
Structure-Aware Private Set Intersection,

With Applications to Fuzzy Matching∗

Gayathri Garimella Mike Rosulek Jaspal Singh

Oregon State University

Abstract

In two-party private set intersection (PSI), Alice holds a set X, Bob holds a set Y , and they
learn (only) the contents of X ∩ Y . We introduce structure-aware PSI protocols, which take
advantage of situations where Alice’s set X is publicly known to have a certain structure. The
goal of structure-aware PSI is to have communication that scales with the description size of
Alice’s set, rather its cardinality.

We introduce a new generic paradigm for structure-aware PSI based on function secret-
sharing (FSS). In short, if there exists compact FSS for a class of structured sets, then there
exists a semi-honest PSI protocol that supports this class of input sets, with communication
cost proportional only to the FSS share size. Several prior protocols for efficient (plain) PSI can
be viewed as special cases of our new paradigm, with an implicit FSS for unstructured sets.

Our PSI protocol can be instantiated from a significantly weaker flavor of FSS, which has
not been previously studied. We develop several improved FSS techniques that take advantage
of these relaxed requirements, and which are in some cases exponentially better than existing
FSS.

Finally, we explore in depth a natural application of structure-aware PSI. If Alice’s set X is
the union of many radius-δ balls in some metric space, then an intersection between X and Y
corresponds to fuzzy PSI, in which the parties learn which of their points are within distance
δ. In structure-aware PSI, the communication cost scales with the number of balls in Alice’s set,
rather than their total volume. Our techniques lead to efficient fuzzy PSI for `∞ and `1 metrics
(and approximations of `2 metric) in high dimensions. We implemented this fuzzy PSI protocol
for 2-dimensional `∞ metrics. For reasonable input sizes, our protocol requires 45–60% less
time and 85% less communication than competing approaches that simply reduce the problem
to plain PSI.

1 Introduction

Private Set Intersection (PSI) allows Alice with input A and Bob with input B to learn only the
intersection A ∩B of their sets and reveals no additional information. In this paper, we introduce
structure-aware private set intersection (PSI) where one of the parties, say Alice, has an
input set A with some publicly known structure and Bob’s input B is a set of unstructured points.
They want to jointly compute the set of Bob’s inputs that lie within Alice’s input structure. An
immediate approach for this problem is to enumerate or expand Alice’s structured input into an
unstructured set A∗ and employ existing efficient plain PSI protocols. However, this is impractical

∗Authors partially supported by NSF award 2150726

1



because the cardinality of the expanded set can be prohibitively large, and PSI protocols have
communication cost that scale with the cardinality of the input sets. We ask the question -

Can we make PSI protocols more efficient when there is publicly known structure in the
parties’ input sets?

In particular, is there a PSI protocol whose cost scales with the description size of the structured
input A rather than the cardinality of A∗? We answer the above question affirmatively with a new
framework for structure-aware PSI based on function secret sharing (FSS). We relax the constraints
of standard FSS to introduce and study the notion of weak FSS. As our main result we show that for
any structured input A, our framework reduces PSI to the task of designing efficient and succinct
weak FSS for Alice’s structured set A.

We design several novel and efficient FSS schemes for the family of sets of union of balls assuming
different levels of structure. A standard boolean FSS scheme for a collection of sets S can compute
”succinct” shares k0, k1 of any set S ∈ S and for any input x, the individual shares k0 or k1 can
be used to evaluate secret shares of the membership test of input x ∈ S. Formally, FSS schemes
consist of algorithm Share which computes the secret-shares k0, k1 and algorithm Eval that can be
used to compute shares of the membership test ((Eval(k0, x)⊕ Eval(k1, x)) = (x ∈ S).1 PRG based
FSS constructions are known for many interesting family of sets with membership functions that
can be expressed as point functions, comparison functions, multi-dimensional intervals or decision
trees [BGI15, BGI16, BCG+21].

Our work introduces weak boolean FSS that allows for “false positives” in the membership
evaluation—i.e., when x 6∈ S, the xor of the shares evaluate ((Eval(k0, x)⊕ Eval(k1, x)) to true with
at least some bounded probability p. We also make another useful relaxation (the details are in
Section 3.2) which together enable more efficient constructions compared to standard boolean FSS.

Finally, we instantiate our PSI framework with an FSS for unions of balls to obtain fuzzy
private set intersection (PSI). Here, Alice has a set of points A and Bob has a set of points
B and they would like to learn the pairs (a, b) ∈ A × B satisfying d(a, b) ≤ δ, where d is a
distance metric and δ is a public threshold. They should learn nothing about A and B, beyond
this set of close pairs. We can compute this using our structure-aware PSI protocol by assigning
Alice’s structured input A∗ as the union of many δ-balls (a δ-ball of radius δ centered at a is
{b | d(a, b) ≤ δ}) and Bob’s input is his unstructured input set B.

1.1 Our Contributions

New weak FSS constructions. We introduce the notion of weak FSS (parameterized by p
and k), which for a family of sets consists of algorithms Share and Eval defined as:

• If (k0, k1)← Share(A), for a set A in the family, then each ki individually looks pseudorandom.
• If x ∈ A then Pr[Eval(k0, x)⊕Eval(k1, x) = 0k] = 1, where the probability is over the sampling

of (k0, k1)← Share(A).
• If x 6∈ A then Pr[Eval(k0, x)⊕Eval(k1, x) 6= 0k] ≥ p, where the probability is over the sampling

of (k0, k1)← Share(A).
We also propose several new techniques for (weak) FSS constructions offering two significant

advantages. One, our weak FSS has significantly smaller share sizes than standard FSS. Second,
we achieve significantly more efficient share-evaluation cost than existing FSS.

Consider our motivating example of fuzzy PSI where the structured set is the union of balls.
Existing FSS techniques can be used for this kind of structure — however, the result is an FSS

1The original formulation of FSS by Boyle et al. [BGI15] is in terms of functions instead of sets, however in this
work we are only interested in boolean set membership functions - hence we reframed the FSS definition

2



where evaluating the share on a single point requires time linear in the number of balls. This cost
leads to a fuzzy PSI protocol with whose computation cost scales with the product of the two sets’
cardinalities. Our new techniques provide FSS for a union of balls, where the share-evaluation cost
is independent of the number of balls.

We specifically focus on the case where the structured set is a union of n balls of radius δ under
the `∞ norm in d-dimensional space {0, 1, . . . , 2u − 1}d. We use the concat technique (described
in Subsection 4.2) to develop weak FSS for a d dimensional `∞ ball (which is a cross product of
d intervals). This technique essentially combines the outputs of FSS for d 1-dimension intervals
that make the input ball - making the output length k = d. We further employ the spatial-hashing
technique (from Subsection 4.3) to design weak bFSS for union of balls. Using this technique, at
a high level, we divide the input space into contiguous grid cells; construct FSS keys for each grid
cell that intersect with any input ball; and then pack these FSS keys into an oblivious key value
data structure. In our construction we ensure that for point in a grid cell not intersecting with any
input ball, the FSS outputs is a random string - setting the false positive probability p = 1− 1/2k.
Hence both relaxations in our bFSS definitions are key when designing bFSS for union of l∞ balls.

An important theme in this work is that more structure leads to more efficient FSS/PSI. We
consider three increasing levels of structure for such sets, which result in significantly better depen-
dence on the dimension:

• The least amount of structure is when the balls are disjoint. Existing techniques give an FSS
for this case whose share size depends on the dimension as O(min{u, δ}d). In our new FSS
for disjoint balls, the dependence on the dimension is O((4 log δ)d).

• If the balls are spaced far apart — i.e., no two centers are closer than distance 4δ — then we
can achieve FSS whose dependence on the dimension is O(2d).

• Finally, if the balls are globally-axis disjoint — meaning that the projection of the balls onto
every axis is disjoint — then we can achieve FSS whose dependence on the dimension is only
O(d).

Our techniques can also apply to the `1 metric (and to close approximations of the `2 metric),
although the dependence on the dimension changes for the three different cases above.

Structure-aware PSI. We initiate the study of structure-aware PSI, which exploits known
structure in Alice’s input set to achieve better efficiency than a conventional, “general purpose
PSI” protocol. Our primary measure of efficiency is the communication cost of PSI protocols.
Conventional PSI protocols have communication cost O((|A| + |B|)κ), where A and B are the
input sets. A structure-aware PSI protocol should have communication cost O((d+ |B|)κ), where
d � |A|. Ideally d is the description size, not cardinality, of A. Various different structures for A
can be considered — not just the union of radius-δ balls, as in our motivating application for fuzzy
PSI.

General protocol paradgim. Most efficient PSI protocols use the classic oblivious PRF (OPRF)
paradigm of Freedman et al. [FIPR05]. In an OPRF, Alice has an input set A, and Bob has no
input. Bob learns a PRF seed k while Alice learns {PRFk(a) | a ∈ A}. The parties can obtain
a PSI protocol by having Bob send {PRFk(b) | b ∈ B} to Alice. Our structure-aware PSI is an
instance of the OPRF-to-PSI paradigm, but with a structure-aware OPRF that takes advantage
of publicly known structure in the OPRF receiver’s set A. We construct semi-honest structure-
aware PSI/OPRF from any weak FSS construction for the receiver’s set A. Our key theorem can
be summarized as follows:

Main Theorem (informal). If there is a weak FSS for a family S of sets, with shares of length

3



σ, then there is a semi-honest structure-aware PSI protocol (where Alice’s input A ∈ S) with
communication O((σ + |B|)κ).

In particular, the reliance on Alice’s set is reduced from O(|A|κ) in a general-purpose PSI protocol to
O(σκ). The problem of constructing structure-aware PSI therefore reduces to the simpler problem of
constructing a weak FSS for the supported structure, with share size smaller than the set cardinality.

Our structure-aware PSI protocol is inspired by the IKNP OT extension protocol [IKNP03]. As
such, it uses only cheap symmetric-key operations apart from a small number of base-OTs and FSS
operations. Hence, if the underlying FSS is also based on symmetric-key operations, the resulting
PSI protocol has high potential to be practically efficient.

Generalizing other PSI protocols. Our protocol generalizes several prior leading PSI/OPRF
protocols [IKNP03, PRTY19, CM20], in the sense that these protocols are obtained by instantiating
our protocol with an appropriate FSS. Since these protocols support PSI for arbitrary sets, we can
interpret them as implicitly defining an FSS for arbitrary sets. These FSS schemes have share size
proportional to the cardinality of the set. The real power of our paradigm is when it is used for
structured sets, that have compact FSS shares that are significantly smaller than the cardinality of
the set.

Fuzzy PSI implementation. We build a prototype implementation of fuzzy PSI using our
new techniques. Our implementation supports 2-dimensional balls in the `∞ norm. When Alice
has roughly 2700 balls of radius 30 (covering 10 million points), and Bob has a million points,
our protocol requires roughly 41 seconds and 156 MB of communication. In contrast, the naıv̈e
approach (plain PSI with Alice’s expanded set) requires 75 seconds and 1180 MB of communication
using the efficient semi-honest plain PSI protocol of [KKRT16].

1.2 Related Work

Conventional PSI. Over the last decade, PSI techniques have matured and become truly prac-
tical. PSI is regularly used in practice to solve some of the problems listed above, at scale. There
are quite a few protocol paradigms for PSI, including circuit-based [HEK12, PSWW18], oblivi-
ous polynomial evaluation via additively homomorphic encryption [KS05, DMRY11], key agree-
ment [HFH99, DT10, JL10], bloom filters [DCW13, RR17a], to name a few.

Despite many interesting protocol approaches, modern PSI is practical and scalable thanks al-
most entirely to the oblivious transfer (OT) paradigm. Using modern OT extension [IKNP03]
techniques, it is possible to generate many (millions) of OT instances extremely efficiently. These
OTs are then used to carry out the comparisons necessary for PSI. With OT extension, the marginal
cost each OT instance involves only cheap symmetric-key operations (e.g., calls to AES). Thus, the
OT-based PSI paradigm is the only approach in which each of the parties’ items contributes just
a small constant number of fast symmetric-key operations to the overall protocol cost. Pinkas,
Schneider, and Zohner [PSZ14] were the first to propose basing PSI directly on OT; their ap-
proach was later refined in a series of works [PSSZ15, KKRT16, RR17b, PRTY19, PRTY20, CM20,
GPR+21, RS21]. The current leading OT-based 2-party PSI protocols are [KKRT16, CM20] in the
semi-honest model and [PRTY20, RS21, GPR+21] for malicious security.

Note that even recent progress on so-called silent OT [BCGI18, BCG+19b, BCG+19a, SGRR19,
CRR21], which allows parties to generate essentially unlimited oblivious transfer instances with no
communication, does not solve the problem of structure-aware PSI. Silent OT techniques generate

4



only random OT correlations, which must be converted to chosen-input OT instances using com-
munication [Bea95]. Conventional PSI protocols, even based on silent OT, require a number of
OT primities (and hence communication) proportional to the cardinality of sets, and do not take
advantage of sets with low description size.

PSI with Sublinear Communication. It is possible to construct a PSI protocol with com-
munication sublinear in one of the parties’ sets, using RSA accumulators [ADT11] or leveled fully
homomorphic encryption [CLR17, CHLR18]. Both of these techniques are “heavy machinery” in
the sense that they imply single-server PIR.

Other works have explored the use of an one-time offline phase for PSI [KLS+17, RA18], es-
pecially in the context of private contact discovery [KRS+19], where a large set remains relatively
static. The use of an offline phase is out of scope in our work, as we measure total communication
cost.

Fuzzy PSI. Fuzzy PSI was introduced by Freedman et al. [FNP04], who give a protocol for
Hamming-distance (over tuples of strings). Later, Chmielewski and Hoepman [CH08] showed an
attack against this protocol and proposed their own protocols, one of which was itself later attacked
and improved upon by Ye et al. [YSPW10]. All of these protocols use the oblivious polynomial
evaluation technique, in which the parties encode their input sets as roots of a polynomial and use
additively homomorphic public-key encryption to manipulate these polynomials.

Indyk & Woodruff [IW06] describe a fuzzy PSI protocol for Hamming and `2 metrics, but
their protocol requires generic MPC (e.g., Yao’s protocol) evaluation of a decryption circuit for
a homomorphic encryption scheme, for every item. Bedő et al. [BCRT16] construct a fuzzy PSI
protocol using homomorphic encryption. Doumen [Dou07] gives a fuzzy PSI protocol under a non-
standard security model, where the goal is to bound the loss in entropy about the input sets caused
by running the protocol.

Chakraborti et al. [CFR21] construct fuzzy PSI protocols (which they call distance-aware PSI)
for Hamming distance, based on homomorphic encryption. Their protocol has false positives in the
final result. They also describe a fuzzy PSI protocol for 1-dimensional integers — i.e., points a and
b are matched if |a− b| ≤ δ. This protocol is an elegant reduction to plain PSI, where parties can
simply run plain PSI on sets that are larger by a factor of O(log δ). Uzun et al. [UCK+21] also
recently proposed a fuzzy PSI protocol for Hamming distance, based on homomorphic encryption
techniques..

There are several works studying so-called fuzzy matching or fuzzy handshake protocols [AKB07,
WG14, WXL+18]. These protocols reveal to the participants whether the intersection of their
sets has cardinality above some threshold (i.e., whether |A ∩ B| ≥ t; see also [GS19, ZCL21]).
Such a functionality can be used for applications like fingerprint matching [SSNO12] and ride-
sharing [HOS17]. For these works, the “fuzziness” is with respect to the entire sets A and B,
measured by exact matches between items of A and B. In our setting, fuzziness refers to individual
items of A and B that are similar but not necessarily equal.

Applications of Fuzzy PSI. Pal et al. [PIRC21] use fuzzy PSI in the context of compromised
credentials checking, to check whether a user’s password is similar to passwords that have been
leaked online. They use the “näıve reduction” of fuzzy PSI to plain PSI, but set sizes in their
application are small enough that this approach is practical.

5



2 Preliminaries

Semi-honest security. We rely on the Universal Composability (UC) framework from [Can01] to
show that our 2-party protocols are secure against passive adversaries. Parties P0 and P1 with inputs
x0 and x1 run protocol Π to learn the output of a function f(x0, x1); P ′i s view View(Pi, 1

κ, x0, x1)
during an honest execution consists of her private input xi, privately chosen randomness and the
transcript of the protocol.

We say that protocol Π securely realizes a functionality f if there exists a simulator Sim for
both parties and for all possible inputs x0, x1 such that:

Sim(Pi, xi, f(x0, x1), 1κ) ∼= View(Pi, x0, x1, 1
κ)

the views from the simulation and honest execution are computationally indistinguishable in the
security parameter κ.

2.1 Hamming Correlation Robustness

Our protocol is based on IKNP OT-extension [IKNP03]. That protocol requires a hash function
with a certain security property:

Definition 1 ([IKNP03]). Let H : {0, 1}∗ × {0, 1}κ → {0, 1}v be a function and define the related
function Fs(t, x) = H(t;x ⊕ s), where s ∈ {0, 1}κ. We say that H is correlation robust if Fs
is indistinguishable from a random function, against distinguishers that never query with repeated
t-values. Intuitively, values of the form H(ti;xi ⊕ s) look jointly pseudorandom, even with known
ti, xi values and a common s.

All protocols in the “IKNP family” require a hash function with a similar kind of security property;
e.g., [KK13, KKRT16]. The specific property we use is defined below:

Definition 2. Let H : {0, 1}∗ × ({0, 1}k)` → {0, 1}v be a function and define the related function
Fs(t, x,∆) = H(t;x ⊕ s � ∆), where s ∈ {0, 1}`; x,∆ are vectors of length ` with components
in {0, 1}k; and � is componentwise multiplication (of a bit times a string). We say that H is
Hamming correlation robust if Fs is indistinguishable from a random function, against distin-
guishers that never query with repeated t-values and always query with ∆ having at least κ nonzero
components.

Intuitively, values of the form H(ti;xi ⊕ s � ∆i) look jointly pseudorandom, even with known
ti, xi,∆i values and a common s, provided that each ∆i has high Hamming weight.

This definition generalizes the one from [KKRT16] in that x and ∆ are bit strings (vectors of
bits) in [KKRT16], whereas in our protocol x and ∆ can be vectors with components from {0, 1}k.

3 Building Blocks

3.1 2PC Ideal Functionalities

Oblivious transfer is a special case of secure two-party computation, in which a sender has a pair
of input strings m0,m1, a receiver has input b ∈ {0, 1}, and the receiver learns output mb. The
sender learns nothing about b, and the receiver learns nothing about m1−b.

Our structure-aware PSI protocol requires the parties to perform a small number of oblivious
transfers. We use Fot to denote an ideal functionality providing an instance of oblivious transfer.

6



3.2 Function Secret Sharing

A 2 party FSS scheme for a class of functions F allows a dealer to distribute a function f ∈ F
into two shares (f1, f2), where each share individually hides the function f . Furthermore, f(x) =
f1(x)⊕ f2(x) for all inputs x. The main efficiency measure of FSS is the size of the function shares
f1, f2. FSS was first introduced by Boyle, Gilboa, and Ishai [BGI15], who also described efficient
FSS schemes for point functions and other function classes. Their original formulation of FSS can
be found in Appendix D.1.

Boolean Function Secret Sharing In this work we will specifically be interested in secret
sharing indicator functions for a family of sets. The indicator function evaluates to 0 when the
input belongs to the set, and otherwise it evaluates to 1. We relax the definition of FSS for indicator
functions to allow for one-sided false positive error and output length being greater than a bit. We
call our definition (p, k)-Boolean Function Secret Sharing ((p, k)-bFSS), where p is the false
positive error probability and k is the output length. Let S ⊆ 2U be a family of sets for some
universe of points U . Then we formally define the syntax and security of this relaxed FSS primitive
as follows:

Definition 3 (bFSS syntax). A 2-party (p, k)-bFSS scheme for a family of sets S ⊆ 2U with input
domain U consists of a pair of algorithms (Share,Eval) with the following syntax:

• (k0, k1)← Share(1κ, Ŝ): The randomized share function takes as input the security parameter
κ and (the description of) a set S ∈ S as input. It outputs two shares.

• yidx ← Eval(1κ, idx, kidx, x): The deterministic evaluation function takes as input the security
parameter, party index idx ∈ {0, 1}, the corresponding share kidx and input x ∈ U , and it
outputs a string yidx ∈ {0, 1}k.

Usually the security parameter 1κ is not written as an explicit function argument.

Definition 4 (bFSS security). A 2-party (p, k)-bFSS scheme (Share,Eval) for S ⊆ 2U is secure if
is satisfies the following conditions:

• Correctness for yes-instances: For every set S ∈ S, x ∈ S, and security parameter κ:

Pr

y0 ⊕ y1 = 0k

∣∣∣∣∣∣
(k0, k1)← Share(1κ, S)
y0 ← Eval(1κ, 0, k0, x)
y1 ← Eval(1κ, 1, k1, x)

 = 1

• Bounded false positive rate: For every set S ∈ S, x ∈ U \ S, and security parameter κ:

Pr

y0 ⊕ y1 6= 0k

∣∣∣∣∣∣
(k0, k1)← Share(1κ, S)
y0 ← Eval(1κ, 0, k0, x)
y1 ← Eval(1κ, 1, k1, x)

 ≥ p
• Privacy: There exists a simulator Sim such that for all idx ∈ {0, 1} and all S ∈ S, the

following distributions are indistinguishable in κ:

(k0, k1)← Share(1κ, S)
return kidx

∼=κ Sim(1κ, idx)

In other words, each individual share leaks nothing about S. We further say that the bFSS
has pseudorandom keys if the output of Sim is a random string of some fixed length.

Definition 5 (Strong bFSS). A strong bFSS is a (1, 1)-bFSS.

7



Strong bFSS corresponds to the original FSS definition of [BGI15] — i.e., no false positives —
when restricted to sharing indicator functions of sets.

Definition 6 (PRF property). A (p, k)-bFSS scheme (Share,Eval) for a family of sets S ⊆ 2U with
input domain U and key space K is said to satisfy the PRF property if for any idx ∈ {0, 1}, x ∈ U ,
Expt(1κ, idx, x) is indistinguishable from a uniform random string, where Expt is defined as:

Expt(1κ, idx, x):

k ← K
return Eval(1κ, idx, k, x)

3.3 Oblivious Key Value Store

An oblivious key value store (OKVS) [GPR+21] is a data structure that encodes a set of
key-value mappings while hiding the set of keys used.

Definition 7 ([GPR+21]). An oblivious key-value store (OKVS) consists of algorithms Encode
and Decode, with an associated space K of keys and space V of values. An OKVS must satisfy the
following properties:

• Correctness: For all A ⊆ K × V with distinct K-values, and all (k, v) ∈ A:

Pr[Decode(Encode(A), k) = v] is overwhelming

One may call Decode with any k ∈ K, and indeed, someone who holds Encode(A) may not
know whether a particular k was included in A.

• Obliviousness: For all distinct {k0
1, . . . , k

0
n} and distinct {k1

1, . . . , k
1
n}, the output of R(k0

1, . . . , k
0
n)

is indistinguishable from that of R(k1
1, . . . , k

1
n), where:

R(k1, . . . , kn):

for i ∈ [n]: vi ← V
return Encode({(k1, v1), . . . , (kn, vn)})

Garimella et al. [GPR+21] define the properties of an OKVS and construct an efficient one
based on 3-way cuckoo hashing. If values from ∈ V require v bits to write, then their construction
encodes n key-value pairs with roughly 1.35nv bits — close to the optimal length nv.

A special class of OKVS is boolean OKVS, where the OKVS data structure itself is a vector
of strings D = (d1, . . . , dn) and Eval is defined as Eval(D,x) =

⊕
i∈π(x) di = 〈π(x), D〉 for some

function π. The function π specifies which positions of the data structure to probe.
Our construction also requires the following additional property of OKVS, that we prove is

satisfied by all existing OKVS constructions in Appendix A :

Definition 8. An OKVS satisfies the independence property if for all A ⊆ K × V with dis-
tinct K-values, and any k∗ not appearing in the first component of any pair in A, the output of
Decode(Encode(A), k∗) is indistinguishable from random, over the randomness in Encode.

4 bFSS Constructions

Our high-level goal is efficient bFSS schemes for collections of `∞ balls in d dimensions. This kind
of geometric structure can be viewed hierarchically: a union of balls, where each ball is a Cartesian
product of 1-dimensional intervals. Our final bFSS constructions reflect this hierarchy. At each
level of the hierarchy there may be different choices of bFSS construction. A visual overview of the
possibilities is provided in Figure 1.

8



← weak bFSS strong bFSS →geometric structure:

many

one

many

one

many

one

many

one

ball

interval

ball

interval

ball

interval

ball

interval

large

small

large

small

large

small

large

small

xor share spatial hash sumxor share spatial hash sum

tt sumtt sum

tensortensor

concat tt tensorconcat tt tensor

spatial hash sumspatial hash sum

tt sumtt sum

ggmggm

tt ggmtt ggm

glob
ally

ax
is-d

isjoin
t

centers
>

4δ

d
isjo

in
t

d
isjoin

t

centers
>

4δ

disjoint

d
isjo

in
t

xor share spatial hash

concat

spatial hash

Figure 1: Map of bFSS constructions for geometric structures. Large/small refer to whether the
structure exists in a large or small geometric domain. Edges in this map represent reductions. For
example, the leftmost edge means: The “xor share” construction reduces the problem of bFSS for
“many ball large” structures to the problem of bFSS for “many interval large” structures, provided
that the input satisfies the “globally axis-disjoint” condition. All weak bFSS constructions are new
in this work.

9



4.1 Existing Schemes

In this section we recall bFSS constructions from previous works that are relevant for the geometric
structures that we consider. All prior work considers only strong, i.e., (1, 1)-bFSS. All of which
satisfy the PRF property:

Theorem 9. Any strong bFSS F for a collection of sets S in the universe U with pseudo-random
keys satisfies the PRF property (Definition 6).

A proof of this theorem can be found in Appendix F.
The simplest of all bFSS schemes is a trivial sharing of a truth table. We denote this construc-

tion as tt. The two parties hold additive secret shares of the truth table for the set’s membership
function. This bFSS construction is viable only for sets that exist in a relatively small universe of
items.

What we call the sum construction is a simple method to construct bFSS for a disjoint union,
from an bFSS for each term in the union. The method works only for strong, i.e., (1, 1)-bFSS.

Theorem 10 (sum). If F1 is a (1, 1)-bFSS for S1 with share size σ1, and F2 is a (1, 1)-bFSS for
S2 with share size σ2, then sum[F1, F2] is a (1, 1)-bFSS for {S1 ∪S2 | S1 ∈ S1, S2 ∈ S2, S1 ∩S2 = ∅}
with share size σ1 + σ2.

A proof of this can be found in Appendix E.2. Boyle et al. [BGI15] construct an bFSS scheme
for intervals, which we call ggm (it composes PRGs together into a GGM-style tree). Let D =
{0, 1, . . . , 2u − 1} and define INTu = {[a, b] | a, b ∈ D} — i.e., the set of all 1-dimensional intervals.

Theorem 11 (ggm [BGI15]). There exists a (1, 1)-bFSS for INTu satisfying the PRF property with
pseudomrandom keys of share size O(κu) and Eval cost containing O(u) PRG calls.

Boyle et al. [BGI15] also introduce a technique, which we call tensor, for decision trees and cross-
products of bFSS schemes. This technique can be combined with the ggm construction to realize
bFSS for d-dimensional intervals. Define multi-INTu,d = {I1 × I2 × · · · × Id | I1, I2, . . . , Id ∈ INTu}
— i.e., the set of all d-dimensional intervals. Note that an `∞ ball is a d-dimensional interval with
sides of equal length.

Theorem 12 (tensor [BGI15]). There exists a (1, 1)-bFSS for multi-INTu,d with pseudorandom keys
of share size O(κud) and Eval cost dominated by O(ud) PRG calls.

Define union-dintu,d,n to be the family of sets consisting of the union of at most n disjoint d-
dimensional intervals in the domain {0, 1, . . . , 2u − 1}d. From Theorem 10 and Theorem 12 we
obtain a bFSS for this collection of sets:

Theorem 13. There exists a (1, 1)-bFSS for union-dintu,d,n with pseudorandom keys of share size
O(κnud) and Eval cost dominated by O(nud) PRG calls.

4.2 New concat Technique for Cross Products

We now describe our new bFSS techniques. A common theme in all of these constructions is that
they take advantage of the bFSS generalization to construct (p, k)-bFSS for p < 1 and/or k > 1.

concat denotes our simple new approach for cartesian product of several bFSS. We construct
an bFSS for a product S1×S2 by simply concatenating outputs of an bFSS for S1 and an bFSS for
S2. This gives us a secure (p, k)-bFSS construction for the cross product of sets with p = mini pi
and k = k1 + k2, assuming we start from a (p1, k1)-bFSS and (p2, k2)-bFSS. The construction is

10



ShareSn(1κ, S1 × S2):

Initialize k0, k1 as empty associated arrays

(k0[0], k1[0])← ShareS1(1κ, S1)

(k0[1], k1[1])← ShareS2(1κ, S2)
return (k0, k1)

EvalSn(1κ,idx,FSSkey,x):

return EvalS1(1κ,idx,FSSkey[0],x)||
EvalS2(1κ,idx,FSSkey[1],x)

Figure 2: bFSS for cross product S1 × S2 given bFSS for S1 and S2

described formally in Figure 2. Similar to the disjoint union construction, the share size and the
Eval complexity of this construction is the sum of share size and Eval cost for individual bFSS
respectively.

Theorem 14. If F1 is a (p1, k1)-bFSS for S1 with share size σ1, and F2 is a (p2, k2)-bFSS for S2 with
share size σ2, then concat[F1, F2] is a (min{p1, p2}, k1 + k2)-bFSS for {S1 × S2 | S1 ∈ S1, S2 ∈ S2}
with share size σ1 + σ2.

Since the output of concat is simply the concatenation of the output of the two Eval’s, we get
the following property as well:

Theorem 15. If bFSS F1 and F2 satisfy the PRF property, then concat[F1, F2] satisfies the PRF
property.

A single `∞ ball in d dimensions can be represented as the cross product of d intervals along
each of the dimension. Hence using the general bFSS construction rule in Subsection 4.2 (the concat
technique) and the strong bFSS for a single interval we get a (1, d)-bFSS for a single `∞ ball.

Theorem 16. There exists a (1, d)-bFSS for S = multi-INTu,d in U = {0, 1, . . . , 2u− 1}d satisfying
the PRF property with pseudo-random keys of size O(κud) and Eval cost O(ud) PRG calls.

4.3 New Spatial Hashing Technique

Here we describe our proposed approach for constructing bFSS keys for geometric objects. The
spatial-hashing approach reduces the problem of bFSS for a geometric structure in a large domain
to an easier problem of bFSS in a smaller domain.

Intuition : Partition the space {0, . . . , 2u − 1}d into regular grid cells. Call a grid cell “active”
if it intersects with the input set that is being shared. We will build an bFSS that gives correct
output in all active grid cells, while ensuring that the bFSS output in inactive grid cells is random.
Because the inactive grid cells contain only points outside of the set, this approach can produce
only false positives in the bFSS output (with bounded probability), which suffices for a (p, k)-bFSS
with p < 1.

We require a component bFSS (let’s call it GridFSS) which supports the possible structures that
can exist in a single grid cell. To hide the identities of the active cells, we use an OKVS data
structure to map grid cell identifiers to shares of GridFSS. This ensures two properties:

1. Decoding the OKVS at an active grid cell outputs the corresponding correct GridFSS share

2. Decoding the OKVS at a non-active grid cell outputs a uniformly random string, independent
of the other values in the OKVS.

11



A

B

OKVS Mapping:

A 7→ GridFSS-Union-Balls
( )

B 7→ GridFSS-Union-Balls
( )

...
...

Figure 3: Spatial hashing technique applied to an example of 3 disjoint `∞ balls in 2 dimensions.
Active grid cells are shaded yellow. Contents of each active grid cell are shared using a component
bFSS for union of balls. bFSS shares for each active grid cell are encoded into an OKVS (mapping
grid cell ID to bFSS share).

Hence we define our overall bFSS shares to each be an OKVS data structure that maps grid cells
to GridFSS shares. To evaluate this share at a point x, identify that point’s grid cell, query the
OKVS at that grid cell, interpret the OKVS output as a share in GridFSS, and evaluate that share
at x. The first property above ensures the correctness of the FSS when the input point is in an
active grid cell. The second property ensures that outside the active grid cell the output of Eval is
random.

This spatial-hashing technique is also illustrated on an example input geometry in Figure 3.
Spatial hashing reduces the problem of bFSS in a large universe to bFSS in a small grid cell.

The benefit of this is that bFSS in small grid cells can be extremely efficient. Specifically, there are
many asymptotically efficient bFSS for various structures, but when the universe is small enough,
they are concretely inferior to the trivial truth table (tt) construction. The reader should think of
grid cells as small enough so that the tt approach has the smallest concrete share size. In practice,
the threshold for this is grid cells with side length of a few hundred.

We partition the space D = [0, 2u − 1]d into grid cells, which are d-dimensional cubes of side
length 2δ. We can uniquely label each grid cell by the point contained in it that is closest to the
origin. Further we define a function cellδ (parameterized by the grid size) that maps any point in
the domain D to its unique grid cell label. Hence the function cell−1

δ maps a grid cell label to the
set of points contained in it. Formally we define these maps as:

Definition 17. For any vector x = (x1, x2, . . . , xd) ∈ D, we define the function that maps a point
to its grid cell label as: cellδ(x) = bx/2δc = (bx1/2δc, . . . , bxd/2δc). We also define cell−1

δ (x) =
[x1, x1 + 2δ)× [x2, x2 + 2δ)× . . .× [xd, xd + 2δ), which maps any grid cell label to the set of points
contained in that grid cell.

Definition 18. Define G(δ, u, d) = set of all grid cells = {cell−1
δ (x) | x1, . . . , xd ∈ {2kδ|k ∈

[0, 2u−1/δ]}}

Definition 19. Let S be a family of sets over universe U = {0, . . . , 2u − 1}d. The set of all active
grid cells is ActiveCells(δ, S) = {C ∈ G(δ, u, d) | C ∩ S 6= ∅}. Define MaxActiveCellCount(δ,S) =
maxS∈S |ActiveCells(δ, S)|.

We propose a bFSS for the input structure S, given a bFSS GridFSS that supports the contents
of each active grid cell. To take advantage of the fact that grid cells are very small, we normalize
all grid cells to the origin with the following function which translates a grid cell to the origin:

12



Given a (p, k)-bFSS F for Sδ and an OKVS (Encode,Decode)
ShareS(1κ, S):

DummyCells← ∅
GridKey0,GridKey1 - associative arrays initialized empty
for each C(x) ∈ ActiveCells(δ, S):

(GridKey0[x],GridKey1[x])← GridFSS.Share(1κ,ShiftOrigin(S ∩ cell−1
δ (−x))

do MaxActiveCellCount(δ,S)− |ActiveCells(δ, S)| times:
Pick any C ′(y) ∈ G(δ, u, d) \ (ActiveCells(δ, S) ∪ DummyCells)
DummyCells← DummyCells ∪ {y}
(GridKey0[y],GridKey1[y])← GridFSS.Share(1κ, ∅)

k0 ← OKVS.Encode(GridKey0)
k1 ← OKVS.Encode(GridKey1)
return (k0, k1)

EvalS(1κ,idx,k,x):

GridKey← OKVS.Decode(k, cell(x))
return GridFSS.Eval(1κ, idx,GridKey,x)

Figure 4: spatial-hashingδ,d construction for the collection of sets S with grid size δ in domain

U = {0, 1, . . . , 2u − 1}d

Definition 20. For any grid cell C ∈ G(δ, u, d) and any x ∈ U we can define the function
ShiftOrigin(C,x) = {y − x | y ∈ C}

The spatial-hashing technique is presented formally in Figure 4 and it gives us an bFSS with the
following parameters (formal proof is provided in Appendix F):

Theorem 21. Let S be a family of sets over universe U = {0, . . . , 2u − 1}d. Let δ be an arbitrary
integer representing the grid size. Define Sδ = {ShiftOrigin(S ∩ cell−1

δ (x),x) | S ∈ S, C(x) ∈
G(δ, u, d)}.

If GridFSS is a (p, k)-bFSS for Sδ with pseudo-random keys and satisfying the PRF property
with share size σ, then spatial-hashingδ,d[GridFSS] is a (min{1 − 2−k, p}, k)-bFSS for S with share
size O(MaxActiveCellCount(δ,S) · σ)

We next employ this spatial-hashing technique to develop efficient bFSS constructions for union
of `∞-balls.

4.3.1 bFSS for union of disjoint `∞ balls

We define the collection of sets union-disju,d,δ,n to contain sets, each containing at most n disjoint

`∞ balls of radius δ in the U = {0, 1, . . . , 2u − 1}d. If we use the spatial hashing technique for the
same grid size parameter δ then each active grid cell would intersect at most 2d input balls and
MaxActiveCellCount would be n2d.

Lemma 22. Any radius-δ `∞ ball in U intersects with at most 2d disjoint `∞-balls.

Proof. An `∞ ball with radius δ is a d dimensional cube of side length 2δ. Hence the intersection
of any two overlapping `∞ δ radius balls contains at least one vertex of both the balls. The lemma
follow from the fact that a d dimensional cube has at max 2d vertices and that the input set S
contain all disjoint `∞ balls.

13



Lemma 23. For any S ∈ union-disju,d,δ,n and any grid cell C ∈ G(δ, u, d), the cell cell−1
δ (C)

intersects with at max 2d balls in S.

Proof. cell−1
δ (C) is itself a `∞ ball of radius δ. Hence this follows from the previous lemma.

Lemma 24. For S = union-disju,d,δ,n, MaxActiveCellCount(δ,S) = n2d

To construct bFSS for union-disju,d,δ,n we need a component GridFSS that can support the

union of at most 2d balls in a single grid cell. We can use the bFSS for union-dint with U =
{0, 1, . . . , 2δ − 1}d, which gives us the following theorem:

Theorem 25. There exists a (0.5,1) − bFSS for the collection of sets union-disju,d,δ,n in U =

{0, 1, . . . , 2u−1}d, with key size O(nκ(4 log δ)d) bits and evaluation cost dominated by O((2 log δ)d)
calls to a PRG.

4.3.2 Union of `∞ balls with pairwise distance greater than 4δ.

We can have a more efficient bFSS when the input balls are known to be sufficiently far apart. Sup-
pose the set of balls have pairwise distance greater than 4δ. This collection of sets union-4deltau,d,δ,n
is parameterized by u (defines the universe U = {0, 2, . . . , 2u−1}d), number of dimensions d, radius
of balls δ and the number of balls n.

Lemma 26. Any grid cell intersects with at most 1 `∞ balls from S, for any S ∈ union-4deltau,d,δ,n.

Proof. Suppose that an `∞ ball centered at c0 intersects two balls in S centered at c1 and c2

respectively. Then we have:

d∞(c0, c1) ≤ 2δ and d∞(c0, c2) ≤ 2δ

=⇒ d∞(c1, c2) ≤ d∞(c0, c1) + d∞(c0, c1) ≤ 4δ (By triangle inequality)

This contradicts the assumption that all balls have centers greater than 4δ apart.

If we apply spatial hashing to such a set of balls, we get that each active grid cell will intersect
with at most 1 input ball. Hence, we can apply the spatial hashing construction using a simpler
GridFSS— namely, we can use the bFSS for a single d-dimensional interval (multi-INT2δ,d). This
saves a factor of O(2d/d) from the overall share size.

Theorem 27. There exists a (1 − 1/2d, d)-bFSS for the collection of sets union-4deltau,d,δ,n in
U = {0, . . . , 2u − 1}d, with key size O(ndκ(2)d log δ) and evaluation cost dominated by O(d log δ)
calls to a PRG.

4.3.3 `1 balls.

`∞ balls are the simplest objects we support, but `1 balls can also be supported. We sketch here
the main differences between `1 and `∞ balls. Regardless of the type of objects being shared in a
bFSS, the spatial hashing technique requires the grid cells to be `∞ balls, as they tile the space.

There are three factors to consider when changing the type of balls in our constructions:
(1) Each `1 ball can intersect at most 2d grid cells, because the worst case (as with `∞ balls) is

that the `1 ball covers a corner of the grid cell and extends into all 2d cells incident to that corner.
Hence the maximum number of active grid cells is n2d — the same as for `∞ balls.

(2) When considering bFSS for the union of disjoint `1-balls, we must have an upper bound
on the number of balls that can intersect a single grid cell. We can compute such a bound via a

14



simple volume argument. The volume of a d-dimensional `1 ball of radius 1 is 2d/d!.Any `1 ball that
intersects with a grid cell (with sidelength 2) is contained completely in a grid cell of sidelength 4,
and that grid cell has volume 4d. Hence there can be at most 4d/(2d/d!) = d!2d balls. This is a
factor d! larger than the case of `∞ balls.

(3) Within a grid cell, we require an bFSS for either one (in the case of distant balls) or many
(in the case of merely disjoint balls) balls in the grid cell. bFSS for a single `1 ball is more expensive
than for `∞. This is because an `∞ ball is the intersection of d pairs of parallel half-planes, while
an `1 ball is the intersection of 2d−1 paris of parallel half-planes. So in the component GridFSS, the
dependence on dimension increases from d to 2d when considering `1 balls.

4.4 xor-share technique

The bFSS construction for union of `∞ disjoint balls does not scale well with the number of di-
mensions, as its share size is proportional to 2d. This stems from the fact that each input ball can
intersect with 2d grid cells in the worst case.

To improve the dependence on the dimension, consider the following approach. For each input
ball i, generate an additive sharing of 0: R[i, 1]⊕ · · · ⊕R[i, d] = 0, where each share is assigned to
one of the d dimensions. Now imagine projecting all balls onto the jth dimension — the result is
a union of intervals. Suppose we had a bFSS for the union of 1-dimensional intervals, which would
output R[i, j] whenever a point is in the projection of the ith ball, and would output a random bit
whenever the point is outside of all ball-projections. Then for every point x, we could evaluate one
bFSS for each dimension (the jth bFSS for 1-dimensional intervals, evaluated at xj), and xor the
results.

If x is contained in input ball i, then the result yields R[i, 1] ⊕ · · · ⊕ R[i, d] = 0. If x is
“hit” by the projection of ball i in all but the last dimension, say, then the resulting xor contains
R[i, 1]⊕· · ·⊕R[i, d−1] which is uniformly random – even if x is “hit” by a different ball in dimension
d. If x is not “hit” by any ball in the jth dimension, then its corresponding xor likewise gives a
random result. No matter what, if x is not in any ball, then its xor is random, and this leads to a
(p, 1) − bFSS for p = 1/2. Note that the total share size for this bFSS is only d times larger than
a bFSS for a union of 1-dimensional intervals. In other words, the dependence on dimension is no
longer exponential.

However, there is one problem with this approach: What should we do if balls i and i′ overlap
when projected onto dimension j? In that case we would expect the jth component bFSS to
evaluate to both R[i, j] and R[i′, j] on some points. Hence, this general approach only works when
the input set of `∞ balls are globally axis disjoint, meaning that the balls have disjoint projections
onto each dimension. We define the collection of sets union-glob-disju,d,δ,n, to contain globally axis

disjoint n `∞ d dimentional balls of radius δ in U = {0, 1, . . . , 2u − 1}d. This xor-share technique is
illustrated in Figure 5 and described formally in Figure 6.

Let πi(x1, . . . , xd) = xi denote the projection of a point along dimension i. We extend this
function to sets as: πi(S) = {πi(x) | x ∈ S}, and note that the projection of an `∞ ball onto any
dimension is a 1-dimensional interval.

We can use our spatial hashing technique, but with one important caveat. Usually spatial
hashing simply performs an bFSS share of the intersection of the input set with each active grid
cell. However, our standard approach for spatial hashing causes the bFSS to always output 0
for intervals in the input set. In this construction we need the bFSS to sometimes output 0 and
sometimes output 1 for these intervals, since they encode a particular secret share. To account
for this we modify the spatial-hashing construction to take as input a set S and a set of grid cells
acvCells, such that ActiveCells ⊂ acvCells and the spatial-hashing construction encodes GridFSS

15



r1 ⊕ s1
= 0

r2 ⊕ s2
= 0

r3 ⊕ s3
= 0

(a) Original geometric structure - globally axis disjoint

$

r3

$

r2

$

r1

$

$ s2 $ s3 $ s1 $

r 1
⊕
s 1

r 2
⊕
s 2

r 3
⊕
s 3

$
⊕

$

$
⊕
s 2

r 1
⊕
s 3

⊕ =

(b) Representing the original structure as the xor of two 1-dimensional structures.

Figure 5: An illustration of our xor-share technique, applied to 3 globally axis-disjoint balls in 2
dimensions

keys into an OKVS for each cell in acvCells. We use this generalized spatial-hashing construction
when presenting this construction in Figure 6. Proof for the following theorem can be found in Its
proof can be found in Appendix F.

Theorem 28. The construction in Figure 6 is a (0.5, 1)-bFSS for collection of sets union-glob-disju,d,δ,n
in U = {0, . . . , 2u − 1}d, with key size O(nd log δ) bits and the evaluation cost being dominated by
O(d log δ) calls to a PRG.

5 Structure-aware PSI from bFSS

In this section we present our protocol for structure-aware PSI. This is a variant of PSI in
which the receiver’s (Alice’s) input set has a known structure. The functionality details are given
in Figure 7.

Protocol Intuition. As a warmup, suppose we have a strong bFSS (i.e., a (1, 1)-bFSS). Let Alice

generate κ independent sharings of her structured set A, as (k
(i)
0 , k

(i)
1 )← Share(A). Bob chooses a

16



Parameters:
• (1, 1)-bFSS F for the collection of sets union-dintdlog δe,1,2
• An OKVS (Encode,Decode)

Share(1κ, S):

for i = 1 to n: // additive sharing of zero for each ball

R[i, 1], . . . , R[i, d]←$ {0, 1}, subject to ⊕dj=1R[i, j] = 0

S′, acvCells← ∅
for j = 1 to d:

For each C = cell−1(x) ∈ G(δ, u, 1) such that C ∩ πj(S) 6= ∅
Sample r ←$ {0, 1}
acvCells← acvCells ∪ {x}
S′ ← S′ ∪ {y ∈ C | if for some i ∈ [1, n], y ∈ πj(Si) and R[i, j] = 0}
S′ ← S′ ∪ {y ∈ C | y 6∈ πj(S) and r = 0}

(k0[j], ki[j])← spatial-hashingδ,1[F ](S′, acvCells)

return (k0[1, . . . , d], k1[1, . . . , d])

Eval(1κ, idx, k,x):

Parse k as an array of d OKVS (k[1], k[2], . . . , k[d])
for j = 1 to d:

GridKey[j]← OKVS.Decode(k[j], cellδ(xj))
y[j]← F.Eval(1κ, idx,GridKey[j], xj)

return ⊕dj=1yj

Figure 6: A (0.5, 1)-bFSS for the collection of sets union-glob-disjn,d,δ in the U = {0, 1, . . . , 2u − 1}d

random string s← {0, 1}κ and, using the bits of s as choice bits to κ instances of oblivious transfer,

he learns one share from each of the different sharings: k
(i)
∗ = k

(i)
si .

Supppose Bob defines the function

F (x) = H
(
Eval(k

(1)
∗ , x),Eval(k

(2)
∗ , x), · · · ,Eval(k(κ)

∗ , x)
)

Bob can compute F (x) for all x, but which values of F (x) can Alice compute? Note that she knows
all the FSS shares but does not know Bob’s OT choice bits s, which determine the choice of shares
used to define F .

If x ∈ A, then the correctness of the bFSS establishes that Eval(k
(i)
0 , x) = Eval(k

(i)
1 , x). In

this case, Bob’s OT choice doesn’t make a difference — both shares produce the same output.
Therefore, Alice can compute F (x) as

F (x) = H
(
Eval(k

(1)
0 , x),Eval(k

(2)
0 , x), · · · ,Eval(k(κ)

0 , x)
)

(for x ∈ A)

However, if x ∈ A then Eval(k
(i)
0 , x) 6= Eval(k

(i)
1 , x) by the properties of a strong bFSS. Intuitively,

Bob’s OT choice bits make a significant difference on F (x). Alice would have to guess which of

(k
(i)
0 , k

(i)
1 ) was chosen by Bob, for every i simultaneously, if she is to compute F (x). Equivalently,

we can write Eval(k
(i)
∗ , x) = Eval(k

(i)
0 , x)⊕ si, and hence:

F (x) = H
([

Eval(k
(1)
0 , x),Eval(k

(2)
0 , x), · · · ,Eval(k(κ)

0 , x)
]
⊕ s
)

(for x 6∈ A)

17



Values of this form are indistinguishable from random when H is a correlation-robust hash (Defini-
tion 1) and s is uniform & secret.

In summary, Alice can learn F (x) for x ∈ A, while F (x) looks random for x 6∈ A. We have
created an oblivious PRF (OPRF) that Alice can evaluate on a structured set A. We can then
obtain a PSI protocol in the usual way [FIPR05], by having Bob send {F (b) | b ∈ B} to Alice.

Details. The formal protocol description is given in Figure 8. The warmup protocol above con-
siders only (1, 1)-bFSS. In the general case, suppose we use a (p, k)-bFSS. The important param-

eter here is the false-positive probability p. When x 6∈ A, we don’t always have Eval(k
(i)
0 , x) 6=

Eval(k
(i)
1 , x) — we have it only with probability at least p.

To adjust for false positives from the bFSS, we simply increase the number of oblivious transfers
(and independent bFSS sharings). We need enough bFSS instances to guarantee the following
property with overwhelming probability: For all x 6∈ A, at least κ of the bFSS instances correctly

satisfy Eval(k
(i)
0 , x) 6= Eval(k

(i)
1 , x). These κ instances are enough to make F (x) pseudorandom, if

the underlying hash function H is now Hamming correlation robust (Definition 2).
We emphasize that even though the underlying bFSS may have false positives (with bounded

probability), the resulting PSI protocol accounts for this fact and computes the intersection without
error. In Appendix C we prove the following:

Theorem 29. The protocol in Figure 8 securely realizes FsaPSI (Figure 7) against semi-honest
adversaries, when (Share,Eval) is a secure (p, k)-bFSS and H is Hamming-correlation robust (Def-
inition 2).

5.1 Costs

Suppose our protocol is instantiated with a certain bFSS whose total share size is σbFSS, where
tSharebFSS is the time to share a set (a set from the family S), and where tEvalbFSS is the time to evaluate a
share on a single input.

The communication cost of the structure-aware PSI protocol is therefore:
• From Alice to Bob: ` instances of OTs, in which she transfers a pair of bFSS shares — hence,
` · σbFSS bits.

• From Bob to Alice: an output of H for each of Bob’s items — hence, |B| ·(λ+log |A|+log |B|)
bits.2

The computation cost of the protocol is:
• For Alice: she generates ` independent bFSS sharings of her set A, so computation O(`·tSharebFSS ).

She also evaluates each sharing on each of her items in A, but we assume that in most bFSS
this can be done as a side-effect of running the Share algorithm. We ignore the insignificant
cost of the ` OTs.

• For Bob: he evaluates ` independent bFSS sharings on each of his items in B, so computation
O(` · tEvalbFSS · |B|).

2The presence of a |B| log |B| term here is deceptive. The protocol would be equally secure if the output of H were
κ bits, in which case the length of Bob’s message would be |B|κ bits. What we have written here is an optimization,
observing that shorter output of H is possible, namely λ+ log |A|+ log |B| bits. Every PSI protocol that is based on
the OPRF paradigm has communication cost of this kind — in order to achieve correctness error bounded by 2−λ,
the OPRF outputs that Bob sends to Alice must have length at least λ+ log |A| + log |B|.

18



Parameters: a family of subsets S ⊆ 2U , over a universe U of items. A bound n on the
cardinality of the unstructured set.

Functionality:
1. Receive input A ∈ S (or a concise representation of A) from Alice.
2. Receive input B ⊆ U of cardinality at most n from Bob.
3. Give output A ∩B to Alice.

Figure 7: Ideal functionality FsaPSI for structure-aware PSI.

Parameters:
• computational security parameter κ and statistical security parameter λ
• family of sets S with corresponding (p, k)-bFSS scheme (Share,Eval)
• Hamming-correlation robust hash function H : {0, 1}∗ → {0, 1}λ+log |A|+log |B|

• oblivious transfer functionality Fot

• length `, chosen so that Pr[Binomial(p, `) < κ] < 1/2λ+log |B|

Inputs: Alice has (structured) set A ∈ S and Bob has (unstructured) set B.

Protocol:

1. Bob chooses a random string s← {0, 1}`.

2. Alice generates ` independent FSS sharings of her input A: for i ∈ [`] do (k
(i)
0 , k

(i)
1 ) ←

Share(1κ, A).

3. The parties invoke ` (parallel) instances of oblivious transfer using Fot. In the ith
instance:

• Alice is the sender with input (k
(i)
0 , k

(i)
1 ).

• Bob is the receiver with choice bit si. He obtains output k
(i)
∗ = k

(i)
si .

4. Bob computes the set

B̃ =
{
H
(
b; Eval(k

(1)
∗ , b),Eval(k

(2)
∗ , b), · · · ,Eval(k(`)

∗ , b)
) ∣∣∣ b ∈ B}

and sends it (randomly shuffled) to Alice.

5. Alice outputs:{
a ∈ A

∣∣∣ H(a; Eval(k
(1)
0 , a),Eval(k

(2)
0 , a), · · · ,Eval(k(`)

0 , a)
)
∈ B̃

}
Figure 8: PSI protocol for structured input A and unstructured input B using bFSS.

5.2 Other Protocols as Instances of Our Framework

The PSI protocols of Pinkas et al. [PRTY19] (sparse OT) and of Chase-Miao [CM20] are actually
instances of our framework, meaning that we can identify an bFSS construction that yields each
of those protocols when using that bFSS construction in our protocol framework. Since these PSI
protocols support arbitrary sets, their underlying bFSS constructions are for unstructured, arbitrary
sets — the only “structure” being the cardinality of the sets. If the classic IKNP protocol [IKNP03]

19



protocol is used for PSI (over a small universe of items) in a natural way, it also can be viewed
as an instance of our protocol using a trivial bFSS (secret-shared truth table). In Section B we
describe these three protocols as specific instances of our approach.

5.3 bFSS Performance

In Figure 11 we summarize the asymptotic costs of different “recipes” to build bFSS for a union
of balls, under various assumptions about those balls. We also show a selection of concrete share
sizes for certain parameters (ball radius and dimension), in Figure 10.

6 Fuzzy PSI Application and Performance

We demonstrate the practicality of our structure-aware PSI protocol and bFSS constructions by
exploring in-depth our original motivating example: fuzzy PSI.

Our protocol requires one party to share the same set many times in a bFSS, and the other
party to evaluate all bFSS shares on the same point (many times). In Appendix G we describe how
some of our bFSS constructions can be optimized for such batch operations.

6.1 Protocol Selection

Other approaches to Fuzzy PSI, and Parameter Choices. We compare our fuzzy PSI
protocol to other competing approaches. First, there is the simple approach (mentioned in the
introduction) where Alice expands her set into all points within distance δ, and the parties use a
plain PSI protocol to compute the intersection. This approach can be practical when the volume
of each ball is very small (i.e., when δ and the dimension d are very small), meaning that Alice’s
expanded set is only a modest factor larger than the number of balls.

Another approach for fuzzy PSI is to use generic MPC. The parties evaluate a circuit that tests
whether a point is inside a ball, for each combination of Alice’s balls and Bob’s points. Testing
whether a point is within a ball is a simple distance calculation with a small circuit. This approach
does not depend on the radius δ of the balls, and it can be practical when the number of balls is
very small.

We are not aware of a generic-MPC-based approach for fuzzy PSI that uses more sophisticated
geometric algorithms (than comparing every ball to every point), which is likely to be practical for
fuzzy PSI. Other approaches for circuit-based (plain) PSI have been proposed, including sorting-
network-based techniques [HEK12] and hashing techniques [PSWW18]. It is not clear how to apply
these ideas to geometric fuzzy PSI. Other approaches to fuzzy PSI may include running a standard
range query algorithm inside of an oblivious RAM-based MPC protocol. It remains to be seen
whether this approach could be practical.

These alternate approaches to fuzzy PSI scale poorly when Alice holds a large number of
large balls; hence, this is the range of parameters where our new approach is most attractive,
and where we focus much attention in this section. However, the balls cannot be too large in
volume, since Alice’s computation (not communication) scales with the total volume of all balls.
A reasonable range of parameters is to let Alice have on the order of 3000-7000 balls, each with
volume on the order of 1600-3600.

Our choice of bFSS. Our bFSS constructions support three different assumptions about the set
of input balls.

20



construction (p, k)-bFSS share size eval cost

disjoint balls:

spatial hash ◦ sum ◦ tensor ◦ ggm (0.5, 1) O(n(4 log δ)dκ) O((2 log δ)d)
sum ◦ tensor ◦ ggm (1, 1) O(nκud) O(nud)

ball centers > 4δ apart:

spatial hash ◦ concat ◦ ggm (1− 1/2d, d) O(nd2dκ log δ) O(d log δ)
spatial hash ◦ concat ◦ tt (1− 1/2d, d) O(nd2dδ) 0

globally axis-disjoint balls:

xor share ◦ spatial hash ◦ ggm (0.5, 1) O(ndκ log δ) O(d log δ)
xor share ◦ spatial hash ◦ tt (0.5, 1) O(ndδ) 0

any arrangement of balls:

bFSS for unstructured sets (0.5, 1) O(n(2δ)d) 0

Figure 9: Asymptotic size of bFSS share for n balls (`∞ norm) of radius δ in d dimensions, over
u-bit integers. Evaluation time for evaluating a share on a single point, measured in number of
PRG calls. Keep in mind that each ball consists of (2δ)d points.

δ: 32 32 1024 1024
bFSS construction d: 2 10 2 10

disjoint balls:

spatial hash ◦ sum ◦ tensor ◦ ggm 24.3 3.42 0.080 0.00004
sum ◦ tensor ◦ ggm [16 bit ints] 8.0 0.5 0.008 5E-7

ball centers > 4δ apart:

spatial hash ◦ concat ◦ ggm 0.68 0.001 0.003 6E-9
spatial hash ◦ concat ◦ tt 0.17 0.0003 0.005 1E-8

globally axis-disjoint balls:

xor share ◦ spatial hash ◦ ggm 0.34 0.0002 0.002 8E-10
xor share ◦ spatial hash ◦ tt 0.084 0.00004 0.003 1E-9

any arrangement of balls:

bFSS for unstructured sets (amortized) 1.0 1.0 1.0 1.0

Figure 10: Concrete size of bFSS share for n balls (`∞ norm) of radius δ in d dimensions, reported
in bits per point. bFSS for unstructured sets refers to the polynomial-based bFSS implicit in
[PRTY19](Figure 13) , which achieves 1 bit per point only when generating many sharings of the
same set.

Our construction for arbitrary disjoint balls has reasonable asymptotic cost, but the asymptotic
behavior is achieved only for much larger balls than we consider (e.g., δ on the order of 10,000). For
δ of medium size, this construction has concrete cost worse than an bFSS for arbitrary sets, which
exploits no structure. In other words, for realistic parameters, this bFSS does not lead to fuzzy

21



PSI that beats the “trivial PSI” approach where Alice simply expands her set — despite being the
asymptotically best bFSS for this class of sets to date.

Our construction for the union of balls whose centers have pairwise distance at least 4δ is
concretely efficient for medium size δ and dimension d. In our implementation and in this section,
we mostly focus on this bFSS construction.

Our construction for globally axis-disjoint balls (Theorem 28) is even more efficient. How-
ever, we appreciate that the assumption of global axis-disjointness is somewhat artificial. We see
that construction more as an exploration of how much structure must be assumed to remove the
exponential dependence on dimension.

6.2 Performance Comparison

The main benefit of our fuzzy PSI approach is its low communication. In this section we compare
the communication costs of different fuzzy PSI protocols.

As a representative example we consider the case where Alice has a structured set A with 10
million total points, and Bob has an unstructured set B of 1.2 million points. We hold the total
cardinality of Alice’s set constant and consider two different ways that her points could be arranged
into balls:

• 6250 balls of radius δ = 20, in 2 dimensions3

• 2778 balls of radius δ = 30, in 2 dimensions

Our protocol. Our protocol is instantiated with computational security parameter κ = 128 and
statistical security parameter λ = 40. With d = 2, our choice of bFSS is a (0.75, 2)-bFSS, and we
use ` = 280 base OTs so that Pr[Binomial(0.75, `) < κ] is negligible (as specified in Figure 8).

Ignoring the fixed cost of ` base OTs, the communication cost of our protocol is as follows.
Alice sends ` bFSS shares encoding her set, while Bob sends |B| OPRF outputs, each of length
λ + log(|A| · |B|)). Using the same calculations as in Figure 10, the cost of a single FSS share for
δ = 20 is 0.27 bits per item, and for δ = 30 it is 0.18 bits per item. Accounting for all parameters,
we obtain communication cost (in bits):4

(δ = 20) 280 · 0.27|A|+ 84|B| = 76|A|+ 84|B| bits = 108MB

(δ = 30) 280 · 0.18|A|+ 84|B| = 50|A|+ 84|B| bits = 75MB

PSI based on Silent OT. As discussed earlier, one approach for fuzzy PSI is for Alice to simply
enumerates all points with δ of her set and perform plain PSI on the result. A particularly appealing
PSI protocol for this purpose is the VOLE-PSI protocol of Rindal & Schoppmann [RS21], because it
has the lowest communication cost (to the best of our knowledge). In the VOLE-PSI protocol, Alice
and Bob start by using the silent OT technique [BCGI18, BCG+19b, BCG+19a, SGRR19, CRR21]
to obtain an instance of pseudorandom vector OLE. This step requires communication that is
sublinear in the size of the parties’ sets, and we ignore it for the sake of simplicity.

However, a pseudorandom vector-OLE requires additional communication, so it can be deran-
domized for the parties’ chosen PSI inputs. This derandomization takes the form of an OKVS that
Alice sends to Bob, which is proportional to the size of her input set. Alice’s total communication
is ρ · κ bits per item, where ρ is the expansion factor of the particular OKVS (e.g., ρ = 1.35 in

3Our prototype implementation currently supports only 2 dimensions.
4Our actual implementation sends twice this amount of data because we do not optimize the base OTs for the

case where one of the OT messages is random, as with bFSS shares.

22



[GPR+21]). Bob sends an OPRF output of length λ + log(|A| · |B|) bits for each item in his set,
similar to our PSI protocol. The total communication cost is therefore:

173 · |A|+ 84 · |B| bits = 229MB

Here the sizes of the balls makes no difference – only the total number of points in Alice’s set,
which we are holding constant. We can see that the dominant factor in the communication cost is
the coefficient on |A|, which our protocol improves significantly (from 173 to 119 or 80). Also, the
PSI sender pays less (overhead of 84 bits) than the receiver (overhead of 173 bits) per items and
since Alice’s set size if the dominant cost, we can get better communication if Alice is PSI sender.
However, our fuzzy protocol only allows for the party with the larger set (structured) to learn the
output, so we present the silent OT based PSI cost assuming that Alice is the PSI receiver.

KKRT. Another possibility for solving fuzzy PSI using plain PSI is the KKRT protocol [KKRT16],
which is the fastest PSI protocol in the LAN setting. Bob’s communication would be same as in
our protocol except that he now needs to send 3 hash outputs instead of a single hash output per
item. Alice would send ` bits per hash table item, where ` is the parameter our protocol would use
for a (p = 0.5, k) − bFSS (` ≈ 440 for these input sizes), hash table has expansion factor ρ = 1.35
to number of items.5 For the parameters considered above, this leads to total communication:

594 · |A|+ 252 · |B| bits = 780MB

Again, we reiterate that in our protocol we assume the receiver to have the larger input set and
acknowledge that we apply this same restriction to KKRT to make our comparison.

6.3 Implementation

General protocol implementation. We implemented our main structure-aware fuzzy PSI pro-
tocol (Figure 8) in C++ and our choice of parameters, input sizes and bFSS is as described in the
preceding section. Our protocol Figure 8 involves cryptographic components like (1) base oblivi-
ous transfers (2) hamming correlation hash function (3) encryption/decryption functionalities and
a general communication framework. For the hamming-correlation robust hash function we use
SHA256. For base OTs and general framework we use the libOTe library of Rindal [Rin]. We
implement the bFSS recipe spatial hash ◦ concat ◦ tt, for balls of pairwise distance > 4δ, and use
the OKVS implementation from [NTY21]6 for spatial hashing. Our implementation will be made
available on Github upon publication.

We ran all our experiments on a single Intel Xeon processor at 2.30 GHz with 256 GB RAM over
a single thread of execution. We emulate the different network settings using Linux tc command and
use the same command to measure the communication cost of the protocol. We emulate a WAN-like
setting assuming an average latency of 80 ms and range of bandwidth settings. For restricted net-
work with bandwidth (including internet-like settings) {50Mbps, 100Mbps, 150Mbps, 200Mbps, 250Mbps},
our fuzzy PSI protocol has superior performance to KKRT for δ = {20, 30} owing largely to our
communication efficiency. The vole-based PSI implementation is not publicly available to make a
comparison of our run time. As discussed earlier, we believe that our communication efficiency will
yield better run time on restricted bandwidths.

5The implementation of KKRT that we used has a large expansion factor, which accounts for the difference
between this estimate and the actual communication that we measured.

6https://github.com/asu-crypto/mPSI.

23

https://github.com/asu-crypto/mPSI


50 Mbps 100 Mbps 150 Mbps 200 Mbps 250 Mbps
protocol time (s) time (s) time (s) time (s) time (s) comm (MB)

KKRT [KKRT16] 218.409 131.057 101.312 81.511 75.092 1184.224

ours, δ = 20 115.49 87.593 78.404 73.358 72.27 319.314
(6250 balls)
ours, δ = 30 61.675 48.904 43.573 42.107 41.198 156.878
(2778 balls)

Figure 11: Run time (in seconds) and communication (in MB) comparison of our fuzzy PSI protocol
with input set sizes |A| = 10M and |B| = 1.2M where A consists of 2-dimensional `∞ balls We
instantiate our protocol in Figure 8 with bFSS recipe spatial hash ◦ concat ◦ tt, for balls with centers
> 4δ apart. We simulated a network with latency 80ms and the given bandwidth cap.

7 Limitation and Open Problems

The proposed OPRF-PSI framework is designed in the semi-honest model, and the malicious setting
is left for future work.

In our structure-aware PSI protocol, only one input set is structured and it does not attempt
to take advantage of any structure in Bob’s set B. The sender in our protocol sends OPRF values
for each element in its set - hence a natural question is whether we can exploit some structure in
Bob’s input to send this set of OPRF values more efficiently.

Alice’s computation cost is still O(|A|), despite A having a more concise representation. This is
because she must enumerate OPRF outputs for each a ∈ A, in order to recognize them in Bob’s PSI
message. In order for Alice’s computation to scale with the description size of A, she would need
a way to efficiently “recognize” OPRF outputs that she is entitled to learn, but without explicitly
enumerating them. We leave it to future work to explore how to make this possible. For now,
supporting exponentially large A remains an important open problem.

Our techniques can be used to get weak bFSS for union of balls in `2 metric space by approxi-
mating each ball by a polyhedron with sufficiently good isoperimetric quotient (which is a measure
of how close a shape is to a sphere). However, its still unknown if we can get symmteric key based
weak bFSS for an exact `2 ball, which is more suited for fuzzy PSI related applications. Given
a weak bFSS for a single `2 ball, we can use our spatial-hashing technique to get an efficient weak
bFSS for a union of balls in `2 metric space.

References

[ADT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–173. Springer,
Heidelberg, March 2011.

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with
dynamic and fuzzy matching. In NDSS, volume 7, pages 43–54, 2007.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure

24



computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019.

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. Function secret sharing for mixed-mode and fixed-point
secure computation. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 871–900. Springer, Heidelberg,
October 2021.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 896–912. ACM Press, October 2018.

[BCRT16] Justin Bedő, Thomas Conway, Kim Ramchen, and Vanessa Teague. Privately matching
k-mers. Cryptology ePrint Archive, Report 2016/781, 2016. https://eprint.iacr.

org/2016/781.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
337–367. Springer, Heidelberg, April 2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM
Press, October 2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CFR21] Anrin Chakraborti, Giulia Fanti, and Michael K. Reiter. Distance-aware private set
intersection, 2021.

[CH08] Lukasz Chmielewski and Jaap-Henk Hoepman. Fuzzy private matching. In 2008
Third International Conference on Availability, Reliability and Security, pages 327–
334. IEEE, 2008.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1223–1237. ACM
Press, October 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-
momorphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,

25

https://eprint.iacr.org/2016/781
https://eprint.iacr.org/2016/781


and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer, Heidelberg,
August 2020.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and
oblivious transfer from hardness of decoding structured LDPC codes. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages
502–534, Virtual Event, August 2021. Springer, Heidelberg.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM Press, November 2013.

[DMRY11] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Secure efficient
multiparty computing of multivariate polynomials and applications. In Javier Lopez
and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 130–146. Springer,
Heidelberg, June 2011.

[Dou07] J.M. Doumen. Non-interactive fuzzy private matching. WorkingPaper TR-CTIT-
07-45, Centre for Telematics and Information Technology (CTIT), Netherlands, June
2007.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Heidelberg, January 2010.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 303–324. Springer, Heidelberg, February 2005.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395–425,
Virtual Event, August 2021. Springer, Heidelberg.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 3–29. Springer, Heidelberg,
August 2019.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

26



[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust in
electronic communities. In ACM CONFERENCE ON ELECTRONIC COMMERCE.
ACM, 1999.

[HOS17] Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. PrivatePool: Privacy-
preserving ridesharing. In Boris Köpf and Steve Chong, editors, CSF 2017 Computer
Security Foundations Symposium, pages 276–291. IEEE Computer Society Press, 2017.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Heidelberg, August 2003.

[IW06] Piotr Indyk and David P. Woodruff. Polylogarithmic private approximations and
efficient matching. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 245–264. Springer, Heidelberg, March 2006.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In
Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages
418–435. Springer, Heidelberg, September 2010.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 54–70. Springer, Heidelberg, August 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 818–829. ACM Press, October 2016.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. PoPETs, 2017(4):177–197,
October 2017.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Chris-
tian Weinert. Mobile private contact discovery at scale. In Nadia Heninger and Patrick
Traynor, editors, USENIX Security 2019, pages 1447–1464. USENIX Association, Au-
gust 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Vic-
tor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
Heidelberg, August 2005.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set
intersection. Cryptology ePrint Archive, Report 2021/1221, 2021. https://eprint.

iacr.org/2021/1221.

[PIRC21] Bijeeta Pal, Mazharul Islam, Thomas Ristenpart, and Rahul Chatterjee. Might i get
pwned: A second generation password breach alerting service, 2021.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431.
Springer, Heidelberg, August 2019.

27

https://eprint.iacr.org/2021/1221
https://eprint.iacr.org/2021/1221


[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg,
May 2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer, Hei-
delberg, April / May 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 797–812, 2014.

[RA18] Amanda C. Davi Resende and Diego F. Aranha. Faster unbalanced private set in-
tersection. In Sarah Meiklejohn and Kazue Sako, editors, FC 2018, volume 10957 of
LNCS, pages 203–221. Springer, Heidelberg, February / March 2018.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/libOTe.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Heidelberg,
April / May 2017.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual
execution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1229–1242. ACM Press, October / November 2017.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930. Springer, Heidelberg,
October 2021.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 1055–1072. ACM Press, November 2019.

[SSNO12] Siamak F Shahandashti, Reihaneh Safavi-Naini, and Philip Ogunbona. Private fin-
gerprint matching. In Australasian Conference on Information Security and Privacy,
pages 426–433. Springer, 2012.

[UCK+21] Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and Wenke
Lee. Fuzzy labeled private set intersection with applications to private real-time bio-
metric search. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 911–928. USENIX Association, August 2021.

28

https://github.com/osu-crypto/libOTe


[WG14] Yamin Wen and Zheng Gong. Private mutual authentications with fuzzy matching.
International Journal of High Performance Systems Architecture, 5(1):3–12, 2014.

[WXL+18] Xu An Wang, Fatos Xhafa, Xiaoshuang Luo, Shuaiwei Zhang, and Yong Ding. A
privacy-preserving fuzzy interest matching protocol for friends finding in social net-
works. Soft Computing, 22(8):2517–2526, 2018.

[YSPW10] Qingsong Ye, Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. Efficient fuzzy
matching and intersection on private datasets. In Donghoon Lee and Seokhie Hong,
editors, ICISC 09, volume 5984 of LNCS, pages 211–228. Springer, Heidelberg, De-
cember 2010.

[ZCL21] En Zhang, Jian Chang, and Yu Li. Efficient threshold private set intersection. IEEE
Access, 9:6560–6570, 2021.

A OKVS Preliminaries

Lemma 30. If (Encode,Decode) is a boolean OKVS, then it satisfies the independence property of
Definition 8.

Proof. In a boolean OKVS, the output D = Encode(A) is a vector satisfying the set of linear
constraints 〈π(k), D〉 = v for all (k, v) ∈ A. Correctness of the OKVS requires the set of π(k)
vectors to be linearly independent. Obliviousness of a boolean OKVS requires that Encode selects
a random solution from the subspace of all solutions to this set of linear constraints,

With overwhelming probability, the additional vector π(k∗) is also linearly independent of the
set of π(k) values. But for a random solution to the equation M × x = t, and a vector v which is
not in the rowspace of M , the value 〈v,x〉 is uniformly distributed (independent of t.

B Other Protocols as Instances of Our Framework

In this section we describe how three existing (standard) PSI protocols can be obtained by instan-
tiating our structure-aware PSI framework with a suitable (weak) bFSS. Since these PSI protocols
support arbitrary sets, these bFSS constructions support unstructured arbitrary sets — the only
restriction being either the domain or the cardinality of the sets.

IKNP-based PSI. Suppose parties have inputs from a small domain U = [n], where n is poly-
nomial in the security parameter. Suppose the parties instantiate n instances of oblivious transfer

on random payloads. In the ith instance, the sender has input strings (r
(i)
0 , r

(i)
1 ), and the receiver

with choice bit ci gets output r
(i)
ci . The sender can define a function F (i) = r

(i)
0 , which clearly the

receiver learns whenever ci = 0. The function F is then a random function defined on the domain
[n], and the protocol is an OPRF where the receiver can learn the output of F on any subset of its
choice. Using this OPRF, the parties can obtain PSI in the usual way.

When the parties instantiate the many instances of OT using IKNP OT extension [IKNP03], we
obtain a special case of our protocol. The underlying bFSS is the trivial one — an additive secret
sharing of the set’s truth table (inverted to give result 0 when the item is in the set, as required for
our bFSS definition). This is a strong (1, 1)-bFSS. The details are given in Figure 12. One party’s
share is a PRG key while one is a string of length n. In IKNP, the longer share k1 is transfered via
OT by sending a seed s over OT and then sending G(s)⊕ k1 in the clear, where G is a PRG. With

29



these simplifications, this IKNP-based PSI protocol collapses exactly to our protocol instantiated
with the bFSS.

Sparse-OT. Pinkas et al. [PRTY19] proposed a PSI protocol based on a technique called sparse
OT extension. Their protocol is essentially our bFSS-based protocol, instantiated with the (0.5, 1)-
bFSS shown in Figure 13. This bFSS supports arbitrary subsets of a large field F, of cardinality
n. One party’s share is a PRF seed, and the others is a polynomial over F of degree less than n.
The polynomial is chosen so that it agrees with the PRF share evaluation on points in the set.
The security of the PRF ensures that for points not in the set, the two evaluations are an additive
sharing of a random bit, making the construction a (0.5, 1)-bFSS.

The sparse OT protocol deviates from our framework in one small aspect. We defined the bFSS
scheme so that one party’s share is a polynomial with coefficients in F, but that polynomial is only
used for a single bit of output. In sparse OT as well as our structure-aware PSI framework, the
receiver generates many independent sharings of the same set. Hence, the sparse OT protocol uses
a single polynomial over F and interpret each of its output bits as an independent bFSS.

Chase-Miao PSI. Chase & Miao [CM20] proposed an elegant extension of the IKNP protocol.
Their protocol can be obtained by instantiating our structure-aware PSI framework with an bFSS
that is an additive sharing of a bloom filter encoding of the set. Notably, a bloom filter has only
one-sided error (false positives only), making it a good fit for our bFSS definition. Only a constant
bound on false-positive probability is needed, which can be achieved by a bloom filter with just a
single hash function and size O(n) to encode a set of cardinality n. As above, the bloom filter is
inverted to give result 0 when the item is in the set, and one party’s share can be compressed to a
PRG seed. Details are given in Figure 14.

C Proofs for Structure-Aware PSI Protocol

Theorem 29. The protocol in Figure 8 securely realizes FsaPSI (Figure 7) against semi-honest
adversaries, when (Share,Eval) is a secure (p, k)-bFSS and H is Hamming-correlation robust (Def-
inition 2).

Proof. (Case of corrupt Bob) Bob’s view consists only of his OT outputs, the k
(i)
∗ values. Each k

(i)
∗

is one share of an independent bFSS sharing of Alice’s input set. By the security of bFSS, Bob’s
view is indistinguishable from a collection of simulated bFSS shares, simulated with no information
about Alice’s input (apart from the fact that her set is in the family S).

(Case of corrupt Alice) Alice’s view consists only of Bob’s protocol message B̃. We prove
security by showing a sequence of hybrids that define how B̃ is generated. The simulator will be
defined in the final hybrid.

Hybrid 0. In this hybrid, B̃ is generated as in the honest protocol (using Bob’s private input
B). To help in the proof, we rewrite how B̃ is generated, in an equivalent way.

Fix k
(i)
j and k

(i)
∗ as in the protocol, and define the following functions:

E∗(b) =
(
Eval(k

(1)
∗ , b), . . . ,Eval(k

(`)
∗ , b)

)
E0(b) =

(
Eval(k

(1)
0 , b), . . . ,Eval(k

(`)
0 , b)

)
∆(b) =

(
Eval(k

(1)
1 , b)⊕ Eval(k

(1)
0 , b), . . . ,Eval(k

(`)
1 , b)⊕ Eval(k

(`)
0 , b)

)

30



Parameters:
U = [n] = {1, . . . , n}
S = 2U

PRG G : {0, 1}κ → {0, 1}n

Share(S ⊆ [n]) :

T = 1n

for x ∈ S:
T [x] = 0

k0 ← {0, 1}κ
k1 = G(k0)⊕ T
return (k0, k1)

Eval(0, k0, x):

return G(k0)[x]

Eval(1, k1, x):

return k1[x]

Figure 12: Trivial (1, 1)-bFSS implicit in IKNP-based PSI.

Parameters:
U = F, a field
S = {S ⊆ F : |S| = n}
PRF F : {0, 1}κ × F→ {0, 1}

Share(S ⊆ F) :

k0 ← {0, 1}κ
k1 = interpolate polynomial

passing through points{(
x,F(k0, x)

) ∣∣∣ x ∈ S}
return (k0, k1)

Eval(0, k0, x):

return F(k0, x)

Eval(1, k1, x):

return k1(x)

Figure 13: (0.5, 1)-bFSS implicit in sparse-OT PSI [PRTY19].

Parameters:
U = {0, 1}∗
S = {S ⊆ {0, 1}∗ : |S| = n}
bloom filter length m
random function h : {0, 1}∗ → [m]
PRG G : {0, 1}κ → {0, 1}m

Share(S ⊆ {0, 1}∗) :

B = 1m

for x ∈ S:
B[h(x)] = 0

k0 ← {0, 1}κ
k1 = G(k0)⊕B
return (k0, k1)

Eval(0, k0, x):

return G(k0)[h(x)]

Eval(1, k1, x):

return k1[h(x)]

Figure 14: (p, 1)-bFSS implicit in Chase-Miao PSI [CM20], where 1−p is the false positive probabil-
ity of a single-hash-function bloom filter of size m encoding n items. Hence p = (1− 1

m)n ≈ e−n/m.

Each function’s output is a vector of length ` whose entries are from {0, 1}k (where k here is the
output length of Eval). Using this notation, Bob’s protocol message can be written as:

B̃
def
=
{
H
(
b; Eval(k

(1)
∗ , b),Eval(k

(2)
∗ , b), · · · ,Eval(k(`)

∗ , b)
) ∣∣∣ b ∈ B}

=
{
H
(
b;E∗(b)

) ∣∣∣ b ∈ B}
=
{
H
(
b;E0(b)⊕ s�∆(b)

) ∣∣∣ b ∈ B} (1)

=
{
H
(
b;E0(b)

) ∣∣∣ b ∈ A ∩B} ∪ {H(b;E0(b)⊕ s�∆(b)
) ∣∣∣ b ∈ B \A} (2)

In step (1) the � refers to componentwise multiplication (a single bit times a k-bit string). Step
(1) follows by rewriting

Eval(k
(i)
∗ , b) = Eval(k(i)

si , b) = Eval(k
(i)
0 , b)⊕ si

(
Eval(k

(i)
1 , b)⊕ Eval(k

(i)
0 , b)

)
in each component. Step (2) follows by observing that if b ∈ A then ∆(b) = 0 by correctness of
the bFSS scheme.

31



Hybrid 1. This hybrid is identical to the previous one, except we simply abort (i.e., set B̃ = ⊥)
if there exists any b ∈ B \A whose ∆(b) has fewer than κ nonzero components.

From the correctness of the (p, k)-bFSS, each component of ∆(b) is nonzero with independent
probability at least p. Since ∆(b) has length `, the probability of an abort is distributed exactly as
the event that Binomial(p, `) < κ. Recall that ` is chosen so that this event happens with probability
at most 2−(λ+log |B|). By a union bound over the choices of b ∈ B \ A, the probability of an abort
in this hybrid is at most 2−λ. Since the hybrids are identical except for this artificial abort, the
hybrids are indistinguishable if 2−λ is negligible.

Hybrid 2: In this hybrid, B̃ is generated as:

B̃ =
{
H
(
b;Eb(b)

) ∣∣∣ b ∈ A ∩B} ∪ {h1, . . . , h|B\A|

}
(3)

where each hi is uniform in {0, 1}λ+log |A|+log |B|. The hybrid differs from Hybrid 1 by replacing
H(b;E0(b)⊕ s�∆(b)) with a uniformly random value, for each b ∈ B \A.

Conditioned on the event that Hybrid 1 doesn’t abort, each ∆(b) in these expressions is nonzero
in at least κ positions. This matches the situation described in the definition of Hamming correlation
robustness Definition 2 — namely, we have expressions of the form H(bi; ei ⊕ s �∆i) where each
∆i is nonzero in at least κ positions and the bi’s are distinct. By Definition 2, such values are
indistinguishable from random, so the hybrids are indistinguishable.

Simulator. Note that Hybrid 2 defines a valid simulation in the ideal world. In other words, B̃
can be generated as in (3) given only the information available to the simulator: A and A∩B and
|B| (from which |B \A| can be easily deduced).

Lemma 31. The protocol in Figure 8 is correct.

Proof. Since Alice is the only party with output, and since the simulation for a corrupt (semi-
honest) Alice is indistinguishable from her real view, it suffices to show correctness when Alice sees
the simulated view.

Suppose a ∈ A ∩B, then ∆(a) = 0 and the simulator (on behalf of Bob) will include

H(a;E∗(a)) = H(a;E0(a)⊕ s�∆(a)) = H(a;E0(a))

in the set B̃. Later, Alice will check whether H(a;E0(a)) ∈ B̃, and, finding it there, she will
correctly include a in her output.

For a ∈ A \ B, Alice will wrongly include a in her output if by chance H(a;E0(a)) ∈ B̃. The
elements of B̃ are either outputs of H (with first argument other than a, since a 6∈ A ∩ B) or
uniformly random values chosen by the simulator. In either case, the probability that a particular
H(a;E0(a)) equals a particular element of B̃ is at most 2−λ−log |A|−log |B|, since these are strings of
length λ + log |A| + log |B|. By a union bound over all choices of a ∈ A and all values in B̃ (of
which there are |B|), the total probability of Alice including an erroneous value in her output is at
most 2−λ.

D Function Secret Sharing

D.1 Original formuation of FSS

Definition 32 (FSS syntax). A two party function secret sharing scheme for a class of functions
F with input domain {0, 1}n (where n ∈ N ) and co-domain {0, 1}m consists of a pair of algorithms
(Share,Eval) and a security parameter κ with the following syntax:

32



• (k0.k1) ← Share(1κ, f̂) - The randomized share function takes as input the security param-
eter κ and the function description f̂ for some function f ∈ F , and it outputs two keys,
representing shares of the function f .

• yp ← Eval(1κ, idx, kidx, x) - The deterministic evaluation function takes as input the security
parameter, party index idx ∈ {0, 1}, the corresponding FSS key kidx and the input x ∈ {0, 1}n,
and it outputs yidx ∈ {0, 1}m.

Definition 33 (FSS security). A 2 party FSS scheme (Share,Eval) for the class of functions Fn is
termed secure if is satisfied the following conditions:

• Correctness: For every function f ∈ Fn, x ∈ {0, 1}n and security parameter κ we have:

Pr

(
y0 ⊕ y1 = f(x)

∣∣∣∣ yidx ← Eval(1κ, idx, kidx, x) for idx ∈ {0, 1}
(k0, k1)← Share(1κ, f̂) for f ∈ F

)
= 1

• Privacy: For every function f ∈ Fn, x ∈ {0, 1}n, idx ∈ {0, 1} and security parameter κ there
exists a simulator Sim:

kidx ∼=κ {Sim(1κ, idx)}

where ∼=κ denotes computational indistinguishability with respect to security parameter κ.

E General FSS construction rules

E.1 Complement

Given a (1, 1)-bFSS for a collection of sets S we can get an efficient bFSS for the compliment of sets
contained in S by just complementing the output of Eval for one of the parties. For this collection
of sets S = {S|S ∈ S} the bFSS construction is formally presented in Figure 15.

E.2 Disjoint Union (sum)

For any n, let the sets S1, S2, . . . , Sn be disjoint sets over some universe U . Define S = ∪iSi Then
we can construct the indicator function for the compliment of S̄ in terms of indicator functions for
sets Si as follows

IS̄ = IS̄1
⊕ IS̄2

⊕ . . .⊕ IS̄n
This is true since for each x ∈ S, there exists a unique i ∈ [1, . . . , n] such that x ∈ Si. Which
implies the IS̄j (x) = 0 for all j 6= i and IS̄i(x) = 1. And for x /∈ S, we have IS̄j (x) = 0 for all j -

this proves the correctness of the indicator function for S̄.
Hence given strong bFSS for disjoint sets S1, S2, . . . , Sn we can construct a strong bFSS for their

union by simply adding the bFSS output for the compliment of these sets and then complimenting
the output of one party’s Eval. Hence this technique is also referred to as the sum construction.
The protocol is formally described in Figure 16. The key size for the disjoint union bFSS is the
sum of the key size of individual sets. Similarly the Eval complexity would be the sum of Eval cost
for each of the n sets.

E.3 Single bit bFSS output

Given a (p, k)-bFSS for a collection of sets S we can get a (p/2, 1)-bFSS for the same collection by
just applying a pair-wise independent hash function with output space {0, 1} on the bFSS output.
A formal description of the scheme is presented in Figure 17.

33



ShareS̄(1κ, S):

return ShareS(1κ, S̄)

EvalS̄(1κ,idx,FSSkey,x):

return idx⊕ EvalS(1κ,idx,FSSkey,x)

Figure 15: (1, 1)-bFSS for input set S given a (1, 1)-bFSS for the its compliment S̄

ShareSn(1κ,∪ni=1Si)):

Initialize k0, k1 as empty associated arrays
for i ∈ [1, n] :

(k0[i], k1[i])← ShareS̄i(1κ, S̄i)
return (k0, k1)

EvalSn(1κ,idx,FSSkey,x):

y ← 0
for i ∈ [1, n] :

y ← y ⊕ EvalS̄i(1κ,idx,FSSkey[i],x)
return y ⊕ idx

Figure 16: (1, 1)-bFSS for union of disjoint sets {Si|i ∈ [1, n]} given a (1, 1)-bFSS for each individual
set

Theorem 34. (Share1,Eval1) is a (p/2, 1)-bFSS for the collection of sets S given (Share,Eval) is a
(p, k)-bFSS for the same collection of sets

Proof. Privacy follows directly, so here we focus on just the bFSS correctness proof:
• For any x ∈ S: we have EvalS(1κ,0,FSSkey,x) = EvalS(1κ,1,FSSkey,x) for any key FSSkey.

Hence the outputs of Eval1) scheme will match on all inputs in S as well
• For x /∈ S: With probability at least p, u = EvalS(1κ,0,FSSkey,x) 6= EvalS(1κ,1,FSSkey,x) = v.

By the property of the pairwise independent hash function, we have Pr(H(u) = H(v)) = 1/2.
Hence the outputs of Eval1 for the two parties will disagree with at least probability p/2.

F Proofs for bFSS constructions

Theorem 9. Any strong bFSS F for a collection of sets S in the universe U with pseudo-random
keys satisfies the PRF property (Definition 6).

Let H be a pairwise independent hash function without space {0, 1}.
ShareS1 (1κ, S):

return ShareS(1κ, S)

EvalS1 (1κ,idx,FSSkey,x):

return H(EvalS(1κ,idx,FSSkey,x))

Figure 17: (p/2, 1)-bFSS for input set S given a (p, k)-bFSS for the same set S

34



Proof Sketch. Lets assume for some x ∈ U , Eval(0, k, x) is not a uniformly bit, where key k is
sampled uniformly random from the key space. Then Eval(0, k0, x) is also not uniformly random
when k0 comes from a legitimate share (i.e. (k0, k1) ← F.Share(S) and S ∈ S), and its bias is
public knowledge. Then Eval(1, k1, x) is also not indistinguishable from a random bit, and by itself
is biased towards the indicator function output which checks if x ∈ S? For e.g. if x 6∈ S, then
Eval(0, k0, x) and Eval(1, k1, x) have the same distributions, while otherwise their probabilities for
output bits 0 and 1 are reversed. Hence one can distinguish a share of S from a share of S′ ∈ S
such that precisely one of S or S′ contain x.

Theorem 21. Let S be a family of sets over universe U = {0, . . . , 2u − 1}d. Let δ be an arbitrary
integer representing the grid size. Define Sδ = {ShiftOrigin(S ∩ cell−1

δ (x),−x) | S ∈ S, C(x) ∈
G(δ, u, d)}.

If GridFSS is a (p, k)-bFSS for Sδ with pseudo-random keys and satisfying the PRF property
with share size σ, then spatial-hashingδ,d[F ] is a (min{1 − 2−k, p}, k)-bFSS for S with share size
O(MaxActiveCellCount(δ,S) · σ)

Proof. Correctness:
Case 1 : if x ∈ S: In this case Decode(k0, cell(x)) and Decode(k1, cell(x)) output two GridFSS keys

respectively for the grid cell cell(x), which were inserted in the OKVS in the Share algorithm.
By correctness of GridFSS we have Decode(k0, cell(x))⊕ Decode(k1, cell(x)) = 0k.

Case 2.1 : if x 6∈ S and cell(x) ∈ ActiveCells: Similar to the previous case, Decode(k0, cell(x)) and
Decode(k1, cell(x)) output two GridFSS keys respectively for the grid cell cell(). GridFSS is a
(p, k)-bFSS, hence Decode(k0, cell(x))⊕ Decode(k1, cell(x)) 6= 0k with probability at least p.

Case 2.2 : if x 6∈ S and x /∈ ActiveCells:
Let C = cell(x), k∗0 ← Decode(k0, C) and k∗1 ← Decode(k1, C).
By the independence property of OKVS, we have k∗0, k

∗
1 are pair of random and independent

strings. Next we show Pr(F.Eval(k∗0, 0,x)⊕F.Eval(k∗1, 1,x) = 0) = 1/2. By the PRF property
of the GridFSS F we have F.Eval(k∗0, 0, ∗) is a pseudorandom string. Correctness follows.

Security : The OKVS values encoded in both k0, k1 are indistinguishable from random uniform
strings of length σ - since the keys of GridFSS are pseudo-random. Let R be the function defined
OKVS Definition 7. Then k0 ← R(u1, u2, . . . , um) where ui are picked based on the structure of the
input set S, and m = MaxActiveCellCount. Then by the obliviousness property of the OKVS, we
have k0 is indistinguishable from R(1, 2, . . . ,m) - which would be the output of our simulator for
idx = 0. Similarly one can show that the same output will suffice for the case of idx = 1 as well.

Theorem 28. The (Share,Eval) Figure 6 is a (0.5, 1)-bFSS for collection of sets union-glob-disju,d,δ,n
in U = {0, . . . , 2u − 1}d, with key size O(nd log δ) bits and the evaluation cost being dominated by
O(d log δ) calls to a PRG.

Proof. Correctness: If S is the secret shared union of disjoint balls and x ∈ {0, 1, . . . , 2u − 1}d, we
have:

Case 1 : if x ∈ S: In this case Decode(k0[j], xj) and Decode(k1[j], xj) output the two GridFSS (1, d)-
bFSS keys respectively for the dimension j. If x ∈ Si, by correctness of GridFSS we have
F.Eval(0,Decode(k0[j], xj), xj) ⊕F.Eval(1,Decode(k0[j], xj).xj) = R[i, j]. Hence the xor of
the Eval outputs ⊕dj=1R[i, j] = 0.

Case 2 : if x /∈ S and for each j = 1, . . . , d, πj(x) ∈ πj(S): For j = 1, . . . , d: Let kj ∈ {1, 2, . . . , n}
such that xj ∈ πj(Skj ). Hence in this case we have F.Eval(0, F.Eval(0,Decode(k0[j], xj), xj)

⊕F.Eval(1,Decode(k0[j], xj), xj) = R[kj , j]. Making the xor of two Eval outputs equal⊕dj=1R[kj , j]=

(⊕kj=k1R[k1, j]) ⊕(⊕dkj 6=k1R[kj , j]). Since not all these kj are the same for j = 1, . . . , d we have

35



⊕dj=1R[kj , j] is a random bit since the component (⊕kj=k1R[k1, j]) is a random independent
bit.

Case 3 : if x /∈ S and for some j ∈ {1, . . . , d}, πj(x) 6∈ πj(S):
– if xj is in an active grid cell along dimension j: we have Decode(k0[j], xj)⊕Decode(k1[j], xj)

is a random bit, where this bit was independently sampled. Hence the xor of the Eval
outputs in this case is a random bit.

– if xj is not in an grid cell along dimension j: We have k0[j], k1[j] are a pair of random
independent string (by the OKVS independence property). Further by the PRF property
we have F.Eval(0,Decode(k0[j], xj), xj)⊕ F.Eval(1,Decode(k1[j], xj), xj) is a random bit
- making the xor of the Eval outputs to be 0 with probability 1/2.

Complexity Analysis Along each dimension, we apply the spatial-hashing trick. The number
of active cells per dimension are less than or equal to 2n. Each component bFSS key is the trivial
union of 2 1d intervals in domain {1, 2, . . . , 2δ} - which makes the component key size O(κ log δ).
Hence the key size of the collection of sets union-glob-disj is O(κdn log δ).

G Batch Optimization for bFSS

We first focus on our spatial-hash construction that uses oblivious key-value stores (OKVS). Our
suggested OKVS instantiation is a binary OKVS in the terminology of [GPR+21], meaning that
the OKVS structure S is a vector of slots S = (S1, . . . , Sn), and decoding involves xor’ing a subset
of those slots. More precisely, Decode(S, x) =

⊕
i∈π(x) Si, where we call π the probe function. In

an OKVS construction, the random choice of π guarantees correctness with high probability, but it
has no effect on the obliviousness property. That means it does no harm to use the same π function
across many bFSS sharings of the same set — the fact that false positives have bounded probability
does not come from the choice of π. Not only does reusing π save some cost, but it enables further
optimizations that we explain below.

Some of our bFSS constructions have the property that, for every fixed x, the function Eval(·, x)
is a GF (2)-linear function of the input share.

• tt.Eval(·, x) returns a single bit of the share.
• concat.Eval(·, x) selects several subsets of the share bits, calls a component Eval on each subset

of bits, and concatenates the results.
• spatial-hash.Eval(·, x) evaluates an OKVS and calls a component Eval on the result. As men-

tioned above, when the OKVS is a binary OKVS, evaluation involves only an xor of slots
from from input share. When the same probe-function is used for many bFSS instances, and
is understood from context, then the choice of which bits to access truly depends only on x
and not at all on the bFSS share.

• xor-share.Eval(·, x) selects several subsets of the share bits, calls a component Eval on each of
those subsets of bits, and xors the results.

Any composition of these four bFSS building blocks is also GF (2)-linear. I.e., each output bit
of Eval is an xor of some of the bits of the input share. Concretely, you can think of our bFSS
recipes xor share ◦ spatial hash ◦ tt and spatial hash ◦ concat ◦ tt as suitable candidates to apply
the optimization we describe below.

Suppose we run our structure-aware PSI protocol with a bFSS that is GF (2)-linear. The PSI
receiver generates ` separate sharings of her set. Each share is transferred via OT, and we consider
a share as a column of a matrix. Evaluating a share at x involves applying a linear function to that
share, illustrated in Figure 18(a).

36



⊕
⊕

⊕
⊕

H( )

⊕
⊕

H( )

⊕
⊕

H( )

⊕
⊕

H( )

⊕
⊕

H( )

← `→

(a) (b) (c)

Figure 18: Illustration of our optimization for batch evaluation of many bFSS. Each column repre-
sents a bFSS share. Fig (a) illustrates Eval(k, x), a GF (2)-linear function for every fixed x. Fig (b)
illustrates what the structure-aware PSI protocol specifies — evaluate on ` different shares, concate
the results, and compute H. Fig (c) illustrates our optimization which applies the linear function
to entire rows of the share matrix — i.e., GF (2`) elements.

To compute an OPRF output for input x, a party evaluates the same linear function on `
different shares (columns), concatenates the result, and computes its hash. This is illustrated in
Figure 18(b). Computing and concatenating xor’s of individual bits is awkward in practice. Hence,
we propose to take advantage of the fact that the same linear function is used for all columns.
Our optimization is to extend the GF (2) linear function to a GF (2`) linear function. The linear
function can be applied to the entire matrix, operating on `-bit blocks (the rows of the matrix)
instead of individual bits. This is illustrated in Figure 18(c). As a result of this optimization,
the input bits to H have been permuted in a fixed pattern, relative to what the protocol specifies.
But it is easy to see that the property that we require of H (correlation-robustness) is invariant
under fixed permutations of the input bits, so there is no effect on security if both parties use this
optimization (i.e., they agree on the same way to reorder bits to H).

With this optimization, we combine all of the similar bit-xor’s into a single xor of `-bit blocks,
which is significantly faster in practice. We emphasize that any existing or future constructions
that are a composition of GF (2)-linear operations are amenable to this optimization.

37


	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Hamming Correlation Robustness

	Building Blocks
	2PC Ideal Functionalities
	Function Secret Sharing
	Oblivious Key Value Store

	bFSS Constructions
	Existing Schemes
	New concat Technique for Cross Products
	New Spatial Hashing Technique
	bFSS for union of disjoint  balls
	Union of  balls with pairwise distance greater than 4.
	1 balls.

	xor-share technique

	Structure-aware PSI from bFSS
	Costs
	Other Protocols as Instances of Our Framework
	bFSS Performance

	Fuzzy PSI Application and Performance
	Protocol Selection
	Performance Comparison
	Implementation

	Limitation and Open Problems
	OKVS Preliminaries
	Other Protocols as Instances of Our Framework
	Proofs for Structure-Aware PSI Protocol
	Function Secret Sharing
	Original formuation of FSS

	General FSS construction rules
	Complement
	Disjoint Union (sum)
	Single bit bFSS output

	Proofs for bFSS constructions
	Batch Optimization for bFSS

