiency also compares differently, which illustrates that our
framework truly leads to significant improvements in the accuracy of the benchmarks.

Our type-conversion techniques. As part of our framework, we introduce novel heuristic
and manual techniques to convert the schemes from the type-I to the type-III setting.
Although type conversion has been extensively studied, culminating in various works that
even automate this effort [AGH13, AGOT14, AGH15, AHO16], these do not sufficiently
optimize the schemes for all of the design goals that we consider in our optimization
approaches. In particular, some of these conversion techniques focus, in terms of efficiency,
mainly on the sizes of the parameters [AGOT14, AGH15, AHO16]. These are not sufficient
in optimizing the type-converted scheme for e.g., the optimized decryption approach. In
contrast, [AGH13] also allows for the optimization of the computational costs, but only
takes into account the number of group operations, e.g., exponentiations, and not the
computational costs of the various group operations. This does not allow us to distinguish
between the different group operations within the same group, even though they may incur
different computational costs. Furthermore, [AGH13] does not explicitly allow the choice
of pairing-friendly curve or the order of the computations to be taken into account. Hence,
we develop techniques to consider these different computational costs, by also measuring
these costs for various suitable curves, and by determining the most efficient order of
computations. In this way, we can minimize the computational costs of the algorithm(s)
more accurately, based on the chosen design goal and associated optimization approach.

Code. Our implementations of the schemes are available in the public domain, and can
be found at https://github.com/abecryptools/abe_squared.

Positioning our framework. Our framework aims to bridge a gap in the benchmarking
of ABE schemes, as described above. Notable software implementations that are built
on libraries such as RELIC and that provide benchmarking utilities—and that are still
maintained—are Charm and OpenABE. However, their goals are arguably different from
ours (see Figure 1). Charm and OpenABE are both focused on usability, albeit in different
ways. Charm aims to be usable in the prototyping and benchmarking of schemes, so
that cryptographers can implement new schemes without having to know implementation
details. OpenABE aims to be usable for practical applications, providing ready-to-use
ABE implementations for practitioners. As a result, neither of their implementations uses
all available optimized arithmetic. In contrast, our framework, ABE Squared, focuses on
optimization rather than usability, such that a more accurate view of the efficiency of ABE
schemes can be obtained. Although the implementations can be used by any cryptographer
to benchmark and compare the schemes, they are not immediately suitable for practical

https://github.com/abecryptools/abe_squared

6 ABE Squared: Accurately Benchmarking Efficiency of ABE

Benchmarking

Optimized Usability

OpenABE

CharmABE Squared

Figure 1: Rough overview of the position of our framework compared to Charm and
OpenABE, with respect to the goals: benchmarking, optimization and usability.

applications like OpenABE. Furthermore, our implementations do not aim to provide a
platform to readily implement new schemes, like Charm does, since it requires a significant
engineering expertise and some familiarity with RELIC.

2 Preliminaries

2.1 Notation
We use the following notations. If an element is chosen uniformly at random from some
finite set S, then we denote this as x ∈R S. We denote [a, b] = {a, a+ 1, ..., b− 1, b}, and
[b] = [1, b]. We use boldfaced variables A and v for matrices and vectors, respectively.
We use a‖b to indicate that two strings a and b are concatenated.

2.2 Access structures
In CP-ABE, the ciphertexts are associated with access policies, e.g., Boolean formulas
consisting of the operators “AND” and “OR”. To ensure that only authorized users can
decrypt, the policies are converted into some suitable access structures.

2.2.1 Linear secret sharing schemes

For the definitions of the schemes, we represent policies A by linear secret sharing scheme
(LSSS) matrices [GPSW06b], i.e., A = (A, ρ) is such that A ∈ Zn1×n2

p is a matrix, and ρ
maps its rows to attributes. Then, for some random vector v = (s, v2, ..., vn2), the i-th
share of secret s generated by this matrix is λi = Aivᵀ, where Ai denotes the i-th row of A.
Let S be an attribute set, and define Υ = {i ∈ [n1] | ρ(i) ∈ S}. If S satisfies A, then there
exist εi ∈ Zp for all i ∈ Υ such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and thus

∑
i∈Υ εiλi = s.

2.2.2 Implementing access structures

In our implementations, we represent the access structures as access trees [GPSW06a]. An
access policy represented as a string is converted into a tree. The leaves correspond to the
attributes and the nodes to OR, AND or (t, n)-threshold gates. In Appendix A, we recap
the algorithms to convert policies to access trees and LSSS matrices, and an algorithm
to convert policies to more efficient LSSS matrices [LW10], which, as we show in Section
4.6.3, are more efficient than the access trees used by OpenABE.

A. de la Piedra, M. Venema G. Alpár 7

2.3 Ciphertext-policy ABE
Definition 1 (Ciphertext-policy ABE [BSW07]). A ciphertext-policy attribute-based
encryption (CP-ABE) scheme with some universe of attributes U consists of four algorithms:

• Setup(λ) → (MPK,MSK): The setup takes as input a security parameter λ, it
outputs the master public-secret key pair (MPK,MSK).

• KeyGen(S,MSK)→ SKS : The key generation takes as input a set of attributes S
and the master secret key MSK, and outputs a secret key SKS .

• Encrypt(M,A,MPK) → CTA: The encryption takes as input a message M , an
access policy A and the master public keys MPK. It outputs a ciphertext CTA.

• Decrypt(CTA,SKS)→M ′: The decryption takes as input the ciphertext CTA with
an access policy A, and a secret key SKS for a set of attributes S. It succeeds and
outputs the message M ′ if S satisfies A. Otherwise, it aborts.

A scheme is called correct if M = M ′.

Large-universe ABE. The universe of attributes U can be small or large [SW05]. If in
the Setup, a public key is generated for each attribute, the universe is small. Conversely, if
the size of the master public key does not depend on the size of the universe, the universe
is large. In some large-universe schemes, the public key associated with some attribute is
generated with e.g., a full-domain hash (FDH) [PTMW10, GPSW06a].

Multi-use ABE. The policies used during encryption may be restricted in the number
of times that one attribute may occur. If an attribute may only occur once, we call the
scheme one use. If it allows unlimited occurrences of one attribute, we call it multi use.

2.4 Pairings (or bilinear maps)
We define a pairing to be an efficiently computable map e on three groups G,H and GT
of prime order p, i.e., e : G × H → GT , with generators g ∈ G, h ∈ H such that for all
a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and for ga 6= 1G, h

b 6= 1H, it
holds that e(ga, hb) 6= 1GT , where 1G′ denotes the identity of the associated group G′ (non-
degeneracy). We refer to G and H as the two source groups, and GT as the target group.
If an isomorphism exists between G and H, i.e., G = H, we call the pairing symmetric or of
type I. If G 6= H, we call the pairing asymmetric. Specifically, if an efficiently computable
homomorphism exists from H to G (but not from G to H), we call the pairing of type II,
and if there exists no such efficiently computable homomorphism, we call the pairing of
type III. With respect to the efficiency and security, type-III pairing groups are preferred
[GPS08, Gal14]. However, most ABE schemes are designed in the type-I setting; hence,
they need to be converted to the type-III setting [AGOT14, AGH15, AHO16]. We use ê
for pairings in general, and e for type-III pairings.

2.5 Pairing-based ABE
Most ABE schemes follow the same structure, and can be captured in the pair encodings
framework [Att14, Att16, AC17b], which considers only “what happens in the exponent”
of the keys and ciphertexts, and clearly indicates in which group each component resides.
Schemes that fit in this framework have a master public key, secret keys and ciphertexts
that exist almost entirely in the two source groups. The only exception is one target group
element in the master public key and ciphertexts, which is used to mask the message,
e.g., M · e(g, h)αs. To decrypt, e(g, h)αs must be recovered by pairing and possibly

8 ABE Squared: Accurately Benchmarking Efficiency of ABE

exponentiating the appropriate ciphertext and secret key components. Note that, because
the secret keys and ciphertexts consist mostly of components in the two source groups, no
pairing operations are required during key generation and encryption.

We also use a shorter notation derived from this framework. For example, the master
public key component Batt = gbatt is denoted as [batt]G. Similarly, the secret key component
K = hα−rb is denoted as [α − rb]H and the ciphertext component C = M · e(g, h)αs is
denoted as [m + αs]GT , where we assume that M = e(g, h)m for some m ∈ Zp. We
symbolize the pairing operation as expected, e.g., e([s]G, [r]H) = e(g, h)sr, and indicate an
exponentiation with integer r as [b]rG, which then evaluates to [rb]G. As a rule, we use
variables involving the letter b for the master public key, variables involving the letter r
for the secret keys and variables involving the letter s for the ciphertext.

3 Our framework: ABE Squared
We introduce our framework, ABE Squared, in this section. Concretely, we identify several
layers of optimization: the arithmetic and group operations, the pairing-friendly groups
that are used, the order of the computations and the type conversion (see Figure 2).
The goal of our framework is to optimize the theoretical description of the scheme. As
such, we want to obtain a description of the scheme that directly yields the most efficient
implementation. In this process, the design goal associated with a practical application is
crucial: some applications may require an optimized encryption while others require an
optimized decryption algorithm. In order to achieve this goal, these four layers need to be
optimized. We do this by devising optimization approaches based on these design goals.

These optimization approaches consist of several steps. In particular, we first analyze
the efficiency of the arithmetic and group operations used in the schemes by benchmarking
their efficiency in the pairing-friendly groups that can be used. Subsequently, we show how
the order of computations can be optimized, given the efficiency of the available algorithms
for arithmetic in the chosen pairing-friendly groups. (Note, however, that the optimal order
may depend on the choice of pairing-friendly groups and the distribution of the key and
ciphertext components, i.e., in which groups these live. Because type conversion—which
determines this distribution—is the next step, we may need to adjust the order at a later
stage in the optimization approach.) Finally, we show how the schemes can be instantiated
in these groups to obtain the best possible efficiency, given the design goal. To this end,
we devise new manual and heuristic techniques to convert the scheme from the type-I
to the type-III setting. Possibly, the choices that are made during this type conversion
might require that we circle back to the choice of pairing-friendly groups or the order of
computations. For instance, it may not be clear what the best choice of pairing-friendly
group is without simply benchmarking the schemes for all of them.

3.1 Optimized arithmetic and group operations
We analyze the efficiency of the arithmetic that may be required to perform the algorithms
of a scheme. Many efficient algorithms exist to perform arithmetic in groups G, H and
GT , including optimized algorithms for certain combinations of arithmetic. Furthermore,
depending on the fixed use of certain variables, the use of precomputation may significantly
speed up the computations.

• Variable-base exponentiation (VBE): an exponentiation of the form gx, in
which the variable base g varies in each execution of the algorithm;

• Fixed-base exponentiation (FBE): an exponentiation of the form gx, in which
the base g is fixed after the setup and is the same in each execution of the algorithm;

A. de la Piedra, M. Venema G. Alpár 9

Type conversion

Order of computations

Pairing-friendly groups

Arithmetic and group operations

ABE Squared ABE application

Implementation
of scheme 1

Implementation
of scheme n

. . .

Design goal

Theoretical
description
of scheme 1

Theoretical
description
of scheme n

. . .O
pt
im

iz
at
io
n

ap
pr
oa
ch

Optimized
descriptions

The arrows have the following meaning:
a b = “a influences b”

a b = “a may require adjustment in b”
a b = “a is input to b”/“b is output of a”

Figure 2: Overview of the ABE Squared framework and its relationship with ABE
applications. In particular, the diagram describes the steps needed between the theoretical
descriptions and the implementations of (possibly multiple) ABE schemes. Instead of
moving from a design goal to the implementation of a scheme directly, we first optimize
the theoretical description of the scheme for the chosen design goal.

• Multiple-base exponentiation (MBE): a product of multiple exponentiations
[Möl01], typically of the form

∏
i∈I g

xi
i such that gi are bases and xi are exponents

for each i ∈ I with |I| ≥ 2. Note that RELIC refers to these as simultaneous
exponentiations1 instead, and has two functions for this algorithm: _mul_sim, a
two-base variant and _mul_sim_lot, a multi-base variant;

• Multi-pairing: a product of pairing operations can be executed more efficiently
[GS06]. In general, a pairing computation consists of a Miller loop [Mil04] and a
final exponentiation. In a pairing product, the final exponentiation can be shared,
i.e., it only needs to be performed once. In this way, only the Miller loop needs to
be executed for each additional pairing operation in the product;

• Fixed-argument pairing: a pairing operation can be computed more efficiently if
the first argument is fixed. For instance, [CS10] speeds up the Miller loop by 37%.
RELIC does not support fixed-argument pairings, however;

• Hashing into the group: a mapping from the set of arbitrary-length strings
{0, 1}∗ to a group. RELIC supports these, including a more optimized variant for
the BLS12-381 curve [WB19].

3.2 Optimal choices of pairing-friendly groups
Another aspect that influences the efficiency of the algorithms is the choice of the pairing-
friendly group [GPS08, Ara17]. In general, many pairing-friendly groups exist that provide

1Actually, RELIC refers to multiple-base exponentiations as simultaneous multiplications, where
‘multiplication’ refers to a scalar multiplication. A scalar multiplication is an additive operation in an
elliptic-curve group analog to an exponentiation in a multiplicative group.

10 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 1: The computational costs of various algorithms on the elliptic curves used in our
comparison, expressed in the number of 103 clock cycles. For each pair of curves with the
same security level, the lowest costs are typeset in bold. These benchmarks were run on
an AMD Ryzen 7 PRO 4750 processor, with power management disabled and throttle to
max. frequency (one single core) at 4.1 GHz. Note that TBE and MBE denote a two-base
exponentation (run with _mul_sim) and multi-base exponentiation with two bases (run
with _mul_sim_lot), respectively, and MP a multi-pairing with two pairings.

Costs of the algorithms in G Costs of the algorithms in H In GT Pairing costs
Curve VBE FBE TBE MBE Hash VBE FBE TBE MBE Hash VBE Pair MP
BN254 91 51 135 160 58 157 112 339 273 167 236 425 585

BLS12-381 184 102 266 319 225 324 247 729 548 548 496 1245 1618
BN382 266 153 382 473 151 487 372 1105 837 480 745 1405 1963

BLS12-446 275 158 433 718 339 491 376 1108 1278 828 734 1836 2399
BN446 400 231 570 481 210 747 577 1714 822 666 1215 2207 3081

128 bits of security [Gui20a], currently the recommended minimum security level for
cryptography [Bar20]. These groups typically consist of elliptic-curve groups, such as the
BLS [BLS02] and BN [BN05] curves. Some of the curves listed in [Gui20a] provide more
than 128 bits of security, and therefore, they will still likely yield sufficient security if
the most novel attacks are slightly improved [KB16, BD19, Gui20a]. In contrast, other
curves provide slightly fewer than 128 bits of security and may not provide sufficient
security if these attacks are improved. RELIC [AGM+] supports three curves with security
levels in the [129, 135]-range, i.e., BN446, BLS12-446 and BLS12-455, and two curves in
the [125, 128]-range, i.e., BLS12-381 and BN382. On the one hand, curves with a higher
security level provide less efficient arithmetic [GPS08]. On the other hand, these curves
provide more than 128 bits of security. This might also be beneficial, because most ABE
schemes decrease a few bits in security as some of the parameters, e.g., the size of the access
policies, grow [Wat11, RW13, AC17b]. If curves with a security level in the [125, 128]-range
are used, the implementations of these schemes provide even fewer than 128 bits of security.
For instance, BLS12-381 currently provides roughly 126 bits of security [GMT20], and
the schemes that we have selected lose an additional 4 bits for the maximum policy sizes
that we will use (and may even lose an additional 7 bits, see Section 4.1.4). Therefore, the
implementations provide 122 bits of security. In contrast, BLS12-446 and BN446 provide
132 bits of security [GS19], and thus, the implementations provide 128 bits of security.

3.3 Benchmarks of the group operations on various curves
To choose a suitable curve, it is important to know how efficiently the group operations
perform. Table 1 lists the performances of various algorithms on the elliptic curves that
we will use in our benchmarks in Section 4. The table shows that, at the same security
level, BLS12 curves outperform the BN curves in almost all algorithms except hashing
and multiple-base exponentiations with large numbers of bases. Therefore, we expect that
for most, if not all, schemes, the BLS12 curves are better choices than the BN curves. The
table also shows that the arithmetic in G is generally faster than the arithmetic in H, which
in turn is faster than the arithmetic in GT . Furthermore, performing an additional pairing
operation—whose costs are slightly lower than the costs incurred by a Miller loop—is more
costly than exponentiating in G and H, while it is less costly than exponentiating in GT .

3.4 Optimizing the order of computations
The order of the computations can also be optimized. The most notable example of an
optimized order of computations is to share a pairing operation when several compo-
nents share an argument on the other side of the pairing [PTMW10]. From this point
forward, we will refer to this kind of product as a shared-argument pairing product. For

A. de la Piedra, M. Venema G. Alpár 11

instance, rather than computing
∏
i∈Υ ê(K,Ci), one can compute ê(K,

∏
i∈Υ Ci), which

only requires one pairing operation and |Υ| multiplications in one of the source groups
instead of one |Υ|-multi-pairing. Similar optimizations can be done by allowing the key
generation authority to generate components such as hratt(b1att+b0)+rb′ by first computing
ratt(b1att + b0) + rb′ in Zp and then exponentiating h with the result, rather than com-
puting this as hratt(b1att+b0)+rb′ = hrattb1atthrattb0hrb

′ . While the former only costs one
exponentiation and three multiplications in Zp, the latter requires a three-base exponenti-
ation, which is generally much less efficient. In optimizing the order of computations, it is
important to know the efficiency of the operations in the various groups. For instance,∏
i∈Υ (ê(K1,i, C1,i) · ê(K2,i, C2,i))εi is often optimized to

∏
i∈Υ ê(K

εi
1,i, C1,i) · ê(Kεi

2,i, C2,i),
because two exponentiations in G are more efficient than one exponentiation in GT . While
this is the case for the curves considered in this work, it might be the case that, for some
curves, it is more efficient to do one exponentiation in GT instead of two in G. Furthermore,
we show in Section 3.6 that the optimal order may depend on the distribution of the key
and ciphertext components over the two source groups (e.g., Remark 3).

3.5 Our optimization approaches for specific design goals

In optimizing the ABE schemes, we consider various approaches based on specific real-world
design goals. In particular, this influences the conversion of the schemes to the type-III
setting, but possibly also the choice of an elliptic curve. For pairing-based schemes in
general, such conversions from the type-I to the type-III setting were previously considered
in [AGH13, AGOT14, AGH15, AHO16], which all automate this effort and which focus
mostly on other predicate encryption primitives such as identity-based encryption [Sha84].
However, these frameworks only optimize the parameter sizes, and not necessarily the
computational costs of the algorithms. While e.g., optimizing the ciphertext size also
results in an optimized efficiency of the encryption algorithm, such approaches might not
necessarily lead to an optimized decryption algorithm. Furthermore, depending on the
application in which ABE is going to be deployed, a practitioner may prefer a more balanced
approach, in which the total costs of e.g., the encryption and decryption algorithms are
optimized rather than either one of them. To this end, we define the following optimization
approaches based on design goals.

• Optimized key generation (OK): optimize the efficiency of the key generation
algorithm;

• Optimized encryption (OE): optimize the efficiency of the encryption algorithm;

• Optimized decryption (OD): optimize the efficiency of the decryption algorithm;

• Balanced key generation/encryption (BKE): optimize the average costs of the
key generation and encryption algorithms;

• Balanced encryption/decryption (BED): optimize the average costs of the
encryption and decryption algorithms.

A practitioner can also devise optimization approaches for other design goals, e.g.,
“balanced key generation/decryption”. In general, a practitioner can specify any goal in
which the average/total costs of any subset of algorithms is minimized. Even though these
may be useful in practice, the conversion techniques used in these approaches are likely
similar to those used in the aforementioned approaches.

12 ABE Squared: Accurately Benchmarking Efficiency of ABE

The importance of computational-efficiency focused approaches. In contrast to most
conversion frameworks [AGOT14, AGH15, AHO16], we do not necessarily describe our
approaches in terms of the sizes of the public keys, secret keys or ciphertexts, but rather in
terms of the computational costs of the algorithms like [AGH13]. However, due to the fact
that the smallest group G also provides the most efficient arithmetic, we estimate that our
optimized encryption and key generation approaches coincide with the optimized ciphertext
and secret key size approaches in [AGH15]. The other three design goals, on the other
hand, do not seem to match with any of the approaches in these conversion frameworks
[AGOT14, AGH15, AHO16], even though these may be of interest to practitioners. For
instance, optimizing either the key generation or encryption algorithm may result in a
heavy performance penalty on the other algorithms, while a balanced approach would
ensure that an algorithm can perform efficiently while only requiring minimal sacrifice
in efficiency on the other algorithms. Furthermore, we show that an optimal key or
ciphertext size does not necessarily imply an optimal decryption cost, but requires a more
intricate, in-depth analysis of the decryption algorithm and the arithmetic provided by the
chosen groups and pairing. At a high level, our approach is thus closer to [AGH13], which
focuses on optimizing the computational efficiency of the scheme, albeit in an automated
way. Another common denominator between [AGH13] and our work is that the converted
scheme is not automatically secure, though we argue that the converted schemes are secure
nonetheless. An advantage of our type-conversion techniques over [AGH13] is that we take
into account the costs of the arithmetic and group operations in our optimizations.

3.6 Our type-conversion methods
We describe our type-conversion methods, which can be used to convert a scheme from the
type-I to the type-III setting given some specific design goal (as discussed in Section 3.5).
We assume that the scheme to be converted is given in the type-I setting, and that it can
be somewhat freely converted to the type-III setting without breaking its security. This
is often the case: schemes are predominantly designed in the type-I setting [Sco11], but
the symmetry of the pairing in many cases is not needed for their security [AGH13]. The
symmetry is, on the other hand, to some extent important for the correctness. Specifically,
the key and ciphertext components that are paired during decryption need to live in
different source groups. If these two paired components live in the same group, then
this yields incorrectness of decryption, for the simple reason that they cannot be paired.
In addition, when full-domain hashes are used, we are slightly more limited, since the
components involving these need to be placed in the same source groups (see Remark 1).
In sum, while we have much freedom in how we convert from the type-I to the type-III
setting, we are bounded by the correctness of the scheme.

Furthermore, as we mentioned, conversion from the type-I to the type-III setting is not
trivial, as any conversion heavily influences the efficiency of a scheme. Hence, we ideally
want to apply this conversion in the optimal way considering the optimization approach
(associated with the chosen design goal) and the correctness of the decryption algorithm.
For instance, if we want to convert some scheme to the type-III setting such that it has
the most efficient encryption algorithm (i.e., as in the OE approach), then we attempt to
place as many ciphertext components in the first group G as possible. This consequently
means that the key components that are paired with these ciphertext components need to
be placed in the second group H. For the other approaches, the conversion is often more
intricate, and requires knowledge of the computational costs in the groups G, H and GT .

For each optimization approach, we follow the same steps:

(1) We first list the secret key and ciphertext components, and order them in such a
way, that it is clear which components are paired during decryption such that we
can maintain correctness of decryption;

A. de la Piedra, M. Venema G. Alpár 13

(2) We specify for each key-ciphertext component pair whether they need to be expo-
nentiated and whether they occur in a product during decryption;

(3) We determine the computational costs, for each key and ciphertext component, of
the key generation and encryption algorithm;

(4) To determine the computational costs of the decryption algorithm, the order of the
computations needs to be optimized (Section 3.4), which depends on the curve, and
possibly the distribution of the components;

(5) Based on this information, we can determine the best possible distribution of the key
and ciphertext components over the two source groups for a specific optimization
approach. We describe how this can be done below.

Remark 1 (Full-domain hashes). A full-domain hash (FDH) is a mapping H1 : {0, 1}∗ → G
that maps arbitrarily-long bit strings into the group. Because no hashes H1 : {0, 1}∗ → G
and H2 : {0, 1}∗ → H exist such that e(H1(att), h) = e(g,H2(att)) holds [GPS08], we
need to place the key and ciphertext components involving the FDH in the same group.
As a consequence, we have less flexibility in optimizing the schemes using FDHs for its
large-universeness.

3.6.1 Optimized encryption

Given the list of paired key-ciphertext components, the strategy is simple: we place as
many ciphertext components in the first source group as possible. Because we need to place
the ciphertext components involving the FDH in G, we also place the key components
involving an FDH in G, and thus place the ciphertext components paired with these key
components in H.

3.6.2 Optimized key generation

Similarly, given the list of paired key-ciphertext components, the strategy is simple: we
place as many key components in the first source group as possible. Similarly as in the
optimized encryption approach, we always place ciphertext components involving an FDH
in G, and thus place the key components paired with these ciphertext components in H.

3.6.3 Optimized decryption

To optimize decryption, we need to take a more careful approach. First, we need to consider
whether group elements need to be exponentiated during decryption, because they occur in
a shared-argument pairing product (see Section 3.4), e.g.,

∏
j ê(K ′, Cj)εj = ê(K ′,

∏
j C

εj
j).

In this case, our conversion consists of placing the shared argument in H and the other—
which needs to be exponentiated—in G. For all key-ciphertext component pairs that do
not occur in a shared-argument pairing product, it does not matter whether the key or
ciphertext component is placed in G, as long as any potential exponentiation happens in
the first source group. In these cases, we will place, by default, the ciphertext component
in G, as it is oftentimes more important to optimize the encryption algorithm than the
key generation algorithm. If the application allows the use of precomputation tables for
all key components, we may also choose to place the key component in G, and perform
the exponentiations with a fixed-base exponentiation.
Remark 2 (Shared exponentiations in GT). During decryption, the combination of a pairing
operation and an exponentiation, e.g., ê(Kj , Cj)εj , may be part of a larger pairing product,
in which multiple key-ciphertext component pairs are exponentiated with the same value,
e.g., ê(Kεj

1,j , C1,j)·ê(Kεj
2,j , C2,j)·ê(Kεj

3,j , C3,j) = (ê(K1,j , C1,j) · ê(K2,j , C2,j) · ê(K3,j , C3,j))εj .
If we compute it in the first way, then we require a 3-multi-pairing and three exponentiations

14 ABE Squared: Accurately Benchmarking Efficiency of ABE

in G. If we compute it in the second way, then we require three pairing operations and one
exponentiation in GT , which may be more efficient, depending on the curve. Furthermore,
the second ordering of the pairing operations may allow the use of fixed-argument pairings
[CS10, Sco11], in which case the key components need to be placed in G. In the first
ordering, we cannot use a fixed-argument pairing operation without requiring that the
exponentiation is placed in H, which likely negatively affects the computational costs (see
also Remark 4). In conclusion, this illustrates that optimizing a scheme to attain the most
efficient decryption is more intricate than previous conversion techniques suggested.

3.6.4 Balanced key generation/encryption

For a balanced efficiency of the key generation and encryption algorithms, we optimize the
total key generation and encryption costs. We do this by considering the computational
costs for each key-ciphertext component pair. For each pair, we place the component
with the highest computational costs in G, and the other in H. For instance, if the pair
(K,C) like in our example is such that the computation of K only requires a fixed-base
exponentiation, and the computation of C requires a multi-base exponentiation, then we
place C in G and K in H. In this approach, it is also important to consider whether the
pairs occur in a shared-argument pairing product during decryption. In this case, we
place the shared argument in H and the other components in G. Therefore, the shared
argument incurs only a constant cost in H in the computation (during key generation
or encryption), while it incurs a linear cost in G (during encryption or key generation),
subsequently optimizing the total costs of these computations.

3.6.5 Balanced encryption/decryption

Similarly, for a balanced efficiency of the encryption and decryption algorithms, we optimize
the total encryption and decryption costs. This may be a slightly more complicated endeavor
than the balanced key generation/encryption approach due to the more complicated nature
of the optimized decryption strategy. Like in this strategy, we need to take into account
whether a key-ciphertext component pair occurs in a shared-argument pairing product or
not. In this case, it is beneficial for the decryption costs to place the shared argument in H
and the other components in G. However, this may more negatively affect the encryption
costs than that it positively affects the decryption costs. For instance, suppose that the
coefficients εj are small, e.g., εj ∈ {0, 1} like in [LW10]. Then,

∏
j ê(C ′,Kρ(j))εj can be

computed as ê(
∏
j K

εj
ρ(j), C

′) to minimize the decryption costs, requiring a linear number
of multiplications in G. However, this ensures that C ′ is in H, and therefore likely costs at
least one exponentiation in H instead of G (depending on the computational costs of C ′).
If the expected average costs incurred by the multiplications needed during decryption is
lower than the costs incurred by computing C ′, we might want to place C ′ in G and place
Kρ(j) in H.
Remark 3 (Optimizing decryption for the OE and OK approaches). The key-ciphertext
component distribution that follows from applying the OE and OK approaches may
not be optimal for the order of computations performed in the decryption. For in-
stance, consider the case that several shared-argument pairings have shared expo-
nentiations, as in Remark 2, e.g., ê(K,

∏
j C

εj
1,j) · ê(K ′,

∏
j C

εj
2,j) ·

∏
j ê(K

εj
3,j , C3,j) =∏

j (ê(K,C1,j) · ê(K ′, C2,j) · ê(K3,j , C3,j))εj . Then, due to the distribution of the key
and ciphertext components, the left-hand side—which has an optimized order for the
curves considered in this work—may be less efficient to compute than the right-hand side,
for some curves. For instance, doing (2 + n)-multi-pairing operations, two n-multiple-base
exponentiations in H and n exponentiations in G may be more costly for some n than doing
3n pairing operations and n exponentiations in GT . This is not the case for the schemes
and curves in this work. In any case, it does illustrate that, after the type conversion

A. de la Piedra, M. Venema G. Alpár 15

has finished, we may have to circle back to the optimized order of computations to verify
whether it is still optimized, given the distribution of components.

3.7 Example: type-converting Wat11
We explain our type-conversion techniques through an example: by converting the CP-ABE
scheme by Waters (Wat11) [Wat11] from the type-I to the type-III setting. We first show
how to convert the small-universe version of Wat11, and then argue how these conversions
translate to the large-universe version of Wat11.

3.7.1 Wat11-I: the small-universe variant

In the type-I setting, the Wat11-I scheme [Wat11] is defined as follows:

Definition 2 (The Wat11-I-SYM scheme [Wat11]). The small-universe CP-ABE scheme
by Waters is defined in the type-I (or: symmetric) setting as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates two groups
G,GT of prime order p with generator g ∈ G, and chooses a pairing ê : G × G →
GT . The universe of attributes is U . The setup also generates random integers
α, b, batt ∈R Zp for all att ∈ U . It outputs MSK = (α, b, {batt}att∈U) as its master
secret key and publishes the master public key as

MPK = (g,A = ê(g, g)α, B = gb, {Batt = gbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = gr, {Katt = grbatt}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under access policy A =
(A, ρ) with A ∈ Zn1×n2

p , ρ : {1, ..., n1} → U by generating random integers s,si,vj ∈R
Zp for all i ∈ [n1] and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of the vector A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then, the

plaintext M is retrieved by computing

C/

ê(C ′,K) ·
∏
j∈Υ

(
ê(C1,j ,K

′)/ê(C2,j ,Kρ(j))
)εj .

3.7.2 Listing the key and ciphertext components

To convert the scheme to the type-III setting, we first consider which key components need
to be paired with which ciphertext components (see Table 2). In this way, we can ensure
that each pair has exactly one component in each source group.

16 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 2: A list of the key-ciphertext component pairs and their costs incurred in computing
them during key generation and encryption, in terms of fixed-base exponentiations (FBE)
and two-base exponentiations (2-MBE). For the decryption costs, we list whether the
pairing is indexed and whether it needs to be exponentiated.

Key
component Costs Ciphertext

component Costs Decryption
Indices Exponentiation

K FBE C ′ FBE - -
K ′ FBE C1,j (j ∈ [n1]) 2-MBE j ∈ Υ ⊆ [n1] εj

Katt (att ∈ S) FBE C2,j (j ∈ [n1]) FBE j ∈ Υ ⊆ [n1] εj

3.7.3 Optimized encryption and key generation

For the optimized encryption and key generation approaches, it is clear in which source
groups the components need to be placed. Because the scheme does not involve hashing
into the group, we have much freedom. For the optimized encryption approach, we can
simply place all ciphertext components in G, and the key components in H. Conversely,
for the optimized key generation approach, we can place all key components and G and
the ciphertext components in H.

3.7.4 Balanced key generation/encryption

For a more balanced approach in the efficiency of key generation and encryption, we take
into account the number of components on the “other side of the pairing” during decryption.
For instance, if one places K ′ in G, then all C1,j need to be placed in H, blowing up
the encryption costs considerably. Hence, we place K ′ in H and C1,j in G to make the
key generation and encryption costs more balanced. For the (Katt, C1,j) key-ciphertext
component pair, there is no such trade-off, as both cost one fixed-base exponentiation.
In this case, we favor the encryption algorithm (as mentioned in Section 3.6), as it is
probably run more often than the key generation algorithm. (Note, however, that one
may want to take a different approach, and favor the key generation over the encryption
algorithm instead.) For this reason, we place C1,j in G and Katt in H. Thus, the optimized
encryption and the balanced key generation/encryption efficiency approaches yield the
same constructions, since all key components are placed in H.

3.7.5 Optimized decryption

To optimize the decryption algorithm, we need to consider the best order of the operations
performed during decryption, i.e.,

C/

ê(C ′,K) ·

ê
∏
j∈Υ

C
εj
1,j ,K

′

 /
∏
j∈Υ

ê
(
C
εj
2,j ,Kρ(j)

) .

Because a pairing operation is usually one of the most expensive operations, we want to
minimize the use of these. Consequently, we use a shared-argument pairing and place the
exponentations in G (Section 3.4). To ensure this, it is therefore better to put C1,j in G
and K ′ in H. For the other product of pairing operations, i.e.,

∏
j∈Υ ê

(
C
εj
2,j ,Kρ(j)

)
, it does

not matter in which groups Kρ(j) and C2,j live, as we can exponentiate in G, regardless of
whether Kρ(j) or C2,j is in it. If, on the other hand, one is willing to use precomputation
tables for all key components Katt, then we can speed up decryption by placing Katt in
G. Because this may require a large amount of precomputation space, this may, however,
not be desirable in practice. Hence, we do not use precomputation, and, as mentioned in
Section 3.6, we choose to favor the encryption efficiency over the key generation efficiency.
We thus place the ciphertext component C2,j in G and Katt in H.

A. de la Piedra, M. Venema G. Alpár 17

Table 3: The distributions of the key and ciphertext components of Wat11-I over the groups
G and H, for each optimization approach, i.e., optimized encryption (OE), optimized key
generation (OK), optimized decryption (OD), balanced key generation/encryption (BKE)
and balanced encryption/decryption (BED).

Key Group Ciphertext Group
component OE OK OD BKE BED component OE OK OD BKE BED

K H G H H H C ′ G H G G G
K ′ H G H H H C1,j G H G G G
Katt H G H H H C2,j G H G G G

Remark 4 (Fixed-argument pairings). We can hardly speed up—if we can, at all—the
decryption algorithm by using a fixed-argument pairing operation, which decreases the
Miller loop costs by 37% [CS10]. This would however require us to place the key compo-
nents in the first source group, and in the case of ê(

∏
j∈Υ C

εj
1,j ,K

′)—which would thus
be computed as e(K ′,

∏
j∈Υ C

εj
1,j) in the type-III setting—this may slow down the com-

putation, as we would require |Υ| exponentiations in H instead of in G. Depending on
the expected number of exponentiations, the decrease in computational costs required by
performing the pairing operation may be outweighed by the additional costs incurred by
the exponentiations. For the pairings involving C2,j and Kρ(j), we might be able to benefit
from using a fixed-argument pairing, on the condition that we can do the exponentiation
in G as well. Otherwise, the speed-up that is obtained from using a fixed-argument pairing
may be outweighed by additional overhead that the exponentiation in H incurs over an
exponentiation in G. However, it is unclear if it is possible to adjust existing algorithms
[CS10] to facilitate both using a fixed-argument pairing and doing an exponentiation in G.
Furthermore, because precomputation needs to be done for each Katt, this requires the
storage of possibly thousands of points.

3.7.6 Balanced encryption/decryption

Because the type conversion is the same for the optimized encryption and decryption
approaches, it is, by extension, also the same for the balanced encryption/decryption
approach. This is because, for each key-ciphertext component pair, we chose the best
distribution of the two source groups with respect to the encryption and decryption
efficiency. This therefore also yields the best efficiency trade-offs for the two.

3.7.7 Overview of the distributions for each optimization approach

In Table 3, we summarize the distributions of the key and ciphertext components for each
approach. In particular, it shows that the distributions are the same for the optimized
encryption, optimized decryption, balanced key generation/encryption and balanced
encryption/decryption approaches.

3.7.8 Wat11-IV: the large-universe variant

The large-universe variant of the Waters scheme (Wat11-IV) [Wat08] replaces the generator
gbatt by the output of a hash function, i.e., H(att), where H : {0, 1}∗ → G denotes a hash
function that maps arbitrary strings randomly in the group G. The advantage of this is
that the scheme can support any arbitrary string as attribute without requiring to change
the master public key to be updated. Compared to the original, small-universe variant of
the scheme, little needs to change. However, the use of a hash into the group gives us a
little less freedom in the conversion from the type-I to the type-III setting. By Remark 1,
we necessarily place the key and ciphertext components involving the hash in the same
source group. For the optimized encryption and optimized key generation approaches, it is

18 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 4: The distributions of the key and ciphertext components of Wat11-IV over the
groups G and H, for each optimization approach.

Key Group Ciphertext Group
component OE OK OD BKE BED component OE OK OD BKE BED

K H G H H H C ′ G H G G G
K ′ H H H H H C1,j G G G G G
Katt G G G G G C2,j H H H H H

evident that these therefore need to be placed in the first source group (see Table 1). For
optimized decryption, it follows from the (K ′, C1,j) key-ciphertext component pair—which
occur in a shared-argument pairing product—that the components involving the hash need
to be placed in the first source group. That is, K ′ needs to be placed in H because it is
the shared argument in the shared-argument pairing product, while C1,j—which involves
the hash—needs to be placed in G. By extension, this requires Katt to be placed in G as
well, because it involves a hash. The distribution of the key and ciphertext components
is therefore almost entirely fixed for all optimization approaches. We can only choose
the distribution of components K and C ′. Because these incur a constant cost, the key
generation, encryption and decryption costs are almost entirely fixed as well. Table 4
describes the distributions of the components over the two source groups of Wat11-IV. As
it shows, the distributions are the same for the pairs (K ′, C1,j) and (Katt, C2,j . For the
pair (K,C ′), the distribution is the same as for Wat11-I.

3.8 Selecting the best elliptic curve for a specific goal
To fully optimize a scheme, it is important that the best curve is selected for each scheme
and for each design goal. In general, this may not be the same curve for each scheme and
each design goal, as the different choices of curves provide different trade-offs in efficiency.
For instance, BN382 provides efficient hashing in the two source groups, while BLS12-381
provides efficient exponentiations and pairing operations [Ara17]. It may therefore be the
case that ABE schemes that require many hashing operations are more efficient on the
BN382 curve, while schemes that do not require these perform better on BLS12-381 curves.
More generally, curves exist that provide more efficient arithmetic in G [CDS20] or that
provide more efficient products of pairings [GF16]. However, these are unfortunately not
supported by RELIC.

To determine the optimal curve for each scheme and each design goal, we compare the
efficiency of the scheme on several curves providing the same level of security. To this end,
we compare the computational costs of several ABE schemes on the curves providing the
same level of security supported by RELIC.

4 Benchmarking
We show how our framework can be applied to several existing ABE schemes.

4.1 The schemes
In this work, we analyze and implement several selectively secure ciphertext-policy ABE
schemes. We have motivated our choice to implement CP-ABE schemes in Section 1.2, and
we will motivate the choice to implement selectively secure schemes below. The schemes
that we implement are the Waters schemes (the previously considered small and large
universe variants called Wat11-I and Wat11-IV) [Wat11, Wat08], the Rouselakis-Waters
large-universe scheme without random oracles (RW13) [RW13] and the Agrawal-Chase
multi-use scheme (AC17) [AC17b].

A. de la Piedra, M. Venema G. Alpár 19

4.1.1 The Wat11 schemes

The Wat11 schemes [Wat11, Wat08] are the ciphertext-policy variants of the first ABE
schemes [SW05, GPSW06a] and the selectively secure and more efficient variants of its
fully secure counterpart [LOS+10]. In general, the structure of the scheme is important,
as it provides the structure for many follow-up schemes, e.g., [Att14, Wee14, KW19],
which provide better security guarantees than Wat11. Furthermore, Wat11-IV, i.e., the
large-universe variant using an FDH, is also implemented in OpenABE [Zeu20]. We have
chosen to analyze this scheme mainly for its popularity.

4.1.2 The RW13 scheme

The RW13 scheme [RW13] is the selectively secure and ciphertext-policy counterpart of the
fully secure KP-ABE scheme by Lewko and Waters [LW11b]. Like Wat11-IV, it supports
large universes. However, instead of using an FDH to generate a public key for each
attribute string, it uses a special type of hash, first introduced in identity-based encryption
by Boneh and Boyen [BB04]. In particular, this hash does not need to be modeled as a
random oracle [BR93] in the security proof. Much like Wat11, it is an important scheme
due to its many follow-up schemes, e.g., [Att14, HW14, CGKW18, KW19, Att19]. Yet,
despite its theoretical popularity, it is not often considered in efficiency comparisons with
other schemes. This is one of the main reasons why we analyze its efficiency.

4.1.3 The AC17 scheme

The AC17 scheme [AC17b] is the multi-use variant of the second CP-ABE scheme by Waters
in [Wat11] (Wat11-II) in the selective-security setting. In the full-security setting, AC17 is
the multi-use variant of the one-use scheme by Attrapadung [Att14]. A somewhat related
scheme is FAME [AC17a], which is single use, supports large universes and is derived from
the small-universe CP-ABE scheme by Chen, Gay and Wee [CGW15]. The advantage of
these single-use schemes is that they require fewer pairing operations during decryption,
making decryption more efficient than e.g., Wat11-I. This is one of the main reasons
why standardization institutes such as ETSI (European Telecommunications Standards
Institute) [ETS18] have expressed interest in this scheme. However, the drawback of these
single-use schemes is that each attribute may only occur once in each access structure.
To support both multi-use access structures and to benefit from an efficient decryption
algorithm, AC17 combines the techniques of Wat11-I and Wat11-II. In this way, AC17 is
more efficient than Wat11-I and more flexible than Wat11-II and FAME. Much like for
the Wat11-I scheme, we also consider the large-universe variant of AC17 using an FDH
(which subsequently yields security in the random oracle model [BR93]) in our analysis.
We have chosen to analyze this scheme because of its flexibility and efficiency.

4.1.4 On the security of these schemes

We briefly discuss the security of the implemented schemes.

Selective versus full security. As mentioned, we consider the selectively secure variants
of Wat11, RW13 and AC17, because this yields a cleaner comparison of the schemes on a
structural level. In contrast, many fully secure variants of these schemes exist, which are
similar to Wat11, RW13 and AC17 on a structural level, but these differ in the underlying
groups. For instance, LOSTW10 [LOS+10] is a fully secure variant of Wat11 and is
instantiated in composite-order groups. For the same security level, LOSTW10 performs
one to two orders of magnitude worse than Wat11, which can be instantiated in a prime-
order group [Gui13]. Other fully secure variants of Wat11 [Att19, KW19], which allow for
instantiation in prime-order groups, might simply use different underlying group structures,

20 ABE Squared: Accurately Benchmarking Efficiency of ABE

which may affect the efficiency as well. However, this difference in efficiency might then be
(partially) attributed to the choice of underlying groups, and not necessarily the different
structures of the schemes. For a fair comparison of two structurally different schemes,
one could first compare the efficiency of the selectively secure variants, instantiated in
prime-order groups. Then, one can extrapolate the comparison to the full-security setting
by considering the efficiency of the chosen underlying groups, which can be chosen the
same if all the compared schemes have a fully secure counterpart in the same framework,
e.g., [Att14, Wee14, CGW15, Att16, Att19]. Note that this is the case for Wat11, RW13
and AC17, which all have instantiations in the pair encodings framework [AC17b, Att19].

Security in idealized models. The security of the implemented schemes depends on
idealized models, such as the random oracle model (ROM) [BR93] and the generic group
model (GGM) [Sho97]. In particular, the large-universe variants of Wat11 and AC17
model the FDH as a random oracle in the proofs. Furthermore, the security of all three
schemes depends on a q-type assumption [BBG05, Boy08]. These are assumptions that
are parametrized in some parameter q, which in turn depends on one or more system
parameters of the scheme. Typically, the q-type assumptions that are frequently used
in selective-security proofs grow stronger as q increases. Specifically, Cheon [Che06] has
shown that the security strength decreases by roughly log2(√n2) bits, where n2 denotes
the maximum number of columns in an LSSS access structure, used during encryption. For
instance, if the maximum policy size is 100 (like in this work), then we lose at least 4 bits
(due to Cheon’s attack) and at most 11 bits of security (in GGM, due to Boneh, Boyen
and Goh’s asymptotic lower bound [BBG05, Boy08]). If we use curves in the [129, 135]-bit
security range, such as BLS12-446 or BN446, which provide 132 bits of security [GS19],
then we still have roughly 128 bits of security (and at least 121 bits, considering the
asymptotic lower bound). For curves in the [125, 128]-bit security range such as BLS12-381
or BN382, it should be investigated whether the resulting security strength (i.e., 115-122
bits) is sufficient for some given practical setting. In any case, the fully secure variants
of these schemes in the pair encodings framework [AC17b, Att19] are provably secure
under different q-type assumptions. For these assumptions, attacks such as those by Cheon
[Che06] do not exist yet. Hence, it is unclear if the security strength is impacted for the
fully secure variants of the schemes at all.

On the security of the type-converted schemes. An additional advantage of considering
the selectively secure variants of the schemes is that their security proofs carry over to
their type conversions as well. That is, in all of their selective security proofs [Wat11,
RW13, AC17b], the inputs to a q-type assumption are embedded in the key and ciphertext
components, such that the q-type assumption can be broken if the scheme’s security can be
broken. This q-type assumption is typically shown to be generically secure [BBG05, Boy08].
By extension, any type-converted variant of this q-type assumption with the same number
of parameters is also generically secure with the same security loss in the GGM. In the
worst case, they have twice as many parameters, and thus lose at most one additional bit
of security in the GGM [Boy08].

4.2 The optimized type-converted constructions in short notation
Because we have five optimization approaches and five schemes—two small-universe and
three large-universe schemes—we potentially obtain twenty-five different constructions
to analyze. To effectively highlight the differences, we use the representation of ABE
as introduced in Section 2.5, which only consists of the main differences: the master
public key, the secret keys, the ciphertexts and decryption. For each scheme, we use
λj = Ajvᵀ as the j-th share of the secret s, where A is the n1 × n2 LSSS matrix and

A. de la Piedra, M. Venema G. Alpár 21

v = (s, v2, ..., vn2) ∈R Zn2
p is a vector with random entries, both used during encryption.

During decryption, we use Υ = {j ∈ [1, n1] | ρ(j)} and {εj}j∈Υ such that
∑
j∈Υ εjλj = s

(Section 2.2.1). We also distinguish between variables that the authority—that generates
the keys—does and does not know. By placing a bar above a variable, e.g., b̄att, we indicate
that the authority does not know batt. For instance, by using an FDH to generate batt,
the implicit exponent batt in H(att) = gbatt is unknown, and is thus represented as [b̄att]G.
Full-fledged descriptions of the schemes can be found in Appendix B.

In this section, we use the following naming convention. For schemes that already
have an implementation, we append the name of the scheme with the suffix “CP”, i.e.,
ciphertext-policy, to distinguish the schemes from their potential key-policy and other
counterparts. For our type conversions, we use as suffix the appropriate acronym associated
with the applied optimization approach. For example, Wat11-IV-OE is the name of the
variant of Wat11-IV that is optimized with respect to the encryption algorithm. For
conciseness, we do not use “CP” in the suffix of the names of our optimizations.

4.2.1 Wat11-IV

We obtain two different type-converted constructions of Wat11-IV, which is the large-
universe variant of Wat11. As we mentioned in Section 3.7.8, the type conversion is
essentially fixed for almost all variables, except for the pair ([α− rb], [s]).

Wat11-IV-OE. We define Wat11-IV-OE as the type-converted variant of Wat11-IV with
the most optimized encryption and decryption algorithms, and the most balanced key
generation/encryption and encryption/decryption algorithms as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]H, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sj b̄ρ(j)]G, [sj]H}j∈[1,n1]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sj b̄ρ(j)]

−εj
G , [r]H) ·∏

j∈Υ e([rb̄ρ(j)]
εj
G , [sj]H).

Wat11-IV-OK. We define Wat11-IV-OK as the type-converted variant of Wat11-IV with
the most optimized key generation algorithm as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]G, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sj b̄ρ(j)]G, [sj]H}j∈[1,n1]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sj b̄ρ(j)]

−εj
G , [r]H) ·∏

j∈Υ e([rb̄ρ(j)]
εj
G , [sj]H).

4.2.2 RW13

We obtain two different type-converted constructions of RW13. In general, owing to the
lack of an FDH to obtain the large-universe property, RW13 is more flexible to convert.
For example, for an optimized encryption (resp. key generation) algorithm, all ciphertexts
(resp. keys) should be placed in G. For an optimized decryption, we need to observe the
order of computations and the efficiency of the group operations to determine the best
conversion.

22 ABE Squared: Accurately Benchmarking Efficiency of ABE

RW13-OK. We define RW13-OK as the type-converted variant of RW13 with the most
optimized key generation algorithm as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]H, [b0]H, [b1]H, [b′]H).

• Secret keys: ([α− rb]G, [r]G, {[ratt(b1xatt + b0) + rb′]G, [ratt]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sjb
′]H, [sj(ρ(j)b1 + b0)]H, [sj]H}j∈[1,n1]).

• Decryption: [m+ αs]GT · e([α− rb]−1
G , [s]H) · e([r]G,

∏
j∈Υ[λjb+ sjb

′]−εjG) ·∏
j∈Υ

(
e([rρ(j)]

−εj
G , [sj(b1ρ(j) + b0)]H) · e([rρ(j)(b1ρ(j) + b0) + rb′]εjG , [sj]H)

)
.

RW13-OE. We define RW13-OE as the type-converted variant of RW13 with the most
optimized encryption algorithms as follows. We show that it also has the most effi-
cient decryption algorithm, as well as the most balanced key generation/encryption and
encryption/decryption.

• Master public key: ([1]G, [1]H, [α]GT , [b]G, [b0]G, [b1]G, [b′]G).

• Secret keys: ([α− rb]H, [r]H, {[ratt(b1xatt + b0) + rb′]H, [ratt]H}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sjb
′]G, [sj(ρ(j)b1 + b0)]G, [sj]G}j∈[1,n1]).

• Decryption: [m+ αs]GT · e([s]−1
G , [α− rb]H) · e(

∏
j∈Υ[λjb+ sjb

′]−εjG , [r]H) ·∏
j∈Υ

(
e([sj(b1ρ(j) + b0)]−εjG , [rρ(j)]H) · e([sj]εjG , [rρ(j)(b1ρ(j) + b0) + rb′]H)

)
.

Note that the decryption algorithm is already optimized. Specifically, e(
∏
j∈Υ[λjb+

sjb
′]−εjG , [r]H) is the most efficient, because the multi-base exponentiation happens in G

and not in H, meaning that [λjb+ sjb
′] necessarily needs to be placed in G and [r] in H.

Furthermore, for e([sj(b1ρ(j) + b0)]−εjG , [rρ(j)]H) and e([sj]εjG , [rρ(j)(b1ρ(j) + b0) + rb′]H), it
does not matter in which groups the components are placed for the decryption efficiency.
For all curves considered in this work, it is more efficient to exponentiate in G. For
these pairing operations, this can always be done in G, regardless of whether the key or
ciphertext component is placed in G.

Moreover, this variant is also the most balanced. Because this variant is already
optimized with respect to its encryption and decryption efficiency, it logically also optimizes
the total encryption and decryption costs, and thus also provides the variant with the
most balanced encryption-decryption efficiency. Furthermore, it has the most balanced
key generation-encryption efficiency, because each key component can be generated with a
single fixed-base exponentiation. In contrast, the associated ciphertext component costs at
least a single fixed-base exponentiation, and is thus at least as expensive.

4.2.3 AC17

We obtain three different type-converted constructions of the small-universe variant of
AC17, and two type-converted constructions of the large-universe variant of AC17. During
encryption, we also include an additional function τ : [n1] → [µ], where µ denotes the
maximum number of uses of each attribute, such that τ is a mapping where for all
j, j′ ∈ [n1] for which ρ(j) = ρ(j′), it holds that τ(j) 6= τ(j′), i.e., each occurrence of the
same attribute is mapped to a different integer in [µ]. For the small-universe variants, we
also include the universe of attributes U in the setup. Note that, in the conversions of
the small-universe variants, we have much freedom in how we convert the schemes. In
contrast, in the large-universe variant, the FDH almost entirely fixes the conversion, much
like in the Wat11-IV scheme.

A. de la Piedra, M. Venema G. Alpár 23

AC17-OE. We define AC17-OE as the type-converted variant of the small-universe variant
of AC17 with the most optimized encryption algorithm as follows. Much like in the Wat11-I
scheme, we place all ciphertext components in G.

• Master public key: ([1]G, [1]H, [α]GT , [b]G, {[batt]G}att∈U).

• Secret keys: ([α− rb]H, [r]H, {[rbatt]H}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sτ(j)bρ(j)]G}j∈[1,n1], {[sl]G}l∈[µ]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sτ(j)bρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e([sl]G,
∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
H).

AC17-OK. We define AC17-OK as the type-converted variant of the small-universe
variant of AC17 with the most optimized key generation algorithm as follows. Much like
in the Wat11-I scheme, we place all key components in G.

• Master public key: ([1]G, [1]H, [α]GT , [b]H, {[batt]H}att∈U).

• Secret keys: ([α− rb]G, [r]G, {[rbatt]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sτ(j)bρ(j)]H}j∈[1,n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([α − rb]−1
G , [s]H) · e([r]G,

∏
j∈Υ[λjb + sτ(j)bρ(j)]

−εj
H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H).

AC17-OD. We define AC17-OD as the type-converted variant of the small-universe variant
of AC17 with the most optimized decryption algorithm as follows. We also show that this is
the variant with the most balanced key generation/encryption and encryption/decryption
efficiency. To optimize the decryption efficiency of AC17, we first consider the order of
computations in the decryption algorithm of AC17-OK, i.e.,

[m+ αs]GT · e([α− rb]−1
G , [s]H) · e([r]G,

∏
j∈Υ[λjb+ sτ(j)bρ(j)]

−εj
H) ·

∏
l∈[m] e

(∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H

)
.

First, we observe that for the e([α− rb]−1
G , [s]H) part, the component distribution does not

matter. Hence, we place the ciphertext component [s] in G and the key component in
H. For the e([r]G,

∏
j∈Υ[λjb+ sτ(j)bρ(j)]

−εj
H) part, the distribution matters: placing the

product of exponentiations over the ciphertext components [λjb+ sτ(j)bρ(j)] in G would
make the algorithm faster. This is also the case for

∏
l∈[µ] e(

∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H).

• Master public key: ([1]G, [1]H, [α]GT , [b]G, {[batt]G}att∈U).

• Secret keys: ([α− rb]H, [r]H, {[rbatt]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sτ(j)bρ(j)]G}j∈[1,n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sτ(j)bρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H).

Note that this variant also has the most balanced key generation-encryption, and most
balanced encryption-decryption efficiency. For the BKE variant, this follows quite simply.
For the pair ([α− rb], [s]), the costs are the same for the key and ciphertext component,
so we place the ciphertext component in G. The pairs ([r], [λjb+ sτ(j)bρ(j)]) have a linear
number of ciphertext components, and the pairs ([rbρ(j)], [sl]) have a linear number of key
components. Therefore, in both cases, we place the linear costs in G.

24 ABE Squared: Accurately Benchmarking Efficiency of ABE

For the BED variant, this follows simply for the pairs ([α − rb], [s]) and ([r], [λjb +
sτ(j)bρ(j)]), which have the same distributions in the optimized encryption and opti-
mized decryption variants, and are thus also optimized in the total costs. For the pairs
([rbρ(j)], [sl]), we consider the associated encryption and decryption costs. For encryption,
we require m fixed-base exponentiations. The decryption costs can be upper bounded by
|Υ| exponentiations, and lower bounded by one |Υ|-base exponentiation (for µ = 1), in the
group in which the key component lives. Because, generally, we assume that |Υ| > µ, the
costs of the |Υ|-base exponentiation dominate those of the µ fixed-base exponentiations.
To minimize the total costs, we thus place [rbρ(j)] in G and [sl] in H.

AC17-LU-OE. We define AC17-LU-OE as the type-converted variant of the large-universe
variant of AC17 with the most optimized encryption as follows. This variant also has the
most efficient decryption algorithm, and the most balanced key generation/encryption and
encryption/decryption efficiency. Much like for Wat11-IV (Section 3.7.8), the distribution
of AC17-LU is almost entirely fixed because of the FDH.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]H, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sτ(j)b̄ρ(j)]G}j∈[1,n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sτ(j)b̄ρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rb̄ρ(j)]

εj
G , [sl]H).

Note that, in general, the only non-fixed pair is ([α − rb], [s]). For the optimized
encryption variant, we place the ciphertext component [s] in G, and for the optimized key
generation variant, we place the key component in G. For the decryption efficiency, the
distribution does not matter, and therefore, we place the ciphertext component in G for
the optimized decryption approach, but also for the most balanced encryption-decryption
approach. Similarly, the total costs of the key generation and encryption algorithms are the
same for the two possible distributions, and thus, we also place the ciphertext component
in G for the balanced key generation-encryption approach.

AC17-LU-OK. We define AC17-LU-OK as the type-converted variant of the large-universe
variant of AC17 with the most optimized key generation as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]G, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sτ(j)b̄ρ(j)]G}j∈[1,n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([α − rb]−1
G , [s]H) · e(

∏
j∈Υ[λjb + sτ(j)b̄ρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rb̄ρ(j)]

εj
G , [sl]H).

4.2.4 Comparing our type conversions with existing implementations

We can now compare all the various optimization approaches described above with the
implementations in the literature. The type-converted schemes considered in this work have
been previously implemented in Charm [AGM+13] and OpenABE [Zeu20]. Specifically,
Wat11-I and RW13 have been implemented in Charm, and Wat11-IV has been implemented
in OpenABE. Furthermore, FAME [AC17a]— which is related to the AC17 scheme—was
previously implemented in Charm as well. We briefly compare their type conversions
with ours, such that we can determine with respect to which optimization approach these
implementations could be interpreted to be optimized.

A. de la Piedra, M. Venema G. Alpár 25

Wat11-I-CP. The small-universe variant of Wat11 as presented in Charm2 is defined as
follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G, {[batt]G}att∈U).

• Secret keys: ([α− rb]G, [r]H, {[rbatt]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sjbρ(j)]G, [sj]H}j∈[1,n1]).

• Decryption: [m + αs]GT · e([α − rb]−1
G , [s]H) · e(

∏
j∈Υ[λjb + sjbρ(j)]

−εj
G , [r]H) ·∏

j∈Υ e([rbρ(j)]G, [sj]
εj
H).

Note that this construction does not match any of our type-converted constructions
of Wat11-I. (It is, however, similar to Wat11-IV-OE and Wat11-IV-OK without the use
of a hash to achieve large-universeness.) The designers [AC17a] explain that their type
conversions aim to balance the total work fairly between encryption and key generation.
This is indeed the case, as the total costs of the key generation and encryption algorithms
are the same as the total costs of our variant with a balanced key generation-encryption
efficiency. The difference between the two conversions can be attributed to our “determin-
istic” decisions in the conversion: for each key-ciphertext component pair that incur equal
costs, we place the ciphertext component in G. In general, for such pairs, the distribution
does not affect the total costs of the key generation and encryption algorithms as they are
equal for the two choices.

Wat11-IV-CP. The large-universe variant of Wat11 as presented in OpenABE3 is defined
as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]H, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sj b̄ρ(j)]G, [sj]H}j∈[1,n1]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e(

∏
j∈Υ[λjb + sj b̄ρ(j)]

−εj
G , [r]H) ·∏

j∈Υ e([rb̄ρ(j)]
εj
G , [sj]H).

Note that this construction is exactly the same as Wat11-IV-OE. Therefore, the
implementation of OpenABE is optimized with respect to its encryption and decryption
efficiency rather than its key generation efficiency.

RW13-CP. The variant of RW13 as presented in Charm4 is defined as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G, [b0]G, [b1]G, [b′]G).

• Secret keys: ([α− rb]G, [r]H, {[ratt(b1xatt + b0) + rb′]G, [ratt]H}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sjb
′]G, [sj(ρ(j)b1 + b0)]G, [sj]H}j∈[1,n1]).

• Decryption: [m+αs]GT ·e([α−rb]−1
G , [s]H)·

∏
j∈Υ

(
e([λjb+sjb′]−1

G , [r]H)·e([sj(b1ρ(j)+
b0)]−1

G , [rρ(j)]H) · e([rρ(j)(b1ρ(j) + b0) + rb′]G, [sj]H)
)εj
.

2https://github.com/JHUISI/charm/blob/dev/charm/schemes/abenc/waters11.py
3https://github.com/zeutro/openabe/blob/master/src/abe/zcontextcpwaters.cpp
4https://sites.google.com/site/yannisrouselakis/ccs13abe

https://github.com/JHUISI/charm/blob/dev/charm/schemes/abenc/waters11.py
https://github.com/zeutro/openabe/blob/master/src/abe/zcontextcpwaters.cpp
https://sites.google.com/site/yannisrouselakis/ccs13abe

26 ABE Squared: Accurately Benchmarking Efficiency of ABE

AC17-CP. The small-universe variant of AC17 with a similar key-ciphertext component
distribution as FAME [AC17a] in Charm5 is defined as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G, {[batt]G}att∈U).

• Secret keys: ([α− rb]G, [r]H, {[rbatt]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sτ(j)bρ(j)]G}j∈[n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([α − rb]−1
G , [s]H) · e(

∏
j∈Υ[λjb + sτ(j)bρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H).

Note that this construction is similar to our construction AC17-OD. Therefore, this
construction is optimized with respect to the decryption algorithm.

AC17-LU-CP. The large-universe variant of AC17 with a similar key-ciphertext compo-
nent distribution as FAME [AC17a] in Charm is defined as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]G).

• Secret keys: ([α− rb]G, [r]H, {[rb̄att]G}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]H, {[λjb+ sτ(j)b̄ρ(j)]G}j∈[1,n1], {[sl]H}l∈[µ]).

• Decryption: [m + αs]GT · e([α − rb]−1
G , [s]H) · e(

∏
j∈Υ[λjb + sτ(j)b̄ρ(j)]

−εj
G , [r]H) ·∏

l∈[µ] e(
∏
j∈Υ∩τ−1(l)[rbρ(j)]

εj
G , [sl]H).

Note that this construction is similar to our construction AC17-LU-OK. Therefore,
this construction is optimized with respect to the key generation algorithm.

4.2.5 Variants of Wat11-I with bad distributions of components

We also include two variants of Wat11-I, Wat11-I-BAD-I and Wat11-I-BAD-II, with a bad
distribution of components in our analysis. This will illustrate that the choice of conversion
technique does matter in any analysis, even if the arithmetic and group operations are
optimized. The two implementations of this type conversion differ in whether they use
optimized arithmetic or not. In particular, Wat11-I-BAD-II uses optimized arithmetic,
while Wat11-I-BAD-I does not. This will illustrate that the use of optimized arithmetic
speeds up the algorithms significantly. The converted scheme is defined as follows.

• Master public key: ([1]G, [1]H, [α]GT , [b]H, {[batt]H}att∈U).

• Secret keys: ([α− rb]H, [r]G, {[rbatt]H}att∈S).

• Ciphertexts: ([m+ αs]GT , [s]G, {[λjb+ sjbρ(j)]H, [sj]G}j∈[1,n1]).

• Decryption: [m + αs]GT · e([s]−1
G , [α − rb]H) · e([r]G,

∏
j∈Υ[λjb + sjbρ(j)]

−εj
H) ·∏

j∈Υ e([rbρ(j)]
εj
G , [sj]H).

Note that the distribution of this scheme is bad, because it maximizes the number of
operations in H. In particular, all algorithms require a linear number of operations in H.
In contrast, Wat11-I-OE and Wat11-I-OK require a linear number of operations in G in
the encryption and decryption, and key generation and decryption, respectively.

5https://github.com/JHUISI/charm/blob/dev/charm/schemes/abenc/ac17.py

https://github.com/JHUISI/charm/blob/dev/charm/schemes/abenc/ac17.py

A. de la Piedra, M. Venema G. Alpár 27

4.3 Implementation details
We rely on the RELIC toolkit [AGM+] version 0.56 to implement the schemes described in
Section 4.2. Multiple versions of the library were generated for the x86-64 architecture, i.e.,
for curves BN256, BN382, BN466, BLS12-381, and BLS12-446. We use the gcc compiler
version 10.3.0 using a Linux distribution with kernel version 5.11.0-18 and the fol-
lowing flags -O3 -funroll-loops -fomit-frame-pointer -finline-small-functions
-march=native -mtune=native.

RELIC is a cryptographic library that provides efficient arithmetic implementations of
prime and binary fields, bilinear maps and extension fields. Since it implements architecture-
dependent code, it aims at optimizing speed. The rationale of using RELIC against other
alternatives has to do with the current contributions from academia. Examples are the
recent integration of the fast constant-time GCD algorithm of Bernstein and Yang [BY19]
and the records RELIC has set [AFK+12]. In addition, of all libraries, RELIC supports
the most curves providing at least 128 bits of security [SKSW20]. Therefore, it allows
us to compare the efficiency of ABE schemes with regard to various curves. The default
compilation options of RELIC for field arithmetic consist of the integrated modular
addition, multiplication, squaring, Montgomery reduction and sliding window modular
exponentiation. The extension field arithmetic options are based on the integrated lazy-
reduced extension field arithmetic of RELIC. Finally, the compilation flags for the bilinear
pairing implementation select the optimal Ate pairing [Ver10]. We use the library to
perform, for instance, the optimal Ate pairing of two group elements in a parametrized
elliptic curve of embedding degree 12, and to perform multi-pairing operations and
simultaneous exponentations of group elements.

To optimize the number of clock cycles of our implementations, we rely on the multi-
pairing operations of RELIC (pp_map_sim_oatep), fixed-base exponentiation via precom-
putation tables (_mul_fix), simultaneous exponentiation of multiple elements from the
same group (_mul_sim_lot) and simultaneous exponentiation of two elements of the
same group (_mul_sim). Note that, in the default configuration of RELIC, most of these
algorithms do not run in constant time.

Our implementations contain a correctness check at the end of the decryption operation.
We measure the number of clock cycles for each algorithm, i.e., the setup, key generation,
encryption, and decryption. We also measured the number of clock cycles of the necessary
arithmetic, for which we provided benchmarks in Section 3.3. We calculate the average of
the number of clock cycles in each case over 10,000 iterations per operation.

We use the implementation of the access structures based on access trees (Section
2.2) provided by OpenABE [Zeu20]. We replace it in Section 4.6.3 by precomputed LSSS
matrices (see the description of the more efficient LSSS matrices in Appendix A). Finally,
we benchmark the implementations based on an increasing number of attributes i.e.,
1, 5, 10, 20, 30, ..., 100. For encryption and decryption, we use an AND policy that increases
linearly with the number of attributes. We measure our implementations using the AMD
Ryzen 7 PRO 4750 processor with power management disabled (one single core) and
throttle at max. frequency (4.1 GHz).

4.3.1 A note on the _mul_sim_lot function

In the decryption algorithm, we use the _mul_sim_lot function. Since the coefficients
used are typically very close to the group order, their encodings in RELIC are very small,
and thus, the efficiency of this function in our implementations is not the same as depicted
in Table 1. Instead, it is much faster. Furthermore, for the BLS and BN curves, the
GLV [GLV01] recoding (used in the _mul_sim_lot function) of the exponent is different,
and yields more efficient encodings for BN curves than for BLS curves. The costs of

6Particularly related to commit 260c9f8b423bbf74cc04fd4315dc770c85d162d8.

28 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 5: The computational costs of _mul_sim_lot on the curves in 103 cycles, where the
exponents are the coefficients εj associated with the j-th attribute.

In group G In group H
Number of attributes Number of attributes

Curve 2 10 100 2 10 100
BN254 8 37 398 88 339 5285

BLS12-381 153 566 3466 163 778 10216
BN382 11 56 504 248 929 10262

BLS12-446 208 574 4047 214 1021 14546
BN446 13 67 564 321 886 8491

_mul_sim_lot for our specific inputs are listed in Table 5. In future implementations, it
may be better to replace the _mul_sim_lot by a custom function, or replace the access
trees by the more efficient LSSS matrices as considered in Section 4.6.3. Converting
Boolean formulas into these matrices yields exponentiations with εj ∈ {0, 1}.

4.4 Memory footprint
We analyze the memory footprint of the data structures in our implementation of the
setup, key generation, encryption and decryption algorithms by providing upper bounds
on their memory consumption. This analysis illustrates that, for computationally powerful
devices such as computers and smartphones, the memory footprint is reasonable. Roughly,
our implementations use two kinds of data structures that are loaded in working memory:
precomputation tables, and regular storage costs (such as the keys and ciphertexts, and
policies and sets of attributes). In addition, some of our computations use temporary data
structures to store intermediate results, but the overhead incurred by these is small, i.e.,
less than one KiB. The maximum overhead incurred by the RELIC functions depends
mostly on the regular storage costs, and is thus upper-bounded by those costs.

4.4.1 Regular storage costs

A large part of the memory consumption is attributed to the regular storage costs, i.e.,
the sets, access policies, keys and ciphertexts. The algorithms use the following structures:

• Setup: MPK,MSK;

• Key generation: MPK,MSK,SK,S;

• Encryption: MPK,CT,A;

• Decryption: MPK,SK,S,CT,A.

The sizes of the keys and ciphertexts can be observed directly from their descriptions
in Section 4.2 and the used elliptic curve. The sizes of the sets and policies depend on the
representation of the attributes. Furthermore, we analyze the size of the access structures
(i.e., trees or matrices) associated with the policies in more detail below.

Access trees. For almost all schemes, we use the OpenABE access tree structure. In
OpenABE7, one node in the tree contains the following information: node type (i.e.,
whether it is a leaf or a gate), the threshold value, the number of children, pointers to
the children (we assume in this case the number of children is always two, each pointer
being 8 bytes in a 64-bit architecture), node identifiers (i.e., prefix, label and index) and
two auxiliary variables. Let `node ≈ 48 bytes denote the size of the node, then the total
costs incurred by the access tree are roughly (2 · |A| − 1) · `node, because each operator (e.g.,
AND) and each attribute in the policy are assigned to a node.

7https://github.com/zeutro/openabe/blob/a58892b32bae20b012f352760c864b1a4ca9600d/src/
include/openabe/utils/zpolicy.h

https://github.com/zeutro/openabe/blob/a58892b32bae20b012f352760c864b1a4ca9600d/src/include/openabe/utils/zpolicy.h
https://github.com/zeutro/openabe/blob/a58892b32bae20b012f352760c864b1a4ca9600d/src/include/openabe/utils/zpolicy.h

A. de la Piedra, M. Venema G. Alpár 29

LSSS matrices. The size of the LSSS matrix in RW13-OE-LSSS (Section 4.6.3) depends
on the number of attributes and operators in the policy. To obtain a realistic upper
bound on the matrix size, we assume that all operators are AND—which yields the largest
matrices—and each entry is represented by as an element in Zp. The maximum size is
thus |A|2 · `Zp , where `Zp denotes the length of an element in Zp.

4.4.2 Precomputation tables

Our implementations use precomputation tables for the generators of the source groups
G and H to speed up the exponentiations. For the RW13 implementations, we also
generate precomputation tables for the (four) other public keys. In RELIC, the default
configuration for fixed-base exponentiation uses the single-table comb method [LL94], and
yields precomputation tables of 16 points (in affine coordinates) for all curves.

4.4.3 Upper bounds on the working memory consumption

Table 6 summarizes our analysis of the memory footprint. In particular, Table 6a lists the
storage costs for each implemented scheme. Table 6b provides upper bounds on the total
memory consumption for the BLS12-381 and BN446 curves, of which the latter yields
the highest memory consumption. Note that all implementations fit easily in RAM of
computationally powerful devices such as computers and smartphones.

4.5 Performance analysis of our implementations
We analyze the performance of the implementations in our framework and compare it
with those in existing frameworks such as Charm [AGM+13] and OpenABE [Zeu20]. Our
goal with this comparison is not necessarily to illustrate that our implementations are
faster than those of Charm and OpenABE. Rather, we want to show that the choice of
optimization approach as well as the use of all available optimized arithmetic influences
this analysis. Not consistently and systematically using these may result in an unfair
comparison of two schemes.

There are two main differences between our implementations and those in Charm and
OpenABE. First, in contrast to Charm and OpenABE, we have removed all abstractions
between the scheme and the used arithmetic. Therefore, we can use all available opti-
mizations to accelerate the scheme as much as possible. This also includes constructing
and evaluating the access structures, which we have optimized as well. Note that this is
not a concern for our comparisons in this section, as the additional overhead incurred by
the construction and evaluation of access structures is the same for each scheme, while
it considerably simplifies the implementation of the schemes. In this way, we evaluate
the efficiency of the schemes on a structural level. The additional overhead incurred by
the construction and evaluation of the access structures can then be measured separately
to obtain a more complete understanding of the implementation’s efficiency in practice.
Second, another difference is that our implementations follow a clearly articulated design
rationale: we have optimized each scheme with respect to several optimization approaches.
This may heavily influence the efficiency of a scheme, and thus the subsequent comparison.

4.5.1 Linear costs of the schemes

We show that the computational costs of all the schemes are linear (see Figure 3). Hence,
for any efficiency analysis, it suffices to compare the computational costs for small sets of
attributes, e.g., 1 and 10, and for a large set of attributes, e.g., 100. This makes any analysis
more compact, as we can place the results in tables, rather than in graphs. Furthermore,
because the setup is only performed once, they do not matter much in the overall efficiency
comparison. Therefore, we do not consider those in the following comparisons.

30 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 6: The analysis of the memory footprint for all implemented schemes and optimization
approaches (OA). Table 6a lists the general storage costs of the master public key MPK,
the master secret key MSK, the secret key SK, the set S, and the ciphertext CT, where
|att| denotes the length of a single attribute (in our implementations: att ∈ Zp), A denotes
the policy length, |S| denotes the set size, and `G′ denotes the length of a single element
in group G′. Based on this and the rest of our analysis, Table 6b provides upper bounds
on the memory consumption for the BLS12-381 and BN446 curves, where we distinguish
the regular costs (R) from the precomputation tables (P) and the total costs (T).

Scheme |MPK| |MSK| |SK| |CT|
`G `H `GT |att| `Zp |att| `G `H |att| `G `H `GT |att|

Wat11-I-OE |U|+ 2 1 1 |U| |U|+ 2 |U| - |S|+ 1 |S| 2|A|+ 1 - 1 2|A|
Wat11-I-OK 1 |U|+ 2 1 |U| |U|+ 2 |U| |S|+ 1 - |S| - 2|A|+ 1 1 2|A|
Wat11-IV-OE 2 1 1 - 2 - |S| |S|+ 1 |S| |A|+ 1 |A| 1 2|A|
Wat11-IV-OK 2 1 1 - 2 - |S|+ 1 |S| |S| |A| |A|+ 1 1 2|A|
RW13-OE 5 1 1 - 5 - - 2|S|+ 2 2|S| 3|A|+ 1 - 1 3|A|
RW13-OK 1 5 1 - 5 - 2|S|+ 2 - 2|S| - 3|A|+ 1 1 3|A|
AC17-OE |U|+ 2 1 1 |U| |U|+ 2 |U| - |S|+ 2 |S| |A|+ 2 - 1 2|A|
AC17-OK 1 |U|+ 2 1 |U| |U|+ 2 |U| |S|+ 2 - |S| - |A|+ 2 1 2|A|
AC17-OD |U|+ 2 1 1 |U| |U|+ 2 |U| |S|+ 1 2 |S| |A|+ 1 1 1 2|A|

AC17-LU-OE 2 1 1 - 2 - |S| 2 |S| |A|+ 1 1 1 2|A|
AC17-LU-OK 2 1 1 - 2 - |S|+ 1 1 |S| |A| 2 1 2|A|

(a) General description of the regular storage costs

Scheme OA Curve Setup Key generation Encryption Decryption
R P T R P T R P T R P T

Wat11-I
OE BLS12-381 23 4 28 51 3 54 56 2 58 84 0 84

BN446 32 5 37 67 4 71 71 2 72 106 0 106

OK BLS12-381 33 4 37 51 2 52 84 3 87 102 0 102
BN446 43 5 48 67 2 69 103 4 107 128 0 128

Wat11-IV
OE BLS12-381 1 4 6 19 3 22 52 4 56 70 0 70

BN446 1 5 6 26 4 29 64 5 69 89 0 89

OK BLS12-381 1 4 6 19 4 24 52 3 55 70 0 70
BN446 1 5 6 26 5 31 64 4 68 89 0 89

RW13

OE BLS12-381 1 11 12 52 3 55 57 8 64 107 0 107
BN446 2 12 14 66 4 69 71 9 80 135 0 135

OE-L BLS12-381 1 11 12 52 3 55 476 8 483 526 0 526
BN446 2 12 14 66 4 69 723 9 732 787 0 787

OK BLS12-381 2 16 18 34 15 49 85 2 86 117 0 117
BN446 2 19 21 44 18 62 104 2 106 146 0 146

AC17

OE BLS12-381 23 4 28 51 3 54 47 2 48 75 0 75
BN446 32 5 37 68 4 71 60 2 61 95 0 95

OK BLS12-381 33 4 37 51 2 52 66 3 69 84 0 84
BN446 43 5 48 67 2 69 82 4 85 106 0 106

OD BLS12-381 23 4 28 42 3 45 47 4 52 65 0 65
BN446 32 5 37 57 4 60 60 5 65 85 0 85

AC17-LU
OE BLS12-381 1 4 6 19 4 24 33 3 36 52 0 52

BN446 1 5 6 26 5 31 42 4 46 67 0 67

OK BLS12-381 1 4 6 19 4 24 33 3 36 52 0 52
BN446 1 5 6 26 5 31 42 4 46 67 0 67

(b) Upper bounds on the memory footprint in KiB (= 1024 bytes) for 100 attributes

4.5.2 Comparing our framework with Charm and OpenABE

One of the main goals of our framework is to fully optimize the efficiency of all the
schemes with respect to the same design goal. To show how effective this is compared
to existing works, we have run benchmarks of the Charm [AGM+13] implementations of
Wat11-I and RW13 as well as the implementations of our optimizations, i.e., Wat11-I-OE,
Wat11-I-OK, RW13-OE, and RW13-OK (Section 4.2). We have also run benchmarks of

A. de la Piedra, M. Venema G. Alpár 31

0 20 40 60 80 100
0

0.5

1

·107

Number of attributes

N
um

be
r
of

cy
cl
es

Setup (optimized encryption, BLS12-381)

Wat11-I
Wat11-IV
RW13
AC17
AC17-LU

(a) Setup

0 20 40 60 80 100
0

1

2

3

4

5

·107

Number of attributes

N
um

be
r
of

cy
cl
es

Key generation (optimized encryption, BLS12-381)

Wat11-I
Wat11-IV
RW13
AC17
AC17-LU

(b) Key generation

0 20 40 60 80 100
0

2

4

6

8
·107

Number of attributes

N
um

be
r
of

cy
cl
es

Encryption (optimized encryption, BLS12-381)

Wat11-I
Wat11-IV
RW13
AC17
AC17-LU

(c) Encryption

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

·108

Number of attributes

N
um

be
r
of

cy
cl
es

Decryption (optimized encryption, BLS12-381)

Wat11-I
Wat11-IV
RW13
AC17
AC17-LU

(d) Decryption

Figure 3: The computational costs in cycles for all the schemes on the BLS12-381 curve,
where the schemes are optimized with respect to the encryption efficiency.

the OpenABE [Zeu20] implementation of Wat11-IV as well as the implementations of
our two optimizations, i.e., Wat11-IV-OE and Wat11-IV-OK (Section 4.2). Because the
implementations in Charm and OpenABE support, at best, the BN254 curve [BN05], we
compare the computational costs of the schemes on this curve. The results in Table 7
show that our implementations greatly improve on the implementations of Charm, the
costs being at least one order of magnitude lower. For decryption, our implementations
perform even a factor 100-300 faster than the Charm implementation. This is a huge and
important speed-up that can be noticed in practice. For instance, Table 7b shows that
Charm takes several seconds to execute decryption for large policies with RW13, which
increases even further if more up-to-date curves such as BLS12-381 are used. In contrast,
our implementations never require more than 15 milliseconds to execute. Compared to
the OpenABE implementation of Wat11-IV, our implementations perform roughly equally
efficient in the key generation, a factor 1.6 faster in the encryption algorithm, and a factor
4 faster in the decryption algorithm.

In addition, Table 7 illustrates that comparing optimized implementations of the schemes
yields a different comparison of two schemes. For instance, the Charm implementations
of Wat11-I and RW13 show that Wat11-I outperforms RW13 in all algorithms: its key

32 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 7: Comparison of the computational costs of the Charm and OpenABE implementa-
tions of Wat11 and RW13, and our implementations, on the BN254 curve. For the costs
with 100 attributes, we also provide the factor (×) by which the costs are lower than the
least efficient variant of the scheme. For each scheme, the lowest costs are typeset in bold.
Table 7b expresses the costs in milliseconds (for a processor with a frequency of 4.1 GHz).

Key generation Encryption Decryption
Scheme/ # of attributes # of attributes # of attributes
Variant 1 10 100 × 1 10 100 × 1 10 100 ×
Wat11-I
Charm 5956 20930 169273 - 18810 79498 683225 - 112564 465581 4142503 -
OE 347 1369 11618 15 495 2395 21529 32 753 2357 20748 200
OK 166 646 5415 31 825 5133 47940 14 760 2649 24682 168

RW13
Charm 9793 48375 430168 - 20420 89673 775595 - 165344 1361208 13347677 -
OE 464 2559 23621 18 566 3113 28740 27 907 4101 39651 337
OK 223 1236 11353 38 934 6260 59413 13 922 4468 45220 295

Wat11-IV
OpenABE 806 2486 19265 - 1129 6137 57261 - 3002 10668 94426 -

OE 417 1782 16015 1.2 645 3612 33909 1.7 746 2339 20517 4.6
OK 365 1774 16337 1.2 727 3760 34612 1.7 762 2401 21116 4.5

(a) Costs in the number of 103 clock cycles

Key generation Encryption Decryption
Scheme/ # of attributes # of attributes # of attributes
Variant 1 10 100 1 10 100 1 10 100
Wat11-I
Charm 1.5 5.1 41.3 4.6 19.4 166.6 27.5 113.6 1010.4
OE 0.1 0.3 2.8 0.1 0.6 5.3 0.2 0.6 5.1
OK 0.0 0.2 1.3 0.2 1.3 11.7 0.2 0.6 6.0

RW13
Charm 2.4 11.8 104.9 5.0 21.9 189.2 40.3 332.0 3255.5
OE 0.1 0.6 5.8 0.1 0.8 7.0 0.2 1.0 9.7
OK 0.1 0.3 2.8 0.2 1.5 14.5 0.2 1.1 11.0

Wat11-IV
OpenABE 0.2 0.6 4.7 0.3 1.5 14.0 0.7 2.6 23.0

OE 0.1 0.4 3.9 0.2 0.9 8.3 0.2 0.6 5.0
OK 0.1 0.4 4.0 0.2 0.9 8.4 0.2 0.6 5.2

Wat11-IV
OpenABE 0.2 0.6 4.7 0.3 1.5 14.0 0.7 2.6 23.0

OE 0.1 0.4 4.0 0.2 0.9 8.3 0.2 0.6 5.1
OK 0.1 0.4 3.9 0.2 0.9 8.3 0.2 0.6 5.0

(b) Costs in milliseconds

generation is 154% faster, its encryption is 13% faster and its decryption is 222% faster.
In contrast, our implementations of the same schemes, optimized with respect to the
encryption algorithm compare differently. These implementations also illustrate that
Wat11-I outperforms RW13, but the differences in costs are distinct: key generation is
only 103% faster, encryption is even 33% faster, and decryption is only 91% faster. This
means that, in contrast to what the Charm implementations suggest, Wat11-I encryption
is actually even faster than RW13, and RW13 decryption does not perform as badly
compared to Wat11-I. However, note that the schemes also have different properties, the
most notable difference being that Wat11-I is a small-universe construction, while RW13 is
a large-universe construction. We show in Section 4.7 that Wat11-IV—the large-universe
variant of Wat11-I—is actually slower than Wat11-I, and is even outperformed by RW13 in
the key generation and encryption algorithms for the OK and OE approaches, respectively.
This difference in results illustrates that it is important to compare two implementations
of schemes with the same properties, which are subsequently optimized with respect to
the same goals. If this is not done, then one might unjustifiably draw the conclusion that

A. de la Piedra, M. Venema G. Alpár 33

Table 8: The computational costs of several implementations of Wat11-I on the BLS12-381
curve, based on their optimization approaches (OA). The costs are expressed in 103 clock
cycles. For 100 attributes, we determine the most efficient variant (typeset in bold), and
the increase (in percentages) that the other variants incur compared to this variant.

Key generation Encryption Decryption
OA # of attributes # of attributes # of attributes

1 10 100 Increase 1 10 100 Increase 1 10 100 Increase
OE 759 3029 25653 143.0% 990 4540 39951 - 2005 7379 58515 -
OK 317 1249 10555 - 1756 10814 101181 153.3% 2016 7611 63151 7.9%

BAD-I 841 3776 33834 220.5% 1536 9285 88477 121.5% 3760 29841 296748 407.1%
BAD-II 605 2852 25408 140.7% 1454 9186 86535 116.6% 2005 7649 63166 7.9%

Wat11-IV is a more efficient scheme (given any design goal) than RW13.

4.5.3 Comparing Wat11-I optimized approaches with bad approaches

We also compare the computational costs of our optimizations of Wat11-I with the badly
optimized variants Wat11-I-BAD-I (Section 4.2.5), and Wat11-I-BAD-II (Section 4.2.5). By
investigating the difference between Wat11-I-BAD-II and our optimizations, we can analyze
the advantage of strategically placing the key and ciphertext components in the two source
groups in the type conversion. By comparing Wat11-I-BAD-I and Wat11-I-BAD-II, we can
determine the advantage of using all optimized arithmetic and group operations. Table 8
shows that, indeed, our optimizations are generally better than Wat11-I-BAD-II. That is,
the key generation and decryption algorithms of Wat11-I-OE variant perform comparably
to Wat11-I-BAD-II, while its encryption is much faster (i.e., by 116%). Furthermore,
encryption of Wat11-I-OK is slightly slower (i.e., by 14%) than Wat11-I-BAD-II, but its
key generation is faster by 140%. In addition, the table shows that the use of optimized
arithmetic matters much, as the computational costs of Wat11-I-BAD-I increase compared
to Wat11-I-BAD-II: key generation by 33%, encryption by 2% and decryption by 369%.

4.6 Comparing different optimizations
For each of the five schemes, we list the computational costs on the curves: two curves in
the [125, 128]-bit security range, BLS12-381 and BN382, and two curves in the [129, 135]-bit
security range, BLS12-446 and BN446. By doing this, we illustrate that the efficiency of
the scheme depends heavily on the chosen optimization approaches. Furthermore, this
allows us to determine the best choice of curve, depending on the optimization approach.
These should thus be clearly specified and explained in any benchmarking efforts.

4.6.1 Comparing the schemes on different curves

First, we find the best curves for each scheme and optimization approach. In Table 9, we
compare the efficiency for each optimization of each scheme on two curves: the BLS12-381
and BN382 curves, which are two curves with roughly the same security level. Table
9 shows that there is no universally best choice when it comes to the efficiency of the
schemes. In particular, for the curves in the [125, 128]-bit security range, BLS12-381
outperforms BN382 in all algorithms for the Wat11 and RW13 schemes. For the AC17
schemes, decryption is faster on BN382 (for more than 1 attribute), and for key generation
and encryption, BLS12-381 is faster. For the curves in the [129, 135]-bit security range,
BLS12-446 outperforms the BN446 curve in almost all algorithms for the Wat11 and RW13
schemes, except the key generation of Wat11-IV for 100 attributes. In Appendix C, we
summarize the best curve choices for the optimizations of AC17. In general, decryption is
the most efficient on BN446, while the other algorithms are more efficient on BLS12-446
(with the exception of key generation of AC17-LU for 100 attributes).

34 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 9: Comparison of the computational costs for each scheme (Sch) and optimization
approach (OA) on four different curves: two curves in the [125, 128]-bit security range,
BLS12-381 and BN382, and two curves in the [129, 135]-bit security range, BLS12-446 and
BN446. The costs are expressed in 103 clock cycles. For each pair of curves, the lowest
costs are typeset in bold.

Sc
h

O
A

Key generation Encryption Decryption
Curve # of attributes # of attributes # of attributes

1 10 100 1 10 100 1 10 100

W
at
11

-I O
E

BLS12-381 759 3029 25653 990 4540 39951 2005 7379 58515
BN382 1132 4495 38050 1473 6585 57492 2546 7851 64934

BLS12-446 1142 4538 38454 1466 6714 58789 2980 10586 84291
BN446 1732 6933 58456 2286 9867 85086 3975 12259 99766

O
K

BLS12-381 317 1249 10555 1756 10814 101181 2016 7611 63151
BN382 469 1859 15762 2625 16240 152142 2536 8688 72243

BLS12-446 481 1904 16166 2607 16209 152224 2955 10973 91919
BN446 705 2806 23856 4090 24739 231963 3974 12948 105355

W
at
11

-IV

O
E

BLS12-381 959 4798 42275 1413 8429 77641 2013 7356 58290
BN382 1118 5141 44759 1779 10428 96217 2523 7807 64806

BLS12-446 1286 6972 64972 1934 12321 117130 2966 10605 84761
BN446 1805 7695 63968 2869 15691 141311 3980 12209 99993

O
K

BLS12-381 812 4632 42135 1553 8568 77898 2015 7376 58441
BN382 923 5055 45712 2046 10941 99011 2585 7991 66184

BLS12-446 1073 6794 65766 2151 12602 119816 2960 10583 86263
BN446 1491 7459 64486 3282 16307 144159 4074 12469 101924

RW
13

O
E

BLS12-381 1018 5602 51401 1143 6002 54491 2396 12630 112072
BN382 1506 8290 76109 1707 8903 80680 3120 13794 127772

BLS12-446 1520 8376 76853 1697 9045 82362 3535 18172 162064
BN446 2318 12732 117068 2648 13447 121476 4871 21372 195891

O
K

BLS12-381 429 2347 21657 2026 13469 128221 2398 12828 118998
BN382 633 3487 31998 3005 20062 190792 3123 14675 137410

BLS12-446 650 3576 32660 3015 20242 191950 3550 18694 173177
BN446 951 5228 47748 4688 30858 291444 4883 22184 203171

A
C
17

O
E

BLS12-381 753 2986 25471 998 3550 29348 2021 3383 13736
BN382 1132 4498 38262 1474 5146 41974 2555 3517 11603

BLS12-446 1140 4543 38615 1466 5234 42860 2985 4520 18294
BN446 1740 6985 58691 2288 7684 61472 4013 4897 11749

O
K

BLS12-381 318 1253 10635 1752 8494 76067 2016 3375 13696
BN382 470 1866 15776 2609 12778 114130 2544 3509 11454

BLS12-446 485 1914 16103 2615 12772 114055 2979 4510 18258
BN446 724 2877 24456 4085 19579 174546 3988 4880 11721

O
D

BLS12-381 612 1547 10904 1144 3688 29317 2017 3154 9073
BN382 907 2301 16184 1680 5348 41776 2530 2632 4033

BLS12-446 922 2342 16653 1682 5410 42957 2971 4086 10947
BN446 1402 3508 24607 2677 8034 62200 3998 4108 5662

A
C
17

-L
U O

E

BLS12-381 958 4796 42196 1408 6115 52176 2022 3142 9060
BN382 1118 5151 45093 1776 7054 59276 2538 2639 4058

BLS12-446 1275 6983 64930 1910 8863 79350 2942 4092 11033
BN446 1763 7656 63891 2865 10458 84030 3984 4099 5676

O
K

BLS12-381 797 4607 41913 1556 6262 52326 2020 3143 9076
BN382 890 4901 44523 2001 7289 59307 2538 2637 4056

BLS12-446 1022 6778 65029 2176 9086 79552 2967 4100 11109
BN446 1441 7343 64017 3204 10854 84034 3995 4121 5704

A. de la Piedra, M. Venema G. Alpár 35

Table 10: Comparison of the computational costs expressed in 103 clock cycles for each
scheme and optimization approach for 100 attributes, on their most efficient curve in
the [125, 128] and the [129, 135]-bit security ranges, respectively. For each scheme, we
determine the most efficient variant, and the increase (in percentages) that the other
variants incur compared to the most efficient variant. The lowest costs are typeset in bold.
Scheme OA Curve Key generation Encryption Decryption

Costs Increase Costs Increase Costs Increase

Wat11-I OE BLS12-381 25653 143.0% 39951 - 58515 -
OK BLS12-381 10555 - 101181 153.3% 63151 7.9%

Wat11-IV OE BLS12-381 42275 0.3% 77641 - 58290 -
OK BLS12-381 42135 - 77898 0.3% 58441 0.3%

RW13 OE BLS12-381 51401 137.3% 54491 - 112072 -
OK BLS12-381 21657 - 128221 135.3% 118998 6.2%

AC17

CP BLS12-381 10696 0.6% 29352 0.0% 9027 123.8%
OE BLS12-381 25471 139.5% 29348 - 13736 240.6%
OK BLS12-381 10635 - 76067 159.2% 13696 239.6%
OD BN382 16184 52.2% 41776 42.3% 4033 -

AC17-LU

CP BLS12-381 42632 1.7% 52752 1.1% 9106 124.4%
OE BLS12-381 42196 0.7% 52176 - 9060 123.3%
OK BLS12-381 41913 - 52326 0.3% 9076 123.7%
OD BN382 45093 7.6% 59276 13.6% 4058 -

(a) BLS12-381 and BN382 curves

Scheme OA Curve Key generation Encryption Decryption
Costs Increase Costs Increase Costs Increase

Wat11-I OE BLS12-446 38454 137.9% 58789 - 84291 -
OK BLS12-446 16166 - 152224 158.9% 91919 9.0%

Wat11-IV OE BLS12-446 64972 0.8% 117130 - 84761 -
OK BN446 64486 - 144159 23.1% 101924 20.2%

RW13 OE BLS12-446 76853 135.3% 82362 - 162064 -
OK BLS12-446 32660 - 191950 133.1% 173177 6.9%

AC17

CP BLS12-446 16339 1.5% 43040 0.4% 10920 92.9%
OE BLS12-446 38615 139.8% 42860 - 18294 223.1%
OK BLS12-446 16103 - 114055 166.1% 18258 222.5%
OD BN446 24607 52.8% 62200 45.1% 5662 -

AC17-LU

CP BLS12-446 64677 1.2% 79735 0.5% 11075 95.1%
OE BLS12-446 64930 1.6% 79350 - 11033 94.4%
OK BN446 64017 0.2% 84034 5.9% 5704 0.5%
OD BN446 63891 - 84030 5.9% 5676 -

(b) BLS12-446 and BN446 curves

4.6.2 Comparing schemes for different optimizations

In Section 3.5, we explained that the chosen design goal influences the optimization
approach, including the conversion strategy from the type-I to the type-III setting. To
this end, we have converted each scheme with respect to the different design goals. We
illustrate the trade-offs incurred by the conversions in Table 10. It shows that, indeed, the
variant of a scheme that is optimized with respect to a specific algorithm also outperforms
the other variants in this algorithm. Note that, as expected, for the schemes without an
FDH, these differences are much more pronounced than the schemes with an FDH.

36 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 11: Comparison of the computational costs of RW13-OE with the access trees of
OpenABE, and with more efficient LSSS matrices, on the BLS12-381 curve. The costs
are expressed in 103 clock cycles. For each number (#) of attributes, we also provide the
increase (in percentage %) by which the costs of the variant are higher than the most
efficient variant (which costs are typeset in bold).

Key generation Encryption Decryption
Tree LSSS % # Tree LSSS % # Tree LSSS %
1 1018 997 2.1 1 1143 1121 2.0 1 2396 2357 1.7
5 3056 3003 1.8 5 3302 3220 2.6 5 7018 5364 30.8
10 5602 5517 1.5 10 6002 5864 2.3 10 12630 9149 38.0
20 10703 10549 1.5 20 11411 11211 1.8 20 23815 16654 43.0
30 15788 15639 1.0 30 16806 16601 1.2 30 34954 24194 44.5
40 20894 20663 1.1 40 22229 22016 1.0 40 45879 31771 44.4
50 25946 25711 0.9 50 27546 27443 0.4 50 56961 39274 45.0
60 31053 30842 0.7 60 32933 32902 0.1 60 68160 47019 45.0
70 36139 35976 0.5 70 38307 38682 1.0 70 78937 54694 44.3
80 41245 41028 0.5 80 43745 44165 1.0 80 90095 62212 44.8
90 46295 46051 0.5 90 49060 49880 1.7 90 101063 69861 44.7
100 51401 51108 0.6 100 54491 55545 1.9 100 112072 77432 44.7

4.6.3 Comparing access trees with LSSS matrices

We also analyze the computational costs of RW13 for two variants of the scheme: one using
the access trees like in the rest of this work, and one using more efficient LSSS matrices as
mentioned in Section 2.2 (see Appendix A for a description). These LSSS matrices were
also used in the Charm implementation of FAME [AC17a]. However, they do not compare
it with the use of access trees used in OpenABE and our other implementations. Therefore,
we investigate the computational advantage of using LSSS matrices. In particular, our
comparison suggests that the choice of access structure does matter in the performance
analysis as well. As Table 11 shows, the use of LSSS matrices barely has an effect on the
key generation and encryption efficiency. Nevertheless, the decryption costs—which are
typically the highest—can be decreased considerably by using LSSS matrices. That is, the
decryption costs of RW13 with access trees is up to 45% more costly than of RW13 with
LSSS matrices. Hence, we recommend that LSSS matrices are used in practice.

4.7 Proof of concept: comparison of different schemes
We also show how the benchmarks can be used in the comparison of different schemes. We
do this by comparing the computational costs of the schemes for the same optimization
approaches. Specifically, we compare the large-universe schemes, Wat11-IV, AC17-LU and
RW13, with one another to investigate which of the three performs best with respect to
some chosen optimization approach. We also compare the large-universe variants Wat11-IV
and AC17-LU with their small-universe counterparts, Wat11-I and AC17, to investigate
the sacrifice in efficiency that the large-universe property requires.

4.7.1 Comparing the large-universe schemes

In Table 12, we compare the computational costs of the large-universe schemes, i.e., Wat11-
LU, RW13 and AC17-LU. It shows that AC17-LU outperforms the other two in almost all
optimizations and the subsequent implementations of the algorithms. The only exception
is the optimized key generation approach, where RW13 provides the most efficient key
generation algorithm, outperforming the other two schemes by a factor 2. It therefore
seems that, currently, RW13 is the best choice when the design goal is to have an optimized

A. de la Piedra, M. Venema G. Alpár 37

Table 12: Comparison of the computational costs for each large-universe scheme and
optimization approach (OA) for 100 attributes, on their most efficient curves in the
[125, 128]-bit and the [129, 135]-bit security ranges, respectively. For each optimization
approach, we determine the most efficient scheme, and the increase (in percentages) that
the other schemes incur compared to the most efficient variant (which costs are typeset in
bold). The costs are expressed in 103 clock cycles.
OA Scheme Curve Key generation Encryption Decryption

Costs Increase % Costs Increase % Costs Increase %

OE
Wat11-IV BLS12-381 42275 0.2% 77641 48.8% 58290 543.4%
RW13 BLS12-381 51401 21.8% 54491 4.4% 112072 1137.1%

AC17-LU BLS12-381 42196 - 52176 - 9060 -

OK
Wat11-IV BLS12-381 42135 94.6% 77898 48.9% 58441 543.9%
RW13 BLS12-381 21657 - 128221 145.0% 118998 1211.2%

AC17-LU BLS12-381 41913 93.5% 52326 - 9076 -

OD
Wat11-IV BLS12-381 42275 - 77641 42.5% 58290 1336.5%
RW13 BLS12-381 51401 21.6% 54491 - 112072 2661.9%

AC17-LU BN382 45093 6.7% 59276 8.8% 4058 -

(a) BLS12-381 and BN382 curves

OA Scheme Curve Key generation Encryption Decryption
Costs Increase % Costs Increase % Costs Increase %

OE
Wat11-IV BLS12-446 64972 0.1% 117130 47.6% 84761 668.2%
RW13 BLS12-446 76853 18.4% 82362 3.8% 162064 1368.8%

AC17-LU BLS12-446 64930 - 79350 - 11033 -

OK
Wat11-IV BN446 64486 97.4% 144159 81.2% 101924 817.5%
RW13 BLS12-446 32660 - 191950 141.3% 173177 1458.9%

AC17-LU BLS12-446 65029 99.1% 79552 - 11109 -

OD
Wat11-IV BLS12-446 64972 1.7% 117130 42.2% 84761 1393.4%
RW13 BLS12-446 76853 20.3% 82362 - 162064 2755.4%

AC17-LU BN446 63891 - 84030 2.0% 5676 -

(b) BLS12-446 and BN446 curves

key generation algorithm. For the other approaches, it is best to use AC17-LU. Notably,
RW13 outperforms Wat11-IV in the OE, OK and BKE approaches, and thus constitutes
not only a scheme that is interesting for its theoretical properties, but also for its efficiency.

4.7.2 Comparing small-universe schemes with their large-universe variant

In Table 13, we compare the large-universe variants of Wat11 and AC17 with their small-
universe counterparts. This illustrates the sacrifice in efficiency incurred by the FDH that
is instantiated to achieve the large-universe property. Concretely, the table shows that,
for each optimization approach, the optimized algorithms of the small-universe variant
outperform the large-universe variant. For the optimized key generation and encryption
approaches, the small-universe variants perform overwhelmingly better: at least a factor
1.7, and at most a factor 4. For the optimized decryption approaches, the decryption costs
are similar for the small-universe and large-universe variants. The reason why the trade-off
in efficiency is so high is the FDH: not only does it limit us in the conversion from the
type-I to the type-III setting, but we also need to perform a hash operation and use a
variable-base exponentiation. This is also why RW13 outperforms Wat11-IV in Table 12.

38 ABE Squared: Accurately Benchmarking Efficiency of ABE

Table 13: Comparison of the computational costs of the small-universe with the large-
universe variants of the Wat11 and AC17 schemes for 100 attributes, for each optimization
approach, on their most efficient curve in the [125, 128]-bit and [129, 135]-bit security
ranges, respectively. The costs are expressed in 103 clock cycles. We also provide the
increase (in percentage) by which the costs of the variant are higher than the most efficient
variant of the scheme (which costs are typeset in bold).
Scheme OA SU/ Curve Key generation Encryption Decryption

LU Costs Increase Costs Increase Costs Increase

Wat11
OE SU BLS12-381 25653 - 39951 - 58515 0.4%

LU BLS12-381 42275 64.8% 77641 94.3% 58290 -

OK SU BLS12-381 10555 - 101181 29.9% 63151 8.1%
LU BLS12-381 42135 299.2% 77898 - 58441 -

AC17

OE SU BLS12-381 25471 - 29348 - 13736 51.6%
LU BLS12-381 42196 65.7% 52176 77.8% 9060 -

OK SU BLS12-381 10635 - 76067 45.4% 13696 50.9%
LU BLS12-381 41913 294.1% 52326 - 9076 -

OD SU BN382 16184 - 41776 - 4033 -
LU BN382 45093 178.6% 59276 41.9% 4058 0.6%

(a) BLS12-381 and BN382 curves

Scheme OA SU/ Curve Key generation Encryption Decryption
LU Costs Increase Costs Increase Costs Increase

Wat11
OE SU BLS12-446 38454 - 58789 - 84291 -

LU BLS12-446 64972 69.0% 117130 99.2% 84761 0.6%

OK SU BLS12-446 16166 - 152224 5.6% 91919 -
LU BN446 64486 298.9% 144159 - 101924 10.9%

AC17

OE SU BLS12-446 38615 - 42860 - 18294 65.8%
LU BLS12-446 64930 68.1% 79350 85.1% 11033 -

OK SU BLS12-446 16103 - 114055 43.4% 18258 64.4%
LU BLS12-446 65029 303.8% 79552 - 11109 -

OD SU BN446 24607 - 62200 - 5662 -
LU BN446 63891 159.6% 84030 35.1% 5676 0.2%

(b) BLS12-446 and BN446 curves

5 Future work
This work provides the basis for further research at various levels.

5.1 Automating our framework
Our type-conversion methods are heuristic and manual. The reason why they are heuristic
is because the conversion methods are inextricably intertwined with the efficiency of the
arithmetic not only provided by the chosen curve, but also by the order of the computations
and the implementation of the arithmetic (which might in turn depend on the architecture
of the processor). Currently, automating our conversion techniques is not trivial. Due to
the heuristic nature of our given methods (which requires us to circle back to earlier design
choices to see if these need to be adjusted), it may be more difficult to automate than like
in [AGOT14, AGH15, AHO16]. Instead, one could take a different approach. First, one
could make a theoretical estimation of the computational costs of the arithmetic and group
operations, for all possible pairing-friendly curves at the desired security level. Second,
one could make a list of all possible distributions of the key and ciphertext components
over the source groups. For each distribution and pairing-friendly curve, one can then
determine the most efficient algorithms for the group operations and optimize the order of

A. de la Piedra, M. Venema G. Alpár 39

computations (which is not a trivial effort either). Given some optimization goal, the most
efficient distribution can then be selected to be the optimal type conversion.

5.2 More pairing-friendly curves

In our analysis, we have only considered two curves in the [125, 128]-bit security range and
two curves in the [129, 135]-bit security range. As we mentioned in the introduction, many
pairing-friendly groups exist that provide at least 128 bits of security [Gui20a]. Notably,
the KSS16 curves [KSS08] provide efficient arithmetic in the first source group and efficient
multi-pairing operations [GF16, Ara17, CDS20]. These might be especially beneficial for
schemes such as RW13, which provide much freedom with respect to their type conversion.
In order to improve the benchmarks in this framework, more curves need to be supported
by RELIC. Alternatively, a framework or library can be set up with the estimated efficiency
of frequently-used arithmetic of the curves providing 128 bits of security listed at [Gui20a].
This would also help in any automated efforts.

5.3 Improving usability, validity and verifiability

To simplify the accurate comparison of schemes even further, it is important to make
the framework more usable for ABE designers. As a result, cryptographers can easily
compare their new scheme with existing ones in a transparent way without requiring a
deep understanding of cryptographic engineering. One could make the framework more
usable by providing a functionality that allows designers to specify e.g., an encoding of
a scheme (rather than a full-fledged description). In this way, it also becomes easier to
analyze the schemes with respect to other metrics, such as validity and verifiability, e.g.,
either manually [VA21] or even automatically [ABGW17].

5.4 Implementing fully secure ABE

We have implemented only the selectively secure variants of Wat11, RW13 and AC17.
While this provides a reliable comparison of the structure of the schemes, in practice, we
require the use of a fully secure scheme. Since several frameworks exist that provide efficient
generic conversions to the full-security setting [Wee14, Att14], it would be important to
benchmark the underlying groups used in such conversions. In this way, the most efficient
security-conversion technique can be selected. Note that those generic conversions are also
compatible with the aforementioned encodings (Section 5.3).

5.5 Using other platforms

We have implemented and benchmarked the chosen schemes on an x64-based platform with
a single core and significant computational resources (e.g., with a large RAM and high clock
frequency). Possibly, other platforms allow for faster implementations, while more resource-
constrained devices may perform slower e.g., due to their lower clock frequencies, or simply
cannot even store the scheme’s parameters in memory. Additionally, using single instruction
multiple data (SIMD) extensions has been shown to significantly speed up elliptic-curve
and pairing-based cryptography, e.g., with NEON for ARM-based [BS12, SR13, SLG+14]
platforms and AVX2 for x64-based platforms [FL15, FLD19, CGT+20]. Furthermore,
using multiple cores to parallelize the implementations has yielded improvements as well
[FSV07, FSV08, GGP08], and may be especially useful in the implementation of the key
generation and encryption algorithms owing to their already parallelized nature.

40 ABE Squared: Accurately Benchmarking Efficiency of ABE

5.6 Using other algorithms for group operations

We have used RELIC for the implementations of the group operations used in the ABE
schemes. As mentioned in Section 3.1, RELIC does not support all available algorithms,
e.g., it does not support fixed-argument pairings. Furthermore, using precomputation
tables in multiple-base exponentiations may significantly speed up the encryption algorithm
[Möl01]. Conversely, implementing ABE in resource-constrained devices may require the
use of different optimizations [FA17].

5.7 Expanding to other pairing-based ABE, and related primitives

Our methods are mostly targeted at optimizing pairing-based ABE of the specific structure
described in Section 2.5. While this covers many ABE schemes, some schemes exist
that do not have this exact structure, e.g., [LW11a, RW15]. Furthermore, our methods
are also applicable to other pairing-based primitives that satisfy the targeted structure
[AC17b, Att19], e.g., identity-based encryption [Sha84, BF01] and identity-based broadcast
encryption [Del07]. Possibly, our framework can be expanded to cover pairing-based
cryptography for other structures (and primitives) as well.

6 Conclusion
We have presented ABE Squared, a framework for accurately benchmarking efficiency of
attribute-based encryption. Concretely, this framework aims to optimize the theoretical
descriptions of ABE schemes for some chosen design goal by considering four optimization
layers. These layers consider the arithmetic and group operations, the chosen pairing-
friendly group, the order of the computations and the conversion techniques. By taking into
account all layers during the optimization of a theoretical description, we are able to attain
more efficient implementations. More specifically, we have devised several optimization
approaches that aim to accomplish some chosen design goal, e.g., optimized key generation,
encryption or decryption. By optimizing multiple schemes with respect to the same goal,
they can be compared more fairly. Because existing conversion techniques did not allow
us to e.g., optimize the decryption algorithm, we have given new heuristic and manual
techniques that facilitate this. Unlike other existing works, these conversion techniques
take into account the other three optimization layers.

To show the effectiveness of our framework, we have optimized and implemented
five schemes: Wat11-I, Wat11-IV, RW13, AC17 and AC17-LU. These implementations
show that, indeed, the efficiency of the schemes depends heavily on the design goals and
subsequent optimization approaches. For example, Charm shows that Wat11-I is generally
faster than RW13. This may result in the idea that Wat11-IV, the large-universe variant
of Wat11-I, is also faster than RW13, because it is similar. In contrast, we have shown
that RW13 outperforms Wat11-IV with respect to the optimized encryption and optimized
key generation approaches. This illustrates clearly that taking into account any such
design goals in the implementation and benchmarks is crucial in the comparisons as well.
Therefore, the ABE Squared framework provides an instrumental contribution in the
benchmarking—and eventually, in the deployment—of ABE.

Acknowledgments

The authors would like to thank the reviewers for their helpful comments and suggestions.
They would also like to thank Diego Aranha for his tremendous help with RELIC.

A. de la Piedra, M. Venema G. Alpár 41

References
[ABGW17] M. Ambrona, G. Barthe, R. Gay, and H. Wee. Attribute-based encryption

in the generic group model: Automated proofs and new constructions. In
B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, CCS, pages
647–664. ACM, 2017.

[ABN+21] S. Agrawal, R. Biswas, R. Nishimaki, K. Xagawa, X. Xie, and S. Yamada.
Cryptanalysis of Boyen’s attribute-based encryption scheme in TCC 2013.
Cryptology ePrint Archive, Report 2021/505, 2021. https://eprint.iacr.org/
2021/505.

[AC17a] S. Agrawal and M. Chase. FAME: fast attribute-based message encryption.
In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, CCS,
pages 665–682. ACM, 2017.

[AC17b] S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate
encryption schemes. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT,
volume 10210 of Lecture Notes in Computer Science, pages 627–656. Springer,
2017.

[AFK+12] D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, and F. Rodríguez-
Henríquez. Implementing pairings at the 192-bit security level. In M. Abdalla
and T. Lange, editors, Pairing, volume 7708 of Lecture Notes in Computer
Science, pages 177–195. Springer, 2012.

[AGH13] J. A. Akinyele, M. Green, and S. Hohenberger. Using SMT solvers to automate
design tasks for encryption and signature schemes. In A.-R. Sadeghi, V. D.
Gligor, and M. Yung, editors, CCS, pages 399–410. ACM, 2013.

[AGH15] J. A. Akinyele, C. Garman, and S. Hohenberger. Automating fast and secure
translations from type-I to type-III pairing schemes. In I. Ray, N. Li, and
C. Kruegel, editors, CCS, pages 1370–1381. ACM, 2015.

[AGM+] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic.

[AGM+13] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green,
and A. D. Rubin. Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng., 3(2):111–128, 2013.

[AGOT14] M. Abe, J. Groth, M. Ohkubo, and T. Tango. Converting cryptographic
schemes from symmetric to asymmetric bilinear groups. In J. A. Garay and
R. Gennaro, editors, CRYPTO, volume 8616 of Lecture Notes in Computer
Science, pages 241–260. Springer, 2014.

[AHM+16] N. Attrapadung, G. Hanaoka, T. Matsumoto, T. Teruya, and S. Yamada.
Attribute based encryption with direct efficiency tradeoff. In M. Manulis,
A.-R. Sadeghi, and S. A. Schneider, editors, ACNS, volume 9696 of Lecture
Notes in Computer Science, pages 249–266. Springer, 2016.

[AHO16] M. Abe, F. Hoshino, and M. Ohkubo. Design in type-I, run in type-III:
Fast and scalable bilinear-type conversion using integer programming. In
M. Robshaw and J. Katz, editors, CRYPTO, volume 9816 of Lecture Notes
in Computer Science, pages 387–415. Springer, 2016.

https://eprint.iacr.org/2021/505
https://eprint.iacr.org/2021/505
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

42 ABE Squared: Accurately Benchmarking Efficiency of ABE

[Ara17] D. Aranha. Pairings are not dead, just resting, 2017.

[Att14] N. Attrapadung. Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In
P. Q. Nguyen and E. Oswald, editors, EUROCRYPT, volume 8441 of Lecture
Notes in Computer Science, pages 557–577. Springer, 2014.

[Att16] N. Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In J. H. Cheon and T. Takagi, editors,
ASIACRYPT, volume 10032 of Lecture Notes in Computer Science, pages
591–623. Springer, 2016.

[Att19] N. Attrapadung. Unbounded dynamic predicate compositions in attribute-
based encryption. In Y. Ishai and V. Rijmen, editors, EUROCRYPT, volume
11476 of Lecture Notes in Computer Science, pages 34–67. Springer, 2019.

[Bar20] E. Barker. Recommendation for key management–part 1: General (revision
5). 2020.

[BB04] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In C. Cachin and J. Camenisch, editors, EURO-
CRYPT, volume 3027 of Lecture Notes in Computer Science, pages 223–238.
Springer, 2004.

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption
with constant size ciphertext. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again.
In S. Goldwasser, editor, ITCS, pages 326–349. ACM, 2012.

[BD19] R. Barbulescu and S. Duquesne. Updating key size estimations for pairings.
J. Cryptol., 32(4):1298–1336, 2019.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing.
In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

[BKLS02] P. S. L. M. Barreto, H. Yong Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In M. Yung, editor, CRYPTO, volume 2442
of Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

[BLS02] P S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves
with prescribed embedding degrees. In S. Cimato, C. Galdi, and G. Persiano,
editors, SCN, volume 2576 of Lecture Notes in Computer Science, pages
257–267. Springer, 2002.

[BN05] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime
order. In B. Preneel and S. E. Tavares, editors, SAC, volume 3897 of Lecture
Notes in Computer Science, pages 319–331. Springer, 2005.

[Bow] S. Bowe. BLS12-381: New zk-SNARK elliptic curve construction. https:
//blog.z.cash/new-snark-curve/.

[Boy08] X. Boyen. The uber-assumption family – a unified complexity framework
for bilinear groups. In S. D. Galbraith and K. G. Paterson, editors, Pairing,
volume 5209 of Lecture Notes in Computer Science, pages 39–56. Springer,
2008.

https://blog.z.cash/new-snark-curve/
https://blog.z.cash/new-snark-curve/

A. de la Piedra, M. Venema G. Alpár 43

[Boy13] X. Boyen. Attribute-based functional encryption on lattices. In A. Sahai,
editor, TCC, volume 7785 of Lecture Notes in Computer Science, pages
122–142. Springer, 2013.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S.
Sandhu, and V. Ashby, editors, CCS, pages 62–73. ACM, 1993.

[BS12] D. J. Bernstein and P. Schwabe. NEON crypto. In E. Prouff and P. Schaumont,
editors, CHES, volume 7428 of Lecture Notes in Computer Science, pages
320–339. Springer, 2012.

[BSW07] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In S&P, pages 321–334. IEEE, 2007.

[BY19] D. J. Bernstein and B.-Y. Yang. Fast constant-time gcd computation and
modular inversion. TCHES, 2019(3):340–398, 2019.

[CDS20] R. Clarisse, S. Duquesne, and O. Sanders. Curves with fast computations in
the first pairing group. In S. Krenn, H. Shulman, and S. Vaudenay, editors,
CANS, volume 12579 of Lecture Notes in Computer Science, pages 280–298.
Springer, 2020.

[CGKW18] J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear
entropy expansion, revisited. In J. B. Nielsen and V. Rijmen, editors, EURO-
CRYPT, volume 10820 of Lecture Notes in Computer Science, pages 503–534.
Springer, 2018.

[CGT+20] H. Cheng, J. Großschädl, J. Tian, P. B. Rønne, and P. Y. A. Ryan. High-
throughput elliptic curve cryptography using AVX2 vector instructions. In
O. Dunkelman, M. J. Jacobson Jr., and C. O’Flynn, editors, SAC, volume
12804 of Lecture Notes in Computer Science, pages 698–719. Springer, 2020.

[CGW15] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order
groups via predicate encodings. In E. Oswald and M. Fischlin, editors,
EUROCRYPT, volume 9057 of Lecture Notes in Computer Science, pages
595–624. Springer, 2015.

[Che06] J. H. Cheon. Security analysis of the strong diffie-hellman problem. In S. Vau-
denay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer
Science, pages 1–11. Springer, 2006.

[CS10] C. Costello and D. Stebila. Fixed argument pairings. In M. Abdalla and
P. S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of Lecture Notes in
Computer Science, pages 92–108. Springer, 2010.

[DDP+18] W. Dai, Y. Doröz, Y. Polyakov, K. Rohloff, H. Sajjadpour, E. Savas, and
B. Sunar. Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur., 13(5):1169–1184, 2018.

[Del07] C. Delerablée. Identity-based broadcast encryption with constant size cipher-
texts and private keys. In K. Kurosawa, editor, ASIACRYPT, volume 4833
of Lecture Notes in Computer Science, pages 200–215. Springer, 2007.

[DKW21] P. Datta, I. Komargodski, and B. Waters. Decentralized multi-authority
ABE for DNFs from LWE. In A. Canteaut and F.-X. Standaert, editors,
EUROCRYPT, volume 12696 of Lecture Notes in Computer Science, pages
177–209. Springer, 2021.

44 ABE Squared: Accurately Benchmarking Efficiency of ABE

[ETS18] ETSI. ETSI TS 103 532 (V1.1.1), 2018.

[FA17] H. Fujii and D. F. Aranha. Curve25519 for the Cortex-M4 and beyond.
In T. Lange and O. Dunkelman, editors, LATINCRYPT, volume 11368 of
Lecture Notes in Computer Science, pages 109–127. Springer, 2017.

[FL15] A. Faz-Hernández and J. C. López-Hernández. Fast implementation of
Curve25519 using AVX2. In K. E. Lauter and F. Rodríguez-Henríquez,
editors, LATINCRYPT, volume 9230 of Lecture Notes in Computer Science,
pages 329–345. Springer, 2015.

[FLD19] A. Faz-Hernández, J. C. López-Hernández, and R. Dahab. High-performance
implementation of elliptic curve cryptography using vector instructions. ACM
Trans. Math. Softw., 45(3):25:1–25:35, 2019.

[FSV07] J. Fan, K. Sakiyama, and I. Verbauwhede. Montgomery modular multi-
plication algorithm on multi-core systems. In SiPS, pages 261–266. IEEE,
2007.

[FSV08] J. Fan, K. Sakiyama, and I. Verbauwhede. Elliptic curve cryptography on
embedded multicore systems. Des. Autom. Embed. Syst., 12(3):231–242, 2008.

[Gal14] S. D. Galbraith. New discrete logarithm records, and the death
of type 1 pairings. https://ellipticnews.wordpress.com/2014/02/01/
new-discrete-logarithm-records-and-the-death-of-type-1-pairings/, 2014.

[GF16] L. Ghammam and E. Fouotsa. Adequate elliptic curves for computing the
product of n pairings. In S. Duquesne and S. Petkova-Nikova, editors, WAIFI,
volume 10064 of Lecture Notes in Computer Science, pages 36–53, 2016.

[GGP08] P. Grabher, J. Großschädl, and D. Page. On software parallel implementation
of cryptographic pairings. In R. M. Avanzi, L. Keliher, and F. Sica, edi-
tors, SAC, volume 5381 of Lecture Notes in Computer Science, pages 35–50.
Springer, 2008.

[GHM+17] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–68.
ACM, 2017.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphisms. In J. Kilian, editor, CRYPTO,
volume 2139 of Lecture Notes in Computer Science, pages 190–200. Springer,
2001.

[GMT20] A. Guillevic, S. Masson, and E. Thomé. Cocks-Pinch curves of embedding
degrees five to eight and optimal ate pairing computation. Des. Codes
Cryptogr., 88(6):1047–1081, 2020.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discret. Appl. Math., 156(16):3113–3121, 2008.

[GPSW06a] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In A. Juels, R. N. Wright,
and S. De Capitani di Vimercati, editors, CCS. ACM, 2006.

[GPSW06b] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. Cryptology ePrint Archive,
Report 2006/309, 2006.

https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/
https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/

A. de la Piedra, M. Venema G. Alpár 45

[GS06] R. Granger and N.P. Smart. On computing products of pairings. Cryptology
ePrint Archive, Report 2006/172, 2006.

[GS19] A. Guillevic and S. Singh. On the alpha value of polynomials in the tower
number field sieve algorithm. Cryptology ePrint Archive, Report 2019/885,
2019.

[Gui13] A. Guillevic. Comparing the pairing efficiency over composite-order and
prime-order elliptic curves. In M. J. Jacobson Jr., M. E. Locasto, P. Mohassel,
and R. Safavi-Naini, editors, ACNS, volume 7954 of LNCS, pages 357–372.
Springer, 2013.

[Gui20a] A. Guillevic. Pairing-friendly curves. https://members.loria.fr/AGuillevic/
pairing-friendly-curves/, 2020.

[Gui20b] A. Guillevic. A short-list of pairing-friendly curves resistant to special TNFS
at the 128-bit security level. In A. Kiayias, M. Kohlweiss, P. Wallden, and
V. Zikas, editors, PKC, volume 12111 of Lecture Notes in Computer Science,
pages 535–564. Springer, 2020.

[HFK+19] C. T. Hu, D. F. Ferraiolo, D. R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone. Guide to attribute based access control (ABAC) definition
and considerations, 2019.

[HW14] S. Hohenberger and B. Waters. Online/offline attribute-based encryption. In
Hugo Krawczyk, editor, PKC, volume 8383 of Lecture Notes in Computer
Science, pages 293–310. Springer, 2014.

[KB16] T. Kim and R. Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. In M. Robshaw and J. Katz, editors,
CRYPTO, volume 9814 of Lecture Notes in Computer Science, pages 543–571.
Springer, 2016.

[KSS08] E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing brezing-weng
pairing-friendly elliptic curves using elements in the cyclotomic field. In S. D.
Galbraith and K. G. Paterson, editors, Pairing, volume 5209 of Lecture Notes
in Computer Science, pages 126–135. Springer, 2008.

[KW19] L. Kowalczyk and H. Wee. Compact adaptively secure ABE for NC1 from
k-lin. In Y. Ishai and V. Rijmen, editors, EUROCRYPT, volume 11476 of
Lecture Notes in Computer Science, pages 3–33. Springer, 2019.

[LCW10] Z. Liu, Z. Cao, and D. S. Wong. Efficient generation of linear secret sharing
scheme matrices from threshold access trees. Cryptology ePrint Archive,
Report 2010/374, 2010.

[LL94] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation.
In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer
Science, pages 95–107. Springer, 1994.

[LL20] H. Lin and J. Luo. Compact adaptively secure ABE from k-lin: Beyond
nc1 and towards NL. In A. Canteaut and Y. Ishai, editors, EUROCRYPT,
volume 12107 of Lecture Notes in Computer Science, pages 247–277. Springer,
2020.

https://members.loria.fr/AGuillevic/pairing-friendly-curves/
https://members.loria.fr/AGuillevic/pairing-friendly-curves/

46 ABE Squared: Accurately Benchmarking Efficiency of ABE

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In H. Gilbert, editor, EUROCRYPT, volume 6110
of Lecture Notes in Computer Science, pages 62–91. Springer, 2010.

[LW10] A. Lewko and B. Waters. Decentralizing attribute-based encryption. Cryp-
tology ePrint Archive, Report 2010/351, 2010.

[LW11a] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In
EUROCRYPT, pages 568–588. Springer, 2011.

[LW11b] A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption.
In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 547–567. Springer, 2011.

[Lyn13] B. Lynn. The stanford pairing based crypto library. http://crypto.stanford.
edu/pbc, 2013.

[Mil04] V. S. Miller. The weil pairing, and its efficient calculation. J. Cryptol.,
17(4):235–261, 2004.

[MJ18] Y. Michalevsky and M. Joye. Decentralized policy-hiding ABE with receiver
privacy. In J. López, J. Zhou, and M. Soriano, editors, ESORICS, volume
11099 of Lecture Notes in Computer Science, pages 548–567. Springer, 2018.

[Möl01] B. Möller. Algorithms for multi-exponentiation. In S. Vaudenay and A. M.
Youssef, editors, SAC, volume 2259 of Lecture Notes in Computer Science,
pages 165–180. Springer, 2001.

[MTP+21] M. La Manna, L. Treccozzi, P. Perazzo, S. Saponara, and G. Dini. Performance
evaluation of attribute-based encryption in automotive embedded platform
for secure software over-the-air update. Sensors, 21(2):515, 2021.

[PRMV21] P. Perazzo, F. Righetti, M. La Manna, and C. Vallati. Performance evaluation
of attribute-based encryption on constrained iot devices. Comput. Commun.,
170:151–163, 2021.

[PTMW10] M. Pirretti, P. Traynor, P. D. McDaniel, and B. Waters. Secure attribute-
based systems. J. Comput. Secur., 18(5):799–837, 2010.

[RCS12] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of Waters’ dual system
primitives using asymmetric pairings - (extended abstract). In M. Fischlin,
J. Buchmann, and M. Manulis, editors, PKC, volume 7293 of Lecture Notes
in Computer Science, pages 298–315. Springer, 2012.

[RW13] Y. Rouselakis and B. Waters. Practical constructions and new proof methods
for large universe attribute-based encryption. In A.-R. Sadeghi, V. D. Gligor,
and M. Yung, editors, CCS, pages 463–474. ACM, 2013.

[RW15] Y. Rouselakis and B. Waters. Efficient statically-secure large-universe multi-
authority attribute-based encryption. In R. Böhme and T. Okamoto, editors,
FC, volume 8975 of Lecture Notes in Computer Science, pages 315–332.
Springer, 2015.

[Sco03] M. Scott. MIRACL cryptographic SDK: Multiprecision Integer and Rational
Arithmetic Cryptographic Library. https://github.com/miracl/MIRACL,
2003.

http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc
https://github.com/miracl/MIRACL

A. de la Piedra, M. Venema G. Alpár 47

[Sco11] M. Scott. On the efficient implementation of pairing-based protocols. In
L. Chen, editor, IMACC, volume 7089 of Lecture Notes in Computer Science,
pages 296–308. Springer, 2011.

[Sha79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and D. Chaum, editors, CRYPTO, volume 196 of Lecture Notes in
Computer Science, pages 47–53. Springer, 1984.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
W. Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer
Science, pages 256–266. Springer, 1997.

[SKSW20] Y. Sakemi, T. Kobayashi, T. Saito, and R. S. Wahby. Pairing-Friendly Curves.
Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-09, Internet Engineering
Task Force, November 2020. Work in Progress.

[SLG+14] H. Seo, Z. Liu, J. Großschädl, J. Choi, and H. Kim. Montgomery modular
multiplication on ARM-NEON revisited. In J. Lee and J. Kim, editors, ICISC,
volume 8949 of Lecture Notes in Computer Science, pages 328–342. Springer,
2014.

[SR13] A. H. Sánchez and F. Rodríguez-Henríquez. NEON implementation of an
attribute-based encryption scheme. In M. J. Jacobson Jr., M. E. Locasto,
P. Mohassel, and R. Safavi-Naini, editors, ACNS, volume 7954 of Lecture
Notes in Computer Science, pages 322–338. Springer, 2013.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 457–473. Springer, 2005.

[TKN20] J. Tomida, Y. Kawahara, and R. Nishimaki. Fast, compact, and expressive
attribute-based encryption. In A. Kiayias, M. Kohlweiss, P. Wallden, and
V. Zikas, editors, PKC, volume 12110 of Lecture Notes in Computer Science,
pages 3–33. Springer, 2020.

[VA21] M. Venema and G. Alpár. A bunch of broken schemes: A simple yet powerful
linear approach to analyzing security of attribute-based encryption. In K. G.
Paterson, editor, CT-RSA, volume 12704 of Lecture Notes in Computer
Science, pages 100–125. Springer, 2021.

[VAH21] M. Venema, G. Alpár, and J.-H. Hoepman. Systematizing core properties
of pairing-based attribute-based encryption to uncover remaining challenges
in enforcing access control in practice. Cryptology ePrint Archive, Report
2021/1172, 2021.

[Ver10] F. Vercauteren. Optimal pairings. IEEE Trans. Inf. Theory, 56(1):455–461,
2010.

[Wat08] B. Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. Cryptology ePrint Archive, Report
2008/290, 2008.

[Wat11] B. Waters. Ciphertext-policy attribute-based encryption - an expressive,
efficient, and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, editors, PKC, volume 6571 of Lecture Notes in Computer
Science, pages 53–70. Springer, 2011.

48 ABE Squared: Accurately Benchmarking Efficiency of ABE

[WB19] R. S. Wahby and D. Boneh. Fast and simple constant-time hashing to the
BLS12-381 elliptic curve. TCHES, 2019(4):154–179, 2019.

[Wee14] H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor,
TCC, volume 8349 of Lecture Notes in Computer Science, pages 616–637.
Springer, 2014.

[WZSI14] X. Wang, J. Zhang, E. M. Schooler, and M. Ion. Performance evaluation of
attribute-based encryption: Toward data privacy in the iot. In ICC, pages
725–730. IEEE, 2014.

[ZCa21] ZCash. Company. https://z.cash/, 2021.

[Zeu20] Zeutro. The OpenABE library - open source cryptographic library with
attribute-based encryption implementations in C/C++. https://github.com/
zeutro/openabe, 2020.

[ZPM+15] E. Zavattoni, L. J. Dominguez Perez, S. Mitsunari, A. H. Sánchez-Ramírez,
T. Teruya, and F. Rodríguez-Henríquez. Software implementation of an
attribute-based encryption scheme. IEEE Trans. Computers, 64(5):1429–
1441, 2015.

A More information on access structures

A.1 Shamir’s secret sharing scheme
Shamir’s secret sharing scheme [Sha79] is often used in access structures.

Definition 3 (Shamir’s secret sharing scheme (SSSS) [Sha79]). Shamir’s (t, n)-threshold
secret sharing considers how a secret s̄ can be shared among n participants such that
1 ≤ t ≤ n participants are needed to reconstruct it. It consists of two algorithms.

• Distribution: This algorithm takes as input a threshold t and n participants,
generates random integers v1, ..., vt−1 ∈R Zp such that it spans a polynomial f(x) =
s̄+

∑t−1
i=1 vix

i mod p. Then, it outputs the share of the secret s̄ for each participant
i ∈ [1, n] as si = f(i).

• Reconstruction: For any subset S ⊆ [1, n] with |S| = t, the secret can be recovered
by computing ΛS,i =

∏
j∈S\{i}

j
j−i mod p, and then reconstruct

s̄ =
∑
i∈S

ΛS,i · si mod p.

A.2 Access structures
The access structures used in our framework are all monotone.

Definition 4 (Monotone access structures). Let {a1, ..., an} be a set of attributes. An
access structure is a collection A of non-empty subsets of {a1, ..., an}. The sets in A are
called the authorized sets, and the sets that are not in A are called the unauthorized sets.
An access structure A ⊆ 2{a1,...,an} is monotone if for all B,C, the following holds: B ∈ A
and B ⊆ C, then also C ∈ A.

https://z.cash/
https://github.com/zeutro/openabe
https://github.com/zeutro/openabe

A. de la Piedra, M. Venema G. Alpár 49

A.2.1 Access trees

In our implementations, we represent the access structures as access trees like in [GPSW06a].
An access policy represented as a string is converted to a tree. The leaves correspond
to the attributes and the nodes to OR, AND or (t, n)-threshold gates. We construct the
access tree recursively as follows:

• (Base case) Initialize secret s in the root node.

• (Inductive step) For (t, n)-threshold gates: split the secret s̄ inherited from the
parent in accordance with Shamir’s (t, n)-threshold secret sharing scheme. First,
pick random coefficients vi ∈R Zp for i ∈ [1, t − 1], set f(x) = s̄ +

∑t−1
i=1 vix

i, and
then propagate λi = f(i) to each child node i ∈ [1, n].

In Charm [AGM+13], OpenABE [Zeu20] and our implementations, OR and AND gates
are treated as (1, 2) and (2, 2)-gates, respectively.

A.2.2 Linear secret sharing schemes

For the definitions of the schemes, we represent access policies A by linear secret sharing
scheme (LSSS) matrices [GPSW06b], i.e., A = (A, ρ) is such that A ∈ Zn1×n2

p is a matrix,
and ρ maps its rows to attributes. Then, for some random vector v = (s, v2, ..., vn2), the
i-th share of secret s generated by this matrix is λi = Aivᵀ, where Ai denotes the i-th
row of A. Let S be an attribute set, and define Υ = {i ∈ [n1] | ρ(i) ∈ S}. If S satisfies
A, then there exist εi ∈ Zp for all i ∈ Υ such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and thus∑

i∈Υ εiλi = s.

A.2.3 Conversion from access policies to LSSS matrices

The access policies can also be represented as LSSS matrices, which is often the case in
formal descriptions of schemes. Using the methods of Liu et al. [LCW10], we can represent
the LSSS matrices analogously to the access trees. The matrices are generated recursively
as follows:

• (Base case) Initialize the root node with vector x = (1) of length n2 = 1. Note that
n2 is a globally updated counter in the protocol.

• (Inductive step) (t, n)-threshold gate: split the node vector x in n vectors, i.e., for
each i ∈ [1, n], set xi ← (x‖0n2−|x|‖i‖i2‖...‖it−1) of length n2 + t − 1, and update
n2 ← n2 + 1. Propagate xi to child node i.

• (Final step, after all nodes have been propagated) Leaves: set the vector x inherited
from the parent to (x‖0n2−|x|) if |x| < n2.

The output of this algorithm is an LSSS matrix A spanned by the rows in the leaves.
The total number of rows n1 corresponds with the length of the policy, and the total
number of columns corresponds with n2.

A.2.4 More efficient LSSS matrices

Lewko and Waters have devised an algorithm that yields more efficient implementations of
the decryption algorithm [LW10]. First, translate the access policy to an access tree, such
that the leaves correspond to the attributes and the nodes to OR and AND gates. We
create the LSSS matrix recursively as follows:

• (Base case) Initialize the root node with vector x = (1) of length n2 = 1. Note that
n2 is a globally updated counter in the protocol.

50 ABE Squared: Accurately Benchmarking Efficiency of ABE

• (Inductive step)

– OR gate: propagate the node vector x to both children.
– AND gate: split the node vector x in two vectors: (x‖0n2−|x|‖1) and (0n2‖ − 1)

with length n2 + 1, update n2 ← n2 + 1 and propagate the vectors to the
children.

• (Final step, after all nodes have been propagated) Leaves: set the vector x inherited
from the parent to (x‖0n2−|x|) if |x| < n2.

The output of this algorithm is an LSSS matrix A spanned by the rows in the leaves.
This yields a significant speed-up during decryption because the reconstruction coefficients
εj are either 0 or 1, and thus only incurs multiplications [AC17a]. In contrast, if OR
and AND gates are treated as threshold gates, this yields much larger coefficients in the
reconstruction of the secret. Those require full-fledged exponentiations for each matching
attribute during decryption.

B Full descriptions of the schemes
Full descriptions of the type-converted schemes can be found here. More specifically,
the following definitions correspond to the following schemes optimized for the following
optimization approaches:

• The Waters [Wat11, Wat08] CP-ABE schemes:

– Definition 5 (Wat11-I-OE): scheme I, type-III setting with optimized encryption
(as well as optimized decryption, most balanced key generation/encryption and
encryption/decryption);

– Definition 6 (Wat11-I-OK): scheme I, type-III setting with optimized key gener-
ation;

– Definition 7 (Wat11-I-BAD-I): scheme I, type-III setting with a bad distribution
of the key and ciphertext components, and no optimized arithmetic;

– Definition 8 (Wat11-I-BAD-II): scheme I, type-III setting with a bad distribution
of the key and ciphertext components, and with optimized arithmetic;

– Definition 9 (Wat11-IV-OE): scheme IV, type-III setting with optimized encryp-
tion (as well as optimized decryption, most balanced key generation/encryption
and encryption/decryption);

– Definition 10 (Wat11-IV-OK): scheme IV, type-III setting with optimized key
generation.

• The Rouselakis-Waters [RW13] CP-ABE schemes:

– Definition 11 (RW13-OE): scheme I, type-III setting with optimized encryption
(as well as optimized decryption and most balanced key generation/encryption
and encryption/decryption);

– Definition 12 (RW13-OK): scheme I, type-III setting with optimized key gener-
ation.

• The Agrawal-Chase [AC17b, AC17a] CP-ABE schemes:

– Definition 13 (AC17-CP)): small-universe version of the multi-use scheme in
[AC17b] with the same distribution as FAME [AC17a];

A. de la Piedra, M. Venema G. Alpár 51

– Definition 14 (AC17-LU-CP): large-universe version of the multi-use scheme in
[AC17b] with the same distribution as FAME [AC17a] by using a full-domain
hash;

– Definition 15 (AC17-OE): small-universe version of the multi-use scheme in
[AC17b] with optimized encryption;

– Definition 16 (AC17-OK): small-universe version of the multi-use scheme in
[AC17b] with optimized key generation;

– Definition 17 (AC17-OD): small-universe version of the multi-use scheme in
[AC17b] with optimized decryption (as well as most balanced key genera-
tion/encryption, encryption/decryption);

– Definition 18 (AC17-LU-OE): large-universe version of the multi-use scheme
in [AC17b] with optimized encryption (as well as optimized decryption and
most balanced key generation/encryption and encryption/decryption) by using
a full-domain hash;

– Definition 19 (AC17-LU-OK): large-universe version of the multi-use scheme in
[AC17b] with optimized key generation by using a full-domain hash.

B.1 Wat11-I constructions
B.1.1 Optimized encryption/decryption, balanced key generation/encryption and

encryption/decryption

As per our analysis, the definition of the Wat11-I scheme with optimized encryption algo-
rithm places all ciphertext components in the first source group. This also yields the most
optimized scheme for the balanced key generation/encryption and encryption/decryption
approaches, and the optimized decryption approach.

Definition 5 (The Wat11-I-OE scheme [Wat11]). The Wat11-I scheme with optimized
encryption algorithm (as well as optimized decryption and most balanced key genera-
tion/encryption and encryption/decryption) is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ U . It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Batt = gbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = hrbatt}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

52 ABE Squared: Accurately Benchmarking Efficiency of ABE

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Cεj2,j ,Kρ(j))

 .

B.1.2 Optimized key generation

In the variant of the scheme with an optimized key generation algorithm, as many key
components are placed in the first source group as possible.

Definition 6 (The Wat11-I-OK scheme [Wat11]). The Wat11-I scheme with optimized
key generation algorithm is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ U . It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = hb, {Batt = hbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = gr, {Katt = grbatt}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = hs, {C1,j = BλjB
sj
ρ(j), C2,j = hsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(K ′,∏
j∈Υ

C
εj
1,j)/

∏
j∈Υ

e(Kεj
ρ(j), C2,j)

 .

B.1.3 Variants of Wat11-I with bad efficiency

To show that the optimization strategy matters, we also include an instance of Wat11-I
with a bad overall efficiency. To this end, we distribute the key and ciphertext components
unfavorably, and we use no optimizations such as an optimized order of computations, or
optimized algorithms for exponentiations.

Definition 7 (The Wat11-I-BAD scheme [Wat11]). TheWat11-I scheme with bad efficiency
is defined as follows.

A. de la Piedra, M. Venema G. Alpár 53

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ U . It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = hb, {Batt = hbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = gr, {Katt = hrbatt}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) ·

∏
j∈Υ

e(K ′, C1,j)/e(C2,j ,Kρ(j))

εj .

To determine the effect of using optimized arithmetic, we also include a variant of
Wat11-I-BAD which uses optimized arithmetic. This means that comparing Wat11-I-
OE and Wat11-I-OK with Wat11-I-BAD-II yields a clean comparison between the type
conversions only. Furthermore, comparing Wat11-I-BAD and Wat11-I-BAD-II gives an
idea of how much the use of optimized arithmetic matters in any implementations.

Definition 8 (The Wat11-I-BAD-II scheme [Wat11]). The Wat11-I scheme with bad
efficiency is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ U . It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = hb, {Batt = hbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = gr, {Katt = hrbatt}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

54 ABE Squared: Accurately Benchmarking Efficiency of ABE

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) ·

∏
j∈Υ

e(K ′, C1,j)/e(C2,j ,Kρ(j))

εj .

B.2 Wat11-IV constructions
B.2.1 Optimized encryption/decryption, balanced key generation/encryption and

encryption/decryption

Definition 9 (The Wat11-IV-OE scheme [Wat08]). The Wat11-IV scheme with opti-
mized encryption algorithm (as well as optimized decryption and most balanced key
generation/encryption and encryption/decryption) is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT , and a hash function modeled as a random oracle H : {0, 1}∗ → G.
The universe of attributes is U = Zp. The setup also generates random integers
α, b ∈R Zp. It outputs MSK = (α, b) as its master secret key and publishes the
master public key as

MPK = (g, h,A = e(g, h)α, B = gb).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = H(att)r}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = BλjH(ρ(j))sj , C2,j = hsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,j)

 .

Remark 5. Note that the encryption algorithm of Definition 5 is more efficient than the
encryption algorithm of Definition 9. Not only does the hash function H incur additional
costs, but also the fact that C2,j lives in H, which slows down the computation of C2,j by
several factors (e.g. factor 3-9, depending on the choice of elliptic curve, e.g. BLS/BN or
KSS) compared to when it had lived in G.

A. de la Piedra, M. Venema G. Alpár 55

B.2.2 Optimized key generation

Definition 10 (The Wat11-IV-OK scheme [Wat08]). The Wat11-IV scheme with optimized
key generation algorithm is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT , and a hash function modeled as a random oracle H : {0, 1}∗ → G.
The universe of attributes is U = Zp. The setup also generates random integers
α, b ∈R Zp. It outputs MSK = (α, b) as its master secret key and publishes the
master public key as

MPK = (g, h,A = e(g, h)α, B = gb).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = hr, {Katt = H(att)r}att∈S).

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p , ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp for all i ∈ [n1]
and j ∈ [2, n2], and computing the ciphertext as

CTA = (C = M ·As, C ′ = hs, {C1,j = BλjH(ρ(j))sj , C2,j = hsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,j)

 .

B.3 RW13 constructions
B.3.1 Optimized encryption/decryption and balanced key generation/encryption,

encryption/decryption

Definition 11 (The RW13 CP-ABE-OE scheme [RW13]). The RW13 ciphertext-policy
attribute-based encryption scheme with optimized encryption (as well as optimized decryp-
tion and most balanced key generation/encryption and encryption/decryption) is defined
as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G × H → GT . The setup also defines the universe of attributes U = Zp. It
then generates random α, b, b0, b1, b

′ ∈R Zp. It outputs MSK = (α, b, b0, b1, b′) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, B0 = gb0 , B1 = gb1 , B′ = gb
′
).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the representation of
att in Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {K1,att = hratt(b1xatt+b0)+rb′ ,K2,att = hratt}att∈S).

56 ABE Squared: Accurately Benchmarking Efficiency of ABE

• Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ) with
A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers s,si,vj ∈R Zp for all
i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = Bλj (B′)sj ,

C2,j =
(
B
ρ(j)
1 B0

)sj
, C3,j = gsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [1, n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)
∏
j∈Υ

(
e(Cεj2,j ,K2,ρ(j))/e(C

εj
3,j ,K1,ρ(j))

) .

B.3.2 Optimized key generation

Definition 12 (The RW13 CP-ABE-OK scheme [RW13]). The RW13 ciphertext-policy
attribute-based encryption scheme with optimized key generation is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G × H → GT . The setup also defines the universe of attributes U = Zp. It
then generates random α, b, b0, b1, b

′ ∈R Zp. It outputs MSK = (α, b, b0, b1, b′) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = hb, B0 = hb0 , B1 = hb1 , B′ = hb
′
).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote the representation of
att in Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = gr, {K1,att = gratt(b1xatt+b0)+rb′ ,K2,att = gratt}att∈S).

• Encrypt(M,MPK,A): An encrypting user encrypts message M ∈ GT under A =
(A, ρ) with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers s,si,vj ∈R Zp
for all i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, C ′ = hs, {C1,j = Bλj (B′)sj ,

C2,j =
(
B
ρ(j)
1 B0

)sj
, C3,j = hsj}j∈[1,n1]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [1, n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(K ′,∏
j∈Υ

C
εj
1,j)

∏
j∈Υ

(
e(Kεj

2,ρ(j), C2,j)/e(Kεj
1,ρ(j), C3,j)

) .

A. de la Piedra, M. Venema G. Alpár 57

B.4 AC17 constructions
AC17 [AC17b] is a multi-use scheme that benefits from the efficiency of the second scheme
by Waters [Wat11] and the flexibility of his first scheme, i.e., Wat11-I. In particular, instead
of computing the pair (gsj , BλjBsjρ(j)) for each row in the policy, it only generates a “fresh”
random integer sj when needed: for each new use of the same attribute. Hence, instead of
requiring n1 random generators gsj , we only need m such generators, where m denotes
the maximum number of uses of the same attribute in the policy. Then, we use a fresh
random for each occurrence of the same attribute. We annotate this in the scheme by
defining the mapping τ : [n1]→ [m] such that for all j, j′ ∈ [n1] with ρ(j) = ρ(j′), it holds
that τ(j) 6= τ(j′). This reduces both the encryption and decryption costs.

B.4.1 Small-universe CP-ABE scheme with same distribution as FAME

We define the selectively secure version of AC17 [AC17b] scheme—which is essentially the
selectively secure variant of FAME [AC17a] without all the hashes and with multi-use
support—as follows.
Definition 13 (The AC17-CP scheme [AC17b, AC17a]). The AC17 scheme is defined as
follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ Zp. It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Batt = gbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = hr, {Katt = grbatt}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). The user then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = hs,

{C1,j = BλjB
sτ(j)
ρ(j) }j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute, i.e.,

we compute

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j)) =

∏
l∈[m]

e

 ∏
j∈Υ∩{j′∈[n1]|τ(j′)=l}

K
εj
ρ(j), C2,l

 .

58 ABE Squared: Accurately Benchmarking Efficiency of ABE

B.4.2 Large-universe CP-ABE scheme with same distribution as FAME

We define the selectively secure and large-universe version of AC17 [AC17b] scheme—which
is essentially the selectively secure variant of FAME [AC17a] without most of the hashes
except those needed for the generators associated with the attributes and supporting
multi-use of attributes—as follows.
Definition 14 (The AC17-LU-CP scheme [AC17b, AC17a]). The AC17 scheme is defined
as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT and a hash function H : {0, 1}∗ → G, modeled as a random oracle.
The universe of attributes is U = Zp. The setup also generates random integers
α, b ∈R Zp. It outputs MSK = (α, b) as its master secret key and publishes the
master public key as

MPK = (g, h,H, A = e(g, h)α, B = gb).

• KeyGen(MSK,S): On input a set of attributes S by generating random integers
r ∈R Zp and computing the secret key as

SKS = (K = gα−rb,K ′ = hr, {Katt = H(att)r}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). Then, it generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = hs,
{C1,j = BλjH(ρ(j))sτ(j)}j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute.

B.4.3 Small-universe CP-ABE scheme with optimized encryption

We define the AC17 [AC17b] scheme in the small-universe setting with optimized encryption
as follows. Note that this scheme resembles the selectively secure version of [AC17b].
Definition 15 (The AC17-OE scheme [AC17b, Wat11]). The AC17-OE scheme is defined
as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ Zp. It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Batt = gbatt}att∈U).

A. de la Piedra, M. Venema G. Alpár 59

• KeyGen(MSK,S): On input a set of attributes S by generating random integers
r ∈R Zp and computing the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = hrbatt}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). It then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs,

{C1,j = BλjB
sτ(j)
ρ(j) }j∈[1,n1], {C2,l = gsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(C2,τ(j),K
εj
ρ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(C2,τ(j),K

εj
ρ(j)) is at most the maximum number of uses of an attribute. This

comes at the cost of a maximum of |Υ| exponentiations in H.

B.4.4 Small-universe CP-ABE scheme with optimized key generation

We define the AC17 [AC17b] scheme in the small-universe setting with optimized key
generation as follows. Note that this scheme resembles the selectively secure version of
[AC17b].

Definition 16 (The AC17-OK scheme [AC17b, Wat11]). The AC17-OK scheme is defined
as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ Zp. It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = hb, {Batt = hbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = gr, {Katt = grbatt}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). It then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = hs,

{C1,j = BλjB
sτ(j)
ρ(j) }j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

60 ABE Squared: Accurately Benchmarking Efficiency of ABE

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(K ′,∏
j∈Υ

C
εj
1,j)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute.

B.4.5 Small-universe CP-ABE scheme with optimized decryption, most balanced key
generation/encryption, encryption/decryption

We define the AC17 [AC17b] scheme in the small-universe setting with optimized decryption
(as well as most balanced key generation/encryption and encryption/decryption) as follows.
Note that this scheme resembles the selectively secure version of [AC17b].
Definition 17 (The AC17-OD scheme [AC17b, Wat11]). The AC17-OD scheme is defined
as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT . The universe of attributes is U . The setup also generates random
integers α, b, batt ∈R Zp for all att ∈ Zp. It outputs MSK = (α, b, {batt}att∈U) as its
master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Batt = gbatt}att∈U).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computing the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = grbatt}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). It then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs,

{C1,j = BλjB
sτ(j)
ρ(j) }j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute.

Remark 6. If εj is small, then the distribution of the key and ciphertext components that
leads to the most balanced encryption/decryption efficiency requires that C2,l are in G
and Katt in H, because an exponentiation is generally much more expensive than |Υ|
multiplications.

A. de la Piedra, M. Venema G. Alpár 61

B.4.6 Large-universe CP-ABE scheme with optimized encryption/decryption, most
balanced key generation/encryption, encryption/decryption

We define the AC17 [AC17b] scheme in the large-universe setting (obtained by using a
hash) with optimized encryption (as well as optimized decryption, most balanced key
generation/encryption, and encryption/decryption) as follows. Note that this scheme
resembles the selectively secure version of FAME [AC17a], without placing a one-use
restriction on the access policies.

Definition 18 (The AC17-LU-OE scheme [AC17b, Wat11]). The AC17-LU-OE scheme
is defined as follows.

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT , and a hash function modeled as a random oracle H : {0, 1}∗ → G.
The universe of attributes is U = Zp. The setup also generates random integers
α, b ∈R Zp. It outputs MSK = (α, b) as its master secret key and publishes the
master public key as

MPK = (g, h,A = e(g, h)α, B = gb).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = H(att)r}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). The user then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs,
{C1,j = BλjH(ρ(j))sτ(j)}j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(C ′,K) · e(
∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute.

B.4.7 Large-universe CP-ABE scheme with optimized key generation

We define the AC17 [AC17b] scheme in the large-universe setting (obtained by using a
hash) with optimized key generation as follows. Note that this scheme resembles the
selectively secure version of FAME [AC17a], without placing a one-use restriction on the
access policies.

Definition 19 (The AC17-LU-OK scheme [AC17b, Wat11]). The AC17-LU-OK scheme
is defined as follows.

62 ABE Squared: Accurately Benchmarking Efficiency of ABE

• Setup(λ): Taking as input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pairing
e : G×H→ GT , and a hash function modeled as a random oracle H : {0, 1}∗ → G.
The universe of attributes is U = Zp. The setup also generates random integers
α, b ∈R Zp. It outputs MSK = (α, b) as its master secret key and publishes the
master public key as

MPK = (g, h,A = e(g, h)α, B = gb).

• KeyGen(MSK,S): On input a set of attributes S, the algorithm generates random
integers r ∈R Zp and computes the secret key as

SKS = (K = gα−rb,K ′ = hr, {Katt = H(att)r}att∈S).

• Encrypt(M,MPK,A): A messageM ∈ GT is encrypted under A = (A, ρ, τ) with A ∈
Zn1×n2
p , ρ : [n1]→ U and τ : {1, ..., n1} → {1, ...,m}, wherem = maxi∈[1,n1] |ρ−1(ρ(i))|,

such that for i 6= j with ρ(i) = ρ(j), it holds that τ(i) 6= τ(j). It then generates
random integers s, s1, ..., sm, v2, ..., vn2 ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = hs,
{C1,j = BλjH(ρ(j))sτ(j)}j∈[1,n1], {C2,l = hsl}l∈[1,m]),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2)ᵀ.

• Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ {1, ..., n1} |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0). Then the

plaintext M is retrieved by computing

C/

e(K,C ′) · e(∏
j∈Υ

C
εj
1,j ,K

′)/

∏
j∈Υ

e(Kεj
ρ(j), C2,τ(j))

 .

Note that we assume that the number of pairing operations needed to compute∏
j∈Υ e(K

εj
ρ(j), C2,τ(j)) is at most the maximum number of uses of an attribute.

C The best choices of curves for AC17
Table 14 lists the best choices of curves for each optimization approach, for each number
of attributes. If for different numbers of attributes, we require a different curve, we also
estimate a threshold for the number of attributes for which the curve choice changes. For
example, AC17-OD performs better on curve BLS12-446 for up to 17 attributes, while for
more than 17 attributes, it performs better on BN446.

A. de la Piedra, M. Venema G. Alpár 63

Table 14: The best choice of curve for security ranges [125, 128] and [129, 135], for AC17
and AC17-LU, for each optimization approach (OA). For the constructions with two choices
of curves, we determine a threshold for the number of attributes for which the curve choice
changes.

Sc
h OA Security range # of attributes Estimated threshold1 10 100

A
C
17

OE [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

OK [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

OD [125, 128] BLS12-381 BN382 BN382 11
[129, 135] BLS12-446 BLS12-446 BN446 18

BKE [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

BED [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

A
C
17

-L
U

OE [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

OK [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BN446 30

OD [125, 128] BLS12-381 BN382 BN382 11
[129, 135] BLS12-446 BLS12-446 BN446 18

BKE [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BLS12-446 -

BED [125, 128] BLS12-381 BLS12-381 BLS12-381 -
[129, 135] BLS12-446 BLS12-446 BN446 75

	Introduction
	Our contribution
	Background

	Preliminaries
	Notation
	Access structures
	Ciphertext-policy ABE
	Pairings (or bilinear maps)
	Pairing-based ABE

	Our framework: ABE Squared
	Optimized arithmetic and group operations
	Optimal choices of pairing-friendly groups
	Benchmarks of the group operations on various curves
	Optimizing the order of computations
	Our optimization approaches for specific design goals
	Our type-conversion methods
	Example: type-converting Wat11
	Selecting the best elliptic curve for a specific goal

	Benchmarking
	The schemes
	The optimized type-converted constructions in short notation
	Implementation details
	Memory footprint
	Performance analysis of our implementations
	Comparing different optimizations
	Proof of concept: comparison of different schemes

	Future work
	Automating our framework
	More pairing-friendly curves
	Improving usability, validity and verifiability
	Implementing fully secure ABE
	Using other platforms
	Using other algorithms for group operations
	Expanding to other pairing-based ABE, and related primitives

	Conclusion
	More information on access structures
	Shamir's secret sharing scheme
	Access structures

	Full descriptions of the schemes
	Wat11-I constructions
	Wat11-IV constructions
	RW13 constructions
	AC17 constructions

	The best choices of curves for AC17

