
Inapplicability of Differential Fault Attacks
against Cellular Automata based Lightweight

Authenticated Cipher

AMBILI K N?, JIMMY JOSE†

Department of Computer Science and Engineering,
National Institute of Technology Calicut, India

Received 31 October 2021; In final form –

Authenticated encryption (AE) schemes are a necessity to secure
the physical devices connected to the Internet. Two AE schemes,
TinyJambu and Elephant, are finalists of NIST lightweight
cryptography competition. Another AE scheme, ACORN v3, a
CAESAR competition finalist, has been shown to be particularly
vulnerable against Differential Fault Attack (DFA), even more
than its previous version ACORN v2. TinyJambu is also
susceptible to DFA. An optimized interpolation attack has been
proposed against one instance of Elephant, Delirium, recently.
We propose methods to strengthen these schemes using the
Cellular Automata (CA) and increase their resistance to these
attacks. The Programmable Cellular Automata (PCA) 90-150
is effectively deployed to make these ciphers robust against
DFA. We also provide mathematical analysis of the invigorated
schemes and show that significant improvement is achieved in all
the three enhanced schemes.

Key words: ACORN, TinyJambu, Differential Fault Attack,
Optimized Interpolation Attack, Cellular Automata, PCA
90-150, Authenticated encryption

? email: ambili p180002cs@nitc.ac.in
† email: jimmy@nitc.ac.in

1

1 INTRODUCTION

The rise in the use of technology in daily lives has made an increase in
security a necessity. The usual strategy of ensuring confidentiality and
authenticity separately may not be sufficient. In scenarios like the Internet of
Things (IoT), the authenticity of information passing through various sensors
and servers is very important.

The automatic triggering of sensed data from IoT devices to other
network devices happen frequently. The possibilities of vulnerabilities in
web applications accessing this data cannot be overlooked. The lack of
proper authentication of data may facilitate data tampering. This makes
simultaneous execution of confidentiality and authentication advantageous.
The concept was first introduced in [16].

AE algorithms are used to achieve confidentiality and authenticity
simultaneously. If a passive adversary cannot determine the content of
ciphertext, the AE scheme is said to have privacy. If an active adversary
cannot successfully forge a ciphertext C, a nonce N and a tag t and mislead
the receiver, authenticity is guaranteed. AE schemes are modes of operation.
They are algorithms built on top of primitives which are proven to be secure.
These algorithms are not theoretically proven secure like the block ciphers.
The security of AE modes depend on the primitives which underlie them. We
briefly outline the evolution of AE schemes before describing the algorithms
under consideration.

The most primitive method of AE involves independent use of algorithms
for encryption and authentication. This is called the generic composition.
There are three ways to achieve AE based on the order in which encryption
and authentication are executed. They are Mac then Encrypt, Encrypt then
Mac or Encrypt and Mac. Of these, Encrypt and Mac is proven to be secure.

There are several methods in literature which improved the generic
composition. Single pass combined mode is one such method. Integrity
Aware Parallelizable Mode (IAPM) discussed in [11] and developed by Jutla
at IBM in 2000 is the first such approach. Offset Codebook Mode (OCB)
described in Ref [12] was later introduced by Rogaway et. al. It is designed to
be fully parallelizable and has a host of other improvements. IAPM and OCB
are patented. Hence, two pass combined modes were developed to introduce
new patent-free modes. Counter with CBC MAC (CCM) [19], Encrypt then
Authenticate then Translate (EAX) [2] and Carter Wegman Counter (CWC)
[8] modes belong to this category.

Many robust AE designs based on stream ciphers, block ciphers or

2

sponge functions have been proposed in the last decade. National Institute
of Standards and Technology (NIST) also selects algorithms as part of
lightweight cryptography project described in [13]. The finalists of NIST
lightweight cryptography competition include TinyJambu and Elephant.
These have been shown to be susceptible to fault attacks. AE designs
were also evaluated in the CAESAR competition [23]. ACORN v3 [22], a
CAESAR finalist, is a stream cipher based AE scheme. We consider these
three specific cases and propose methods to invigorate the AE schemes using
Cellular Automata (CA) against fault attacks.

The fault attack is a form of side channel attack that can work successfully
on physical implementations. It is a powerful tool to retrieve the secret key of
many cryptographic primitives [6]. A hard fault attack on ACORN v1 and v2
in a nonce respecting scenario was proposed in [7]. The attack was based on
assumption that a hard fault is injected at a certain position. The differential
fault attack (DFA) under a general fault model is described in [24]. ACORN
v3 is found to be vulnerable to DFA more than ACORN v2.

In the current work, the inherent properties of Cellular Automata (CA) [20]
are exploited to improve the strength of ACORN, Elephant and TinyJambu.
The rest of the paper is organized as follows: Section 2 provides a brief
description of algorithms. Section 3 describes the fault attacks mounted
on them. Section 4 describes CA and specific features of programmable
cellular automata (PCA). Our enhanced AE schemes are described in section
5. Section 6 provides randomness review of PCA 90-150. The security
analysis of enhanced algorithm is provided in section 7. Their strength to
resist fault attacks is elaborated. Section 8 concludes the paper.

2 PRELIMINARIES

We consider ACORN v3, a CAESAR competition finalist and describe the
details of the algorithm. We also consider Elephant and TinyJambu described
in [13] which are finalists of NIST lightweight cryptography competition.
These are found susceptible to fault attacks recently. We describe them briefly
with emphasis on their vulnerabilities.

2.1 ACORN v3
ACORN v3 [22] is a lightweight authenticated cipher. It uses a 128-bit
key and a 128-bit initialization vector. The state size of ACORN v3 is 293
bits denoted by S = (s0, s1,..., s292). There are six Linear Feedback Shift
Registers (LFSRs) being concatenated in ACORN-128 as shown in Fig. 1.

3

FIGURE 1: The 6 LFSRs are concatenated to represent the cipher state

Here, ƒ indicates the feedback bit and m refers to the message bit that
gets concatenated to the state at the last step of the State Update function
which can be divided into 4 steps as outlined below:

1. Update the state:

S,289 = S,289 ⊕ S,235 ⊕ S,230 (1)

S,230 = S,230 ⊕ S,196 ⊕ S,193 (2)

S,193 = S,193 ⊕ S,160 ⊕ S,154 (3)

S,154 = S,154 ⊕ S,111 ⊕ S,107 (4)

S,107 = S,107 ⊕ S,66 ⊕ S,61 (5)

S,61 = S,61 ⊕ S,23 ⊕ S,0 (6)

2. Generate the keystream bit as

ks = S,12⊕ S,154⊕mj(S,235, S,61, S,193)⊕ ch(S,230, S,111, S,66)
(7)

where
mj(, y, z) = (&y) ⊕ (&z) ⊕ (y&z)
ch(, y, z) = (&y) ⊕ ((¬)&z)

3. Generate the nonlinear feedback bit using control bits and feedback
function. The control bits ca and cb are set to either 0 or 1 in different
iterations specified in [22]. The feedback function (FBK) computes the
nonlinear feedback bit as

4

ƒ = S,0⊕(¬S,107)⊕mj(S,244, S,23, S,160)⊕ (c&S,196)⊕ (cb&ks)
(8)

4. Shift the 293-bit register with the feedback bit ƒ as

for j := 0 to 291 do

S+1,j = S,j+1 (9)

S+1,292 = ƒ ⊕ m (10)

The state update is run for 1792 iterations in the initialization step after
loading the key and IV into the state. Similarly, the update function is used in
a different number of iterations in the associated data processing, encryption
and finalization stages [22].

The modified version ACORN v3 is different from ACORN v2 in
the feedback function and the filter function. This resulted in a better
balance between the feedback function and the output filtering function
and larger security margin against guess-and-determine attack. However,
these modifications resulted in an increase in the vulnerability against the
Differential Fault Attack [24]. The fault is induced randomly into the
state and the attack happens in the encryption phase. The procedures
of initialization, the processing of associated data and finalization are not
directly involved. Hence, we briefly describe the encryption procedure alone.

The encryption happens bitwise. For each bit of the input message p, a
key bit ks is generated, the XOR of these two bits generates the ciphertext
bit and the State Update function described above is run. In the next iteration,
the keystream bit is generated based on the new state matrix.

2.2 Elephant
Elephant is a nonce based encrypt-then-MAC construction. The mode is
permutation based which is evaluated only in the forward direction. Thus,
the implementation of multiple primitives or inverse is not needed. It is
parallelizable by design.

There are three variants of Elephant algorithm called Dumbo, Jumbo and
Delirium which use state matrix of size 160, 170 and 200 respectively. The

5

submission claims security against fault attacks. We consider Delirium which
uses a 200 bit state matrix and is found vulnerable in [25]. The authenticated
encryption mode of Elephant consists of encryption and decryption.

The encryption and authentication process is shown in FIGURE 2. For the
encryption part, message is padded as M1..MM and ciphertext is C1..CM .
For the authentication part, nonce and associated data are padded as A1..AA .
The ciphertext is padded using 1 at the right end as C1..CC ←− C||1. In
encryption and decryption algorithms, key K is used with a mask.

The Keccak-f permutation discussed in [4] permutes the 200 bit state
matrix. Eighteen rounds of Keccak permutation is applied on 200-bit state
matrix while processing each unit of message.

The number of XOR operations that have to be performed for a state
update is low since masking is achieved by adding functions rather than XOR
operations exclusively. The mask can be represented as a function as given
below:

msk,bK =msk(K, , b) = ϕ
2
◦ ϕb

1
◦ P(K ||0n−k), (11)

where ϕ1 and ϕ2 are generated by LFSR, ◦ is the composition function
and P denotes the permutation being used. The choice of masking , b,
(namely (, b) = (,1) in encryption layer, (, b) = (,2) in ciphertext
authentication and (, b) = (,0) for associated data authentication) is
such that its contribution is cancelled out while generating authentication tag.
LFSR ϕ1 is defined as F2-linear map, where ’s correspond to 8-bit words:

(0,, 24)→ (1,, 24, 0≪ 1 ⊕ 2≪ 1 ⊕ 13 � 1). (12)

The mask uses simple LFSR defined by the primitive polynomial

p() = 8 + 6 + 5 + 4 + 1 (13)

. The two LFSR’s are chosen such that they satisfy the below condition:

ϕ2 = ϕ1 ⊕ d (14)

where d is the identity function.
The permutation used in Delirium is Keccak-ƒ [200] with state matrix of

size 200 bits. The above design has been submitted to the final round and
achieves more efficiency and stronger authentication.

6

FI
G

U
R

E
2:

D
ep

ic
tio

n
of

E
le

ph
an

tA
ut

he
nt

ic
at

ed
E

nc
ry

pt
io

n
[1

4]

7

FIGURE 3: 128-bit Non-linear Feedback Shift Register in TinyJambu [15]

2.3 TinyJambu
TinyJambu is a lightweight authenticated encryption mode submitted to final
round of NIST lightweight cryptography. It is the smallest block cipher AE
with state size of 128 bits. The process is shown in Fig. 4.

The scheme is based on permutation using a nonlinear feedback shift
register. A key bit is transferred at the end of the state matrix as shown in
FIGURE 3.

The keyed permutation is run n times depending on the position of usage
within the algorithm. This helps to achieve state update in nonce setup and
processing of associated data. The permutation is described in Algorithm 1.

Algorithm 1 TinyJambu Permutation

1: procedure STATEUPDATE(S, K,)
2: j = 0
3: ƒeedbck = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ k mod ken

4: while j 6= 126 do
5: sj = sj+1
6: j = j + 1
7: s127 = ƒeedbck

The key setup involves randomizing the state using the keyed permutation
P1024. The 128-bit state is initially set to zero and then updated using the
permutation. The nonce setup involves three iterations. In each iteration, the
constant value 1 is XORed with the state, the keyed permutation P640 is used
to update the state and 32 bits of nonce are XORed with the state.

The associated data is first processed block wise. Three steps are taken
for each block. The bits S36, S37, S38 are XORed with FrmeBts0,1,2
which has a constant value of 3. An update of state using P384 is done and
then the 32-bit block of associated data is added to the state by XORing with
S96..127.

8

FI
G

U
R

E
4:

D
ep

ic
tio

n
of

Ti
ny

Ja
m

bu
A

ut
he

nt
ic

at
ed

E
nc

ry
pt

io
n

[1
5]

9

The encryption of message happens in blocks of size 32 bits. The bits
S36, S37, S38 are XORed with FrmeBts0,1,2 which has a constant
value of 5. The keyed permutation P1024 is used to update the state. The
XOR of message bit and state bits from position 96 to 127 is taken for 32
bits. The bits of the ciphertext can be extracted in this stage.

After encryption, the authentication tag is generated in finalization
step. The FrameBits of finalization with constant value 7 is XORed with
s36, s37, s38 of the state matrix, P1024 is run and first 32 bits of tag
is generated. Then, the FrameBits of finalization with constant value 7 is
XORed with s36, s37, s38 of the state matrix, P640 is run and first 32 bits
of tag is generated.

The decryption process involves processing full blocks of ciphertext by
running the ciphertext again and verification of tag. The message is output
only if tag verification is successful.

The number of times the keyed permutation is run was increased from 384
to 640 when TinyJAMBU was submitted to final round of NIST lightweight
cryptography competition. This was done to increase the security and
resist DFA described in [17]. We describe methods to enhance security
of TinyJAMBU against DFA using CA without any increase in number of
rounds.

3 ATTACKS

Benot et al describes fault attack in [3] as the attack that uses physical
methods like electromagnetic radiation, laser, etc. to interfere with normal
operation of cryptographic chip, forcing it to perform certain wrong
operations. The crux of differential fault attack is to deduce key from the
difference between incorrect and correct information.

Fault attack on cryptographic schemes is carried out in two steps. The
first step involves locating the fault and the second step is equation solving.
Differential fault attack (DFA) was first launched against Data Encryption
Standard (DES). There are various modifications to DFA that have been
successful against several types of cryptographic algorithms. In this paper,
we consider DFA on ACORN v3 and TinyJambu. We also consider a
different version of DFA, that is, the optimized interpolation attack on
Elephant-Delirium.

10

3.1 DFA on ACORN v3
The attacker is assumed to have access to the physical device. It is also
assumed that the attacker has two privileges. The first is that the attacker
has the ability to reset the physical device with the original key. The second
is that the attacker can inject a fault into the initial state randomly before the
encryption procedure but cannot choose the location. For clarity, the attack
[24] is briefly described below.

Let S = (s0, s1, ..., s292) be the initial state of finite state register of
the cipher. Let P = (p0, p1,, p−1) be the bit plaintext. Let z =
(z0, z1, ..., z−1) be the correct keystream and z = (z

0
, z
1
, ..., z−1) be

the faulty keystream generated by the faulty initial state at random location
 where ∈ [0,292]. We define an -bit differential string Δz. The jth
element of the -bit differential string Δz is defined as

Δz
j
= zj ⊕ zj (15)

This gives us a differential set corresponding to a faulty state. All possible
differential sets Δz, ∈ [0,292] are computed. A differential consists
of a sequence of positions where their corresponding components are either
1 or non-constant functions with respect to S by omitting zero components.
Due to the structure of ACORN, the first 99 positions of state matrix S can
be represented as linear or quadratic functions with respect to keystream.
These equations can be used to retrieve enough linear equations to recover
the initial state. The experiments reveal that the length of the differential
string is at most 25 and 32 random initial states are enough to conduct the
fault experiments.

The attack consists of two main parts: fault locating and equation solving.
If the fault locating step is achieved reliably, then the equation solving can
be done by retrieving a system of equations with respect to the initial state of
ACORN at which the fault was induced. At this step, fundamental methods
to retrieve equations and some improvement strategies to get more linear
equations are implemented. After obtaining the linear equations, the guess
and determine method is used to obtain the initial state. After that, forgery
attacks can be performed on the cipher.

The fault location step identifies the fault location after a fault is injected
into the initial set randomly. The first algorithm of the fault locating step is
explained briefly.

This algorithm returns two sets MQ and AQ. MQ contains positions

11

where 1 occurs with a probability less than 1. The AQ set contains positions
where 1 always occurs. Firstly, 32 initial states are chosen randomly. In
each state, a random state bit is flipped (from 0 to 1 or from 1 to 0). Now
the encryption algorithm proceeds to output the fault-induced keystream (z)
of size (size of plaintext and hence the ciphertext). The same state is run
without inducing any fault resulting in the correct keystream output (z).

The corresponding bits of z and z are logical XORed and put in a set
Δz. Based on values of Δz, the positions are input into the sets AQ and
MQ. These sets AQ and MQ are then used for further computations.
The experiments determined 103 unique sets wherein fault could be located
reliably. Of the remaining non-unique sets, the key extension strategy was
adopted to locate the fault. Once several faults are located, considerable
number of equations can be retrieved with respect to the initial state to
recover the initial state. Time complexity is bound by the number of fault
experiments.

3.2 DFA on TinyJambu
Differential Fault Attack exploits the probability of occurrence of a particular
difference in output given a particular input difference. It is a chosen-plaintext
attack. The attacker chooses inputs and collects corresponding outputs from
the random oracle. A particular pair of inputs is selected to satisfy a particular
input differential. The attacker knows that for a particular input differential,
a particular output differential occurs with high probability. The differentials
are correctly examined to derive the key.

The paper [17] considers how the differences propagate through
permutation. As described in Section 2.3, a 128-bit state is updated by the
permutation. The key bit is involved in computing 127-th bit and all other
bits are obtained by a shift. TinyJambu submission to NIST claims security
when differential trail is calculated with minimum number of active AND
gates in the simple model. The simple model considers each AND gate to be
independent. The search for differential trail under four different constraints
about active bit positions was the basis for security claim.

An improved model called Mixed Integer Linear Programming was
introduced in [17]. The paper describes how the values of output bits
and values of differences of output bits can be calculated. These may
be represented as coefficient matrix and augmented coefficient matrix
respectively. The number of equations in the matrices is dependent on key
length in TinyJambu. These are solved to obtain the secret key bits. The
security claimed by original submission was broken using experiments based

12

on improved MILP model. The number of permutations has been increased
in the final submission to withstand DFA.

3.3 Interpolation attack on Elephant-Delirium
In interpolation attack on Elephant-Delirium, the intermediate target bit is
considered whose algebraic normal form is a keyed function of ciphertext as
shown in the below equations.

 = FK (C) (16)

FK (C) = FK (c1, .., cn) = =(1,..,n∈GF(2n))αM (17)

where α ∈ {0,1}.
The objective is to recover the coefficients α which depend on the secret
key bits. These coefficients are the variables to be determined and can be
recovered by solving a system of linear equations. This is a chosen-plaintext
interpolation attack. The attack described in [25] is successful at the 8th
round. The authors have constructed the equations of the last two rounds
and obtained the algebraic normal form of intermediate target bit which is
the output of 6-round KECCAK-p.

4 CELLULAR AUTOMATA

The 1-dimensional CA structure [20] consists of a lattice of cells in a row
fashion, which can take value of 0 or 1. Each cell value evolves in every time
step depending on a function of values of itself and its neighbour cells. This
is called a two-state three-neighbourhood CA. The next state of a cell can be
represented as,

(t + 1) = ƒ{−1(t), (t), +1(t)} (18)

where, (t) denotes the output state of the th cell at the tth time step
and ƒ denotes the transition function of the particular cell realized with a
combinational logic and is known as a rule of the CA.

When the rules used in the cells are different, the CA type is called a
hybrid CA. Maximal length CA are those CA with specific rules which
results in maximum cycle length. These cycle through every possible state
(except all 0’s) once before repeating the cycle of values. Wolfram’s work
in [21] proved that the patterns generated by the maximal-length CA are
significantly better in randomness properties than other widely used methods

13

like Linear Feedback Shift Registers (LFSRs).

The rules used in the design of CA in this paper are rules 90 and 150.

re 90 : (t + 1) = +1(t) ⊕ −1(t) (19)

re 150 : (t + 1) = (t) ⊕ +1(t) ⊕ −1(t) (20)

where (t) refers to the state bit of the th cell at time t. These rules which
only involve the logical XORs are called linear or additive rules. CA can also
be divided into types based on the neighbors of the extreme cells (the first and
last cells). Null boundary refers to the extreme cell’s neighbors connected to
logic ’0’. The CA used in this paper will use null boundary, maximal length
CA with rules 90 and 150.

Programmable Cellular Automata (PCA) [10] are structures based on the
elementary Cellular Automata but the rule structure is not fixed. The dynamic
rule structure works based on control signal, each signifying a particular
rule set on which the CA will perform iterations. Numerous hardware
implementations have been made. However these control signals can be
programmed in software to randomly select from a given set of rules. The
PCA configuration used in this paper is based on the 90-150 configuration
which signifies that each ruleset defines a hybrid null-boundary maximal
length CA with rules 90 and 150.

CAs and CAr are used to implement a PCA 90-150 in [10]. The CAs

function uses a 6-cell, null boundary, maximal length [5] hybrid CA. This
function returns the value between 1 and 63. The CAr function is a 6-cell,
maximal length, null boundary hybrid CA which selects a rule from a
predefined ruleset for CAr to use. Together this results in a simulation of
PCA 90-150. We may also use maximal length, null boundary hybrid CA
with higher number of cells.

The PCA configuration in the current design can be
represented as a polynomial of degree 6 as described in [10].
When the number of cells n is 6, the equation is

(+ 1)(4 + + 1) (21)

For n = 8, we can achieve an even higher degree of 8 with polynomial

(+ 1)(6 + + 1) (22)

Similarly for higher values of n, we obtain a higher degree expression.

14

In Section 7, security analysis based on [9] has been provided to show the
aptness of PCA 90-150 for use in ACORN, Elephant and TinyJAMBU.

CA can be used as a good cryptographic primitive against fault attacks
and in particular, the DFA. We describe the modified AE schemes in the next
section.

5 MODIFIED AE SCHEMES

The improvement in randomization of affine function preserving the parallel
relationship is possible with appropriate usage of CA. This section considers
incorporation of CA into the algorithms ACORN v3, TinyJambu and
Elephant-Delirium. These are redesigned to make use of randomness
properties of CA.

5.1 ACORN v3

The modified state update function using PCA 90-150 is shown in Fig.
5. Our novel approach uses two CAs to achieve randomization. This
overcomes the uniqueness of state bits used in keystream generation function
by randomizing the ks bit, described in step 2 of section 2.1, earlier in the
paper.

The modified keystream generation function uses PCA 90-150 as shown
in Fig. 5. A predefined ruleset is used. CA random-rule (CAr), a maximal
length [1] null boundary hybrid CA which selects the rule from the ruleset
for CA state (CAs) to use in each call to the keystream bit generation
function. CAs is a 9-cell maximal length null boundary CA using PCA
90-150 configuration. Hence, a basic simulation of programmable CA is used
here.

The keystream bit generation function in ACORN v3 is

ks = S,12⊕ S,154⊕mj(S,235, S,61, S,193)⊕ ch(S,230, S,111, S,66)
(23)

In our modified cipher the keystream bit generation function is,
CAr();
ks=CAs();

15

FIGURE 5: The modified State Update Function (stepwise as per numbering)
in the CA enhanced ACORN

ACORN v3 uses a polynomial function of degree 2. CA configuration
in the current design can be represented as a polynomial of degree 6 [10],
for n (number of cells) = 6 as

(+ 1)(4 + + 1) (24)

For n = 8, we can achieve an even higher degree of 8 with polynomial

(+ 1)(6 + + 1) (25)

Similarly for higher values of n, we obtain a higher degree expression.
The fault attacks which are successful on ACORN v3 are ineffective

against this modified CA based ACORN cipher. This is due to the parallel
transformation of the CA that spreads the fault very quickly into the state,
which makes the fault difficult to track. The key reason behind this is the
unpredictability of the nonlinear feedback bit XOR with the last bit of the
state during every state update.

16

FI
G

U
R

E
6:

B
lo

ck
di

ag
ra

m
of

en
cr

yp
tio

n
in

C
A

-E
le

ph
an

t

17

5.2 CA-Elephant
We have seen the importance of mask in Elephant-Delirium in section 2.2.
CA can be used to generate the key K which is XORed with mask as shown
in Fig. 6.

The mask function of equation 11 is redefined as given below:

msk,bCA() =msk(CA(), , b) = ϕ
2
◦ ϕb

1
◦ P(CA()||0n−k) (26)

where CA() is used to generate pseudorandom number used as key, ϕ1
and ϕ2 are generated by LFSR, ◦ is the composition function.

The encryption in CA-Elephant is done on message broken into stream of
200 bits each. PCA 90-150 is run to generate key once. For each message
stream, the mask is evaluated using this key and XOR with nonce. The output
is provided to Keccak permutation. Its output is again XOR with the mask
evaluated earlier using PCA output. This is followed by XOR with message
stream of size 200 bits. The process is repeated for the entire message input.
We use the same mask in decryption as well as authentication process.

5.3 CA-TinyJambu
The implementation of TinyJambu at NIST final submission uses k mod
en where en is the length of the key k for the th round. The enhanced
algorithm uses PCA instead of the keystream bit in the StateUpdate function
as detailed in Algorithm 2. PCA is used in the calculation of feedback bit.

The update of state is depicted in Fig. 7.

Algorithm 2 TinyJambu Permutation

1: procedure STATEUPDATE(S,CA(),)
2: j=0
3: ƒeedbck = s0 ⊕ s47 ⊕ (¬(s70 ∧ s85)) ⊕ s91 ⊕ CA()
4: while j 6= 126 do
5: sj = sj+1
6: j = j + 1
7: s127 = ƒeedbck

For each state update process, PCA 90-150 is initially run to generate a
bit. The second step is to use this bit in feedback bit generate function. The
third step is to shift the 127 bits of state matrix from position 0 to 126.
The feedback bit evaluated is then set as the 127-th bit. The encryption and
decryption process remain the same as in the original scheme.

18

FI
G

U
R

E
7:

B
lo

ck
di

ag
ra

m
of

en
cr

yp
tio

n
in

C
A

-T
in

yJ
am

bu

19

We have used PCA 90-150 to obtain robust AE schemes. In the next
section, we try to show why the PCA 90-150 is apt for use as a good
pseudorandom number generator.

6 RANDOMNESS REVIEW OF PCA 90-150

It has been shown in countless references that fault attacks are
easily prevented by randomization. In [9], PCA 90-150 has
been compared with Controllable Cellular Automata (CCA). In
PCA, there are control bits for each cell to control the rules
corresponding to each cell. In CCA, there are more control lines to
control the neighbourhood relations between cells and updating of states
to further improve the randomness of 1-dimensional CA. CCA0 refers to
type of CCA which keeps the state of the cells constant during the CA
computation process. CCA1 refers to type of CCA which complements the
state of the cells during the CA computation process. More details can be
found in [9].

Below are some of the tests that have been performed on PCA 90-150 to
prove its quality of randomness [9].

6.1 Entropy (ENT) Test
ENT [18] is a Pseudorandom Number Sequence Test Program, which applies
specific tests to bytes of data in a given file and submits the results back. This
test program is useful for evaluating pseudorandom number generators for
encryption. ENT performs a variety of tests on the input stream and produces
output based on various parameters, such as Entropy, Chi-square Test, and
Serial Correlation Coefficient (SCC).

Chi-square (pass rate) Entropy (average value) SCC (average value)
PCA 90-150 70% 6.101210 0.121479

TABLE 1: ENT values for PCA 90-150 [9]

As shown in Table 1, the entropy values are very good with acceptable
chi-square pass rate compared to Controllable Cellular Automata (CCA)
given in [9].

6.2 DIEHARD Test on PCA 90-150
DIEHARD tests [1] are a set of statistical tests used to measure the quality of
randomness of a random number generator. DIEHARD is seemingly the best

20

test for general randomness measurement. Usually, a Pseudorandom Number
Generator that passes DIEHARD is considered as good.

Test name
PCA 90-150

(p)
1. Overlapping sum Pass
2. Runs up 1 Pass

Runs Down 1 Pass
Runs up 2 Pass
Runs Down 2 Pass

3. 3D sphere Pass
4. A parking lot Fail
5. Birthday Spacing Pass
6. Count the ones 1 Pass
7. Binary Rank 6*8 Pass
8. Binary Rank 31*31 Pass
9. Binary Rank 32*32 Pass
10. Count the ones 2 Pass
11. Bitstream test Pass
12. Craps wins Pass
13. Minimum distance Fail
14. Overlapping Perm. Fail
15. Squeeze Pass
16. OPSO test Fail
17. OQSO test Fail
18. DNA test Pass

Number of tests passed 13

TABLE 2: DIEHARD test result on PCA, p is 8-bit integer [9]

The results from Table 2 show that PCA 90-150 is potentially an excellent
pseudo-random number generator passing 13 out of 18 tests which is
significantly better than single ruleset hybrid cellular automata.

6.3 Randomness value variance
The randomness value variance shown in Fig. 8 is a good indicator of the
randomness of the values generated by the CA. Here 15-cell PCA 90-150 is

21

FIGURE 8: Variance of randomness value [9]

used. PCA 90-150 has higher variance values than both CCA0 and CCA1.
This has 100% Chi-square pass rate, which is a very significant advantage. In
addition, CCAs are much harder to implement, as well.

7 SECURITY ANALYSIS

We now provide a detailed security analysis of the enhanced algorithms and
show that the authenticated encryption algorithms considered are invigorated
against the considered attacks with the use of PCA.

7.1 DFA on PCA enhanced ACORN
We have described the modified design of ACORN v3 using CA in section
5.1. We have investigated the possibility of differential fault attack on
modified ACORN. Locating the fault cannot be executed reliably, since
the keystream bit found in every state update function cannot be predicted
accurately. This is because, in each state update iteration, a random state bit
is assigned as feedback bit by running the CAs, which has a dynamic rules
defined by CAr . This is explained in more detail below.

22

The fault is located using 32 random initial states. These are chosen
because a maximum difference of 25 is observed in the differential set by
injecting one fault. In the modified design, the rule 90 and 150 used in PCA
for generating keystream creates dependency between neighbouring bits of
state. Hence, the number of possibilities for the differential set increases.
The number of unique and non-unique sets increases exponentially with fault
locations thereby making fault location extremely difficult. We now consider
the equation solving considered in [24] and analyse the overhead involved
from an attacker perspective. We consider 32 random states as the lower
bound for analysis.

As per the specification of ACORN v3, the minimum number of steps
in encryption is 1279, excluding the 1792 steps in the initialization phase.
Assume that on average, the 32 random states selected for the fault locating
step of the attack are near 1792/2 steps in the initialization step. Then, the
minimum number of steps required is 1279 + (1792/2) = 2175. For each
iteration, the attacker has to make on average 2175 accurate predictions about
the keystream bit, which is to be XOR to the state and added to the last
bit of the updated state. So in total, 32*2175 = 69000 accurate predictions
altogether must be made in order for the first algorithm of the fault locating
step to give the correct output. We can safely assume that the probability of
getting 1 or 0 as the keystream bit in each iteration is 50%. Since the initial
seed in the Cellular Automata is random, the attacker will have to choose one
correct set of values from a permutation of 269600. Hence the probability of
the attacker finding this correct combination is negligible.

As shown in [24], let n be the number of fault experiments. We can get
11.26n equations, including 7.03n linear equations. We use the guess and
determine method to solve the equations. The time complexity of obtaining
the initial state equals to c ∗ 2146.5−3.52n approximately, where c is the
time complexity of solving linear equations and 26 < n < 43. Assuming the
attacker reaches the correct combination of keystream bits in half the total
permutations, The total complexity of obtaining the initial state would equal
to

c∗ 2146.5−3.52n ∗ 2(69600/2)

which is a huge improvement. This shows that the attacker cannot brute-force
the keystream bits feasibly in order to further continue with the attack
algorithm.

23

7.2 CA-Elephant
We have strengthened Elephant-Delirium which has a state size of 200 bits.
DFA described in [25] evaluates intermediate bit . We briefly describe the
steps in the attack that determines below to elucidate the benefits of our
method later.

FK (C) = FK (c1, .., cn) = =(1,..,n∈GF(2n))αM (27)

where α ∈ 0,1, M = n=1c

 .

Suppose Nα represent the number of non-zero values of α where α
depend only on the secret key bits. Also, suppose the algebraic degree of
FK (C) is less than d. To reduce the coefficients of FK (C), the coefficients are
regarded as variables and recovered by solving a linear system of equations.
Since degree of the equation for FK (C) is less than d + 1, the sum of the
intermediate bit over a d + 1-dimension plaintext subspace S is zero.
That is, the sum of the values of the polynomial FK (C) over ciphertexts is
zero. The solution can be determined as

2
(d+1)

t=1 FK (C)t = α × (C∈CSM) = 0 (28)

This is a linear equation with coefficients α which are functions of key
bits. Each such subspace provides one linear equation. More subspaces are
chosen to get Nα linear equations to recover the bits of the secret key which
needs Nα × Nα × 2(d+1) XOR operations.

Now we describe the advantage of using CA-based key. α becomes
degree six equations at least and hence Nα equations will not be enough
to recover the bits of secret key. With the use of PCA with 6-bit seed, CAr()
and CAs(), each key bit generated is one among 26 × 26 choices. For 128
bits of key, 128 × 26 × 26 = 219 accurate predictions are to be made. To
solve for the coefficients α, we will have (219×α)× (219×α)×2d+1
XOR operations involving key bits which is a huge improvement.

7.3 CA-TinyJambu
In the differential fault attack on TinyJambu, Mixed Integer Linear
Programming (MILP) is used to calculate the differential trail. We briefly
describe few calculations related to MILP model from [17].

Let be the maximum length of permutation. We obtain a system of
equations as shown below:

z = 85+70+ (29)

24

Δz = 85+70+ ⊕ (85+ ⊕ Δ85+) ⊕ (70+ ⊕ Δ70+) (30)

Here, z and Δz are the values and the differences of output bits of AND
gate respectively, used in the construction of TinyJambu.

As the Δ values are known from the experiment, Equation 30 reduces to
a system of linear equations. The equations can be solved by representing
them using coefficient matrix and augmented coefficient matrix as discussed
in [17]. The number of solutions to this system of equations is 2s−γ(M)

where γ(M) is the rank of matrix M and

s = |70+, 85+ : 0 < < | (31)

are the number of independent variables in the system of the equations.
There are 2s possible input values to the AND gate. The probability of
the differential can be calculated as the number of solutions to the system
of equations divided by 2s which gives 2−γ(M). The solution of MILP
model always satisfies the above system of equations though the generation
of optimal differential trail is not guaranteed.

The CA based design of TinyJambu generates key based on 6-cell null
boundary maximal length PCA using a 6-bit seed. The variables considered
above become interdependent as the key bits are themselves interdependent.
The value of s decreases. There are 2s different input to AND gate. This
implies that we will need to compute more differentials. This makes it
difficult to make the differential set.

The paper describing the attack [17] also considers refined models to
account for correlation between variables.

ƒ = h−1
=0 (y + η + μy) (32)

where , y are input bits with linear masks η, μ and h is the number of
active AND gates. Here, ƒ is a quadratic boolean function. In CA-based
TinyJambu, the degree will be at least 6 making the calculation of differential
trail impractical.

Hence, we obtain two major security advantages by invigorating
TinyJambu with cellular automata, namely, difficulty in calculating the
differential set and in solving differential trails.

8 CONCLUSION

The authenticated encryption schemes based on block ciphers are as secure
as the underlying cryptographic primitive. However, recent research shows

25

that use of stream ciphers and combined modes offer enhanced features. By
utilizing the pseudorandom and fast-diffusion properties of CA, we have
shown that DFA is ineffective against the PCA-enhanced ACORN cipher
by randomizing both the state bits and the number of cycles the CA runs
for in each iteration. We have shown that the differential set in equation
15 becomes huge and difficult to compute. The number of random states
for fault attack increases for DFA in the current scenario. The degree of
the keystream bit generation function would be greater than or equal to 8
which is much higher than previous degree of 2, effectively preventing the
fault attack. Also, we have shown that it becomes infeasible to obtain the
keystream bits by brute-force due to such a large number of permutations
during state update. The resistance of 200-bit Elephant against interpolation
attack and TinyJAMBU against differential fault attack by inclusion of CA
is validated mathematically. Future work include experiments on practical
devices.

REFERENCES

[1] Mohammed M Alani. (2010). Testing randomness in ciphertext of
block-ciphers using diehard tests. Int. J. Comput. Sci. Netw. Secur,
10(4):53–57.

[2] M Bellare, P Rogaway, and D Wagner. (2003). A conventional
authenticated-encryption mode. IACR Eprint archive.

[3] Olivier Benot. (2011). Encyclopedia of Cryptography and Security,
pages 218–219. Springer US, Boston, MA.

[4] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer, (2008). Keccak specifications summary,
https://keccak.team/keccak_specs_summary.html.

[5] Jaydeb Bhaumik. (2015). Synthesis of all maximum length cellular
automata of cell size up to 12. arXiv preprint arXiv:1503.04006.

[6] Eli Biham and Adi Shamir. (1997). Differential fault analysis of secret
key cryptosystems. In Burton S. Kaliski, editor, Advances in Cryptology
— CRYPTO ’97, pages 513–525, Berlin, Heidelberg. Springer Berlin
Heidelberg.

26

https://keccak.team/keccak_specs_summary.html

[7] Prakash Dey, Raghvendra Singh Rohit, and Avishek Adhikari. (2016).
Full key recovery of acorn with a single fault. Journal of Information
Security and Applications, 29:57–64.

[8] Guan, Sheng-Uei, and Shu Zhang. (2004). Cwc: A high-performance
conventional authenticated encryption mode. Fast Software Encryption.

[9] Sheng-Uei Guan and Shu Zhang. (2004). Pseudorandom number
generation based on controllable cellular automata. Future Generation
Computer Systems, 20(4):627–641.

[10] Dolores de la Guı́a Martı́nez and Alberto Peinado Domı́nguez.
(2001). On the sequences generated by 90-150 programmable cellular
automata. In 5th World Multiconference on Systemics, Cybernetics and
Informatics and 7th International Conference on Information System
Analysis and Synthesis (SCI/ISAS 2001, Orlando, Florida).

[11] C S Jutla, (2001). A parallellizable authenticated encryption for ipsec.
https://tools.ietf.org/html/

draft-jutla-ietf-ipsec-esp-iapm-00.

[12] T. Krovetz, (2014). Rfc 7253: The ocb authenticated-encryption
algorithm
https://tools.ietf.org/html/rfc7253.
https://tools.ietf.org/html/rfc7253.

[13] NIST, (2020). Lightweight cryptography csrc.
https://csrc.nist.gov/projects/

lightweight-cryptography/round-2-candidates.

[14] NIST, (2020). Lightweight cryptography csrc tinyjambu v2
specification.
https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/

elephant-spec-final.pdf.

[15] NIST, (2020). Lightweight cryptography csrc tinyjambu v2
specification.
https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/

tinyjambu-spec-final.pdf.

27

https://tools.ietf.org/html/draft-jutla-ietf-ipsec-esp-iapm-00
https://tools.ietf.org/html/draft-jutla-ietf-ipsec-esp-iapm-00
https://tools.ietf.org/html/rfc7253
https://tools.ietf.org/html/rfc7253
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

[16] Phillip Rogaway. (2002). Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 98–107.

[17] Dhiman Saha, Yu Sasaki, Danping Shi, Ferdinand Sibleyras, Siwei Sun,
and Yingjie Zhang. (2020). On the security margin of tinyjambu
with refined differential and linear cryptanalysis. IACR Transactions
on Symmetric Cryptology, 2020:152–174.

[18] John Walker, (Last accessed 04 September 2020). ENT test suite.
http://www.fourmilab.ch/random.

[19] D. Whiting, Hifn, R. Housley, Vigil Security, N. Ferguson, and
MacFergus. (2003, Last accessed 3 March 2021). Counter with cbc-mac
(ccm). Counter with CBC-MAC (CCM).

[20] Stephen Wolfram. (1984). Cellular automata as models of complexity.
Nature, 311(5985):419–424.

[21] Stephen Wolfram. (1985). Cryptography with cellular automata.
In Conference on the Theory and Application of Cryptographic
Techniques, pages 429–432. Springer.

[22] Hongjun Wu. (2016, Last accessed 04 September 2020). Acorn:
a lightweight authenticated cipher (v3). Candidate for the
CAESAR Competition, https://competitions.cr.yp.to/

round3/acornv3.pdf.

[23] Fan Zhang, Zi-yuan Liang, Bo-lin Yang, Xin-jie Zhao, Shi-ze Guo,
and Kui Ren. (2018). Survey of design and security evaluation
of authenticated encryption algorithms in the caesar competition.
Frontiers of Information Technology & Electronic Engineering,
19(12):1475–1499.

[24] Xiaojuan Zhang, Xiutao Feng, and Dongdai Lin. (2018). Fault attack
on acorn v3. The Computer Journal, 61(8):1166–1179.

[25] Haibo Zhou, Rui Zong, Xiaoyang Dong, Keting Jia, and Willi Meier.
(2021). Interpolation attacks on round-reduced elephant, kravatte and
xoofff. The Computer Journal, 64(4):628–638.

28

http://www.fourmilab.ch/random
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf

	Introduction
	Preliminaries
	ACORN v3
	Elephant
	TinyJambu

	Attacks
	DFA on ACORN v3
	DFA on TinyJambu
	Interpolation attack on Elephant-Delirium

	Cellular Automata
	Modified AE schemes
	ACORN v3
	CA-Elephant
	CA-TinyJambu

	Randomness review of PCA 90-150
	Entropy (ENT) Test
	DIEHARD Test on PCA 90-150
	Randomness value variance

	Security Analysis
	DFA on PCA enhanced ACORN
	CA-Elephant
	CA-TinyJambu

	Conclusion
	References

