
zkQMC: Zero-Knowledge Proofs For (Some) Probabilistic

Computations Using Quasi-Randomness

Zachary DeStefano
zdestefano@lanl.gov

Dani Barrack
dbarrack@lanl.gov

Los Alamos National Laboratory

Michael Dixon
mdixon@lanl.gov

Abstract

We initiate research into efficiently embedding proba-
bilistic computations in probabilistic proofs by introduc-
ing techniques for capturing Monte Carlo methods and
Las Vegas algorithms in zero knowledge and exploring
several potential applications of these techniques. We
design and demonstrate a technique for proving the in-
tegrity of certain randomized computations, such as un-
certainty quantification methods, in non-interactive zero
knowledge (NIZK) by replacing conventional random-
ness with low-discrepancy sequences. This technique,
known as the Quasi-Monte Carlo (QMC) method, func-
tions as a form of weak algorithmic derandomization to
efficiently produce adversarial-resistant worst-case un-
certainty bounds for the results of Monte Carlo simu-
lations. The adversarial resistance provided by this ap-
proach allows the integrity of results to be verifiable both
in interactive and non-interactive zero knowledge with-
out the need for additional statistical or cryptographic
assumptions.

To test these techniques, we design a custom domain
specific language and implement an associated compiler
toolchain that builds zkSNARK gadgets for express-
ing QMC methods. We demonstrate the power of this
technique by using this framework to benchmark zk-
SNARKs for various examples in statistics and physics.
Using N samples, our framework produces zkSNARKs
for numerical integration problems of dimension d with

O
(

(logN)d

N

)
worst-case error bounds. Additionally, we

prove a new result using discrepancy theory to effi-
ciently and soundly estimate the output of computations

with uncertain data with an O
(
d logN

d√
N

)
worst-case error

bound. Finally, we show how this work can be applied
more generally to allow zero-knowledge proofs to capture
a subset of decision problems in BPP, RP, and ZPP.

1 Introduction

Motivation. Zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARKs) [Bit+11] [GGPR]
have been used to show that a deterministic computa-

tion was executed correctly or that a satisfying path ex-
ists through a non-deterministic computation [Par+13]
[Ben+13]. They have have been applied to a num-
ber of areas including image processing [Ko+20], fi-
nance [Ben+14b], optimization [Ang+21], and Machine
Learning [Lee+20] [DeS20]. However, the process of
designing adversarially resistant non-interactive zero-
knowledge protocols (e.g. zkSNARKs) for computations
which involve prover-generated randomness and uncer-
tainty is not well understood, and current approaches
require additional statistical and cryptographic assump-
tions or machinery.

Frequently in statistical physics [BH10] and finance
[BBG97] [LL03] applications, the Monte Carlo method
is used to approximate simulations and problems which
do not admit closed-form solutions because it has ex-
cellent average-case performance and convergence. The
Monte Carlo method requires sufficient quality random-
ness to be provided as an input in order to guaran-
tee both average-case convergence and the soundness of
the confidence interval estimation. In a non-interactive
adversarial setting, there are several challenges to the
verifiable uncertainty quantification of the Monte Carlo
method.

Efficiently circumventing the statistical and crypto-
graphic assumptions (and additional security concerns)
currently required when designing an adversarially re-
sistant non-interactive zero-knowledge protocol attest-
ing to the results of a randomized computation, such
as the Monte Carlo method, would enable new capa-
bilities and bring multiple benefits. First, some fully
deterministic zkSNARK gadgets could be replaced with
more efficient derandomized variants of randomized gad-
gets, thereby improving prover performance agnostic of
zkSNARK backend choice. Second, zkSNARKs would
be able to efficient capture knowledge about quantifi-
ably uncertain facts or approximation results. For ex-
ample, in addition to proving the correct execution of
a program which approximates an uncertain value, we
could provide additional meaningful guarantees that the
approximation is within a certain distance of the true
value. We discuss several approaches to this problem
and these challenges in more detail in Section 3.

Page 1

Contribution. To overcome these challenges and
achieve verifiable uncertainty quantification of the Monte
Carlo (MC) method in non-interactive zero knowl-
edge without additional statistical or cryptographic as-
sumptions, we consider the use of Quasi-Monte Carlo
(QMC)[Nie92] [Caf98] methods as a lightweight form
of derandomization where randomness is replaced by a
deterministic, low-discrepancy (quasi-random) sequence.
This technique provides unconditional bounds on the
worst-case error of the result of Monte Carlo method
computations, even in the presence of an adversarial
prover. To demonstrate its benefits, we compare this
Quasi-Monte Carlo method to several alternative ap-
proaches for proving statements using the Monte Carlo
method in non-interactive zero knowledge with various
cryptographic, statistical, and computational assump-
tions.

We apply and extend QMC for use with non-
interactive zero-knowledge proofs, such as zkSNARKs,
develop a framework for applying QMC in zero knowl-
edge, and benchmark the overhead of our implementa-
tion for three example problems of increasing complexity
from statistics and physics. Additionally, we describe
how these worst-case error bounds and accompanying
proofs can be reused as inputs for more complex sys-
tems which just leverage the Monte Carlo method as a
subroutine. To this end, we provide an algorithm for
computing worst-case error bounds on the evaluation
of f(u) when u is partially known. Given a known d-
dimensional interval, I, s.t. u ∈ I, we show that the ap-
plication of our technique can efficiently compute f(u)

with O
(
d logN

d√
N

)
precision in non-interactive zero knowl-

edge. Using this result, we extend the analysis of our sys-
tem to includes situations involving mutually distrust-
ful provers (P1, P2, P3, etc.) where the interval results
of Monte Carlo method subroutines can be used as in-
puts to later Monte Carlo calculations without unneces-
sary loss of soundness or accuracy. Going beyond Monte
Carlo methods to different types of randomized compu-
tations, we also provide details on how to efficiently em-
bed Las Vegas algorithms in zero knowledge in Appendix
A.

2 Background

Monte Carlo and Quasi-Monte Carlo. The Monte
Carlo (MC) method is a class of techniques for using ran-
domness to approximate functions which are too com-
putationally complex to calculate analytically [MU49]
[Met+53] [Caf98]. Often these functions take the form
of simulations or physical processes involving risk and
uncertainty [Cun+14] [Zha21], making the Monte Carlo
method a powerful technique used in modern decision-
making and design [Kro+14].

The Monte Carlo (MC) method is a direct conse-
quence of the application of the central limit theorem

(and law of large numbers) to integral approximation
via random sampling. Given a function f : Rd → R
with bounded variation (finite V ar[f(X)]), the goal is
to estimate

∫
[0,1]d

f(u)du using the average of N inde-

pendent random variables X1, · · · , XN : 1
N

∑N
i=1 f(Xi).

This discrete sum is an unbiased estimator with well de-
fined variation:

E

[
1

N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(u)du

]
= 0

V ar

[
1

N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(u)du

]
=
V ar[f(X)]

N
.

Given bounded variation, the average-case error for
the Monte Carlo method is O(N−1/2) which provides
a baseline average convergence independent of dimen-
sion; however, the worst-case error is independent of
the number of random variables. We discuss this error,
which is directly related to the variation of the function,
in Section 3. By direct application of the central limit
theorem, the Monte Carlo method can be used to pro-
duce confidence intervals approximating the true value of∫
[0,1]d

f(u)du to any degree of statistical soundness; how-

ever, to bound the worst-case error, we need to instead
apply the Quasi-Monte Carlo method.

The Quasi-Monte Carlo (QMC) method is a mod-
ification of the traditional Monte Carlo method, fre-
quently used in finance [CHL15] [HK21] and computer
graphics [SEB08], where the N independent random
variables, X1, · · · , XN , are replaced by a deterministic
sequence, x1, · · · , xN , with low discrepancy over the in-
terval [0, 1]d. We provide a more rigorous definition of
discrepancy and key results in the context of sequences
an intervals in the next subsection and show several com-
mon examples, but as intuition, a sequence is said to have
low discrepancy over a particular interval if it uniformly
covers that interval without clumps or large gaps.

Using this approach, one can bound the worst-case

error by O
(

(logN)d

N

)
[Nie92]. This is accomplished by

using the Koksma–Hlawka inequality [Hla61] [Ais+16]
and sequences with (conjectured) minimal discrepancy
[Nie92]. Specifically the QMC method applied in this
way gives the following worst-case error bound on our
estimation:∣∣∣∣∣ 1

N

N∑
i=0

f(xi)−
∫
[0,1]d

f(u)du

∣∣∣∣∣ ≤ C (logN)d

N
VarHK(f)

for some constant C, where VarHK(f) is the
Hardy–Krause variation of the function f [Owe04].

Average-Case Worst-Case Tradeoffs. Comparing
the worst-case error bound provided here by QMC and
the nice average-case error provided by MC highlights

Page 2

a key fundamental distinction between these two ap-
proaches. There is a direct relationship between the dis-
crepancy of the point set used for approximation and
the magnitude of the resulting worst-case error which
provides a natural intuition for why using a random se-
quence of points does not provide non-trivial worst-case
error guarantees. A random sequence of points is not
necessarily low-discrepancy, that is to say it does not
need to evenly cover an interval, but instead it can form
clumps and large gaps. While the QMC method is supe-
rior to the MC method in respect to providing stronger
guarantees, namely a concrete worst-case error bound, it
does not provide a nice measure of average-case conver-
gence.

There is a natural objection here, namely that while
using the MC method, we could simply compute the
discrepancy of the random sequence chosen and pro-
duce worst-case error bounds while maintaining well
defined average-case convergence using this calculated
value. While this is certainly possible, this problem of
calculating this discrepancy (technically a specific type
called star discrepancy which we properly introduce in
the next section) is known to be NP-hard in the case
where N ≈ d [GSW09]. When N � d, the best known
algorithm for computing the discrepancy of an arbitrary
sequence runs in time O(N1+d/2) [DEM96] with approx-
imations being similarly expensive [DGW14].

The structure of low-discrepancy sequences is directly
responsible for the lack of non-trivial average-case error
convergence for QMC. The structure inherent in these
sequences leads to the inapplicability of the central limit
theorem to the QMC method and provides a natural
motivation for why the problem of confidence interval
estimation is hard in this setting. Empirically, there are
results which suggest that hybrid-QMC, QMC where the
low-discrepancy sequence is shifted by a random seed,
has fast average-case approximation convergence; how-
ever, this heavily depends on the behavior of the func-
tion being integrated [Pap03] [Tuf04]. We briefly touch
on some of these average-case error results again in our
discussion of future work.

The Discrepancy of Sequences. The discrepancy
and star discrepancy, DN and D∗N , of a sequence of N
points P in the context of the unit hypercube [0, 1]d are
respectively defined using Niederreiter’s [Nie92] notation
as

DN (P) = sup
B∈J

∣∣∣∣A(B;P)

N
− λd(B)

∣∣∣∣
D∗N (P) = sup

B∈J ∗

∣∣∣∣A(B;P)

N
− λd(B)

∣∣∣∣
where A(B;P) denotes the number of points from P

in B, λd(B) is the d-dimensional Lebesgue measure of B,
J is the set of all subintervals of [0, 1]d, and J ∗ is the
set of all subintervals of [0, 1]d anchored on the origin.

The discrepancy and star discrepancy are related by
the following inequality [Nie92],

D∗N (P) ≤ DN (P) ≤ 2dD∗N (P).

Niederreiter conjectures that Bd
(logN)d

N is the lowest star
discrepancy that a sequence can achieve where Bd is
some small constant determined by the dimension d.

There are several major families of low-discrepancy
sequences. The first of these families is the Kronecker /
Ramshaw / Richtmyer / Weyl sequences [LN93] [Ram81]
[Ric51] [Wey16]. Referenced by several different names,
the standard form of an element of a sequence of this
type is

xk = ({γ1k + c1}, ..., {γdk + cd})

where c1, · · · , cd are arbitrary constants, and γ1, · · · , γd
are irrational with the condition that all γi and γj are
linearly independent over Q. The sequence is formed by
fixing c1, · · · , cd and γ1, · · · , γd and taking all points xk
with 1 ≤ k ≤ N . When γ1, · · · , γd are badly approxi-
mated by the rationals, this sequence has excellent low
discrepancy, and it works for any choice of γ1, · · · , γd
which satisfies our constraints [Bec94]. For the purposes
of this paper, we will exclusively refer to this family of
sequences as Kronecker sequences.

This family of sequences in particular has several nice
properties which make them amenable for our context.

• They most avoid issues with non-uniform behavior
which is present in some other low-discrepancy con-
structions, particularly at higher dimensions.

• The discrepancy is preserved when we consider these
points on a torus (where J can be a interval that
wraps-around the edges of [0, 1]d), so we can effec-
tively arbitrarily pick c1, · · · , cd without changing
the discrepancy.

• Individual elements of this sequence are easy to com-
pute as a single element only requires d addition,
multiplication, and modulus operations.

In addition to this construction, other common low-
discrepancy sequences include Faure, Halton, Niederre-
iter, Sobol, and Van der Corput which use a variety of
other techniques. A more detailed discussion and com-
parison of some of these techniques and applications can
be found here [Nie92] [KW97] [Wei00] [Owe03].

Figure 1 shows the difference between 100 pseudo-
random and 100 quasi-random points in R2. The quasi-
random points are generated from a Kronecker sequence.
Notice how the previously discussed differences become
visually apparent in these diagrams. The pseudo-random
points exhibit non-uniform properties, forming clumps
and large gaps, while the quasi-random points exhibit
more structure.

For the remainder of the paper, we exclusively use
Kronecker sequences in our approach, applications, and

Page 3

Figure 1: 100 Pseudo-Random points in R2 (left) and
100 Quasi-Random (Kronecker) points in R2 (right).

discussion; however, with judicious consideration of
non-uniform low order factors, any of the other low-
discrepancy sequences would provide the same guaran-
tees up to a constant factor. Additionally, we use the
terms quasi-random and low-discrepancy interchange-
ably when describing sequences.

Zero-Knowledge Proofs and zkSNARKs. This
section is intended to provide sufficient background on
zero-knowledge proofs, a specific type of zero-knowledge
proof called a zkSNARK, and the specific zkSNARK pro-
tocol we used for our implementation. While our im-
plementation specifically targets R1CS-based zkSNARK
architectures, the technique we introduce generalizes to
other non-interactive proof protocols. Additionally, fol-
lowing the nomenclature used in zero-knowledge proof
literature, we use argument of knowledge and proof in-
terchangeably because arguments of knowledge are com-
putationally sound proofs.

A Zero-Knowledge Proof, introduced in [GMR85],
is a probabilistic protocol where a prover P convinces
a skeptical recipient (also called a verifier V) with high
probability that some statement is true without reveal-
ing any additional information in the process. To prove
a statement in zero knowledge is precisely to convince
a verifier with high probability that some statement is
true without revealing any additional knowledge, and we
denote this proof as π.

Combining this interactive protocol with mod-
ern cryptography allows for Non-Interactive Zero-
Knowledge Proofs (NIZKs) [BFM88] which, under
certain cryptographic assumptions, allow for a prover to
prove statements in zero knowledge without any interac-
tion with the verifier.

Further developments in this area enhanced the power
of these proofs [GMW91] and minimized proof size
[Kil92] [Mic00] which culminated in Zero-Knowledge
Succinct Non-Interactive Arguments of Knowl-
edge (zkSNARKs) [Groth10] [Bit+11] [GGPR].

Since the introduction of the first zkSNARKs con-
struction, many other non-interactive zero-knowledge
proof systems have been designed with a variety of
attributes and strengths including [Wah+17] [Set20]
[BGH19] [Mal+19], and our work is general enough
that it applies to all of these. For our implementa-

tion, we chose Libsnark [SCIPR] which implements the
Groth16 [Groth16] protocol for producing and verifying
zkSNARKs.

The Libsnark library takes as input a Rank-1 Con-
straint System (R1CS) C over Fp and creates the follow-
ing 3 functions:

• Generate(C) → (pk, vk), which is required to run
once to produce a public proving key, pk, and public
verification key, vk;

• Prove(pk, X, W)→ π, which takes the public prov-
ing key, a public vector of field values X, and a
private vector of field values W and produces a zk-
SNARK π;

• Verify(vk, (X, π)) → > ∨ ⊥, which efficiently uses
the verification key, vk, to check if the public input
and zkSNARK pair (X, π) constitute a valid proof
(with a negligible chance of error).

This particular cryptographic protocol has several ad-
ditional desirable properties: the length of the proof,
|π|, is a small constant independent of circuit size, and
Prove steps can be composed using the proof-carrying
data paradigm [CT10] [Ben+14a] [CTV15]. The Ver-
ify step is cheap, and proof-carrying data allows for one
prover P to take several existing proofs (π1, π2, π3, etc.)
in the Prove step and produce a single proof π which
attests to the correctness of all of them. Both of these
properties are desirable for our application but neither
is strictly necessary.

3 Approach

We consider the problem of a prover P who wants to
produce a proof of some statement that can be efficiently
probabilistically approximated using the Monte Carlo
method. This proof should preserve soundness, avoid
leaking any additional information about the statement,
not require any additional statistical or cryptographic
assumptions, and allow for efficient verification by any
verifier V.

We first briefly discuss the limitations of several de-
signs for attempting to implement the Monte Carlo
method in zero knowledge and how they fail on one or
more of the aforementioned criteria. Then we discuss our
approach using low-discrepancy sequences and show how
it efficiently satisfies the desired criteria while avoiding
the pitfalls of these other more complex designs.

Later we show how our approach can be extended to
more complex systems involving several mutually dis-
trustful provers (P1, P2, P3, etc.) in Section 6.

Additionally we expand our scope beyond proofs of the
Monte Carlo method to a different class of randomized
computations, Las Vegas algorithms, in Appendix A.

Page 4

Intuition. Intuitively, we can view the task of imple-
menting the Monte Carlo method in zero knowledge as
balancing the capabilities of two different adversaries.
The first being an adversarial prover, who is incentivized
to find the worst possible allowed sequence of inputs in
order to detrimentally impact the soundness of the proto-
col. The second is the verifier, who is inclined to demand
additional constraints on the sequences the prover can
use which in turn allows for the extraction of additional
information from the Monte Carlo method. We show
that the proper use of low-discrepancy sequences satis-
fies this tension and thwarts both adversaries in a way
that other approaches do not. These sequences are just
structured enough to maintain soundness while provid-
ing the prover with sufficient freedom to maintain zero
knowledge.

Limitations of the Monte Carlo Method. The pri-
mary challenge of proving statements about the Monte
Carlo method comes from the random variables present
in the algorithm. Approaches to enforcing the the use
of random variables generally fall into one of two pit-
falls, either they break soundness by allowing for the
prover P to search over randomness, seeds, or time or
they break the zero-knowledge requirement by leaking
additional information about the full proof. We consider
several different high level approaches here and discuss
their flaws.

Suppose, trivially, that the prover P is free to choose
a sequence of points x1, · · · , xN . In this unconstrained
case, zero knowledge is preserved, but soundness is
clearly violated because an adversarial prover is under
no obligation to pick these points from a claimed distri-
bution.

Suppose then, that the prover P is free to choose a
seed point x1 but is forced to use the sequence of points
x1, · · · , xN generated pseudo-randomly from that seed.
Let us also generously assume that this is an ideal cryp-
tographic PRNG which produces a uniform distribution
of points for a seed with high probability. In this case,
computational zero knowledge is preserved but sound-
ness is again threatened by the ability of a malicious
prover to search over seed values.

If the prover P is forced to use a seed point x1 gener-
ated from a random oracle access, this regains the sound-
ness of the protocol at the cost of breaking the zero-
knowledge requirement (x1 · · ·xN becomes fully known
to the verifier) and the introduction of a cryptographic
assumption about random oracles. This analysis can
be similarly extended to approaches that acquire ran-
domness via some other cryptographic assumption. For
example, using a randomness beacon introduces both a
cryptographic assumption and the potential for an ad-
versarial prover to search over time to acquire a sequence
of points which misleads the verifier.

Suppose that we are willing to settle for a proof of

the Monte Carlo method where the prover has control
over the seed, but the points following it are statisti-
cally random. By the central limit theorem, we should
expect the results of the Monte Carlo method to obey
a normal distribution, so, with certain assumptions on
X1, · · · , XN , we have the following probability that the
difference between our experimental result and the true
result is within ε when we use N sample points and the
variance of our results is σ (which would need to be es-
timated or bounded in some way)

P

[∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(u)du

∣∣∣∣∣ ≤ ε
]

= 2Φ

(
ε
√
N

σ

)
−1

where Φ is the cumulative distribution function for the
standard normal distribution.

Let α := 2Φ
(
ε
√
N
σ

)
− 1 be the probability that differ-

ence between our experimental result and the true result
is within ε. This gives us three parameters α, ε, and N ,
so by fixing the first two, we can calculate the number
of samples, N , required to satisfy

P

[∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)−
∫
[0,1]d

f(u)du

∣∣∣∣∣ ≤ ε
]

= α

for any combination of α and ε.
To shrink our confidence interval with probability α to

width ε we need at least the following number of samples

N =

(
Φ−1(1+α

2)σ

ε

)2

.

If we assume that the prover can search over M inde-
pendent sequences of random points and picks the worst
one, then by union bound the number of samples N in a
sequence required to attain the same confidence interval
is

N =

Φ−1
(

1+αM

2

)
σ

ε

2

.

There is a significant overhead in the number of sam-
ples required for a prover to produce a proof that with
probability α the result of the Monte Carlo method is
within an interval of width ε. Furthermore this approach
is fundamentally weaker than our approach using Quasi-
Monte Carlo when VarHK is bounded by some polyno-
mial in d because, unlike with QMC, its soundness is
directly a function of the number of samples.

Our Quasi-Monte Carlo Approach. To avoid the
limitations of the pure Monte Carlo approach, we replace
the random variables with a low-discrepancy sequence.
Because terms in low-discrepancy sequences can be very
efficiently enumerated, this approach, up to a small con-
stant, is as fast as the case where the prover can freely
provide a sequence of points.

Page 5

This automatically satisfies the soundness requirement
on the output without any additional computational,
cryptographic, or statistical assumptions. It provides us
with a strong guarantee of the weakest/worst possible
bound for the error of the result. Unlike in the failed
pure Monte Carlo cases, the prover can search infinitely
over sequences and will never find one that breaks sound-
ness. This result can be tight, so additional information
about f is required to achieve faster convergence. We
briefly mention the potential for improvements with ad-
ditional information in Section 8.

To avoid leaking information about the computation,
we use a Kronecker sequence with public irrational coef-
ficients γ1, · · · , γd and private seed variables c1, · · · , cd;
however, this approach generalizes to any other low-
discrepancy sequence which preserves discrepancy when
shifted. This provides the prover P with sufficient free-
dom to hide the discrete evaluations of f(xi) from the
verifier V. Up to pathological cases, the verifier V is pre-
vented from recovering any information about the coef-
ficients c1, · · · , cd and any private information about the
underlying function f not publicly revealed.

4 Implementation

We implemented our Quasi-Monte Carlo (QMC) zero-
knowledge proof framework in Libsnark [SCIPR] with
a compact domain specific language (DSL) for writ-
ing physics and statistical simulations using QMC. This
lightweight proof-of-concept zkQMC library on top of
Libsnark allows for the user to specify a function f , the
number of QMC iterations N , the level of precision for
calculations, and coefficients γ1, · · · , γd, and it compiles
these pieces into a full pipeline for zkSNARK genera-
tion and verification. The DSL compiler creates valid
Libsnark gadgets in C++ which reference smaller hand-
optimized gadgets for simple Integer and Fixed-Point
arithmetic. This DSL both allows for easier prototyping
of zkQMC applications and serves as a proof of concept
for automating the conversion of existing QMC programs
and codes to a zkQMC framework. A full visual overview
of our system architecture is found in Figure 2

In addition to this lightweight zkQMC library, we
highlight the following three zkQMC applications which
we developed for benchmarking and testing: (i) π es-
timation, (ii) cluster integral approximation, and
(iii) a simplified particle exposure simulation using
raycasting.

Lightweight zkQMC Library. Our QMC library is
divided into two primary components which sit on top
of Libsnark [SCIPR] which take a function specified in
our DSL, f, and number of iterations, N , and produce
an arithmetic circuit Cqmc,f,N which Libsnark uses to
generate a zkSNARK, π, attesting to interval, I, s.t.

zkQMC Library Custom
Functions in DSL

DSL Compiler

Core Gadgets with
Type Annotations

Generated
Custom Gadgets

R1CS Gadget Library

Quasi-Monte
Carlo Gadgets

QMC
Circuit Generator

Custom Parameters

Libsnark [SCIPR]

Prover Binary Verifier Binary

Figure 2: System Architecture Diagram. Everything ex-
cept the Libsnark library is our contribution to the sys-
tem.

∫
[0,1]d

f(u)du ∈ I and λd(I) ∈ O
(

(logN)d

N

)
. These com-

ponents are,

• Compile(f) → Cf, which takes a function specified
in our DSL and produces an arithmetic circuit Cf
which computes the function using handwritten low-
level arithmetic primitives for arithmetic and con-
trol flow; and

• Expand(Cf, N) → Cqmc,f,N , which takes the single-
iteration arithmetic circuit and produces a final cir-
cuit Cqmc,f,N that can enter the Generate, Prove,
and Verify phases in Libsnark or any other NIZK
proof system.

The Compile phase interprets our DSL and relies on a
library of hand-optimized low-level arithmetic primitives
with type annotations to transform the readable code
into a circuit. This feature was designed so that the in-
troduction of additional primitives immediately provides
our DSL language with additional features. The DSL
is styled in an imperative form, similar to BASIC and
FORTRAN, and then compiled into an intermediate circuit
representation which also includes information on how
to compute a satisfying assignment of values for this cir-
cuit. The output of this compilation step not just Cf,
but also a set of subcircuits of Cf which can be linked
and accessed directly by other programs compiled in the
same directory.

The Expand phase relies on highly templated hand-
written glue in C++ to seamlessly connect copies of
Cf between constant size lightweight Cqmc circuits which
transform the ith term in a sequence into the i+1th term

Page 6

according to the recurrence used to generate the speci-
fied low-discrepancy sequence of appropriate dimension.
This phase also handles routing variables between itera-
tions, handling elements of the circuit which permit re-
cursive proof composition, and determining private and
public variables.

To expand Cf to Cqmc,f,N , we introduce d×N new Field
Elements to the proof called x1,1 · · ·xd,N . We call each
tuple (x1,i · · ·xd,i) by the shorthand xi. All elements
in x0 are Unsigned Fixed-Point values which are con-
strained to the range 0 to 1. All elements in xi+1 are gen-
erated by copies of a small subcircuit Cqmc(xi) → xi+1.
The large circuit Cqmc,f,N , begins with the constraints
on x0, then is constructed by interleaving copies of
Cf(xi) → ri and Cqmc(xi) → xi+1 for all i, and finally
summing the values of ri and dividing by N . In the
case of recursive proof composition, additional work is
required to maintain a counter of the number of itera-
tions between proofs and ensure x0 is only free when the
running count is 0.

Given a program in our DSL, the entire pipeline to
generate and verify the zkSNARKs is fully automatic.
For benchmarking, we evaluate the time for Prove to ex-
ecute since Generate is a one-time setup, Verify is cheap,
and Compile and Expand are both one-time and cheap.

The full pipeline is the following:

Compile(f)→ Cf
Expand(Cf, N)→ Cqmc,f,N

Generate(Cqmc,f,N)→ (pk, vk)

Prove(pk,X,W)→ π

V erify(vk, (X,π))→ >∨⊥

Our primary implementation contributions are in the
Compile and Expand functions with Libsnark handling
the low level proof details.

As with most numeric calculations, there are limita-
tions due to the precision of the point set when this
is implemented on a physical computer, but we ignore
those limitations for now (they are properly addressed
by Niederreiter [Nie92], and ultimately do not change
the primary result). For the discussion of the implemen-
tation, we ensured that the precision used to store and
calculate the points on the prover was sufficient for a
large number of trials.

π Estimation. Our first and simplest application of
these techniques is one of the classic Monte Carlo demon-
strations for estimating the value of π. By choosing
quasi-random values in the range [0, 1]2 and counting
the proportion which are in the unit circle centered on
the origin, we arrive at an approximation of π

4 . In Fig-
ure 3 this is the measure of the overlapping area between
this circle and quadrant which is shown in black. While
both the pseudo-random and quasi-random samples are

expected to approximate π
4 , only quasi-random provides

non-trivial worst-case bounds on this constant.

1

1

1

1

1

1

Figure 3: An area of size π
4 in the unit square (left) and

two discrete approximations of this area using Pseudo-
Random (middle) and Quasi-Random Points (right).

We can express this in our QMC framework as an area
calculated with the following integral:

π = 4

∫
[0,1]2

1{|v|≤1}dv

In our DSL, this is a few short lines of code specify-
ing 1{|v|≤1}, the function to be integrated. The zkQMC
pipeline handles the task of converting it to R1CS, cre-
ating a full QMC circuit, and ultimately producing and
verifying a zkSNARK attesting to uncertainty bounds
on the integration of the function.

QMC PI iteration using simple gadgets

Computes x^2 + y^2 <= 1 given (x, y)

FUNC PI_TEST x y -> s

MUL x x -> x

MUL y y -> y

ADD x y -> z

LEQ z 1 -> s

By packing 10, 000 QMC iterations into a single proof,
we produced a zkSNARK that attests to the following
numerical approximation of this integral:

4

∫
[0,1]2

1{|v|≤1}dv ∈ [3.093, 3.173].

This interval can be made arbitrarily small through
additional iterations. While this is a trivial integral
which can be analytically computed, it serves as an im-
portant example of the technique for demonstration and
benchmarking. It is easy to imagine replacing this indi-
cator function with something more complex which po-
tentially also is parameterized by data that the prover
wishes to keep secret.

Cluster Integral Approximation. Our next exam-
ple is one of the first applications of the Monte Carlo
technique from “Equations of State Calculations by Fast
Computing Machines” [Met+53]. This is the problem of
computing cluster integrals, the results of which are used
in real gas simulations for handling and approximating

Page 7

intermolecular interactions. As an integral, problems of
this form are expressed in the following way:∫

· · ·
∫
fi1,j1 · · · fim′ ,jm′ · · · fim,jmdτ1 · · · dτn

With the assumption that fi1,j1 · · · fim′ ,jm′ = 1, τk
is the position of particle k, and fi,j is the Mayer f -
function (in the hard-sphere model) [May42] [Met+53]
on particles ik and jk.

fik,jk =

{
1 |τik − τjk | ≤ r
0 |τik − τjk | > r

.

In this model, we treat the particles as hard-
spheres with constant radius which form a bond when
they are overlapping. The goal of the full inte-
gral is to compute how often a specific configuration
of bonds fi1,j1 · · · fim,jm occurs given underlying as-
sumptions about a specific subset of this configuration
fi1,j1 , · · · , fim′ ,jm′ . As a visual example, consider the
following sample particle configurations on 5 particles
in 2 dimensions where the solid lines correspond to as-
sumed bonds and dashed lines correspond to the bonds
of interest:

Figure 4: A few sample configurations of 5 particles in
2 dimensions with assumed bonds (bold), and bonds of
interest (dashed).

Following the simplifications used in “Equations of
State” to reduce the dimensionality of the problem and
to transform the domain of the integral from (−∞,∞)dn

to [0, 1]d(n−2), we implemented this QMC calculation as
a series of functions in the DSL where one can customize
the Mayer f -function, the dimension, the number of par-
ticles, and the bond configuration being checked.

We repeated several of the experiments in “Equations
of State Calculations by Fast Computing Machines”
[Met+53] in zero knowledge and produced zkSNARKs
attesting to the values of various cluster integrals. This
application demonstrates the power of this quasi-random
technique on more complex integrals. Trivially this only
preserves the low-discrepancy sequence in zero knowl-
edge. However, the Mayer f -function can be parameter-
ized by information and assumptions known only to the
prover, and in this case that information is also preserved
in zero knowledge. It is precisely this sort of parame-
terization that introduces the non-trivial zero-knowledge
guarantees which concern practical applications of this
underlying library and technique.

Particle Exposure Simulation. As a larger example,
we developed a simplified particle exposure simulation
containing a square room, a particle point source (τ),
and a hidden room configuration (H) which only the
prover knows. In our simulation the room configuration
is specified by a list of walls, but the general simulation
supports a variety of customizable obstacles by defining
additional collision methods in our DSL.

τ

H

τ

H

θ

Figure 5: A sample simple physics simulation room con-
figuration (left), and identical room with an example par-
ticle trajectory (right).

The prover produces a proof for the verifier that the
exposure at various points along the wall opposite to the
point source is within certain acceptable bounds by sim-
ulating the movement of particles through the room as
they bounce of walls and other obstacles. These parti-
cles lose energy when they collide with walls and after
a fixed number of bounces, they are discarded and their
impact on the final result is considered negligible in this
simulation.

The room configuration is private to the prover, so the
integral which the prover is approximating is also par-
tially hidden from the verifier. While it is not possible
for the verifier to directly compute VarHK , it is still pos-
sible obtain a reasonable upper-bound on VarHK which
can be used to calculate worst-case error bounds. A sim-
plified form of this integral is the following:∫ π

0

p(θ, τ,H)dθ

Where p(θ, τ,H) is exposure caused by particles emit-
ted from position τ at angle θ with room configuration
H. Note that H and τ are secrets that only the prover
knows and θ varies from 0 to π to simulate particles be-
ing emitted uniformly in all directions from this source.
The prover is forced to attest to a specific pair, (τ,H),
and it is easy to enforce this in zero knowledge.

We developed a complete physics simulation (∼100
lines of code) in the DSL which calculates trajectories for
simulated particles, and our QMC framework uses those
gadgets and handles the QMC simulation and communi-
cation.

R1CS Encoding and DSL Semantics. In Libsnark,
we designed a library of low level operations, called gad-
gets, which provide instructions on how to generate con-

Page 8

straints (R1CS) and a satisfying assignment for those
constraints for each respective operation implemented.
Our DSL is a language agnostic intermediate layer of
abstraction to allow for a direct translation from various
numeric simulation codes to efficient and correct gadgets
that combine our R1CS library functions. In our library
of R1CS gadgets, we implement Integer, Fixed-Point,
and Boolean types, encoded in Field Elements, and we
provide optimized type safe operations on these elements
and control flow. As a result of ensuring the correctness
of our low level library of gadgets, our compiler is then
capable of type-checking the programs written in our
DSL, even if they are being translated from an untyped
source language.

Additionally, this DSL is still under development, with
the goal of correctness and type-safety, so we provide a
high level overview of the syntax and semantics, followed
by a more detailed discussion of some of our R1CS tricks.
Understanding the design of the DSL or the encoding
into R1CS is not critical to the main result of paper;
however, we provide it here for completeness.

Speaking at a high level, each gadget in this DSL be-
gins with the FUNC keyword, followed by its name, and
list of variables which are divided into input and out-
put via an arrow ->. This gadget header is proceeded
by lines which invoke lower level gadgets which follow a
similar syntax. These lower level gadgets include con-
trol flow gadgets implemented in our library. All types
are inferred at compile-time, as the DSL compiles to
a statically-typed intermediate-language in which the
primitive operations are defined and typed. We provided
a snippet showcasing how succinct writing code in this
language can be for a user in our π Estimation subsec-
tion. Additional details about the specific syntax and
semantics of our DSL is provided in Appendix B.

There has been significant work on optimizing the
number constraints across a variety of operations in
R1CS [Bra12] [Set+12] [KPS18], so we focus here specif-
ically on the implementation of our Fixed-Point opera-
tions. Fixed-Point encodings and operations have pre-
viously been seen in optimization and machine learning
zkSNARK applications; however, the low level imple-
mentation of these have not been discussed widely in
the literature.

R1CS Encoding of Signed Fixed-Point Numbers.
Encoding a Signed Fixed-Point number with h integer
bits, and ` fractional bits into a Field Element is the
same as encoding a Signed Integer in a Field Element
with h + ` bits. However, when generating the circuit,
we need to remember the position of the decimal and the
ceiling of the number of bits required on either side of
it to correctly handle arithmetic and logical operators.
The most expensive operations in this model are those
that require decomposing the Field Element to its repre-
sentation in Bits (each individual Field Elements). As a

pragmatic approach to reduce the number of constraints
by a small factor, we support allowing the precision to
fluctuate, chaining arithmetic operations until just be-
fore they risk overflowing.

When adding two numbers with h1 and h2 integer bits
respectively, the result can be as large as 2h1 + 2h2 − 2.
It is particularly useful here to carefully track the range
of possible values since although 2h1 + 2h2 − 2 requires
max(h1, h2) + 1 to store, it can still be used across more
ADD operations without the number of bits to store the
result increasing if h1 and h2 are significantly different.
When multiplying two numbers with h1 and h2 integer
bits and `1 and `2 fractional bits respectively, the result
may require h1 + h2 integer bits and `1 + `2 fractional
bits to represent. By dynamically tracking and adjusting
precision, instead of reducing to a common word size at
the end of each primitive gadget in our library, we re-
duce the total number of constraints by a constant fac-
tor by eliminating and postponing bit decomposition of
Field Elements. The precision of more complex opera-
tions can be thought about in a similar manner to these
basic two, and this optimization complexity is hidden
from the programmer by our library and compiler.

R1CS Fixed-Point Number Operation Optimiza-
tions. As an example of this fine-grained approach to
Fixed-Point subtyping on bits, this representation makes
it efficient to compute the next term xk+1 of a Kronecker
sequence from the current term xk, where each element
of xk is an Unsigned Fixed-Point number with 0 integer
digits and ` fractional bits of precision. For each element
xi,k of xk, we compute {γi + xi,k}. Provided 0 < γi < 1,
and γi is encoded with ` fractional bits of precision, the
resulting sum requires ` fractional bits and one integer
bit to represent, so we form xi,k+1 from the bottom `
bits of γi + xi,k. This bit tracking and manipulation is
handled by our library of gadgets, and the Kronecker se-
quence constraint generation occurs N − 1 times in the
Expand(Cf, N)→ Cqmc,f,N phase of our pipeline.

As a more complex example, consider the implemen-
tations of the SIN, and COS functions in a gadget—all
of which follow the same form, a modulus followed by
a Chebyshev polynomial approximation [HWW15]. Our
specific implementation depends heavily on the precision
required by the calculation, and as this is implemented
as an approximation, we must be careful to avoid intro-
ducing extra low order fractional bits that could subtly
influence the result.

Information about the domain of the function and op-
erations directly prior to the operation allows us to create
cleaner and more efficient gadgets. Throughout develop-
ment, we used these preconditions to enrich our library
with extra features and optimizations.

A gadget to enforce the computation of the natural
log in the range [1, 2] will require fewer constraints than
one for the natural log in the range [1, 100] to achieve

Page 9

the same accuracy. As a practical examples of this phe-
nomena in action, for some of our implementations, we
found that the code called for sin(πx), a MUL followed
by the SIN function. Our original SIN implementation
began by performing MOD of x by 2π. Knowing that this
was immediately preceded by a MUL on x and π, we de-
signed an ISIN gadget which eliminated this operation
entirely, replacing it with simpler operations. Specifi-
cally, we were able to entirely eliminate the earlier MUL

by π and replace the generic MOD of x by 2π at the be-
ginning of SIN with cheaper operations. Instead, at the
beginning of the ISIN gadget, we perform a fixed-point
division by 2 (which is a free meta-operation from the
perspective of constraints since it just involves changing
the subtype) and then extract the fractional part of x/2.

By adding this to the library, we could immediately
refactor our DSL code to include this function. Return-
ing to the Kronecker sequence, combining the modulus in
our sequence generation being 1, the preceding addition,
and the knowledge that we are working with Unsigned
Fixed-Point values in a very specific interval allows us to
achieve additional efficiency over the traditional Fixed-
Point ADD and MOD gadgets for a similar reason as with
the ISIN example. We apply this type of precondition
driven optimization through our library for added per-
formance.

5 Benchmarks

We provide benchmarks for our full simulations us-
ing quasi-randomness and with the quasi-random con-
straint removed in Table 1. We evaluate the perfor-
mance of our implementation by measuring the time
and memory required by the prover using 64 threads.
Formally we benchmarked proof generation for the full
circuit Cqmc,f,N at various values of N and then a
modified form of this circuit C−,f,N with the copies of
Cqmc(xi) → xi+1 removed. In place of each Cqmc(xi) →
xi+1, we include a C− → xi+1 that allows the prover to
non-deterministically sample a value (in an acceptable
range). In this comparison we generously assume that
any requirements on these random points can be veri-
fied outside the circuit to encode the pure Monte Carlo
method as efficiently as possible. Even with this relax-
ation, our Cqmc(xi) → xi+1 is only slightly larger than
the minimal C− → xi+1 which is reflected by the minor
overhead shown in our table.

The focus of our evaluation is on the quantification
of this overhead, and the intent of showing these two
side-by-side is to demonstrate that the immense bene-
fit to soundness of applying quasi-randomness requires
minimal overhead over a fully random unconstrained
approach. Additionally, as the simulation gets larger,
the cost of adding and enforcing quasi-randomness be-
comes comparatively smaller, as demonstrated by our re-
sults. This is because the overhead introduced by quasi-

randomness in each respective iteration is independent of
the total number of iterations. These benchmarks were
collected with a circuit using proof-carrying data (PCD)
[CT10] which introduces a constant factor overhead on
circuit size.

The number of iterations N in Table 1 refers to the
number of iterations packed into a single proof. From
these numbers, it is possible to extrapolate and estimate
the runtime and memory requirements for a given num-
ber of iterations packed into a single proof. Alterna-
tively, it is also possible to use these as single prover
benchmarks and apply proof-carrying data, maintaining
a constant memory requirement in the number of recur-
sive proof generation iterations.

These two approaches have a clear time-memory
trade-off. By increasing the number of iterations in each
proof, we continue to see a proportionate increase in time
and memory resulting from the larger circuit. By in-
creasing the number of proof generation iterations, we
see a sharper increase in the amount of time required
without the need for any additional memory beyond
what it takes to compute a single proof. This sharper
increase in time comes from the fixed cost of proof gen-
eration and the subcircuit for recursive proof checking.

6 Multi-Prover Systems and Structures

While we have focused primarily on Monte Carlo sim-
ulations which can be handled by a single prover with full
knowledge, there are also cases where multiple mutually
distrustful provers (P1, P2, P3, etc.) want to prove some
result. For this, it is possible to easily extend our tech-
niques to cover many of these cases. In particular, we di-
vide multi-prover setups into two categories which we il-
lustrate with proposed modifications to our base particle
exposure simulation. The first is composition, where the
results from one or more provers running Monte Carlo
simulations are used as inputs to another prover running
a Monte Carlo simulation. In this scenario each prover
has full knowledge of their environment, but the only
knowledge outside of it comes as verifiable quantities and
intervals from other provers. The second is distribution,
where several provers want to jointly run a Monte Carlo
simulation in a shared environment. The simulation’s ex-
ecution needs to be distributed across these provers be-
cause they individually only have pieces of some dataset
required to complete the computation.

Composition. For the case of composition, consider
a prover P which wants to calculate f(u) which re-
ceives n proofs π1 through πn attesting to intervals I1
through Id s.t. u ∈ I =

∏d
m=1 Im. Furthermore assume

that the function f is sufficiently complex that it can-
not be evaluated by standard interval arithmetic. These
intervals are not uniform distributions, so the prover
cannot treat these as such and use quasi-random se-

Page 10

Quasi-Random Random Percent QR Overhead
Simulation Iterations Time Memory Time Memory Time Memory

π Estimation

100 3.0099 0.6892 2.9573 0.6821 1.777% 1.044%
101 3.0946 0.6988 2.9671 0.6920 4.299% 0.988%
102 3.2632 0.7934 3.1136 0.7915 4.802% 0.024%
103 5.6675 1.8916 5.6636 1.8579 0.069% 1.814%

Cluster Integral
Approximation

100 2.9884 0.7026 2.9775 0.6992 0.037% 0.048%
101 3.1296 0.7528 3.0630 0.7472 2.173% 0.756%
102 4.2717 1.3517 4.2474 1.3353 0.572% 1.226%
103 16.5326 7.1723 15.7250 7.0741 5.136% 1.388%

Particle Exposure
Simulation

100 3.0686 0.7420 2.9889 0.7368 2.667% 0.709%
101 4.0999 1.2725 4.0704 1.2617 0.725% 0.851%
102 12.2953 6.4352 12.0262 6.4220 2.238% 0.206%
103 127.7580 55.5032 126.4900 55.4283 1.002% 0.135%

Table 1: Libsnark QMC prover performance on our simulations in seconds and gigabytes. The prover is bench-
marked on a system with a 2.30GHz Intel Xeon E5-2698 processor on the Darwin cluster [Gar18]. Each experiment
was performed 10 times with the table reflecting the average of these executions. Verifier time is approx. 50
ms and is independent of circuit size. Overhead is the percent increase in time/memory going from Random to
Quasi-Random. The key observation is how small the QR overhead is in terms of time and memory, especially for
more complex computations.

quences to sample from them. However, using a low-
discrepancy/quasi-random sequence x = (x1, · · · , xN),

the prover can achieve the following O
(
d logN

d√
N

)
worst-

case error bounds on f(u).

f(u) ∈
[

min
xi∈x

f(xi)−∆,max
xj∈x

f(xj) + ∆

]

∆ := d log(N)
d

√
Bd

λd(I)

N
max

(v1,··· ,vn)∈I

∣∣∣∣ ∂f

∂v1 · · · vd

∣∣∣∣ .
We can easily explicitly find f(xi), DN (x1, . . . , xN),

and λd(I). An upper bound on | ∂df
∂v1···vd | over I can be

found when f is known. The generalization of this ap-
proach to cases where f is discontinuous or I is not a
hyperbox and the proof of correctness for this algorithm
can be found in Appendix C.

Using our particle exposure simulation example, con-
sider the building floor plan in Figure 6. Given that the
individual room layouts are secret and particles cannot
return to prior rooms, it is natural to ask the question,
is the level of exposure safe for room C. Rooms A and
B can collaborate to produce a proof of this fact with-
out revealing any information about the layouts of their
respective rooms to each other or to C. Room A pro-
duces a zkSNARK of a range for the exposure entering
room B using our framework. Then, using PCD and
the aforementioned technique for using quasi-random se-
quences to calculate error bounds from uncertainty in-
tervals, room B can use our application to produce a
proof that the level of particle exposure in room C is at
a safe level. Anyone entering room C can easily verify
this proof at any point in time in the future.

A

τ

HA
B

HB
C

Figure 6: A sample 3-room configuration with a particle
emitter in room A for illustrating composition.

Distribution. In the case of distribution, quasi-
randomness can be used in the same way as in the single
prover case; however, there is a greater concern about
breaking zero knowledge between provers which needs
to be addressed on a case by case basis. Consider a
modified particle exposure example with a single large
room where information about the contents of this room
is shared across multiple provers such that no individual
prover has a full description of the room as in Figure 7.

τ

H1

H2

H3

Figure 7: A sample room configuration with 3 obstacles
where no prover knows the full layout.

Näıvely computing quasi-random trajectories, check-

Page 11

ing all provers to find the closest intersection, and apply-
ing the QMC physics simulation does not work in this
multi-prover distributed case without additional modifi-
cations because the information shared between provers
can be used to learn about their layout descriptions. This
shared information violates the zero knowledge require-
ment. It is possible to overcome this issue of leaking
information on a case by case basis through a restruc-
turing of the underlying algorithm or the introduction
of various cryptographic primitives on top of the base
QMC setup.

7 Discussion and Conclusion

In this work, we showed how Quasi-Monte Carlo
(QMC) techniques help us perform uncertainty quan-
tification in a manner that, unlike with regular Monte
Carlo, is publicly verifiable in non-interactive zero knowl-
edge (NIZK) without additional statistical or crypto-
graphic assumptions or machinery beyond what is re-
quired for NIZK constructions. We proved and demon-
strated its power in distributed non-interactive zero-
knowledge settings using recursive proof composition.
As shown in our benchmarks and discussion of various
quasi-random sequences, the overhead introduced by this
QMC technique for each iteration is small in comparison
to random alternatives and to the full computation.

QMC is lightweight enough that its addition provides
a negligible difference in prover time. However, QMC is
powerful enough that even if the the prover is able to find
a worst-case valid quasi-random sequence of evaluations,
the worst-case error bounds will still always contain the
true value and these error bounds will be just as tight as
if an honest prover used a more desirable quasi-random
sequence of the same length.

Using the general lightweight framework we developed,
it is possible to choose any quasi-random sequence and
any function (with bounded variation) and plug-and-play
with the two to immediately begin generating proofs
about the integral of that function with worst-case er-
ror bounds. We demonstrate this through the imple-
mentation of several simple problems in statistics and
physics. This framework produces zkSNARKs for nu-

merical integration problems with O
(

(logN)d

N

)
precision

and can apply our new QMC algorithm for non-uniform

interval arithmetic to achieve O
(
d logN

d√
N

)
precision with

no additional overhead. Assuming the conjecture that

Bd
(logN)d

N is the lowest possible sequence discrepancy
[Nie92], then the only way to improve precision with our
technique is to introduce additional information about
the function being computed.

8 Future Work

Additional work can be done on minimizing the num-
ber of QMC iterations to achieve a desired level of er-
ror. We believe that producing tighter bounds on the
Hardy-Krause variation of a function through modern
techniques in symbolic execution or computational mea-
sures of Lipschitz continuity may allow for an honest
prover to convince a verifier of faster worst-case error
convergence. Additionally, reducing the dimension of a
problem [IT09] or proving a lower effective dimension
as a technique for minimizing QMC problems [WF03]
could possibly be incorporated in the prover to improve
error bounds. Because the average convergence of QMC
is much faster than the worst-case in practice [Laz04]
[SC18], it may be possible for an honest prover to be
able to convince a verifier of better error bounds by us-
ing additional undiscovered or unexplored techniques.

Through these advances, it may be possible to gener-
alize these techniques beyond the Monte Carlo method
to the inexpensive zero-knowledge verification of all ran-
domized polynomial time algorithms with minimal ad-
ditional statistical assumptions [Cha00], including those
where VarHK is exponential in d, without full derandom-
ization.

9 Acknowledgements

This paper was improved by discussions with and re-
visions from the following people for whose feedback
the authors are deeply grateful: Katherine Casamento,
Juston Moore, David Mordecai, Michael Walfish, and
many others. This research was supported by the In-
formation Science and Technology Institute (ISTI) of
Los Alamos National Laboratory (LANL) under project
number 20210529CR and by LANL’s Nuclear Weapons
Cyber Assurance Laboratory (NWCAL). LANL is oper-
ated by Triad National Security, LLC, for the National
Nuclear Security Administration of the U.S. Department
of Energy (Contract No. 89233218CNA000001). Ap-
proved for unlimited public release: LA-UR-22-28108.

References

[Adl78] Leonard Adleman. “Two theorems on ran-
dom polynomial time”. In: 19th Annual Sympo-
sium on Foundations of Computer Science (sfcs
1978). 1978, pp. 75–83.

[Ais+16] Christoph Aistleitner et al. On functions of
bounded variation. 2016.

[Ang+21] Sebastian Angel et al. Efficient Representa-
tion of Numerical Optimization Problems for
SNARKs. Cryptology ePrint Archive, Report
2021/1436. 2021.

[Bab79] László Babai. Monte-Carlo algorithms in graph
isomorphism testing. 1979.

Page 12

[BBG97] Phelim Boyle, Mark Broadie, and Paul Glasser-
man. “Monte Carlo methods for security pric-
ing”. In: Journal of Economic Dynamics and
Control 21.8 (1997), pp. 1267–1321.

[Bec94] Jozsef Beck. “Probabilistic Diophantine Ap-
proximation, I. Kronecker Sequences”. In: An-
nals of Mathematics 140.2 (1994), pp. 449–502.

[Ben+13] Eli Ben-Sasson et al. SNARKs for C: Verify-
ing Program Executions Succinctly and in Zero
Knowledge. Cryptology ePrint Archive, Report
2013/507. 2013.

[Ben+14a] Eli Ben-Sasson et al. Scalable Zero Knowl-
edge via Cycles of Elliptic Curves. Cryptology
ePrint Archive, Report 2014/595. 2014.

[Ben+14b] Eli Ben-Sasson et al. “Zerocash: Decentralized
Anonymous Payments from Bitcoin”. In: IACR
Cryptology ePrint Archive 2014 (2014), p. 349.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Mi-
cali. “Non-Interactive Zero-Knowledge and Its
Applications”. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of
Computing. STOC ’88. Chicago, Illinois, USA:
Association for Computing Machinery, 1988,
pp. 103–112.

[BG81] Charles H. Bennett and John Gill. “Relative to
a Random Oracle A, PA != NPA != co-NPA
with Probability 1”. In: SIAM J. Comput. 10
(1981), pp. 96–113.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hop-
wood. Recursive Proof Composition without a
Trusted Setup. Cryptology ePrint Archive, Re-
port 2019/1021. 2019.

[BH10] Kurt Binder and Dieter W. Heermann. Monte
Carlo Simulation in Statistical Physics. Grad-
uate Texts in Physics. Springer, 2010.

[Bit+11] Nir Bitansky et al. From Extractable Collision
Resistance to Succinct Non-Interactive Argu-
ments of Knowledge, and Back Again. Cryp-
tology ePrint Archive, Report 2011/443. 2011.

[Bra12] Benjamin Braun. “Compiling computations to
constraints for verified computation”. In: 2012.

[Caf98] Russel E. Caflisch. “Monte Carlo and quasi-
Monte Carlo methods”. In: Acta Numerica 7
(1998), pp. 1–49.

[Cha00] Bernard Chazelle. The Discrepancy Method:
Randomness and Complexity. Cambridge Uni-
versity Press, 2000.

[CHL15] Mathieu Cambou, Marius Hofert, and Chris-
tiane Lemieux. Quasi-random numbers for cop-
ula models. 2015.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-
Carrying Data and Hearsay Arguments from
Signature Cards.” In: Innovations in Computer
Science Proceedings. Jan. 2010, pp. 310–331.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars
Virza. Cluster Computing in Zero Knowledge.
Cryptology ePrint Archive, Report 2015/377.
2015.

[Cun+14] Americo Cunha et al. “Uncertainty quan-
tification through the Monte Carlo method
in a cloud computing setting”. In: Com-
puter Physics Communications 185.5 (2014),
pp. 1355–1363.

[DEM96] David P. Dobkin, David Eppstein, and Don
P. Mitchell. “Computing the Discrepancy with
Applications to Supersampling Patterns”. In:
ACM Trans. Graph. 15.4 (1996), pp. 354–376.

[DeS20] Zachary DeStefano. Privacy Preserving, Dis-
tributed, and Verifiable Machine Learning
for COVID-19 Identification using Zero-
Knowledge Proofs. Chesapeake Large-Scale An-
alytics Conference. 2020.

[DGW14] Carola Doerr, Michael Gnewuch, and Magnus
Wahlström. “Calculation of Discrepancy Mea-
sures and Applications”. In: Lecture Notes in
Mathematics (2014), pp. 621–678.

[Gar18] Charles Kristopher Garrett. “The Darwin Clus-
ter”. In: (2018).

[GGPR] Rosario Gennaro et al. Quadratic Span Pro-
grams and Succinct NIZKs without PCPs.
Cryptology ePrint Archive, Report 2012/215.
2012.

[Gil77] John Gill. “Computational Complexity of
Probabilistic Turing Machines”. In: SIAM
Journal on Computing 6.4 (1977), pp. 675–695.

[GMR85] S Goldwasser, S Micali, and C Rackoff. “The
Knowledge Complexity of Interactive Proof-
Systems”. In: Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Com-
puting. STOC ’85. Providence, Rhode Island,
USA: Association for Computing Machinery,
1985, pp. 291–304.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigder-
son. “Proofs That Yield Nothing but Their
Validity or All Languages in NP Have Zero-
Knowledge Proof Systems”. In: J. ACM 38.3
(July 1991), pp. 690–728.

[Groth10] Jens Groth. “Short Pairing-Based Non-
interactive Zero-Knowledge Arguments”. In:
Advances in Cryptology - ASIACRYPT 2010.
Ed. by Masayuki Abe. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 321–340.

[Groth16] Jens Groth. On the Size of Pairing-based
Non-interactive Arguments. Cryptology ePrint
Archive, Report 2016/260. 2016.

[GSW09] Michael Gnewuch, Anand Srivastav, and Car-
ola Winzen. “Finding optimal volume subinter-
vals with k points and calculating the star dis-
crepancy are NP-hard problems”. In: Journal
of Complexity 25.2 (2009), pp. 115–127.

Page 13

[HK21] Julien Hok and Sergei Kucherenko. Pricing
and Risk Analysis in Hyperbolic Local Volatility
Model with Quasi Monte Carlo. 2021.

[Hla61] E. Hlawka. “Funktionen von beschränkter Vari-
atiou in der Theorie der Gleichverteilung”. In:
Annali di Matematica Pura ed Applicata 54
(1961), pp. 325–333.

[HWW15] Cecil Hastings, Jeanne T. Wayward, and James
P. Wong. Approximations for Digital Comput-
ers. Princeton University Press, 2015.

[IT09] Junichi Imai and Ken Seng Tan. “Dimension
reduction approach to simulating exotic op-
tions in a Meixner Levy market”. In: IAENG
International Journal of Applied Mathematics
39 (Nov. 2009), pp. 1–11.

[Kil92] Joe Kilian. “A Note on Efficient Zero-
Knowledge Proofs and Arguments (Extended
Abstract)”. In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory
of Computing. STOC ’92. Victoria, British
Columbia, Canada: Association for Computing
Machinery, 1992, pp. 723–732.

[Ko+20] Hankyung Ko et al. Efficient Verifiable Im-
age Redacting based on zk-SNARKs. Cryptol-
ogy ePrint Archive, Report 2020/1579. 2020.

[KPS18] Ahmed Kosba, Charalampos Papamanthou,
and Elaine Shi. “xJsnark: A Framework for Ef-
ficient Verifiable Computation”. In: 2018 IEEE
Symposium on Security and Privacy. May 2018,
pp. 944–961.

[Kro+14] Dirk P. Kroese et al. “Why the Monte Carlo
method is so important today”. In: WIREs
Computational Statistics 6.6 (2014), pp. 386–
392.

[KW97] Ladislav Kocis and William J. Whiten. “Com-
putational Investigations of Low-Discrepancy
Sequences”. In: 23.2 (July 1997), pp. 266–294.

[Laz04] Achilleas Lazopoulos. “Error estimates in
Monte Carlo and Quasi-Monte Carlo integra-
tion”. In: Acta Physica Polonica B 35 (Nov.
2004).

[Lee+20] Seunghwa Lee et al. vCNN: Verifiable Convo-
lutional Neural Network based on zk-SNARKs.
Cryptology ePrint Archive, Report 2020/584.
https://ia.cr/2020/584. 2020.

[LL03] G Larcher and G Leobacher. “Quasi-Monte
Carlo and Monte Carlo methods and their ap-
plication in finance”. In: Surveys on Mathemat-
ics for Industry 11 (Jan. 2003).

[LN93] Gerhard Larcher and Harald Niederreiter.
“Kronecker-type sequences and nonar-
chimedean diophantine approximations”. eng.
In: Acta Arithmetica 63.4 (1993), pp. 379–396.

[Mal+19] Mary Maller et al. Sonic: Zero-Knowledge
SNARKs from Linear-Size Universal and Up-
dateable Structured Reference Strings. Cryptol-
ogy ePrint Archive, Report 2019/099. 2019.

[May42] Joseph E. Mayer. “Contribution to Statisti-
cal Mechanics”. In: The Journal of Chemical
Physics 10.10 (1942), pp. 629–643.

[Met+53] N. Metropolis et al. “Equation of state calcula-
tions by fast computing machines”. In: Journal
of Chemical Physics 21 (1953), pp. 1087–1092.

[Mic00] Silvio Micali. “Computationally Sound
Proofs”. In: SIAM J. Comput. 30.4 (2000),
pp. 1253–1298.

[MU49] Nicholas Metropolis and S. Ulam. “The Monte
Carlo Method”. In: Journal of the American
Statistical Association 44.247 (1949). PMID:
18139350, pp. 335–341.

[Nie92] Harald Niederreiter. Random number genera-
tion and quasi-Monte Carlo methods. Philadel-
phia: Society for Industrial and Applied Math-
ematics, 1992.

[Owe03] Art B. Owen. “Quasi-Monte Carlo Sampling”.
In: SIGGRAPH 2003. 2003.

[Owe04] A. Owen. “Multidimensional variation for
quasi-Monte Carlo”. In: 2004.

[Pap03] A. Papageorgiou. “Sufficient conditions for fast
quasi-Monte Carlo convergence”. In: Journal of
Complexity 19.3 (2003). Oberwolfach Special
Issue, pp. 332–351.

[Par+13] Bryan Parno et al. “Pinocchio: Nearly Practical
Verifiable Computation”. In: 2013 IEEE Sym-
posium on Security and Privacy. 2013, pp. 238–
252.

[Ram81] Lyle Ramshaw. “On the discrepancy of the se-
quence formed by the multiples of an irrational
number”. In: Journal of Number Theory 13.2
(1981), pp. 138–175.

[Ric51] R D Richtmyer. “The Evaluation Of Definite
Integrals, And A Quasi-Monte-Carlo Method
Based On The Properties Of Algebraic Num-
bers”. In: (Oct. 1951).

[SC18] Tobias Schwedes and Ben Calderhead. Quasi
Markov Chain Monte Carlo Methods. 2018.

[SCIPR] SCIPR Lab. libsnark: a C++ library for
zkSNARK proofs. https://github.com/scipr-
lab/libsnark.

[SEB08] Peter Shirley, Dave Edwards, and Solomon
Boulos. “Monte Carlo and Quasi-Monte Carlo
Methods for Computer Graphics”. In: Monte
Carlo and Quasi-Monte Carlo Methods 2006.
Ed. by Alexander Keller, Stefan Heinrich,
and Harald Niederreiter. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 167–177.

[Set+12] Srinath Setty et al. “Taking Proof-Based Veri-
fied Computation a Few Steps Closer to Prac-
ticality”. In: 21st USENIX Security Sympo-
sium (USENIX Security 12). Bellevue, WA:
USENIX Association, Aug. 2012, pp. 253–268.

Page 14

[Set20] Srinath Setty. “Spartan: Efficient and General-
Purpose zkSNARKs Without Trusted Setup”.
In: Advances in Cryptology – CRYPTO 2020:
40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA,
USA, August 17–21, 2020, Proceedings, Part
III. Santa Barbara, CA, USA: Springer-Verlag,
2020, pp. 704–737.

[Tuf04] Bruno Tuffin. “Randomization of Quasi-Monte
Carlo Methods for Error Estimation: Sur-
vey and Normal Approximation*”. In: 10.3-4
(2004), pp. 617–628.

[Wah+17] Riad S. Wahby et al. Doubly-efficient zk-
SNARKs without trusted setup. Cryptology
ePrint Archive, Report 2017/1132. 2017.

[Wei00] Stefan Weinzierl. Introduction to Monte Carlo
methods. 2000.

[Wey16] Hermann Weyl. “Über die Gleichverteilung von
Zahlen mod. Eins”. In: Mathematische Annalen
77.3 (1916), pp. 313–352.

[WF03] Xiaoqun Wang and Kai-Tai Fang. “The Effec-
tive Dimension and Quasi-Monte Carlo inte-
gration”. In: Journal of Complexity 19 (Apr.
2003), pp. 101–124.

[Zha21] Jiaxin Zhang. “Modern Monte Carlo meth-
ods for efficient uncertainty quantification and
propagation: A survey”. In: WIREs Computa-
tional Statistics 13.5 (2021), e1539.

A BPP, RP, ZPP, and Las Vegas Algo-
rithms in Zero Knowledge

Previous sections primarily focus on techniques for
capturing the results of Monte Carlo methods on func-
tional problems with zero-knowledge proofs; however,
this machinery can be slightly modified for attesting to
the outcomes of decision problems. We developed the fol-
lowing general transformations for embedding programs
which decide languages in various probabilistic com-
plexity classes in interactive and non-interactive zero-
knowledge proofs. Only some of the classes we describe
require QMC. For completeness, we discuss the applica-
tion of QMC to subsets of BPP, RP, and co-RP. Ad-
ditionally we discuss faster general techniques for suc-
cinctly embedding Las Vegas algorithms in ZKPs which
is efficient in expectation for the prover.

QMC For BPP. BPP (Bounded-Error Probabilistic
Polynomial-Time) is the class of all decision problems
that can be solved in polynomial time with randomness
with a two-sided error of 1/3 [Gil77]. This is to say, there
exists an algorithm A which for a particular input x and
a random input r, accepts with probability 2/3 if x ∈ L
and accepts with probability no more than 1/3 if x 6∈ L.

By a generalization of Adleman’s Theorem [Adl78],
there exists a derandomized family of polynomial-sized

circuits which can decide the membership of x ∈ L for
any L ∈ BPP [BG81], but there is no known efficient pro-
cedure for producing these derandomized circuits. We
describe an efficient procedure using QMC for partially
derandomizing a specific subset of decision problems in
BPP so membership can be proved in zero knowledge.
In a way, this QMC solution combines the best quali-
ties of the fully derandomized circuits with the original
probabilistic algorithm.

Both the fully derandomized circuit and the QMC cir-
cuit, have perfect soundness prior to being embedded
in a ZKP; however, unlike a QMC equipped circuit, a
fully derandomized circuit is often prohibitively expen-
sive to produce. Both the probabilistic algorithm and the
QMC circuit are polynomial time to compute, but unlike
the probabilistic algorithm, the QMC circuit has perfect
soundness. For the subset of BPP where QMC can be ef-
ficiently applied and no fully derandomized polynomial-
sized circuits are known, we demonstrate a general pro-
cedure for embedding these randomized computations in
ZKPs.

As previously discussed, QMC is a technique for tak-
ing an integral and producing worst case error bounds on
the true value of that integral. To apply QMC to a de-
cision problem in BPP, we need to rephrase our decision
problem as integral. By a slight abuse of notation, we
say that Ax is the function which, defined on a particu-
lar input x, and using d random values r, outputs either
0 or 1 which correspond to a verdict of exclusion or in-
clusion respectively of x in L. We can then use QMC to
compute bounds I on the following integral:∫

[0,1]d
Ax(r)dr =

{
≥ 2/3 x ∈ L
≤ 1/3 x 6∈ L

.

To turn our QMC approximation of the integral into a
decision, we need to iterate until the uncertainty bound,
I, is small enough to completely exclude one of the
ranges [0, 1/3] or [2/3, 1]. If I ∩ [0, 1/3] is empty then
accept, and if I ∩ [2/3, 1] is empty then reject.

Recall that this integral can only be efficiently esti-
mated with QMC techniques when VarHK(Ax) is suf-
ficiently small, limiting us to a specific subset of BPP.
Specifically, we require that

VarHK(Ax) <
N

6Bd(logN)d

for a predetermined d and small constant Bd to decide
membership of x in L in N iterations.

This follows directly from the QMC worst case error
bound applied to Ax. Specifically we know that

|I| := 2Bd
(logN)d

N
VarHK(Ax),

and in the worst case it is required that |I| < 1/3 to ar-
rive at a decision. This gives use the following inequality

2Bd
(logN)d

N
VarHK(Ax) < 1/3

Page 15

which can be trivially rearranged to appear as a condi-
tion on VarHK(Ax).

QMC For RP and co-RP. We can adapt the above ap-
proach for two-sided error problems to one-sided prob-
abilistic decision problems in RP and co-RP. Without
loss of generality, we limit the discussion below to RP as
the argument for co-RP is similar. RP is the class of all
decision problems that can be solved in polynomial time
with randomness which always reports x 6∈ L correctly,
but errors with probability ≤ 1/2 when x ∈ L [Gil77].
Given an algorithm Ax defined similarly as in the BPP
case, we can express RP similarly as the integral∫

[0,1]d
Ax(r)dr =

{
≥ 1/2 x ∈ L
0 x 6∈ L

.

When we embed this integral in a zero-knowledge proof,
because the error is only one-sided, we only need to ap-
ply QMC when Ax(r) exclusively reports 0 (the RP al-
gorithm rejects). That is, we need to run enough QMC
iterations to reduce the interval bound, I, to exclude
[1/2, 1]. If revealing the decision does not violate zero
knowledge, and we can find a witness that causes the
RP algorithm to accept, we can simply prove that such
a witness exists without resorting to QMC techniques.

In the case of RP and co-RP, the QMC approach is
only efficient when VarHK(Ax) is sufficiently small:

VarHK(Ax) <
N

2Bd(logN)d
.

Because the error is one-sided, VarHK(Ax) can be twice
as large.

Las Vegas Algorithms in Zero Knowledge. We
showed how QMC techniques can be applied to some de-
cision problems with probabilistic polynomial time algo-
rithms and one and two-sided error; however, during our
exploration of embedding randomized computations in
NIZKs, we also discovered an easy and efficient method
for handling zero-sided error randomized computations,
namely Las Vegas algorithms [Bab79] (which include all
decision problems in ZPP).

As opposed to Monte-Carlo algorithms which run in
polynomial time and produce a result with a certain
quantifiable degree of uncertainty, Las Vegas algorithms
always produce a correct result, but vary in runtime that
is polynomial in expectation (over different choices in
random inputs).

A computation with unbounded or variable length
cannot be näıvely encoded in constraints using stan-
dard techniques like unrolling since zero-knowledge proof
frameworks typically require fixed sized constraint sys-
tems. We overcome this issue by using a short encod-
ing of the algorithm in constraints to certify executions
without resorting to program unrolling. Additionally, we

ensure that the prover is expected to successfully find a
valid witness in the original expected runtime of the al-
gorithm multiplied by some small constant.

We encode, in constraints, a trace through the algo-
rithm that must terminate in fewer than c · E[tX(R)]
steps where c is a predetermined constant and E[tX(R)]
is the expected length of a trace over all inputs X and
random values R. The first job of the prover is to iter-
ate over random values (potentially in parallel) to find
a random input r which produces a trace of length less
than c ·E[tX(R)]. If the prover reaches the c ·E[tX(R)]th

step of any trace without halting, that random value,
ri−1, can be discarded and a new one, ri, tried until a
successful one is found. As a note, if we intuitively as-
sume that E[tx(R)] ≈ E[tX(R)] for any x ∈ X, all of the
following probabilities and expectations effectively only
range over the choice of random values (not over the the
inputs X). Also, the value of c can be tuned to balance
the length of the trace being encoded in constraints with
the expected number of times the prover needs to choose
a new random value to test.

The expected number Nc of independent random
values, modeled by the independent random variables
{Ri}∞i=1, that the prover will need to search through to
find a trace of length less than c · E[tX(R)] is

Nc =
1

1− P [tX(Ri) ≥ c · E[tX(R)]]

by a well known result on the expected value of geometric
random variables.

Because tx(ri) > 0 for all ri, we can apply Markov’s
Inequality, which says,

P [tX(Ri) ≥ c · E[tX(R)]] ≤ E[tX(Ri)]

c · E[tX(R)]
=

1

c
.

This gives us the following after simplification

Nc ≤
c

c− 1

which is defined for all c > 1.
Intuitively, smaller values of c require the prover to

search through more traces in expectation, but they re-
quire fewer constraints to encode. For this proof we can
arbitrarily choose c = 2 and evaluate for this specific
value of c to get N2 ≤ 2. In expectation the prover will
only need to search through at most two traces to find
one with length smaller than 2 · E[tX(R)].

The value of c can be chosen judiciously by the
prover to minimize the total amount of computation
required. Often producing a particular trace is sig-
nificantly less computationally expensive than encoding
that same length trace in a proof. Additionally, we note
that for particular Las Vegas algorithms, it may be more
efficient to constrain the verification of the result and not
the full algorithm’s execution, but this serves as a more
general procedure for cases where that is not possible.

Page 16

B DSL Syntax and Semantics

Our domain specific language, used for constructing
higher level gadgets in our zkQMC library, is described
by the grammar in Figure 8 and the operational seman-
tics described in Figure 9. In our language, a gadget
is defined by a function definition, which consists of the
word “FUNC”, followed by the name of the function, a list
of parameter names, a “->” symbol, and the variables to
be returned. This is then followed by Assignments, con-
sisting of either a function name and a list of inputs, or
a constant, followed by a “->” which binds the value to
the variable to the right of the arrow.

Def ::= function definition
FUNC x x∗ -> o ∗ \n{a\n}∗

a ::= assignment
{{ x i∗} | n } -> o∗

i ::= input
x
n

o ::= output variable
x

v ::= value
n

n ::= number
−?{[0..9]}+ {.{[0..9]}+}?

x ::= variable
{[A..Z]|[a..z]| }+

Figure 8: DSL Grammar

These assignments must only reference variables in-
troduced in the parameter list of the function, or vari-
ables introduced in earlier assignments. This language
supports shadowing, where additional variables with the
same name can be introduced, with subsequent refer-
ences referring to the most recent assignment.

〈n, σ〉 ⇓ n
Lit

σ(x) = v

〈x, σ〉 ⇓ v
Var

〈[], σ〉 ⇓ []
Nil

〈i, σ〉 ⇓ vi 〈is, σ〉 ⇓ vis
〈i :: is, σ〉 ⇓ vi :: vis

Cons

σ(f) = FUNC f [x1, ...xn] − > [o1, ..., om] a
〈a, σ[x1 7→ v1, ..., xn 7→ vn]〉 ⇓ σ′
[σ′(o1), ..., σ′(om)] = [vo1, ..., vom]

〈f [v1, ...vn], σ〉 ⇓ [vo1, ..., vom]
Call

〈[i1, .., in], σ〉 ⇓ [v1, ..., vn]
〈f [v1, ..., vn], σ〉 ⇓ [vo1, ..., vom]
〈a, σ[o1 7→ vo1, ..., om 7→ vom]〉 ⇓ σ′

〈f [i1, .., in] − > [o1, ..., om] :: a, σ〉 ⇓ σ′
Assign Cons

〈[], σ〉 ⇓ σ
Assign Nil

Figure 9: DSL Operational Semantics

These variables and assignments are evaluated accord-
ing to the following rules. The arguments are bound to
the parameter names in σ. Each assignment evaluates
the left-hand sign of the “->”, and adds a binding from
that to the variable on the right to the context σ. Once
all of the assignments have been loaded into the context,
the return variable is looked up in the context, and that
value is returned.

Functions of this form can be translated into Libsnark

gadgets via the prototype DSL compiler. This compiler
converts DSL variables to Libsnark variables by first
substituting the variable to which the constant is bound
for the associated literal through the rest of the assign-
ments, and then allocating the remainder as protoboard
variables. The functions are then converted to gadgets,
where the gadget is parameterized by the matching vari-
ables, with the last variable as the “output” variable.

x y

MUL MUL

ADD

LEQ

1

s

Figure 10: A Representation of PI TEST Gadget in a
High-Level Circuit Form.

This results in a circuit implemented in Libsnark

matching the function defined in the DSL. Recall that
these gadgets are responsible for both generating R1CS
constraints and a satisfying assignment for these con-
straints. As an example, consider running this compiler
on the π estimation program defined in Section 4. This
results in a Libsnark gadget called PI TEST represented
by Figure 10. Gadgets created by compilation using our
DSL and compiler can call any Libsnark gadgets as func-
tions, both those created from compilation from the DSL
and those which are implemented manually. For this
larger zkQMC library, an initial library of gadgets was
manually written, optimized, and then linked together
in our DSL to create larger gadgets and ultimately full
zkQMC applications.

Page 17

C Interval Algorithm Correctness Proof

Theorem 1. Let I be a closed d-dimensional hyperbox
and f : Rd → R be a function which is Lipschitz contin-
uous over I, then

u ∈ I =⇒ f(u) ∈
[

min
xi∈x

f(xi)−∆,max
xj∈x

f(xj) + ∆

]
where

∆ :=
1

2
d d
√
DN (x1, . . . , xN)λd(I) max

(v1,··· ,vd)∈I

∣∣∣∣ ∂f

∂v1 · · · vd

∣∣∣∣
for any arbitrary set of N points X = {x1, · · · , xN} ⊂ I

Proof. As motivation for the following proof, λd(I) is a
scaling factor to transform [0, 1]d into I, and the true
minimum and maximum in this scaled down interval are
located no further than 1

2DN (x1, . . . , xN) away (L1 dis-
tance) from some xi and xj respectively, so a limit on
the local derivative of the function over the interval corre-
sponds directly to a limit on the minimum and maximum
over the interval.

By definition, we have

f(u) ∈
[
min
v∈I

f(v),max
v∈I

f(v)

]
.

By definition of Lipschitz continuity over I, we have

|f(x)− f(v′)| ≤ K |x− v′|

K := max
(v1,··· ,vn)∈I

∣∣∣∣ ∂df

∂v1 · · · vd

∣∣∣∣
Let v′ ∈ I be an arbitrary coordinate (v′1, · · · , v′d) s.t.

f(v′) = min
v∈I

f(v) or f(v′) = max
v∈I

f(v).

Let I ′ be a hyperbox centered on v′ with side length

d
√
DN (x1, . . . , xN)λd(I) + ε where ε > 0.

Suppose, by contradiction, that this box does not con-
tain any points in X. Additionally, let I be the set of
all subintervals of I.

DN (x1, . . . , xN) = sup
B∈J

∣∣∣∣A(B;X)

N
− λd(B)

∣∣∣∣
DN (x1, . . . , xN)λd(I) = sup

B∈I

∣∣∣∣A(B;X)

N
− λd(B)

∣∣∣∣
DN (x1, . . . , xN)λd(I) ≥

∣∣∣∣ 0

N
− λd(I ′)

∣∣∣∣
DN (x1, . . . , xN)λd(I) ≥

(
d
√
DN (x1, . . . , xN)λd(I) + ε

)d
DN (x1, . . . , xN)λd(I) ≥ DN (x1, . . . , xN)λd(I) + ε

0 ≥ ε

We reach a contradiction 0 ≥ ε, therefore there must
exist a x′ ∈ I ′ ∩X, and furthermore,

|x′ − v′| ≤ 1

2
d d
√
DN (x1, . . . , xN)λd(I)

by placing x′ at the corner of the hyperbox.
To complete the proof we reintroduce our Lipschitz

continuity condition,

|f(x′)− f(v′)| ≤ K |x′ − v′|

≤ 1

2
Kd d
√
DN (x1, . . . , xN)λd(I).

If v′ is a minimum, then we have f(x) ≥ f(v′), so

f(v′) ≥ f(x′)− 1

2
Kd d
√
DN (x1, . . . , xN)λd(I).

If v′ is a maximum, then we have f(x) ≤ f(v′), so

f(v′) ≤ f(x′) +
1

2
Kd d
√
DN (x1, . . . , xN)λd(I).

The expanded form just substitutes
∣∣∣ ∂f
∂v1···vd

∣∣∣ forK

As a consequence of Theorem 1 and by using a low-
discrepancy sequence

D∗N (x1, · · · , xn) = Bd
(logN)d

N
we have the following corollary.

Corollary 1. With suitable choice of X

∆ ∈ O
(
d

logN
d
√
N

)
,

∆ := d log(N)
d

√
Bd

λd(I)

N
max

(v1,··· ,vn)∈I

∣∣∣∣ ∂f

∂v1 · · · vd

∣∣∣∣ .
We can generalize the above corollary on hyperboxes

I to include arbitrary convex regions R by swapping the
mapping from I → [0, 1]d for a more general transfor-
mation function ft : R → [0, 1]d. Formally the scaling
factor λd(I) becomes

max
v∈R

∣∣∣det
(
Jf−1

t
(v)
)∣∣∣

which we shorthand as ΛR,ft . As a consequence of this
and our discussion of segmented QMC, we have the fol-
lowing result.

Corollary 2. If f in the region R can be decomposed
into finitely many (s) Lipschitz continuous convex re-
gions I1, · · · , Is, the set of which we call S we have

∆ := max
Ii∈S

(∆i) ,

∆i := d log(N)
d

√
Bd

ΛIi,ft
N

max
(v1,··· ,vn)∈Ii

∣∣∣∣ ∂f

∂v1 · · · vd

∣∣∣∣ .
Page 18

	Introduction
	Background
	Approach
	Implementation
	Benchmarks
	Multi-Prover Systems and Structures
	Discussion and Conclusion
	Future Work
	Acknowledgements
	BPP, RP, ZPP, and Las Vegas Algorithms in Zero Knowledge
	DSL Syntax and Semantics
	Interval Algorithm Correctness Proof

