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Abstract

Hash-based signatures offer a conservative alternative to post-quantum
signatures with arguably better-understood security than other post-quantum
candidates. Nevertheless, a major drawback that makes it less favorable
to deploy in practice is the (relatively) large size of the signatures, and
long signing and verification time.

In this paper, we introduce SPHINCS-α, a stateless hash-based sig-
nature scheme, which benefits from a twofold improvement. First, we
provide an improved Winternitz one-time signature with an efficient size-
optimal encoding, which might be of independent interest. Second, we
give a variant of the few-time signature scheme, FORC, by applying the
Winternitz method. Plugging the two improved components into the
framework of the state-of-the-art (stateless) hash-based SPHINCS+, with
carefully chosen parameter choices, yields a certain degree of performance
improvement. In particular, under the “small” series parameter set aim-
ing for compact signatures, our scheme reduces signature size and signing
time by 8-11% and 3-15% respectively, compared to SPHINCS+ at all se-
curity levels. For the “fast” series that prioritizes computation time, our
scheme exhibits a better performance in general. E.g., when instantiating
the simple tweakable hash function with SHA-256, our scheme reduces the
signing and verification time by 7-10% and up to 10% respectively, while
keeping roughly the same signature size. The security proofs/estimates
follow the framework of SPHINCS+. To facilitate a fair comparison, we
give the implementation of SPHINCS-α by adapting that of SPHINCS+,
and we provide a theoretical estimate in the number of hash function calls.

Keywords— Hash-Based Signature, Post-Quantum Cryptography, SPHINCS+

1 Introduction

Hash-based signature is one of the most promising candidates for (and perhaps
the most conservative approach to) post-quantum digital signatures. An advantage
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of hash-based signatures is that its (classical as well as quantum) security strength is
better understood (and easier to evaluate) than other candidates, by solely relying on
the idealized hardness1 of the cryptographic hash functions.

Stateful signatures. Ralph Merkle proposed a hash-based signature [Mer90] that
builds upon Lamport’s one-time signature (OTS) [Lam79]. The recent efforts to-
wards improving stateful signatures lead to the eXtended Merkle Signature Scheme
(XMSS) [HBG+18] and the Leighton-Micali Signature (LMS) [MCF19], standardized
by NIST [CAD+20] and IETF.

Stateless signatures. In a typical stateful signature, e.g., Merkle’s signature scheme
(MSS), the signer keeps track of which private key of the OTS has been used to avoid
security issues from subsequent reuse. This is however not always possible in many
practical scenarios. Goldreich proposed a stateless hash-based signature construc-
tion [Gol87, Gol04] which removes the need for maintaining a local state but results
in prohibitively large signatures. Recently, this line of research gets renewed interest.
By incorporating the hypertree structure, SPHINCS [BHH+15] offered a practical in-
stantiation of the Goldreich-style stateless hash-based signature. SPHINCS serves as
a basis for subsequent works driven by the NIST PQC standardization process, includ-
ing Gravity-SPHINCS [AE18], SPHINCS-Simpira [GM17] and SPHINCS+ [BHK+19].
As a NIST PQC Round-3-Alternate candidate, SPHINCS+ [BHK+19] employs a new
design framework based on few-time signature (FTS), and a new security analysis
framework from “tweakable hash function”. It is generally considered as the current
state-of-the-art of stateless hash-based signatures.

Performance. Despite the desirable features such as conservative assumptions, well-
understood security, and flexibility in choosing the underlying hash functions, the
performance of hash-based signatures, in terms of signing speed and signature size,
is less competitive than other (e.g., lattice-based) candidates, which makes it less
favorable for adoption. The performance of a hash-based signature can benefit from
new structures [BM96a, BM96b, BDH11], more efficient underlying components (e.g.,
one-time signature [DSS05, Hül13], few-time signature [Per01, RR02], lightweight hash
function [KLMR16]), and hardware accelerations [HRS16a, Köl18, WJW+19, ACZ18,
BHRv21, SZM20]. The main focus of this paper is algorithmic optimization of stateless
hash-based signatures.

Table 1: Performance comparison between SPHINCS+ and SPHINCS-α, with
simple tweakable hash function instantiated with sha256. Key generation, sign-
ing and verification time are in terms of CPU cycles; public key, secret key and
signature size are in bytes. All cycle counts are the median of 100 runs.

SPHINCS+ SPHINCS-α Relative Change
Param. KeyGen Sign Verify Size KeyGen Sign Verify Size KeyGen Sign Verify Size

128f 2.0× 106 2.3× 107 1.9× 106 17088 1.7× 106 2.1× 107 1.7× 106 17040 −13.44% −7.11% −9.99% −0.28%
192f 2.8× 106 3.9× 107 2.9× 106 35664 1.4× 106 3.5× 107 2.9× 106 35640 −50.72% −10.28% −1.52% −0.07%
256f 7.2× 106 7.9× 107 3.1× 106 49856 3.8× 106 7.2× 107 3.1× 106 49696 −47.87% −8.64% +1.70% −0.32%
128s 6.2× 107 4.7× 108 7.6× 105 7856 4.8× 107 4.6× 108 1.2× 106 6960 −23.41% −3.34% +58.48% −11.41%
192s 9.2× 107 8.7× 108 1.2× 106 16224 8.0× 107 7.2× 108 2.0× 106 14784 −12.66% −16.85% +65.25% −8.88%
256s 6.1× 107 7.8× 108 1.8× 106 29792 6.1× 107 6.6× 108 3.3× 106 27104 +0.31% −15.15% +84.76% −9.02%

Our contributions. In this paper, we propose SPHINCS-α, a stateless hash-based
signature scheme, which improves the performance of state-of-the-art of stateless hash-
based signatures. Our optimization stems from the enhancement of two components.

• We introduce an improved variant of the Winternitz OTS scheme, referred to as
“Balanced WOTS+”, using an efficient and balanced encoding algorithm. Using

1The design philosophy of symmetric primitives (including hash functions) is that they
should only admit generic attacks, otherwise the design is considered to be flawed.
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order theoretic techniques, we prove that the encoding scheme is size-optimal,
which might be of independent interest.

• We compose the Winternitz method to the few-time signature scheme FORS.
While the resulting scheme, which we call FORC, does not constitute an overall
improvement, it offers more room for the tradeoffs between the security and
efficiency parameters when used to build the signatures.

Following the frameworks of SPHINCS+ we provide security proof, and security
estimates based on carefully chosen and optimized parameters for the above com-
ponents and the resulting signatures. To facilitate a fair comparison, we implement
SPHINCS-α by adapting the code of SPHINCS+ and compare their performance on
a desktop computer. As shown in Table 1, under the “small” series parameters (op-
timized towards small signature size) our scheme reduces signature size and running
time by 8-11% and 3-15% respectively at all security levels while under the “fast” series
(optimized towards fast signing operations) our scheme exhibits better performance in
general. When instantiating the “simple” variant of the tweakable hash function with
sha256, our scheme reduces the signing time and verification time by 7-10% and up to
10% respectively under roughly the same signature size.

We refer to more detailed comparisons for the full spectrum of parameter choices
in Section 5.4 and Appendix A. As summarized in Table 7, our scheme offers an overall
performance improvement for most parameter settings, in terms of signing time and
signature size. On the downside, we experience an up to 122% increase in verification
time. Nevertheless, since the verification only amounts to 1-9% of the signing time we
argue that this sacrifice is worthwhile considering efficiency gain in signing time and
signature size.

Paper structure. We organize the rest of this paper as follows: In Section 2 we
revisit the SPHINCS+ signature whose structure our construction will mostly follow.
In Section 3 and Section 4, we describe our optimized one-time signature ‘Balanced
WOTS+” and our variant of few-time signature “FORC”. In Section 5, we present the
security proof of our scheme and the implementation details, and report the perfor-
mance compared to SPHINCS+.

2 Revisiting SPHINCS+

In this section, we briefly review the SPHINCS+ scheme.

2.1 Notations

We use [w]
def
= {0, 1, . . . , w − 1} for w ∈ N+. We denote the i-th element of a vector

v by vi. By log(x) we refer to the binary logarithm, i.e., log2(x). We denote the
concatenation of strings (vectors) a and b by a‖b or (a, b). For a set S, we denote the
size of S and the power set of S by |S| and P (S) respectively. We let λ be the security
parameter, and refer to a λ-bit value as a block.

2.2 The SPHINCS+ Framework

The structure of SPHINCS+ forms a hypertree, a tree of Merkle trees. Each Merkle
tree is linked to the next tree using a one-time signature. And the leaf node of the
hypertree is the public key of a few-time signature. The whole tree is generated on the
fly, which means the secret key holder can obtain any part of the hypertree from private
randomness with a pseudorandom function. An illustration is shown in Figure 1.
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Figure 1: An overview of the SPHINCS+ structure from [BHK+19].

2.3 Cryptographic (Hash) Function Families

Tweakable hash functions Tweakable hash functions are the basic building blocks
in SPHINCS+. A tweakable hash function takes public parameters P , a tweak T ,
and a message m as inputs. The public parameters can be interpreted as a function
key, and the tweak can be thought of like a salt/nonce. The definition is quoted from
SPHINCS+ [BHK+19].

Definition 1 (Tweakable hash function) Let α ∈ N, and let P and T be the public
parameter space the tweak space respectively. A tweakable hash function is an efficient
function mapping an α-bit message M to an λ-bit hash value MD using a function key
called public parameter P ∈ P and a tweak T ∈ T .

Th : P × T × {0, 1}α → {0, 1}λ, MD← Th(P, T,M) .

We sometimes write Th(M) instead of Th(P, T,M) wherever P and T are obvious
from the context. A straightforward instantiation of the tweakable hash function in
the QROM can be simply

Th(P, T,M) = H(P ||T ||M) ,

where the hash function H is assumed to behave like a quantum accessible random
oracle. This construction is used in SPHINCS+ as a “simple” version tweakable hash
function, as opposed to a “robust” version.

Following SPHINCS+, we use the following simplifying notations. We write Thl :
{0, 1}λ × {0, 1}256 × {0, 1}lλ → {0, 1}λ, for the tweakable hash function with input

length lλ. We further define F
def
= Th1,H

def
= Th2.

Pseudorandom functions and message digest. SPHINCS+ uses a pseudorandom
function PRF to generate pseudorandom keys, PRF : {0, 1}λ × {0, 1}256 → {0, 1}λ,
and another pseudorandom function PRFmsg to generate randomness for message
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compression: PRFmsg : {0, 1}λ × {0, 1}λ × {0, 1}∗ → {0, 1}λ. SPHINCS+ applies
a keyed hash function Hmsg : {0, 1}λ × {0, 1}λ × {0, 1}λ × {0, 1}∗ → {0, 1}λ to the
message and then signs its compressed output (digest).

2.4 WOTS+

We show WOTS+ [Hül13], a one-time signature scheme which is used in SPHINCS+.
One-time signature restricts a private key to be used exactly one message, otherwise
its security quickly decreases [BH17].

The security parameter / message length is denoted by λ. The Winternitz param-
eter is w. Let l be the number of blocks in an uncompressed WOTS+ private key,
public key, and signature, where

l = l1 + l2, l1 =

⌈
λ

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1 .

The WOTS+ key pair. The WOTS+ private key sk consists of l random blocks
(i.e. sk = (sk1, sk2, . . . , skl), ski ∈ {0, 1}λ). The uncompressed WOTS+ public keys
{pki}li=1 is derived by applying F iteratively for w − 1 times to each of the blocks in
the private key (i.e., pki = Fw−1(ski)). Note each F has a different tweak. Finally, the
public keys are compressed to a block using a single tweakable hash function Thl (i.e.,
pk = Thl(pk1, pk2, . . . , pkl)). We use WOTS+ public key to refer to the compressed
public key.

In the context of the SPHINCS+, the WOTS+ private key sk is derived from the
SPHINCS+ private key and the address of the WOTS+ key pair within the hypertree
using PRF.

WOTS+ signature and verification. A message m ∈ {0, 1}λ is interpreted as
l1 integers mi ∈ {0, 1, . . . , w − 1}. We compute a checksum C =

∑l1
i=1(w − 1 −

mi), represented as a string of l2 base-w values C = (C1, C2, . . . , Cl2). Let M =
(m1, . . . ,ml1 , C1, . . . , Cl2). Apply the hash function F to each of the blocks in the
private key ski for Mi times (i.e. σi = FMi(ski)). The l blocks σi make up the
signature σ. The verifier can them recompute the checksum and apply F to each
block for w − 1 −Mi times (i.e. pk′i = Fw−1−Mi(σi)). Finally compress those values
to an λ-bit public key pk′ using Thl (i.e. pk′ = Thl(pk

′
1, pk

′
2, . . . , pk

′
l)). The verifier

accepts this signature iff pk = pk′.

2.5 The hypertree

The hypertree structure generalizes both the Merkle tree [Mer90] and Goldreich tree [Gol87].
It was adopted in XMSS [BDH11, HRB13] and SPHINCS+ [BHK+19].

A single Merkle tree. In order to sign 2h
′

messages, the signer generates 2h
′

WOTS+ key pairs and constructs a binary tree using these 2h
′

public keys as leaf
nodes. That is, he repeatedly applies H to each pair of child nodes to generate the
corresponding parent node until reaching the root of the tree, which is the public key
for this single tree scheme. Note that each H is parameterized with a unique address
of as well as the SPHINCS+ public seed. The height of the tree, h′, corresponds to
the number of H applications from any leaf to the root.

To sign a message, the signer picks one of the WOTS+ leaf nodes and publishes the
WOTS+ signature as well as all siblings of the nodes on the path from the leaf to the
root, which is referred to as the “authentication path”. The verifier first derives the
WOTS+ public key from the signature and then uses the nodes on the authentication
path and their siblings to reconstruct the root.
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Notice that in order to generate a root node that is able to authenticate 2h
′

mes-
sages, one needs to hash all of the leaf nodes. This becomes impractical if we want to
sign all messages (h′ = n) in a single Merkle tree. We thus need to use a hypertree to
be explained next.

A tree of trees. A hypertree consists of d layers. The leaf nodes of the trees on
the bottom layer are used to sign messages (in SPHINCS+, the message is a FORS
public key), while the leaf nodes of trees on other layers are used to sign the root
nodes of the trees immediately beneath them. We refer to Figure 1 for a visualization
of the structure, where SPHINCS+ defines h′, d and sets the total tree height h = h′d.
During key generation, only the top-most tree is generated to derive the public key.
The rest of the trees can be generated “on the fly” when needed.

2.6 FORS

A few-time signature allows a private key to sign multiple messages, with decreasing
security for the increasing number of signatures. Forest of Random Subsets (FORS)
is a few-time signature scheme proposed in SPHINCS+[BHK+19]. FORS is parame-
terized by integers k and t = 2a, and can be used to sign messages of ka bits.

The FORS key pair. The FORS public key consists of k Merkle trees where each
tree has t leaves. The forest is derived from SPHINCS+ private key using PRF and
the address of the key in the hypertree. To construct the FORS public key, we first
construct k Merkel trees from their respective t random blocks and then compress the
root nodes using Thk. The resulting block is the FORS public key.

FORS signature and verification. Given a message of ka bits, we split it into k
chunks of a bits. Each chunk value is interpreted as the index of a single leaf node
in the corresponding Merkle tree. The signature consists of these nodes and their
respective authentication paths. The verifier reconstructs all the root nodes from the
signature, compresses the root nodes using Thk, and compares the result value against
the public key. See Figure 2 for an illustration.

r0 r1
r2

Figure 2: An example of a FORS signature with k = 3 and a = 3, on message
010 110 100.

2.7 The SPHINCS+

The SPHINCS+ is built upon the aforementioned components.

The SPHINCS+ key pair. The public key consists of two blocks: the root node of
the hypertree, and a random public seed PK.seed. In addition, the private key consists
of two more random seeds: SK.seed, to generate the WOTS+ and FORS private keys,
and SK.prf, used for the message digest.

The SPHINCS+ signature and verification. The signature consists of a FORS
signature on a digest of the message, a WOTS+ signature on the corresponding FORS
public key, and a series of authentication paths and WOTS+ signatures to authenticate
that WOTS+ public key. To verify this chain of paths and signatures, the verifier
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iteratively reconstructs the public keys and root nodes until the root node at the top
of the SPHINCS+ hypertree is reached.

Message digest and Index selection. SPHINCS+ generates a randomizer R =
PRF(SK.prf,OptRand,M) and includes R as part of the signature, where OptRand
is some optional randomness. It then derives the index of the leaf node idx and the
message digest MD

(MD||idx) = Hmsg(R,PK.seed,PK.root,M) ,

where the relation is publicly verifiable, preventing an adversary from selecting an
index at his own choice.

Maximum number of signatures. SPHINCS+ restricts the number of signatures
to no more than 264. This limit suffices for most practical applications, and it sets the
maximum height of the hypertree for performance reasons.

3 Balanced WOTS+

In this section, we present our Balanced WOTS+, whose encoding scheme is slightly
more optimized than the counterpart in WOTS+.

3.1 The WOTS+ encoding

The reason that the WOTS+(as well as other Winternitz-type OTS) scheme introduces
the checksum is that in absence of the checksum the adversary can efficiently forge
signatures given a single pair of valid message signature. That is, given (σ,m) he

forges any m′ satisfying ∀i(mi ≤ m′i) by computing Fm
′
i(ski) = Fm

′
i−mi

(
Fmi(ski)

)
.

The checksum addresses the issue: an increase in any mi leads to a decrease in at
least one Ci (recall C =

∑l1
i=1(w − 1 −mi)). Therefore, the adversary cannot forge

any (m′, C′) satisfying both ∀i(mi ≤ m′i) and ∀i(Ci ≤ C′i) at the same time.

3.2 Size-optimal encoding

More formally, the problem of constructing one-time signature reduces to that of
building an efficient encoding scheme Enc : M → C ⊆ [w]l for some incomparable
codeword set C (see Definition 2). In case of WOTS+, the encoding function Enc
simply appends the checksum to the original message. Note that WOTS+ fixes the
size of the message to l1 (i.e., M = [w]ll) and then constructs as small codewords as
possible (minimizing l − l1).

Definition 2 ((In)comparability) For a, b ∈ [w]l, we denote by a ≤ b if for every
i ∈ [l] we have ai+1 ≤ bi+1. If a ≤ b or b ≤ a we say that a and b comparable, or
otherwise a and b are incomparable. A set S ⊆ {a : a ∈ [w]l} is said to be incomparable
(or called an “antichain” in order theory terminology) if any two elements of S are
incomparable.

We take a slightly different approach to encoding the messages. That is, we first fix
the size of the codewords to l, C ⊆ [w]l, and strive to accommodate as large message
space M as possible. Given that Enc is an injection it is essentially to maximize the
size of C ⊆ [w]l. A natural approach is to encode the codewords such that all elements
of every codeword sum to the same value, and therefore the checksum is not explicitly
needed. Bos and Chaum [BC93] studied this approach for the special case of w = 2.
Vaudenay [Vau93] generalized it to arbitrary w, but he did not provide an encoding
algorithm. Perin et al. provided a similar encoding algorithm in [PZC+21], but they
did not present a size-optimal proof.
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Theorem 3.1 For any m ∈ [l(w − 1) + 1], Cm
def
= {v ∈ [w]l :

∑l
i=1 vi = m} is

incomparable.

Proof: Suppose towards contradiction that Cm (for some fixed m ∈ [l(w − 1) + 1])
is not incomparable, then there exist distinct a, b ∈ Cm s.t. a ≤ b. There must be an
index j such that aj < bj (otherwise a = b). However, due to equal sum

∑
i ai =

∑
i bi

we have
∑

1≤i≤l∧i 6=j(ai − bi) > 0, and there must exist some 1 ≤ k ≤ l such that

ak > bk, which is a contradiction to a ≤ b.

Every Cm gives an encoding scheme but with different size. For m = 0 or m =
l(w − 1), Cm consists of only a single codeword. We argue that the size of Cm reaches

its maximal in the middle, i.e., when m = b l(w−1)
2
c. One easily verifies that this holds

in the binary case (i.e., w = 2) where |Cm| =
(
l
m

)
. Perin et al. [PZC+21] proved that

|Cm| reaches its maximum when m = b l(w−1)
2
c. We prove a stronger optimality result

in Theorem 3.2 that the size of Cm, when m = b l(w−1)
2
c, is not only the largest in all

Cm for m ∈ [l(w − 1) + 1] but the largest among all valid sets of codewords.

Theorem 3.2 (Size-optimal encoding) For every incomparable C∗ ∈ P ([w]l), it
holds that

|C∗| ≤ |Cb l(w−1)
2
c| .

We defer its proof to Theorem 3.4, which rephrases Theorem 3.2 in the language of
order theory. Prior to that, we discuss how to compute |Cm| by recursion, and give an

explicit construction of encoding messages into Cm for m = b l(w−1)
2
c. Hereafter, we

denote such Cm with maximal size by C for brevity.

Counting the size. Now we need to figure out the size of C. As a special case,
|C| =

(
l
bl/2c

)
when w = 2. Fix w, let

Dn,m = |{v ∈ [w]n :

n∑
i=1

vi = m}| ,

we have their initial values

D1,m = 1, for m ∈ {0, 1, . . . , w − 1}

Dn,m = 0, for 2 ≤ n ∈ Z,m ∈ Z− ,

and recurrence relation

Dn,m =

w−1∑
i=0

Dn−1,m−i, 2 ≤ n ∈ Z,m ∈ {0, 1, . . . , l(w − 1)} .

Note when w = 2, this method is equivalent to recurrence relation of binomial
coefficient i.e.

(
n
m

)
=
(
n−1
m−1

)
+
(
n−1
m

)
.

Let us explain the recurrence relation. To compute Dn,m, consider the value of
its last summand, which could be any value in {0, 1, . . . , w− 1}. If this value is set to
i, the sum of the first n − 1 elements must be m − i. Therefore, we notice that the
problem “n elements with sum to m” into those “n− 1 elements with sum to m− i”.
Thus we can simply count Dn,m by accumulating Dn−1,m−i. Following this method,
Dl,bl(w−1)/2c gives the size of C.

Related works. Dn,m is also the m-th coefficient of (1 + x + x2 + · · · + xw−1)n.
Euler [Eul01] has studied w = 3, 4, 5, known as trinomial, quadrinomial and quinti-
nomial coefficients respectively. The generalized form was studied in the literature,
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e.g., [And76, War97, BI20]. Actually, we can use an inclusion-exclusion argument to
express it as a function of binomial coefficients [hz11]

Dn,m =

bm/wc∑
s=0

(−1)s
(
n

s

)(
m+ n− sw − 1

n− 1

)
.

Encoding algorithm. Now we make the construction explicit by giving an efficient
encoding algorithm, which maps a message x ∈ [|C|] into an element in C. We give the
pseudocode of the encoding algorithm in Algorithm 1.

Algorithm 1: Encode:[|C|]→ C.
Function Encode(x)

Let v be an array of size l;
m← bl(w − 1)/2c;
for i← l . . . 1 do

for j ← 0 . . . min(w − 1,m) do
if x ≥ Di−1,s−j then

x← x−Di−1,s−j ;

else
vi ← j;
break;

m← m− vi;
return v;

Let us explain the encoding algorithm. As previously stated, the problem can be
divided into several subproblems by considering the value of the last element vi. To en-
code a natural number x ∈ [0, Di,m), we can simply determine vi = j by seeking which
j satisfies x ∈ [

∑
k<j Di−1,m−k,

∑
k≤j Di−1,m−k). Once the value of vi is determined,

we proceed to its preceding terms until all elements are decided.
In order to prove the optimality of the encoding, we need some prerequisites about

the order theory. The relationship between one-time signature and order theory has
been investigated in [BM94].

Preliminaries of Order Theory

Definition 3 (Poset) A poset (S,≤) consists of a set S together with an antisym-
metric, transitive and reflexive binary relation ‘≤’, where are certain pairs (x, y) ∈ S
are comparable (x ≤ y or y ≤ x).

Note that a poset does not require all pairs in S to be comparable, and thus it is also
known as a partially ordered set.

Definition 4 ((Anti)chain and decomposition) A chain (resp., antichain) refers
to a subset of a poset, whose every pair of elements is comparable (resp., incomparable).
A chain decomposition is a partition of a poset into disjoint chains.

Theorem 3.3 (Dilworth’s theorem [Dil09]) For any finite poset P , the size of
P ’s maximum antichain equals the size of a minimum chain decomposition of P .

Let P = ([w]l,≤) be a finite poset. According to Dilworth’s theorem, we can prove
that C is the maximum antichain of P by arguing that (1) C is an antichain and (2)
we can find a chain decomposition whose size equals to |C|.
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Theorem 3.4 C is the maximum antichain, i.e., C is size-optimal.

Proof: We have proved that C is an antichain in Theorem 3.1. It remains to con-
struct the chain decomposition of size |C| as follows. Our proof can be viewed as a
generalization of the proof of Sperner’s theorem [Spe28], which considers the special
case for w = 2.

Consider poset Sn = ([w]n,≤), and we sometimes denote an element of Sn by

(a1, ..., an) ∈ [w]n or by ci ∈ [w]n. We slightly abuse the notation |(a1, ..., an)| def
=

a1 + ...+ an.
We construct the chain decomposition for Sn by induction, where every chain

{c1, . . . , cm} satisfies the following two properties:

• |ci+1| = |ci|+ 1,∀i ∈ {1, 2, . . . ,m− 1},
• |c1|+ |cm| = n · (w − 1).

The case for n = 1 is trivial, i.e., D1,b(w−1)/2c = 1, which correspond to the chain
of S1 = {(0), (1), . . . , (w − 1)}.

Assume that we have a chain decomposition for Sn−1 satisfying the above two
properties, we proceed to the construction of a chain decomposition for Sn. For each
chain c = {c1, c2, . . . , cm} (from the chain decomposition of Sn−1) satisfying the two
properties, we build k+ 1 chains for Sn as follows, where k = min(w− 1,m− 1). That
is, for every j ∈ {0, ..., k} the j-th chain consists of:

(c1, j) ≤ . . . ≤ (cm−j , j) ≤ (cm−j , j + 1) ≤ ... ≤ (cm−j , w − 1) .

This yields the k + 1 chains as shown in Figure 3 below:

(c1, 0) . . . . . . . . . (cm, 0) . . . (cm, w − 1)
... . . . . . . . .

.
. . . . . .

...
(c1, k) . . . (cm−k, k) . . . . . . . . . (cm−k, w − 1)

Figure 3: A demonstration of how a chain from Sn−1 is expanded into k + 1
chains for Sn, where every row is an expanded chain. Note that it is not a
rectangular matrix (every row has two less elements than the previous).

It is easy to verify that |(c1, j)|+|(cm−j , w−1)| = |(c1, 0)|+j+|(cm, 0)|−j+(w−1) =
n(w − 1), and every subsequent element increase the sum value of its predecessor by
one. Namely, the two properties are preserved for all the constructed chains of Sn.

It remains to argue that all the chains constructed (from the decomposed chains
of Sn−1) constitute a partition of [w]n. That is, for every ci ∈ Sn−1, each of its
augmented elements (ci, 0), ..., (ci, w − 1) appears in the constructed chains exactly
once. Note that every ci belongs to (and can only belong to) one of the decomposed
chains of Sn−1, say c = {c1, . . . , cm}. We discuss the following cases.

Case m ≤ w: We have k = m−1 ≤ w−1. [(ci, 0), . . . , (ci, k+1− i)] appears as the
first (k+ 2− i) elements of the i-th column, and then [(ci, k+ 1− i), . . . , (ci, w− 1)]T

as the last (w + i− k − 1) elements of the (k + 2− i)-th row in Figure 3.
Case m > w: We have k = w − 1 < m − 1. If 1 ≤ i ≤ m − w + 1, then

[(ci, 0), (ci, w − 1)] appears as the i-th column in Figure 3. Otherwise, m − w + 1 <
i ≤ m. [(ci, 0), . . . , (ci,m− i)] and [(ci,m− i), . . . , (ci, w− 1)]T are the first m− i+ 1
elements of the i-th column, and the last (w + i −m) elements of the (m − i + 1)-th
row respectively.

Therefore, we have shown that for every a ∈ [w]n−1, (a, 0), . . .,(a,w − 1) appears
exactly once in the newly constructed chains, namely, the chains constitutes as a
chain decomposition for Sn. Finally, it remains to count the number of chains in
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the decomposition. The two properties guarantee that every chain contains exactly
one element cmid with |cmid| = bl(w − 1)/2c (i.e. cmid ∈ C). Thus, the size of chain
decomposition |C| = Dl,bl(w−1)/2c. This completes the proof that C is the maximum
antichain.

3.3 Theoretical Performance

Our Balanced WOTS+ has two advantages over WOTS+.

• Stable computing time. The number of hash function calls is fixed in our con-
struction, in contrast to possibly variable numbers for the signing and verifica-
tion algorithm of WOTS+. While no timing attacks are identified against the
implementations of our construction and WOTS+, stable computing time is al-
ways preferable (especially for signing algorithms whose computation involves a
private key).

• Reduced signature size and number of hash calls. For instance, the SPHINCS+-
256s parameter set suggests w = 16 and l = 67. In our construction, for w = 16
we require l = 66, which reduces 1.5% in both running time (in terms of the
expected number of hash function calls) and size. We refer to Table 2 for more
details.

Table 2: Comparison of length l between WOTS+ and Balanced WOTS+ for
different values of Winternitz parameters w and security parameter λ.

128bit 192bit 256bit
w WOTS+ Ours WOTS+ Ours WOTS+ Ours

8 46 45 67 66 90 88
16 35 34 51 50 67 66
24 31 30 45 44 59 58
32 28 27 42 40 55 53
40 27 26 39 38 52 50
48 25 25 37 36 48 48

Although our encoding algorithm costs slightly more than the checksum method,
it is less dominant compared to the number of hash function calls used in the signature
scheme, which will be confirmed in the performance comparison to SPHINCS+.

4 FORC

We present a variant of the few time signature, called Forest of Random Chains
(FORC). Intuitively, the Winternitz method manages to encode multiple-bit messages
into a single block using hash chains. Therefore we decide to add hash chains in the leaf
node of the origin FORS signature. Let w′ be a Winternitz parameter (w is reserved
for our balanced WOTS+), indicating the length of the hash chain at the bottom. Our
construction, as shown in Figure 4, is therefore parameterized by integers k , t = 2a

and w′.

Key pair The public key consists of k trees where each tree has t chains hanging
from its leaves. To construct the public key, we first sample t random block, iteratively
apply F to each block w′ times. Finally, treat the t the end-points blocks as leaves
and compress them down to the root of the Merkle tree.

Signature and verification Given a message of k(a+ logw′) bits,we split it into k
chunks of a+ logw′ bits, denoted by (J, L). Each chunk is interpreted as the index of
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r0 r1
r2

Figure 4: An illustration of a FORC signature with k = 3, a = 3 and w′ = 4,
for the message 010 10 110 01 100 11.

a single leaf node with a chain position for each of the k Merkle trees. The signature
consists of the selected node and their respective authentication paths. The verifier
reconstructs each of the root nodes using the authentication paths and uses Thk to
reconstruct the public key.

Collision probability. We specifiy the position of the FORC scheme by a pair
(J, L) ∈ [t]×[w′]. The probability that under the same tree the corresponding signature
of a random pair (J, L) is efficiently implied by another random one (J ′, L′) is

Pr[J = J ′] · Pr[L ≤ L′] =
1

t

( 1

w′

w′∑
i=1

i

w′

)
=

1

t
· w
′ + 1

2w′
.

Therefore, compared to the original FORS scheme (which can be seen as the special

of ours for w′ = 1), we improve the collision probability by a factor of w′+1
2w′ . While

the improvement seems not substantial at all (i.e., w′+1
2w′ > 1/2 regardless of w′), it

adds one more degree of freedom for tradeoffs and thus creates more possibilities for
the performance improvement of the resulting signature.

5 The SPHINCS-α Signature Scheme

We describe more details of the SPHINCS-α signature scheme in this section. Our
signature follows the overall structure of SPHINCS+ (see Fig. 1) except for replacing
its underlying WOTS+ and FORS with our Balanced WOTS+ and adapted FORC
respectively.

5.1 Security Notions

We recall the relevant security properties about the tweakable hash functions used in
the security analysis of SPHINCS+ as well as the standard (post-quantum) security
notions such as digital signature and pseudorandom function. We defer the (adapted)
notion and analysis of interleaved target subset resilience to Section 5.2.

PQ-SM-TCR. This variant of target collision resistance is modelled by a two-
stage game: an adversary first (denoted by A1) makes multiple adaptive queries
Q = {(Ti,Mi)}pi=1 to the single function (keyed with the same P hidden from A1),
one query per distinct tweak Tj . Then, he (i.e., A2) gets to see P , specifies which
target (i.e., j), and wins the game iff he finds a collision for the specified tweak Tj .
This notion is formally given in the following definition.
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Definition 5 (PQ-SM-TCR) Let Th be a tweakable hash function. We define the
success probability of a quantum adversary A = (A1,A2) as

SuccSM-TCR
Th,p (A) = Pr

[
P ← P;S ← ATh(P,·,·)

1 ;

(j,M)← A2(Q,S, P ) : Th(P, Tj ,Mj) = Th(P, Tj ,M)

M 6= Mj ∧ DIST({Ti}pi=1)
]
,

where Q = {(Ti,Mi)}pi=1 denotes the set of A1’s query and the predicate DIST returns
1 iff all tweaks are distinct. Further, we define the PQ-SM-TCR insecurity

InSecPQ-SM-TCR(Th; ξ, p) = max
A
{SuccSM-TCR

Th,p (A)} ,

as the maximum success probability of all quantum adversaries with running time ξ
and query complexity q. By “PQ-SM-TCR with tweak advice” we refer to the special
case that adversary A1 commits to the oracle all distinct tweaks ahead of its queries.

PQ-SM-DSPR. This property upper bounds the probability of a quantum adversary
determining whether the tweakable hash function has multiple preimages or not.

Definition 6 (PQ-SM-DSPR) Let Th,DIST, Q be as defined in Definition 5. We
define the success probability of a quantum adversary A = (A1,A2) as AdvSM-DSPR

Th,p (A) =
max{0, succ− triv} with

succ = Pr
[
P ← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = b ∧ DIST({Ti}pi=1)
]
;

triv = Pr
[
P ← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = 1 ∧ DIST({Ti}pi=1)
]
,

where SPP,T (M) is the predicate that returns 1 if there exists another M ′ s.t. Th(P, T,M) =
Th(P, T,M ′). We define the PQ-SM-DSPR insecurity

InSecPQ-SM-DSPR(Th; ξ, p) = max
A
{AdvSM-DSPR

Th,p (A)} ,

as the maximum success probability of every quantum adversary with running time ξ
and query complexity q. As a special case, we use the term “with tweak advice” to
denote the case where the adversary A1 sends all the tweaks to the oracle ahead of its
queries.

PQ-EU-CMA. This is an enhancement to the classical existential unforgeability
under adaptive chosen message attack by allowing the adversary to have access to a
quantum computer. We defer the formal definition to Appendix B.

PQ-PRF. This extends the classical definition of pseudorandom functions to quan-
tum adversaries, except that the access to the random/pseudorandom function remains
classical. We defer the formal definition to Appendix B.

5.2 Security Evaluation

Since our overall structure remains unaltered compared to SPHINCS+, the security
analysis largely follows the original framework. The only adaption needed is the Inter-
leaved Target Subset Resilience security of the FORS construction. Since we deviate
from the original structure, this value needs to be re-computed. We first recall the
original main theorem of the SPHINCS+ signature.
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Theorem 5.1 For parameters n,w, h, d,m, t, k, l as described above, SPHINCS+ is
PQ-EU-CMA secure if

• Th(and thereby also F and H) is post-quantum single-function multi-target-
collision resistant for distinct tweaks (with tweak advice)

• F is post-quantum single-function multi-target decisional second-preimage resis-
tant for distinct tweaks (with tweak advice)

• PRF and PRFmsg are post-quantum pseudorandom function families, and

• Hmsg is post-quantum interleaved target subset resilient

More concretely,

InSecPQ-EU-CMA(SPHINCS+; ξ, qs)

≤ InSecPQ-PRF(PRF; ξ, q1) + InSecPQ-PRF(PRFmsg; ξ, qs)

+ InSecPQ-ITSR(Hmsg; ξ, qs) + InSecPQ-SM-TCR(Th; ξ, q2)

+ 3 · InSecPQ-SM-TCR(F; ξ, q3) + InSecPQ-SM-DSPR(F; ξ, q3) ,

where q1 < 2h+1(kt+ l), q2 < 2h+2(w · l + 2kt), and q3 < 2h+1(kt+ w · l).

Following the security evaluation methodology of SPHINCS+ we first estimate the
above insecurity levels using the generic attacks fixing the number of signatures (and
thus the number of oracle queries). Then, we calculate the computational complexity
of an adversary in order to get a constant success probability in winning the EU-CMA
game. We therefore review the generic attacks in the following subsection.

5.3 Concrete Security

We follow the route of the previous works [HRS16b, BH19] to derive the bounds on PQ-
SM-TCR, PQ-SM-DSPR, and PQ-PRF as O(q+ 1/2λ) (classical) and O((q+ 1)2/2λ)
(quantum).

With our revised few-time signature FORC, we slightly adapt the definition of
PQ-ITSR from [BHK+19] and adjust the collision probability in the analysis of its
InSecPQ-ITSR accordingly. It captures the generic attacks against interleaved target
subset resilience (ITSR), i.e., a new message digest selects FORC positions that are
covered (and whose values are efficiently implied) by the qs signature queries.

Definition 7 (PQ-ITSR) Let H : {0, 1}κ×{0, 1}α → {0, 1}m be a keyed hash func-
tion. Further consider the mapping function MAPh,k,t : {0, 1}m → {0, 1}h × ([t] ×
[w′])k which, for parameters h, k, t, w′, maps an m-bit string to a set of k indexes
{(I, 1, J1, L1), (I, 2, J2, L2), . . . , (I, k, Jk, Lk)}, where I is chosen from [2h] and each
(Ji, Li) pair is chosen from [t] × [w′]. Note that the same I is used for all tuples
(I, i, Ji, Li).

We call a pair (J, L) covered by another pair (J ′, L′) if J = J ′ and L ≤ L′, and a
set S0 is covered by another set S1 if they have the same I, and all (J, L) pairs of S0

are covered by those of S1.
We define the success probability of any (quantum) adversary A against ITSR of

H. Let G = MAPh,k,t ◦ H. The definition uses an oracle O(·) which on input an
α-bit message Mi samples a key Ki ← {0, 1}κ and returns Ki and G(Ki,Mi). The
adversary can query this oracle with messages of his choice.

SuccITSRH,q (A) = Pr[(K,M)← AO(·)(1n)

s.t. G(K,M) covered by

q⋃
j=1

G(Kj ,Mj) ∧ (K,M) 6∈ {(Kj ,Mj)}qj=1],
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where q denotes the number of oracle queries of A and the pairs {(Kj ,Mj)}qj=1 repre-
sent the responses of oracle O.

The PQ-ITSR insecurity of a keyed hash function against q-query, time-ξ adver-
saries is the maximum advantage of any quantum adversary A with running time ≤ ξ,
and making up to q queries:

InSecPQ-ITSR(H; ξ, q) = max
A

SuccITSRH,q (A) .

Following SPHINCS+ we assume idealized hash functions when evaluating con-
crete values for InSecPQ-ITSR. Recall the parameters h, k, t = 2a and w′. The process is
as follows: generate independent uniformly random integers I, J1, L1, J2, L2, . . . , Jk, Lk.
In the context of SPHINCS-α , I selects the FORC instance, and each (Ji, Li) pair
selects the position of the value revealed from the i-th set inside this FORC instance.

Notice that the position in the FORC is now specified by (J, L) (instead of just
J in [BHK+19]). Thus, a position (J, L) is covered by another one (J ′, L′) iff J = J ′

and L ≤ L′, which occurs with probability

Pr[Col] = Pr[J = J ′] · Pr[L ≤ L′] =
1

t

( 1

w′

w′∑
i=1

i

w′

)
=

1

t
· w
′ + 1

2w′
.

Let qs denote the number of adversarial signature queries. Let Si be the generated
set by the i-th signing processing. The probability that S0 is covered by the union of
S1, S2, . . . , Sqs is shown in [BHK+19] as

qs∑
γ=0

(1− (1− Pr[Col])γ)k
(
qs
γ

)(
1− 1

2h

)qs−γ 1

2hγ
.

We substitute Pr[Col] = 1
t
· w
′+1
2w′ into the above to get

qs∑
γ=0

(
1−

(
1− 1

t
· w
′ + 1

2w′

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ 1

2hγ
.

In summary, the overall insecurity for classical adversaries that make no more than
qh queries to the underlying hash function is

InSecEU-CMA(SPHINCS-α; qh) ≤

O

(
qh
2n

+ qh

qs∑
γ=0

(
1−

(
1− 1

t
· w
′ + 1

2w′

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ 1

2hγ

)
.

Similarly with quantum adversaries, this is

InSecPQ-EU-CMA(SPHINCS-α; qh) ≤

O

(
q2h
2n

+ q2h

qs∑
γ=0

(
1−

(
1− 1

t
· w
′ + 1

2w′

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ 1

2hγ

)
.

A small constant factor is hidden in the O-notation. To estimate the security, one
sets the bound to 1 and solves for qh.

5.4 Implementation

We describe implementation details of the SPHINCS-α signature scheme in this sec-
tion.

Implementation. We adapt the official SPHINCS+ implementation on github [Tea21]
to ours [aT21], where we reuse most of its basic modules such as hash functions, and
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implement from scratch only those added, i.e., the encoding algorithm. Therefore, this
facilitates a fair comparison of the performance.

Instantiation Similar to SPHINCS+, we provide 36 combinations of parameter
choices and instantiations. The classic security level includes 128,192 or 256 bits.
The hash functions can be haraka [KLMR16], shake256 [Dwo15] or sha256 [D+15].
The tweakable hash function has simple or robust version. We also offer a small or
fast option towards either small signatures or fast signature generation. Note that
the instantiations using haraka cannot reach the same security levels like shake256 or
sha256, due to a generic meet-in-the-middle attack.

Parameter Sets. The parameter sets are listed in Table 3. Note “bitsec” represents
classic security level. Readers can also find the parameter estimation code in our open
source implementation. Please open para.ipynb in Jupyter Notebook with SageMath.

Table 3: Parameter Sets for SPHINCS-α

Parameter Set n h d log t k w w′ bitsec

sphincs-α-128f 128 66 22 7 23 13 2 127
sphincs-α-192f 192 66 22 7 37 15 2 192
sphincs-α-256f 256 64 16 8 48 16 2 255
sphincs-α-128s 128 64 8 13 11 32 2 127
sphincs-α-192s 192 64 8 12 19 38 2 192
sphincs-α-256s 256 63 9 12 27 46 2 255

Environment. We conduct our benchmarks on a Ubuntu 20.04 machine with Ryzen™
5 3600 CPU and 16GB RAM, compiled with gcc-9.3.0 -O3 -march=native -fomit-frame-
pointer -flto.

Performance. We briefly report the performance of SPHINCS-α with SPHINCS+

as a baseline in Table 5 and Table 6 respectively. All reported instances are optimized
using architecture-specific instructions such as AESNI or AVX2.

As shown in Table 1, we summarize a performance comparison between SPHINCS+

and SPHINCS-α when instantiating the simple tweakable hash function with sha256.
In addition, we also provide in Table 4 a theoretic performance comparison in terms
of the total number of hash function calls, where count only the dominating hash
functions F and H (and omitting others like PRF,PRFmsg,Hmsg, and Thl). Note
that the real performance (in terms of the number of CPU cycles) mostly agrees with
the theoretic estimate.

Table 4: Theoretic performance comparison between the signing algorithms in
SPHINCS+ and SPHINCS-α, in term of the number of hash calls and signature
size.

SPHINCS+ SPHINCS-α Relative Change
Param. #Hash Size #Hash Size #Hash Size

128f 102960 17088 93664 17040 −9.03% −0.28%
192f 160688 35664 149024 35640 −7.26% −0.07%
256f 327696 49856 307456 49696 −6.18% −0.32%
128s 2125312 7856 2041856 6960 −3.93% −11.41%
192s 3485184 16224 3192832 14784 −8.39% −8.88%
256s 2918400 29792 2876544 27104 −1.43% −9.02%
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We refer to Table 5 and Table 6 for comprehensive performance summaries of
SPHINCS+ and SPHINCS-α respectively for all the 36 parameter sets. As summa-
rized in Table 7, SPHINCS-α reduces both signing time and signature size for most
parameter sets. We pay a price of up to 122% increase in verification time, which
seems worthwhile since verification only takes 1-9% of the signing time.

6 Conclusion

In this paper, we improve the performance of state-of-the-art stateless hash-based sig-
nature. This is achieved by improving/modifying the underlying components WOTS+

and FORS, and optimizing the parameter choices. The resulting scheme, which we
call SPHINCS-α, yields a general improvement in most parameter settings.

References

[ACZ18] Dorian Amiet, Andreas Curiger, and Paul Zbinden. FPGA-based accel-
erator for SPHINCS-256. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(1):18–39, 2018. https://tches.iacr.org/

index.php/TCHES/article/view/831.

[AE18] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless
hash-based signatures. In Nigel P. Smart, editor, Topics in Cryptology
– CT-RSA 2018, volume 10808 of Lecture Notes in Computer Science,
pages 219–242, San Francisco, CA, USA, April 16–20, 2018. Springer,
Heidelberg, Germany.

[And76] Désiré André. Mémoire sur les combinaisons régulières et leurs applica-
tions. In Annales scientifiques de l’École Normale Supérieure, volume 5,
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A More Detailed Comparisons

We benchmarked the performance of SPHINCS-α under all 36 parameter settings
({haraka, shake256, sha256}×{128, 192, 256}×{fast, small}×{robust, simple}). To fa-
cilitate a fair comparison, we tested our implementation (adapted from the SPHINCS+

codes) along with the original SPHINCS+. The test results are reported in Table 5
and Table 6 with a comparison in Table 7.
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Table 5: Runtime benchmarks for optimized SPHINCS+. Key generation, sign-
ing and verification time are in the number of cpu cycles; public key, secret key
and signature size are in bytes. All cycle counts are the median of 100 runs.

Parameter Set Tweakable hash Key generation Signing Verification Pk. Size Sk. Size Sig. size

sphincs-haraka-128f robust 443556 5705136 512676 32 64 17088
sphincs-haraka-128f simple 380016 4924638 419454 32 64 17088
sphincs-haraka-192f robust 809640 12774942 902610 48 96 35664
sphincs-haraka-192f simple 590814 8668764 645066 48 96 35664
sphincs-haraka-256f robust 1104750 26008722 980586 64 128 49856
sphincs-haraka-256f simple 1397070 17004978 641934 64 128 49856
sphincs-haraka-128s robust 14450958 119774736 235890 32 64 7856
sphincs-haraka-128s simple 11825712 94249962 170424 32 64 7856
sphincs-haraka-192s robust 26697672 300607686 408006 48 96 16224
sphincs-haraka-192s simple 19067202 196759800 261360 48 96 16224
sphincs-haraka-256s robust 17549622 283877928 586008 64 128 29792
sphincs-haraka-256s simple 11645640 187857558 369702 64 128 29792
sphincs-shake256-128f robust 4161078 96265278 7285968 32 64 17088
sphincs-shake256-128f simple 2140128 50028048 3450348 32 64 17088
sphincs-shake256-192f robust 5990310 153338490 9922194 48 96 35664
sphincs-shake256-192f simple 6262956 78820344 5035356 48 96 35664
sphincs-shake256-256f robust 16049250 314417178 10418976 64 128 49856
sphincs-shake256-256f simple 9390924 166614426 4989636 64 128 49856
sphincs-shake256-128s robust 266192604 1999936872 2577816 32 64 7856
sphincs-shake256-128s simple 136044954 1034544870 1312974 32 64 7856
sphincs-shake256-192s robust 386893530 3366483696 3596472 48 96 16224
sphincs-shake256-192s simple 197779788 1784871360 1869642 48 96 16224
sphincs-shake256-256s robust 256996026 2912051970 5316408 64 128 29792
sphincs-shake256-256s simple 130144878 1539752436 2585250 64 128 29792
sphincs-sha256-128f robust 3911976 45293760 4078386 32 64 17088
sphincs-sha256-128f simple 1995822 22989240 1899450 32 64 17088
sphincs-sha256-192f robust 5888736 76478148 6478434 48 96 35664
sphincs-sha256-192f simple 2768706 39118374 2949516 48 96 35664
sphincs-sha256-256f robust 15628122 310998042 12441420 64 128 49856
sphincs-sha256-256f simple 7213410 79211412 3085938 64 128 49856
sphincs-sha256-128s robust 122212602 928916964 1495872 32 64 7856
sphincs-sha256-128s simple 62257986 473796252 759060 32 64 7856
sphincs-sha256-192s robust 184899276 1706237460 2642274 48 96 16224
sphincs-sha256-192s simple 91933686 869077224 1240470 48 96 16224
sphincs-sha256-256s robust 248710140 2912502672 6669810 64 128 29792
sphincs-sha256-256s simple 60785262 780042312 1795986 64 128 29792

B Definitions

Definition 8 (PQ-EU-CMA) Let SIG = (kg, sign, vf) be a digital signature scheme.
We define the success probability of a quantum adversary A as

SuccEU-CMA
SIGN (A) = Pr[vf(pk,M∗, σ∗) = 1 ∧M∗ 6∈ {Mi}qsi=1|

(sk, pk)← kg(); (M∗, σ∗)← Asign(sk,·)] ,

where M1, ...,Mqs are the messages that A submitted to the signing oracle. We define
the PQ-EU-CMA insecurity of SIGN as the maximum success probability among all
quantum adversaries with ξ computing time and qs query complexity:

InSecPQ-EU-CMA(SIGN; ξ, qs) = max
A
{SuccEU-CMA

SIGN (A)} .

Definition 9 (PQ-PRF) Let F : K × {0, 1}α → {0, 1}n be a keyed function and
O : {0, 1}α → {0, 1}n be the set of all functions with domain {0, 1}α and range {0, 1}n.
We define the advantage of a quantum adversary A as

AdvPRF
F (A) =

∣∣∣ Pr
K←K

[AF (K,·) = 1]− Pr
O←O

[AO(·) = 1]
∣∣∣ .

We define the PQ-PRF insecurity of F as the maximum advantage among all quantum
adversaries with ξ computing time and qs query complexity:

InSecPQ-PRF(F ; ξ, qs) = max
A
{AdvPRF

F (A)} .
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Table 6: Runtime benchmarks for optimized SPHINCS-α. Key generation,
signing and verification time are in the number of cpu cycles; public key, secret
key and signature size are in bytes. All cycle counts are the median of 100 runs.

Parameter Set Tweakable hash Key generation Signing Verification Pk. Size Sk. Size Sig. size

sphincs-α-haraka-128f robust 393246 5580054 509238 32 64 17040
sphincs-α-haraka-128f simple 325800 4418550 410184 32 64 17040
sphincs-α-haraka-192f robust 408276 11190078 951408 48 96 35640
sphincs-α-haraka-192f simple 565146 7753266 717264 48 96 35640
sphincs-α-haraka-256f robust 2089836 23245110 1086318 64 128 49696
sphincs-α-haraka-256f simple 1395198 15511896 728010 64 128 49696
sphincs-α-haraka-128s robust 11066076 121551804 338364 32 64 6960
sphincs-α-haraka-128s simple 8993628 96050520 278406 32 64 6960
sphincs-α-haraka-192s robust 23202630 223899948 642960 48 96 14784
sphincs-α-haraka-192s simple 16920270 157002696 483390 48 96 14784
sphincs-α-haraka-256s robust 17758350 212131746 1072116 64 128 27104
sphincs-α-haraka-256s simple 11742912 139256118 744120 64 128 27104
sphincs-α-shake256-128f robust 5323986 88214796 5930352 32 64 17040
sphincs-α-shake256-128f simple 1806174 44921592 3032856 32 64 17040
sphincs-α-shake256-192f robust 5619420 139043214 9267030 48 96 35640
sphincs-α-shake256-192f simple 5848578 77229594 4998438 48 96 35640
sphincs-α-shake256-256f robust 15730344 290428074 9726318 64 128 49696
sphincs-α-shake256-256f simple 8182728 152799588 4975470 64 128 49696
sphincs-α-shake256-128s robust 205750530 1945905372 4163886 32 64 6960
sphincs-α-shake256-128s simple 101552796 986881392 2129256 32 64 6960
sphincs-α-shake256-192s robust 345090096 3017876580 6685596 48 96 14784
sphincs-α-shake256-192s simple 183203352 1623353148 3490110 48 96 14784
sphincs-α-shake256-256s robust 264304782 2743480044 11130858 64 128 27104
sphincs-α-shake256-256s simple 134336934 1418581440 5736798 64 128 27104
sphincs-α-sha256-128f robust 3144024 41544720 3504726 32 64 17040
sphincs-α-sha256-128f simple 1727604 21354462 1709622 32 64 17040
sphincs-α-sha256-192f robust 4067424 69338052 6151158 48 96 35640
sphincs-α-sha256-192f simple 1364364 35095410 2904768 48 96 35640
sphincs-α-sha256-256f robust 15402294 291966840 12457404 64 128 49696
sphincs-α-sha256-256f simple 3760272 72368298 3138498 64 128 49696
sphincs-α-sha256-128s robust 94289472 909234018 2333664 32 64 6960
sphincs-α-sha256-128s simple 47681964 457985448 1202958 32 64 6960
sphincs-α-sha256-192s robust 162853884 1452755592 4231278 48 96 14784
sphincs-α-sha256-192s simple 80291520 722659932 2049930 48 96 14784
sphincs-α-sha256-256s robust 258965946 2715656976 12925548 64 128 27104
sphincs-α-sha256-256s simple 60974802 661839894 3318174 64 128 27104
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Table 7: Performance comparison between optimized SPHINCS+and SPHINCS-
α in terms of relative changes.

Parameter Set Parameter Set Tweakable hash Key generation Signing Verification Sig. Size

sphincs-haraka-128f sphincs-α-haraka-128f robust −11.34% −2.19% −0.67% −0.28%
sphincs-haraka-128f sphincs-α-haraka-128f simple −14.27% −10.28% −2.21% −0.28%
sphincs-haraka-192f sphincs-α-haraka-192f robust −49.57% −12.41% +5.41% −0.07%
sphincs-haraka-192f sphincs-α-haraka-192f simple −4.34% −10.56% +11.19% −0.07%
sphincs-haraka-256f sphincs-α-haraka-256f robust +89.17% −10.63% +10.78% −0.32%
sphincs-haraka-256f sphincs-α-haraka-256f simple −0.13% −8.78% +13.41% −0.32%
sphincs-haraka-128s sphincs-α-haraka-128s robust −23.42% +1.48% +43.44% −11.41%
sphincs-haraka-128s sphincs-α-haraka-128s simple −23.95% +1.91% +63.36% −11.41%
sphincs-haraka-192s sphincs-α-haraka-192s robust −13.09% −25.52% +57.59% −8.88%
sphincs-haraka-192s sphincs-α-haraka-192s simple −11.26% −20.21% +84.95% −8.88%
sphincs-haraka-256s sphincs-α-haraka-256s robust +1.19% −25.27% +82.95% −9.02%
sphincs-haraka-256s sphincs-α-haraka-256s simple +0.84% −25.87% +101.28% −9.02%
sphincs-shake256-128f sphincs-α-shake256-128f robust +27.95% −8.36% −18.61% −0.28%
sphincs-shake256-128f sphincs-α-shake256-128f simple −15.60% −10.21% −12.10% −0.28%
sphincs-shake256-192f sphincs-α-shake256-192f robust −6.19% −9.32% −6.60% −0.07%
sphincs-shake256-192f sphincs-α-shake256-192f simple −6.62% −2.02% −0.73% −0.07%
sphincs-shake256-256f sphincs-α-shake256-256f robust −1.99% −7.63% −6.65% −0.32%
sphincs-shake256-256f sphincs-α-shake256-256f simple −12.87% −8.29% −0.28% −0.32%
sphincs-shake256-128s sphincs-α-shake256-128s robust −22.71% −2.70% +61.53% −11.41%
sphincs-shake256-128s sphincs-α-shake256-128s simple −25.35% −4.61% +62.17% −11.41%
sphincs-shake256-192s sphincs-α-shake256-192s robust −10.80% −10.36% +85.89% −8.88%
sphincs-shake256-192s sphincs-α-shake256-192s simple −7.37% −9.05% +86.67% −8.88%
sphincs-shake256-256s sphincs-α-shake256-256s robust +2.84% −5.79% +109.37% −9.02%
sphincs-shake256-256s sphincs-α-shake256-256s simple +3.22% −7.87% +121.90% −9.02%
sphincs-sha256-128f sphincs-α-sha256-128f robust −19.63% −8.28% −14.07% −0.28%
sphincs-sha256-128f sphincs-α-sha256-128f simple −13.44% −7.11% −9.99% −0.28%
sphincs-sha256-192f sphincs-α-sha256-192f robust −30.93% −9.34% −5.05% −0.07%
sphincs-sha256-192f sphincs-α-sha256-192f simple −50.72% −10.28% −1.52% −0.07%
sphincs-sha256-256f sphincs-α-sha256-256f robust −1.45% −6.12% +0.13% −0.32%
sphincs-sha256-256f sphincs-α-sha256-256f simple −47.87% −8.64% +1.70% −0.32%
sphincs-sha256-128s sphincs-α-sha256-128s robust −22.85% −2.12% +56.01% −11.41%
sphincs-sha256-128s sphincs-α-sha256-128s simple −23.41% −3.34% +58.48% −11.41%
sphincs-sha256-192s sphincs-α-sha256-192s robust −11.92% −14.86% +60.14% −8.88%
sphincs-sha256-192s sphincs-α-sha256-192s simple −12.66% −16.85% +65.25% −8.88%
sphincs-sha256-256s sphincs-α-sha256-256s robust +4.12% −6.76% +93.79% −9.02%
sphincs-sha256-256s sphincs-α-sha256-256s simple +0.31% −15.15% +84.76% −9.02%

23


	Introduction
	Revisiting SPHINCS+
	Notations
	The SPHINCS+ Framework
	Cryptographic (Hash) Function Families
	WOTS+
	The hypertree
	FORS
	The SPHINCS+

	Balanced WOTS+
	The WOTS+ encoding
	Size-optimal encoding
	Theoretical Performance

	FORC
	The SPHINCS-Alpha Signature Scheme
	Security Notions
	Security Evaluation
	Concrete Security
	Implementation

	Conclusion
	More Detailed Comparisons
	Definitions

