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Introduction

A big part of the theory and practice of cryptography is devoted to the study of different
technologies deployed in our world today. Standard topics include the task of encryption,
which relates to hiding information, but it is also common to consider digital signatures
and message authentication codes to ensure integrity, enable authentication and au-
thorization, and many other subjects relevant for today’s infrastructure. For centuries,
these were essentially the main tasks associated with the idea of securing information
and communication, and this continues being the case today—of course, with the added
complications of digital and worldwide-distributed technologies. Research into correct
implementations and deployments of these tools, possible attacks, improvements, en-
hancements in user experience, adaptation to modern more technologies and scenarios,
and other relevant questions, is of high importance.

However, a big portion of the field efforts is devoted not to current systems or natural
questions like simply hiding information or ensuring integrity. In recent decades, re-
searchers in cryptography have been pushing the barriers of science by considering new
problems and challenges that were not even imagined in previous times. A good exam-
ple is the idea of zero knowledge proofs, which provides us with the ability of proving
properties of certain given data, without revealing the data itself. For instance, an indi-
vidual could be able to prove to a third party that the balance in his or her bank account
is above a certain threshold without revealing the exact amount, or it could be able to
prove knowledge of the answer to a given question or challenge, without announcing the
answer itself. This may sound counterintuitive and perhaps even impossible, but such
techniques have been under research for decades already, and it is fair to say that today
they are crossing the boundary towards the real world due to their wide range of appli-
cations, most notably within the blockchain and cryptocurrency domains (which, on their
own, are interesting applications of cryptographic techniques that are gaining popularity
quite rapidly). This is because, in simple terms, zero knowledge proofs have the poten-
tial of enabling users to prove that certain transaction was made, without revealing the
specifics of the transaction itself, among several other use cases. For more information
on this, see for example [29].

Another interesting concept that at first glance seems impossible to instantiate is the
idea of computing on private data. As we have previously commented on, it is natural
to expect certain type of information to be kept hidden, such as monetary transactions,
balances, highly-sensitive information, login credentials, medical records, private con-
versations, and many, many others. However, it is commonly the case that, although this
data has to be kept private from unauthorized agents, it is ultimately revealed in one
way or another to be processed by a legitimate party, and in general, the situation in
which data has to be kept hidden perpetually is rare. In many cases, however, it is not
the full hidden data that is needed to be retrieved, but rather, a derived property from
this data. As an example, consider a set of encrypted medical records from a hospital. In
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order to compute the proportion of users having certain medical condition, the hospital
(or the party executing this analysis) would need to decrypt all records and then perform
the computation, potentially revealing much more information than simply the intended
proportion.

In today's world, more and more information is collected every single day. With more
devices recording data every single minute, and more information about individuals be-
ing stored as they interact with new services and technologies, information has never
been so plentiful. However, not all of it is readily available due to security or privacy
concerns, as illustrated by the different examples above. Researchers in cryptography
have studied the task of performing computation over hidden or sensitive data in order
to remove this obstacle, and enable advances in multiple disciplines without violating
the notion of securing information. To achieve this, multiple ideas applicable to differ-
ent settings have been proposed. For example, functional encryption enables users to
encrypt their data, and derive special “keys” that can be used to decrypt not the entire
information, but derived data like, for example, only a small piece of the full information
or operations carried out on these.

Homomorphic encryption on the other hand promises its users to be able to encrypt, or
completely hide data, while still being able to perform certain computations on these.
The result of this process leads to an encryption of the result of the computation, which
can then be decrypted. This way, throughout the whole procedure the data is always
hidden, and the only value that is revealed is the final output. Naturally, this is a very
powerful tool with countless applications, and it has received enormous attention from
the cryptographic community. Unfortunately, in spite of inspiring recent breakthroughs
like the first actual construction of such a scheme [26], and in spite of multiple works
proposing new constructions and improving over previous ones, the efficiency of these
techniques is still too low for a wide range of relevant applications. However, many use
cases are already within reach, and the field evolves in a very rapid manner, so a more
widespread adoption of these tools can be around the corner.

Another tool that aims at enabling data analysis and aggregation on private data, that is
gaining a lot of popularity in recent years due to its simplicity, is differential privacy [23].
The main idea behind this technique lies in adding small “noise” to the data in such a way
that information about individuals cannot be discerned from the published records, but
overall, certain aggregate data can still be computed. The result will be only approximate,
as it contains some errors derived from the noise added to individual records, and there
is a trade-off between the level of privacy provided and the precision of the result.

Many other advanced techniques in cryptography with several relevant applications are
of interest to researchers, and some of them are slowly making their way into our real
world. Of particular interest to us is secure multiparty computation, which is proposed as
an alternative tool instantiate the dreamful task of performing computations on hidden
data. We discuss this set of techniques below.
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Secure Multiparty Computation

Consider the following scenario. There is an individual, Alejandra, applying for a loan at
a Bank, and for doing so she needs to present a lot of information about her, like her
income, savings, investments and possessions. Alejandra is a very important business-
woman, and she does not want all of this information to be held by the bank in the case
she gets rejected, so she asks the bank to publish the algorithm they use to determine
whether she applies for the desired credit so that she can check her situation first. On
the other hand, the bank developed one of the most advanced credit analysis algorithms,
and it is not willing to do this as that might imply they lose an important asset.

Imagine also this setting. A gender-equality campaign promoted by an NGO in certain
city aims at determining whether men and women are being paid equally, in average,
across several companies in the area. For doing so, the NGO would like these companies
to send the information regarding salaries and benefits so that they can compute the
desired statistics. However, although the NGO is only interested in learning averages
across all companies, and although these might agree with the idea of calculating such
figures, they do not feel comfortable sending all this information to a third party such as
the NGO, which could harm their operations.

Both of the examples above constitute cases of computation on data that is intended
to be kept private, and these can be brought together under the following description.
There are n parties, Py, ..., P,, each P; having an input x; that they wish to maintain
secret. Furthermore, there is a function f(Xy, ..., X,), and the parties want to learn the
result z = f(xi, ..., xp). In the first example, n = 2, x; is the set of records from Alejandra,
x9 1S the bank’s algorithm and f(X;, X2) Is the function that applies algorithm X, to Xy, and
in the second case n is the number of companies, each x; is the information regarding
employee salaries of the i-th company, and f is the function that determines average
income based on gender.

As in general with the problem of computing on hidden data, the tasks described above
seem hard to solve without the involved parties willing to share their data. However, as
we have mentioned already, researchers in cryptography have been working on different
technologies to enable this type of computations. The parties in the scenarios above
could in principle resort, for example, to homomorphic encryption techniques, encrypt-
ing their inputs and computing on the corresponding ciphertexts, but for reasonably
meaningful functions f(-) this could be simply too inefficient. Alternatively, it is possible
that differential privacy techniques can help, specially in the second scenario where the
NGO wishes to compute different statistics on data coming from different parties, but
this could potentially affect the precision of the study.

A different approach, called secure multiparty computation, or MPC for short, aims at
developing much more efficient solutions to the problem above that do not undermine
precision or correctness. Observe for example the following in the Alejandra vs Bank
scenario. Alejandra does not trust the bank to have her information completely, so she
might send the bank a “hidden” version of her data. If homomorphic encryption is used,
then the bank would be able to apply its analysis algorithm internally, but as we have
already mentioned this could place an insurmountable computational barrier. Alterna-
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tively, we may notice that Alejandra, also interested in the output of the computation,
can lend a hand to interactively compute the result together with the bank. A similar
observation holds in the second scenario: although all the different companies could
simply encrypt their records and send these to the NGO for computation,’ we may notice
that if the companies are willing to collaborate to jointly compute the function, savings
in efficiency could be achieved

In contrast to other approaches like homomorphic encryption, which work by hiding data
completely from anyone not holding a special key and allow anyone to compute on the
hidden data, MPC leverages the fact that there are multiple parties in the computation,
and these entities can together compute the desired function. This is achieved via an in-
teractive protocol executed by the parties that guarantees privacy of the data throughout
the whole computation. We will discuss in Chapter 1the details of what these guarantees
exactly mean, but for now, it suffices to say that if a function is computed using an MPC
protocol, then all of its inputs remain private and only the result of the computation is
revealed. Unlike the case of homomorphic encryption, the computation is carried out by
the parties holding the inputs themselves and it cannot be delegated to any other entity
holding “encryptions”?

Secure multiparty computation was introduced in 1982 when Yao presented the concept
of Garbled circuits [41], which is a particular way of securely evaluating a function us-
ing MPC. Since then, many different approaches have been proposed by cryptography
researchers in the literature, leading to a fruitful line of exploration that has produced
many interesting theoretical and practical results. Today, we have a solid understanding
in regards to what type of protocols with what form of security can exist, and many of
the state-of-the-art techniques can be used already for a wide range of applications and
use cases. For example, the gender-equality study described above actually happened
in Boston [35].

Several other applications of MPC have reached the realm of our real world, such as
the Danish sugar beet AUCTION in 2008 [8], the tax fraud detection process in Estonia
in 2015 [7], and many more. Furthermore, many other relevant use cases are considered
regularly by researchers, and several prototypes are already under development. These
applications include, for example, custody of cryptographic material, training/evaluating
ML models.?, securing databases, secure statistics, e-voting, and many more. Finally, what
is also interesting is that these technologies are getting attention from institutions, orga-
nizations, and companies beyond academia, with some notable examples being Google,
VISA, Facebook, IBM, Intel and Microsoft. Moreover, many start-ups and well-established
companies are aiming at developing products based on secure multiparty computation,
such as Sharemind, Galois, Cape Privacy, Unbound tech, Partisia and Inpher.

"It is worth noticing that for the situation in which the computation is simple additions, which is potentially
the case in this example, homomorphic encryption is actually quite efficient.

2This is not a real limitation in MPC since secure computation can still be outsourced, albeit with different
security guarantees as in homomorphic encryption.

3See for example the blog post Privacy-Preserving Training/Inference of Neural Networks, Part 2. https:
//bit.ly/3eRK1gM
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Security of MPC Protocols

In an MPC protocol the parties involved send messages to each other according to some
specified set of rules. These rules instruct the parties on what to do at each step of the
interaction, and they depend on the information known by the given party such as the
secret inputs they hold, some internal randomness, the messages they have received in
previous steps of the protocol, etc. For example, a rule for some party P; might look like
“after receiving a message m from party Pj,, sample some random value and add it to m,
multiply by your internal input x;, and send the result to party P;,". Ideally, at some point
of the interaction, certain rule will instruct each party how to obtain the intended result
of the computation.

Intuitively, an MPC protocol is secure if, after the execution of the protocol, the output
z=f(x1,..., xp) is learned by the parties and nothing about their inputs xi, ..., x, (besides
the output z itself) is revealed. Formalizing this notion, which is necessary in order to
be able to reason mathematically about these constructions, turns out to be highly non-
trivial. In fact, the development of an adequate model to argue about MPC protocols,
on its own, constitutes one of the biggest achievements in the theory of MPC itself. We
will provide in Chapter 1 a more complete intuition on how security is defined in MPC,
together with a rather detailed but still high-level description of the simulation-based
security paradigm, which permeates the theory of secure multiparty computation. For
now, we will be content with the overall idea discussed in the paragraph below, which
will enable us to introduce some basic terminology.

At a high level, the goal of an MPC protocol is to ensure that each party learns nothing in
addition to the output z after their participation in the interaction. However, it might be
the case that, by working together, certain parties can jointly learn additional information
about the inputs from the remaining participants, which is an undesirable outcome. To
handle this, we require MPC protocols to guarantee that, even if certain subset of parties
collude, the privacy of inputs from the remaining parties are kept private. To model the
idea of a subset of parties working together toward breaking the privacy of the other
parties, we consider an adversary that corrupts a given subset of the parties. We can
think of this adversary as a “coordinator” that is in charge of controlling some with the
parties, or alternatively, we can think of the corrupt parties as simply being different
identities of the same underneath entity.

It is reasonable to expect that, the more parties that are corrupted, the easier it is for
the adversary to break the protocol. Given this, we measure the security of a protocol by
the amount t of corrupt parties that it can tolerate before it breaks.* Some protocols will
be able to tolerate an adversary that corrupts all-but-one parties while preserving the
privacy of the non-corrupted—also known as honest—parties. However, other protocols
will be designed to be secure as long as the adversary corrupts at most a minority of
the parties, so t < n/2, providing no guarantees if an adversary corrupts more than
n/2 parties. The latter setting is known as honest majority, while in contrast the former
scenario is referred to as dishonest majority. As we will see throghout this text, the tools,

“As we will see in Section 11, there are other ways of quantifying the adversary’s power, but the current
approach of simply counting the amount of corrupted parties is already very useful and intuitive, on top
of being widely used and quite standard.
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techniques and ideas used in each of these two settings are typically very different, and
the types of guarantees that can be achieved in each case also vary.

Several other factors affect the security of an MPC protocol, like the behavior assumed
by corrupt parties (where terms like passive and active corruptions appear), or “how
private” are the inputs from honest parties towards the adversary (where the concepts
of perfect, statistical or computational security show up). These different considerations
are deferred to Chapter 1, and for now, it suffices to keep in mind that the security of
MPC protocols is based on how hard it is for a set of colluding parties, coordinated by an
adversary, to break the privacy of the inputs from the remaining parties.

Secret-Sharing-Based MPC

There are quite a few paradigms for designing secure computation protocols. For exam-
ple, since the introduction of the idea by Yao [41], Garbled circuits have been improved
in several directions and today they are much more efficient and promising than their
previous counterparts. These techniques are useful when the parties are geographically
separated and have a high latency connection between them given that it requires a
small amount of communication rounds, although it typically demands high bandwidth.
Another method consists of using homomorphic encryption techniques, which is again
particularly well-suited for highly distributed computations. However, as we have dis-
cussed already, this tends to impose a computational burden. Finally, a very popular
approach, which is the main technique for secure multiparty computation we will fo-
cus on in this document, consists of making use of linear secret-sharing schemes, which
enable the parties to hold distributed versions of the intermediate results of the com-
putation, maintain this invariant throughout the evaluation process, until the result is
reached.

Arithmetic circuits. Importantly, a common and central idea across all of the tech-
niques mentioned above consists of first representing the desired computation as an
arithmetic circuit, and then designing a method to process such circuit securely. An
arithmetic circuit is a representation of a function that consists of wires and gates. The
input wires are fed with the inputs to the computation and then processed through gates
to obtain the values for the internal wires, which account for the intermediate results of
the computation, until the output wires are reached, where the result of the computation
is obtained. More details are discussed in Chapter 1, but for now, it suffices to know that
the gates represent operations over a ring, an algebraic structure admitting an addition
and a multiplication operation. These constitute the allowed intermediary processes
that can be applied to the data, which is itself represented as elements over this ring.

Atypical choice of ring is the set of integers modulo a prime p, which constitutes what is
called a field, where every non-zero element admits a multiplicative inverse. For example,
the set {0, 1} with the operations AND and XOR constitutes precisely a field (integers mod-
ulo 2), and arithmetic circuits defined over this structure, also known as binary circuits,
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are highly important in many use cases.> On the other hand, for applications involv-
ing integer arithmetic, it is common to consider integers modulo a large prime p given
that, if the integers used in the computation can be guaranteed to be smaller than p,
then reduction modulo p does not play any effect and the resulting arithmetic becomes
in essence simple integer arithmetic, which is useful in numerous scenarios. In theory,
arithmetic circuits over finite fields can be shown to be sufficient to represent any de-
sired computation, so designing MPC protocols to securely compute arithmetic circuits
is in principle enough to securely compute any functionality.®

Linear secret-sharing schemes. Intuitively, a secret-sharing scheme is a method to
“split” a secret into shares in such a way that (1) if not enough shares are held, then noth-
ing is learned about the underlying secret, but (2) certain minimum number of shares
together completely determine the secret. In the context of MPC, secret-sharing schemes
are useful since they enable the parties to hold shares of a secret in such a way that an
adversary corrupting t parties—and hence learning their t shares—cannot learn anything
about the hidden secret, but with the cooperation of some honest parties this secret
could be recovered.

To securely compute a given function represented as an arithmetic circuit using a secret-
sharing scheme, the overall procedure is the following. First, each party P;, holding an
input x;, distributes shares of this value towards the other parties. The privacy proper-
ties of the secret-sharing scheme ensures that the adversary, who controls an unknown
subset of t parties, cannot learn this value x; for an honest P;.

Now, after all the inputs are held in shared form by the parties, the next step is to execute
the different steps in the circuit, obtaining shared versions of all intermediate values in
the computation, until eventually the parties obtain shares of the output of the circuit,
pointinwhich the parties use the reconstruction properties of the secret-sharing scheme
to learn the result. For example, if two secret-shared inputs are set to be added together,
the parties execute certain procedure that enables them to obtain, from the shares of
the inputs they hold initially, new shares whose underlying secret is the sum of the two
original secrets. A similar situation holds for the multiplication of two shared values. A
linear secret-sharing scheme allows the parties to process addition gates locally—that
is, without interaction—by simply adding together the shares of the two secrets under
consideration. Multiplication on the other hand requires more care, and in fact, it is not
an overstatement to say that most of the hardness of designing a secret-sharing-based
MPC protocols lies in obtaining a secure and efficient method to multiply secret-shared
values.

5In addition, the reader might be familiar with binary circuits having gates like AND, NOT, NAND, etc. since
they are quite common in low-level computer architectures.

®However, several relevant computations lack a “nice” representation as an arithmetic circuit, so this ap-
proach is far from practical. Fortunately, it serves as a central building block. We will have much more
to say in this regard in subsequent sections, but for the purpose of this introduction it is sufficient to
consider the task of securely evaluating arithmetic circuits as our main goal.
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The Purpose of this Document

We see then that secret-sharing-based MPC consists of the parties first secret-sharing
their inputs, then proceeding in a “gate-by-gate” fashion to obtain shares of all inter-
mediate wires/values of the computation until shares of the outputs, that can be re-
constructed, are reached. This is a general recipe that leaves many questions up for
consideration; things like: what exact secret-sharing scheme to use? How do the parties
secret-share their inputs and reconstruct the outputs in a way that guarantees correct-
ness? How do the parties process the different gates in the circuit? The goal of this
document is to provide detailed answers to these and many more questions, which ul-
timately results in the specification of several of MPC protocols and techniques. These
questions (and their potential answers) depend heavily on multiple factors such as the
type of security desired, the power assumed by the adversary, the networking model, the
efficiency metric being optimized for, among others.

Secure multiparty computation is a very exciting field, combining ideas from a wide range
of disciplines, gaining more and more traction as more applications and use-cases be-
come within reach, and getting attention by researchers and practicioners from all sorts
of regions from both academia and industry. Things change shape constantly, optimal
protocols become “outdated” almost yearly, and it is very hard to keep track of state-of-
the-art techniques. These different aspects, together, make it very hard for new comers
to learn about the basics of the field. Furthermore, even if one could specify a set of es-
sential and fundamental reading resources like research papers, books, workshops and
schools, a challenge that remain is learning the necessary theory of simulation-based
security, in order to be able to appreciate and follow security proofs in this domain.

Motivated by the above, this document serves as a general guide to multiparty compu-
tation based on secret-sharing, focusing more on practical aspects of the techniques
and constructions rather than their theoretical grounds. As we have already hinted at,
simulation-based security is a rich and fruitful theory that deals with the task of properly
formalizing MPC protocols, and we do discuss this framework along with some of its core
concepts in Section 1.2. However, we clarify that, at least with the early versions of this
document, the main intention of this text is to provide a solid understanding of some
of the most relevant techniques to achieve MPC based on secret-sharing primitives, so
the reader can expect more emphasis on the actual tools and methods rather than the
(highly important!) “clutter” that surrounds research papers in order to formally argue
about these constructions. Our motto is that simply understanding the how of secret-
sharing-based computation can be done in a relatively clean, simple and self-contained
way, If one is willing to relax the why these techniques work by being content with intu-
itive correctness and security arguments.

This text arises as a by-product of the author’'s PhD Thesis, which can be found in
this link: https://www.escudero.me/pdfs/phd_thesis.pdf. The thesis introduces new
techniqgues to design MPC protocols when the underlying algebraic structure is the ring
of integers modulo a power of two, and presents formal and full-fledged proofs of their
security. Some of the approaches followed in the thesis resemble the traditional and
standard techniques presented here, and a reader who is interested in guided formal
simulation-based proofs is invited to visit that resource (at least until these full-fledged
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proofs make it to this document). Finally, we remark that this document is work in
progress, and it will be ideally updated on a regular basis. For an up-to-date version,
check the IACR Eprint repository and/or the author’'s website: escudero.me.

Organization of the Document

This text is divided into three main parts, as follows:

Part I: MPC Fundamentals. This first part presents the necessary tools to be able to rea-
son and argue about MPC protocols and their security in a formal and rigorous manner.
It is made of the following chapters:

Chapter 1: The Theory of Multiparty Computation. This chapter presents some basic
concepts in MPC that are necessary to formally argue about protocols and their
security. This includes the description of the simulation-based security model con-
sidered in MPC, some essential impossibility results, and some general approaches
to the design of MPC protocols. The contents of this chapter are not tied to secure
computation based on secret sharing.

Chapter 2: Secret-Sharing-Based MPC. Here, an overview of what a linear secret-sharing
scheme is, and how it can be used to achieve secure multiparty computation, is
provided.

Part IIl: Honest Majority. Secure multiparty computation techniques can be categorized
in different ways depending on a wide range of factors like the intended security, the net-
work conditions, the power of the adversary, among others. In this text, however, we take
as a main distinguishing factor whether the adversary corrupts a minority or a majority
of the parties, since techniques for each one of these two cases tend to be substantially
difference. This part deals with the first case in which there is a corrupted minority, or,
in other words, an honest majority. This part includes the following chapters:

Chaper 3: Shamir Secret-Sharing. An essential construction of a linear secret-sharing
scheme, called Shamir secret-sharing, is provided in this chapter.

Chapter 4: Passive and Perfect Security for Honest Majority. This chapter presents a
perfectly secure protocol with passive security that is secure against an adversary
corrupting t parties, where t < n/2.

Chapter 5: Active and Perfect Security for Two-Thirds Honest Majority. In this chapter
we consider a protocol for active security with abort that still attains perfect secu-
rity, at the expenses of tolerating t parties with a smaller bound of t < n/3

Chapter 6: Active and Statistical Security for Honest Majority. We return our attention

10
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to the maximal adversary honest majority setting (t < n/2) and present an actively
secure protocol with abort that achieves statistical security.

Part I1l: Dishonest Majority. In this part we discuss techniques in the setting in which
the adversary corrupts potentially all but one party, so t < n, which is also known as the
dishonest majority setting. This includes for example the case of two parties and one
corruption. Currently, all the protocols considered in this part are setin the preprocessing
model where certain correlation data is assumed, and no attempt to instantiate this
phase is done at the moment.

This part includes the following chapters:

Chaper 7: Passive Security for Dishonest Majority. This chapter presents a protocol for
MPC in the dishonest majority setting (in the preprocessing model).

Chapter 8: Active Security for Dishonest Majority. This chapter extends the protocol
from Chapter 7 to achieve active security with abort making use of message au-
thentication codes, or MACs.

Other Learning Resources

As we have already mentioned, the field of secure multiparty computation changes
rapidly, and partly because of this, and also due to its relative young age, the area
does not have a condensed and well-established reduced set of to-go resources, at
least when compared to other disciplines. However, we can find a wide range of
reading material such as tutorials, books, courses, videos, blogs, etc. Instead of list-
ing these, we refer the reader to Dragos Rotaru’s Awesome MPC compendium: https:
//github.com/rdragos/awesome-mpc, wWhich does an outstanding job at collecting rele-
vant learning resources in the domain of secure multiparty computation.

Future Additions

This is a work-in-progress document, and as such it is bound to drastically change in
subsequent iterations. The following are some of the planned additions/modifications.
This list is intended to change as the document is extended.

- Concrete constructions for a small number of parties. Although protocols support-
ing any number of parties exist, in many cases, when the number of parties is small
(say, between 2 and 5 parties), more efficient and usually simpler protocols tailored
for these settings can be designed. It is our goal to include some of these protocols
in the future.

11
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- Building blocks for computations beyond arithmetic circuits. Although one can
learn a lot by restricting to arithmetic circuits, in practice several meaningful com-
putations are not described as such. Something so seemingly simple as performing
scientific computation over the reals, evaluating mathematical functions such as
tangents and logarithms, or even branching or bit-decomposing values, can be a
daunting task when performed in MPC. Our goal is to include several techniques in
the literature to deal with these—more practically oriented—challenges.

- Concrete applications of MPC. We would like to include several meaningful and
efficient applications of MPC.

- Instantiating the preprocessing for dishonest majority MPC. With a few exceptions,
most of the current document is concerned with information-theoretic construc-
tions rather than computationally-secure ones. Techniques in the latter domain
tend to be of an entirely different nature, given that they involve computational
assumptions and therefore make use of heavy mathematical machinery to be able
to define hard computational problems and derive meaningful cryptographic con-
structions from them. It is our objective to include a reasonably comprehensive
set of techniques and results in this direction.

- Garbled circuits. As we have already mentioned, garbled circuits are a different
approach to achieve (computationally secure) multiparty computation. Although
it tends to differ from secret-sharing-based MPC, in several cases mixing the two
leads to very useful results. It is in our plans to include a discussion on this in the
future.

- Comprehensive introduction to simulation-based security and more formal proofs.
Although we have already stated that the goal of this work is to focus on more
practical aspects of secure multiparty computation, emphasizing techniques and
results rather than theoretical frameworks and proofs, we still believe it is highly
important for the reader to be aware of the existence of the notion of simulation-
based security, and due to this we discuss this topic briefly in Section 1.2. However,
we currently do not provide any formal proofs of the constructions presented in
this work.

For the interesting readers we plan to include in the future some sections that
further expand on the topic of formal security proofs, possibly including different
simulation-based frameworks, impossibility results, full-fledged guided proofs of
many essential constructions, among others. Nevertheless, this would be done in
separate sections in order to not disrupt the main purpose of the text, which is
to provide new researchers and practicioners with a simple and relatively compre-
hensive resource for learning about how the different techniques in MPC work.

Other minor TODOs include the following:

- Include a detailed list of preliminaries, and if possible, a section with elementary
background.
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- Add more references, “further reading” subsections for each relevant part, as well
as historical notes.

- Include small subsections with high level explanations and pointers on more ad-
vanced topics.

- Although this document has been reviewed thoroughly, the fact that it comes from

a larger text may make some sections incoherent. This will be fixed in subsequent
iterations.

Contact Information

For any inquiries specifically regarding the text (e.g. typos, comments, suggestions, etc.),
please contact the author at mpc-book@protonmail . com.

General Preliminaries and Notation

Most of the notation used in this paper will be introduced “on the fly”, that is, it will be
presented in each relevant section where it is used for the first time. However, some
general notation that we can introduce from now consists of the following:

- The set Z/MZ denotes the ring of integers modulo M, whose representatives are
taken over the set {0, ..., M — 1}

- All vectors, denoted by bold lowercase letters like x and y, are column vectors by

default. This is particularly relevant when dealing with multiplications with matri-
ces.

- x €g A means that x is sampled uniformly at random from the set A.
- For a positive integer ¢, [¢] denotes the set {1, ..., ¢}.

- For a k-bit integer x, we denote by (x[k — 1], ..

., x[0]) its bit decomposition, that is,
x[i] € {0,1} for i € {0, ..., k — 1} and x i

1' .
Zf'(;olx[ ]-2"
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Chapter 1
The Theory of Multiparty Computation

The goal of this initial chapter is to introduce the reader to some of the most relevant
existing theoretical concepts in the area of secure multiparty computation. First, in Sec-
tion 11, we present a general and high level introduction to some of the most important
concepts and ideas in MPC, like the notion of an adversary, and different settings and
goals that are typically considered in MPC. Then, in Section 1.2, we present the idea of
simulation-based security, which is the formal mathematical machinery necessary to
properly define the concepts discussed in Section 1.1. This tool allows us to approach the
task of securely computing a given function from a mathematical point of view, enabling
us to obtain precise and explicit security results. Finally, we discuss in Section 1.3 some
of the most relevant results in the theory of secure multiparty computation, which are
related to the types of security notions that can be achieved in the three main distinctive
settings: two-thirds honest majority, honest majority, and dishonest majority.

11 A General Introduction to MPC

In secure multiparty computation we consider a setting where n parties Py, ..., P,, each
P; having an input x;, want to securely compute a given function f(Xy,...,X,), in such a
way that only the value z = f(xi, ..., x,) IS learned, and nothing else about xi, ..., x, IS
revealed. This is intended to be achieved by means of an MPC protocol, which is a set
of rules that the parties execute, involving some local computation plus some exchange
of messages. These rules depend on the inputs of each party, and they are typically
randomized, meaning that they usually depend on some random bits sampled by each
party as well.

Ideally, nothing should be learned about the inputs xi, ..., x,, except perhaps from what
is leaked about the output z." Towards formalizing this notion, it is useful to think of
an ideal world in which there is a trusted third party who receives the inputs from the
parties, computes the result z, and sends this to all the participants, promising to perform
the correct computation and not to leak absolutely anything else besides z. The goal of
a secure multiparty computation protocol is to instantiate this type of scenario without

"Notice that it might be the case that the output z reveals a lot of information about some of the inputs,
which is obvious for instance if the function f is defined as X1 = (X1, ..., Xs). This is acceptable in the
context of MPC given that the only goal is to protect the inputs xi, ..., xn, except possibly for what is
leaked by the output z itself.
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the presence of a trusted third party, only involving communication among the parties
holding the inputs themselves. In other words, a protocol must match the behavior of
the ideal world in what we call the real world. As we will see in Section 1.2, this ideal/real
world paradigm is not only useful to understand at a high level what the guarantees
of a secure multiparty computation protocol should be, but it also serves as the core
idea behind a proper mathematical formalization, which enables the use of rigorous
definitions and theorems.

114 Adversaries and their Power

In a wide range of notions and constructions across all of cryptography, it is very common
to formalize the idea of something being “secure” by considering the idea of an adversary,
which is an entity who tries to break whatever property we are trying to protect, and
should not be able to succeed with reasonable probability. This adversary is simply an
algorithm, a mathematical object that can be formally defined. For example, in the case
of encryption it is common to define security (at least, one particular notion among
several other variants) by requiring that no (typically efficient) adversary can win at a
“game” that is supposed to represent a real-world scenario where an attacker gets to
interact with an already-deployed encryption scheme. In this game, the adversary gets
to choose two different messages, and it gets an encryption with an unknown random key
of one of these two plaintexts, chosen at random. It is the adversary's goal to determine
which of the two messages was encrypted. If no adversary, which in essence means no
algorithm, is able to significantly win at this game, then, intuitively, it must be the case
that the encryption scheme is good at its job of hiding data, since encryptions of different
messages look indistinguishable.

Many other notions in cryptography, like the security of digital signatures or key exchange
mechanisms, are formalized via adversaries attacking the system, and secure multiparty
computation is naturally no exception. Consider an execution of a secure multiparty
computation protocol where n parties Py, ..., P, engage in a set of communication and
computation rules, exchange messages, and return a result at the end of this interaction.
Who should be the adversary in such scenario? As the name implies, an adversary is a
“rival” whose aim is to break a given security property we are trying to maintain, in this
case, the fact that the inputs of the parties remain private, except from the output z.
For example, we can consider one of the parties in the execution of the protocol to be
the adversary, and what we could require is that this party, after the interaction with
the other participants, this “adversarial party” does not learn anything about the other
parties’ inputs, besides what is leaked by the output of the computation.

Let us assume that a given secure computation protocol satisfies the notion that no party,
regarded as the adversary, can learn anything about the inputs from the other parties,
as considered above (assume for now that we can appropriately define the idea of “not
learning more than what is leaked by the output”, which is achieved via simulation-based
security as considered in Section 1.2). A natural question is, what would such notion
reflect in practice? In principle, it is very powerful: if any of the parties behaves as
an adversary, trying to learn anything from the other parties’ inputs (besides what is
leaked by the output), this party will fail at doing so. However, it fails to capture a very
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important “attack” that could easily happen in a practical scenario, and it has to do with
the possibility of a collusion attack. Imagine that, among the n parties participating in
the protocol, there are two which, for different reasons, might benefit from learning the
inputs from the remaining parties. These two parties may decide to trust each other and
collude, that is, work together, perhaps by sharing out-of-band messages to each other,
if this somehow helps them in their task of learning information they are not allowed
to gather. Alternatively, if by joining the internal data of different parties it is possible
to break privacy, then an external attacker that breaks into several of the participating
machines can learn private information.

In light of the scenario described above, which could easily appear in practice, it becomes
important to somehow incorporate into our adversarial definition the idea of parties col-
luding, working together, sharing information to each other, in order to break the privacy
of the remaining parties. One could in principle achieve this by considering different
adversaries that somehow communicate to each other, but it turns out to be a much
simpler way if, instead of following this approach, we consider a single adversary, as be-
fore, that, instead of simply playing the role of an individual party, it completely controls
a given set of parties. This attacker plays a similar role as the “hacker” described in our
previous example, and it also serves to model the case in which two or more parties
collude voluntarily, since the strategy they follow in their collusion process can be mod-
eled as an algorithm, which can be ultimately regarded an adversary on its own. Finally,
notice that this notion strictly generalizes the one we considered initially above, where
a protocol was secure if no single party acting as an adversary could violate privacy. This
case corresponds to the scenario when an adversary corrupts a set containing only one
single party.

With this idea of what the adversary role is in the execution of a secure multiparty com-
putation protocol, we proceed to describe and categorize many of the possible different
variants that such adversary can present. Before we do this, however, we introduce some
notation that will be used throughout this work. Suppose that the n parties participating
in a given protocol execution is Py, ..., P,. The set of indexes in [n] corresponding to cor-
rupted parties is denoted by C, while the set of indexes corresponding to the remaining
parties, which are also called honest parties, is denoted by H = [n] \ C.

1.1.1.1 Possible Corrupted Sets

In our first naive notion of security a protocol was considered secure if any adversary,
corrupting any single one of the parties Py, ..., P, participating in the protocol, cannot
learn anything about the remaining parties’ inputs. Observe that in this case the protocol
should remain secure no matter what party is corrupted. If, for example, we only require
security against adversaries corrupting one of the parties among P, ..., P, (so Py is never
corrupted), a simple and trivial protocol would consist of the parties sending their inputs
to P1, who computes the function and returns the result. This satisfies the security notion
since we only require that the adversary does not learn any extra information about the
honest parties’ inputs, which is trivially guaranteed since P; is always honest. We see
then that, depending on which parties are allowed to be corrupted by the adversary,
different protocols might exist.
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As we have mentioned in previous paragraphs, in our more general context the adversary
is not restricted to corrupting one single party but rather it can corrupt a set of parties
potentially having size greater than one. However, in order to define security, we require
the protocol to protect the privacy of the honest parties’ inputs in the event in which
the adversary corrupts a given set of parties. A crucial question that appears under this
consideration is then the following: which sets of parties can the adversary corrupt?
In the single-corruption case from above these possible sets are {P;}, ..., {P,}, and as
before, if the collection of possible sets the adversary can corrupt is too simple (e.g. all
the possible sets miss one specific party, which means that this party is always honest),
the task of designing secure multiparty computation protocols may become trivial.

In general, the collection of possible sets the adversary can corrupt is a security prop-
erty of a given protocol. Such collection, which is simply a set of subsets of [n], is called
an adversarial structure, and different secure multiparty computation protocols are de-
signed with the goal of withstanding corruptions from different adversarial structures.
Below we consider some relevant adversarial structures. Before we do this, however, we
note that, if a set B is part of a given adversarial structure, then we must include every
subset A C B into the structure as well, given that a protocol cannot be secure against
corruptions in A if it is already insecure when the adversary corrupts a smaller subset.
Given this, we define adversarial structures as antimonotone collections of subsets of
[n], meaning that if B is in the collection, every set A C B has to be part of it too.

Q2 and Q3 Adversarial Structures. The ability to consider general adversarial struc-
tures is very useful in scenarios in which there is a lot of asymmetry among the “im-
portance” of the different parties. For example, consider a setting with three parties
Py, Py, P3, and suppose for simplicity in the argument that they have no reasons or moti-
vations to voluntarily collude. However, there is still the concern that an attacker breaks
into some of these machines. Suppose now that Py is very well protected, but P, and P3
have a weaker safeguards. In such a setting we might consider a protocol that withstands
the adversarial structure {{P1}, {P2}, {Ps}, {P2, P3s}}. This way, if the adversary wants to
break the system then it has to corrupt a set of parties outside this structure, so either P;
and one of Py or Ps. Since {Ps, Ps} is part of the adversary structure, even if the attacker
breaks into the two weaker machines P, and Ps, it cannot still breach privacy.

There isalongand important line of study into how to design secure multiparty computa-
tion protocols for general adversarial structures, starting with the work of [15]. However,
among all possible adversarial structures, there are two types that are particularly im-
portant. We will make more explicit the relevance of these two particular structures later
in Section 1.3.

Q2 structures. An adversarial structure is Q2 if, for every A; and Ay in the structure,
ALUAy # {Pl, ey Pn}

@3 structures. An adversarial structure is Q3 if, for every Ay, A, and Az in the structure,
A1 UAy U A3 75 {Pl, ey Pn}.
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Threshold Adversarial Structures. |n settings in which there is more “symmetry” among
the parties, and there are no obvious reasons to put more weight into how easy it is for
one party to get broken into, or into how likely it is that a given party colludes, with
respect to another party, a natural adversarial structure is the threshold structure. This
measures the adversary’s capabilities by how many parties it can corrupt simultane-
ously, without making any distinction among the parties whatsoever. More concretely, a
threshold adversary structure is parameterized by a value 0 < t < n, and it consists of
all the subsets of [n] of size at most t. Intuitively, a protocol that is secure against such
structure guarantees privacy of the honest parties’ inputs as long as the adversary does
not corrupt more than t parties.?

Below we discuss three types of threshold adversarial structures, depending on their
threshold value t. The main importance of these distinctions will be made clear in Sec-
tion 1.3, when we discuss several fundamental results in the feasibility of secure multi-
party computation protocols depending on each of these cases.

Honest majority, t < n/2. In this case the adversary is assumed to corrupt at most
t < n/2 parties, so, no matter what set of corrupted parties is chosen, the set
of honest parties constitute a majority. It is easy to verify that the resulting adver-
sarial structure is Q2.

Two-thirds honest majority, t < n/3. Now the adversary is assumed to corrupt even less
parties, at most t < n/3. Here the set of honest parties is always at least two-
thirds the total number of parties. It is easy to verify that the resulting adversarial
structure is Q3.

Dishonest majority, t < n. Thisis the scenario where the no special bound on t holds, so
t can take the largest possible value, t = n—1. In this case the adversary can corrupt
any set containing all but one party, and a protocol secure in this setting would still
guarantee privacy to this remaining party. This is the strongest possible setting:
intuitively, each party knows individually that their inputs are secure, even if all the
other parties collude. This is not the case with any of the previous scenarios (and
in general, if t < n— 2), since in these cases the adversary can break the privacy of
an individual party’'s input by corrupting a set with at least t + 1 parties.

We remark that, throughout this document, our only focus lies in threshold adversarial
structures.

Remark 1.1 (Maximal vs non-maximal adversaries). Intuitively, when designing secure
multiparty computation protocols in any of the threshold settings listed above, it is better
to consider the maximum possible value of t that respects the given bound. For example,
in the honest majority setting where t < n/2, the best is to choose t as the largest integer
that respects this bound, i.e. t = [g — 1}, since in this case the resulting protocol tolerates
the largest number of corruptions while still falling within the honest majority setting.’

ZNotice that ¢ lies between 1 and n — 1. If ¢ = 0 then there are no corruptions and the task of secure
multiparty computation becomes trivial. Also, if t = n, then all parties are corrupted so there are no
honest parties’ inputs to protect the privacy of.

*Itis important to mention that having a gap between t and n/2 (or n/3) is sometimes useful as it allows the
use ofpacked secret sharing, a technique to improve efficiency of MPC protocols in these scenarios [18,24].
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Motivated by the above, it is quite common, and in fact, we do so in several opportunities
in this document, to assume for simplicity that the adversary corrupts exactly t parties,
and that t is as large as possible while respecting the bound under consideration. At an
intuitive level, this should be without loss of generalization given that, if a protocol is
secure against an adversary that corrupts exactly, say, [g - 1] parties, then the protocol
should remain secure even if the adversary corrupts less, since this means that now the
adversary is less powerful.

Unfortunately, although such reasoning makes a lot of sense, the mathematical model
under which the concept of MPC is formalized, which is discussed in Section 1.2, does
not satisfied this property. More precisely, there are protocols that are secure against
(g - 1] corruptions, but an adversary corrupting less than this amount can somehow
break the protocol. This counter-intuitive nuisance is hardly an issue in practice, but it is
important to be aware of it. We revisit this issue when we assume a maximal adversary
in this document.

1.1.1.2 Type of Corruption

Our current corruption model is intended to represent a set of parties colluding, ex-
changing messages out-of-band, sharing their internal state, and possibly coordinated
by an attacker, which is in fact how the proper adversarial model is formalized. Recall
that a secure multiparty computation protocol is in essence a set of computation and
communication rules that the parties have to follow in order to securely compute a given
function. So far, although the adversary is able to see all the internal state of the corrupt
parties, including messages received and sent by these, we have implicitly assumed that
the corrupt parties follow the rules specified by the protocol faithfully. This corresponds
to the notion of a passive of semi-honest adversary, and it is intended to reflect a setting
in which all of the parties are assumed to follow the protocol instructions, but even if
an attacker is able to access the internal information from a given subset of the parties
(within certain adversarial structure), the protocol should guarantee privacy of the inputs
from the remaining parties.

Unfortunately, it is in principle not possible for the parties to somehow verify that the
other participants are following the protocol specification faithfully. This is because, ulti-
mately, all the different parties see from other participants are messages which, although
depend on their private inputs, are supposed to reveal nothing about these values from
the security definition itself. From this, if an adversary can gain additional information by
modifying the behavior of the corrupt parties during the execution of the protocol, per-
haps in a way in which such misconduct goes undetected towards the honest parties, a
need to protect secure multiparty computation protocols against such actions appears.

An adversary with the more advanced and realistic capabilities described above is re-
ferred to as an active or malicious adversary, and protocols that are secure against such
type of adversarial behavior are the most ideal to deploy in much of the potential use
cases for secure multiparty computation, given that it prevents corrupt parties from caus-
ing any harm during the execution of the protocol, even if they internally deviate from
the specified rules, which in principle they would be able to do without being detected.
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However, although these protocols are stronger than their passively secure counterparts,
they are naturally much harder to construct, plus they tend to add certain overhead in
terms of performance.

So, to summarize:

Passive/semi-honest corruption. An adversary is said to be passive if the behavior of
the corrupt parties during the protocol execution is exactly as specified by the
protocol description. The adversary sees the internal state of the corrupt parties,
including in/out messages, input and internal random coins, but it cannot alter
their behavior.

Active/malicious corruption. An adversary is said to be active if it controls the corrupt
parties completely, including possibly modifying their actions during the execution
of the protocol.

In this work we will consider both passive and active adversaries.

1.1.2 Privacy Guarantees

Recapping what we have seen so far, our intuitive security definition for secure multi-
party computation protocols requires that an adversary, corrupting (either passively or
actively) a set from an adversarial structure, which is simply a collection of possible cor-
ruption sets, learns nothing from the honest parties’ inputs, which, as will be made more
precise in Section 1.2, is formalized by requiring that the protocol execution somehow
looks “close” to an ideal world in which a trusted third party is used. In this section
we explore in a bit more detail what the concept of these two executions being “close”
means. The description here is rather verbal and intuitive, and it is only made more
precise in Section 1.2 where we properly define the idea of simulation-based security.

Perfect security. In this case the real and ideal executions follow the exact same dis-
tribution, so, from the point of view of the adversary, nothing is learned about
the honest parties’ inputs from the protocol execution. This is regardless of the
computational resources available to the adversary.

Statistical security. This is a slightly weaker notion, and it is also called unconditional
security. In this case the real and ideal worlds have statistically close distributions,
meaning that the distributions from the real and ideal worlds may not be the same,
but are very close. More precisely, by controlling certain parameter of the given
construction, it is possible to shorten the gap between these two distributions by
any desired amount. To illustrate what this type of security entails, it is useful to
think, as an example, of an MPC construction that achieves the following: the real
and ideal worlds follow the exact same distribution, except that there is a very
small chance (regardless of its computational powers) in which the adversary can
completely break privacy of the honest parties’ inputs in the real world. In this
case, security would be statistical.
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Computational security. The two security notions above are very powerful, but as we
will see in Section 1.3, they are not always possible to achieve. As a result, and
motivated by practice, it is useful to restrict security to only efficient adversaries,
that is, adversaries that make use of a bounded amount of resources, which are
formally modeled as algorithms running in polynomial time (in terms of a security
parameter). In a computationally secure protocol, the distributions from the real
and ideal worlds are indistinguishable, but only as long as the adversary is not
infinitely powerful, which is enough for practical use. As an example, consider an
MPC protocol in which some party has to send an encryption of its input using
a secret key. Although this might be hard to break for an adversary not knowing
the secret key, an attacker with infinite resources can brute-force the ciphertext to
recover sensitive information.

The first two notions, perfect and statistical security, are commonly referred to as
information-theoretic security. It is typically the case that protocols satisfying these no-
tions of security tend to be more efficient than computationally secure ones, given that
they are usually simpler and do not rely on certain parameters that aim at making a given
computational problem hard. However, as we have mentioned, information-theoretic se-
curity is not always possible to achieve.

1.1.3 Output Guarantees

Recall that, to define security of secure multiparty computation protocols, we have re-
sorted to comparing the real world, where the execution of the given protocol takes place,
to an ideal world where the desired function is computed by a trusted third party, who
receives the inputs from the parties and promises to reveal only the output. Defined in
this way, the parties have the guarantee in the real world that their inputs are as pro-
tected in the actual interaction as in the ideal world, where only the output is revealed.
However, another subtle property of the trusted third party is that, as described above, it
always returns the correct output of the computation to all of the parties. Unfortunately,
as we will see in Section 1.3, this notion, which is called guaranteed output delivery in
the literature, is not always possible to achieve in the real world. In some settings, for
example, the best that can be achieved is that if the parties obtain a result, it is guaran-
teed to be the correct one, but it could be the case that no party obtains any result at
all.

From the above, it becomes necessary to relax the requirements in the ideal world regard-
ing the output of the computation. To this end, we present the following three notions
related to this. We remark that, in any of the three concepts below, whenever the parties
obtain an output it is guaranteed to be the correct one.

Guaranteed output delivery. As described above, in this case all the parties are guaran-
teed to obtain the output, regardless of the actions that the corrupt parties perform.

Fairness. In this case it could happen that the adversary causes the honest parties to
not obtain the output, which is referred to as causing the parties to abort. However,
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if this happens, then the corrupt parties (and hence the adversary) are guaranteed
to also not learn the output.

Security with abort. In this scenario it can be the case that the adversary denies the
honest parties from learning the output, while the corrupt parties may still learn the
result. Furthermore, we identify two possible variants: in security with unanimous
abort all the honest parties are guaranteed to either receive the output or abort
altogether, and in security with selective abort, which is even weaker, the adversary
can choose which honest parties receive output and which honest parties abort.

If the adversary is passive, the corrupt parties will behave exactly as if they were hon-
est parties, following the protocol specification, so in this case it always holds that the
protocol terminates with the correct output, which in particular means that, trivially,
guaranteed output delivery is obtained.

Additionally, we note that, although the most desired property is guaranteed output de-
livery, which ensures availability of the output under all possible attacks, the notion of
fairness is already very useful in practice, as the adversary does not learn or gain any-
thing from stopping the (honest) parties from learning the output. For example, if the
computation under consideration is distributed voting, a protocol that simply satisfies
security with abort may allow the adversary to first learn the outcome of the voting, and
decide to deny the honest parties from learning this if desired. A protocol with fairness,
however, may simply disrupt the computation (which is of course a problem of a differ-
ent nature on its own), but the adversary cannot decide to cause an abort depending on
the output of the computation.

1.1.4 Different Functions to be Computed

Another important consideration when designing secure multiparty computation pro-
tocols is what type of computations they are intended to operate with. In this section
we provide a general discussion on the topic, differentiating between several important
types of computations.

1.1.4.1 Public-Output vs Private-Output.

So far, our description of the function to be computed has been f(Xy,...,X,), with z
being the output of applying this function to the inputs of the parties, x, ..., x,, Which is
the value that all parties learn at the end of the execution of a given secure multiparty
computation protocol. This scenario is referred to as the public-output setting, since
there is only one result, that all parties learn equally. Alternatively, we may consider the
case where each party receives a different result. In this case, we regard the function
as producing n different outputs (z, ..., z,), where each party P; is intended to learn
(only) z. Clearly, this scenario, called the private-output setting, is a generalization of
the public-output case (by taking z; = z for i € [n]), but it is fortunately not much harder
to achieve. The reason for this is that, given an MPC protocol for public-output functions,
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each party can simply provide as an additional input a secret-key only known to this
participant, and the function to be computed can be modified so that all the outputs are
returned to all parties, except that output z is “encrypted” under the key provided by
party P;. This way, only this party can recover its corresponding output.

In this document we sometimes consider the public-output case (specially when com-
puting arithmetic circuits), and in some other occasions we consider the private-output
setting (when in the context of the arithmetic black box model). See Section 1.2.6.2 for
details.

11.4.2 Reactive vs Non-Reactive Functionalities

A reactive functionality is one that enables the parties to learn “partial results” of the
computation, and continue the process in a way that perhaps depend on these inter-
mediate results, plus possibly new inputs. A good example of this type of computations
is given by, for example, a commitment scheme, which enables a party to commit to a
given value without revealing its contents, to do so at a later stage without the ability
of announcing a different value to the one committed earlier. On the other hand, in a
non-reactive functionality the parties simply provide their inputs at the beginning of the
protocol, and obtain the result at the end of the execution. There are many relevant ap-
plications that can be phrased as non-reactive functionalities, like data processing tasks,
distributed voting and auctions, and many others.

Clearly, reactive secure multiparty computation is a more general setting than the non-
reactive case. However, it is generally the case that one can obtain a secure multiparty
computation for reactive functionalities from a protocol that only supports non-reactive
ones by making use of a technique called verifiable secret-sharing. In short, this tech-
nique enables the parties to obtain a “shared state” of each checkpoint in a reactive
computation using the non-reactive protocol, which can be reconstructed to obtain par-
tial outputs. Although there are certain scenarios in which non-reactive computation
is possible while reactive computation is not, it is generally the case that the two no-
tions are back-to-back, so the difference between the two is typically irrelevant for the
discussion of different secure multiparty computation protocols.

1.1.4.3 General vs Special-Purpose MPC

Another relevant distinction for secure multiparty computation protocols lies in whether
they are designed to support any arbitrary function, or if they are tailored to specific func-
tions. The former family is typically referred to as general-purpose MPC protocols, while
the latter, being more targeted to particular computations, is called special-purpose
MPC.

It is fair to say that most of the proposed secure multiparty computation protocols in
the literature correspond to general-purpose constructions. However, at first glance, this
may sound as an extremely difficult task: how can a single protocol support any arbitrary
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computation? The catch is in the way that computations are represented, which involves
the concept of arithmetic circuits, discussed below.

Arithmetic Circuits and General-Purpose MPC. As we have mentioned above, re-
searchers in the field of secure multiparty computation have focused mostly in designing
general-purpose MPC protocols, which are intended to securely compute any function-
ality that the parties wish to compute. This is possible thanks to an abstraction known
as arithmetic circuits, which concisely captures any possible function in terms of rather
simple operations over certain algebraic structure.

Consider a finite field IF, and let f : F" — F be any function defined over this field. A
well known fact in field theory is that every such function can be written as an arithmetic
circuits, which in formal terms is simply a directed acyclic graph with labeled nodes.
Denoting by (i, 0) a node that has fan-in i and fan-in o, every node is either of the type
(0,1), (2,1), or (1,0). (0,1) nodes are called the input gates, and they model the inputs
to the computation. (2,1) nodes are call the operation gates, and they represent field
operations. A field has two main operations, addition (4) and multiplication (-), and this
is reflected in the fact that there are two types of gates addition and multiplication gates,
each corresponding to a different operation. Finally, (1,0) nodes are the output gates.

Edges are also called wires, and in an actual execution of the function f, each wire has
associated a value to it corresponding to an intermediate result of the computation.
Wires outgoing from an input gate are associated to the actual value provided as input,
corresponding to the given input gate. Wires leaving an operation gate are matched
with the values corresponding to the result of applying the corresponding operation
(addition or multiplication) to the (associated values to the) incoming wires to the gate
at hand. Finally, the wire that goes into the output gate is precisely the result of the
computation.

With this tool at hand, designing a general-purpose secure multiparty computation pro-
tocol reduces to constructing a protocol for securely computing arithmetic circuits exclu-
sively, which is what most of the research in the field of MPC is concerned with. Further-
more, among all different techniques to design secure multiparty computation protocols,
there is a promising general template known as secret-sharing-based MPC that, in a nut-
shell, works by letting the parties have a “hidden” representation of the inputs to the
computation, together with some methods to obtain a hidden version of the output of
each operation gate, assuming the inputs are already hidden. Eventually, the output is
reached in hidden form, point in which the parties can “reveal” it so that the result of
the computation is learned. From this template, the task of secure multiparty compu-
tation reduces to designing a method to (1) keep “hidden” versions of different values,
(2) obtain a hidden version of the result of an addition or a multiplication, assuming the
inputs are already hidden, and (3) reveal a hidden value. This, at a first glance, seems
more feasible than the daunting task of securely computing any conceivable function.

General-purpose MPC protocols are particularly useful in theory as they show what type
of computations are possible, which, accompanied with impossibility results, provide us
with a complete landscape of the sorts of computations we can hope for. However, their
reachability in practice can be, in principle, more questioned. For instance, recall that
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these protocols work by first representing the desired computation as an arithmetic cir-
cuit over a finite field, which is simply a combination of additions and multiplications over
this structure, but it is not at all clear what type of practical applications lend themselves
to be efficiently expressed as an arithmetic circuit. As an starting example, applications
that involve real-valued arithmetic, such as these in the domain of machine learning, for
illustration, are more naturally written in terms of operations over the real numbers, in-
cluding possibly additional processes that go beyond basic additions and multiplications
(e.g. taking square roots, applying sine or cosine, or even non-mathematical operations
such as flipping the bits of the given value in the bit-representation).

In spite of the above, many general-purpose MPC protocols are not a mere theoretical
tool, as they tend to be the basis, or the starting point, of a wide range of more specialized
protocols. This is achieved by adding certain subprotocols for specific operations that
appear repeatedly across multiple applications, such as the case of real-valued arith-
metic illustrated above. Additionally, the existence of highly-efficient general-purpose
MPC protocols has allowed the creation of several MPC frameworks that enable a set
of parties interested in securely computing a given function to achieve this task with
little-to-none knowledge of secure multiparty computation. This is achieved by enabling
computation over arbitrary computer programs that, in essence, resemble an arithmetic
circuit with several available sub-operations added on top. Popular frameworks of this
kind include MP-SPDZ [31], SCALE-MAMBA [1], EzPC [12], among others, and it is fair to say
that these implementations play a pivotal role into taking secure multiparty computation
techniques from theory to practice.

Special-Purpose MPC. A special-purpose secure multiparty computation protocol ex-
ploits particular properties of the given function in order to optimize the construction
to the case at hand. This has major relevance in practice, but quite surprisingly, it also
plays an important role in the theory of MPC.

First, in terms of practice, the benefits of considering special-purpose protocols are gen-
erally obvious: by exploiting the structure of the function to be computed it is typi-
cally the case that multiple savings in efficiency can be achieved with respect to the use
of a more generic protocol for arbitrary computation. We remark, however, that many
special-purpose MPC deployments have as a starting point more generic techniques to
compute basic additions and multiplications, which come from the general-purpose MPC
domain.

On the other hand, special-purpose secure multiparty computation constructions also
have a tremendous impact in theory, by considering certain concrete functionalities. In
general, the theory of MPC, as far as feasibility or impossibility results is concerned, is
not interested in secure multiparty computation protocols for very specific tasks such as
image analysis or distributed voting. This is because, at the end of the day, one of the
major results in the field of MPC is that secure multiparty computation of any function
is generally possible, so designing special-purpose for these practically-oriented tasks
is not that relevant in this direction.

Instead of considering special-purpose MPC protocols as a way of improving efficiency
of more generic constructions, the main contribution of these type of protocols in terms
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of theory lies in simplifying the construction of other, possibly more general-purpose,
protocols. More precisely, different useful functions that turn out to be crucial for the
development of other protocols are identified, and as a result, advances and develop-
ments in regards to MPC constructions for these primitives, specifically, lead to general
improvements across all other constructions that make use of these concrete function-
alities. A good example of a particular function that is not only particularly useful on
its own, but also serves as a major building block in many other secure multiparty com-
putation protocols, is Oblivious Transfer. In short, this is a two-party functionality that
receives two inputs, (mg, m1) and a bit b from two parties P; and P, respectively, and re-
turns my to Py, effectively allowing this party to learn only the chosen value mp, among my
and my, while P; does not learn which value was chosen. For a more detailed definition
on this primitive, constructions and applications, we refer the reader to e.g. [34].

1.1.5 Efficiency Metrics

Finally, we discuss some of the efficiency metrics that we are typically interested in when
designing secure multiparty computation protocols.

Computation complexity. A first measure is the amount of computation that each party
has to carry out locally. Fully homomorphic encryption techniques are typically
very costly in terms of computation, although they tend to have minimal overhead
in terms of communication.

Communication complexity. Since MPC is a distributed application, it is important to
measure how many bits need to be transmitted overall by all the parties during
a protocol execution. Protocols based on garbled circuits tend to have a large
communication complexity, although they round count is generally small.

Round count. Finally, orthogonal to communication complexity, which is affected by
bandwidth resources, is the concept of round count, which is more relevant in terms
of the latency between the parties. A communication round consists of one execu-
tion of the parties sending one message to each other. If a protocol involves many
rounds, and there are parties having high-latency links between them, then the
overall efficiency of the given MPC protocol might be poor. Secret-sharing-based
MPC protocols, although they tend to be very reasonable in terms of communica-
tion complexity, suffer from a round count that is proportional to the number of
layers present in the arithmetic circuit at hand.

1.2 Simulation-Based Security

One of the major achievements of modern cryptography lies in properly formalizing sev-
eral constructions like encryption or digital signatures, so that rigorous mathematical
reasoning could be applied on these. This way, concrete guarantees and relationship
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across different notions could be achieved, as exemplified by the idea of “provable se-
curity”.

Secure multiparty computation appeared in the late 80’s as an interesting task to study,
having many potential applications and involving very interesting techniques. However,
it took almost a decade until more formal approaches to secure multiparty computation
appeared, which enabled a more rigorous treatment of the area. The “mathematical
framework” under which the task of secure multiparty computation can be phrased is
highly non-trivial, and is undoubtedly considered a contribution on its own.

1.21 High-Level Idea

There exist several different frameworks for formalizing secure multiparty computation
protocols, like the stand-alone model [9], the UC framework [10] and the SUC framework
[11], among others. However, although there are minor differences from one model to
the other, what is common across all these approaches is that security is defined via
simulation, an idea that is already common in the area of zero-knowledge proofs, for
example, and serves the purpose of properly defining the notion of “not learning anything
beyond X". To provide a high level idea of what this technique is about, recall from
Section 11 that the idea of a given secure multiparty computation protocol being secure
is related to ensuring the adversary, who corrupts a subset of the parties, does not learn
anything about the inputs from the honest parties, except perhaps from what is leaked
by the output of the computation itself.

Formalizing the idea of an adversary not learning some data is not new in cryptography,
as it has appears already, for example, in constructions such as encryption schemes,
which are formalized using game-based security.* The main challenge in the MPC set-
ting, however, is that the adversary does learn something about the data that is intended
to be hidden, namely, the output of the computation. Furthermore, another major com-
plication lies in the fact that secure multiparty computation is a distributed application,
involving communication among the parties according to some specified pattern. The
adversary gets to see all the messages exchanged with the corrupt parties during the
protocol execution, and when the adversary is active, it even gets the power to mod-
ify the behavior of the corrupt parties. These complications put a barrier in the use of
simpler game-based definitions widely used across cryptography.

The key idea to tackle the complication above, as we already hinted at in Section 11, is
to consider an ideal world that captures the desired properties of the interaction, and
somehow requiring that the real world, where the actual protocol execution takes place,
is indistinguishable from the ideal world. Typically, the ideal world consists of the parties
sending their inputs to a third trusted party who computes the function and returns
the result, and only the result, to the parties. Now, to claim that the two worlds are
indistinguishable, a natural approach is to claim that the adversary cannot distinguish
the real from the ideal world. However, this approached is doomed as these two worlds

“In a nutshell, game-based security considers a scenario in which the adversary interacts with the system
trying to distinguish certain data that is intended to be hidden, and security is formalized by requiring
that no adversary can win at this “game” with high probability.
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are trivially distinguishable from the point of view of the adversary: in the real world there
are messages going to and from all the parties, there are several rounds, and there is no
trusted parties, while in the ideal world there is a third trusted party that simply receives
inputs and sends output. These two patterns look entirely different, so the adversary can
clearly distinguish between the two.

This is where the idea of simulation kicks in. In the real world, the adversary, corrupt-
ing a subset of the parties, interacts with the honest parties and learns a result at the
end of the execution. In the ideal world, the adversary will not directly interact with the
trusted party. Instead, while the honest parties do interact with the third trusted party,
the adversary interacts with some “virtual” honest parties that, unlike the actual hon-
est parties, do not have access to the inputs intended to be kept hidden towards the
adversary. These virtual honest parties are coordinated by a simulator, who also con-
trols the corrupt parties in the ideal world, sending input and receiving output from the
third trusted party. This way, the simulator effectively serves as an interface that enables
the adversary to interact with the third trusted party in the ideal world, while having an
interaction that equals the one from the real world.

To prove that a given secure multiparty computation protocol is secure, it is then neces-
sary to define a simulator that acts as the interface sketched above, in such a way that
the real world, where the adversary interacts with the actual honest parties holding the
real inputs, is indistinguishable from the ideal world, where the adversary interacts with
the virtual honest parties controlled by the simulator. Notice that the only power the
simulator counts on in order to “fool” the adversary is the access to the third trusted
party, which receives inputs and reveals solely the output. As a result, intuitively, this
means that the adversary’s experience in the real world can alternatively be “recreated”
by having access only to the third trusted party, which, from a philosophical standpoint,
instantiates the core idea of the adversary only learning the output of the computation,
after the interaction with the honest parties in the real world.

With the intuitive approach outlined above, we now proceed to provide slightly more for-
mal details on how simulation-based security works. We remark that, in this document,
we focus only on the UC framework, leaving other simulation-based security notions such
as stand-alone security aside. Furthermore, the description here is not intended to be
fully self-contained, and the approach to the UC framework used in this section is taken
from [16]. For a more complete treatment of the UC framework we refer the reader to
this reference.

1.2.2 Interactive Agents

We begin by considering all the different entities involved in the formalization of a secure
multiparty computation protocol and their security. Our starting point is the concept of
an interactive agent, which, at an intuitive level, is a computational device that receives
and sends messages, holds internal state and carries out computations. For example,
the parties in a secure multiparty computation protocol are interactive agents, but in
the framework under which these ideas are formalized several other interactive agents
appear. Interactive agents can be formalized by the means of interactive Turing machines,
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which are simply traditional Turing machines (or algorithms) that, additionally to carrying
out computations, can send and receive data to and from certain communication ports,
which can be thought of as computer buses or channels.

1.2.2.1 Relevant Interactive Agents in the UC Framework

Now we describe the different interactive agents that appear in the UC framework. As we
have mentioned already, the first natural interactive agents are the parties, which are the
actual devices carrying out the computation, but several other interactive agents such
as the simulator or the “trusted third party” appear. We discuss these below.

Parties. The parties, which we denote by Py, ..., P,, constitute the first natural example
of interactive agents. Each party P;, having certain input to the computation, proceeds
according to the instructions of the protocol, performing local computation and send-
ing/receiving data to/from the other parties, as required. At the end of this execution,
each party P; obtains the result of the computation.

Functionalities (in the real world). A functionality is simply an interactive agent that
connects to the parties. It receives messages from them, performs local computation,
maintains internal state, and sends messages back to the parties.

Although there is only one “type” of functionalities, these are used in two different con-
texts, with the first being in the real world, where the actual execution of the protocol
takes place. In an execution of a secure multiparty computation protocol, the parties
may be able to use certain “external” resources that may aid them during the compu-
tation. As an example, the parties may count on a third trusted party that, although it
may not compute the whole desired function for the parties, may provide certain help
like distributing some secret keys, or sending certain certificates. This can be formalized
as a functionality that the parties talk to during the execution of the protocol at hand.
Furthermore, what is crucial is that, as we will see in Section 1.2.5, if later on another pro-
tocol is developed that imitates the behavior of this functionality, then the parties can
use this construction as a subroutine and the overall construction remains secure, with-
out the need of a third trusted party to assumed to provide the secret-key or certificate
service from the example above.

Furthermore, so far we have been implicitly assuming that the parties communicate
among each other by means of special ports set between every pair of parties. However,
now that we have introduced the concept of a functionality, it is convenient to consider
communication instead as a functionality which receives messages from and sends mes-
sages to the parties. For example, a simple peer-to-peer network may be modeled as a
functionality that acts as follows: party P; sends a message of the type “send message
m to party P;", and the functionality sends to P; the message “party P; sends the mes-
sage m"> Although this approach may seem as an unnecessary complication, it actually

Functionalities of this type are referred to as communication resources in [16], but we avoid this terminol-
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plays the important role of enabling flexibility in the way the parties talk to each other.®
For example, in this document we consider as a basis a functionality that, in addition to
modeling point-to-point encrypted and authenticated channels, supports an additional
broadcast channel. More details are provided in Section 1.2.6.1.

Functionalities (in the ideal world). The second setting in which functionalities are
used is in the ideal world. Recall that, in that world, there is a trusted third party that
receives the inputs from the different parties and returns the result of the computation.
This is precisely a functionality, which, as defined above, is an interactive agent that re-
ceives inputs from the parties, performs certain internal computation and sends a result
to the parties.

In the most simple case, a functionality receives the inputs to a given function, evalu-
ates this function internally, and returns the result to the parties. However, the concept
of a functionality allows us to model much more complex interactions. For example, in
Section 11.4.2 we discussed non-reactive computation, which enables the parties to ob-
tain partial results and continue the computation afterwards. This can be captured by
a functionality that receives inputs from the parties, stores some internal state, sends
partial results, and continues in this fashion as indicated by the parties. We will discuss
in Section 1.2.6 some basic functionalities we will use throughout this document.

Adversary. The adversary, denoted by A, is modeled as another interactive agent, and
it has ports communicating it to the each of the corrupt parties. If the corruption is
passive, these ports are used to inform the adversary about the internal state of the
corrupt parties, including the messages they have received. On the other hand, if the
corruption is active, these ports are used to “fully control” the corrupt parties.

Environment. This entity plays a crucial role within the notion of simulation-based se-
curity. Intuitively, the environment is in charge of distinguishing the real world from the
ideal world. We have mentioned in Section 1.2 that it is the adversary who cannot distin-
guish between the real and ideal worlds, but this is unfortunately insufficient. The main
reason for this is that, if we simply require that the adversary cannot distinguish between
the two worlds, then, even though this would imply that the inputs from the honest par-
ties are protected, it might be the case that the honest parties do not receive the correct
output of the computation, which is also an important concern. This could occur since,
to “fool” the adversary, the simulator only needs to create a similarly-looking interaction
towards the adversary, but it could be that the honest parties in the real world end up
computing a completely different result than in the real world, while in the ideal world
they obtain the correct result. Since the adversary does not see these outputs as they
belong to honest parties only, the two worlds would still be indistinguishable.

ogy in order to make it more clear that these functionalities are no different than the ones considered
in the ideal world.

Furthermore, an important low level detail of functionalities is that they leak certain information to the
environment, which can be used to model the fact that, in practice, the adversary might be able to see
certain metadata such as when an honest party sent a message to another honest party, its size, etc.
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In order to address this issue, indistinguishability is defined in such a way that the inputs
and the outputs of the computation are also taken into account. This is formalized by
considering another agent, the environment, typically denoted by Z, that indicates the
parties which inputs to use, and receives from each party the result they obtained in
the world under consideration (in the ideal world this corresponds to the correct result
of the computation, while in the real world this is the result the party computes in the
execution of the given protocol). Under this new consideration, a protocol is said to be
secure if no environment can distinguish between the real and ideal worlds. Notice that
this in particular means that the adversary cannot distinguish between the two worlds
as otherwise the adversary could inform the environment which world is currently being
executed, but, even if the two executions are indistinguishable to the adversary, the en-
vironment can still make use of the inputs it provided to the computation together with
the outputs received to attempt to distinguish. If, even after this, the two executions
are still indistinguishable, then it is because not only the distributions look similar to
the adversary but also the outputs in the real world follow the same distribution as in
the ideal world with respect to the inputs provided, which corresponds precisely to the
correct results of the computation.

In the UC model, the environment and the adversary are essentially “one and the same”,
which is modeled by the fact that these two agents have a shared port that enables the
environment to fully control the adversary, in essentially the same way as the adver-
sary can fully control the honest parties in the case of an active corruption. Given that
these two entities, including also the corrupt parties, are so entangled, in this work we
merge the environment, the adversary and the corrupt parties, using the term environ-
ment/adversary indistinctively to refer to the resulting interactive agent. This entity is in
charge of (1) playing the role of the corrupt parties and (2) sending inputs to the honest
parties and receiving output from these./

Simulator. Finally, as we have already discussed in Section 1.21, the simulator is in
charge of acting as an “interface” between the adversary and the desired functionality
in the ideal world. This is formalized by means of an interactive agent that connects
to the adversary/environment in the ideal world through the same ports as the corrupt
parties do in the real world, and also connects to the functionality under consideration,
“on behalf” of the corrupt parties. This way, the simulator can send inputs to and receive
outputs from the functionality, which constitutes the simulator’'s main tool to create an
indistinguishable scenario towards the environment with respect to the real world.

"More generally, the environment, as the name implies, gets to see all the “execution setting”, which, on
top of inputs and outputs, also involves other “metadata” such as information about when a party sends
a message to another, the sizes of these, etc. This is formalized in [16] by means of leakage ports, which
provide the environment with this type of information. The environment is also in charge of “scheduling”
the execution of the protocol. We refer the reader to [16] for details.
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1.2.3 Interactive Systems

An interactive system is simply a collection of interactive agents. As an example, a col-
lection of parties is an interactive system, which we refer to as a protocol. We first review
some notions that will be important for our discussions.

Open/closed ports. Recall that a communication port is simply a “channel” that differ-
ent interactive agents have access to in order to send a receive messages. For example,
each party has shared ports with the functionalities used in the protocol execution, which
enables them to send and receive messages to/from it. An interactive system, being a
collection of interactive agents, contains several ports. Many of them will involve at least
two interactive agents, like the ports used between each party and a functionality. How-
ever, in an interactive system some ports may only involve one interactive agent. For
example, the environment is in charge of sending inputs to and receiving output from
the honest parties, plus it can send instructions to and receive information from the
corrupt parties, which means that the parties have ports to communicate with the envi-
ronment. Given this, in an interactive system such as a protocol, which does not contain
the environment, these ports only involve one interactive agent (or, in other word, these
ports are “open-ended”). Other open ports in a protocol are these that the parties use
to communicate with the different functionalities.

Ports involving at least two interactive agents are known as closed ports, while ports
involving only one interactive agent are called open ports.

Open/closed interactive systems. An interactive system with open ports is referred to
as an open interactive system, and an interactive system that only has closed ports is
known as a closed interactive system. For example, a protocol is an open interactive
system, given that it has the open ports corresponding to the interaction between the
environment and the parties, as well as between the parties and the different function-
alities used in the real world.

Open interactive systems cannot in principle be run, as they may miss some data that
should be written into the open ports. For example, a protocol cannot be run, given that
it misses at least one functionality the parties can use for communication, and it also
misses the inputs to be used have to be provided (by the environment) into the open
ports (plus, the environment is also in charge of scheduling the execution itself). On the
other hand, if we consider a larger interactive system consisting of the protocol (which
is the set of parties), the different functionalities to be used, and the environment, now
we obtain a closed interactive system. This system can be run, as the environment can
now provide inputs to the parties, execute the protocol, obtain results (and in fact, it can
do this multiple times).

Composition of interactive systems. Given two interactive systems Z; and Zo, it is pos-
sible to obtain a bigger system from these two by considering the collection of all the
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interactive agents involved in these two sets, or, in other words, the union of the col-
lections Z; and Z,. This is denoted by 7 = Z; {Z,. For example, we considered above a
closed system given by ZOIIG(Fq$ - - - OFy), where IT was the protocol under consider-
ation and F, ..., Fy the various functionalities used in the protocol execution.

1.2.3.1 Relevant Interactive Systems in the UC Framework

We already discussed an important interactive system, a protocol, which is simply a col-
lection of parties. Now we consider the two main interactive systems in the UC framework:
the real and ideal worlds. Recall that, in the real world, is where the actual execution of
the given protocol takes place, while in the ideal world the parties make use of a trusted
third party, modeled as a functionality, to compute the function securely. These ideas
are easily formalized via the notion of an interactive system.

Real world. Intuitively, the real world is where the actual execution of the secure mul-
tiparty computation protocol at hand takes place. We formalize this via the following
interactive system. Let II = {Py, ..., P,} be the protocol and let 7, ..., F; be the func-
tionalities to be used in the execution of the protocol. The real world is defined as the
interactive system given by Real := II$(F ¢ - - - OFy). Notice that this is an open system,
as it requires the environment to provide inputs and schedule the protocol execution.

Ideal world. At a high level we have considered the ideal world as where the parties
send their inputs to a third trusted party, and receive outputs afterwards. This had
to be refined to include a simulator S, that acts as the interface between the adver-
sary/environment, and the third trusted party.

Let F be the functionality that models the desired computation to be carried out securely
(i.e. the third trusted party), and let S be a simulator. The ideal world is defined as the
interactive system given by Ideal := S$F. Once again, this is an open system, and in fact
it has the same open ports as the interactive system Real: the simulator contains open
ports for the environment to connect, as if it were connecting to the corrupt parties in
the real world, and the functionality F has open ports for the environment to provide
input to and receive output from the honest parties. In particular, the interactive systems
Z{OReal and Z<$ldeal are both closed.

1.2.3.2 Parameterized Interactive Systems

Finally, before we dive into the actual security definitions we will consider in this work, we
remark that some interactive agents (and hence, interactive systems) can contain several
external tweakable parameters. For example, a protocol typically allows for computation
over different algebraic structure (e.g. say fields, but of different sizes), or a functionality
may be parameterizable according to the length of the messages it accepts, to cite some
examples. These are all external parameters, meaning that they have to be set before
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considering an execution of these interactive agents. For illustration, they can be thought
to be analogous to compile-time parameters in compiled programming languages.

A very important external parameter is the security parameter. Intuitively, this is a nat-
ural number that, as it grows larger, the protocol becomes “more secure”. This will be-
come clearer in Section 1.2.4 where we consider different notions of security. For now, it
suffices to recall that, among all the different external parameters that the various inter-
active agents under consideration have, one we make explicit mention to is the security
parameter, denoted by . To make this explicit we may sometimes write Z(x), where Z is
an interactive system/agent that is parameterized by x.

1.2.4 Security Definition

Having defined the different interactive agents involved in our framework, we now turn
out attention to defining security. As we have already mentioned, this will be achieved
by requiring that no environment can distinguish between the real and ideal executions.
In this section we approach in more detail the task of properly defining “indistinguisha-
bility”.

We begin by introducing some minor preliminaries. First, we present the definition of a
negligible function.

Definition 1.1 (Negligible functions). A function i : N+ [0, 00) is negligible if, for every ¢ €
N, there exists k. € N such that, for every k > ke, it holds that u(k) < k~¢. Alternatively,
w is negligible if, for every polynomial p(X), there exists x,x) € N such that, for every
K > Kp(x), It holds that u(k) < p(k).

An example of a negligible function is u(x) = 27%. Intuitively, a negligible function is a
function whose inverse, asymptotically, grows faster than any possible polynomial. These
functions are widely used throughout cryptography to represent very small quantities.

The second consideration we must take care of before approaching our formal defini-
tions, is that we include additional semantic notion to the environment. This interactive
agent is in charge of distinguishing the real from the ideal execution, and it does so by
interacting with either of these worlds, and outputting a bit,2 that is, either 0 or 1, that
represents which world the environment considers it is interacting with. As we will see,
the assignments between these bits and the two worlds is irrelevant. Whenever the en-
vironment Z interacts with an interactive system Z, and produces output b, we denoted
this by b < Z<{Z. Notice that thisis a random variable, given that the whole computation
carried out by Z is potentially randomized.

Below we consider a setting in which a protocol IT is used to securely compute a func-
tionality F, while making use of the functionalities F, ..., Fp. We remark that all the
notions below are set with respect to a given adversarial structure, which, as discussed
in Section 11, dictates the possible sets that can be corrupted.

An interactive agent, being an enhance Turing machine, can produce output simply by writing it to a special
tape and halting.
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1.2.41 Perfect Security

First we define the idea of perfect security, which reflects a protocol whose security can-
not be broken even by unboundedly powerful environments/adversaries.

Definition 1.2 (Perfect security.). We say that a protocol 11 securely instantiates a func-
tionality Fin the (F, ..., F4)-hybrid model with perfect security if there exists a simulator
S such that, for any environment Z and for every k € N,

Pr[l + (ZQReal) (k)] = Pr[l + (Z{ldeal) (k)]
where Real = IIOF O -+ - OFp and Ideal = SOF.

Let us analyze the definition above in detail. First, perfectly secure protocols typically do
not rely on the parameter «, so we can remove it from the definition (it is included for the
sake of maintaining certain “uniformity” in the notation with respect to the other notions
of security described below). Now, the security definition above states that, there must
exist a simulator S such that Z outputs 1 when interacting with the system Real with
exactly the same probability that Z would output 1 when interacting with the system
Ideal. This means precisely that Z cannot distinguish between the two worlds since, if it
could, it could choose for example to output 1 only in the real world, while outputting 0
in the ideal world (so Pr[1 «+ Z{$Real] = 1 and Pr[1 < Z{ldeal] = 0).

Notice that there is nothing special about the output 1. The same definition could have
been considered with the output 0, given that Pr[0 «+ Z{)Real] = 1 — Pr[l + Z{)Real]
and Pr[0 < Z{ldeal] = 1 — Pr[l < Z{ldeal]. This remark also holds for the other
security notions below.

Finally, the quantity |Pr[1 « (Z{QReal) (k)] — Pr[l < (Z<{1deal)(k)]| is typically referred
to as the statistical advantage of Z, and it is essentially a measure of how well Z can
distinguish between the real and ideal worlds. We see that, in the setting of perfect
security, the advantage of any environment is 0.

1.2.4.2 Statistical Security

Now we consider a more flexible definition that allows certain small distinguishing ad-
vantage.

Definition 1.3 (Statistical security.). We say that a protocol II securely instantiates a func-
tionality F in the (Fi, ..., F¢)-hybrid model with statistical security if there exists a neg-
ligible function u(x) such that, for any environment 2,°

|Pr[1 < (ZQReal) (k)] — Pr[l « (Z01deal)(k)]| < p(k),

*Here we must slightly limit the environment with respect to these from Definition 1.2, which did not have
any limitation. In this case, we must assume that, although Z might be computationally unbounded, it
only makes a polynomial (in x) number of “calls” to either Real or Ideal. Otherwise, the notion cannot
be achieved, since by interacting with one of the two worlds a super-polynomial number of times the
distinguishing probability can be arbitrarily improved.
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where Real = IIOF O - - OFp and |deal = SOF.

In this case, Z might be able to distinguish the two worlds “a little”, which is reflected
in the case that Pr[1 « (Z{Real)(k)] and Pr[l «+ (Z{l1deal)(k)] may not be equal. In
fact, it could be the case that, for some values of «, the environment might distinguish
the two worlds very well (for instance it can happen that Pr[l <+ (Z{Real)(x)] = 1 and
Pr[1 + (Z<{ldeal)(x)] = 0 for some values of k). However, the definition requires that, as
k grows, this distinguishing advantage shrinks at a good rate. For example, if u(k) = 277,
then choosing k = 1 may be too bad since this means that the advantage that the
environment has to distinguish between the two worlds is only 1/2, but if k = 40, then
this is reduced to 2749, which is much more acceptable (in fact, 2740 is a very common
value to aim for when designing statistically secure protocols).

1.2.4.3 Computational Security

Finally, we consider the “weakest” of the security notions regarding secure multiparty
computation protocols. In this case, the environment has a small distinguishing advan-
tage, but this only holds if the environment is computationally bounded, meaning that
it runs in polynomial time. In terms of practical meaning, this notion is good enough
given that in an actual MPC deployment all parties involved will use a bounded amount
of computational resources. Furthermore, as we will see in Section 1.3, some secure mul-
tiparty computation scenarios do not allow for any of the previous notions, and require
computational security instead.

Definition 1.4 (Computational security.). We say that a protocol II securely instantiates
a functionality F in the (F, ..., F;)-hybrid model with computational security if, for any
efficient environment 2,70 there exists a negligible function pz(x) such that

|Pr[1 + (ZQReal) (k)] — Pr[l « (Z01deal) (k)] < pz(k),
where Real = II$F O - - OFp and Ideal = SOF.

The first thing to notice with the definition above is that, unlike Definition 1.3, there
is not a single negligible function u(x) that bounds the advantage of every possible
environment Z when attempting to distinguish the real and the ideal worlds. This is not
possible to achieve in general since there can be a series of environments Z;, 2, ... with
each Z. running in time x¢ (which is polynomial), so for a fixed o these environments
have running times g, k3, ..., which is unbounded. Eventually, with enough running time
it would be possible to break the fixed bound on the advantage of u(xo).

As a result, the best that can be hoped for is that, for every single environment Z, its
distinguishing advantage can be upper bounded by a negligible function uz(x) that de-
pends on this environment. A practical interpretation of this can be the following. After a

An efficient environment is one that, at a high level, runs in polynomial time with respect to its parameters.
However, there are several details that must be taken care of when properly defining this idea, given that
the environment, and in general, any interactive agent, exchanges messages with other agents and can
make “calls” to these. We refer the reader to [16] for details.
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careful analysis of the construction at hand, we consider the most efficient known attack
on the protocol, derive an environment Z from this, determine the associated negligible
function pz(k) and choose « so that the advantage of this environment in particular is
below certain threshold (e.g. 278%). Given our observations above, it could be the case
that this choice of k is not sufficient to ensure a low distinguishing advantage for other
environments, but at least it rules out the best one that is currently known.

We remark that, in this document, even though we consider settings in which only com-
putational security is achievable, we only deal with perfect and statistical security in our
actual security proofs. This is because, for the settings not admitting this type of secu-
rity, we consider an offline/online paradigm that enables computation with perfect or
statistical security with the help of certain functionalities.

1.2.5 The Composition Theorem

Consider a protocol IT# that securely instantiates a functionality F with the help of some
other functionality R, that is, in the R-hybrid model. In the real world, this functionality
R acts as some kind of third trusted party that the parties can use to aid them in the
task of securely computing F; however, in practice, this functionality R must somehow
be instantiated. For example, if R represents peer-to-peer encrypted and authenticated
channels then a protocol like TLS must be executed to set these up. Formally, this would
mean that a new protocol Il that instantiates R, perhaps in some T-hybrid model, is
used, and a natural question is then the following: what types of formal security guar-
antees can the new protocol achieve? With the “new protocol”, we mean protocol IIx
but replacing the interaction with the functionality Fr by executions of the protocol Ilg,
which instantiates this functionality.

The core result of the UC framework, or universal-composability framework, is that, pre-
cisely, the resulting composed protocol inherits the properties of the two protocols in-
volved, ITx and IIz. In particular, this protocol still instantiates F, but instead of doing it
in the R-hybrid model, it does it in the T-hybrid one, which is the functionality needed
by the protocol II. It will typically be the case that 7 is much simpler than R, which
implies that progress has been achieved towards instantiating F securely.

Before we discuss the theorem in detail, we discuss some of the consequences of the
above high-level description of the result. First, the composition theorem enables a
modular description of highly complex protocols by breaking them into pieces and then
proving the security of each fragment separately, an approach that we make extensive use
of throughout this document. For example, in a large and complex protocol II it might
be the case that certain piece or pattern is repeated in several places of the protocol
execution. This part can be isolated as a protocol I’ on its own, instantiating certain
functionality R, and the protocol IT could possibly be expressed in a much simpler way
in terms of this functionality. Now, to prove security, we do not need to provide a proof of
the big “monolithic” protocol II, but rather, we can prove that its simpler variant, which is
set in the R-hybrid model, instantiates the desired functionality, and then we can focus
only in proving that the protocol II" indeed instantiates R. For illustration purposes, it is
useful to think of the approach above as splitting complex functions in a programming
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language into simpler constructions that make calls to other functions. This approach
enables clear and modular proofs and protocol descriptions, and it is arguably one of
the key factors that has enabled such a rich and fruitful body of research in the area of
secure multiparty computation.

The composition theorem is not only useful as a pedagogic tool. In practice, secure mul-
tiparty computation protocols are deployed in large and complex distributed systems
that are possibly running, concurrently, many other protocols to achieve other tasks. For
example, keys must be negotiated, random values must be sampled, inputs must be pro-
vided, etc. The composition theorem ensures that, even if several protocols are executed
simultaneously, as long as each of them can be proven secure, then the resulting group
of protocols is also secure. This is a crucial observation that favors the UC framework
with respect to other formal models, such as the stand-alone one, that does not accept
such flexible concurrent composition.

Composing protocols. In order to properly state the composition theorem, it is impor-
tant to clearly and explicit define the different interactive agents and systems involved.

Consider a protocol ITx = {Px, ..., P,} that instantiates a functionality F in the R-hybrid
model, and consider another protocol Iz which has different parties { @y, ..., Q,}'"" and
instantiates the functionality R in the 7-hybrid model. Composing the protocols IIr
and IIz amounts to simply composing them as interactive systems, which is denoted by

FOTR.

To make more sense of this notion, recall that the parties Qu, ..., @, have ports to com-
municate with the environment, while the parties P, ..., P, have ports to communicate
with the functionality R. These ports are one and the same: messages sent from P;
to R are received by Q; as coming from the environment, and similarly in the opposite
direction. This way, the interactive system {P;, Q;} acts as one single party, interacting
with the environment (through P;'s ports) and also with the functionality 7 (through Q;’s
ports). With this new interpretation, we see that the composition of two “compatible”
protocols is again a protocol, where the new parties might be interactive systems that
behave just like an interactive agent. For more details we refer the reader to Section 4.2.7
in [16].

The main theorem. With the notation above at hand, we are ready to properly state the
composition theorem, which is fully proven in [16].

Theorem 1.1 (Composition Theorem, Thm 4.20 in [16]). Let Iz be a protocol instantiating
a functionality F in the R-hybrid model with perfect/statistical/computational security,
and let TIx be a protocol instantiating R in the T-hybrid model with the same type of
security. Then, the composed protocol I z{I1x securely instantiates the functionality F
in the T-hybrid model, with the same type of security.

"Recall that, formally, a party carries the “code” of the protocol that is executed, so different protocols
involve different parties.
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1.2.6 Some Basic Functionalities

We end this chapter with a description of some functionalities we use throughout this
document. This includes the basic communication resource that the parties use to in-
teract with each other, and the functionality used to model the task of general purpose
secure computation, with a variant to account for security with abort.

1.2.6.1 Underlying Communication Resource

As a starting point, we assume that the parties communicate through the following func-
tionality.

Functionality fp2p+ BC

The functionality proceeds as follows:
- Oninput (message, j, m) from party P;, send (message, i, m) to P;.

- On input (broadcast, m) from party P;, send (broadcast, i, m) to all parties.

The functionality above models a peer-to-peer encrypted and authenticated networR in
which the parties can send messages to each other confidentially, and the adversary
cannot modified their contents when the sender is not an actively corrupt party. In
addition to this, in includes a broadcast channel, in which a sender with a given message
can distribute this data to the other parties in such a way that all parties are guaranteed
to receive the exact same value.

All of our protocols assume Fpapipc as a basis, so we do not write that a given instan-
tiation is “in the Fpopipc-hybrid model”. Only in Section 1.3, where we present several
fundamental results, we sometimes consider a functionality Fp,p that does not include
the broadcast channel.

1.2.6.2 Arithmetic Black Box Model

Recall that, in general-purpose secure multiparty computation, our aim is to securely
compute any possible function, written as an arithmetic circuit over certain algebraic
structure. In this work, we model such computations in two different ways. First, we con-
sider standard arithmetic circuits as defined in Section 11.4.3. These a directed acyclic
graphs with input, operation (addition and multiplication) and output gates, and they
are better suited for modeling non-reactive computation. Naturally, such type of com-
putation can be easily described as a functionality that receives inputs from the parties,
computes the give arithmetic circuit, and returns the output.

In some other places, however, we consider a more flexible functionality that is better
suited for reactive computation, which, as defined in Section 11.4.2, enables the parties
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to obtain partial results, learn them, and continue the computation possibly depending
on these values. The model we make use of to represent such behavior is the arithmetic
black box model. At a high level, this allows the parties to access a “storage box” that can
keep values sent by the parties, but it also allows for additions and multiplications to be
carried out on stored values, saving the results. Finally, it enables the parties to read any
stored value at any time, which effectively models the setting of reactive computation.
The formal functionality is described below.

,_[ Functionality Fgs: Arithmetic Black Box

The functionality proceeds as follows.

- On input (input, id, i) from the honest parties, send (input, id, i) to the adversary,
wait for input (value, id, x) from party P;, where x € Z/2¥Z, and then store (id, x) in
memory.

- Oninput (comb, {c;}_,, {idi}iepq, ideq1) from the honest parties, retrieve (id;, x;) for
i € [¢] from memory and store (idgy1, z), where z = (¢ + Zle cix;) mod 2. Then
send (comb, {¢;}¢_y, {idi}ieg. ide11) to the adversary.

- On input (mult, idy,id2, id3) from the honest parties, retrieve (idy, x) and (ids, y)
from memory and store (ids, z), where z = x - y. Then send (mult, idy, idz, id3) to
the adversary.

- On input (open,id) from the honest parties, retrieve (id, x) from memory and send
x to all the parties. Then send (open, id) to the adversary.

Formalizing security with abort. We have discussed in Section 11 three different no-
tions regarding the guarantees the honest parties have with respect to the output of the
computation: guaranteed output delivery, where all parties will receive output, fairness,
where honest parties receive output if the corrupt parties do so as well, and security with
abort, where the adversary may cause the honest parties to abort, perhaps not obtaining
any output, while the adversary may be able to learn the result nevertheless.

We capture security with abort in the UC framework by endowing all functionalities with
the following behavior: at any point of the execution, the adversary can input a special
signal abort to the given functionality, which sends abort to all honest parties. Upon
receiving such message, each honest party immediately produces abort as output, and
halts.

In the real world, whenever we say that “the parties abort”, it means that they produce
abort as output, and halt. In some cases, the event triggering an abort is only seen by
one party (e.g. some party receives incorrect data). When we say that “party P; aborts”,
we implicitly assume that this party sends abort through the broadcast channel, so all
parties abort too."

This is the crucial difference between selective abort and unanimous abort. In the former, it can happen
that only some honest parties abort while the others remain in the computation. Through a broadcast
channel, as shown in [27] and as used here, we can ensure unanimous abort by asking aborting parties
to announce their status through the broadcast channel.
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1.3 Fundamental Results

We now proceed to presenting some of the most fundamental results in the theory of
secure multiparty computation, regarding the feasibility or impossibility of MPCin certain
contexts. Below, we consider different results in the context in which the adversarial
structure is a threshold structure with threshold t, categorized by whether t < n/3, t <
n/2 or t < n. As we will comment in each relevant section, most of the results for
t < n/2andt < n/3 carry over to the case of Q2 and Q3 general adversarial structures,
respectively.

1.3.1 Results fort < n/3

The context in which the adversary corrupts at most one third of the parties is particularly
relevant as it allows for the strongest level of simulation-based security, namely, perfect
security.

Positive results. We begin with the following crucial result, which shows that the most
desired notions of perfect security and guaranteed output delivery can be achieved if
t < n/3, even if the adversary is active.

Theorem 1.2. There exists a protocol instantiating Fags With perfect security and guar-
anteed output delivery in the Fpyp-hybrid model,”® secure against an active adversary
corrupting at most t < n/3 of the parties.

The proof of this result can be found for example in [5,13].

Remark 1.2. Notice that, in Theorem 1.2, the basic communication resource is Fpyp, Which
represents encrypted and authenticated peer-to-peer communication, without a broad-
cast channel. Most constructions will still make use of a broadcast channel, but this is
possible to construct from plain peer-to-peer channels with perfect security if t < n/3,
as shown in [39].

Negative results. An interesting fact is that, if the adversary breaks the t < n/3 condi-
tion, that is, if the adversary corrupts more than one third of the parties, then Theorem 1.2
does not hold anymore. More precisely, the “perfect security” part of the theorem cannot
be fulfilled, which is summarized in the following theorem.

Theorem1.3. No protocol can instantiate Fagg in the Fpop-hybrid model against an active
adversary corrupting at least n/3 parties with perfect security.

BAs mentioned in Section 1.2.6]1, our security statements later in the document are all set in the Fpopyac-
hybrid model and we do not write this explicitly.
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To show that this theorem holds, it suffices to exhibit a particular function that cannot
be instantiated with perfect security in the Fpp-hybrid model, if an active adversary
corrupts at least n/3 parties. This invalidates the possibility of Fagg being instantiable,
given that Fagg can be used to trivially instantiate any other functionality. There are
several functions that, if t > n/3, cannot be securely computed in the Fpyp-hybrid model.
A typical example being the broadcast functionality. This result can be found in [39].

Finally, although there are some functions such as broadcast that cannot be instantiated
with perfect security in the Fpop-hybrid model if t > n/3, itis natural to ask whether, even
if we add broadcast as a basis, that is, if we work in the Fpopygc-hybrid model, there are
still some functions that cannot be instantiated with perfect security if t > n/3. Thisturns
out to be the case, as shown for example in [16] (see Theorem 512 in the reference).

Theorem 1.4. No protocol can instantiate Fags in the Fpopipc-hybrid model against an
active adversary corrupting at least n/3 parties with perfect security.

1.3.2 Results fort < n/2

Now we turn our attention to the setting in which the adversary corrupts at most one
half of the parties. In this setting, although general-purpose secure computation with
perfect security against an active adversary is not possible (as illustrated in Theorem 1.4),
several other properties are still attainable.

1.3.2.1 The Case of a Passive Adversary

Positive results. First we discuss what happens when the adversary is passive. In this
case, it turns out that a protocol with perfect security can be designed, as expressed by
the following theorem.

Theorem 1.5. There exists a protocol instantiating Fagg With perfect security in the Fpyp-
hybrid model, secure against a passive adversary corrupting at most t < n/2 of the
parties.

Notice that this theorem is similar to Theorem 1.2, except that this time the adversary is
passive and the corruption threshold is at most n/2, instead of being upper bounded by
n/3. Protocols that illustrate the validity of Theorem 1.5 are presented in [5,13].

Negative results. A protocol with perfect security to compute arbitrary functionalities
cannot exist if the condition t < n/2 is broken. In fact, such protocol cannot exist even
if we loosen the security notion to statistical security. This is shown in the following
theorem.
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Theorem1.6. No protocol can instantiate Fagg in the Fpop-hybrid model against a passive
adversary corrupting at least n/2 parties with statistical security.

A proof of this result can be found, for example, in [37].

1.3.2.2 The Case of an Active Adversary

Positive results. Now we focus on the case in which the adversary corrupts a subset of
the parties actively. As shown in Theorem 1.3, in the case in which t < n/2, given that in
principle it could hold that t > n/3, it is not possible to instantiate Fagg with perfect se-
curity in the Fpop-hybrid model (or even in the Fpop,pc-hybrid model from Theorem 1.4).
However, it turns out that, if we relax the security requirement to statistical security rather
than perfect security, an instantiation can be realized. Furthermore, the strongest output
notion of guaranteed output delivery can be attained. This is summarized below.

Theorem 1.7. There exists a protocol instantiating Fagg with statistical security and guar-
anteed output delivery in the Fpypigc-hybrid model, secure against an active adversary
corrupting at most t < n/2 of the parties.

Protocols proving this theorem include [37], or the more recent results of [28] which
improve over the communication complexity of the previous ones.

Negative results. Theorem 1.6 shows that, if the bound ¢t < n/2 is violated, then no
protocol can instantiate Fagg With statistical security in the Fpp-hybrid model, even if
the adversary is assumed to be passive. In particular, this impossibility extends (“with
even more reason”) if the adversary is active.

On the other hand, another natural question is whether the strong notion of guaranteed
output delivery, achievable if t < n/2, is still attainable if t > n/2. There is a negative

answer to this question, and in fact, not even the weaker notion of fairness can be realized
if t > n/2. This is captured in the following theorem.

Theorem 1.8. No protocol can achieve fairness when instantiating Fagg in the Fpopiac-
hybrid model against an active adversary corrupting at least n/2 parties.

A proof of this result can be found in [14].

1.3.3 Positive Results fort < n

Finally, we discuss what results are possible in the most general case in which the ad-
versary can, in principle, corrupt all but one party, in contrast to the previous settings, in
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which the adversary was assumed to corrupt at most a 1/2 or even a 1/3 proportion of
the parties. In terms of negative results, we can infer from Theorem 1.6 that information-
theoretic security (that is, either perfect or statistical security) is out of the picture in
this case, and from Theorem 1.8 we rule out the possibility of achieving fairness. As a
result, protocols in this setting must make use of computational assumptions (even if the
adversary is passive), or, in other words, they must involve cryptographic constructions
whose security depends on the hardness of certain underlying problem, and they have
to settle for security with abort.

Fortunately, in terms of positive results, it can be shown that protocols with the properties
described above indeed exist. In this case the instantiation can be done over Fpyp rather
than Fpopygc Since it is possible to obtain broadcast by making use of computational
assumptions.

Theorem 1.9. There exists a protocol instantiating Fags With computational security in
the Fpop-hybrid model, secure against a passive adversary corrupting possibly all but
one of the parties.

Several protocols of this type have been achieved in the literature, such as [6, 19, 21,32,
33]. In Chapters 7 and 8 we include constructions in this setting with passive and active
security, respectively. These constructions satisfy perfect and statistical security, which
contradicts the impossibility results discussed above. This is because, as we will see in
the relevant sections, these protocols are not set in the Fpyp-hybrid model, but instead,
they are built making use of a stronger functionality that distributes certain preprocessed
data among the parties.

1.3.4 Summary of Main Results

The following table summarizes the results we have seen so far in the section. A check
mark (v) represents that a construction in the given setting can be obtained, while an
X mark (X) indicates that it is not possible in general to instantiate Fagg in the scenario
under consideration. Additionally, marks in black indicate results that can be trivially
derived from the marks in red, and the numbers in parentheses after the latter type
of marks represent the number of the theorem in previous sections associated to that
result. Finally, this table omits certain details regarding the possibility/impossibility of
broadcast, or more precisely, when Fpyp 0r Fpopipc IS Needed, in the t < n/2 row con-
taining the asterisk (x), so we refer the reader to the relevant section above for details.
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Privacy guarantees Output guarantees

perf. stat. comp.\ GOD fair abort

t<n X X  v09 | x x(8) v(19)
Active t<n/2* X (16) v (1.7) v v (1.7) v Ve
t<n/3 v (12) v v v v v
t<n X X (1.6) v v v v
Passive t<n/2 v (15) v v v v v
t<n/3 v v v v v




Chapter 2

Secret-Sharing-Based MPC

The goal of this chapter is to introduce the reader to several essential techniques used in
secure multiparty computation over fields. Given that the focus of this section is simply
to provide an overview of major existing techniques for secure multiparty computation
over fields, we omit formal proofs in the simulation based model from Section 1.2, and
content ourselves with including more intuitive and simple arguments about why the
different techniques and protocols satisfy the different properties they intend to.

Essentially all existing approaches to secure multiparty computation in the literature
begin by representing the function to be computed as an arithmetic circuit, which were
described in Section 11.4.3. However, once this circuit can be established, the specific
method used to securely evaluate such circuit tends to vary from work to work. In spite
of this, it is still possible to identify some general patterns, and, although a few works
may not properly fall within any of the categories below, these are inclusive enough to
fit a large portion of the literature in the field of (general-purpose) secure multiparty
computation.

First, some constructions make use of homomorphic encryption techniques to homo-
morphically evaluate the given circuit (or at least certain portions of it), typically without
involving a lot of interaction. These techniques are mostly theoretical (at least these in-
volving large encrypted computations) as the overhead in terms of computational com-
plexity is typically too large. However, as the field of fully homomorphic encryption pro-
gresses, this approach becomes more and more practical and, as a result, it may even-
tually turn into a more practical solution for large and complex computation, at least if
used in a partial and clever way (that is, instead of simply evaluating the entire function
in one go using homomorphic encryption).

A different approach consists of somehow obtaining a “hidden” version of the circuit
that then can be evaluated only on the set of inputs provided by the parties. This turns
out to be the approach initially proposed by Yao [41] when the concept of secure mul-
tiparty computation was itself born, and a rich and extensive body of works has taken
care of enhancing and improving this method, which is known as garbled circuits. This
technique has several benefits in terms of efficiency as it is typically the case that, af-
ter the circuit has been “hidden” (or garbled), which requires interaction in a constant
number of rounds, the evaluation of the circuit itself can happen with little to none com-
munication. This makes this technique ideal for settings in which the parties are widely
distributed and latency is high, so minimizing round trips becomes relevant. Unfortu-
nately, a big downside of the garbled circuits approach is that the process of garbling
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the circuit, even though happens in a constant number of rounds, tends to involve a large
amount of data, which ends up in consuming a lot of bandwidth, up to the extent that
for certain applications this becomes a serious bottleneck. Furthermore, the garbled
circuit technique is generally better suited for binary circuits (that is, circuits defined
over Fy = {0, 1}), with a handful of (mostly theoretical) constructions considering more
general arithmetic circuits (e.g. [2,3]).

The alternative approach to securely evaluate an arithmetic circuit is based on a tool
called secret-sharing. In a secret-sharing scheme (a concept that we define more pre-
cisely in Section 21 below), a given value can be distributed among several parties so
that each of these participants now holds a “share”, which satisfy the following: certain
sets of shares do not leak anything about the underlying value, while some other sets of
shares completely determine it. In secret-sharing-based MPC the goal is then to obtain
a secret-shared representation of the inputs to the computation, using a secret-sharing
scheme that ensures that any possible set in the adversarial structure (that is, any set
of parties that could be corrupted) cannot learn anything about the underlying secret.
This is followed by methods to obtain a secret-shared representation of all intermediate
values in the computation, until the output is reached.

We discuss the secret-sharing-based MPC approach in more detail in the sections below.
Before we dive into it we remark, however, that there are several works in the literature
that, although they make use of secret-sharing techniques, they do not adhere exactly to
the template provided here. For example, it is very common to mix secret-sharing with
garbled circuits (e.g. [22]), or even with homomorphic encryption techniques.

21 Linear Secret-Sharing Schemes

We begin our discussion on secret-sharing-based secure multiparty computation proto-
cols, which is the general template to which all of the constructions considered in this
work adhere, by first discussing the concept of a secret-sharing scheme itself.

For the purpose of this section we consider a finite field F. Furthermore, we restrict
to threshold secret-sharing schemes, which only protect the secret if less than certain
amount of shares is known, and completely leak the value otherwise. Finally, we also re-
mark that our description here is entirely informal (plus it makes several simplifications)
and does not constitute in any way a formal nor precise treatment of linear secret-sharing
schemes. For a more concrete mathematical presentation on these tools we refer the
reader to [16].

Let s € F. At an intuitive level, a secret-sharing scheme for n parties with threshold t
provides methods for, on input s, computing a set of values (s, ..., s,) € F" such that

1. For any set A C [n] with |A| < t, the set of shares {s;}ica does not leak anything
about the value s;

2. For any set B C [n] with |B| > t + 1, the value s can be completely reconstructed
from the set of shares {s;};cs.
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When a value s € F is secret-shared as above, it is common to denote this by [s] :=
(s1,...,sn). In a distributed setting with n parties it is typically assumed implicitly in the
notation above that each party P; has the share i, for i € [n].

A secret-sharing scheme as above is linear if, in words, each party can locally
add/subtract their shares of different values to obtain shares of the corresponding
operation on the secrets. A bit more precisely, it must hold that, if [x] = (xi, ..., x»)
and [y] = (y1, ..., yn), then [x £ y] = (x1 £ y1, ..., xn £ ¥n). Now we discuss some simple
examples of linear secret-sharing schemes

Example 2.1 (Additive secret-sharing). The following is a construction of a linear secret-
sharing scheme for n parties with threshold n — 1, which means that every set of at least
(n—1)+1 = nshares can reconstruct the secret while any smaller set remains oblivious
to this value. Notice that there is only one possible set of n shares, which is the set of all
the shares.

To secret-share a value s € T, a tuple (si, ..., sn) € F" is sampled uniformly at random
constrained to s; +---+s, = s. This can be done, for example, by sampling n—1 random
values si, ..., s,—1 and defining s, = s — (s; + - - - + s,—1). More generally, any set of n— 1
shares can be sampled uniformly at random while the last one is defined as the secret
subtracted with the sum of the other shares. The set of shares is then (sy, ..., sp).

To analyze the required properties by a linear secret-sharing scheme, we observe the
following:

- Any set of at most n — 1 shares follows the uniform distribution, so in particular it
does not reveal anything about the secret s.

- Given all the shares sy, ..., s,, the secret s can be fully determined as s+ - -+s, = s.
This, together with the point above, shows that this construction is a secret-sharing
scheme.

- Given two shared values [x] = (x1,...,xn) and [y] = (y1,...,yn), thatis, x = x; +
ot xpandy =y 4o+ yp Sincexty = (x1 £y1)+ -+ (xo £ yn), it holds that
[x £y] = (x1 £yi1,..., xn £ yn). This shows that the proposed method constitutes a
linear secret-sharing scheme.

Example 2.2 (Replicated secret-sharing [30]). The following is a construction of a linear
secret-sharing scheme for n parties with a more general threshold t < n. To secret-share
a value s € T, first a set of values {sa}ac(n),|a=: € F is sampled uniformly at random,
constrained to ZAg[n},|A\:t sa = s. Each share s; for i € [n] is defined to be a vector itself,
which is given by Sj = (SA)AQ[n],igéA-

Now we analyze the required properties by a linear secret-sharing scheme.

- Given any set B C [n] with |B| < t, the collection of shares {s;}icg miss the value
sgr forany B C B' C [n]. As a result, these shares together do not have enough
information to reconstruct s, since all of the “additive values” {sa}ac(n]|a|=: are
needed to do so.
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- Given any set B C [n] with |B| > t + 1, the collection of shares {s;};eg contains all
the summands {sa}acn),a=t. Which enables the reconstruction of the secret s. To
see this, let A C [n] with |A| = t. The summand sa is included in all s; fori ¢ A, and
since |A| =t < t+1 <|B|, there is at least one such indexes i in the set B.

- The fact that the construction above constitutes a linear secret-sharing scheme is
straightforward to see.

2.2 MPC based on Linear Secret-Sharing Schemes

Consider a linear secret-sharing scheme [-]. As we know, thanks to the linearity proper-
ties of [-], it is possible for the parties to obtain [x + y] given two shared values [x] and
[y]- Now, suppose that the parties count on a method to obtain, not only the addition
(and subtraction), but also the product of two shared values. More precisely, suppose
the parties can obtain [x - y] from two shared values [x]] and [y], possibly by performing
some interaction. With this at hand, the parties can easily compute the given arithmetic
circuit by following this procedure:

1. Each party P;, having input x;, distributes shares of this value to the other parties,
so the parties obtain [x;].

2. For each operation gate in the circuit where the inputs x and y are secret-shared
as [x] and [y], the parties proceed as follows:

- If the gate is an addition gate, then the parties use the linear property of the
secret-sharing scheme to obtain [x + y] without any interaction.

- If the gate is an multiplication gate, then the parties use the assumed method
to obtain [x - y], potentially with interaction.

- Eventually, the parties get shares of the result of the computation [z]. At this
point, t + 1 of the parties announce their shares to all the others so that the
parties, having at least t + 1 shares, can reconstruct the output z.

From the template above, we see that, to design a secure multiparty computation pro-
tocol, it suffices to consider a linear secret-sharing scheme with the same threshold as
the upper bound on corrupted parties, together with a method to obtain [x - y] from [x]
and [y]. As we will see throughout this text, this general template is highly effective for
building efficient protocols in a wide variety of settings, and, most of the time, the major
complications appear not in the secret-sharing scheme itself, but in the procedure to
multiply secret-shared values.
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2.21 The Case of an Active Adversary

The general template above works well if the adversary is passive, but, when the cor-
ruptions are active, care must be taken in some parts of the protocol. First, naturally,
the assumed method to securely compute multiplications must be actively secure, since
otherwise an active adversary can attack the whole protocol by simply attacking multipli-
cation gates. However, the phase where shares of the inputs are distributed must also be
revisited, since, as we will see in subsequent sections, there are several secret-sharing
schemes where, if the party distributing shares behaves maliciously, sending perhaps
“Incorrect” shares, the protocol can be rendered insecure due to “inconsistencies” cre-
ated among the parties.

To prevent actively corrupt parties from secret-sharing their inputs incorrectly, a typical
approach consists of somehow reducing this to the broadcast channel by using a random
shared value [r], where the secret t is known by the party providing input. If the input
is x, this party simply needs to use the broadcast channel to announce e = x — r, which
leaks nothing about x since r is uniformly random and only known to the party sending
the message, and then the other parties can locally compute [x] = [r] + e, which leads
to shares of the input x since r + e = x. This method has the advantage that, assuming
that [r] was distributed “correctly”, the resulting shares of x will also be correct.

Finally, another place where the adversary can attack the protocol is in the last step,
where the shares of certain parties are announced in order to reconstruct the result of
the computation. In this case, an actively corrupt party can simply lie about his own
share, and it is not clear what would happen in such scenario. Indeed, this is a problem
we will need to deal with throughout this work, and such attack, unless countered, tends
to lead to the parties reconstructing a wrong result.

This type of behavior is addressed by enhancing the secret-sharing scheme with some
method to check that the announced shares are somehow “correct”, and have not been
modified. In some settings, especially the t < n/2 and t < n/3 scenarios, this can be
achieved without modifying the sharing procedure itself, while in some other cases, like
in dishonest majority, some additional information that aids at ensuring integrity must be
added. Details on all these problems and different approaches to solve them in various
settings are given throughout this text, although the first relevant section where such
techniques are encountered is Section 3.2.

2.2.2 Offline-Online Paradigm

In several cases, part of the interaction involved during the execution of a given secure
multiparty computation protocols is independent of the inputs from the parties. For
example, when we discussed in the previous section the general idea to obtain secret-
shared inputs correctly, we made use of a secret-shared value [r] where r is known by
the input provider. This type of data has to be produced by certain interaction in the MPC
protocol, but it is independent of any of the inputs to the computation.

It is common in the field to refer to the steps in a given protocol that do not depend on
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the inputs to the computation as the preprocessing or offline phase, while the part of
the protocol that requires the parties to know their inputs is typically called the online
phase. The main motivation behind this terminology is that the preprocessing phase,
being independent of the inputs, can be executed at the very start of the protocol ex-
ecution, and after it is over the parties become ready to provide inputs and “actually
compute” the function.

The distinction between an offline and an online phase is not only relevant at the lan-
guage level. Consider two protocols having roughly the same performance overall, except
that one has a very efficient online phase when compared to the other. Even though both
protocols perform similarly, the total latency since the moment the inputs are provided
until the output is obtained is smaller in the protocol with a fast online phase. Imagine
a setting where the parties are idle before running the computation, which is scheduled
in advance. This time can be then used to execute the offline phase, so that the parties
are ready to run the efficient online phase when the inputs are known.

As we will see in Chapters 7 and 8, this offline/online paradigm takes even more relevance
in the dishonest majority, since in this case, as we saw in Section 1.3, protocols must make
use of heavy cryptographic tools to operate. Modern constructions, such as the ones we
consider here, push all the complexities and inefficiencies of these mechanisms to the
offline phase, while leaving a relatively simpler and much more efficient online phase
(which, in addition, typically enjoys information-theoretic security).
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Chapter 3
Shamir Secret-Sharing

We begin by presenting the construction and properties of a very popular and widely
used secret-sharing scheme, namely Shamir secret-sharing scheme. This was proposed
by Adi Shamir in [38], and it is one of the most widely known and used examples of a
linear secret-sharing scheme over a field.

Let IF be a field of size g, where g is a power of a prime. Assume that g > n, and let
ap, aq, ..., an € F be different points in F. We denote by F<4[X] the F-module of univariate
polynomials over F of degree at most d in the variable X. Let F“*V denote the set of
matrices with dimensions u x v.

Given B1, ..., By € F, let Van“*V(By, ..., B,) € F“*V be the matrix given by

1 511 % if—i
Van”x"(ﬂl, x/Bu) c FUxv .— . 6:2 ﬁ:Q 2:
gy Be o BT

When the g's are clear from context we denote this matrix simply by Van“*V. This is
called a Vandermonde matrix, and it is well known that if u = v (so the matrix is square)
its determinant is equal to ]_[,-<j(6,~ — B;). In particular, this determinant is non-zero
(and hence the matrix is invertible) if and only if all 8’s are different. Let d > 0 and let
Bo, ..., Ba € F be all different. Since given a polynomial f(X) = 27:0 ciX' € F<4[X] it holds
that

(F(Bo), ..., F(Bq))T = Van(@+Dxd+D (5, 8) . (c, ..., cq)T,

this shows that every polynomial of degree at most d is determined by its evaluation at
any d + 1 distinct points.

To secret-share a value s € F using Shamir secret-sharing, the dealer samples a polyno-
mial f(X) € F<.[X] at random, restricted only to f(ag) = s. The share corresponding to
party P;isthen f(«;). Asan example, if oy = 0, it is easier to see more explicitly how such
sampling could be done: the dealer samples cy, ..., ¢ €g Fand sets f(X) = s+2f:1 GX!,
but for a general ag the process is slightly more complex, as we describe below.
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,_[ Shamir Secret-Sharing

The dealer secret-shares a value s € F among n parties P4, ..., P, as follows.

1. Sample sy, ..., s; €g F and define

o -1 s
0 1 of o3 ad

€1 S1
: 1 2 d g

c 1 ay of Qg
d Sd

Let f(X) € F<4[X] be given by f(X) = S, ciX'.
2. Foreach i =1, ..., n, the dealer distributes the share f(«;) to party P;

Reconstruction from any ¢ + 1 shares
Given shares {f(«a;)}ica for some subset A C [n] with |[A] = t + 1, the secret is
reconstructed as follows.

1. Fix some ordering in A and let us denote (a;)ica = (@ay, ..., Qa,,, ). Let

o AA

(M M) = (Lap, .o af) -Van®H DX o, oy )

2. The secret is computed as s = Zf:ll A faa,).

Definition 3.1. Given A C {1,..., n} with |A| = t + 1, we call the values above {)\;4},-6,4
Lagrange coefficients. These can be alternatively computed as

A — H |
! aj — o
JeA, j#i ! J

The reconstruction of a secret distributed with Shamir secret-sharing from any t + 1
shares is done by using these shares, which are evaluations of a polynomial of degree at
most t, to recover such polynomial, followed by its evaluation at ay. This is written much
more explicitly in the description of the protocol above, which in particular shows that
the secret is computed as a linear combination of the shares involved, a fact that will be
used later in one of our described protocols.

Privacy of this secret-sharing scheme, that is, the fact that any set of t shares does not
leak anything about the secret s, is also easy to see, as these are in a 1-1 correspondence
with the randomness used by the dealer. To see this, consider for example the case in
which the given set of shares is {f(«;)}!_;. In the way that the secret-sharing scheme
is defined, these t values constitute the seed used by the dealer, which are taken com-
pletely at random and independently from the secret s. In the general case it can be
shown that there is a bijective affine transformation between the randomness used by
the dealer and any set of t shares, which shows that these shares are uniformly ran-
dom and independent of the secret. We omit the proof of this result since it follows in
a straightforward manner from the properties introduced so far, and it is only heavy in
notation.
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3.1 Secret-Sharing and d-Consistency.

In our protocols, the parties will hold shares of different values, and the various parties
will play the role of the dealer in Shamir secret-sharing to distribute certain secrets. We
begin with the following definition.

Definition 3.2. Let 3y, ..., B, € F be all different. Given's = (s, ..., s;) € F¢, we say that s
is d-consistent if there exists f(X) € F<4[X] such that s; = f(p;) fori =1,...,¢. Observe
that if ¢ < d + 1, then every vector s € F¢ is d-consistent, but if d + 1 < ¢, then the set of
d-consistent vectors constitutes a strict F-vector subspace of F¢.

If the parties hold d-consistent Shamir shares (s, ..., s,) of a value s, we denote this by
[s]ly = (s1, ..., sn). This definition makes sense in the context of a passive adversary: deal-
ers will always follow the protocol so they will distribute valid shares, and the (passively)
corrupt parties will always use the correct shares they hold when required. However, in
the context of an active adversary, the following can happen:

- An actively corrupt dealer distributes shares (si, ..., sp) that are not d-consistent.

- Even if a dealer distributes d-consistent shares (si, ..., sp), an actively corrupt party
P; can modify its own share from s; to any value s/ at any given point.

Given these issues, it does not make too much sense to say that the parties hold a vector
of shares (si, ..., s,) (again, since the actively corrupt parties can change their shares).
To address this, we expand the definition of [s], and d-consistency to the setting of an
active adversary, as follows.

Definition 3.3. Consider the setting of an active adversary. Let H,C C [n] be the sets
of indexes corresponding to honest and corrupt parties, respectively. We say that the
parties hold d-consistent shares of a secret s € F if there exists a polynomial f(X) of
degree at most d such that:

1 s= f(Oéo),’

2. Each honest party P; for i € H has s; = f(a;) (i.e. the honest parties’ shares are
d-consistent);

3. The adversary knows s; = f(«;) for j € C.

Furthermore, when this holds, we write [s], = (s1, ..., sn)."

One aspect that is not very formal from the definition above is what it means for the
adversary to “know” a given value. This is formalized in the context of simulation-based

'We clarify that sometimes the notation [s] instead of [s], will be used when the degree d is clear from
context.
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proofs by requiring that the simulator is able to “extract” the given value from the ad-
versary, after interacting with it on the emulated protocol execution. Details are left
to the relevant sections that make use of this concept, such as Chapter 6. However,
some intuition on this notion can be provided. Consider for example a setting in which
an honest dealer sends d-consistent shares (si, ..., s,) Of a secret s to the parties, with
si = f(a;) for some f(X) € F<4[X], but the corrupt parties P; change their shares from
si to s!. Even though the resulting vector may not be d-consistent anymore, the parties
still have d-consistent shares [s],: (1) the honest parties’ shares are d-consistent, and
(2) the adversary knows the “real” values s; corresponding the corrupt parties P;.

Remark 3. Let 7 C [n] be the set of indexes corresponding to honest parties. Let [s]; =
(s1,...,sn) be a d-consistent sharing, which means that there exists a polynomial f(X) €
F<q4[X] such that s = f(), s; = f(«a;) for i € H, and the adversary knows s; = f(«;) for
JE[n\H. If|H|=n—t>d+1, then the polynomial f(X) is unique, and in particulat, so
is the secret s. However, if n—t < d then, for any secret s’ € T, there exists a polynomial
fe (X) € F<q4[X] such that fy(ap) = s and fy(aj) = s for i € H, so if the adversary knows
s; = fs(ay) for j € [n] \ H, the parties would simultaneously “hold” shares [s'] ; of any
secret s/, or, in other words, there is not a well-defined secret from the honest shares
alone.

Finally, notice that if t > n/2 and d = t, then n — t < d. This is the reason why Shamir
secret-sharing is typically only used if t < n/2: in this setting there are at least t + 1
honest parties, so their honest shares, if t-valid, define a unique secret.

3.1.0.1 Homomorphisms.

Consider two shared values [x], and [y],, using polynomials f(X), g(X) € F<q4[X], respec-
tively (that is, P/'s share of x is f(«;) and the one of y is g(«;)). If each party adds their
shares together, that is, each P; computes f(«;)+g(«;), they obtain shares of x+y under
the polynomial 7(X) + g(X) € F<4[X]. This is denoted by [x + y],; < [x]4 + [y]4 On the
other hand, if the parties locally multiply their shares, they obtain shares of x - y under
the polynomial f(X) - g(X) € F<24(X]. This is denoted by [x - y],y ¢ [x], - [y]4- Note that
the degree of the polynomial increases from d to 2d.

Finally, observe that subtraction can be performed locally in a similar way as addition, as
well as multiplying by any constant (that is, a value known by all parties). Furthermore,
the parties can also locally add a constant, that is, obtain [x + c] from [x] and ¢, by each
party adding this constant to their share.

3.2 Error Detection/Correction

As it has been already mentioned, Shamir secret-sharing is used, in the context of MPC, in
order to distribute the inputs of the computation, as well as the intermediate values and
the output, among the different parties, in such a way that the adversary does not learn
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anything about the underlying secrets. In the process of securely computing the given
function, it will be necessary for the parties to reconstruct, or open, some secret-shared
values. This is the case, for example, for obtaining the output of the computation, which
is in secret-shared form and must be learned by all the parties. Additionally, processing
certain operations like multiplications during the course of the computation requires the
parties to learn certain secret-shared data.

Reconstructing a secret-shared value [s] can be achieved, for example, by asking t + 1
parties to send their shares to all the other parties.? After a party receives at least t + 1
shares (including possibly its own), this party can reconstruct the polynomial of degree
at most t that interpolate these shares, hence obtaining the secret.

Unfortunately, when the parties are actively corrupt, they can misbehave in the recon-
struction of a secret-shared value by sending incorrect shares. For example, a secret
reconstructed from the shares (si, ..., st+1) would be computed as s = Efill )\E.t“] - s,
but if party P; announces a different share s, + 41, then the reconstructed secret would
be s+ 6, with § = A[f“]él. Furthermore, the parties do not have a way of detecting that
a change has been introduced, given that (s; + d1, s2, ..., st+1) look like legitimate shares

of s + 6.

The reason why the parties cannot detect that an error has been introduced is because
any set of t + 1 values (sy, ..., s;, 1) is consistent with a polynomial of degree at most t.
However, if the parties use, say, t + 2 shares (si, ..., st+1, St+2) to first check the existence
of a polynomial f(X) such that f(a;) = s; fori =1, ..., t+2, then itis “less likely” that the
error 4, that Py introduced preserves the existence of this polynomial. This is because a
vector of t+2 shares is not necessarily consistent with a polynomial of degree at most ¢,
and in fact, we can show that if §; # 0 then there is no way in which (s;+61, ..., St41, St+2)
is consistent with a polynomial of degree at most t.

Unfortunately, the method above of checking consistency using t+2 shares is insufficient
to prevent an attack that modifies the reconstructed secret, given that the adversary
has the power to modify not only Py’s share, but the shares of at most t parties. The
following example shows that, if the parties only check that 2t shares are consistent with
a polynomial of degree at most t, then the adversary, who controls t parties actively, can
cause the reconstructed secret to be incorrect, without being detected. This is related
to Remark 31, where it is mentioned that if ¥ — t < d, where n’ is the total number of
shares (so 2t for the purpose of this example, where also d = t), then the secret is not
well-defined by the honest shares alone, and the corrupt parties can modify theirs to
result in t-valid sharings of any secret.

Example 3.1. Let [s], = (si,....sn), Where the underlying polynomial is f(X), that is,
f(ag) =sand f(«a;) = s; fori € [n]. Let A C [n] be the set of the t indexes corresponding
to corrupt parties, and let B O A such that |B| < 2t. Suppose that at reconstruction time
the parties check that the announced shares corresponding to indexes in B are consis-
tent with a polynomial h(X) of degree at most t, and output h(0) if this is the case. Then
the adversary can cause the parties to reconstruct a wrong secret as follows.

2This incurs in a total communication complexity of ~ t - n. This can be improved to O(n), as described in
Section 3.4.

58



Chapter 3 Shamir Secret-Sharing

1. The adversary samples a polynomial g(X) of degree at most t such that g(a;) =0
forie B\ Aand g(ay) = 0 for some & # 0 of the adversary’s choice. Observe this
is possible since |(B\ A)U{ap}| < t+ 1

2. The corrupt parties P; for i € A modify their share s; as s; = s; + 6;, with 6; = g(«).

At reconstruction time the parties checR if there is a polynomial h(X) of degree at most
t such that h(ej) = sj fori € B\ A, and g(a;) = s! for i € A, and if this is the case,
they output h(0) as the reconstructed secret. Such polynomial indeed exists, namely
h(X) = f(X) + g(X). Indeed, if i € B\ A, then h(aj) = f(ai) + gla) =si+0,and ifi € A
then h(a;) = f(aj) + g(ai) = si + 0; = s.. However, the reconstructed secret is equal to
h(Oéo) = f(ao) + g(ag) =s+0.

In what follows we will see that the parties can check that the announced shares are
correct if they use at least 2t + 1 shares. In fact, we will see that they can identify the
incorrect shares, remove them, and therefore reconstruct the right secret, if they use at
least 3t + 1 shares. These results will be presented in a more general way, using termi-
nology that resembles that in the field of error correcting codes, and later in Section 3.3
we will interpret what these results imply in our setting.

The results in this section are more general, since they are phrased in the context of
error-correcting codes. Let £ and d be non-negative integers, and let 3,..., 5, € F be
all different. let's = (si,...,s,) € F be a d-consistent vector, which, recalling from
Definition 3.2, means that there exists f(X) € F<4[X] such thats; = f(3;) fori =1, ..., L.
Suppose that this vector is modified as s 4 &, for some error vector § € F¢. In the
context of error-correction, the goal is to recover the polynomial f such that f(5;) = s;
fori=1,...,¢ from the corrupted vector s + 4. In error-detection we are only interested
in determining whether § is non-zero.

3.2.1 Error Detection

First, notice that being d-consistent is an F-linear property, so é is d-consistent if and
only if s + & is d-consistent as well. If these conditions hold, then any hope of error-
correction or detection is lost given that s + & will look as “legitimate” as s. Given the
above, we begin by looking at some conditions under which & can be d-consistent. Let
e be an upper bound on the number of non-zero entries of 4. Observe that ife < £ —d,
then & cannot be d-consistent, unless it is the zero vector. This is because, if § was
d-consistent, its £ — e > d zero entries would be enough to determine the underlying
polynomial, which has to be the zero polynomial. On the other hand, if e > ¢ —d, then it
is easy to check that § could be d-consistent.?

We see then that, if e < £ — d, the only way in which s+ é can be d-consistentis if § = 0,
so if no error was introduced. As a result, we can detect whether § is zero by checking if
s + 4 is d-consistent.

3|n fact, this is the reason why the attack in Example 3.1 works. There we have £ < 2t, d = t and e = t, SO
e > ¢ —d. Thisis also the reason why, if n — t < d, a degree-d secret-shared value is not well defined if
the adversary is active, as pointed out in Remark 3.1.
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3.211 A more intuitive view.

Another way to see the result displayed above is the following. Suppose that e < ¢ — d,
and that s + § happens to be d-consistent. Then, the underlying polynomial could be
recovered from any set of d + 1 entries, and in particular, it could be recovered from
the ¢ — e > d + 1 entries that were not affected by §, which shows that the underlying
polynomial of s + & has to be the same as that of s.

3.2.2 Error Correction

Unfortunately, even if e < £ — d, knowing that s + é is not enough to find the polynomial
f(X) underlyings. For example, if e = ¢—d —1, a pair of non-zero error vectors 81, d2 € F¢
having at most e non-zero entries can be found such that s, = 8; — 82 is d-consistent,
but this is a problem since the modified vectors s; + &; and sy + 82, where s; = 0 (which
is d-consistent), are the same, so given only this vector it is not possible to know if it is
a modified version of s; or of s,.

If the bound e is zero, then obviously we can always find f from s + 8, so there must be
a point in which the amount of errors in § is so small, that error-correction is possible.
This point is reached when e < (¢ —d)/2, and moreover, this is optimal in the sense that,
for (¢ —d)/2 < e < {—d, we can always build examples as the one suggested above that
show that finding the original polynomial for s is not possible.

We claim that if e < (¢ — d)/2, if sy, 52 € F¢ are two different d-consistent vectors, and if
81,85 € F¢ are error vectors with at most e non-zero entries each, then s; + 8; = so + &5
cannot hold. This would enable error correction of s + & by looking through all possible
error vectors with at most e non-zero entries, subtracting it from s+4, and checking if the
result is d-consistent vector. To show the claim above simply notice that sy +8; = sy + o
implies that d, — 61 = s; — s would be a d-consistent vector, but this cannot happen
since do — 8; has at most 2e < £ — d non-zero entries, but we just showed above that a
vector with strictly less than ¢ — d non-zero entries cannot be d-consistent unless it is
the zero vector, which would imply that s; = ss.

3.2.21 Efficient error-correction.

Above, we said that to error correct s + 8, one would have to go over all possible vectors
d could be equal to, which is of course very inefficient. This could be optimized slightly
by looping over all possible subsets of e coordinates, and checking if the remaining
coordinates of s+48 form a d-consistent vector (of dimension /—e). Because (/—e)—d > e,
the results from before show that this can only happen if this “sub”-vector does not have
any errors in it, which means that the guessed coordinates contain all the possible errors.
This, unfortunately, is still too inefficient.

Instead, in practice we would recur to error-correction algorithms, also known as de-
coders, which achieve the task of identifying the error locations very efficiently. For the
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case at hand, we could use for example the Berlekamp-Welch algorithm [40], which is an
efficient algorithm to solve the decoding problem.

3.2.2.2 A more intuitive view.

The process of error-correction can be also thought of as follows. Suppose that after
looping through all subsets of coordinates of s + § of size £ — e, we find one that is d-
consistent. Then, any set of d + 1 coordinates among these determine all the others.
Furthermore, we know that the chosen sub-vector has at most e errors, so it has at least
({—e)—e=1/¢—2e>d~+1non-modified entries, which determine the polynomial com-
pletely. Since these entries are the same as in s, we see that the polynomial underlying
the chosen sub-vector is the same as the one for the original vector s.

3.3 Error Correction/Detection in the Context of MPC

As motivated at the beginning of Section 3.2, the purpose of the theory of error detec-
tion/correction in the context of MPC is to allow parties to reconstruct secret-shared val-
ues correctly, in spite of the actively corrupt parties announcing incorrect shares. More
precisely, the parties have a secret-shared value [s];, =s = (s1,...,ss), and in order to
learn s, each party P; announces its share s; to the other parties. Actively corrupt parties
may announce an incorrect s; + §; for some error §;, which means the secret must be
reconstructed from the shares s + 8, where § € F” has as its i-th entry 0 if i is an index
corresponding to an honest party, and 4; otherwise. Since there are t corrupt parties,
there are at most t non-zero entries in 4. This puts us in the context of error correc-
tion/detection studied before with £ = nand e = t.

The results from the previous sections can be summarized as follows:

No error detection. If e > ¢ — d, then the adversary can choose § so thats + § is d-
consistent, and the reconstructed secret will be s 4+ ¢ for some ¢ of the adversary’s
choice.

Error detection. If e < ¢ — d, then s + 4 is d-consistent if and only if § = 0.

Error correction. If 2e < ¢ — d, then there exist efficient algorithms to recover s from
s+ 0.

As we will see in subsequent sections, the values of d that we will need to make use
of in our protocols are d = t and d = 2t. Furthermore, the two main settings in which
we will make use of these techniques are the honest majority setting, in which t < n/2,
and two-thirds honest majority where t < n/3. The following table summarizes, for the
cases of t < n/2 and t < n/3, and for the different degrees d = t and d = 2t, when
error detection/correction is possible. These results will be used later in Chapters 5 and
6 when we construct actively secure protocols with t < n/3 and t < n/2 respectively.
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error corr. error det.

degree t v v
t<n/2 degree 2t X v
degree t X v
t<n/3 degree 2t X X

3.4 Reconstructing Secret-Shared Values Efficiently

The previous section addressed the question of ensuring the adversary does not fool the
parties into reconstructing a secret-shared value [s], incorrectly as s+4. However, doing
this naively would require each party to send its share to all other parties, which incurs
in a total communication complexity of at least n - t field elements being transmitted.
To alleviate this issue, an alternative is to let the parties send their shares to a single
“intermediate” receiver, who reconstruct the secretand then informs all the parties of this
result. This is in fact the approach taken in the protocol from Section 4.2 to reconstruct
[a],;: the parties send their shares to P;, who sends the result back to all the other
parties.

Unfortunately, the issue that arises with this approach is that an actively corrupt interme-
diate receiver may choose to lie about the reconstructed value, which would ultimately
lead to the parties learning an incorrect secret. Designing a solution to this problem
while still achieving linear communication complexity is far from trivial, and the one we
will present below was introduced in [20].

Suppose that the parties are not reconstructing one value [s],, but many of these
lsolly . [s1]y .- [s4l4- Consider the polynomial f(X) = 27:0 s;%. The parties can com-
pute [f(ei)]g = Yj_o [s]4 a} for i € [n] (observe that each f(«;) can seen as a degree-d
share of f(ayp)). Then, the parties can reconstruct each of these shares towards the corre-
sponding parties, which leads the parties to obtain shares [f(ag)]; = (f(a1), ..., f(an)).
At this point they can reconstruct this new secret using the naive approach from above:
each party P; sends its share f(«;) to all other parties. This enables each party to er-
ror correct/detect in order to recover the secret f(ag), but, what is more important, is
that each party will not only recover the secret, but the polynomial f(X) itself, whose

coefficients are sy, s1, ..., 4.

Regarding communication complexity, the solution above involves ©(d-n) field elements.
However, since d + 1 secret-shared values are reconstructed, the amortized complexity
per secret is ©(n), as required. The protocol is summarized below.

Ipypiicrec: Efficient Public Reconstruction ‘

Input: Secret-shared values [s], . ..., [sql,
Output: All the parties learn sy, ..., sq4.
Protocol: The parties proceed as follows
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1. Letf(X) = Z}’:O s;¥/. The parties locally compute [f ()], = E}j:o Isil, a{ fori € [n].

2. Each party Py for k € [n] sends its share of [f(«;)] to P;, for i € [n].
3. Upon receiving the shares of [f(«;)], each P; for i € [n] does the following:
- If n > d + 2t, then perform error correction to recover f(«;).
- If n > d + t, then perform error detection to either recover f(«;), or fail at
reconstruction. If the latter happens then the party aborts.

4. If no abort was produced in the previous step, each P; for i € [n] sends the recon-
structed f(cy) to each other party P;.

5. Upon receiving the shares, each party P; proceeds as follows:

- If n > d + 2t, then perform error correction to recover the polynomial f(X),
and output its coefficients s, ..., s;.

- If n > d + t, then perform error detection to either recover the polynomial
f(X), outputting its coefficients, or fail at reconstruction. If the latter happens
then abort.

To see why the protocol works as intended we proceed as follows. First, by the results
from Section 3.3, each party P; for k € [n], upon receiving the shares of [f(«;)], from
the other parties, is able to perform error correction if n > d + 2t to recover f(«;), or
alternatively it can perform error detection if n > d + t.

Now notice the polynomial 7(X) has degree at most d, and at this point if no abort has
happened the parties hold the evaluation points (f(ay), ..., f(ay)). Again by the results
from Section 3.3 we have that, when these shares are announced, the parties can perform
error correction if n > d + 2t to recover not only the “secret” f(«ay), but the polynomial
f(X) = Z}j:o stf, and if n > d+t, error detection can be performed. As a result, if no party
aborts, the parties finish the protocol reconstructing the correct original secret-shared
values.

Remark 3.2. The protocol Tlp,piicrec requires the parties to reconstruct several secret-
shared values [so] ;. ... [s4] 4 In order to benefit from the improved efficiency. However, it
can be the case during certain steps of a protocol execution only a few secret-shared val-
ues must be reconstructed. For example, this is the case if the function being computed
only has one output, which is obtained in secret-shared form and must be reconstructed.
In this case, instead of using the protocol Ilpypjicrec, the parties can simply use the more
naive approach of sending the shares to each other in one single round, with each party
error correcting on its own to get the output. This involves quadratic communication
complexity, but this is acceptable since this is only called once at the end of the protocol
execution.
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Passive and Perfect Security for Honest
Majority

With the tools that have been described so far we are now ready to describe a perfectly
secure protocol that can withstand a passive adversary corrupting t parties where t <
n/2. Recall from Section 1.3.2 that the combination of passive and perfect security with
honest majority cannot be enhanced in any way, in the sense that improving any of
the three properties degrades the others. For example, shifting from passive to active
security requires us to either switch from perfect to statistical simulation, or from honest
majority to two-thirds honest majority. Also, for instance, if the threshold ¢t < n/2 does
not hold, that is t > n/2, then even if we settle with passive security, the simulation
would have to be computational.

Notice that, since in this first protocol the adversary is assumed to be passive, the theory
on error correction/detection developed in Section 3.2 does not play a role here given
that the corrupt parties do not modify their shares when reconstructing a secret-shared
value. This theory will be used in Chapters 5and 6 when we consider active adversaries.

41 A First Protocol

Let us begin with a protocol that is conceptually very simple, which is taken from [5,25].

Recall from Chapter 3 that, for any subset of indexes A C [n] of size d + 1, there exists
coefficients A{', ..., A4, such that, whenever the parties have a shared secret [s], =
(s1, ..., sn), this value can be computed as s = > ;.4 )\;“ - s;. This will be used in the
protocol below.

,_[ Passively secure protocol with perfect security ]

Setting: Each party P; has input x; € F.

Input phase: Each party P; acts as the dealer in Shamir secret-sharing to distribute
shares of its input x; using polynomials of degree t. The parties obtain [x;],.

Addition gates: For each addition gate with secret-shared inputs [x], and [y],, the
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parties locally compute [x + y], < [x], + [¥].-

Multiplication gates: For each multiplication gate with secret-shared inputs [x],
and [y],, the parties proceed as follows:

1. The parties compute locally [x - y],, « [x], - [v],-

2. Let us write [x-y],, = (z1,...,2Za). L€t A1, ..., A2e41 € F be the (publicly known)
coefficients such that x - y = 3271 ), . z. Each party P; for i =1,...,2t + 1 acts as

the dealer in Shamir secret-sharing to distribute shares [z],.
3. The parties compute locally [x - y], = 32241\ - [z,
Output phase: Let [z], be the output of the computation.
1. Each P;forji=1,...,t+ 1 sends its own share of z to all the other parties.

2. After each party P; receives t + 1 shares (possibly counting its own), it reconstruct
the output z.

Correctness and privacy of the protocol should be clear given that the adversary is pas-
sive: after the input phase the parties have shares of each input to the protocol, which
does not leak information to the adversary due to the privacy properties of Shamir secret-
sharing scheme since the adversary knows only t shares coming from the corrupt parties,
which are not enough to determine a [-],-shared secret. After the input phase, all par-
ties proceed in a “gate-by-gate” fashion, computing shares of each intermediate value,
or wire, in the computation. Addition gates are clearly correct since these make use of
the homomorphic properties of Shamir secret-sharing. For multiplication gates, correct-
ness follows from inspection, and privacy follows again from the fact that each party P;
is distributing information only in secret-shared form, which does not leak information
towards the adversary.

Intuition for the security proof

As explained at the beginning of the chapter, we will not include formal security proofs
for now, as these are delayed until Part Il of this work, where the actual contributions
are presented. However, it is still a fruitful exercise to provide some intuition as to how
such proof would work in the protocol we have at hand here.

In order to obtain a proof of the security of the protocol described above, we would have
to define a simulator S that interacts with the adversary corrupting t parties, in such a
way that the adversary does not know if he is interacting in a real-world execution of
the protocol, where the actual honest parties are running the protocol at hand, or in
a ideal-world execution, where the honest parties only provide their inputs to an ideal
functionality thatis in charge of computing the function on the given inputs and returning
only the output.

For simplicity in the notation, let us assume that the corrupt parties are Py, ..., P;. The
simulator S can interact with the t corrupt parties, and also with the functionality that
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computes the given function ideally by providing inputs to it on behalf of the corrupt
parties. S needs to “fool” the adversary into believing that he is interacting with real
honest parties, so to do this S emulates a set of honest parties Py, ..., P, that will
interact with the corrupt parties in what should look like a genuine execution of the
protocol. Notice that the trick here is that the simulator does not know what the actual
inputs from the honest parties are!

Let us begin by analyzing how the input phase could be simulated. In the protocol de-
scription, all parties need to secret-share their input. S does not know the inputs from
the honest parties, so it cannot distribute towards the corrupt parties shares of these
inputs. However, this does not matter: the adversary corrupts only t parties, and recall
from the properties of Shamir secret-sharing that any set of t shares looks completely
random. Hence, the emulated honest parties can simply send random values to the t
corrupt parties as the shares of their inputs, without actually knowing what their inputs
are. Therefore, so far, the adversary cannot tell whether he is interacting with the actual
honest parties in the real world, or with the simulator in the ideal world.

On the other hand, as part of the input phase, the emulated honest parties Py, 1, ..., P,
will receive shares of the inputs xq, ..., x; from the corrupt parties Py, ..., P;, and since
there are at least t + 1 parties among the parties emulated by S (given that t < n/2),
this enables him to reconstruct these inputs xq, ..., x¢. Furthermore, this also enables &
to reconstruct not only the inputs xq, ..., x¢, but also the shares that the corrupt parties
have of these inputs (since any t + 1 shares not only determine the secret, but the poly-
nomial that was used to distribute it, so in particular they also determine all of the other
shares).

At this point the corrupt parties have “shares” of all the inputs, with the quotes serving
the purpose of emphasizing that the shares corresponding to the inputs of honest parties
are just random values. On the other hand, the emulated honest parties do not really
have any share. In a sense, the only parties that hold shares are the corrupt ones, but
there are only t of them so these shares do not actually determine any secret, which
enables the computation to “take place”, even though in the ideal world only the inputs
and the outputs exist. This will be made clearer in subsequent paragraphs.

Observe that S knows all the shares that the corrupt parties have, which is crucial as
we will show towards the end. The next steps of the computation involve proceeding
gate-by-gate, obtaining shares of their outputs from shares of the inputs. Addition gates
are handled in a simple way as they require no interaction: the corrupt parties simply
add their shares together (notice in particular that the simulator still knows the shares
held by the corrupt parties if it knew the ones for the input summands).

Multiplication gates require a bit more care. Suppose that the shares held by the corrupt
parties P, ..., Py corresponding to the inputs of the multiplication are (x, ..., x¢) and
(y1, ..., yt), which are known to S. According to the description of the protocol, each cor-
rupt party P; will send to the other parties degree-t shares of x;-y;. The simulator receives
through the emulated honest parties at least t + 1 shares of each x; - y;, which enables
him to determine the shares that the other corrupt parties received. Also, the protocol
requires parties Piy1, ..., Pary1 to similarly secret-share the product of their shares of
the inputs, but this is not possible since, again, the simulator does not know this infor-
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mation. This is again not a problem since these parties can simply send random shares
to the t corrupt parties without actually knowing what value is being secret-shared. The
adversary cannot distinguish this from what happens in the real execution.

Finally, the protocol reaches the output phase. The corrupt parties have shares of this
output, and the simulator knows what these shares are. Recall that S learned the inputs
x1, ..., x¢ from the corrupt parties in the input phase. The simulator can interact with the
functionality to obtain the output z of the computation, using the real inputs from the
actual honest parties. This is the exact same output that would have been computed if
the adversary was involved instead in a real-world execution, where the actual honest
parties participate in the protocol. So far the adversary cannot tell the difference.

Since S knows the output z, and he also knows the t shares of this value that the corrupt
parties have, these t + 1 points enables S to compute what the share corresponding to
P:,1 should be so that it look consistent with the corrupt parties’ shares and the given
output z. Once this is done, P,y can easily play the output phase of the protocol by
sendingto the corrupt parties the computed share. The adversary ends up reconstructing
z, since this is how the share of P, ; was computed, and this is exactly what would have
happened in a real execution.

4.2 A More Efficient Protocol

The protocol described above is conceptually very simple. However, its main disadvan-
tage is the amount of data the parties have to communicate measured in terms of n, the
number of parties. Let M denote the number of multiplication gates in the circuit. For
each of these gates, the protocol requires the parties Py, ..., Ps;11 to secret-share a value
towards the other parties, which in turn requires each of these parties to send a share
to each other party. This amounts to n — 1 field elements sent by each of the parties in
{P1, ..., P21}, which gives a total of ©(¢t-n) field elements transmitted over the network,
per multiplication gate. Alternatively, this can be written as ©(t - n- M) for the whole
computation.”

As a practical observation, it is natural to increase t as n increases, given that this value
determines the amount of parties that the adversary needs to corrupt in order to break
the privacy of the protocol, and it can be argued that the more parties that participate
in the protocol, the “easier” it becomes for the adversary to corrupt a large portion of
these. Furthermore, it is typical to consider the maximal case for which t < n/2, namely
t = |(n—1)/2],an in this case the total communication complexity of the protocol above
becomes ©(n*M), which is also referred to as quadratic communication complexity. It
would be much more ideal if we had a protocol with linear communication complexity,
that is, ©(nM). A protocol with such communication complexity has the property that,
in average, the communication required by each party, which is %@(nl\/l) = O(M), is not
affected by how many parties participate in the protocol. This can be phrased as follows:

"This ignores the communication involved in other steps of the protocol such as the input and output
phases. This is, however, reasonable, as in typical applications the “inner” complexity of the function
(measured by the amount of multiplications in our case) is much bigger than the amount of inputs and
outputs.
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even if more parties join the computation, the amount of data each party has to send
remains, in average, constant.

The goal of this section is to present a perfectly secure MPC protocol in the honest ma-
jority setting against a passive adversary that achieves linear communication complexity.
The protocol is taken from [20], and it follows a similar template to the one described
in Section 41: each party first secret-shares its input, and then the parties proceed in
a gate-by-gate fashion, obtaining shares of the output of each gate, until they reach
the final output of the computation, whose shares are exchanged so that the parties
can reconstruct the result in the clear. The main difference lies in the way multiplica-
tion gates are handled, which is the main source of inefficiency in the previous protocol.
The multiplication protocol from the previous section can be seen as having the follow-
ing structure: The parties locally multiply the shares of the inputs, obtaining degree-2t
shares of the product of the underlying secrets, and then they perform an action that
converts these shares from degree-2t to degree-t. In the previous protocol this conver-
sion was achieved via resharing: each party secret-shares its own degree-2t share using
degree-t sharings, and since reconstruction is linear, these shares can be combined in
an appropriate manner to obtain degree-t sharings of the original secret. Instead of us-
ing resharing, the protocol we will discuss next uses the so-called double-sharings to
reduce the 2t — t conversion to the task of simply reconstructing certain shared value,
which is much more efficient to achieve as we will see.

4.2.1 Using Double-Sharings for Secure Multiplication

Our protocol relies heavily on the concept of double-sharings, which constitute a spe-
cial type of preprocessing material that enables the parties to handle multiplications
securely. A double-sharing is a pair of the form ([r], . [r],,), where r € F is uniformly
random and unknown to the adversary.” These double-sharings constitute preprocess-
ing material, since they do not depend in any way on the inputs to the multiplication
protocol, or in general, the inputs to the function under consideration.

,_[ Secure multiplication protocol via double-sharings

Preprocessing: A double-sharing ([r], , [r],,)-
Input: [x], and [y], two secret-shared values.
Output: [z], wherez=x-y

Protocol: The parties execute the following

1. The parties compute locally [x - y],, « [x], - [v], and [a],, < [x - yls — [rls

2. The parties P, ..., Pa;41 send their shares of [a],, to P; who, together with his own
share, reconstructs a.

3. P; sends ato all the other parties, so this value becomes publicly known.

4. The parties compute locally and output [z], < [r], + a.

2This is formalized as a functionality that samples r internally and acts as the dealer in Shamir secret-
sharing, distributing the appropriate shares to the parties. However, we stress that this chapter is not
concerned with the formalisms of the protocols, so we omit this.
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First, notice that the protocol achieves linear communication complexity: in step 2, 2t +
1 parties send a single field element to only one party, P;, who sends in step 3 one
field element to all other parties. This yields a total communication complexity of ©(n).
Naturally, this only holds assuming that the parties can get the double sharing with linear
communication complexity too, which is discussed in Section 4.2.2 below.

4211 A small optimization.

Instead of sending a to all parties, P, can secret-share this value, so that the parties
get [a],. The rest of the protocol remains the same, changing [z], < [r], + a with
[z], <= [r]; + [a],- The advantage of doing this is that, since a does not need to be kept
private, t of the shares can be fixed to be 0, and the remaining shares can be computed
from these together with the “secret” a. This means that P; only needs to communicate
the shares to n — t parties, since t of the parties know already that their share of a will
be 0. This optimization was introduced in [28].

4.2.2 Producing Double-Sharings Efficiently

The task for this section is to describe a protocol in which the parties can compute
double-sharings. This protocol could be used in a preprocessing stage, before the in-
puts of the parties are known.

To get started, let us consider the following simple protocol:

1. Each P; for i € [t + 1] samples r; €g F and secret-shares this value towards the
parties twice: using degree-t and degree-2t polynomials. The parties obtain [r],
and [ri],,-

2. The parties produce the double-sharing ([r],, [],,), where [r], = 3251 [ri], and
[rls: = z:till [rilse-

Since the adversary corrupts t parties, there is at least one honest party among
Py, ..., Pey1, which implies that the value of r looks uniformly random to the adversary
who knows all but one of the random summands. Unfortunately, this approach, although
simple, does not suffice for our purposes since it has quadratic communication complex-
ity (each party P; for i € [t + 1] needs to send shares to all other parties).

The following approach, proposed in [20], enables the parties to produce, using quadratic
communication, a total of ©(n) double-sharings. As a result, the amortized commu-
nication cost per double-sharing is linear. The protocol works as follows. Let M =
van™(=(3, ., B,), where f1, ..., 8, are mutually-different elements of F.
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,_[ Preprocessing double-sharings ]

Output: A set of double sharings {([ri], . [rilo.)} 1=t
Protocol: The parties proceed as follows

1. Each party P; samples s; €g F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain [s;], and [si],,-

2. The parties compute locally the following shares:

[s1], . [s1]5:
oy (B () (R
: =MT. : = MT.
' ) - [srilse
[rn—dle [snl; [ro—clae (B

3. The parties output the double sharings {([r],, [ri],.) }7=;

Let us analyze that the protocol produces correct double-sharings, for which it suffices
to show that the values rq, ..., r,_; produced by the protocol look uniformly random to
the adversary. We claim that these values are in a 1-1 correspondence with the values
s; sampled by the n — t honest parties, which is enough to reach the desired conclusion
as these are uniformly random and unknown to the adversary. To see that the claim
holds, assume for simplicity that the first n — t parties, Py, ..., P,_:, are honest. Let
M’ = van(r=0x(n=t(g, 8, ) and M” = Van(""O%t(8,_, 1 .. 3,), then MT can be
written in block form as MT = [M'T|M"T], so

n S1 Sp—t+1
— M/T . : + M/IT .

'n—t Sn—t Sn

Since M’ is invertible, we obtain the desired result. The general case in which the honest
parties may not be Py, ..., P,—: is handled in a similar way by taking the appropriate
(n—t) x (n—t) submatrix of M.

Regarding communication complexity, observe that in the first step, which is the only
step involving interaction, each party sends a share to each other party, which leads
to a communication complexity of ©(n?). Since n — t double-sharings are produced, we
conclude thatthe amortized communication complexity of generating each double-share
is ©(n?/(n—t)), which is linear in nsince n — t > n/2.
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Chapter 5

Active and Perfect Security for Two-Thirds
Honest Majority

In the previous section we studied a perfectly secure protocol that is secure against a
passive adversary corrupting t parties where t < n/2. The goal now is to extend this to
active security. As mentioned before, this requires us to either lower the threshold from
t < n/2tot < n/3, or consider statistical instead of perfect security. In this section
we take the first route, that is, we consider two-thirds honest majority and maintain the
requirement on perfect security. The second approach, active and statistical security in
the honest majority setting, is discussed in Chapter 6.

Before we get into the description of our protocol, recall that, as shown in Section 3.3, in
the setting under consideration, t < n/3, the parties can reconstruct sharings [s], with
error-correction (i.e. the parties are guaranteed to learn the correct secret) if d = t, and
with error-detection (i.e. either the parties reconstruct the right secret, or the presence
of errors is detected and the parties abort) if d = 2t. Furthermore, it is described in
Section 3.4 how to do this efficiently via the protocol Ipypicrec-

5.1 Actively Secure Multiplication fort < n/3

The tools developed in the previous sections are essential for the construction of an ac-
tively secure version of the multiplication protocol described in Section 4.21. The main
issue with that protocol when ported to the actively secure scenario lies in opening, or
reconstructing, the secret-shared value [a],,. To this end we can use the reconstruction
techniques from Section 3.4. In this case, d = 2t, and since we assume that t < n/3,
we can take ¢ = n and ensure that the error detection bound ¢ > d + t holds (if d = t,
then the error correction bound can be achieved, a fact that will be useful later on). The
resulting protocol is described below. It assumes several simultaneous multiplications
are to be processed, given that the reconstruction protocol from the previous section re-
quires t+1 values to be opened to operate efficiently. Furthermore, as the preprocessing
protocol from Section 4.2.2, the actively secure method to compute double-sharings we
will discuss in Section 5.2 also operates in batches.
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,_[ Actively secure multiplication protocol via double-sharings ]

Preprocessing: A double-sharing ([r],, [r],,)-
Input: Secret-shared values [x], and [y],.
Output: [z = x - y],.

Protocol: The parties execute the following

1. The parties compute locally [x - y],, « [x], - [v], and [a],, < [x - yls, — [rl5;
2. The parties call the protocol ITpypjicrec from Section 3.4 to learn a.¢

3. The parties compute locally and output [z], < [r], + a.

9Recall that this protocol operates in batches of secret-shared data so this would be called once
for many simultaneous secure multiplications.

5.2 Instantiating the Offline Phase

The protocol from above required as preprocessing material double-sharings
([rl; . [rlse)- Unfortunately, the protocol from Section 4.2.2 to achieve such task cannot
be used directly in the actively secure setting, with the main reason being the fact
that, when a corrupt party P; is asked with distributing shares [s;], and [s;],,, it may
not do this consistently. More precisely, the underlying secrets in the degree-t and
degree-2t must be equal according to the protocol specification, but P; may choose
them to be different. Furthermore, what is worse is that P; can send shares that are not
t/2t-consistent, that is, they may not be the result of evaluating a polynomial of the
appropriate degree on the points a1, ..., a,. This is very sensitive, since the theory of
error detection and correction that we developed in Section 3.2 relies heavily on the fact
that the shares that the parties had were consistent.

The protocol we will consider to deal with this situation is taken from [4], and it makes
use of the so-called hyper-invertible matrices in order to guarantee that the sharings dis-
tributed by each party satisfy the necessary consistency requirements. These are defined
below, and used to generate double-sharings in Section 5.2.2.

5.2.1 Hyper-Invertible Matrices

A matrix M € F¥*¢ is said to be hyper-invertible if every square sub-matrix obtained by
taking subsets of the rows and columns of M is invertible.

An example of a hyper-invertible matrix is the following. Let g, ..., ak, 81, ..., B¢ € T be
all different field elements, and let Muy = [T;ci 1y g%z for u € [k], v € [¢]. As shown

in [4], the matrix M € Fk*¢ whose (u, v) entry is given by M,, is hyper-invertible.
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5.2.2 Generating Double-Sharings

The protocol to generate the necessary double-sharings using hyper-invertible matrices
is presented below. We let M € F"™" be a hyper-invertible matrix.

Preprocessing double-sharings with active security

Output: A set of double sharings {([r], . [rilos) }T—oes1

Protocol: The parties proceed as follows

1. Each party P; samples s; €g F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain [s;], and [s;],,, but observe that corrupt parties
may distribute shares inconsistently.

2. The parties compute locally the following shares:

[r], [s1]; [n]s. [s1]5:
[[fZ:]]t _ [[S?Ht | [[f2:]]2t ™. [[52:}]%
Ira], [sa], [ro) [sole

3. For each i € [2t], all the parties send their shares of [s;], and [s;],, to P;.

4. Upon receiving these shares, each P; for i € [2t] checks that the received sharings
of [si], and [si],, are t and 2t-consistent, respectively. If any of the sharings is not
consistent, or if both are but the reconstructed value is not equal in both cases, P;
sends abort to all parties and halts.

5. If no party sends an abort message in the previous step, then the parties output the
double-sharings ([r], . [ri]s,) fori e {2t +1, ..., n}.

To analyze the protocol let us assume without loss of generality that the corrupt parties
are Py, ..., P.. We claim that if there are no abort messages, then the following holds:

1. Foreach i € {2t + 1, ..., n} the sharings [r;], and [ri],, held by the honest parties
are t and 2t-consistent, respectively, and their underlying secrets match.

2. Foreach i € {2t +1,..., n}, the secret r; looks uniformly random and unknown to
the adversary.

For the first claim we use the fact that no party among Py, ..., Po: sentan abort message in
step 4. Since Py, ..., P; are actively corrupt, they may refrain from sending such message
when they were actually supposed to. However, P11, ..., Po¢ are all honest, so if none of
these parties sentan abort message it is because the sharings they received, ([si], ., [si]5;)
fori e {t+1,...,2t}, pass the check these parties perform. This means these sharings
are consistent and their underlying secrets match.

Now, let us partition M in block form as follows:

A B C
D E F|,
G H |
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where A, B, D,E € Ft*t, C,F € Ftx(n=2t) G H e F("—20)xt gnd | ¢ F(n—20)x(n=2t) Gjyen
this partition, we see that, for d = t, 2t, it holds that

lre+1]y [s1]4 [st+1l4 [s2e+1]4
[[ft+.2]]d D. [s2]4 LE. IISH.-Q]]d LF. [s264+2] 4

il [l [52e], [s:],

Since M is hyper-invertible, the square submatrix D is invertible, which means that we
can rewrite the equation above as

[[S1]]d [[rt+1]]d [[st+1]]d [[52t+1ﬂd
[[52']]d _p-. [[rt+.2]]d _D'E. [[Stﬁ]]d _D'F. [[SQf-.f—Qﬂd
[se], [l [52e], [5:],

Observe that all the sharings that appear in the right-hand side of the equation above
are d-consistent for d = t, 2t, and their underlying secrets are the same: we already
argued this for ([re41]4, -, [r2e]4), and for the remaining shares this holds since these
were distributed by honest parties. As a result, since these properties are preserved
under linear combinations, we see that the shares on the left-hand side also satisfy
said properties. This shows that all sharings provided by the parties, {([si], . [sil2:) }7-1,
are t and 2t-degree consistent and the underlying secrets match, which implies that the
same holds for the final double-sharings produced by the protocol, {([ri], . [rilas)} ot 41,
since these are obtained as linear combinations of the ones above. This proves the first
claim.

To prove the second claim we observe that we can write

Rt4+1 S1 St+1 S2t+1
re+2 S2 St+2 S2t42
I'n St Sot Sn

Since | is invertible, we see that (r2¢41, ..., rp) 1S in @ 1-1 correspondence with the vector
(s2t+1,---, Sn), but the latter is chosen at random by the honest parties and is unknown
to the adversary, so (rat+1, ..., ra) Will inherit such properties as well.

Finally, it is easy to see that the communication complexity of the protocol is ©(n?).

However, since n— 2t > n/3 double-sharings are produced per execution, the amortized
complexity per double-sharing is ©(n), as required.

5.3 Actively Secure Input Phase

So far we have discussed how to deal with multiplications and output reconstruction
when the adversary is behaving actively. The only missing step to completely port the
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protocol from Section 4.2 to the actively secure setting is the input phase in which each
party distributes shares of its own input. The problem here when the adversary is active
isthe same problem we have already encountered before: corrupt parties may distribute
inconsistent shares.

Consistency is enforced by means of the following protocol. It requires as preprocessing
material a secret-shared value [r],, where r € F is random only known by the party P;
who will provide input. This can be generated by taking a double-sharing ([r], [r]5,).
discarding the degree-2t part (or alternatively ignoring it from the start when generating
the double-sharing), and letting the parties send their shares of [r], to P;, which enables
P; to error correct to learn r. The protocol also requires the broadcast primitive that is
part of the communication channel we assume, as discussed in Section 1.2.6.1. However,
as discussed in Section 1.31, in the case in which t < n/3 and the corruption is active,
which is the setting in this chapter, a protocol with perfect security instantiating this
broadcast primitive exists.

,_[ Distributing shares of a given input

Input: Party P; has an input x.
Preprocessing: A secret-shared value [r], where r € F is random and only known by P;.
Output: Parties get consistent shares [x],. If P; is corrupt then the underlying secret may
not be equal to x.
Protocol: The parties proceed as follows:

1. P; broadcasts e = x —r.

2. The parties locally compute [x], = [r], + e as the final shares of the input x.

If the sender is honest then its input is kept private since the only information revealed
ise = x—r,and since ris uniformly random and unknown to the adversary, this does not
leak anything about x. Furthermore, in case P; is corrupt, the resulting shares are still
consistent since the they are obtained by adding a publicly known value e to an already
consistently-shared value [r]. Observe that this assumes that e is known by everyone,
which implicitly means that all parties know the same value. This may not be the case
if the rogue P; sends different values for e to different parties. However, this is easy to
enforce by means of a broadcast protocol, as described below.
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Chapter 6

Active and Statistical Security for Honest
Majority

In this section we study active security in the honest majority setting, that is, where the
number of corrupted parties t is strictly less than n/2. As discussed in Section 1.3.2, the
best security notion achievable with this threshold is statistical security, which is the
type of security we aim at in this section.

The protocol we will consider here follows a similar approach as the protocol from the
previous section: in a preprocessing phase the parties generate double sharings which
are then used in an online phase to compute multiplications securely. However, the main
issue that will appear in the t < n/2 case is, as we will see, that the adversary can inject
certain errors in the online phase that may cause the computation to be incorrect and,
moreover, this may lead to leakage of sensitive information about the honest parties’
inputs. This is dealt with by executing a check before the output phase that is intended
to verify that no errors were introduced during the computation.

Throughout this section we will assume that n = 2t+1. This is not only for simplicity: our
protocol is designed to tolerate exactly t corruptions while assuming that there are t +1
honest parties. As mentioned in Remark 11, contrary to intuition, it is not generally true
that a protocol that has been designed to withstand t corruptions is also secure against
less than t corruptions, and the one presented in this section is an example of that. We
will discuss this issue in detail towards the end of this section.

6.1 Reconstructing Secret-Shared Values

As in the previous protocols, an operation that the parties will need to execute several
times lies in the reconstruction of a secret-shared value [s] ;, where the degree d is either
equal to t or 2t. From Section 3.2, we see that in our current setting a party receiving n
shares can error-detect if d = t, and moreover, reconstruction of secret-shared values in
this case can be done with a communication complexity of O(n) field elements with the
help of the protocol Ippicrec from Section 3.4. However, as discussed in Section 3.3, if
d = 2t, then the adversary can cause the parties to reconstruct an incorrect secret s + ¢
for some (potentially non-zero) chosen é. Fortunately, sharings of degree 2t are only used
to compute multiplications securely, and, as we will soon see, cheating in this opening
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leads to incorrect multiplications which can be verified using different techniques. As
a result, in spite of the adversary being able to cheat in the multiplications, leading to
incorrect results, the validity of these can be checked by the parties.

We will make use of the protocol ITppicrec from Section 3.4. However, this protocol does
not consider the case d = 2t in which the adversary can cause reconstruction to re-
sult in incorrect values. A secret-shared value [s],, can be reconstructed with the same
communication complexity of O(n) field elements as follows:

1. The parties send their shares of [s],, to P;;

2. Py uses the first 2t + 1 shares sy, ..., sp:41' to interpolate the unique polynomial
f(X) of degree at most 2t such that f(«;) = s; for i € [2t + 1], and sets s = f(«a);

3. P; sends s to all the parties.

As expected, after the execution of this protocol the adversary can cause the parties to
reconstruct s + ¢ for some chosen error §. This can happen if Py is corrupt and adds this
error when sending the result to the parties?, or it can also occur even if P; is honest if
the actively corrupt parties send wrong shares to P;.

6.2 Preprocessing Phase

As we have already mentioned, the protocol we will use for the setting t < n/2 resembles
a lot the protocol from Chapter 5 in which parties produce double-sharings ([r],, [r]s;)
in the preprocessing phase, which are then used to obtain shares of a product [xy], from
two shared values [x], and [y],. This is done by letting the parties locally obtain [xy],,,
then open a « [xy],; — [rly; and later compute [xy], < [r], + a non-interactively.

We first discuss how the parties can obtain the necessary preprocessing material
([rl; . [rlse)- In Section 5.2 we presented a protocol based on the so-called hyper-
invertible matrices (HIM) to obtain this type of correlation for the case in which t < n/3.
Unfortunately, this protocol is not suitable for our setting in which ¢t < n/2, which can be
seen by thoroughly inspecting the construction. However, in Section 4.2.2 we presented
a passively secure protocol for generating double-sharing in the honest majority setting,
and this method will serve as the basis for the actively secure mechanism to produce
double-sharings we need in this section.

Let us begin by recalling briefly how the passively secure protocol from Section 4.2.2
works. It begins by asking each party P; to sample s; €g F, and then secret-share this

'Since we assume that n = 2t + 1, these 2t + 1 shares constitute all the shares, but this method also works
for2t+1<n.

2If Py is actively corrupt then he can even perhaps add different errors to the value sent to different parties,
which results in the parties learning different values. For simplicity in the presentation we assume this
is not the case, that is, the honest parties obtain the same value s + 4. This can be achieved by asking
P, to use a broadcast channel to send this value. However, this is not necessary as the protocol still
works even if Py distributes different values. However, for the sake of clarity and simplicity we assume
this does not happen.
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value twice using thresholds t and 2t as ([si], . [si],,)- Then the parties locally apply to
these sharings a matrix that acts as a randomness extractor in order to obtain the final
double-shares.

As mentioned in Section 5.2, this protocol is not actively secure, mainly because an ac-
tively corrupt party P; may cheat when asked to secret-share the value s;. This cheating
may take place in different ways:

- P; does not distribute [s;], consistently, that is, the shares (sj1, ..., sip) Of [si], sent
by P; to the other parties are not t-consistent.

- Pjdoes not distribute [s;],, consistently, that is, the shares (s/,, ..., s/,) of [si],, sent
by P; to the other parties are not 2t-consistent.

- The shares (sji, ..., sin) and (sf, ..., s,) are t and 2t-consistent, respectively, but the
underlying secrets are not the same.

Although these issues, at a high level, seem harmful for the protocol, we can show that
the ultimate effect they have on the execution is that a multiplication of two shared
values [x], and [y], may result in [x -y + ¢], for some adversarially-chosen error ¢ €
F. This is of course a problem for the correctness of the protocol, since an adversary
can cause intermediate values to be computed incorrectly. Fortunately, it is possible to
check, quite efficiently, that the multiplications have been computed correctly, which is
explained in Section 6.4.

From the observation above, the protocol the parties use in order to generate double-
sharings efficiently is essentially the same as the protocol from Section 4.2.2. The protocol
is described explicitly below for the sake of completeness. Let M = Van™ ("= (3, ..., 3,),
where 81, ..., 8, are different elements of F.

,_[ Preprocessing double-sharings

Output: A set of double sharings {([ri], . [rilo,)} 1=t
Protocol: The parties proceed as follows

1. Each party P; samples s; €g F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain [s;], and [s;],-

2. The parties compute locally the following shares:

r [s1], p [s1]5:
i [=], g [5:],.
: =MT. : = MT.

. [sn—11; . [sn—1]:
L=l [sn]; lr—ele [sn] 2

3. The parties output the double sharings {([r],, [r],.)}7=;

As mentioned before, even though this protocol is in principle not actively secure (in
the sense that there are seemingly a lot of places where the adversary can cheat to
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cause a potentially harmful outcome), we will be able to show that, when this protocol is
used in conjunction with the protocol for multiplying two shared values from Section 6.3
below, the end result is that the adversary is able to inject additive errors to the result
of a multiplication. Fortunately, this type of attack can be prevented as described in
Section 6.4.

Instead of analyzing in detail the security guarantees of this protocol on their own, we
postpone the analysis to Section 6.3 below where we analyze the properties of the mul-
tiplication protocol that aims to produce [xy], from [x], and [y],. However, before we
move into that, we provide in this section a bit of intuition about why is it the case that
none of the attacks proposed above is relevant. In a nutshell, the reason lies in the fact
that, the notion of d-consistency from Definition 3.3 in Section 31, is only concerned with
the consistency of the shares held by honest parties.

6.2.0.1 Distributing shares of degree t inconsistently.

An actively corrupt party can misbehave when acting as a dealer in Shamir secret-sharing,
and can choose to send arbitrary values (s, ..., s,) that are not t-consistent to the parties.
This is not a problem nonetheless, or rather, an adversary can cause the exact same effect
even if the dealer is honest, as we now show.

For simplicity in the notation, assume that the corrupt parties are Py, ..., P;. Since n =
2t + 1, there are exactly t + 1 honest parties Pii1, ..., Pn. Let f(X) € F<;[X] be the unique
polynomial of degree at most ¢ such that f(a;) = s; fori =t +1,..., n. Since the dealer
is actively corrupt, the adversary knows f(X) and therefore it knows s! = f(«;) for i =
1,...,t. In particular, from Definition 3.3, the parties hold t-consistent shares [s], =
(S}, .1 Sty St41, .-+ Sn), Where s = f(ap).

In conclusion, even if the dealer is actively corrupt, any set of shares it sends will be by
definition t-consistent since there are exactly t + 1 parties and the shares these parties
receive uniquely define a polynomial f(X) € F<.[X].

6.2.0.2 Distributing shares of degree 2t inconsistently.

Assume for simplicity in the notation that the corrupt parties are Py, ..., P:. As before, an
actively corrupt dealer can misbehave and choose to send arbitrary values (s¢41, ..., sp) t0
the honest parties. Since n = 2t + 1 (this also works for n > 2t + 1), for any secret s there
exists a polynomial f(X) € F<g¢[X] such that f(ag) = s and f(a;) =sjfori=t+1,..,n
Since the adversary knows f(X), it knows in particular f(o;) for j = 1, ..., t. This means,
according to Definition 3.3, that the parties trivially hold 2t-consistent shares of any
secret.

Asin Remark 311, thisis not a good thing, since it means the adversary can change the cor-
rupt parties’ shares in order to obtain sharings of different values. However, as pointed
out before, this will be acceptable in our protocol: the concrete effect that this type of
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attack will have in the overall protocol is that the adversary will be able to add errors to
the output of secure multiplications, but the correctness of these will be verified with a
simple protocol as described in Section 6.4.

6.2.0.3 Shares of degree t and 2t having different secrets.

From the two notes above we see that the adversary cannot, by definition, distribute
shares t or 2t-inconsistently. The last attack it could carry out then in the protocol for
preprocessing double-sharings is that the secret s in the shares of degree t is not the
same as the secret s’ in the shares of degree 2t. Once again, although the shares of
degree t uniquely define a secret s, the shares of degree 2t are consistent with any
possible secret, so there is not even an s’ defined. As mentioned before, this gap will
result in a concrete attack in the multiplication protocol from Section 6.3 below, which
can be prevented using certain checks after the multiplication has been performed as
explained in Section 6.4.

6.3 Online Phase

We now move to the description of the online phase of our protocol. Recall that the
function to be evaluated, F : F” — T, is given by an arithmetic circuit over F. Let x; € F
be the input of party P;. As in previous sections, the protocol consists of having the
parties obtain shares [xi],, ..., [xa], of their inputs, followed by methods to obtain from
two given shared values [x], and [y],, shares of [x + y], and [x - y],. This allows the
parties to obtain shares of all intermediate values of the computation, until shares of
the output [z],, with z = F(xq, ..., x»), are produced. At this point the parties can simply
reconstruct this result to learn the output of the computation.

The input phase in which the parties obtain shares of their inputs, is handled in exactly
the same way as in Section 5.3, that is, for a party P; to provide input x;, we assume the
parties have a random shared value [r], where r g I is only known by P;. This could be
easily adapted from the protocol to obtain double-shares. Then P; uses the broadcast
channel to send e = x; — r to all the parties, who define [x;] = [r] + e as their shares of
Xj.

Given [x], and [y],, itis straightforward for the parties to obtain [x + y], given the linear-
ity properties of Shamir secret-sharing. On the other hand, to obtain [x - y], the parties
first execute the following protocol, which is exactly the same as the one presented in
Section 4.21.

Actively secure multiplication protocol via double-sharings

Preprocessing: Double-sharings ([r], , [r],)-
Input: Secret-shared values [x], and [y],.
Output: [z = x - y],.
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Protocol: The parties execute the following
1. The parties compute locally [x - y],, < [x], - [v], and [a]y, < [x - ¥]or — [ro:
2. The parties call the protocol ITpypicrec from Section 61 to learn a.

3. The parties compute locally and output [z], < [r], + a.

The main difference of this protocol with respect to the one from Section 51 is the set
of guarantees this one provides. In the protocol from Section 51, we could prove that
the parties obtain the correct [x - y], at the end of the protocol execution. In our case
here, we will not be able to prove this. This is because, as has been mentioned before,
in our case where t < n/2, opening degree-2t shares cannot be done while ensuring the
integrity of the underlying secret, which is not the case when t < n/3. Here, we show the
following:

Proposition 6.1. Let [x], and [y], be inputs to the multiplication protocol above. Then,
at the end of the protocol execution, the parties get shares [xy + ¢],, where 6 € F is a
value known to the adversary.

Proof. The result of the call to protocol Ilpypjicrec 1S @+ 9 = (xy — r) + 6, SO the parties
compute [zy + d] < [r] + (xy — r) + ¢ in the last step of the protocol. O

6.4 Verification Phase

As we showed in Proposition 6.1, an active adversary can inject errors to the result of
secure multiplications. This is of course a problem since correctness of the computation
is not guaranteed anymore. Furthermore, it can lead to concrete privacy leakage attacks.
For example, if n =3 and F(xj, x2, x3) = (x1 - x2) - x3, @ corrupt party could add a non-zero
error in the first multiplication so that the output of the computation is (x; - xe +0) - x3 =
F(x1,x2,x3) + ¢ - x3. If the adversary corrupts P; and sets x; = 0, then the correct output
is always 0 regardless of the inputs of the other parties, so the adversary should not be
able to learn anything about these according to the security definition of MPC. However,
with the attack above, the result becomes 0 + § - x3, which in particular means that the
adversary can learn x3 by multiplying the result with §—1.

Given this, it is imperative that, before the parties reconstruct the final result, they check
that no errors have been introduced in any of the multiplications involved in the compu-
tation. The more concrete setting is the following. The parties have (t-consistent) shares
(Ix1; . Iv1; . [2],), where z is supposed to be equal to x - y. However, due to adversarial
behavior, it is actually the case that z = x - y + ¢ for some adversarially chosen value
0 € F, and the parties want to check that § = 0. At a high level, the method we will
present to address this issue consists of the following. First, the parties generate a triple
such as the one above ([a],, [b], . [c],), where ¢ = a- b+ € for some adversarially chosen
value ¢, and in addition, a, b € F are uniformly random and unknown to the adversary.
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Then, the parties will make use of this triple of shared values to check the correctness
of z.

Generating the tuple ([a],, [bl;,[c],) is straightforward given the tools we have pre-
sented thus far: getting [a], and [b], can be done by a simple modification of the proto-
col from Section 6.2 to obtain double-sharings, without considering the degree-2t part,
and [c], can be obtained from [a], and [b], by applying the multiplication protocol from
Section 6.3. Now, using such tuple to check the correctness of z is done with the fol-
lowing protocol. Below, we let Fcoin denote a functionality that returns public random
values to all the parties.

Verifying secure multiplications .

Preprocessing: A tuple ([a],, [b], . [c],), where ¢ = a- b+ € for some value e € F known
by the adversary, and a, b € F are uniformly random and unknown to the adversary.
Input: Secret-shared values ([x],, [y],.[z],), where z = x - y + 4 for some value § € F
known by the adversary.
Output: A signal pass/fail.
Protocol: The parties execute the following

1. The parties call s < Feoin;

2. The parties compute locally [d], « [x], — s - [a], and [e], < [v], — [b],

3. The parties call the protocol ITpypicrec from Section 6.1 to reconstruct d and e.
4. The parties compute locally [w] <—s-e-[a] +d - [b] +s-[c] +d-e—[z].
5

. The parties call the protocol IIpypjicrec t0 reconstruct w, and check that w = 0. If this
is the case, output pass. Else, output fail.

Proposition 6.2. Let ([x],, [v],.[z],) with z = xy + 6 be an input to the protocol above.
Then, if 6 # 0, the probability that the protocol results in the parties outputting pass is
at most 1/|F|. Furthermore, nothing about x or y is learned by the adversary after the
execution of the protocol.

Proof. Sinced=x—s-ae=y—b,z=x-y+dand c=a- b+ ¢ we have that

w=s-e-at+d-b+s-c+d-e—z
=s-(y—b)-at+(x—s-a)-b+s-(a-b+e)+(x—s-a)y—»b)—(x-y+9)
=sya — sba+ xb — sab + sab + se + xy — xb — say + sab — xy — ¢

=s5-€— 0.

From this, we see that w = 0 ifand onlyifs-e—0 =0, 0rs-e = §. Assume that § # 0
and nevertheless w = 0. Then € # 0 since otherwise 6 = s -0 = 0, but this implies that
s = 0/¢, which happens with probability 1/|F| since s is uniformly random and sampled
independently of § and e. O

Remark 6.1. The verification step above can be improved so that, when many checks are
performed simultaneously (as expected in an actual secure computation scenario), the
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overhead in communication by performing this check is very small. More concretely, this
overhead can be made sub-linear in the number of multiplications being checked thanks
to the novel techniques presented in [28].
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Chapter 7
Passive Security for Dishonest Majority

All the protocols we have seen so far assume that the adversary corrupts strictly less
than n/2 or n/3 parties. However, if such assumption is violated, privacy would break,
which can be seen from the fact that if the adversary corrupts more parties than the
threshold used for Shamir secret sharing then the underlying secret is revealed.

It would be ideal if we could design protocols where, from the view of each single party,
their input is kept private even if all of the other parties collude against the single party.
In other words, we would like to guarantee security under an adversary corrupting t
parties, even if t grows as large as n — 1, leaving only one honest party. This setting,
where the only bound on tis t < n, is called dishonest majority since in principle a
majority of the parties could be corrupt; this is in contrast to the case in which t < n/2
where the majority of parties are guaranteed to be honest.

In this chapter we explore an MPC protocol in the dishonest majority setting with passive
security, which means that each party’s input is secure even if all the other parties col-
lude, as long as these parties follow the protocol specification. In Chapter 8 we explore
the case of active security, which ensures privacy even if the other parties misbehave.
This is the strongest possible setting, but it is also, naturally, the most expensive.

Another important aspect of the dishonest majority setting is that it includes the relevant
case in which n = 2 and t = 1, since in this case none of the bounds t < n/2 nor
t < n/3 hold. This particular scenario appears in many different applications, so it must
be considered as well.

71 Additive Secret-Sharing

We assume that t = n — 1. Unlike the results from Chapter 6, assuming t reaches the
maximum possible bound is only done for the sake of clarity in the notation, instead of
being a security feature. All of our results carry over if t < n— 1.
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Additive secret-sharing

The dealer secret-shares a value s € F among n parties P4, ..., P, as follows.
1. Sample sy, ...,s,-1 €g Fand defines, =s—(s1 + -+ sp—1).

2. Distribute the value s; to party P;, for i € [n].

In other words, the tuple (s, ...,s,) is uniformly random in (Z/2¥Z)", constrained to
s=s1+ -+ s, Asaresult, for every set A C [n] with |A| < n— 1, the distribution of the
shares {s;}ica is uniformly random, and in particular, it is independent of the secret s.

When the parties have shares as above, we denote [s] = (si,...,s,). Notice that, given
two shared values [x] and [y], the parties can locally add/subtract their shares of these
values to obtain [x £ y]. Furthermore, given a value ¢ € F known to all the parties,
the parties can locally obtain ¢ [x] by multiplying c to every share, and they can obtain
[x & c] by asking only one party, say Py, to add/subtract the value of ¢ to its share.

7.2 Protocols for Secure Multiplication

As in previous sections, we obtain a secure computation protocol by asking the parties
to distribute shares of their inputs (which is trivial since, if x is known to party P;, the
parties can non-interactively obtain [x] by writing x = x; + - - - + x, where x; = 0 if j # i,
and x; = x), followed by the parties executing different subprotocols to obtain [x + y]
and [xy] from shared values [x] and [y]. As we mentioned before, the case of addition
can be easily handled by the parties adding their shares locally. However, obtaining
[xy] is, as usual, a much harder task. Furthermore, what complicates matters in the
dishonest majority scenario is that, as we have mentioned already in Section 1.3.3, this
setting requires the use of tools from the public-key cryptography domain, which are, in
their nature, much more expensive than the information-theoretic techniques we have
been making use of so far.

7.2.1 Product-to-Sum Conversion

We begin by reducing the problem of obtaining [xy] from [x] and [y] to a simpler prob-
lem. Write [x] = (x1, ..., xn) and [y] = (v1, .--, ¥n), SO

n
= 0at X)) =Y Xt Y Xy
i=1 ijelnl.i#i

The goal is to obtain shares of each of these summands, which can in turn be added
locally to obtain shares of x - y. Since each term of the form x;y; is known by party P;, the
parties can obtain [x;y;] trivially by setting P;'s share to be x;y;, and the setting the other
shares to be 0. The main challenge lies on the terms of the form x;y; for i # j, since one
factor is known by one party P;, and the other factor is known by a different party P;.
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Assume the existence of a protocol for product-to-sum conversion, in which P; inputs x;,
P; inputs y;, and P; and P; receive z; and z; respectively, with these values being uniformly
random constrained to x;y; = z + z;. With such a tool, the parties can obtain [x;y;] by
letting P; and P; execute the product-to-sum protocol, obtaining z; and z;, and defining
the other parties’ shares to be zero.

From our observations above, the parties can locally compute [x;y;] for i € [n], and,
with the help of a product-to-sum conversion protocol, they can also compute [x;y;] for
i,j € [n] and i # j. As a result, they can compute shares of x and y as follows.

Dol => Tl + D Ixyl.
i=1

ij€lnl.i#j

7.2.2 Product-to-Sum Conversion Based on Homomorphic Encryption

From the previous section, we see that, in order for the parties to compute [xy] from [x]
and [y], it suffices to design a two-party protocol for product-to-sum conversion. Recall
that, in such protocol two parties, which we denote by P; and Ps, each input a value x;
and xy, and they receive z; and z, which are uniformly random values constrained to
x1x9 = z1 + 2. In this section we show how such primitive can be instantiated making
use of Additively Homomorphic Encryption, or AHE for short. We remark that our aim is
simply to provide intuition on how this can be done, so we do not provide a lot of details
nor present a lot of formalism.

An encryption scheme consists of an encryption and decryption algorithms Encp(-) and
Decs(+) such that, intuitively:

1. Encpi(m) does not leak anything about the message m if the key pair (sk, pk) is
sampled by a sampling algorithm.

2. If ¢ = Encpi(m), then m = Decg(c).

In an additively homomorphic encryption scheme (AHE), in addition, there is a way to
“add/subtract” the ciphertexts to obtain encryptions of the respective operations on
the plaintexts, that is, given ¢ = Enck(x) and d = Enck(y), it is possible to compute
d + e = Enck(x £ y). An example of an additively homomorphic encryption scheme is
Paillier's [36]. Such an encryption scheme can be used to instantiate the product-to-sum
conversion primitive as follows.

Secure multiplication

Input: Party P; has input x;, for i € {1, 2}

Setup: Key pair (sk, pk) with pk known by P; and P, and sk known by P,. Output: P; gets
z; for i € {1, 2}, where (z1, z3) is uniformly random constrained to z = z; + z.

Protocol:

1. Py sends ¢ = Encpy(x1) to Ps.
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2. Py samples z; and sends d = x3 - ¢ — Encpy(22) to Py

3. Py computes z; = Decg(d)

We see that P, does not learn anything about x; since it only receives ¢ = Ency(x1),
which by the properties of the encryption scheme, completely hides x;. On the other
hand, P, decrypts z; = x5 - x; — 2, as desired.

7.3 Preprocessing Model

The tools we have described so far enable the parties to securely compute any arithmetic
circuit comprised of additions and multiplications over the finite field F: the parties hold
additive shares of the inputs to the computation, addition gates can be processed non-
interactively, and multiplication gates make use of the method from Section 7.2, which re-
lies on an AHE scheme. Unfortunately, this approach would provide poor efficiency when
compared to the other MPC protocols we have explored in precious sections. These pro-
tocols, to process multiplication gates, only required simple arithmetic over I, while the
use of AHE techniques, and in general, the different tools used in practice to perform se-
cure multiplication in the dishonest majority settings, is considerably more expensive.

Unfortunately, the use of these techniques is unavoidable when the adversary corrupts
more than a majority of the parties, even if the corruption is passive. Given this limitation,
an standard approach to limit its effect in practice is to split the computation in two
phases: an offline phase, also called preprocessing phase, which is independent of the
inputs of the computation, and an online phase, which now makes use of the inputs. The
online phase is designed to be much more efficient than the protocol we have sketched
so far. In fact, this phase typically achieves information-theoretic security and only makes
use of simple arithmetic operations, so it achieves high efficiency. This way, by pushing
the offline phase to a much earlier time before the parties set their inputs, say, when the
parties are idle, the execution of the MPC protocol is much more efficient from a practical
perspective, counting the latency from the time the parties provide input to the time they
produce the output.

7.4 Offline Phase

To accelerate the computation of secure multiplications in the online phase, the parties
will need to produce a set of multiplication triples. A multiplication triple, also called
Beaver triple, is a tuple of the form ([a], [6], [¢]), where a, b are uniformly random in
F and unknown to any party, and ¢ = a- b. In the offline phase, the parties generate
one such tuple for every multiplication gate expected in the arithmetic circuit under
consideration. Notice that these tuples only contain random data and do not make use
of the inputs of the computation, which are used later in the online phase. As we have
mentioned, this is crucial for the preprocessing paradigm to provide any benefit since, as
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we will see, it is in the production of these tuples where the parties spent most of their
computational resources, in order to be able to compute the online phase in a much
more efficient way.

To generate a multiplication triple, the parties can proceed as follows.

,_[ Generating multiplication triples with passive security ‘

Output: A multiplication triple ([a], [6] . [c]), where a, b are uniformly random in F and
unknown to the adversary, and ¢ = a- b.
Protocol:

1. Each party P; samples a;, b; €g F. This leads to sharings [a] = (ai,...,a,) and
[b] = (b1, ..., bn).

2. The parties execute a multiplication protocol to obtain [c], where ¢ = ab.
3. The parties output the shares ([a], [b] . [c]).

Notice thata=a; +---+a,and b= by + --- + b, look uniformly random and unknown
to the adversary since there is at least one honest party contributing with a uniformly
random summand in each of these expressions.

7.5 Online Phase

Now we show how the parties can make use of a multiplication triple ([a], [b] . [c]) to
securely obtain in the online phase [xy] from [x] and [y], in a much more efficiently way
than simply using a multiplication protocol like the one from Section 7.2.

,_[ Multiplication based on multiplication triples

Input: Shared values [x] and [y].

Output: Shared value [z], where z = xy.
Preprocessing: Multiplication triple ([a], [b] . [<])
Protocol:

1. The parties compute locally [d] < [x] — [a] and [e] < [y] — [b]
2. The parties send their shares of [d] and [e] to each other to learn d and e.¢

3. The parties compute locally [z] + d [b] + e [a] + [c] + de.

9This can be optimized by asking parties to send their shares to one single party, say Py, who
reconstructs d and e and announces these values to the parties.

To see that the protocol works as intended, observe first that, given that d = x — a,
e =y — b, and ¢ = ab, it holds that db + ea + ¢ + de = xy, so the protocol indeed
produces shares of x-y. On the other hand, nothing is leaked about x or y since the only
values that are opened during the protocol execution are d and e, which look uniformly
random to the adversary given that aand b are random and unknown to the adversary. In
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particular, notice that the protocol is perfectly secure. Furthermore, the protocol shines
from its simplicity, involving only the reconstruction of two secret-shared values and
simple local arithmetic.
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Chapter 8
Active Security for Dishonest Majority

In Chapter 7 we described a protocol for secure computation in the dishonest major-
ity setting, assuming the corruption is passive. However, that protocol is not secure if
the corrupted parties behave maliciously. As an example of what goes wrong when the
corruption is active, consider a secret-shared value [x] = (xi, ..., xn). Suppose that, at re-
construction time, the corrupt parties P; for i € C change their share from x; to x/ = x;+;
for some ¢; € FF. Since there is no method for the honest parties to detect this change,
the reconstructed value would be >~ ;.o X/ + > icqy Xi = 2oiq Xi + 2 jcc 0i = x + 0, where
d = > iccdi- In particular, the adversary can cause the reconstruction to lead to an in-
correct value, similar to what happened in Section 6.1 when shares of degree 2t had to
be reconstructed. This was fixed in the protocol for t < n/2 by noticing that the ultimate
effect that this attack has is that the adversary can affect the result of secure multi-
plications, which can be checked with a verification protocol. In our current dishonest
majority setting this “share-modification” attack is much more devastating, since it does
not only affect multiplications but every single step that requires an opening.

To fix the issue of the adversary modifying the corrupt parties’ shares, we need to add
certain “redundancy” to the sharings, comparable to the redundancy present in Shamir
shares for t < n/2. This comes in the form of a tool called Message Authentication Codes,
or MACs for short. This term is taken from the symmetric key cryptography literature, and
in general, we use it to represent a primitive that guarantees data integrity, that is, that an
adversary cannot modify certain piece of data without being detected. This is precisely
the type of tool we need in our current context to disallow the adversary from modifying
the shares of the corrupt parties.

MACs are used in order to authenticate the parties’ shares so that they cannot change
them at a later point, and the way these are used is divided into two. In the first approach,
described in Section 81, each single party has an extra piece of information to check
the integrity of every other party’s share at reconstruction time. The second approach,
described in Section 8.2, consists of all the parties jointly having a way of checking not
the integrity of each individual share, but rather the integrity of the reconstructed secret.
This works better for a large number of parties since it is not necessary for every party
to hold authentication information of the share held by each other party.

Both of these methods are based on the following basic idea for ensuring integrity. Given
a piece of data m € FF, compute a random value a €g T, and let 7 = « - m. Integrity is
checked by verifying that m, multiplied by the value «, results in 7. If m is modified as
m' = m+ ¢ and 7 is modified as 7’ = 7 + ¢, then the only way in which am’ can equal 7/
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isifad = e If § #0, that s, if the data m was indeed modified to a different n?, then this
equation translates to a = €/4. If we somehow guarantee that e and § are independent
of o, then, given that « is uniformly random in I, this equation can only be satisfied with
probability 1/|F|.

8.1 Integrity via Pairwise MACs

We begin by presenting the construction in which each party has a way to check the share
announced by each other party. This construction was proposed initially in [6].

,_[ Additive secret-sharing with pairwise MACs ]

The dealer secret-shares a value s € F among n parties Py, ..., P, with pairwise MACs as
follows.

1. Sample sq, ..., s, € F uniformly at random constrained to s = sy + -+ - + s,,.
2. Foreach i, € [n], the dealer does the following:
- Sample (aff),ﬂ,-(js)) erF.

. ) _ o) (s)
Compute 77 = ;s + B,

3. Distribute the tuple s; = (s;, {(afjs),ﬁ,.(js))}je[,,], {T,.E.S)}je[n]) to party P;, for i € [n].

Throughout this subsection we will denote by (s) the situation in which the parties have
shares (s1, ..., sp) Of s, with the additional redundancy, as above. Notice that this type of
sharing does not leak anything about s to the adversary.

8.11 Reconstructing secret-shared values

Now, assume the parties have shares (si,...,s,) of some value s, with s; =
(5,',{(al(.js),ﬁi(js))}je[n},{7‘[5-5)}]'6[”]). At reconstruction time, each party P; announces
(st A5 sem), Where (s], {717} i) = (siv {757 }jepn) for at least one i € [n], which
corresponds to the indexes of the honest parties who announce their shares correctly.
To check the validity of these values, each party P; executes the following.

,_[ Reconstructing shared values with pairwise MACs ]

Given (s) = (s1,...,8n), With s; = (s;, {(ag.s),,é’,g-s))}je[n], {7,5.5)}1-6[,,]), the parties reconstruct
s as follows:

1. At reconstruction time, each party P; sends s; to all the other parties and Tiﬁ-s) to
party P;.

2. Each party P; checks if for all j € [n] it holds that 7-1.(,.5) = a,(-js)sj + ijs). If so then P;
reconstructs the value s = s; + - - - + s,,. Else, the parties abort.
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Proposition 8.1. If the protocol above does not result in abort, then its output is the
correct s with probability at least 1 — 1/|F|.

Proof. Assume the parties did not abort, and let iy € H. Let (sj 7'J( )) for j € C be the
actual values sent by the corrupt parties to P;,. Since P;, did not abort, it holds that, for

allj e ¢, 7 =o' st + B (s) Let us write s; = s; + 9; and 73{;25) = Tj(ij) + ¢ forj € C.

! J’O loJ
Recalling that 7{¥) = (s)sj + B

i = the equations above are equivalent to ¢; = a,(;j?éj for
jecC.

ioj !

Now, suppose that d;, # 0 for some j, € C. From the above we have that afsj) = 2’—0 It
Jo

is easy to see that the view of the adversary before the execution of the reconstruction
protocol is independent of «;y; for j € C since the adversary only sees 7j;, = a,(:} -5j + Bigjs

but the uniformly random value 3;,; is unknown to the adversary, which perfectly hides
the term a(s) -s;. From this, we see that the errors §j;, and ¢, added by the adversary are

mdependent of the uniformly random value a,(j)o, so the equation a,(;)o = (;0 from above
can only be satisfied with probability 1/|F|.

We obtain that, except with probability 1/|F|, it holds that ¢; = 0 for all j € C, so the
announced shares s; for i € [n] are all correct and therefore the reconstructed value is
correct as well. O

8.1.2 Local Operations

Finally, to show that our secret-sharing scheme is suitable for secure computation, we
need to show that basic operations can be handled locally by the parties. This is shown
below.

8.1.21 Addition/Subtraction.

Assume the parties have two shares values (x) = (x1,...,x,) and (y) = (y1, ..., ¥n), With
xi = O, (0§, B et 5 Yiern) and yi = (i (@, BY) Y eta), {75 }jetn))- Accord-
ing to our description of the sharing procedure, the values a,(.jx) and a,(.J.Y) are sampled
separately when sharing the value x and y. However, to make this scheme compatible
with local addition and subtraction, we need to assume that al(f),al(-jy) fori,j € [n] are

sampled uniformly at random with «j; := oz,(J x) — aij), or, more precisely, that the dealer

samples and distributes «j; €g F once, and uses these to compute the values {TU(-Z)}J'G[,,]
for every new secret-shared value z.
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To obtain (x + y), each party P; defines z; as (z;, {(aj, 5 )}Je[n { ,.5.2)}]-6[,,}), where:

—X/+YI

ﬁ” B+ Y, jeln)

75 —T()—FT(y),_/E[]

Subtraction works in a similar fashion.

8.1.2.2 Canonical shares of public values.

Let ¢ be a publicly known value, that is, a value known by all the parties. The parties can
obtain shares (c) by defining c; = (c;, {(aj, Bff))}je[n], {T,S.C)}J-e[n]) as follows.

{o fori e [n]\ {1}

= c forie{l}
B(C _ forie[n],je[n\{1}
Y —ajj-c forie(n],je {1}

74 {O fori,je[n].

U

Each party P; can compute its share c; locally, and, moreover, it can be easily checked that

T,.E.C) = ajici + B,.(jc) fori,j € [n], as required by the syntax of the secret-sharing scheme.

8.2 Integrity via Global MACs

In the previous method from Section 81 to add integrity to the basic additive secret-
sharing scheme [s] = (si,...,sn), for each (ordered) pair of parties (P;, P;), P; could

verify the correctness of P;'s share s; by means of a key (aj, BSS)) and a tag TJ( ) held
by s. This way, if any of the announced shares is incorrect, the check the honest party
performs would fail, which results in the parties aborting. However, the main drawback
with this approach is that each party P; must hold a key and tag with respect to every
other single party P;, which ultimately means that the size of each party’'s share grows
linearly with n (more concretely, each party’'s share consists of 1 4+ 3n elements in F.)
This may matter little if n is relatively small, which is the case in the relevant setting of
two-party computation, for example. However, for a large number of parties, a share size
that grows as Q(n) may be just too large.

Given the above, we present in this section a different method to ensure integrity that
only adds a small overhead to the size of each share with respect to the basic additive
secret-sharing scheme. This was first proposed in the work of [21]. To provide intuition on
how this method works, recall that the main goal is to add some redundant information
to a given additively-shared value [s] = (si, ..., sp) SO that, when the parties announce
their shares (sf, ..., s;,), the parties can verify that the reconstructed value s’ = s{ +- - - +s,,
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is indeed correct. The method from Section 8.1 ensures this by providing the parties with
a method for checking that each party’s share s/ is announced correctly, that is, s; = s/,
which implies that s = s. However, a crucial observation is that, ultimately, what is
desired is that s’ = s, which can happen even if s/ = s; for some values of i. Hence, the
core idea is to add integrity not to each individual share, but rather to the shared value
s itself. This is described in detail below. Notice that each party’s share is now made of
only 3 elements in F.

,_[ Additive secret-sharing with global MACs

The dealer secret-shares a value s € F among n parties Py, ..., P, with a global MAC as
follows.

1. Sample sy, ..., s, € F uniformly at random constrained to s = s; +--- + s,.

2. Sample af), .a% ep T, and let o9 = ST o',

i

3. sample 1{¥, ., 4% € F uniformly at random constrained to o(®) - s = =" 7).

4. Distribute the tuple s; = (s,-,a,(.s),y,.(s)) to party P;, for i € [n].

For the sake of this subsection, we denote by (s) the situation in which the parties have
shares (s, ..., sp) Of s, with the additional redundancy, as above. Intuitively, we may write

(s) = ([s] . [, [ex - sD)-

8.2.1 Reconstructing Secret-Shared Values
8.21.1 Partial openings.

Assume now that the parties have additive shares (s) = (s1, ..., s,) of some value s. By
partially opening (s), we mean the following:

1. Each party P; sends their additive share s; of [s] to P;.
2. P; computes s = s; +--- + s, and then he broadcasts P; to all parties.
This basic opening does not ensure the correct value is reconstructed, hence the name

partial. In this case the adversary can cause the reconstruction to be s + 4, where, fur-
thermore, § can depend on s if Py is corrupted.

8.2.1.2 Commit-and-open.

Before we describe the mechanism for the parties to reconstruct values correctly, we de-
scribe another type of opening that does not necessarily ensure that the reconstructed
value is correct, but at least guarantees that the added adversarial error is indepen-
dent of the secret. For this construction we will need to make use of a cryptographic
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tool known as a commitment. For a formal treatment on these see for example [17]. In-
tuitively, a commitment scheme is a pair (Commit, Open) where Commit(m, r) allows a
participant to “commit” to a value m using a uniformly random “key” r, and Open(m, r, ¢)
checks whether the commitment ¢ corresponds to m and r. The basic properties of such
a scheme are (1) Commit(m, r), for a uniformly random r, does not reveal anything about
m and (2) given ¢ = Commit(m, r), it is not possible to find m" and r’ with m # m’ such
that Open(m’, ¥/, ¢) reports that the commitment ¢ corresponds to m’, r’. An effective
construction of such a scheme consists of Commit(m, r) = H(ml||r), where H is a crypto-
graphic hash function.

With this tool at hand, the parties commit-and-open to a shared value [z] = (z1, ..., z»)
as follows.

1. Each party P; samples r; and computes the commitment ¢; = Commit(z;, r;). Then
P; broadcasts ;.

2. After all these values are broadcast, each party P; broadcasts (z;, r;).

3. The parties check that, for all i € [n], Open(Z/, r/, c/) accepts, where ¢/ and (z/, r/)

are the values broadcast by P; in the previous two steps. If Open(Z/, r/, ¢]) rejects,
then the parties abort.

A corrupt party P; may still lie about its own share by broadcasting z;+¢;, so the resulting
reconstructed value may still be incorrect. However, P; only broadcasts z; + 4; after he
has broadcasted the commitment ¢;, and by the properties of the commitment scheme
sketched above, this party cannot announce a different share than the one it has com-
mitted to, which means that P; has chosen §; based on the information sent in the first
part of the protocol. At this stage only commitments to the shares have been sent, which
leak nothing about the shares themselves, so the possible errors §; are independent of
the other shares and hence independent of the secret, as desired.

8.2.1.3 Reconstruction.

Let (s) = (s1, ..., sp) be a value shared by the parties. Now we show how to put together
the different reconstruction methods from above so that the parties learn s correctly.

,_[ Reconstructing shared values with global MACs

Given a shared value (s) = ([s], [«] . [« - s]), the parties reconstruct s as follows:
1. The parties partially open s’ < [s] = (s1, ..., Sn)-
2. The parties compute locally [u] < o - s] — s’ [«].

3. The parties commit-and-open p' + [u]. If &' = 0, then the parties accept s’ as the
opened value. Else, the parties abort.
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Proposition 8.2. If the protocol above does not result in abort, then each party outputs
s with probability at least 1 — 1/|F]|.

Proof. Let us write s’ = s + §, where § is an additive error introduced by the adversary
that might depend on s. Also, let us write u’ = u + ¢, where € is also an additive error
introduced by the adversary, but this, unlike §, does not depend on the value of the secret
w. We have that

W=p+e=(as—sa)te=as—(s+da+e=€c—a-4,
sou/ =0ifandonlyife—a-6 =0.

Now, assume that § # 0, we would have that a = €/4, and since e is chosen independently
of a, which is uniformly random, this equation can only be satisfied with probability
1/|F|. From this we see that, if the protocol does not result in abort, § = 0 except with
probability 1/|F|, which means that the reconstructed value is s’ = s. O

8.2.2 Local Operations
8.2.21 Addition/Subtraction.

Given two shared values (x) = (x1, ..., x,) and {y) = (y1, ..., ya), With x; = (x;, a1, 7))
and y; = (yi,oz,(y),%-(}’)) for i € [n], it is possible for the parties to locally obtain

shares (x +y). This requires that «; := o™ = aEY), that is, the dealer samples

1

ai,...,an €g Fonce, and uses o = Y 7, «; to define the shares of all subsequent
values. This way, if (x) = ([x], [«] , [a-x]) and (y) = ([¥]. [a].[e - y]), (x + y) may be
computed locally exploiting the homomorphic properties of basic additive secret-sharing
as ([x] + [yl [ed, [e- x] + [ex - ¥]). More precisely, the shares (zi, ..., z,) are defined as

z; = (z;, «j, ’yi(z)), where z; = x; + y; and fyfz) = ’y,-(x) + ’y,gy) fori € [n].

8.2.2.2 Canonical shares of public values.

Given a value ¢ € F known by all the parties, the parties can obtain shares (c) =
(c1,.... cn) by defining ¢; = (cj, e, '), with ¢ = 0 for i € [n]\ {1}, ¢ = c for i = 1,
and 7,@ = q;j-cforie(n].

8.3 Online Phase

Let (-) denote “authenticated” sharings as the ones from either Section 8.1 or Section 8.2.
These have in common that local addition/subtraction of shared values, together with
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local multiplication and addition/subtraction of publicly known values, is possible. Fur-
thermore, when reconstructing secret-shared values, although the adversary may initially
cause the parties to open a shared-value incorrectly, the parties can execute a verifica-
tion step that ensures that, with high probability, the opened value under consideration
is reconstructed correctly.

For our protocol we assume that the extra data required for the authenticated secret-
sharing scheme (-), like the necessary keys and tags, or their shares, depending on
whether the authentication mechanism chosen is pairwise or global MACs, is computed
by the parties in a preprocessing phase. During this phase the parties also obtain a
multiplication triple ({a), (b), (c)) with a, b €g F uniformly random and unknown to the
adversary and ¢ = a - b, for every multiplication gate in the circuit under consideration.
Furthermore, for every input gate corresponding to party P;, the parties have (r), where
r € Fis uniformly random and known only to P;.

With these tools at hand, the parties can securely compute the given arithmetic circuit
in a similar way as in Section 7.5. Multiplication gates are processed in essentially the
same way: the parties reconstruct a masked version of the inputs to the multiplication
gate, making use of a multiplication triple. However, since the secret-sharing scheme (-)
is more complex than simple additive secret-sharing [-], it is not possible for the parties
to obtain shares of the inputs to the computation non-interactively. This is achieved in
a similar way as the protocol from Section 5.3, by letting each party broadcast a masked
version of their inputs using random values that are secret-shared, and then the parties
add this publicly known value to these shares. This is detailed below.

,_[ Secure computation based on authenticated secret-sharing ]

Offline phase: The parties obtain from the preprocessing phase:
- The necessary keys/shares for the secret-sharing scheme ()
- A multiplication triple ({(a), (b), (c)) for every multiplication gate
- For every input gate with owner P;, a uniformly random shared value (r) only known
to P;.
Online phase: The parties execute the following.
Input gates. For every party P; holding input x, the parties execute the following. Let (r)
be a random shared value, where P; knows r.
1. P; broadcasts e = x — r.
2. The parties compute the sharings (x) < (r) + e.

Addition gates. These are handled locally by using the properties of the secret-sharing
scheme (-).

Multiplication gates. Given two shared values (x) and (y), the parties obtain (xy) as fol-
lows. Let ({a), (b), (c)) be a multiplication triple.
1. The parties compute locally (d) < (x) — (a) and (e) < (y) — (b)
2. The parties reconstruct d < (d) and e « (e).
3. The parties compute locally (z) = d (b) + e (a) + (c) + de.

Output gates. The parties reconstruct (z) for every output shared value.
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As with the protocol from Chapter 7, privacy is guaranteed in the input phase since the
input x is masked with the random value r when P; broadcasts e = x — r, and similarly
for the reconstructed values d = x — aand e = y — b in the multiplication. Correctness

follows from the fact that, if d = x —a, e = y — b and ¢ = ab, it holds that db+ ea+ c + de
is equal to xy.
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