
Multi-Input Attribute Based Encryption

and Predicate Encryption

Shweta Agrawal∗ Anshu Yadav† Shota Yamada‡

Abstract

Motivated by several new and natural applications, we initiate the study of multi-input
predicate encryption (miPE) and further develop multi-input attribute based encryption
(miABE). Our contributions are:

1. Formalizing Security: We provide definitions for miABE and miPE in the symmetric
key setting and formalize security in the standard indistinguishability (IND) paradigm,
against unbounded collusions.

2. Two-input ABE for NC1 from LWE and Pairings: We provide the first constructions for
two-input key-policy ABE for NC1 from LWE and pairings. Our construction leverages a
surprising connection between techniques recently developed by Agrawal and Yamada
(Eurocrypt, 2020) in the context of succinct single-input ciphertext-policy ABE, to
the seemingly unrelated problem of two-input key-policy ABE. Similarly to Agrawal-
Yamada, our construction is proven secure in the bilinear generic group model. By
leveraging inner product functional encryption and using (a variant of) the KOALA
knowledge assumption, we obtain a construction in the standard model analogously to
Agrawal, Wichs and Yamada (TCC, 2020).

3. Heuristic two-input ABE for P from Lattices: We show that techniques developed for
succinct single-input ciphertext-policy ABE by Brakerski and Vaikuntanathan (ITCS
2022) can also be seen from the lens of miABE and obtain the first two-input key-policy
ABE from lattices for P.

4. Heuristic three-input ABE and PE for NC1 from Pairings and Lattices: We obtain the
first three-input ABE for NC1 by harnessing the powers of both the Agrawal-Yamada
and the Brakerski-Vaikuntanathan constructions.

5. Multi-input ABE to multi-input PE via Lockable Obfuscation: We provide a generic
compiler that lifts multi-input ABE to multi-input PE by relying on the hiding properties
of Lockable Obfuscation (LO) by Wichs-Zirdelis and Goyal-Koppula-Waters (FOCS
2018), which can be based on LWE. Our compiler generalises such a compiler for single-
input setting to the much more challenging setting of multiple inputs. By instantiating
our compiler with our new two and three-input ABE schemes, we obtain the first
constructions of two and three-input PE schemes.

Our constructions of multi-input ABE provide the first improvement to the compression factor
of non-trivially exponentially efficient Witness Encryption defined by Brakerski et al. (SCN
2018) without relying on compact functional encryption or indistinguishability obfuscation.
We believe that the unexpected connection between succinct single-input ciphertext-policy
ABE and multi-input key-policy ABE may lead to a new pathway for witness encryption.

∗IIT Madras, shweta@cse.iitm.ac.in
†IIT Madras, anshu.yadav06@gmail.com
‡National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, yamada-shota@aist.go.jp

1

Contents

1 Introduction 2

1.1 Our Results . 4

1.2 Our Techniques . 5

2 Preliminaries 13

2.1 Single User Attribute Based Encryption . 13

2.2 Lockable Obfuscation . 15

2.3 Batch Inner Product Functional Encryption . 16

2.4 Lattice Preliminaries . 17

2.5 kpABE Scheme by Boneh et al. 19

2.6 Bilinear Map Preliminaries . 20

3 Multi-Input Attribute Based and Predicate Encryption 22

3.1 Strong Security for k-ABE and k-PE . 24

3.2 Generalization to Multi-Slot Message Scheme . 24

4 Two-Input ABE for NC1 from Pairings and LWE 25

4.1 Construction . 25

4.2 Security . 28

5 Two-Input ABE for NC1 in Standard Model 34

5.1 Assumption . 34

5.2 Construction . 36

5.3 Security . 38

6 Compiling k-ABE to k-PE via Lockable Obfuscation 42

6.1 Construction . 42

6.2 Security . 45

7 Two-Input PE with Stronger Security 50

7.1 Construction . 50

7.2 Security . 52

8 Three-Input ABE from Pairings and Lattices 60

8.1 Construction . 60

8.2 Parameters and Correctness . 62

8.3 Discussion of Security . 65

9 Two-Input ABE for Polynomial Circuits using BV22 65

9.1 Construction . 65

1

1 Introduction

Attribute based encryption (ABE) is a generalization of public key encryption which enables
fine grained access control on encrypted data. In an ABE scheme, the ciphertext is associated
with a secret message m and a public attribute vector x while a secret key is associated with a
function f . Decryption succeeds to reveal m if and only if f(x) = 1. Security seeks ciphertext
indistinguishability in the presence of collusion attacks, namely an adversary possessing a
collection of keys {skfi}i∈[poly] should not be able to distinguish between ciphertexts corresponding
to (x,m0) and (x,m1) unless one of the keys skfi∗ is individually authorised to decrypt, i.e.
fi∗(x) = 1. ABE comes in two flavours – “key-policy” and “ciphertext-policy”, depending on
whether the function f is embedded in the key or the ciphertext.

The stronger notion of predicate encryption (PE) [BW07, SBC+07, KSW08, GVW15] further
requires the attribute vector x to be hidden so that ciphertexts corresponding to (x0,m0) and
(x1,m1) remain indistinguishable so long as fi(x0) = fi(x1) = 0 for all secret keys {skfi}i∈[poly]

seen by the adversary.

Both ABE and PE have been widely studied, and possess elegant instantiations from a
variety of assumptions [SW05, GPSW06, BW07, KSW08, LOS+10, OT10, OT12, CW14, AFV11,
LW11, LW12, Wat12, GVW13, Wee14, Att14, BGG+14, GVW15, GV15, BV16, BW07, SBC+07,
KSW08, GVW15]. Despite all this amazing progress, however, all known constructions support
the single input setting – namely, the function f embedded in the secret key skf has arity one,
so that the secret key can be used to decrypt only a single ciphertext at a time. While the
more realistic multi-input setting has been studied for other closely related notions such as fully
homomorphic encryption [LATV12, CM15, MW16] and functional encryption [GGG+14, AJ15,
AGRW17, DOT18, ACF+18, CDG+18, Tom19, ABKW19, ABG19, LT19, AGT21], this has not
been investigated at all in the context of predicate encryption, and only sparingly [BJK+18] in
the context of attribute based encryption.

Supporting Multiple Sources. We argue that the multi-input setting is important even in the
context of ABE and PE and generalizing these primitives to support multiple sources enables a
host of new and natural applications. At the heart of the multi-input setting, for any primitive, is
the fact that data generated independently in multiple locations may be correlated in meaningful
ways, and it is often pertinent to consider the input as a concatenation of these correlated partial
inputs. For instance, a patient is likely to visit different medical centres for treatment of different
diseases and her overall medical record is a concatenation of the medical data generated at
different centers. Similarly, a company is likely to conduct research and development related to
a given technology in different locations but the complete data pertaining to that technology is
a concatenation of these. Moreover, to organize data logically and to benefit from cloud storage
and computing, it is useful for each source to upload this encrypted data to a central server. Now,
it may be desirable to provide restricted access to relevant consumers of the data, exactly as in
ABE for encrypted access control (say) or PE for encrypted search (say), but with the caveat
that the input was generated in a distributed manner and is encoded in multiple ciphertexts.

For concreteness, consider a doctor who is treating Covid patients and wants to understand
the relation between Covid and other medical conditions such as asthma or cancer, each of which
are treated at different locations. The records of a given patient are encrypted independently and
stored in a central repository, and the doctor can be given a key that filters stored (encrypted)
records according to criteria such as condition = ‘Covid’ and condition = ‘asthma’ and age group
=‘60-80’ and enables decryption of these. Similarly, a company (e.g. IBM) which conducts
research in quantum technologies is likely to have different teams for theoretical and experimental
research, and these teams are likely to work in different locations – indeed, even members of the

2

same team may not be co-located. Data pertaining to the research could be stored encrypted in
a central location where individual ciphertexts are generated independently, and the company
may desire to give restricted access to a patent office. As a third example, a company may
have been sued for some malpractice, and the data pertinent to the case could span multiple
locations. Now the company may wish to provide restricted access to a law firm which enables
decryption only of the data pertaining to the lawsuit, encrypted independently by multiple
sources. A possible solution may be to gather all the information at a central entity and then
use single input ABE or PE as before, but there are two problems with this approach: (i)if data
is transmitted unencrypted to the central server it creates vulnerability – this can be avoided by
each source encrypting to the server’s public key, and the server decrypting and re-encrypting
using single input schemes, but this is wasteful and cumbersome, (ii) one may desire to use an
untrusted commercial cloud server to store the encrypted data, in which case the step of creating
the ciphertext at a central server in step (i) is completely redundant and doubly inefficient.

Multi-input attribute based encryption (miABE) or predicate encryption (miPE) arise as
natural fits to the above applications. Similarly to the single input case, the secret key corresponds
to a function f but the arity of this function can now be k > 1 – we may have k ciphertexts
generated independently encoding (xi,mi)i∈[k], and decryption reveals (m1, . . . ,mk) if and only
if f(x1, . . . ,xk) = 1. Indeed, any application of single input ABE and PE where the underlying
data is generated in multiple locations and is correlated in meaningful ways can benefit from the
abstraction of multi-input ABE and PE.

Prior Work. Brakerski et al. [BJK+18] studied the notion of miABE and showed that miABE
for polynomial arity implies witness encryption (WE). However, though they provided the first
definition of miABE, they only used it as a new pathway for achieving witness encryption, not
as a notion with its own applications – in their definition, only the first encryptor has any
input, since this suffices for WE. They do not consider strong notions of security or provide any
constructions of miABE. They also defined the notion of non-trivially exponentially efficient
witness encryption (XWE), where the encryption run-time is only required to be much smaller
than the trivial 2m bound for NP relations with witness size m. They show how to construct
such XWE schemes for all of NP with encryption run-time 2m/2 using the single input ABE by
[GVW13]. For encryption run-time 2γ·m, the term γ is denoted as compression factor, and they
explicitly left open the problem of constructing XWE schemes with an improved compression
factor.

Both ABE and PE can be captured as special cases of functional encryption [SW05, BSW11],
which has been studied extensively, in both the single-input [SW05, BSW11, GVW13, BGG+14]
and multi-input setting [GGG+14, AJ15, AGRW17, DOT18, ACF+18, CDG+18, Tom19,
ABKW19, ABG19, LT19, AGT21]. Recall that in functional encryption (FE), a secret key
is associated with a function f , a ciphertext is associated with an input x and decryption allows
to recover f(x) and nothing else. It is easy to see that PE and ABE are both special cases of
FE – in particular, both PE and ABE achieve the same functionality but restrict the security
requirements of FE. In PE, we ask that the attribute x be hidden but only when the adversary
does not see any decrypting keys, namely fi(x) = 0 for all function keys fi received by the
adversary. On the other hand, in FE, the attacker may request a key skf , so long as f does not
distinguish the challenge messages (x0,m0), (x1,m1), namely, we may have f(x0) = f(x1) = 1
so long as m0 = m1

1. In the even weaker ABE, we do not ask any notion of hiding for x, and
this may be provided in the clear with the ciphertext.

1We note that a message m separate from attribute x is not required in the definition of FE, but we include it
here for simpler comparison with PE and ABE.

3

Why not Functional Encryption? The informed reader may wonder what is the advantage of
studying primitives like miPE or miABE when these are special cases of multi-input functional
encryption (miFE), which has recently been constructed from standard assumptions [JLS21, AJ15].
It was shown by [AJ15, BV15] that FE satisfying a certain efficiency property (known as
compactness) implies multi-input functional encryption, which in turn implies the powerful
primitive of indistinguishability obfuscation (iO) [BGI+01]. A long line of exciting works
endeavoured to construct compact FE (and hence iO) from standard assumptions [Lin16, Lin17,
LV16, Agr19, AJL+19, JLMS19, GJLS21], coming ever-closer, until the very recent work of
Jain, Lin and Sahai closed the last remaining gap and achieved this much sought after goal
[JLS21, JLS22]. In [JLS21, JLS22], the authors provide a construction for compact FE, which in
turn implies miFE for polynomial arity (albeit with exponential loss in the reduction).

Going via the route of compact FE, we obtain an exciting feasibility result for miFE and
hence miABE as well as miPE. However, we argue that using something as strong as miFE or iO
to construct miABE and miPE is undesirable, and indeed an “overkill” for the following reasons:

• Assumptions: Compact FE of [JLS21] is constructed via a careful combination of 4
assumptions – Learning Parity with Noise (LPN), Learning With Errors (LWE), SXDH
assumption on Pairings, and pseudorandom generators computable in constant depth. In
the follow-up work of [JLS22], this set of assumptions was trimmed to exclude LWE.
Therefore any construction built using compact FE must make at least this set of
assumptions, which is restrictive. A major goal in the theory of cryptography is developing
constructions from diverse assumptions.

• Complexity: The construction of compact FE is extremely complex, comprising a series of
careful steps, and this must then be lifted to miFE using another complex construction
[AJ15]. Unlike FE, both PE and ABE are much simpler, “all or nothing” primitives and
permit direct constructions in the single-input setting [GVW13, BGG+14, GVW15]. Do
we need the full complexity of an miFE construction to get miPE or miABE? Indeed, even
in the context of miFE, there is a large body of work that studies direct constructions
for smaller function classes such as linear and quadratic functions [AGRW17, DOT18,
ACF+18, CDG+18, Tom19, ABKW19, ABG19, LT19, AGT21].

• New Techniques: Finally and most importantly, we believe that it is extremely useful to
develop new techniques for simpler primitives that are not known to be in obfustopia, and
provide direct constructions. While direct constructions are likely to be more efficient,
and are interesting in their own right, they may also lead to new pathways even for
obfustopia primitives such as witness encryption or compact FE. Note that the only known
construction of FE from standard assumptions is by [JLS21, JLS22], which makes crucial
(and surprising) use of LPN in order to overcome a technical barrier – is LPN necessary
for other primitives implied by compact FE? We believe that exploring new methods to
construct weaker primitives is of central importance in developing better understanding of
cryptographic assumptions, their power and limits.

1.1 Our Results

In this work, we initiate the study of multi-input predicate and attribute based encryption
(miABE and miPE) and make the following contributions:

1. Formalizing Security: We provide definitions for miABE and miPE in the symmetric
key setting and formalize two security notions in the standard indistinguishability (IND)

4

paradigm, against unbounded collusions. The first (regular) notion of security assumes that
the attacker does not receive any decrypting keys, as is standard in the case of PE/ABE.
The second strong notion, allows some decrypting queries in restricted settings.

2. Two-input ABE for NC1 from LWE and Pairings: We provide the first constructions for
two-input key-policy ABE for NC1 from LWE and pairings. Our construction leverages a
surprising connection between techniques recently developed by Agrawal and Yamada
[AY20] in the context of succinct single-input ciphertext-policy ABE, to the seemingly
unrelated problem of two-input key-policy ABE. Similarly to [AY20], our construction is
proven secure in the bilinear generic group model. By leveraging inner product functional
encryption and using (a variant of) the KOALA knowledge assumption, we obtain a
construction in the standard model analogously to Agrawal, Wichs and Yamada [AWY20].

3. Heuristic two-input ABE for P from Lattices: We show that techniques developed for
succinct single-input ciphertext-policy ABE by Brakerski and Vaikuntanathan [BV22] can
also be seen from the lens of miABE and obtain the first two-input key-policy ABE from
lattices for P. Similarly to [BV22], this construction is heuristic.

4. Heuristic three-input ABE and PE for NC1 from Pairings and Lattices: We obtain the first
three-input ABE for NC1 by harnessing the powers of both the Agrawal-Yamada [AY20]
and the Brakerski-Vaikuntanathan [BV22] constructions.

5. Multi-input ABE to multi-input PE via Lockable Obfuscation: We provide a generic compiler
that lifts multi-input ABE to multi-input PE by relying on the hiding properties of Lockable
Obfuscation (LO) by Wichs-Zirdelis and Goyal-Koppula-Waters (FOCS 2018), which can
be based on LWE. Our compiler generalises such a compiler for single-input setting to
the much more challenging setting of multiple inputs. By instantiating our compiler with
our new two and three-input ABE schemes, we obtain the first constructions of two and
three-input PE schemes.

Our constructions of multi-input ABE provide the first improvement to the compression
factor (from 1/2 to 1/3 or 1/4) of non-trivially exponentially efficient Witness Encryption
defined by Brakerski et al. [BJK+18] without relying on compact functional encryption or
indistinguishability obfuscation. We believe that the unexpected connection between succinct
single-input ciphertext-policy ABE and multi-input key-policy ABE may lead to a new pathway
for witness encryption.

1.2 Our Techniques

Modeling Multi-Input Attribute Based and Predicate Encryption. Our first contri-
bution is to model multi-input attribute based encryption (miABE) and predicate encryption
(miPE) as relevant primitives in their own right. To begin, we observe that similarly to multi-
input functional encryption (miFE) [GGG+14], these primitives are meaningful primarily in
the symmetric key setting where the encryptor requires a secret key to compute a ciphertext.
This is to prevent the primitive becoming trivial due to excessive leakage occurring by virtue of
functionality. In more detail, let us say k encryptors compute an unbounded number ciphertexts in
each slot, i.e. {(xj1,m

j
1), . . . (xjk,m

j
k)}j∈[poly] and the adversary obtains secret keys corresponding

to functions {fi}i∈[poly]. In the multi-input setting, ciphertexts across slots can be combined,

5

allowing the adversary to compute fi(x
j1
1 ,x

j2
2 , . . . ,x

jk
k) for any indices i, j1, . . . , jk ∈ [poly]. In

the public key setting, an adversary can easily encrypt messages for various attributes of its
choice and decrypt these with the challenge ciphertext in a given slot to learn a potentially
unbounded amount of information. 2 Due to this, we believe that the primitives of miABE and
miPE are meaningful in the symmetric key setting where encryption also requires a secret key.

For security, we require the standard notion of ciphertext indistinguishability in the presence
of collusion attacks, as in the single-input setting. Recall that in the single-input setting,
the adversary cannot request any decrypting keys for challenge ciphertexts to prevent trivial
attacks. However, since we are in the symmetric key setting where the adversary cannot
encrypt herself, we propose an additional notion of strong security which also permits the
adversary to request decrypting ciphertexts in some cases. In more detail, for the case of
miABE, our strong security game allows the attacker to request function keys for {fi}i∈[poly]

and ciphertexts for tuples {(xj1,m
j
β,1), . . . , (xjk,m

j
β,k)}β∈{0,1},j∈[poly] so that it may hold that

fi(x
j1
1 , . . . ,x

jk
k) = 1 for some i, j1, . . . , jk ∈ [poly] as long as the challenge messages do not

distinguish, i.e. (mj1
1,0 = mj1

1,1), . . . , (mjk
k,0 = mjk

k,1). For the case of miPE, we analogously

define a strong version of security by asking that if fi(x
j1
1,β, . . . ,x

jk
k,β) = 1 holds for some

i, j1, . . . , jk ∈ [poly] and β ∈ {0, 1}, then it is also true that (xj11,0, . . . ,x
jk
k,0) = (xj11,1, . . . ,x

jk
k,1)

and (mj1
1,0, . . . ,m

jk
k,0) = (mj1

1,1, . . . ,m
jk
k,1). For more details, please see Section 3.

Constructing Two Input ABE from LWE and Bilinear GGM. In constructing two input
ABE (2ABE), the main difficulty is to satisfy two seemingly contradicting requirements at the
same time: (1) the two ciphertexts should be created independently, (2) these ciphertexts should
be combined in a way that decryption is possible. If we look at specific ABE schemes (e.g.,
[GPSW06, BGG+14]), it seems that these requirements cannot be satisfied simultaneously. If we
want to satisfy the second requirement, the two ciphertexts should have common randomness.
However to satisfy the first requirement, the randomness in the two ciphertexts needs to be
sampled independently. An approach might be to fix the randomness and put it into the master
secret key which is then used by both ciphertexts – but this will compromise security since fresh
randomness is crucial in safeguarding semantic security.

Generating Joint Randomness: For resolving this problem, we consider a scheme that modifies
two independently generated ciphertexts so that they have common randomness and then “joins”
them. This common randomness is jointly generated using independently chosen randomness
in each ciphertext by using a pairing operation. Specifically, we compute a ciphertext for slot
1 with randomness t1 and encode it in G1 and similarly, for slot 2 with randomness t2 in G2,
where G : G1 ×G2 → GT is a pairing group with prime order q. Then, both ciphertexts may be
combined to form a new ciphertext with respect to the randomness t1t2 on GT . This approach
seems to be promising, because we can uniquely separate every pair of ciphertexts, since each
pair (i, j) will have unique randomness ti1t

j
2. In the generic group model, this is sufficient to

prohibit “mix and match” attacks that try to combine components of different ciphertexts in

2The triviality of public-key miABE depends on the function class being supported. For example, consider the
inner product functionality (which is in NC1) defined as - let fv(x1,x2) = 1 if 〈v,x1||x2〉 = 0, where x1 and x2

are inputs in the ciphertext and v is in the key. Given a slot-1 ciphertext CT1(x1,m1) we would like to argue
that m1 remains hidden. However, in the public key case, it is possible to compute slot-2 ciphertext CT2(x2,m2)
so that for any v,x1 (note that these are public) the decryption condition can be satisfied and the message m1

can be recovered. This argument can also be extended to some interesting polynomials. On the other hand, there
are function classes in NC1, such as 3-SAT where it would be hard for the attacker to find a satisfying input and
even the public key setting would not create excessive leakage (although it is unclear if such a functionality is
useful in practice).

6

the same slot.

Moving Beyond Degree 2: However, since we “used up” the pairing operation here, it appears we
cannot perform more than linear operations on the generated ciphertext, which would severely
restrict the function class supported by our construction. In particular, pairing based ABE
schemes seem not to be compatible with the above approach, because these require additional
multiplication in the exponent during decryption, which cannot be supported using a bilinear
map. However, at this juncture, a trick suggested by Agrawal and Yamada [AY20] comes to our
rescue – to combine lattice based ABE with bilinear maps in a way that lets us get the “best of
both”.

At a high level, the Agrawal-Yamada trick rests on the observation that in certain lattice
based ABE schemes [BGG+14, GV15], decryption is structured as follows: (i) evaluate the circuit
f on ciphertext encodings of x, (ii) compute a matrix-vector product of the ciphertext matrix
and secret key vector, (iii) perform a rounding operation to recover the message. Crucially, step
(i) in the above description is in fact a linear operation over the encodings, even for circuits
in P, and the only nonlinear part of decryption is the rounding operation in step (iii). They
observe that steps (i) and (ii) may be done “upstairs” in the exponent and step (iii) may be
done “downstairs” by recovering the exponent brute force, when it is small enough. Importantly,
the exponent is small enough when the circuit class is restricted to NC1 using asymmetry
in noise growth [GV15, GVW13]. While this idea was developed in the context of a single-
input ciphertext-policy ABE, it appears to be exactly what we need for two-input key-policy ABE!

Perspective: Connection to Broadcast Encryption: In hindsight, the application of optimal
broadcast encryption requires succinctness of the ciphertext, which recent constructions
[BV22, AY20, AWY20] obtain by relying on the decomposability of specific ABE schemes
[BGG+14, GV15] – this decomposability is also what the multi-input setting intrinsically
requires, albeit for a different reason. In more detail, decomposability means that the ciphertext
for a vector x can be decomposed into |x| ciphertext components each encoding a single bit
xi, and these components can be tied together using common randomness to yield a complete
ciphertext. The bit by bit encoding of the vector allows 2|x| ciphertext components, each
component encoding both bits for a given position, to together encode 2|x| possible values
of x, which leads to the succinctness of ciphertext in optimal broadcast encryption schemes
[BV22, AY20, AWY20]. In the setting of multi-input ABE, decomposability allows to morph
independently generated full ciphertexts with distinct randomness to components of a single
ciphertext with common randomness. The randomness is “merged” using pairings (or lattices, see
below) and the resultant ciphertext can now be treated like the ciphertext of a single input scheme.

Adapting to the 2ABE Setting: Let us recall the structure of the ciphertext in scheme of Boneh
et al. [BGG+14], which is denoted as BGG+ hereafter. As discussed above, a ciphertext for
an attribute x ∈ [2`]3 in BGG+ is generated by first generating LWE encodings (their exact
structure is not important for this overview) for all possible values of the attribute x, namely,
{ψi,b}i∈[2`],b∈{0,1} (along with other components which are not relevant here) and then selecting
{ψi,xi}i∈[2`] based on x, where xi is the i-th bit of the attribute string x.

Given the above structure, a candidate scheme works as follows. The setup algorithm
computes encodings for all possible x, namely {ψi,b}i,b and puts them into the master secret
key. The encryptor for slot 1 chooses t1 ← Zq and encodes (t1, {t1ψi,x1,i}i∈[`]) in the exponent of
G1. Similarly, the encryptor for slot 2 chooses t2 ← Zq and encodes (t2, {t2ψi,x2,i−`}i∈[`+1,2`]) in

3The length of the attribute is set to 2` to match our two-input setting.

7

the exponent of G2. In decryption, we compute a pairing of matching components of the two
ciphertexts to obtain (t1t2, {t1t2ψi,xi}i∈[2`]) in the exponent of GT . Using the BGG+ decryption
procedure described above, we may perform linear operations to evaluate the circuit, apply
the BGG+ secret key and obtain the message plus noise in the exponent, which is brought
“downstairs” by brute force to perform the rounding and recover the message.

Challenges in Proving Security. While the above sketch provides a construction template, security
is far from obvious. Indeed, some thought reveals that the multi-input setting creates delicate
attack scenarios that need care to handle. As an example, consider the strong security definition
which allows the adversary to request ciphertexts that are decryptable by secret keys so long as
they do not lead to a distinguishing attack. For simplicity, let us restrict to the setting where
only the slot 1 ciphertext carries a message and slot 2 ciphertexts carry nothing except attributes
(this restriction can be removed). Now, a slot 1 ciphertext may carry a message that depends on
the challenger’s secret bit as long as it is not decryptable by any key. However, slot 2 ciphertexts
may participate in decryption with other slot 1 ciphertexts that do not encode the challenge bit,
and decryption can (and does) lead to randomness leakage of participating ciphertexts. When
such a “leaky” slot 2 ciphertext is combined with the challenge slot 1 ciphertext for decryption,
security breaks down.

For concreteness, let us consider the setting where the adversary makes slot 1 ciphertext
queries for (x1, (m0,m1)) and (x′1, (m

′
0,m

′
1)) and slot 2 ciphertext query for (x2). Furthermore,

the adversary makes a single key query for a circuit F such that F (x1,x2) = 0 (unauthorized)
and F (x′1,x2) = 1 (authorized). Note that to prevent trivial attacks, we pose the restriction that
m′0 = m′1, but we may have m0 6= m1. In this setting, the 2ABE construction described above is
not secure since the noise associated with the slot 2 ciphertext for x2 leaks during decryption of
the jointly generated ciphertext for (x′1,x2) and this prevents using BGG+ security for the pair
(x1,x2).

To resolve the above problem, we need to somehow “disconnect” randomness used in the
challenge ciphertexts of slot 1 from randomness used in leaky/decrypting ciphertexts of other
slots. This is tricky since the multi-input setting insists that ciphertexts be combined across
slots in an unrestricted way. Fortunately, another technique developed [AY20] for a completely
different reason comes to our assistance – we discontinue encoding the BGG+ ciphertexts in
2ABE ciphertexts for slot 2, so that even if a slot 2 ciphertext is decrypted, this does not
affect the security of the BGG+ encoding. Instead, we encode a binary “selection vector” in
the exponent of G2, which enables the decryptor to recover ψ2,x2,i when matching positions of
slot 1 and slot 2 ciphertext components are paired. In the context of broadcast encryption (i.e.
succinct ciphertext-policy ABE) [AY20] this trick was developed because the key generator could
not know the randomness used by the encryptor, and moreover this randomness is unbounded
across unbounded ciphertexts. In our setting, this trick instead allows to break the leakage of
correlated randomness caused by combining ciphertexts across different slots, some of which may
be challenge ciphertexts and others of which may be decrypting ciphertexts. However, though
we made progress we are still not done and the formal security argument still be required to
address several issues – please see Section 4 for more details.

Constructing 2ABE in the Standard Model. We next turn to adapting the construction
to the standard model – a natural starting point is the standard model adaptation of [AY20]
by Agrawal, Wichs and Yamada [AWY20] which is based on a non-standard knowledge type
assumption KOALA on bilinear groups. Our proof begins with these ideas but again departs
significantly due to the nuanced security game of the multi-input setting – indeed, we will run
into subtle technical issues related to the distribution of auxiliary information which will require
us to formulate a variant of KOALA.

8

We first outline our construction, which uses a version of inner product functional encryption
(IPFE), where one can directly encrypt group elements (rather than Zq elements) and can generate
a secret key for group elements. Thus, a ciphertext may encrypt a vector [v]1 and a secret key is
for [w]2 and the decryption result of the ciphertext using the secret key is [〈v,w〉]T . Using IPFE
and ideas similar to our first construction discussed above, we encode vectors into ciphertexts
and secret keys so that the decryption result ends up with the BGG+ ciphertext randomized
by a secret key specific randomness t. In more detail, a slot 1 ciphertext is an IPFE ciphertext
encoding [v, 0]2 and a slot 2 ciphertext is an IPFE secret key encoding [tw, 0]2 so that [t〈v,w〉]T
is recovered upon decryption, which is a corresponding BGG+ ciphertext randomized by t on
the exponent. Here, the last 0 entries are used for the security proof. We note that compared to
the solution in bilinear generic group model we explained, we dropped the randomness on the
ciphertext encoding and only the secret key encoding is randomized by t. The reason why the
randomness on the ciphertext encoding can be removed is that the encoding is already protected
by the IPFE and this change allows to simplify the construction and proof.

In the security game, we will have {ct(i) := IPFE.Enc([v(i), 0]1)}i and {sk(i) := IPFE.sk([t(i)w(i),
0]2)}i, where ct(i) is the i-th slot 1 ciphertext and sk(i) is the i-th slot 2 ciphertext. Let us
say that the adversary requests Q ciphertexts in each slot. The security proof is by hybrid
argument, where slot 1 ciphertexts are changed from ciphertexts for challenge bit 0 to 1 one by
one. Now, to change the message in a slot 1 ciphertext i∗, we must account for its combination
with all slot 2 ciphertexts – note that such a constraint does not arise in single input ABE/BE
[AWY20]. To handle this, we leverage the power of IPFE so that the Q second slot ciphertexts
hardcode the decryption value for the chosen slot 1 ciphertext i∗ and behave as before with
other slot 1 ciphertexts. A bit more explicitly, the j-th secret key may be hardwired with
([t(j)]2, [t

(j)BGG+.ct(j)]2), where BGG+.ct(j) is a set of BGG+ ciphertexts derived from v(i?) and
w(j). We note that since {BGG+.ct(j)}j are derived from the same vector v(i?), their distribution
is mutually correlated.

At this stage, we have a vector of BGG+ ciphertexts encoded in the exponent, randomized
with a unique random term t(j) and would like to change the ciphertexts BGG+.ct(j) into
random strings using the security of BGG+. A similar situation was dealt with by [AWY20],
who essentially showed that if BGG+.ct(j) is individually pseudorandom given an auxiliary
information aux, then by a variant of the KOALA assumption, {[t(j)]2, [t(j)BGG+.ct(j)]2}j looks
pseudorandom, even if ciphertexts are mutually correlated for j ∈ [Q]. However, this idea is
insufficient for our setting due to the distribution of the auxiliary information. In more detail,
for the construction of [AWY20], it sufficed to have a single BGG+ secret key in aux, since their
construction only needed a single key secure BGG+. By applying a standard trick in lattice
cryptography, they could sample the secret key first (setting other parameters accordingly) and
thus regard aux as a random string. In contrast, our scheme crucially requires multiple BGG+

secret keys, which can no longer be considered as random strings. This necessitates formulating
a variant of the KOALA assumption whose distribution of the auxiliary input is structured rather
than random. We do not know how to weaken this assumption using our current techniques and
leave this improvement as an interesting open problem. For more details, please see Section 5.

Compiling multi-input ABE to multi-input PE. Next, we discuss how to lift k-input
miABE to k-input miPE. For the purposes of the introduction, let us focus on the case of k = 2.
As a warm-up, we begin with the simpler setting of standard security, i.e. where there are no
decrypting ciphertexts.

The natural first idea to construct miPE is to replace the single input ABE BGG+ in our 2ABE
scheme by single input PE, which has been constructed for all polynomial circuits by Gorbunov,
Vaikuntanathan and Wee [GVW15]. However, this idea quickly runs into an insurmountable

9

hurdle – for our construction template, we need to bound the decryption noise by polynomial
so that it can be recovered by brute force computation of discrete log in the final step. This
is possible for ABE supporting NC1 using asymmetric noise growth [GV15]. In the context of
PE however, we do not know how to restrict the noise growth to polynomial – this is due to
the usage of the fully homomorphic encryption in the scheme, which extends the depth of the
evaluated circuit beyond what can be handled.

An alternative path to convert ABE to PE in the single input setting uses the machinery of
Lockable Obfuscation (LO) [GKW17, WZ17]. Lockable obfuscation allows to obfuscate a circuit
C with respect to a lock value β and a message m. The obfuscated circuit on input x outputs
m if C(x) = β and ⊥ otherwise. For security, LO requires that if β has high entropy in the view
of the adversary, the obfuscated circuit should be indistinguishable from a garbage program that
does not carry any information.

Single to Multiple Inputs. The conversion in the single input setting is as follows. To encrypt a
message m for an attribute x, we first encrypt a random value β using the ABE to obtain an
ABE cipheretxt ct. We then construct a circuit C[ct] that hardwires ct in it, takes as input an
ABE secret key and decrypts the hardwired ciphertext using it. We obfuscate C[ct] with respect
to the lock value β and the message m. The final PE ciphertext is the obfuscated circuit. It is
easy to see that the PE scheme has correctness, since if the decryption is possible, β is recovered
inside the obfuscated circuit and the lock is unlocked. By the correctness of LO, the message
is revealed. In the security proof, we first change β encrypted inside ct to a zero string. This
is possible using the security of ABE. Now the lock value β has high entropy from the view of
the adversary. We then erase the information inside the obfuscated circuit, which includes the
attribute information, using the security of LO.

Some thought reveals that the above conversion breaks down completely in the multi-input
setting. For instance, if we apply the above conversion to a slot 1 ciphertext, the resulting
obfuscation expects to receive slot 2 ciphertext in the clear. However, a slot 2 ciphertext of PE
must also constitute an obfuscated circuit since otherwise the attribute associated with it will
be leaked. But then there is no way to communicate between the two ciphertexts, both of which
are obfuscated circuits!

To overcome this barrier, we develop a delicate nested approach which takes advantage of the
fact that LO is powerful enough to handle general circuits. To restore communication between
two ciphertexts while maintaining attribute privacy, we obfuscate a circuit for slot 1 that takes
as input another obfuscated circuit for slot 2 and runs this inside itself. In more detail, the outer
LO takes as input the “inner” LO circuit and the 2ABE secret key 2ABE.skf . The inner LO
instance encodes the circuit for 2ABE decryption with the LO message as an SKE secret and the
lock value as random tag β. It also has hardcoded in it the slot 2 2ABE ciphertext 2ABE.ct2
with message β. The other piece of 2ABE, namely the slot 1 ciphertext 2ABE.ct1 is hardwired in
the outer LO. The outer LO encodes a circuit which runs the inner LO on inputs 2ABE.ct1 and
2ABE.skf . By correctness of the inner LO, the 2ABE decryption with 2ABE.ct1, 2ABE.ct2 and
2ABE.skf is executed and if the functionality is satisfied, the inner LO outputs the SKE secret
key. Thus, the SKE secret key signals whether the inner LO is unlocked, and if so, uses the
recovered key to decrypt an SKE ciphertext which is hardcoded in the circuit. This ciphertext
encrypts some random γ which is also set as the lock value of outer LO. If the SKE decryption
succeeds, the lock value matches the decrypted value and outputs the message m which is the
message in the outer LO. We note that the same SKE secret key must be used for both the inner
and outer LO for them to effectively communicate.

Supporting Strong Security. This construction lends itself to a proof of security for the standard
game where decrypting ciphertexts are not allowed, although via an intricate sequence of hybrids

10

especially for the case of general k. We refer the reader to Section 6 for details and turn our
attention to the far more challenging case of strong security. In the setting of strong security, the
proof fails – note that once any slot 2 ciphertext is decrypted, we no longer have the guarantee
that the message value of the inner obfuscation is hidden. Since this message is a secret key
of an SKE scheme and is used to encrypt the lock values for slot 1 ciphertexts, security breaks
down once more.

To overcome this hurdle, we must make the construction more complex so that the message
value of the inner obfuscation is no longer a global secret and does not compromise security even
if revealed. To implement this intuition, we let the inner obfuscation output a slot 2 (strong)
2ABE ciphertext when the lock is unlocked, which is then used to perform 2ABE decryption in
the circuit of the outer LO. Now, even if the security of a inner obfuscated circuit is compromised,
this does not necessarily mean that the security of the entire system is compromised because of
the guarantees of the strong security game of 2ABE. While oversimplified, this intuition may
now be formalized into a proof. For more details, please see Section 7.

Constructing 3ABE from Pairings and Lattices. Finally, we discuss our candidate
construction for three input ABE scheme based on techniques developed by Brakerski and
Vaikuntanathan [BV22] in conjunction with our 2ABE construction in Section 4.1. The work
of Brakerski and Vaikuntanathan [BV22] provided a clever candidate for succinct ciphertext-
policy ABE for P from lattices. Their construction also uses decomposability in order to
achieve succinctness which is the starting point for the multi-input setting as discussed above.
Additionally, they provide novel ways to handle the lack of shared randomness between the key
generator and encryptor – while [AY20] use pairings to generate shared randomness, [BV22] use
lattice ideas and it is this part which makes their construction heuristic. Here, we show that the
algebraic structure of their construction not only fits elegantly to the demands of the two-input
setting, but can also be made compatible with our current 2ABE construction to amplify arity
to three! This surprising synergy between two completely different candidates of broadcast
encryption, namely Agrawal-Yamada and Brakerski-Vaikuntanathan, created by decomposability
and novel techniques of handling randomness, already provides an XWE of compression factor
1/4 as against the previous best known 1/2 [BJK+18], and may lead to other applications as
well.

Recap of the Brakerski-Vaikuntanathan construction. To dig deeper into our construction, let
us first recap the core ideas of [BV22]. First recall the well known fact that security of BGG+

encodings is lost when we have two encodings for the same position encoding a different bit,
namely, ψi,0 = sBi+ei,0 and ψi,1 = s(Bi+G)+ei,1, where s is a LWE secret, Bi is a matrix, and
e1,b is an error vector for b ∈ {0, 1}. What [BV22] suggested is, if we augment BGG+ encodings
and mask them appropriately, then both encodings can be published and still hope to be secure.
Namely, they change BGG+ encodings to be ψi,b = S(Bi + bG) + Ei,b, where we replace the
vector s with a matrix S. They then mask the encodings by public (tall) matrices {Ci,b}i,b as

ψ̂i,b := Ci,bŜi,b + S(Bi + bG) + Ei,b

where {Ŝi,b}i,b are random secret matrices. By releasing appropriate information, one can recover
BGG+ encodings with different LWE secrets. In more detail, we can publish a short vector tx for
any binary string x that satisfies txCi,xi = 0 (and txCi,1−xi is random) for all i. This allows us
to compute

tx

(
Ci,xi

Ŝi,xi
+ S(Bi + xiG) + Ei,xi

)
= txS(Bi + xiG) + txEi,xi

= sx(Bi + xiG) + ex,i,xi

where we set sx = txS and ex,i,b = txEi,b. Namely, we can obtain BGG+ samples specific to the
string x. This is similar to the idea of using pairings to choose the appropriate encoding based

11

on the attribute string, which is used in our two-input ABE with strong security. Similarly to
that case, the obtained encodings are randomized by the user specific randomness. One of the
heuristic aspects of [BV22] is that in order for their scheme to be secure, we have to assume
that there is no meaningful way to combine the BGG+ samples obtained from different vectors
tx and tx′ .

Let us now adapt these techniques to provide a construction of two-input ABE. In our
candidate, {Bi}i and {Ci,b}i,b matrices are made public.4 An encryptor for the slot 1 computes
for i ∈ [`], b ∈ {0, 1}:{

ψi,x1,i := S(Bi + x1,iG) + Ei,x1,i

}
i
,
{
ψ̂i,b := C`+i,bŜ`+i,b + S(B`+i + bG) + E`+i,b

}
i,b

where x1,i denotes the i-th bit of the attribute x1 for slot 1, ` denotes the length of an attribute,

and S and Ŝi,b are freshly chosen by the encryptor. Intuitively, this is a partially stripped off
version of the encodings in [BV22]. We believe this does not harm security, because the encryptor
provides one out of two encodings for each position that is not masked by Ci,bŜi,b. The encryptor
for slot 2 generates a vector tx2 such that tx2Ci,x2,`+i = 0 for all i ∈ [`]. The secret key for
function F is simply BGG+ secret key for the same function. In the decryption, the decryptor
uses tx2 to choose BGG+ encodings for attribute x2 from {ψ̂i,b}i,b. The obtained encodings are
with respect to the LWE secret txS. The decryptor can also choose BGG+ encodings for attribute
x1 from {ψi}i. These obtained encodings constitutes a BGG+ ciphertext for attribute (x1,x2),
which can be decrypted by the BGG+ secret key. The intuition about security in [BV22] is that
the BGG+ encodings obtained by using tx vectors cannot be combined in a meaningful way due
to the different randomness.

Amplifying Arity. We now amplify arity by leveraging the above techniques in conjunction with
our pairing based construction. Our idea is to develop the scheme so that the decryptor can
recover the above partially stripped off version of the encoding in the exponent from slot 1 and
slot 2 ciphertexts by using the pairing operations, where the encodings may be randomized. Then,
slot 3 ciphertext corresponds to a vector tx3 , which annihilates Ci,b matrices for corresponding
positions to the attribute x3. To do so, an encryptor for the first slot encodes

{t1ψi,xi}i∈[`], {t1ψi,b}i∈[`+1,2`],b∈{0,1}, {t1ψ̂i,b}i∈[2`+1,3`],b∈{0,1}

of the exponent of G1, where t1 is freshly chosen randomness by the encryptor. An encryptor for
the second slot encodes t2, t2dx2 in the exponent of G2, where t2 is freshly chosen randomness
by the encryptor and dx2 is a selector vector that chooses ψi,x2,i out of (ψi,0, ψi,1) by the pairing
operation. Concretely, dx2 = {di,b}i,b, where di,b = 1 if b = x2,i and 0 otherwise. These vectors
are randomized by position-wise randomness as is the case for our other schemes. Finally, an
encryptor for slot 3 with attribute x3 chooses tx3 such that tx3C2`+i,x3,i = 0.

A somewhat worrying aspect of the candidate above may be that both t1ψi,0 and t1ψi,1 are
encoded on G1. However, this is also the case for [AY20] and as in that work, these two encodings
are randomized by the position-wise randomness and cannot be combined in a meaningful way
(at least in the GGM). The only way to combine them is to take a pairing product with G2

elements. However, after the operation, we end up with partially stripped encoding that is
randomized with t1t2. Therefore, a successful attack against the scheme may end up with
attacking a partially stripped version of [BV22], which we expect to be as secure as the original
scheme. Please see Section 8 for more details.

4The construction described here is simplified. For example, we omit the additional message carrying part in
the construction, which is not necessary for the overview.

12

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout this work. We
use bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈
N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. For any vector x of length `, we let xi
denote the i-th coordinate of x, for i ∈ [`]. We use 1`×m (resp. 0`×m) to represent a matrix
of dimensions ` × m having each entry as 1 (resp. 0). Similarly, we write 1a (resp. 0a) to
represent (1, . . . , 1) ∈ Zaq ((0, . . . , 0) ∈ Zaq) We say a function f(n) is negligible if it is O(n−c) for
all c > 0, and we use negl(n) to denote a negligible function of n. We say f(n) is polynomial
if it is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial function of
n. We use the abbreviation PPT for probabilistic polynomial-time. The function log x is the
base 2 logarithm of x. For two distributions D1, D2 we use the notation D1 ≈c D2 to denote
that a PPT adversary cannot distinguish between the distributions D1 and D2 except only with
negligible distinguishing advantage.

2.1 Single User Attribute Based Encryption

For ease of readability, we define single user cpABE and kpABE below.

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote “ciphertext
attribute” and “key attribute” spaces. An attribute-based encryption (ABE) scheme for R is
defined by the following PPT algorithms:

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input the unary representation of the
security parameter λ and outputs a master public key mpk and a master secret key msk.

Enc(mpk, X, µ)→ ct: The encryption algorithm takes as input a master public key mpk, a
ciphertext attribute X ∈ Aλ, and a message bit µ. It outputs a ciphertext ct.

KeyGen(mpk,msk, Y)→ skY : The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and a key attribute Y ∈ Bλ. It outputs a private key skY .

Dec(mpk, ct, X, skY , Y)→ µ or ⊥: We assume that the decryption algorithm is deterministic.
The decryption algorithm takes as input the master public key mpk, a ciphertext ct,
ciphertext attribute X ∈ Aλ, a private key skY , and private key attribute Y ∈ Bλ. It
outputs the message µ or ⊥ which represents that the ciphertext is not in a valid form.

Definition 2.1 (Correctness). An ABE scheme for relation family R is correct if for all λ ∈ N,
X ∈ Aλ, Y ∈ Bλ such that R(X,Y) = 1, and for all messages µ ∈ msg,

Pr

[
(mpk,msk)← Setup(1λ), skY ← KeyGen(mpk,msk, Y),

ct← Enc(mpk, X, µ) : Dec
(
mpk, ct, X, skY , Y

)
6= µ

]
= negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.2 (Ada-IND security for ABE). For an ABE scheme ABE = {Setup,Enc,
KeyGen,Dec} for a relation family R = {Rλ : Aλ × Bλ → {0, 1}}λ and a message space
{msgλ}λ∈N and an adversary A, let us define Ada-IND security game as follows.

1. Setup phase: On input 1λ, the challenger samples (mpk,msk) ← Setup(1λ) and gives
mpk to A.

2. Query phase: During the game, A adaptively makes the following queries, in an arbitrary
order. A can make unbounded many key queries, but can make only single challenge query.

13

(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the challenger
replies with skY ← KeyGen(mpk,msk, Y).

(b) Challenge Query: At some point, A submits a pair of equal length messages
(µ0, µ1) ∈ (msg)2 and the target X? ∈ Aλ to the challenger. The challenger samples
a random bit b← {0, 1} and replies to A with ct← Enc(mpk, X?, µb).

We require that R(X?, Y) = 0 holds for any Y such that A makes a key query for Y in
order to avoid trivial attacks.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvAda-IND
ABE,A (1λ) of A in the above game as

AdvAda-IND
ABE,A (1λ) :=

∣∣∣Pr[ExpABE,A(1λ) = 1|b = 0]− Pr[ExpABE,A(1λ) = 1|b = 1]
∣∣∣ .

The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive security) if for any
stateful PPT adversary A, there exists a negligible function negl(·) such that AdvAda-IND

ABE,A (1λ) =
negl(λ).

We can consider the following stronger version of the security where we require the ciphertext
to be pseudorandom.

Definition 2.3 (Ada-INDr security for ABE). We define Ada-INDr security game similarly to
Ada-IND security game except that the adversary A chooses single message µ instead of (µ0, µ1)
at the challenge phase and the challenger returns ct← Enc(mpk, X?, µ) if b = 0 and a random
ciphertext ct← CT from a ciphertext space CT if b = 1. We define the advantage AdvAda-INDr

ABE,A (1λ)
of the adversary A accordingly and say that the scheme satisfies Ada-INDr security if the quantity
is negligible.

We also consider (weaker) selective versions of the above notions, where A specifies its target
X? at the beginning of the game.

Definition 2.4 (Sel-IND security for ABE). We define Sel-IND security game as Ada-IND security
game with the exception that the adversary A has to choose the challenge ciphertext attribute
X? before the setup phase but key queries Y1, Y2, . . . and choice of (µ0, µ1) can still be adaptive.
We define the advantage AdvSel-IND

ABE,A (1λ) of the adversary A accordingly and say that the scheme
satisfies Sel-IND security (or simply selective security) if the quantity is negligible.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security game as Ada-INDr
security game with the exception that the adversary A has to choose the challenge ciphertext
attribute X? before the setup phase but key queries Y1, Y2, . . . and choice of µ can still be
adaptive. We define the advantage AdvSel-INDr

ABE,A (1λ) of the adversary A accordingly and say that
the scheme satisfies Sel-INDr security if the quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation. We start
with the standard notions of ciphertext-policy attribute-based encryption (cpABE) and key-policy
attribute-based encryption (kpABE).

cpABE for circuits. We define cpABE for circuit class {Cλ}λ by specifying the relation. Here,
Cλ is a set of circuits with input length `(λ) and binary output. We define ACP

λ = Cλ and
BCP
λ = {0, 1}`. Furthermore, we define the relation RCP

λ as RCP
λ (C,x) = ¬C(x).5

5Here, we follow the standard convention in lattice-based cryptography where the decryption succeeds when
C(x) = 0 rather than C(x) = 1.

14

kpABE for circuits. To define kpABE for circuits, we simply swap key and ciphertext attributes
in cpABE for circuits. More formally, to define kpABE for circuits, we define AKP

λ = {0, 1}` and
BKP
λ = Cλ. We also define RKP

λ : AKP
λ ×BKP

λ → {0, 1} as RKP
λ (x, C) = ¬C(x).

Remark 2.6. We observe that the symmetric key variants of the above definitions can be easily
obtained by letting the encryptor have access to the master secret key and permitting the
adversary to make ciphertext requests in the security game.

2.2 Lockable Obfuscation

We define lockable obfuscation [GKW17, WZ17] below. Let n,m, d be polynomials, and Cn,m,d(λ)
be the class of depth d(λ) circuits with n(λ) bit input and m(λ) bit output. A lockable obfuscator
for Cn,m,d consists of algorithms Obf and Eval with the following syntax. Let M be the message
space.

Obf(1λ, P,msg, α)→ P̃ : The obfuscation algorithm is a randomized algorithm that takes as
input the security parameter λ, a program P ∈ Cn,m,d, message msg ∈M and ‘lock string’

α ∈ {0, 1}m(λ). It outputs a program P̃ .

Eval(P̃ , x)→ y ∈M∪ {⊥}. The evaluator is a deterministic algorithm that takes as input a
program P̃ and a string x ∈ {0, 1}n(λ). It outputs y ∈M∪ {⊥}.

For correctness, it is required that if P (x) = α, then the obfuscated program P̃ ←
Obf(1λ, P,msg, α), evaluated on input x, outputs msg, and if P (x) 6= α, then P̃ outputs ⊥
on input x.

Definition 2.7 (Perfect Correctness). Let n,m, d be polynomials. A lockable obfuscation
scheme for Cn,m,d and message space M is said to be perfectly correct if it satisfies the following
properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ) , programs P ∈ Cn,m,d and messages
msg ∈M, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages
msg ∈M, if P (x) 6= α, then

Eval(Obf(1λ, P,msg, α), x) =⊥ .

Definition 2.8 (Security). Let n,m, d be polynomials. A lockable obfuscation scheme (Obf,Eval)
for Cn,m,d and message space M is said to be secure if there exists a PPT simulator Sim such
that for all PPT adversaries A = (A0,A1), there exists a negligible function negl(·) such that:

∣∣∣∣∣∣∣∣Pr

A1(P̃b, st) = b

∣∣∣∣∣∣∣∣
(P,msg, st)← A0(1λ)

b← {0, 1}, α← {0, 1}m(λ)

P̃0 ← Obf(1λ, P,msg, α)

P̃1 ← Sim(1λ, 1|P |, 1|msg|)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Analogously, we can define the security for multiple queries case.

15

Definition 2.9 (LO security with multiple queries). Let n,m, d be polynomials. A lockable
obfuscation scheme (Obf,Eval) for Cn,m,d and message spaceM is said to be secure (for multiple
adaptive queries) if there exists a PPT simulator Sim such that for all PPT adversaries A, the
probability of winning in the following game is 1/2 + negl(λ).

The security game between challenger C and adversary A is defined as follows:

1. C Samples a bit b← {0, 1}.

2. A issues p = p(λ) adaptive queries of the form (P i,msgi) to C.

3. For each query, C returns P̃ ib , where

P̃ i0 ← Obf(1λ, P i,msgi, αi), αi ← {0, 1}m(λ) and P̃ i1 ← Sim(1λ, 1|P
i|, 1|msgi|)

4. In the end, the adversary outputs a bit b′.

The adversary wins if b′ = b.

Reduction from multi-queries definition to single query can be shown using hybrids. We sketch
the reduction here. We consider p+ 1 hybrids Game0 to Gamep. In Gamei, first i programs
are simulated programs and remaining p− i are obfuscated programs. Indisntinguishability of
Gamei and Gamei+1 follows from the security in case of single query.

2.3 Batch Inner Product Functional Encryption

We define batch inner product functional encryption (BIPFE) in the secret key setting. This
is a straightforward extension of the standard notion of the IPFE in the secret key setting
[BJK15, DDM16, LV16] and is introduced for the purpose of describing our scheme with notational
ease. In BIPFE, a ciphertext and a secret key are associated with matrices of the same size
consisting of group components [V]1 = [(v>1 , . . . ,v

>
n)]1 ∈ GB×n

1 and [W]2 = [(w>1 , . . . ,w
>
n)]2 ∈

GB×n
2 , respectively. Here, we refer to B as the batch size and n as the dimension. Upon

decryption, the following is recovered

[V �W]T :=

∑
i∈[n]

vi �wi

T

.

Namely, we recover inner product of each row of V and W in parallel as a decryption result.
More formal definition follows.

Let GroupGen be a group generator that outputs bilinear group G = (p,G1,G2,GT , e, [1]1, [1]2).
A BIPFE scheme based on G consists of 4 efficient algorithms:

Setup(1λ, 1B, 1n)→ msk: The setup algorithm takes as input the security parameter, the batch
size B, the dimension n all in unary and outputs master secret key msk.

KeyGen(msk, [W]2)→ skW: The key generation algorithm takes as input the master secret key
and a matrix of group elements [W]2 ∈ G2, and outputs a secret key skW.

Enc(msk, [V]1)→ ctV: The encryption algorithm takes as input the master secret key and a
matrix of group elements [V]1 and outputs a ciphertext ctV.

Dec(skW, ctV) → [Z]T ∨ ⊥: The decryption algorithm takes as input a secret key skW and a
ciphertext ctV, and outputs an element [Z]T ∈ GT or ⊥.

16

Correctness. We say the BIPFE scheme satisfies decryption correctness if for all λ ∈ N, all
batch size B, all dimension n, and all matrices V,W ∈ ZB×np ,

Pr

 Dec(skW, ctV) = [W �V]T

∣∣∣∣∣∣
msk← Setup(1λ, 1B, 1n)
skW ← KeyGen(msk, [W]2)
ctV ← Enc(msk, [V]1)

 = 1 .

Next, we define the function hiding property.

Definition 2.10 (Function Hiding Security). Let (Setup,KeyGen,Enc,Dec) be a BIPFE scheme
as defined above. The scheme is function hiding if Exp0

FH is indistinguishable from Exp1
FH for all

PPT adversary A where ExpbFH for b ∈ {0, 1} is defined as follows:

1. Setup: Run the adversary A on input 1λ to obtain the batch size 1B and the dimension
1n from A. Let msk← Setup(1λ, 1B, 1n) and return msk to A.

2. Challenge: Repeat the following for arbitrarily many rounds determined by A: In each
round, A has 2 options:

• A submits [W
(i)
0]2, [W

(i)
1]2 ∈ GB×n

2 as a secret key query. Upon receiving this,

compute sk(i) ← KeyGen(msk, [W
(i)
b]

2
) and return this to A.

• A submits [V
(i)
0]1, [V

(i)
1]1 ∈ GB×n

1 as an encryption query. Upon receiving this,

compute ct(i) ← Enc(msk, [V
(i)
b]1) and return this to A.

3. Guess: A outputs its guess b′.

The adversary is called admissible if V
(i)
0 �W

(j)
0 = V

(i)
1 �W

(j)
1 for all combinations of i and

j. We say that the BIPFE scheme is function hiding if |Pr[b = b′] − 1/2| is negligible for all
admissible PPT adversaries.

Note that function hiding IPFE is captured as a special case of our notion of BIPFE with
the batch size B = 1. It can be seen that function hiding IPFE can be converted to BIPFE
by running the former in parallel for B times. Function hiding IPFE schemes are constructed
from various assumptions including SXDH and DLIN [DDM16, LV16] and thus BIPFE can be
constructed from the same assumptions.

2.4 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our construction.
Throughout this section, n, m, and q are integers such that n = poly(λ) and m ≥ ndlog qe. In the
following, let SampZ(γ) be a sampling algorithm for the truncated discrete Gaussian distribution
over Z with parameter γ > 0 whose support is restricted to z ∈ Z such that |z| ≤

√
nγ.

Learning with Errors. We introduce the learning with errors (LWE) problem.

Definition 2.11 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be
integers and χ = χ(λ) be a distribution over Zq. We say that the LWE(n,m, q, χ) hardness
assumption holds if for any PPT adversary A we have

|Pr[A(A, sA + x)→ 1]− Pr[A(A,v)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and
A ← Zn×mq , s ← Znq , x ← χm, and v ← Zmq . We also say that LWE(n,m, q, χ) problem is

subexponentially hard if the above probability is bounded by 2−n
ε · negl(λ) for some constant

0 < ε < 1 for all PPT A.

17

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n,m, q, χ)
problem is as hard as solving worst case lattice problems such as gapSVP and SIVP with
approximation factor poly(n) · (q/γ) for some poly(n). Since the best known algorithms for 2k-

approximation of gapSVP and SIVP run in time 2Õ(n/k), it follows that the above LWE(n,m, q, χ)
with noise-to-modulus ratio 2−n

ε
is likely to be (subexponentially) hard for some constant ε.

Trapdoors. Let us consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1
γ (V) be an

output distribution of SampZ(γ)m×m
′

conditioned on A ·A−1
γ (V) = V. A γ-trapdoor for A is a

trapdoor that enables one to sample from the distribution A−1
γ (V) in time poly(n,m,m′, log q)

for any V. We slightly overload notation and denote a γ-trapdoor for A by A−1
γ . We also define

the special gadget matrix G ∈ Zn×mq as the matrix obtained by padding In⊗(1, 2, 4, 8, . . . , 2dlog qe)
with zero-columns. The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.12 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A‖B]−1

τ and [B‖A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
τ0) where A ∈

Zn×mq for some m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√
n log q logm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in previous
LWE based FHE and ABE schemes. We follow the presentation by Tsabary [Tsa19], but with
different parameters.

Lemma 2.13 (Fully Homomorphic Computation [GV15]). There exists a pair of deterministic
algorithms (EvalF,EvalFX) with the following properties.

• EvalF(B, F) → HF . Here, B ∈ Zn×m`q and F : {0, 1}` → {0, 1} is a circuit.

• EvalFX(F,x,B)→ ĤF,x. Here, x ∈ {0, 1}` and F : {0, 1}` → {0, 1} is a circuit with depth
d. We have

[B− x⊗G]ĤF,x = BHF − F (x)G mod q,

where we denote [x1G‖ · · · ‖xkG] by x⊗G. Furthermore, we have

‖HF ‖∞ ≤ m · 2O(d), ‖ĤF,x‖∞ ≤ m · 2O(d).

• The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, 2d).

The above algorithms are taken from [GV15], which is a variant of similar algorithms proposed
by Boneh et al. [BGG+14]. The algorithms in [BGG+14] work for any polynomial-sized circuit
F , but ‖HF ‖∞ and ‖HF,x‖∞ become super-polynomial even if the depth of the circuit is shallow
(i.e., logarithmic depth). On the other hand, the above algorithms run in polynomial time only
when F is of logarithmic depth, but ‖HF ‖∞ and ‖HF,x‖∞ can be polynomially bounded. The
latter property is crucial for our purpose.

Modified Noise Distribution. For a distribution χ over Z and an integer m, we define χ̃m

as follows. To sample from χ̃m, we first sample x← χm and S← {−1, 1}m×m and output Sx.
By triangular inequality, it can be seen that if the absolute value of a sample from χ is always
bounded by B, the infinity norm of a sample from χ̃m is always bounded mB. This modified
noise distribution is used in the kpABE scheme by Boneh et al. [BGG+14] described in Sec. 2.5
for the case of χ being the discrete Gaussian distribution. The modification of the noise is
introduced in order to make the security proof work. We refer to their paper for the details.

18

2.5 kpABE Scheme by Boneh et al. [BGG+14]

We will use a variant of the kpABE scheme proposed by Boneh et al. [BGG+14]. We call the
scheme BGG+ and provide the description of the scheme in the following. We focus on the case
where the policies associated with secret keys are limited to circuits with logarithmic depth
rather than arbitrary polynomially bounded depth, so that we can use the evaluation algorithm
due to Gorbunov and Vinayagamurthy [GV15] (see Lemma 2.13). This allows us to bound the
noise growth during the decryption by a polynomial factor, which is crucial for us as in [AY20].

The scheme supports the circuit class C`(λ),d(λ), which is a set of all circuits with input length
`(λ) and depth at most d(λ) with arbitrary `(λ) = poly(λ) and d(λ) = O(log λ).

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), noise
distributions χ over Z, τ0 = τ0(λ), τ = τ(λ), and B = B(λ) as specified later. It then
proceeds as follows.

1. Sample (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

2. Sample random matrix B = (B1, . . . ,B`)← (Zn×mq)` and a random vector u← Znq .

3. Output the master public key mpk = (A,B,u) and the master secret key msk = A−1
τ0 .

KeyGen(mpk,msk, F): The key generation algorithm takes as input the master public key mpk,
the master secret key msk, and a circuit F ∈ C`,d and proceeds as follows.

1. Compute HF = EvalF(B, F) and BF = BHF .

2. Compute [A‖BF]−1
τ from A−1

τ0 and sample r ∈ Z2m as r> ← [A‖BF]−1
τ (u>).

3. Output the secret key skF := r.

Enc(mpk,x, µ): The encryption algorithm takes as input the master public key mpk, an attribute
x ∈ {0, 1}`, and a message µ ∈ {0, 1} and proceeds as follows.

1. Sample s← Znq , e0 ← χ, e← χm, and ei,b ← χ̃m for i ∈ [`] and b ∈ {0, 1}, where χ̃m

is defined as in Sec. 2.4 from χ.

2. Compute

For all i ∈ [`], b ∈ {0, 1}, ψi,b := s(Bi − bG) + ei,b ∈ Zmq
ψ2`+1 := sA + e ∈ Zmq , ψ2`+2 := su> + e0 + µdq/2e ∈ Zq,

3. Output the ciphertext ctx := ({ψi,xi}i∈[`], ψ2`+1, ψ2`+2), where xi is the i-th bit of x.

Dec(mpk, skx, ctF): The decryption algorithm takes as input the master public key mpk, a
secret key skF for a circuit F , and a ciphertext ctx for an attribute x and proceeds as
follows.

1. Parse ctx → ({ψi,xi ∈ Zmq }i∈[`], ψ2`+1 ∈ Zmq , ψ2`+2 ∈ Zq), and skF ∈ Z2m. If any of
the component is not in the corresponding domain or F (x) = 1, output ⊥.

2. Compute ĤF,x = EvalF(F,x,B).

3. Concatenate {ψi,xi}i∈[`] to form ψx = (ψ1,x1 , . . . , ψ`,x`).

4. Compute
ψ′ := ψ2`+2 − [ψ2`+1‖ψxĤF,x]r>.

5. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

19

Remark 2.14. We note that the encryption algorithm above computes redundant components
{ψi,¬xi}i∈[`] in the second step, which are discarded in the third step. However, due to this
redundancy, the scheme has the following special structure that will be useful for us. Namely,
the first and the second steps of the encryption algorithm can be executed without knowing x.
Only the third step of the encryption algorithm needs the information of x, where it chooses
{ψi,xi}i∈[`] from {ψi,b}i∈[`],b∈{0,1} depending on each bit of x and then output the former terms
along with ψ2`+1 and ψ2`+2.

Parameters and Security. We choose the parameters for the scheme as follows:

m = n1.1 log q, q = 2Θ(λ), χ = SampZ(3
√
n),

τ0 = n log q logm, τ = m3.1` · 2O(d) B = `n2m5τ · 2O(d).

The parameter n will be chosen depending on whether we need Sel-INDr security or Ada-INDr
security for the scheme. If it suffices to have Sel-INDr security, we set n = λc for some constant
c > 1. If we need Ada-INDr security, we have to enlarge the parameter to be n = (`λ)c in order
to compensate for the security loss caused by the complexity leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we would have been
able to set q polynomially bounded as in [GV15]. The reason why we set q exponentially large
is that we combine the scheme with bilinear maps of order q to lift the ciphertext components
to the exponent so that they are “hidden” in some sense. In order to use the security of the
bilinear map, we set the group order q to be exponentially large.

The following theorem summarizes the security and efficiency properties of the construction.
There are two parameter settings depending on whether we assume subexponential hardness of
LWE or not.

Theorem 2.15 (Adapted from [GV15, BGG+14]). Assuming hardness of LWE(n,m, q, χ) with

χ = SampZ(3
√
n) and q = O(2n

1/ε
) for some constant ε > 1, the above scheme satisfies Sel-INDr

security (Definition 2.5). Assuming subexponential hardness of LWE(n,m, q, χ) with the same
parameters, the above scheme satisfies Ada-INDr security (Definition 2.3) with respect to the

ciphertext space CT := Zm(`+1)+1
q

2.6 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group model following
Agrawal and Yamada [AY20], which in turn is based on [BCFG17, BFF+14] for defining generic k-
linear groups to the bilinear group settings. The definition closely follows that of Maurer [Mau05],
which is equivalent to the alternative formulation by Shoup [Sho97].

Notation on Bilinear Maps. A bilinear group generator GroupGen takes as input 1λ and
outputs a group description G = (q,G1,G2,GT , e, g1, g2), where q is a prime of Θ(λ) bits, G1,
G2, and GT are cyclic groups of order q, e : G1×G2 → GT is a non-degenerate bilinear map, and
g1 and g2 are generators of G1 and G2, respectively. We require that the group operations in G1,
G2, and GT as well as the bilinear map e can be efficiently computed. We employ the implicit
representation of group elements: for a matrix A over Zq, we define [A]1 := gA1 , [A]2 := gA2 ,
[A]T := gAT , where exponentiation is carried out component-wise.

We also use the following less standard notations. For vectors w = (w1, . . . , w`) ∈ Z`q
and v = (v1, . . . , v`) ∈ Z`q of the same length, w � v denotes the vector that is obtained by

component-wise multiplications. Namely, v �w = (v1w1, . . . , v`w`). When w ∈ (Z∗q)`, v �w

denotes the vector v�w = (v1/w1, . . . , v`/w`). It is easy to verify that for vectors c,d ∈ Z`q and

20

State: Lists L1, L2, LT over G1, G2, GT respectively.

Initializations: Lists L1, L2, LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map,
and equalities.

– For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and returns its
handle (s, |Ls|).

– For all s ∈ {1, 2, T}: negs(h1, h2) appends −Ls[h1] to Ls and returns its handle
(s, |Ls|).

– mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle (T, |LT |).
– ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Figure 1: Generic group model for bilinear group setting G = (q,G1,G2,GT , e, g1, g2) and
distribution D.

w ∈ (Z∗q)`, we have (c�w)� (d�w) = c� d. For group elements [v]1 ∈ G`
1 and [w]1 ∈ G`

2,
[v]1 � [w]2 denotes ([v1w1]T , . . . , [v`w`]T), which is efficiently computable from [v]1 and [w]2
using the bilinear map e.

Generic Bilinear Group Model. Let G = (q,G1,G2,GT , e, g1, g2) be a bilinear group
setting, L1, L2, and LT be lists of group elements in G1, G2, and GT respectively, and let D be
a distribution over L1, L2, and LT . The generic group model for a bilinear group setting G and
a distribution D is described in Fig. 1. In this model, the challenger first initializes the lists L1,
L2, and LT by sampling the group elements according to D, and the adversary receives handles
for the elements in the lists. For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list Ls. The
handle to this element is simply the pair (s, h). An adversary running in the generic bilinear
group model can apply group operations and bilinear maps to the elements in the lists. To do
this, the adversary has to call the appropriate oracle specifying handles for the input elements.
The challenger computes the result of a query, stores it in the corresponding list, and returns to
the adversary its (newly created) handle. Handles are not unique (i.e., the same group element
may appear more than once in a list under different handles). As in [AY20], we replace the
equality test oracle from Baltico et. al [BCFG17] with the zero-test oracle, which is given a
handle (s, h) and returns 1 if Ls[h] = 0 and 0 otherwise only for the case of s = T .

Symbolic Group Model. The symbolic group model for a bilinear group setting G and a
distribution DP gives to the adversary the same interface as the corresponding generic group
model, except that internally the challenger stores lists of element in the field Zp(X1, . . . , Xn)
instead of lists of group elements, where X1, . . . , Xn are indeterminates. The oracles adds, negs,
map, and zt computes addition, negation, multiplication, and equality in the field. In our work,
we will use the subring Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] of the entire field Zp(X1, . . . , Xn). Note
that any element f in Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] can be represented as

f(X1, . . . , Xn) =
∑

(c1,...,cn)∈Zn
ac1,...,cnX

c1
1 · · ·X

cn
n

using {ac1,...,cn ∈ Zp}(c1,...,cn)∈Zn , where we have ac1,...,cn = 0 for all but finite (c1, . . . , cn) ∈ Zn.
Note that this expression is unique.

21

3 Multi-Input Attribute Based and Predicate Encryption

We define multi-input Attribute Based Encryption (ABE) and Predicate Encryption (PE) below.
Since the only difference between the two notions is in the security game, we unify the syntax
for the algorithms in what follows.

A k-input ABE/PE scheme is parametrized over an attribute space {(Aλ)k}λ∈N and function
space {Fλ}λ∈N, where each function maps {(Aλ)k}λ∈N to {0, 1}. Such a scheme is described by
procedures (Setup,KeyGen,Enc1, . . . , Enck,Dec) with the following syntax:

Setup(1λ)→ (pp,msk): The Setup algorithm takes as input a security parameter and outputs
some public parameters pp and a master secret key msk.

KeyGen(pp,msk, f)→ skf : The KeyGen algorithm takes as input the public parameters pp, a
master secret key msk and a function f ∈ Fλ and outputs a key skf .

Enc1(pp,msk, α, b)→ ctα,b,1: The encryption algorithm for slot 1 takes as input the public
parameters pp, a master secret key msk, an attribute α ∈ Aλ, and message b ∈ {0, 1}, and
outputs a ciphertext ctα,b,1. For the case of ABE, the attribute string α is included as part
of the ciphertext.

Enci(pp,msk, α)→ ctα,i for i ≥ 2: The encryption algorithm for the ith slot where i ∈ [2, k],
takes as input the public parameters pp, a master secret key msk, and an attribute α ∈ Aλ
and outputs a ciphertext ctα,i. For the case of ABE, the attribute string α is included as
part of the ciphertext.

Dec(pp, skf , ctα1,b,1, ctα2,2, . . . , ctαk,k)→ b′: The decryption algorithm takes as input the public
parameters pp, a key for the function f and a sequence of ciphertext of (α1, b), α2, . . . , αk
and outputs a string b′.

Next, we define correctness and security. For ease of notation, we drop the subscript λ in what
follows.

Correctness: For every λ ∈ N, b ∈ {0, 1}, α1, . . . , αk ∈ A, f ∈ F , it holds that if
f(α1, . . . , αk) = 1, then

Pr

[
Dec

(
pp,KeyGen(pp,msk, f),

Enc1(pp,msk, α1, b), . . . ,Enck(pp,msk, αk)

)
= b

]
= 1− negl(λ)

where the probability is over the choice of (pp,msk)← Setup(1λ) and over the internal randomness
of KeyGen and Enc1, . . . ,Enck.

Definition 3.1 (Ada-IND security for k-ABE). For a k-ABE scheme k-ABE = {Setup,KeyGen,
Enc1, . . ., Enck,Dec} for an attribute space {(Aλ)k}λ∈N, function space {Fλ}λ∈N and an adversary
A, we define the Ada-IND security game as follows.

1. Setup phase: On input 1λ, the challenger samples (pp,msk)← Setup(1λ) and gives pp
to A.

2. Query phase: The challenger samples a bit β ← {0, 1}. During the game, A adaptively
makes the following queries, in an arbitrary order.

(a) Key Queries: A makes polynomial number of key queries, say p = p(λ). As
an i-th key query, A chooses a function fi ∈ Fλ. The challenger replies with
skfi ← KeyGen(pp,msk, fi).

22

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries for each
slot, say p = p(λ). As an i-th query for a slot j ∈ [k], A declares{

(αij , (b
i
0, b

i
1)) if j = 1

αij if j 6= 1

to the challenger, where αij ∈ Aλ is an attribute and (bi0, b
i
1) ∈ {0, 1} × {0, 1} is the

pair of messages. Then, the challenger computes

ctij,β =

{
Encj(pp,msk, αij , b

i
β) if j = 1

Encj(pp,msk, αij) if j 6= 1

and returns it to A.

3. Output phase: A outputs a guess bit β′ as the output of the experiment.

For the adversary to be admissible, we require that for every f1, . . . , fp ∈ F , it holds that

fi(α
i1
1 , . . . , α

ik
k) = 0 for every i, i1, . . . , ik ∈ [p].

We define the advantage AdvAda-IND
k-ABE,A(1λ) of A in the above game as

AdvAda-IND
k-ABE,A(1λ) :=

∣∣∣Pr[Expk-ABE,A(1λ) = 1|β = 0]− Pr[Expk-ABE,A(1λ) = 1|β = 1]
∣∣∣ .

The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive security)
if for any stateful PPT adversary A, there exists a negligible function negl(·) such that
AdvAda-IND

k-ABE,A(1λ) = negl(λ).

Definition 3.2 (Ada-IND security for k-PE.). For an k-PE scheme k-PE = {Setup,KeyGen, Enc1,
. . ., Enck,Dec} for an attribute space {(Aλ)k}λ∈N, function space {Fλ}λ∈N and an adversary A,
we define the Ada-IND security game as follows.

1. Setup phase: On input 1λ, the challenger samples (pp,msk)← Setup(1λ) and gives pp
to A.

2. Query phase: The challenger samples a bit β ← {0, 1}. During the game, A adaptively
makes the following queries, in an arbitrary order.

(a) Key Queries: A makes polynomial number of key queries, say p = p(λ). For
each key query i ∈ [p], A chooses a function fi ∈ Fλ. The challenger replies with
skfi ← KeyGen(pp,msk, fi).

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries for each
slot, say p = p(λ). As an i-th query for a slot j ∈ [k], A declares{

((αij,0, α
i
j,1), (bi0, b

i
1)) if j = 1

(αij,0, α
i
j,1) if j 6= 1

to the challenger, where (αij,0, α
i
j,1) is a pair of attributes and (bi0, b

i
1) is the pair of

messages. Then, the challenger computes

ctij,β =

{
Encj(pp,msk, αij,β, b

i
β) if j = 1

Encj(pp,msk, αij,β) if j 6= 1

and returns it to A.

23

3. Output phase: A outputs a guess bit β′ as the output of the experiment.

For the adversary to be admissible, we require that for every f1, . . . , fp ∈ F , it holds that

fi(α
i1
1,β, . . . , α

ik
k,β) = 0 for every i, i1, . . . , ik ∈ [p] and β ∈ {0, 1}.

We define the advantage AdvAda-IND
k-PE,A (1λ) of A in the above game as

AdvAda-IND
k-PE,A (1λ) :=

∣∣∣Pr[Expk-PE,A(1λ) = 1|β = 0]− Pr[Expk-PE,A(1λ) = 1|β = 1]
∣∣∣ .

The k-PE scheme k-PE is said to satisfy Ada-IND security (or simply adaptive security)
if for any stateful PPT adversary A, there exists a negligible function negl(·) such that
AdvAda-IND

k-PE,A (1λ) = negl(λ).

3.1 Strong Security for k-ABE and k-PE

We also consider a stronger security notion for both k-ABE as well as k-PE where the adversary
is allowed to make decrypting key requests for ciphertexts so long as they do not distinguish the
challenge bit.

Definition 3.3 (Strong Ada-IND security for k-ABE.). The definition for strong Ada-IND security
for k-ABE is the same as standard Ada-IND security (Definition 3.1) except for the following
modification. For the k-ABE adversary to be admissible in the strong Ada-IND game, we require
that

• If fi(α
i1
1 , . . . , α

ik
k) = 1 holds for some i, i1, . . . , ik ∈ [p], then bi10 = bi11 .

Let (αi, (bi0, b
i
1)) be the ith ciphertext query in slot 1. Then, if bi0 6= bi1, we call the ciphertext

returned by the challenger as a challenge ciphertext as it encodes the challenge bit β. Otherwise,
we refer to it as decrypting ciphertext, as the adversary may potentially request a key to decrypt
it.

Definition 3.4 (Strong Ada-IND security for k-PE.). The definition for strong Ada-IND security
for k-PE is the same as standard Ada-IND security (Definition 3.2) except for the following
modification. For the k-PE adversary to be admissible in the strong Ada-IND game, we require
that

• If fi(α
i1
1,β, . . . , α

ik
k,β) = 1 holds for some i, i1, . . . , ik ∈ [p] and β ∈ {0, 1}, then

(αi11,0, . . . , α
ik
k,0) = (αi11,1, . . . , α

ik
k,1) and bi10 = bi11 .

Let
(
(αi0, α

i
1), (bi0, b

i
1)
)

be the ith ciphertext query in slot 1. Then, if αi0 6= αi1 or bi0 6= bi1, we
call the ciphertext returned by the challenger as a challenge ciphertext as it encodes the challenge
bit β. Otherwise, we refer to it as decrypting ciphertext, as the adversary may potentially request
a key to decrypt it.

Definition 3.5 (Strong VerSel-IND security for k-ABE and k-PE). The definitions for strong
VerSel-IND security for k-ABE and k-PE are the same as strong Ada-IND security above except
that the adversary A is required to submit the challenge queries and secret key queries to the
challenger before it samples the public key.

3.2 Generalization to Multi-Slot Message Scheme

In the above, we focus our attention on k-ABE and k-PE schemes that only contain a message in a
single slot, the remaining slots being free of messages. We can also consider a generalized version

24

of the notions where each slot carries a message and all the messages are recovered in successful
decryption. For k polynomial, it is easy to extend a construction with single slot message to the
generalized version where each slot contains a message, simply by running k instances of the
scheme in parallel and rotating the slot which contains the message in each instance to cover all
k slots. Moreover we claim that since the k message scheme is a concatenation of k one message
schemes, security of the latter implies security of the former. In more detail, suppose there exists
an adversary against the k message scheme with non-negligible advantage ε. This can be used to
construct an adversary against one of the underlying one message schemes with non-negligible
advantage ε/k.

4 Two-Input ABE for NC1 from Pairings and LWE

In this section, we construct two input ABE for NC1 circuits. More formally, our construction
can support attribute space Aλ = {0, 1}`(λ), and any circuit class F = {Fλ}λ that is subclass
of {C2`(λ),d(λ)}λ with arbitrary `(λ) ≤ poly(λ) and d(λ) = O(log λ), where C2`(λ),d(λ) is a set of
circuits with input length 2`(λ) and depth at most d(λ). We can prove that the scheme satisfies
strong security as per Definition 3.3 assuming LWE in bilinear generic group model. Since the
intuition was described in Section 1, we proceed directly with the construction. We refer to
Sec. 2.4 and Sec. 2.6 for backgrounds on lattices and pairings respectively and Sec. 2.5 for
description of the kpABE scheme by Boneh et al. [BGG+14] on which our construction is based.

4.1 Construction

We proceed to describe our construction.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), noise
distribution χ over Z, τ0 = τ0(λ), τ = τ(λ), and B = B(λ) as specified in Sec. 2.5. It
samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2). Sets L := (3`+ 1)m+ 2 and
proceeds as follows.

1. Sample BGG+ scheme:

(a) Sample (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

(b) Sample random matrix B = (B1, . . . ,B2`) ← (Zn×mq)2` and a random vector
u← Znq .

2. Sample w← (Z∗q)L.

3. Output pp = (A,B,u), msk =
(
A−1
τ0 ,w, [1]1, [1]2

)
.

KeyGen(pp,msk, F): Given input the public parameters pp, master secret key msk and a circuit
F , compute BGG+ function key for circuit F as follows:

1. Compute HF = EvalF(B, F) and BF = BHF .

2. Compute [A‖BF]−1
τ from A−1

τ0 and sample r ∈ Z2m as r> ← [A‖BF]−1
τ (u>).

3. Output the secret key skF := r.

Enc1(pp,msk,x1, b): Given input the public parameters pp, master secret key msk, attribute
vector x1, message bit b, encryption for slot 1 is defined as follows:

25

1. Sample LWE secret s ← Znq and noise terms e0 ← χ, e ← χm, ei, e`+i,b ← χ̃m for

i ∈ [`], b ∈ {0, 1}, where χ̃m is defined as in Sec. 2.4.

2. For i ∈ [`], compute ψi := s(Bi − x1,iG) + ei.

3. For i ∈ [`+ 1, 2`], b ∈ {0, 1}, compute ψi,b := s(Bi − bG) + ei,b.

4. Compute ψ2`+1 := sA + e and ψ2`+2 := su> + e0.

5. Set µ = d q2eb.
6. Set c = (1, {ψi}i∈[`], {ψi,b}i∈[`+1,2`],b∈{0,1}, ψ2`+1, ψ2`+2 + µ).

7. Sample t1 ← Z∗q and output ct1 = [t1c�w]1.

Enc2(pp,msk,x2): Given input the public parameters pp, master secret key msk, attribute
vector x2, encryption for slot 2 is defined as follows:

1. Let 1a := (1, . . . , 1) ∈ Zaq and 0a := (0, . . . , 0) ∈ Zaq . Set

ψ̂i,b :=

{
1m ∈ Zmq if b = x2,i

0m ∈ Zmq if b 6= x2,i

for i ∈ [`+ 1, 2`] and b ∈ {0, 1}.

2. Set d = (1,1`m, {ψ̂i,b}i∈[`+1,2`],b∈{0,1},1m, 1).

3. Sample t2 ← Z∗q and output ct2 = [t2d�w]2.

Dec(pp, skF , ct1, ct2): The decryption algorithm takes as input the public parameters pp, the
secret key skF for circuit F and ciphertexts ct1 and ct2 corresponding to the two attributes
x1 and x2 and proceeds as follows:

1. Take the coordinate-wise pairing between ciphertexts:

Compute [v]T = [t1t2c� d]T as ct1 � ct2.

2. De-vectorize obtained vector:
Expand [v]T for i ∈ [`], j ∈ [`+ 1, 2`], b ∈ {0, 1}, to obtain:

[v0]T = [t1t2]T , [vi]T = [t1t2ψi]T ,

[vj,b]T = [t1t2ψ
′
j,b]T , where ψ′j,b =

{
(s(Bj − x2,jG) + ej,b) , if b = x2,j

0, if b = 1− x2,j

,

[v2`+1]T = [t1t2ψ2`+1]T , [v2`+2]T = [t1t2(ψ2`+2 + µ)]T .

3. Compute Evaluation function for BGG+ ciphertexts in exponent:

Let x = (x1,x2). Compute ĤF,x = EvalFX(F,x,B).

4. Perform BGG+ decryption in the exponent:
Form [vx]T = [v1, . . . ,v`,v`+1,x2,1 , . . .v2`,x2,`]T and parse skF = r as r = (r1 ∈
Zmq , r2 ∈ Zmq). Then compute

[v′]T := [(v2`+2 −
(
v2`+1r

>
1 + vxĤF,xr>2)

)
]T

5. Recover exponent via brute force if F (x) = 0:

Find η ∈ [−B,B] ∪ [−B + dq/2e, B + dq/2e] such that [v0]ηT = [v′]T by brute-force
search. If there is no such η, output ⊥. To speed up the operation, one can employ
the baby-step giant-step algorithm.

6. Output 0 if η ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

26

Correctness: To see correctness, we first make following observations:

1. c� d = (1, {ψi}i∈[`], {ψ′i,b}i∈[`+1,2`],b∈{0,1}, ψ2`+1, ψ2`+2 + µ) where,

ψ′i,b =

{
(s(Bi − x2,iG) + ei) if b = x2,i

0 if b = 1− x2,i

.

Recall that [v]T = [t1t2c � d]T . Now, letting vx = (v1, . . . ,v`,v`+1,x2,1 , . . .v2`,x2,`) and
x = (x1,x2), on de-vectorizing it the decryptor obtains

[v0]T = [t1t2]T , [vi]T = [t1t2(s(Bi − xiG) + ei)]T for i ∈ [`],

[vi,xi]T = [t1t2(s(Bi − xiG) + ei,xi)]T for i ∈ [`+ 1, 2`],

[v2`+1]T = [t1t2(sA + e)]T , [v2`+2]T = [t1t2(su> + e0 + µ)]

2. Next, observe that:

vx = t1t2(s(B1 − x1G) + e1, . . . , s(B2` − x2`G) + e2`)

= t1t2s((B1, . . . ,B2`)− (x1G, . . . , x2`G)) + t1t2(e1, . . . , e2`)

= t1t2s(B− x⊗G) + t1t2ex,

where ei = ei,xi for i ∈ [`+ 1, 2`] and ex = (e1, e2, . . . , e2`)

3. Performing BGG+ evaluation and decryption in the exponent yields:

[v′]T = [
(
v2`+2 − (v2`+1r

>
1 + vxĤF,xr>2)

)
]T

= [t1t2(su> + µ+ e0)− t1t2(sA + e)r>1 − t1t2(s(B− x⊗G) + ex)ĤF,xr>2]T

= [t1t2(su> + µ− s(Ar>1 + (BHF − F (x)G)r>2)) + t1t2(e0 − er>1 − exĤF,xr>2)]T

(∵ (B− x⊗G)ĤF,x = BHF − F (x)G (Lemma 2.13)).

For F (x) = 0, and replacing BHF by BF , (r1, r2) by r, we get,

[v′]T = [t1t2(su> + µ− s(A‖BF)r> + e′)]T (replacing (e0 − er>1 − exĤF,xr>2) by e′)

= [t1t2(su> + µ− su> + e′)]T , because (A‖BF)r> = u.

= [t1t2(µ+ e′)]T = [v0]
(µ+e′)
T .

4. Error bound in v′:
Recall that we set χ = SampZ(3

√
n). By the definition of SampZ, we have ‖e0‖∞ ≤ 3n

and ‖e‖∞ ≤ 3n. Furthermore, we have ‖e`‖∞, ‖e`+i,b‖∞ ≤ 3mn for i ∈ [`] and b ∈ {0, 1}
by the definition of χ̃m, ‖r‖∞ ≤

√
nτ , and ‖ĤF,x‖∞ ≤ m · 2O(d), where the last inequality

follows from Lemma 2.13. Thus, we have

e′ = e0 − er>1 − exĤF,xr>2 ≤ O(`m5n1.5τ · 2O(d)) ≤ B

by our choice of B.

5. Finally, since B = poly(n, `) · 2O(d) = poly(λ), we can recover η = µ + e′ by brute force
search in polynomial time as defined in step 5 and then the message as defined in step 6 of
decryption algorithm.

27

4.2 Security

We prove the security via the following theorem.

Theorem 4.1. Our 2ABE scheme for function class NC1 satisfies strong Ada-IND security in
the generic group model assuming that the kpABE scheme BGG+ for function class NC1 satisfies
Ada-INDr security.

Overview. The proof is designed via a sequence of games. To begin, we prove that it is pointless
for the adversary to take pairing products between non-matching positions of the ciphertexts of
the two parties and then take linear combinations among them. This may be argued because
of the randomness w in the ciphertexts which is only cancelled when matching positions are
paired. This enables us to argue that the only possible strategy for the adversary is to take
linear combinations among partial decryption results yielded by computing the pairing between
matching positions of the ciphertexts. Next we show that taking partial decryption results
between matching positions of different pairs of ciphertexts is useless, because the randomness
t1t2 will change across multiple ciphertexts. This step excludes mix and match attacks between
different pairs of ciphertexts and reduces the adversary strategy to gaining information about
the message(s) via results obtained by legitimate pairing of two entire ciphertexts. At this point,
we invoke the security of BGG+ to argue that the message is hidden.

Proof. Consider a PPT adversary A that makes at most Qct(λ) ciphertext queries (in both
slots) and Qzt(λ) zero-test queries during the game. We denote the event that A outputs correct
guess for the challenge bit β at the end of Gamex as Ex.

Game0: This is the real game in the generic group model. Without loss of generality, we assume
that the challenger simulates the generic group oracle for A. At the beginning of the
game, the challenger samples the public parameters pp = (A,B,u) and master secret key
msk =

(
A−1
τ0 ,w, [1]1, [1]2

)
as described in the scheme. It also samples a random bit β and

keeps it with itself. Then, it returns the public parameters pp to A. It handles A’s queries
as follows:

1. Slot 1 ciphertext queries: To answer the i-th slot 1 ciphertext query (xi1, b
i
0, b

i
1), it

samples ti1 ← Z∗q , computes ci = (ci1, . . . , c
i
L) as specified by Enc1 for message biβ and

returns handles to cti1 = [ti1c
i �w]1.

2. Slot 2 ciphertext queries: To answer the i-th slot 2 ciphertext query xi2, the challenger
samples ti2 ← Z∗q , computes di as specified by Enc2 and returns handles to cti2 =
[ti2d

i �w]2.

3. Secret Key queries: To respond to the j-th key query F j made by A, the challenger
computes rj as specified in the KeyGen algorithm and returns it to A.

By definition, the advantage of A against the scheme is
∣∣Pr[E0]− 1

2

∣∣ .
Game1: In this game, we switch partially to the symbolic group model and change the variables

(w1, . . . , wL), (t11, . . . , t
Qct
1), (t12, . . . , t

Qct
2) and (ci1, . . . , c

i
L) to formal variables (W1, . . . ,WL),

(T 1
1 , . . . , T

Qct
1), (T 1

2 , . . . , T
Qct
2), (Ci1, . . . , C

i
L). As a result, all handles given to A refer to

elements in the ring

T := Zq

[
W1, . . . ,WL, 1/W1, . . . , 1/WL, T

1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 ,

C1
1 , . . . , C

1
L, . . . , C

Qct
1 , . . . , CQct

L

]
.

28

where {1/Wi}i are needed to represent the components in the secret keys. However,
when the challenger answers the zero-test queries, it substitutes the formal variables with
corresponding elements in Zq. In doing so, if the variable is not assigned a value in Zq, we
sample corresponding value from the same distribution as in the real world. Once a value
is assigned to a variable, we use the same value throughout the rest of the game. As we
argue in Lemma 4.2, we have:

Pr[E0] = Pr[E1].

Here, we list all the components in T for which corresponding handles are given to A in Game1

as handles to the group elements in ciphertexts of both slots:

S1 :=
{
{T i1 Cik Wk}k∈[L],i∈[Qct]

}
, S2 :=

{
{T i2/Wk}k∈[L],i∈[Qct] s.t. dik = 1

}
Note that S1 and S2 correspond to handles for elements in G1 and G2, respectively. We then
define ST as ST := {X · Y : X ∈ S1, Y ∈ S2, X · Y 6= 0}. If we explicitly write down ST , we have
ST = ST,1 ∪ ST,2, where

ST,1 :=
{
T i1 T

j
2 C

i
k Wk/Wk′ , for k, k′ ∈ [L], i, j ∈ [Qct]

}
and ST,2 := { T i1 T

j
2 C

i
k for k ∈ [L], i, j ∈ [Qct], s.t. djk = 1 }.

Note that any handle submitted to the zero-test oracle by A during the game refers to an element
f in T that can be represented as

f(W1, . . . ,WL, T
1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 , C1

1 , . . . , C
Qct

L) =
∑
Z∈ST

aZZ (4.1)

where the coefficients {aZ ∈ Zq}Z∈ST can be efficiently computed. Furthermore, {aZ ∈ Zq}Z∈ST
satisfying the above equation is unique since all monomials in ST are distinct.

Game2: In this game, we use the formal variables (W1, . . . ,WL), (T 1
1 , . . . , T

Qct
1), (T 1

2 , . . . , T
Qct
2)

even while answering zero test queries. However, C1
1 , . . . , C

Qct

L are still replaced by

c1
1, . . . , c

Qct

L . Namely, given a zero test query f ∈ T, the challenger returns 1 if:

f(W1, . . . ,WL, T
1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 , c1

1, . . . , c
Qct

L) = 0. (4.2)

We show in Lemma 4.3 that

|Pr[E1]− Pr[E2]| ≤ Qzt(L+ 3)/q.

Game3: In this game, we further change the way zero-test queries are answered. In particular,
when A makes a zero-test query for a handle corresponding to f ∈ T that can be represented
as Eq. (4.1), the challenger returns 0 if there exists Z ∈ ST,1 such that aZ 6= 0. Otherwise,
the challenger answers the query as in the previous game. As we prove in Lemma 4.4, we
have Pr[E2] = Pr[E3].

Game4: In this game, we partition the set ST,2 by (i, j) pairs as:

ST,2 = ∪i,j∈[Qct]ST,2,i,j where ST,2,i,j = { T i1 T
j
2 C

i
k for k ∈ [L] s.t djk = 1 }.

29

We note the that every term Z in ST,2,i,j can be represented by the variables T i1, T j2 , and
Ci1, . . . , C

i
L by the definition of ST,2,i,j . For a zero test query f that is represented as

f(W1, . . . ,WL, T
1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 , C1

1 , . . . , C
Qct

L) =
∑

i,j∈[Qct]

∑
Z∈ST,2,i,j

aZZ, (4.3)

we change the game so that the challenger returns 0 if there exists a pair (i, j) such that∑
Z∈ST,2,i,j

aZZ(T i1, T
j
2 , c

i
1, . . . , c

i
L) 6= 0 over T. (4.4)

As we prove in Lemma 4.5, we have Pr[E3] = Pr[E4].

Game5: Recall that in the previous game, for a zero test query that is represented as Eq. (4.3),
the challenger returns 0 unless Eq. (4.4) holds for all i, j. In this game, for (i, j) such
that the i-th ciphertext for slot 1 is a challenge ciphertext (please see Section 3.1 to recall
the definition of challenge ciphertext), we replace the check with the new one that checks
whether ∑

Z∈ST,2,i,j

aZZ(T i1, T
j
2 , C

i
1, . . . , C

i
L) = 0

holds over T. Namely, for such (i, j), we stop replacing the variables {Cik}k with the
corresponding values {cik}k in Zq. As we prove in Lemma 4.6, we have |Pr[E4]− Pr[E5]| ≤
negl(λ) assuming Ada-INDr security of BGG+, which follows from LWE.

Next, we observe that the adversary cannot obtain any information about the encrypted messages
in Game5 since the challenge ciphertexts are replaced by formal variables that do not contain
any information of the challenge bit, and the answers to the zero test queries do not depend on
the challenge bit either.

Indistinguishability of Hybrids. We next argue that consecutive hybrids are indistinguish-
able.

Lemma 4.2 (Game0 ≡ Game1). We have Pr[E0] = Pr[E1].

Proof. Since zero-test queries in Game1 are answered by using variables that are sampled from
exactly the same distribution as that in Game0, the view of A in Game1 is not altered from
that in Game0. The lemma therefore follows.

Lemma 4.3 (Game1 ≈s Game2). We have |Pr[E1]− Pr[E2]| ≤ Qzt(L+ 3)/q.

Proof. The two games are different only when A submits a zero test query corresponding to a
polynomial f ∈ T such that

f(w1, . . . , wL, t
1
1, . . . , t

Qct
1 , t12, . . . , t

Qct
2 , c1

1, . . . , c
Qct

L) = 0 (4.5)

but
f(W1, . . . ,WL, T

1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 , c1

1, . . . , c
Qct

L) 6= 0 (4.6)

30

We will use the Schwartz-Zippel lemma to bound the probability that this occurs. We define
a new polynomial g ∈ T to clear the denominators as:

g(W1, . . . ,WL, T
1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2)

=

∏
i∈[L]

Wi

 · f(W1, . . . ,WL, T
1
1 , . . . , T

Qct
1 , T 1

2 , . . . , T
Qct
2 , c1

1, . . . , c
Qct

L)

Observe that the polynomial has degree L+ 3 where L comes from the leading product of Wi

and 3 comes from the degree of the terms in ST . We can bound the probability by Qzt(L+3)
q .

Lemma 4.4 (Game2 ≡ Game3). We have Pr[E2] = Pr[E3].

Proof. We observe that Game2 and Game3 differ only when A makes a zero-test query for a
handle f ∈ T represented as Eq. (4.1) such that aZ 6= 0 for some Z ∈ ST,1 and corresponding f
equals to 0 in T. We claim that such f does not exist and two games are actually equivalent.
This is because monomials in ST,1 and ST,2 are distinct even if we replace the formal variables
{Cij}i,j with values {cij}i,j in Zq. Hence, if there exists Z ∈ ST,1 such that aZ 6= 0, there would
be no way to cancel this term using the remaining monomials.

Lemma 4.5 (Game3 ≈s Game4). We have |Pr[E3]− Pr[E4]| ≤ 2Qzt/q.

Proof. We observe that the two games differ only when the adversary submits a query f ∈ T
represented as Eq. (4.1) such that Eq. (4.2) holds, but there is (i, j) such that Eq. (4.4) holds.
Note that for such f , i, and j, we have∑

Z∈ST,2,i,j

aZZ(T i1, T
j
2 , c

i
1 . . . c

i
L) = −

∑
(i′,j′)6=(i,j)

∑
Z∈ST,2,i′,j′

aZZ(T i
′

1 , T
j′

2 , c
i′
1 . . . c

i′
L).

However, the above is impossible unless the left hand side equals to 0 since any monomial in

ST,2,i,j never appears in ST,2,i′,j′ for (i, j) 6= (i′, j′) (since the product T i1T
j
2 6= T i

′
1 T

j′

2) even if we
replace the formal variables {Cik}k and {Ci′k }k with values {cik}k and {ci′k }k in Zq. Therefore,
the change made in this game is only conceptual and Pr[E3] = Pr[E4].

Lemma 4.6 (Game4 ≈c Game5). There exists a PPT adversary B against Ada-INDr security

of BGG+ such that |Pr[E4]− Pr[E5]| ≤ Q2
ctQzt ·

(
AAda-INDr

BGG+,B (1λ) + 1/q
)

.

Proof. We call a zero test query f ∈ T as bad if f is represented as Eq. (4.3) and there exists
(i, j) such that i-th ciphertext for slot 1 is a challenge ciphertext (i.e., bi0 6= bi1) and the following
equations hold:∑

Z∈ST,2,i,j

aZZ(T i1, T
j
2 , c

i
1, . . . , c

i
L) = 0 and

∑
Z∈ST,2,i,j

aZZ(T i1, T
j
2 , C

i
1, . . . , C

i
L) 6= 0. (4.7)

It is easily seen that Game4 and Game5 are equivalent unless the adversary makes a bad query.
To bound the probability of a bad query being issued, consider the following sequence of games.
Below, we define Fx as the event that the challenger does not abort in Game4,x.

Game4.0: This game is the same as Game4. However, the challenger checks whether A has
made a bad query and aborts if not at the end of the game. By definition, the probability
that A makes a bad query in Game4 is Pr[F0].

31

Game4.1: In this game, we change the previous game so that the challenger picks a random
guess k∗ for the first bad query as k∗ ← [Qzt] at the beginning of the game. Furthermore,
we change the game so that the challenger aborts if the k∗-th zero-test query is not the
first bad query. Since k∗ is chosen uniformly at random and independent from the view
of A, the guess is correct with probability 1/Qzt conditioned on F0. Therefore, we have
Pr[F1] = Pr[F0]/Qzt.

Game4.2: This game is the same as the previous game except that the challenger aborts the
game immediately after A makes the k∗-th zero-test query. Since the occurrence of F1

is irrelevant to how the game proceeds after the k∗-th zero-test query, we clearly have
Pr[F2] = Pr[F1].

Game4.3: In this game, we change the game so that the the challenger stop aborting even if
a bad query occurs before the k∗-th zero test query. Furthermore, any query before the
k∗-th one, regardless of whether bad or not, is answered as in Game5. Since Game4

and Game5 proceed exactly the same until the first bad query and removing the abort
condition simply increases the chance of making a bad query, we have Pr[F3] ≥ Pr[F2].

Game4.4: In this game, we change the previous game so that the challenger picks (i∗, j∗) ←
[Q2

ct] uniformly at random at the beginning of the game. Furthermore, we change the
abort condition so that the challenger aborts if Eq. (4.7) does not hold with respect to
(i, j) = (i∗, j∗) when the k∗-th zero-test query f is represented as Eq. (4.3). We note
that the challenger does not check the equations with respect to other indices. Since
there exists at least one pair of (i, j) ∈ [Q2

ct] that satisfies Eq. (4.7) as long as F4 occurs
and (i∗, j∗) is chosen uniformly at random and independent from the view of A, we have
Pr[F4] ≥ Pr[F3]/Q2

ct.

Game4.5: In this game, we have the challenger abort if the (i∗, j∗)-th ciphertext queries were not
made at the point when the k∗-th zero-test query was made. We claim that conditioned
on F5 happens, the challenger never aborts. To see this, we observe that if the (i∗, j∗)-th

ciphertext queries have not been made, then terms that contain T i
∗

1 , T
j∗

2 have not been given
to A and there is no way to make a zero-test query for f such that

∑
Z∈ST,2,i∗,j∗ aZZ 6= 0,

since all terms in ST,2,i∗,j∗ are multiples of T i
∗

1 T
j∗

2 . We therefore have Pr[F5] = Pr[F4].

Game4.6: Recall in the previous game, Eq. (4.7) is checked with respect to (i, j) = (i∗, j∗) and
ci
∗

= (ci
∗

1 , . . . , c
i∗
L) is used there. In this hybrid, we only compute ci

∗ � dj
∗

instead of ci
∗

for the k∗-th challenge query. Equivalently, we only compute ci
∗
k for k such that dj

∗

k = 1.
We claim that the game is still well-defined. To see this, we first observe that the only
place in the game where we need actual ciphertexts (not formal variables) is for the k∗-th
zero-test query. Furthermore, for the k∗-th zero-test query, we observe that only the terms{

Z(T i
∗

1 , T
j∗

2 , ci
∗

1 , . . . c
i∗
L)
∣∣∣ Z ∈ ST,2,i∗,j∗ } =

{
ci
∗
k T

i∗
1 T

j∗

2

∣∣∣ k ∈ [L] s.t. dj
∗

k = 1
}

are required, where the equality follows from the definition of ST,2,i∗,j∗ . We therefore
can see that the game is well-defined and the change is only conceptual. Hence we have
Pr[F6] = Pr[F5].

32

Game4.7: Recall that ci
∗ � dj

∗
constitutes a vector that is obtained by padding the ciphertext

of BGG+ for the attribute (xi
∗

1 ,x
j∗

2) with 1 and 0. In this game, we pick the ciphertext
elements in ci

∗ � dj
∗

uniformly at random from Zq except for the positions that are fixed
to be 0 or 1. As we prove in Lemma 4.7, there exists a PPT adversary B such that
AdvAda-INDr

BGG+,B (1λ) ≥ |Pr[F7]− Pr[F6]|.

We also show in Lemma 4.8 that Pr[F7] = 1/q. This allows us to bound Pr[F0] as:

Pr[F0] ≤ Q2
ctQzt · (AdvAda-INDr

BGG+,B (1λ) + 1/q),

where B is a PPT adversary.

Lemma 4.7. There exists a PPT adversary B such that AdvAda-INDr
BGG+,B (1λ) ≥ |Pr[F6]− Pr[F7]|.

Proof. We show that if A can distinguish Game4.6 from Game4.7, we can build another
adversary B against Ada-INDr security of BGG+. The adversary B acts as the challenger and
simulates the game for A.

Setup phase. At the beginning of the game, B is given 1λ and the master public key of BGG+

(A,B,u) which it returns to A. B also samples (i∗, j∗)← [Q2
ct], k

∗ ← [Qzt], and β ← {0, 1} and
keeps them secret.

Key Queries. Given the j-th secret key query for F j made by A, B makes a secret key query
for F j to its challenger and is given r sampled as r← [A‖BF]−1

τ (u).

Ciphertext Queries. When A makes ciphertext queries, B prepares handles for the ciphertexts
components and returns them to A. In more detail, B returns {T i1CikWk}k∈[L] for i-th ciphertext
query in slot 1 and {T i2/Wk}k∈[L], s.t. dik = 1

for i-th ciphertext query in slot 2.

Generic Group Queries. B honestly handles the queries for the generic group oracle
corresponding to addition, negation, and multiplication (bilinear map) made by A by keeping
track of the underlying encodings in T associated with the handles.

When A makes a k-th zero test query that refers to an element f ∈ T, B returns 0 if f cannot
be represented as Eq.(4.3) (i.e., there is aZ 6= 0 such that Z ∈ ST,1). Otherwise, B proceeds as
follows:

1. If f is the k-th zero-test query with k < k∗, it runs the following test for all i, j ∈ [Qct].

(a) If the i-th ciphertext query is the challenge query (i.e., bi0 6= bi1), it checks whether∑
Z∈ST,2,i,j aZZ = 0 or not (without replacing the formal variables (Ci1, . . . , C

i
L) in Z

with values (ci1, . . . , c
i
L)).

(b) If the i-th ciphertext query is not a challenge query, it checks whether the variables
{Cik}k are already assigned values. If the values are already assigned, it will
use the values. Otherwise, it samples ci = {cik}k as in Game4. We then check∑

Z∈ST,2,i,j aZZ(T i1, T
j
2 , c

i
1, . . . , c

i
L) = 0 or not.

If all the equations hold, B returns 1 to A. Otherwise, it returns 0.

2. If f is the k∗-th zero-test query, B first checks whether the (i∗, j∗)-th ciphertext queries
have already been made and the i∗-th query for slot 1 is the challenge query and aborts
otherwise. It then requests the BGG+ challenger for ciphertexts for attributes (xi

∗
1 ‖x

j∗

2)
and message bit bi

∗
β . It constructs ci

∗ � dj
∗

using the received BGG+ ciphertexts. Then it
checks whether Eq. (4.7) holds with respect to (i, j) = (i∗, j∗). As we observed, the above
check can be done only given ci

∗ � dj
∗
. It outputs 1 if they hold and 0 otherwise.

33

Analysis. Observe that B simulates Game4.6 if the challenge ciphertext for B is the real one
and Game4.7 if it is chosen uniformly at random from the ciphertext space. Therefore, it can be
seen that B outputs 1 with probability Pr[F6] if the BGG+ challenger returned real ciphertexts
and Pr[F7] if it returned random. Therefore, B’s advantage against BGG+ is |Pr[F6]− Pr[F7]|.
This completes the proof of the lemma.

Lemma 4.8. We have Pr[F7] = 1/q.

Proof. We recall that F7 occurs only when A makes a zero-test query that refers to a handle f
that is represented as Eq. (4.3) and satisfies Eq.(4.7) with respect to (i, j) = (i∗, j∗) for random
{ci∗1 , . . . ci

∗
L }. However, this can happen only with probability at most 1/q by the Schwartz-Zippel

lemma because f is linear in the variables Ci
∗

1 , . . . , C
i∗
L .

5 Two-Input ABE for NC1 in Standard Model

In this section, we propose two input ABE construction for NC1 in the standard model. The
construction is shown to be strong very selective secure under the LWE assumption and a variant
of bilinear KOALA assumption introduced in [AWY20], which is proven to hold under the
bilinear generic group model, assuming function hiding BIPFE is available. Note that function
hiding BIPFE can be instantiated from various standard assumptions on bilinear maps including
SXDH and DLIN (See Sec. 2.3). The construction is similar to both our construction in Sec. 4
and the construction in [AWY20] in high level.

5.1 Assumption

Here, we introduce a variant of the bilinear KOALA assumption introduced in [AWY20], which
in turn is a pairing group variant of the KOALA assumption introduced in [BW19]. The security
of our two input ABE scheme in the standard model will be based on the assumption.

Definition 5.1 (Bilinear KOALA Assumption). Let Samp0 = {Samp0,λ}λ be an efficient
sampling algorithm that takes as input an integer q and outputs a string aux and Samp1 =
{Samp1,λ}λ be an efficient sampling algorithm that takes as input an integer q and a string aux

and outputs a matrix V ∈ Z`1×`2q with `1 < `2. For an efficient adversary A = {Aλ}, let us
define

AdvBKOALA,dist
A,G,Samp (λ) := |Pr[Aλ(G, aux, [sV]2)→ 1]− Pr[Aλ(G, aux, [r]2)→ 1]|.

where the probabilities are taken over the choice of G = (q,G1,G2,GT , e, [1]1, [1]2) ←
GroupGen(1λ), aux ← Samp0(q), V ← Samp1(q, aux), s ← Z`1q , r ← Z`2q , and the coin of
Aλ.

Furthermore, for an efficient adversary B = {Bλ}λ, we also define

AdvBKOALA,find
B,G,Samp (λ) := Pr[Bλ(G, aux)→ x ∧Vx> = 0 ∧ x 6= 0]

where the probability is taken over the choice of G = (q,G1,G2,GT , e, [1]1, [1]2)← GroupGen(1λ),
aux← Samp0(q), V← Samp1(q, aux), and the coin of Bλ.

We say that the bilinear KOALA assumption holds with respect to GroupGen and efficient
samplers Samp0,Samp1 if for any efficient adversary A, there exists another efficient adversary
B and a polynomial function Q(λ) such that

AdvBKOALA,find
B,G,Samp (λ) ≥ AdvBKOALA,dist

A,G,Samp (λ)/Q(λ)− negl(λ).

34

Remark 5.2. The above assumption is defined with respect to the non-uniform sampling
algorithms Samp0, Samp1 and a non-uniform adversary A. All the security assumptions and
proofs in this paper except for the ones that use the above assumption can work in the uniform
setting.

Remark 5.3 (Comparison with [AWY20]). Compared to the original version of the bilinear
KOALA assumption [AWY20], our assumption allows Samp0 to be an efficient sampler that
possibly samples aux from some structured distribution, whereas Samp0 is restricted to output a
random string in their assumption. The reason why they restrict the distribution is to avoid a
kind of attacks that embeds obfuscation into aux. In particular, as observed by the authors, if we
relax the above setting so that aux is chosen along with V, there is a concrete attack assuming
sufficiently secure obfuscation. In more detail, let us consider a sampler that outputs random V
along with auxiliary information aux = O(CV), which is an obfuscation of circuit CV that takes
as input group description G and elements [v]2 and returns whether v is in the space spanned
by the rows of V or not. Using O(CV), one can easily distinguish [sV]2 from [r]2 with high
probability. However, an efficient adversary may not be able to find a vector x 6= 0 that satisfies
Vx> = 0 even given O(CV), if we use sufficiently strong obfuscator to obfuscate the circuit
CV.6 This specific attack does not work against our assumption above, since V is chosen after
aux, rather than chosen at the same time. However, as a safeguard against the future attacks,
we assume the assumption to hold for some specific samplers Samp0 and Samp1 rather than for
general Samp0 and Samp1. We note that [AWY20] assumes that the assumption holds for all
the efficient samplers Samp1 rather than a specific one, while restricting Samp0 to the specific
sampler that outputs a random string.

To justify the assumption, [AWY20] proves that the assumption holds in the generic group
model. Though they prove the theorem for the case where aux is chosen uniformly at random,
the proof does not depend on this fact and the same proof works for the case where aux is chosen
from general distributions. Namely, we have the following theorem.

Theorem 5.4 (Adapted from [AWY20]). The bilinear KOALA assumption holds under the
bilinear generic group model with respect to all efficient samplers Samp0 and Samp1, where A
has access to the generic group oracles but Samp0 and Samp1 do not.

The following lemma is from [AWY20] with slightly different formulation. The lemma
essentially says that for a sampler that outputs a set of vectors such that the vectors are
individually pseudorandom but mutually correlated, it holds that the vectors appear mutually
pseudorandom when they are lifted to the exponent and randomized by vector-wise randomness
assuming the bilinear KOALA assumption for the related samplers.

Lemma 5.5 (Adapted from Theorem 4.7 in [AWY20]). Let Samp0 = {Samp0,λ}λ be an efficient
sampling algorithm that takes as input an integer q and outputs a string aux and Samp1 =
{Samp1,λ}λ be an efficient sampling algorithm that takes as input an integer q and a string

aux and outputs a set of vectors {u(j) ∈ Zmq }j∈[t]. For an efficient adversary A = {Aλ}λ and
i := i(λ) ∈ N, let us assume that

|Pr[Aλ(G, aux,u(i))→ 1]− Pr[Aλ(G, aux,v)→ 1]| (5.1)

is negligible, where the probabilities are taken over the choice of
G = (q,G1,G2,GT , e, [1]1, [1]2)← GroupGen(1λ), aux← Samp0(q), {u(j)}j∈[t] ← Sampλ(q, aux),

v← Zmq , and the coin of Aλ. In the above, we set u(i) := v if i > t. Furthermore, assume that

6The explanation on the attack is taken verbatim from [AWY20, Remark 4.3].

35

the bilinear KOALA assumption holds with respect to GroupGen, Samp0, and Samp′1 that runs
Samp1 to obtain {u(j)}j∈[t] and then outputs

V =

1 u(1)

1 u(2)

. . .

1 u(t)

 ∈ Zt×(1+m)t
q . (5.2)

Then, for any efficient adversary B = {Bλ},

∣∣∣∣∣Pr

[
Bλ

(
G, aux,{

[γ(j)]2, [γ
(j)u(j)]2

}
j∈[t]

)
→ 1

]
− Pr

[
Bλ

(
G, aux,{

[γ(j)]2, [v
(j)]2

}
j∈[t]

)
→ 1

]∣∣∣∣∣ ,
(5.3)

is negligible, where the probabilities are taken over the choice of G, aux← Samp0(q), {u(j)}j∈[t] ←
Samp1(q, aux), γ(j) ← Zq, v(j) ← Zmq for j ∈ [t], and the coin of Bλ.

The lemma is shown for the case where aux is chosen uniformly at random in [AWY20], but
the same proof works for our more general setting.

5.2 Construction

Here, we show our construction of two input ABE for NC1 in the standard model. The function
class that the scheme supports is exactly the same as that of Sec. 4. In the construction, we
use a BIPFE scheme BIPFE = (BIPFE.Setup,BIPFEKeyGen,BIPFE.Enc,BIPFE.Dec). We refer
to Sec. 2.3 for the definition and instantiations of BIPFE.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), noise
distributions χ over Z, τ0 = τ0(λ), τ = τ(λ), and B = B(λ) as specified in Sec. 2.5. It
samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2). It then proceeds as follows.

1. Sample BGG+ scheme:

(a) Sample (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

(b) Sample random matrix B = (B1, . . . ,B2`) ← (Zn×mq)2` and a random vector
u← Znq .

2. Sample BIPFE instances BIPFE.msk1 ← BIPFE.Setup(1λ, 1m(`+1)+2, 12) and BIPFE.msk2 ←
BIPFE.Setup(1λ, 1m`, 13).

3. Output

pp = (A,B,u), msk =
(

[1]1, [1]2, A−1
τ , {BIPFE.mski}i∈{1,2}

)
.

KeyGen(pp,msk, F): Given input the public parameters pp, master secret key msk and a circuit
F , compute BGG+ function key for circuit F as follows:

1. Compute HF = EvalF(B, F) and BF = BHF .

2. Compute [A‖BF]−1
τ from A−1

τ0 and sample r ∈ Z2m as r> ← [A‖BF]−1
τ (u>).

3. Output the secret key skF := r.

36

Enc1(pp,msk,x1, b): Given input the public parameters pp, master secret key msk, attribute
vector x1, message bit b, encryption for slot 1 is defined as follows:

1. Sample LWE secret s← Znq and noises e0 ← χ, e← χm, eL, eR ← (χ̃m)`, where χ̃m

is defined as in Sec. 2.4.

2. Compute

c1,1 :=
(

1, sA + e, su> + e0 +
⌈q

2

⌉
· b, s (BL − x1 ⊗G) + eL

)
, c1,2 := 0m(`+1)+2,

c2,1 := sBR + eR, c2,2 := −1` ⊗ sG, c2,3 := 0m`

where we define BL := [B1, . . . ,B`] and BR := [B`+1, . . . ,B2`].

3. Set C1 = (c>1,1, c
>
1,2) and C2 = (c>2,1, c

>
2,2, c

>
2,3).

4. For i = 1, 2, compute BIPFE.cti := BIPFE.Enc(BIPFE.mski, [Ci]1).

5. Output ct1 = (BIPFE.ct1,BIPFE.ct2).

Enc2(pp,msk,x2): Given input the public parameters pp, master secret key msk, attribute
vector x2, encryption for slot 2 is defined as follows:

1. Sample t← Zq.
2. Compute

d1,1 := t · 1m(`+1)+2, d1,2 := 0m(`+1)+2

d2,1 := t · 1m`, d2,2 := t (x2 ⊗ 1m) , d2,3 := 0m`.

3. Set D1 = (d>1,1,d
>
1,2) and D2 = (d>2,1,d

>
2,2,d

>
2,3).

4. For i = 1, 2, compute BIPFE.ski := BIPFE.KeyGen(BIPFE.mski, [D]2).

5. Output ct2 = (BIPFE.sk1,BIPFE.sk2).

Dec(pp, skF , ct1, ct2): The decryption algorithm takes as input the public parameters pp, the
secret key skF for circuit F and ciphertexts ct1 and ct2 corresponding to the two attributes
x1 and x2 and proceeds as follows:

1. Parse the ciphertext:
Parse the ciphertexts as ct1 → (BIPFE.ct1,BIPFE.ct2) and ct2 → (BIPFE.sk1,BIPFE.sk2).

2. Decrypt the BIPFE ciphertexts:

Compute [wi]T = BIPFE.Dec(BIPFE.ski,BIPFE.cti) for i = 1, 2.

3. Reorganize the obtained vector:
Let x = (x1,x2). Reorganize [wi]T for i = 1, 2 to obtain:

[v0,v2`+1, v2`+2,vx1]T := [w1]T , [vx2]T := [w2]T , [vx]T := [vx1 ,vx2]T ,

where v0 ∈ Zq, v2`+1 ∈ Zmq , v2`+2 ∈ Zq, and vx1 ,vx2 ∈ Zm`q .

4. Evaluate function on BGG+ ciphertexts in exponent:

Compute ĤF,x = EvalFX(F,x,B).

37

5. Perform BGG+ decryption in the exponent:
Form r = (r1 ∈ Zmq , r2 ∈ Zmq). Then compute

[v′]T := [(v2`+2 −
(
v2`+1r

>
1 + vxĤF,xr>2)

)
]T .

6. Recover exponent via brute force if F (x) = 0:

Find η ∈ [−B,B] ∪ [−B + dq/2e, B + dq/2e] such that [v0]ηT = [v′]T by brute-force
search. If there is no such η, output ⊥. To speed up the operation, one can employ
the baby-step giant-step algorithm.

7. Output 0 if η ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

Correctness: Correctness is argued by observing that vectors {wi}i∈{1,2} form the randomized
version of the BGG+ ciphertext w.r.t s on the exponent. Namely, we have

w1 = c1,1 � d1,1 + c1,2 � d1,2

= t
(

1, sA + e, su> + e0 +
⌈q

2

⌉
· b, s (BL − x1 ⊗G) + eL

)
and

w2 = c2,1 � d2,1 + c2,2 � d2,2 + c2,3 � d2,3

= t (sBR + eR)− t (1` ⊗ sG)� (x2 ⊗ 1m)

= t (s (BR − x2 ⊗G) + eR) ,

where we used (1` ⊗ sG) � (x2 ⊗ 1m) = s (x2 ⊗G) in the third equation above. Having
established above, the rest of the argument for proving the correctness is exactly the same as
Sec. 4 and thus omitted.

5.3 Security

We prove the security of the construction via following theorem:

Theorem 5.6. Our 2ABE scheme for function class NC1 satisfies strong very selective security
assuming that BIPFE satisfies function hiding security and the bilinear KOALA assumption for
certain samplers7 and the LWE assumption hold.

Proof. Consider a PPT adversary A that makes at most Qct(λ) ciphertext queries (in both
slots) and Qkq(λ) key queries during the game. We denote the event that A outputs 1 at the
end of Gamex as Ex.

Game0: This is the real game with β = 0. At the beginning of the game, the adversary declares

its challenge queries {(x(i)
1 , b

(i)
0 , b

(i)
1)}i∈[Qct] for the first slot, {x(i)

2 }i∈[Qct] for the second slot,

and the key queries {F (j)}j∈[Qkq]. Then, the challenger samples the public parameters

pp = (A,B,u) and master secret key msk =
(
[1]1, [1]2,A

−1
τ , {BIPFE.mski}i∈{1,2}

)
as

described in the scheme. Then, it computes the ciphertexts ct
(i)
1 ← Enc(pp,msk,x

(i)
1 , b

(i)
0),

ct
(i)
2 ← Enc(pp,msk,x

(i)
2), for i ∈ [Qct] and secret keys sk(j) ← KeyGen(pp,msk, F (j)) for

j ∈ [Qkq] and returns pp, {ct(i)1 , ct
(i)
2 }i, {sk

(j)}j to A.

7We refer to the proof of Lemma 5.8 for the description of the sampler.

38

Gamej : This game is defined for j ≤ Qct. In this game, ct
(i)
1 is computed as

ct
(i)
1 ←

{
Enc(pp,msk,x

(i)
1 , b

(i)
1) if i ≤ j

Enc(pp,msk,x
(i)
1 , b

(i)
0) if i > j

Except for the above, the game is the same as Game0.

We have that GameQct equals to the real game with β = 1. Therefore, we have to show that
|Pr[E0]−Pr[EQct]| is negligible. To do so, it suffices to show that |Pr[Ej−1]−Pr[Ej]| is negligible
for all j ∈ [Qct]. We introduce the following sequence of games to prove this. In the following,

we can assume that the j-th ciphertext for slot 1 is the challenge ciphertext (i.e., b
(j)
0 6= b

(j)
1),

since otherwise Gamej−1 and Gamej are equivalent.

Gamej−1,0: This game is the same as Gamej−1. To fix the notation, we describe how the
challenger answers the challenge queries below.

1. Slot 1 ciphertext queries: To answer a slot 1 ciphertext request for (x
(i)
1 , b

(i)
0 , b

(i)
1), the

challenger samples s(i), e(i), e
(i)
L , e

(i)
R , and e

(i)
0 as specified and computes the vectors

as below:

c
(i)
1,1 :=

(
1, s(i)A + e(i), s(i)u> + e

(i)
0 +

⌈q
2

⌉
· b(i), s(i)

(
BL − x

(i)
1 ⊗G

)
+ e

(i)
L

)
,

c
(i)
1,2 = 0m(`+1)+2

where b(i) = 1 if i ≤ j − 1 and b(i) = 0 otherwise,

c
(i)
2,1 := s(i)BR + e

(i)
R , c

(i)
2,2 = −1` ⊗ s(i)G, c

(i)
2,3 := 0m`.

Then, the challenger sets C(i) and computes ct
(i)
1 as specified using the vectors.

2. Slot 2 ciphertext queries: To answer a slot 2 ciphertext request for x
(i)
2 , the challenger

samples t(i) as specified and computes the vectors as below:

d
(i)
1,1 = t(i)1m(`+1)+2, d

(i)
1,2 = 0m(`+1)+2,

d
(i)
2,1 = t(i)1m`, d

(i)
2,2 = t(i)

(
x

(i)
2 ⊗ 1m

)
, d

(i)
2,3 = 0m`.

Then, the challenger sets D(i) and computes ct
(i)
2 as specified using the vectors.

By definition, we have
Pr[Ej−1] = Pr[Ej−1,0].

Gamej−1,1: In this game, we change how the challenger computes the j-th ciphertext for slot
1 and all the ciphertexts for slot 2. In particular, the challenger sets C(j) by setting the
vectors as

c
(j)
1,1 = 0m(`+1)+2, c

(j)
1,2 = 1m(`+1)+2,

c
(j)
2,1 = c

(j)
2,2 = 0m`, c

(j)
2,3 = 1m`.

Furthermore, we change the vectors d
(i)
1,2 and d

(i)
2,3 for all i ∈ [Qct] as follows:

d
(i)
1,2 = t(i)

(
1, s(j)A + e(j), s(j)u> + e

(j)
0 +

⌈q
2

⌉
· b(j)0 , s(j)

(
BL − x

(j)
1 ⊗G

)
+ e

(j)
L

)
,

d
(i)
2,3 = t(i)

(
s(j)

(
BR − x

(i)
2 ⊗G

)
+ e

(j)
R

)
.

39

We note that other terms in D
(i)
1 and D

(i)
2 are unchanged. We show in Lemma 5.7 that

|Pr[Ej−1,0]− Pr[Ej−1,1]| ≤ negl(λ).

Gamej−1,2: In this game, we further change d
(i)
1,2 and d

(i)
2,3 for all i ∈ [Qct] as follows:

d
(i)
1,2 = t(i)

(
1, c(i), c

(i)
0 , c

(i)
L

)
, d

(i)
2,3 = t(i) · c(i)

R ,

where c(i) ← Zmq , c
(i)
0 ← Zq, c

(i)
L , c

(i)
R ← Zm`q are freshly chosen for each i. We show in

Lemma 5.8 that
|Pr[Ej−1,1]− Pr[Ej−1,2]| ≤ negl(λ).

Gamej−1,3: This game is the same as Gamej . We show in Lemma 5.9 that

|Pr[Ej−1,2]− Pr[Ej−1,3]| ≤ negl(λ).

Indistinguishability of Hybrids. We next argue that consecutive hybrids are indistinguish-
able.

Lemma 5.7 (Gamej−1,0 ≈c Gamej−1,1). We have |Pr[Ej−1,0]− Pr[Ej−1,1]| ≤ negl(λ).

Proof. We observe that C
(i)
1 �D

(i′)
1 and C

(i)
2 �D

(i′)
2 in Gamej−1,0 are the same as those in

Gamej−1,1 for all the combinations of i, i′ ∈ [Qct]. We can change C
(i)
1 and D

(i′)
1 in Gamej−1,0

to those of Gamej−1,1 in a computationally indistinguishable way by a straightforward reduction
to the function privacy of BIPFE. In the reduction, the reduction algorithm samples msk except
for BIPFE.msk0 and simulates BIPFE secret keys and ciphertexts by the oracle queries. We can

also change C
(i)
2 and D

(i′)
2 using the security of BIPFE again.

Lemma 5.8 (Gamej−1,1 ≈c Gamej−1,2). We have |Pr[Ej−1,1]− Pr[Ej−1,2]| ≤ negl(λ).

Proof. We construct an adversary B against the bilinear KOALA assumption with respect to
certain samplers that are specified later assuming an adversary A that distinguishes the two

games. We first fix the challenge queries {(x(i)
1 , b

(i)
0 , b

(i)
1)}i∈[Qct] and {x(i)

2 }i∈[Qct] and secret key

queries {F (i)}i∈[Qkq] that maximizes the distinguishing advantage of A. This is possible because
the queries are only dependent on the security parameter and the randomness of A, both of
which can be hardwired into A in the non-uniform setting.8

We first consider the sampling algorithm Samp0 that works as follows. In the following,
let BGG+ = (BGG+.Setup,BGG+.KeyGen,BGG+.Enc,BGG+.Dec) be the kpABE scheme by
[BGG+14] that is introduced in Sec. 2.5.

Samp0(1λ, q) : Given the security parameter 1λ and the modulus q, it works as follows.

(a) Run (BGG+.mpk,BGG+.msk)← BGG+.Setup(1λ) for the circuit class C2`(λ),d(λ) and
modulus q.

(b) Run BGG+.sk(i) ← BGG+.KeyGen(BGG+.mpk,BGG+.msk, F (i)) for i ∈ [Qkq].

(c) Output aux := (BGG+.mpk, {BGG+.sk(i)}i∈[Qkq]).

We then define Samp1 as follows:

8This is the only proof in the paper where we need the non-uniform reduction algorithm.

40

Samp1(aux, q) : Given the auxiliary information aux = (BGG+.mpk, {BGG+.sk(i)}i∈[Qkq]) and the
modulus q, it works as follows.

(a) Sample z← Znq , e0 ← χ, e← χm, and ek ← χ̃m for k ∈ [`].

(b) Compute

ψ2`+1 := zA + e ∈ Zmq , ψ2`+2 := zu> + e0 + b
(j)
0 dq/2e ∈ Zq,

For all k ∈ [2`], b ∈ {0, 1}, ψk,b := z(B− bG) + ek ∈ Zmq

(c) Set u(i) :=

(
ψ2`+1, ψ2`+2,

{
ψ
k,x

(j)
1,k

}
k∈[`]

,

{
ψ
k,x

(i)
2,k

}
k∈[`]

)
.

(d) Output {u(i)}i∈[Qct]

We can observe that each u(i) is distributed as a BGG+ ciphertext for message b
(j)
0 and attribute

(x
(j)
1 ,x

(i)
2), even though when we consider the joint distribution of {u(i)}i, the set of vectors is

mutually correlated. This along with the fact that the j-th ciphertext is the challenge ciphertext

(i.e., there is no i and i′ such that F (i′)(x
(j)
1 ,xi2) = 0) imply that each u(i) is pseudorandom

given aux by Sel-INDr security of BGG+ (as per Definition 2.5). Therefore, assuming the bilinear
KOALA assumption with respect to GroupGen, Samp0, and Samp′1, where Samp′1 is defined as
in Lemma 5.5 from Samp1 above9, we have that the following distributions are computationally
indistinguishable:(

G, aux,{
[γ(i)]2, [γ

(i)u(i)]2
}
i∈[Qct]

)
≈c

(
G, aux,{

[γ(i)]2, [v
(i)]2

}
i∈[Qct]

)

where G is chosen by GroupGen(1λ), aux ← Samp0(q), {u(i)}i∈[t] ← Samp1(q, aux), γ(i) ← Zq,
and v(i) ← Zmq for i ∈ [Qct].

To complete the proof, we construct B that distinguishes the above distributions given the ad-
versaryA. At the beginning, given the input, B first parses aux→ (BGG+.mpk, {BGG+.sk(i)}i∈[Qkq]).
B then honestly samples {BIPFE.mski}i∈{1,2} by itself.

Secret Key Queries: It can answer the secret key queries by A by {BGG+.sk(i)}i∈[Qkq].

Ciphertext Queries for Slot 1: For answering the ciphertext queries, the simulation for slot

1 is straightforward. Namely, B samples s(i), e
(i)
0 , e(i), e

(i)
L , and e

(i)
R for i 6= j and generates the

ciphertext ct
(i)
1 for all i ∈ [Qct] as specified in Gamej−1 using BGG+.mpk. Note that s(j), e

(j)
0 ,

e(j), e
(j)
L , and e

(j)
R are not necessary for computing ct

(j)
1 and are undefined at this point.

Ciphertext Queries for Slot 2: B also has to answer ciphertext queries for slot 2. To answer

the i-th ciphertext query for slot 2, B first sets terms d
(i)
1,2 and d

(i)
2,3 as[

d
(i)
1,2,d

(i)
2,3

]
2

:=
[
γ(i),v(i)

]
2
,

where v(i) is either random or v(i) = γ(i)u(i). The computation of [D(i)]2 for the terms other
than the above terms is straightforward using [γ(i)]2 by implicitly setting t(i) := γ(i). It then

computes the ciphertext ct
(i)
2 as in the honest encryption algorithm.

9Thus, matrix V is defined as Eq.(5.2), where vectors {u(i)}i in the matrix are the vectors output by the
Samp1 algorithm above.

41

It can be seen that B simulates Gamej−1,4 if v(i) is random and Gamej−1,3 if v(i) = γ(i)u(i),
where B implicitly sets

s(j) := z, e
(j)
0 := e0, e(j) := e,

(
e

(j)
L , e

(j)
L

)
:= (e1, . . . e2`) .

Therefore, B distinguishes the distributions if A distinguishes the games.

Lemma 5.9 (Gamej−1,2 ≈c Gamej−1,3). We have |Pr[Ej−1,2]− Pr[Ej−1,3]| ≤ negl(λ).

Proof. This follows by considering the same sequence of games that is used for showing
the indistinguishability of Gamej−1,0 and Gamej−1,2, but in the reverse order and with the

difference that b
(j)
0 is replaced by b

(j)
1 . The indistinguishability between the games follows from

the security of BIPFE, LWE, and the bilinear KOALA assumption for the same sampler.

6 Compiling k-ABE to k-PE via Lockable Obfuscation

In this section we describe our compiler to lift k-input ABE to k-input PE. Namely, we construct
k-input predicate encryption using k-input ABE and lockable obfuscation. The conversion
preserves Ada-IND security. The extension of the conversion that preserves strong security is
provided in Section 7.

6.1 Construction

Our construction uses the following building blocks:

1. A secret key encryption scheme SKE = (SKE.Setup,SKE.Enc,SKE.Dec).

2. A Lockable Obfuscator LO = (LO.Obf, LO.Eval) with lock space L = {0, 1}m and input
space X = {0, 1}n.

3. A k-input ABE scheme kABE = (kABE.Setup, kABE.KeyGen, kABE.Enc1, . . . , kABE.Enck,
kABE.Dec) in which the message bit is associated with the last slot, kABE.Enck. We require
k = O(1).

In the construction below, we require the message space of the SKE scheme to be the same
as the lock space L of the lockable obfuscator scheme LO and the message space of kABE
to be the same as the key space of SKE.

We now describe the construction of k-input predicate encryption scheme. Our k-input PE
construction has the same attribute space and the function class as the underlying k-input ABE,
when we consider the function class of NC1 circuits or polynomial-size circuits.

Setup(1λ) : On input the security parameter 1λ, the Setup algorithm does the following:

1. Run (kABE.msk, kABE.pp)← kABE.Setup(1λ).

2. Run SKE.Setup(1λ) k times and obtain secret keys K1,K2, . . . ,Kk.

3. Output msk = (kABE.msk,K1, . . . ,Kk) and pp = kABE.pp.

42

KeyGen(pp,msk, F) : On input the public parameters pp, the master secret key msk =
(kABE.msk,K1, . . . ,Kk) and a circuit F , the KeyGen algorithm does the following:

1. Run kABE.skF ← kABE.KeyGen(pp, kABE.msk, F).

2. Output skF = kABE.skF .

Enc1(pp,msk,x1,m): On input the public parameters pp, master secret key msk =
(kABE.msk,K1, . . . ,Kk), attribute x1 for position 1 and message m, the encryption
algorithm does the following:

1. Sample γ1 ← L and let ct∗1 = SKE.Enc(K1, γ1)

2. Compute ct1 = kABE.Enc1(pp, kABE.msk,x1).

3. Define a function f1[ct1, ct
∗
1] as in Figure 2.

4. Output ct′1 = LO.Obf(1λ, f1[ct1, ct
∗
1],m, γ1).

Enci(pp,msk,xi) for 2 ≤ i ≤ k: On input the public parameters pp, master secret key msk =
(kABE.msk,K1, . . . ,Kk), attribute xi for position i, the encryption algorithm does the
following:

1. Sample a random value γi ← L and let ct∗i = SKE.Enc(Ki, γi).

2. Compute cti =

{
kABE.Enci(pp, kABE.msk,xi) for 2 ≤ i < k

kABE.Enck(pp, kABE.msk,xk,Kk) for i = k
.

3. Define a function fi[cti, ct
∗
i] as in Figure 2.

4. Output ct′i = LO.Obf(1λ, fi[cti, ct
∗
i],Ki−1, γi).

Circuit fi[cti, ct
∗
i] for 1 ≤ i ≤ k

1. Parse input as (ct1, . . . , cti−1, G̃i+1, . . . , G̃k, skF) where ctj is regarded as a slot j ciphertext
of kABE, G̃j is regarded as an obfuscated circuit of LO and skF is regarded as a kABE
secret key.

2. Compute K ′i =

{
LO.Eval(G̃i+1, (ct1, . . . , cti, G̃i+2, . . . , G̃k, skF)) for 1 ≤ i < k

kABE.Dec(pp, skF , ct1, . . . , ctk) for i = k

3. Outputs γ′i ← SKE.Dec(K′i, ct
∗
i).

Figure 2: Circuit Obfuscated by Slot i Encryption for 1 ≤ i ≤ k

Dec(skF , ct
′
1, . . . , ct

′
k) : On input the secret key skF for function F , and kPE ciphertexts

ct′1, . . . , ct
′
k, do the following:

1. Parse ct′1 as an LO obfuscation.

2. Compute and output LO.Eval(ct′1, (ct
′
2, . . . , ct

′
k, skF)).

43

Correctness. To establish correctness, we first prove the following statement:

Claim 6.1. For x1, . . . ,xk such that F (x1, . . . ,xk) = 0, and cti, ct
∗
i , ct

′
i, for 1 ≤ i ≤ k, computed

as per the scheme,

For 2 ≤ i ≤ k, LO.Eval(ct′i, (ct1, . . . , cti−1, ct
′
i+1, . . . , ct

′
k, skF)) = Ki−1.

Proof. We can prove this by induction.
Base case: For i = k, we show that

LO.Eval(ct′k, (ct1, . . . , ctk−1, skF)) = Kk−1

Proof: Since, ct′k = LO.Obf(1λ, fk[ctk, ct
∗
k],Kk−1, γk), from the functionality of LO, fk[ctk, ct

∗
k] is

evaluated on input (ct1, . . . , ctk−1, skF) in the following steps:

1. kABE.Dec(pp, skF , ct1, . . . , ctk) = Kk, from the correctness of kABE.Dec

2. Output SKE.Dec(Kk, ct
∗
k) = γk, from the correctness of SKE.Dec

Since, the output of function fk[ctk, ct
∗
k] matches the lock value in ct′k, LO.Eval(ct′k, (ct1, . . . , ctk−1, skF)) =

Kk−1, from the correctness of LO.

Inductive Step: We show that for 2 ≤ i ≤ k − 1, if

LO.Eval(ct′i+1, (ct1, . . . , cti, ct
′
i+2, . . . , ct

′
k, skF)) = Ki,

then
LO.Eval(ct′i, (ct1, . . . , cti−1, ct

′
i+1, . . . , ct

′
k, skF)) = Ki−1.

Proof: Recall that ct′i = LO.Obf(1λ, fi[cti, ct
∗
i],Ki−1, γi). By LO’s functionality, LO.Eval(ct′i, (ct1,

. . ., cti−1, ct′i+1, . . . , ct
′
k, skF)) first evaluates fi[cti, ct

∗
i] on input (ct1, . . . , cti−1, ct

′
i+1, . . . , ct

′
k, skF)

in the following two steps:

1. LO.Eval(ct′i+1, (ct1, . . . , cti, ct
′
i+2, . . . , ct

′
k, skF)) = Ki, by the induction hypothesis.

2. Output SKE.Dec(Ki, ct
∗
i) = γi, from the correctness of SKE.

Since, the function output matches with the lock value,
LO.Eval(ct′i, (ct1, . . . , cti−1, ct

′
i+1, . . . , ct

′
k, skF)) = Ki−1 from the correctness of LO.Eval.

Finally, we observe that the kPE decryption outputs LO.Eval(ct′1, (ct
′
2, . . . , ct

′
k, skF)), where

ct′1 = LO.Obf(1λ, f1[ct1, ct
∗
1],m, γ1). Hence from the functionality of LO, firstly the function

f1[ct1, ct
∗
1] is evaluated on input (ct′2, . . . , ct

′
k, skF) in the following steps:

1. Compute LO.Eval(ct′2, (ct1, ct
′
3, . . . , ct

′
k, skF)) = K1.

2. Output SKE.Dec(K1, ct
∗
1) = γ1 from the correctness of SKE.

Since, f1[ct1, ct
∗
1] evaluates to γ1, which is the lock value in ct′1, from the correctness of LO.Eval,

we get LO.Eval(ct′1, (ct
′
2, . . . , ct

′
k, skF)) = m as desired.

44

6.2 Security

We prove that the above construction satisfies Ada-IND security of Definition 3.2 via the following
theorem.

Theorem 6.2. Assume LO is a secure lockable obfuscation scheme as per Definition 2.9, that
kABE is a secure k input ABE scheme as per Definition 3.1 and SKE is a secure secret key
encryption scheme. Then, the kPE construction presented above is secure as per Definition 3.2.

Proof. The proof proceeds via a sequence of following games between the challenger and a PPT
adversary A.

Game0: This is the real world.

Game1: In this world, the SKE key Kk encrypted in the kABE ciphertext ctk is replaced with
0.

For a = 2 to k + 1 define:

Gamea.0: In this world,

1. For j ∈ [1, k − (a− 1)], ct′j is computed as in the real world.

2. For j = k − (a− 2),

(a) ctj =

{
kABE.Encj(pp, kABE.msk,xij,b) if j < k (i.e. a > 2)

kABE.Encj(pp, kABE.msk,xij,b,0) if j = k (i.e. a = 2)

(b) ct∗j = SKE.Enc(Kj ,0)

(c) ct′j =

{
LO.Obf(1λ, fj [ctj , ct

∗
j],Kj−1, γj) if j > 1 (i.e. a < k + 1)

LO.Obf(1λ, fj [ctj , ct
∗
j],m

i
b, γj) if j = 1 (i.e. a = k + 1)

3. For j ∈ [k − (a− 3), k], ct′j is generated using LO simulator. In more detail,

(a) ctj =

{
kABE.Encj(pp, kABE.msk,xij,b) if j < k

kABE.Encj(pp, kABE.msk,xij,b,0) if j = k

(b) ct∗j = SKE.Enc(Kj ,0)

(c) ct′j = LO.Sim(1λ, 1|fj [ctj ,ct∗j]|, 1|Kj−1|)

Gamea.1: This is same as Gamea.0, except the following change: In this world, ct′k−(a−2) is
generated using LO simulator.

Indistinguishability of Hybrids. We now show that the consecutive games are indistin-
guishable. We let Ex denote the event that the adversary A outputs correct guess for the
challenge bit b at the end of Gamex.

Claim 6.3. Assume that kABE satisfies Ada-IND security (Definition 3.1). Then, Game0 and
Game1 are computationally indistinguishable. That is,

|Pr[E0]− Pr[E1]| ≤ negl(λ).

Proof. We show that if A can distinguish between Game0 and Game1 with non-negligible
probability then there exists an adversary B who can break Ada-IND security of kABE using A.
The reduction is as follows:

45

1. The kABE challenger samples (kABE.msk, kABE.pp)← kABE.Setup(1λ), a bit b′ ← {0, 1}
and sends kABE.pp to B.

2. Upon receiving the public parameters kABE.pp from the kABE challenger, B sets
pp = kABE.pp, samples k SKE keys K1, . . . ,Kk using SKE.KeyGen and invokes A
with pp as public parameters and chooses a bit b ← {0, 1}. B implicitly sets msk =
(kABE.msk,K1, . . . ,Kk).

3. B then responds to key queries and ciphertext queries from A as follows:

Key Queries: B forwards each key query for a function F to kABE challenger and obtains
a secret key kABE.skF . B returns skF = kABE.skF to A.

Ciphertext Queries: Each ciphertext query from A is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xij,0,x
i
j,1) (for slot 1 < j ≤ k)

On receiving a ciphertext query, B does the following:

(a) If the query is for slot 1 ≤ j ≤ k − 1,

• Samples a random value γj ← L and computes ct∗j = SKE.Enc(Kj , γj).

• Sends xij,b, as a ciphertext query to the kABE challenger.

• The kABE challenger returns a ciphertext ctj = kABE.Encj(kABE.pp, kABE.msk,xij,b)
for slot j.

• B defines the function fj [ctj , ct
∗
j] and returns

ct′j =

{
LO.Obf(1λ, fj [ctj , ct

∗
j],m

i
b, γj) if j = 1

LO.Obf(1λ, fj [ctj , ct
∗
j],Kj−1, γj) otherwise

(b) If the query is for slot k

• Samples γk ← L and computes ct∗k = SKE.Enc(Kk, γk).

• Sends (xik,b, (µ
i
0 = Kk, µ

i
1 = 0)) as ciphertext query to the kABE challenger.

• The kABE challenger computes and returns a ciphertext ctk for slot k, computed
as ctk = kABE.Enck(kABE.pp, kABE.msk,xik,b, µ

i
b′).

• B defines function fk[ctk, ct
∗
k] and computes and returns

ct′k = LO.Obf(1λ, fk[ctk, ct
∗
k],Kk−1, γk).

4. In the end, A outputs its guess bit b̂. If b = b̂, then B returns b′′ = 1, else b′′ = 0 to the
kABE challenger.

We can observe that if the bit b′ chosen by kABE challenger is 0, then B simulated Game0, else
Game1 with A. This gives us the advantage of B, against kABE challenger, as |Pr(b′′ = 1|b′ =
0)− Pr(b′′ = 1|b′ = 1)| = |Pr[E0]− Pr[E1]|. Hence, assuming Ada-IND security of kABE, we get

|Pr[E0]− Pr[E1]| ≤ negl(λ).

46

Admissibility of B: Observe that the key queries made by B to the kABE challenger are the
same key queries as made by A to B. Also the attribute in each ciphertext query by B to kABE
challenger is taken from the corresponding ciphertext query by A. Hence, the admissibility of A
implies admissibility of B.

Claim 6.4. Assume that SKE is a CPA secure encryption scheme. Then Game1 and Game2.0

are computationally indistinguishable. That is,

|Pr[E1]− Pr[E2.0]| ≤ negl(λ).

We show that if A can distinguish between Game1 and Game2.0 with non-negligible
probability, then there exists an adversary B who can break CPA security of SKE using A. The
reduction is as follows:

1. The SKE challenger samples K ← SKE.Setup(1λ) and a bit b′ ← {0, 1} and invokes B.

2. Upon being challenged by SKE challenger, B does the following:

(a) Samples (kABE.pp, kABE.msk)← kABE.Setup(1λ) and SKE keys K1, . . . ,Kk−1. Sets
pp = kABE.pp, msk = (kABE.msk, K1, . . . ,Kk−1,Kk), where B implicitly sets Kk to
be the secret key K sampled by the SKE challenger.

(b) Samples a bit b and invokes A with pp.

(c) For each key query for any function F from A, B returns skF ← kABE.KeyGen(pp,
kABE.msk, F).

(d) To answer each ciphertext query which is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xij,0,x
i
j,1) (for slot 1 < j ≤ k),

B does the following:

i. If the query is for slot j < k, B samples γj and computes ctj and ct∗j on its own as

ctj = kABE.Encj(pp, kABE.msk,xij,b), ct
∗
j = SKE.Enc(Kj , γj). Defines fj [ctj , ct

∗
j]

and returns

ct′j =

{
LO.Obf(1λ, f1[ct1, ct

∗
1],mi

b, γ1) if j = 1

LO.Obf(1λ, fj [ctj , ct
∗
j],Kj−1, γj), otherwise

ii. If the query is for slot k

A. B computes ctk = kABE.Enck(pp, kABE.msk,xik,b,0)

B. Samples γk ← L and sends µi0 = γk and µi1 = 0 as challenge messages to the
SKE challenger.

C. SKE challenger returns ct∗k = SKE.Enc(Kk, µ
i
b′).

D. B defines function fk[ctk, ct
∗
k] and returns

ct′k = LO.Obf(1λ, fk[ctk, ct
∗
k],Kk−1, γk)

to A.

(e) In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0 to the SKE
challenger.

47

We can observe that if b′ = 0 then B simulated Game1, else Game2.0. Hence, if A distinguishes
between Game1 and Game2.0, with non negligible probability then B also wins against the
SKE challenger. Assuming CPA security of SKE, we get

|Pr[E1]− Pr[E2.0]| ≤ negl(λ).

Claim 6.5. Assume that LO is a secure lockable obfuscation scheme (Definition 2.9). Then for
2 ≤ a ≤ k + 1, Gamea.0 and Gamea.1 are computationally indistinguishable. That is,

|Pr[Ea.0]− Pr[Ea.1]| ≤ negl(λ).

Proof. Recall that in both the hybrids,

• For j ∈ [1, k − (a− 1)], ct′j is computed as in the real world.

• For j ∈ [k − (a− 3), k], ct′j is generated using LO simulator.

• For j = k − (a− 2), ctj and ct∗j are computed as:

ctj =

{
kABE.Encj(pp, kABE.msk,xij,b), if j < k, (i.e. a > 2)

kABE.Encj(pp, kABE.msk,xij,b,0), if j = k, (i.e. a = 2),

ct∗j = SKE.Enc(Kj ,0)

The only difference between the two hybrids is in the generation of ct′k−(a−2) as following.

Let j = k − (a− 2).

In Gamea.0,

ct′j =

{
LO.Obf(1λ, fj [ctj , ct

∗
j],m

i
b, γj), if j = 1, (i.e. a = k + 1)

LO.Obf(1λ, fj [ctj , ct
∗
j],Kj−1, γj), otherwise

In Gamea.1,

ct′j =

{
LO.Sim(1λ, 1|fj [ctj ,ct∗j]|, 1|m

i
b|), if j = 1, (i.e. a = k + 1)

LO.Sim(1λ, 1|fj [ctj ,ct∗j]|, 1|Kj−1|), otherwise

We show that if A can distinguish between Gamea.0 and Gamea.1 then there exists an
adversary B who can distinguish between LO obfuscated programs and simulated programs, thus
breaking the security of LO. The reduction is as follows:

1. The LO challenger samples b′ ← {0, 1} and starts the game with B. Upon being challenged
by the LO challenger, B does the following:

(a) Samples public parameters and master secret key for kPE as (pp,msk = (kABE.msk,
K1, . . ., Kk))← Setup(1λ) and invokes A with pp. B also samples a bit b.

(b) A issues polynomially many key queries and ciphertext queries, to which B responds
as following.

i. For each key query for a function F from A, B returns skF ← KeyGen(pp,msk, F)
to A.

48

ii. To answer each ciphertext query which is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xij,0,x
i
j,1) (for slot j > 1),

B does the following:

A. If the query is for slot j ∈ [1, k − (a− 1)],

• Samples γj ← L.

• Computes ctj and ct∗j using msk and xij,b as attribute.

• Defines function fj [ctj , ct
∗
j] and returns

ct′j =

{
LO.Obf(1λ, f1[ct1, ct

∗
1],mi

b, γ1), if j = 1

LO.Obf(1λ, fj [ctj , ct
∗
j],Kj−1, γj), otherwise

B. If the query is for slot j ∈ [k − (a− 3), k]

• Computes

ctj =

{
kABE.Encj(pp, kABE.msk,xij,b) if j < k

kABE.Encj(pp, kABE.msk,xij,b,0) if j = k
,

ct∗j = SKE.Enc(Kj ,0) and defines fj [ctj , ct
∗
j].

• Returns ct′j = LO.Sim(1λ, 1|fj [ctj ,ct∗j]|, 1|Kj−1|).

C. If the query is for slot j = k − (a− 2)

• Computes

ctj =

{
kABE.Encj(pp, kABE.msk,xij,b) if j < k

kABE.Encj(pp, kABE.msk,xij,b,0) if j = k
,

ct∗j = SKE.Enc(Kj ,0) and defines fj [ctj , ct
∗
j].

• If j = 1 (i.e. a = k + 1), sends fj [ctj , ct
∗
j],m

i
b, else sends fj [ctj , ct

∗
j],Kj−1

to the LO challenger and receives either an LO obfuscated or a simulated
program ct′j from the LO challenger.

• Returns ct′j to A.

(c) In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0, to LO
challenger.

We can observe that if the LO challenger returned obfuscated programs, then B simulated
Gamea.0, else if LO challenger returned simulated programs, then B simulated Gamea.1 with
A. Hence, if A distinguishes between the two games, then so does B between obfuscated and
simulated programs. Assuming LO is secure, we get

|Pr[Ea.0]− Pr[Ea.1]| ≤ negl(λ).

Claim 6.6. Assume that SKE is a CPA secure encryption scheme. Then for 2 ≤ a ≤ k,
Gamea.1 and Gamea+1.0 are computationally indistinguishable . That is,

|Pr[Ea.1]− Pr[Ea+1.0]| ≤ negl(λ).

Proof. The only difference between the two hybrids is in the computation of ct∗k−(a−1).

In Gamea.1, ct∗k−(a−1) = SKE.Enc(Kk−(a−1), γk−(a−1)), while in Gamea+1.0, ct∗k−(a−1) =

SKE.Enc(Kk−(a−1),0). Hence the indistinguishability of the two hybrids follows from the CPA
security of SKE. The reduction is similar to that in the proof of indistinguishability between
Game1 and Game2.0.

49

Claim 6.7. Pr[Ek+1.1]− 1
2 = 0

Proof. In Gamek+1.1, all the LO, circuits returned as kPE ciphertexts, are simulated using
LO simulator as ct′1 = LO.Sim(1λ, 1|f1[ct1,ct∗1]|, 1|m

i
b|) and ct′j = LO.Sim(1λ, 1|fj [ctj ,ct∗j]|, 1|Kj−1|) for

2 ≤ j ≤ k. Hence, they depend only on the lengths of functions fj [ctj , ct
∗
j], length of message

and length of SKE keys. Length of fj [ctj , ct
∗
j] further depends only on the length of attributes

and messages. Since, these lengths are fixed for the scheme, {ct′j}j∈[k] completely hide the bit b.
Hence, A can do nothing better than a pure guess for bit b in Gamek+1.1.

Applications. The conversion above can be applied to all the multi-input ABE schemes in
this paper. Here, we focus on the applications to the candidate two input ABE scheme from
lattices in Sec. 9 and the candidate three input ABE scheme in Sec. 8. The other schemes will
be discussed in Sec. 7 because they satisfy strong (very selective) security and thus we can apply
the conversion in Sec. 7. A nice property of the PE scheme obtained from the two input ABE
scheme in Sec. 9 is that it can handle any polynomial-size circuits. Besides, we can expect that it
is post-quantum secure, because it does not use pairings and only uses lattice tools. By applying
the conversion to the three input ABE scheme in Sec. 8, we can obtain a three-input PE scheme
that can handle NC1 circuits.

7 Two-Input PE with Stronger Security

In this section we describe our compiler to lift 2-input ABE to 2-input PE that preserves strong
security. The conversion uses lockable obfuscation similarly to Sec. 6. Unlike the conversion in
Sec. 6, we do not know how to extend it to general arity k and it is set to be k = 2 here. The
construction uses the following building blocks:

1. Two instances of 2-input ABE scheme. In one instance the message is associ-
ated with encryption for position 2, while in the other instance, the message is
associated with the encryption for position 1. We represent the two instances as
2ABE = (2ABE.Setup, 2ABE.KeyGen, 2ABE.Enc1, 2ABE.Enc2, 2ABE.Dec) and 2ABE′ =
(2ABE′.Setup, 2ABE′.KeyGen, 2ABE′.Enc1, 2ABE

′.Enc2, 2ABE
′.Dec).

2. A Lockable Obfuscator Obf = (LO.Obf, LO.Eval).

7.1 Construction

Our two-input PE construction has the same attribute space and the function class as the
underlying two-input ABE, when we consider the function class of NC1 circuits or polynomial-size
circuits.

Setup(1λ) : On input 1λ, the Setup algorithm does the following:

1. Run (2ABE.msk, 2ABE.pp)← 2ABE.Setup(1λ) and (2ABE′.msk, 2ABE′.pp)← 2ABE′.Setup(1λ).

2. Output msk = (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).

KeyGen(pp,msk, F) : On input the public parameters pp, the master secret key msk and a
circuit F , the keygen algorithm does the following:

1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).

50

2. Run 2ABE.skF ← 2ABE.KeyGen(2ABE.pp, 2ABE.msk, F) and
2ABE′.skF ← 2ABE′.KeyGen(2ABE′.pp, 2ABE′.msk, F).

3. Output skF = (2ABE.skF , 2ABE
′.skF).

Enc1(pp,msk,x1,m): On input the public parameters, pp, master secret key msk, attribute x1

for position 1 and message m, the encryption algorithm does the following:

1. Parses msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).

2. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk,x1).

3. Sample α←M and compute ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,x1, α).

4. Define a function f1[ct1, ct
′
1], with ct1, ct

′
1 being hardwired (Figure 3).

5. Output ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],m, α).

Circuit f1[ct1, ct
′
1]

1. Parse input as (G̃, sk, sk′) where G̃ is regarded as an obfuscated circuit of LO, and sk and
sk′ are regarded as secret keys of 2ABE and 2ABE′ respectively.

2. Compute r ← LO.Eval(G̃, (ct1, sk)).

3. Output α′ = 2ABE′.Dec(2ABE′.pp, sk′, ct′1, r).

Figure 3: Circuit Obfuscated by Slot 1 Encryption

Enc2(pp,msk,x2):

1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).

2. Sample β ←M.

3. Compute ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,x2, β).

4. Compute ct′2 = 2ABE.Enc′2(2ABE′.pp, 2ABE′.msk,x2).

5. Define a function f2[ct2], with ct2 being hardwired, as in Figure 4.

6. Output ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β).

Circuit f2[ct2]

1. Parse input as (ct1, sk) where ct1 is regarded as a ciphertext of 2ABE for the first slot and
sk is regarded a secret key of 2ABE.

2. Output β′ ← 2ABE.Dec(2ABE.pp, sk, ct1, ct2).

Figure 4: Circuit Obfuscated by Slot 2 Encryption

Dec(skF , ct
′′
1, ct

′′
2) : On input the secret key skF for function F , and 2PE ciphertexts ct′′1 and

ct′′2, do the following:

1. Parse skF as (2ABE.skF , 2ABE
′.skF) .

2. Output LO.Eval(ct′′1, (ct
′′
2, 2ABE.skF , 2ABE

′.skF).

51

Correctness. Recall that ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],m, α). We claim that

f1[ct1, ct
′
1](ct′′2, 2ABE.skF , 2ABE

′.skF) = α.

This may be argued via the following steps:

1. Recall that ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β) and f2[ct2](ct1, 2ABE.skF) = 2ABE.Dec(2ABE.pp,
2ABE.skF , ct1, ct2) = β. The second equality follows by correctness of 2ABE and the fact
that ct1 and ct2 encrypt β under attributes x1,x2. Since ct′′2 has lock value β and message
value ct′2, we have by correctness of LO that LO.Eval(ct′′2, (ct1, 2ABE.skF)) = ct′2.

2. Next, following the description of f1[ct1, ct
′
1] (Figure 3), we evaluate 2ABE′.Dec(2ABE′.skF ,

ct′1, ct′2) and recover α by correctness of 2ABE′ decryption and the construction of ct′1 and
ct′2 as encryptions of α under attributes x1,x2.

Thus, we get that f1[ct1, ct
′
1](ct′′2, 2ABE.skF , 2ABE

′.skF) = α. Now, by correctness of LO, we
have that LO.Eval(ct′′1, (ct

′′
2, 2ABE.skF , 2ABE

′.skF)) = m as desired. This concludes the proof.

7.2 Security

We prove security via the following theorem.

Theorem 7.1. Assume LO is a secure lockable obfuscation scheme as per Definition 2.9 and that
2ABE and 2ABE′ are secure two input ABE schemes satisfying strong security as in Definition 3.3
(resp., strong very selective security as in Definition 3.5). Then, the 2PE construction presented
above satisfies strong security as per Definition 3.4 (resp., strong very selective security as in
Definition 3.5).

Proof. This proof is more complex than that of Theorem 6.2, because the adversary can
make queries for decrypting keys, in which case contents of obfuscated circuits can be revealed.
However, as we argue, this leakage does not compromise the security of messages that must
remain hidden, because for their corresponding 2ABE ciphertexts, the protecting obfuscators will
remain “locked”. Moreover, the “unlocked” LO output 2ABE ciphertexts ct′2 which cannot be
used to decrypt slot 1 ciphertexts by admissibility of the adversary, and hence do not compromise
security of the hidden instances. This is in contrast to the previous scheme, where a global
secret SKE key K was being output after successful inner 2ABE decryption.

We focus on the case of strong security below. The case of strong very selective security is
similar and simpler. The proof proceeds via a sequence of games between the challenger and a
PPT adversary A.

Game0: This is the real world.

Game1: This world differs from the previous in the way slot 2 ciphertext queries are answered.
Let us recall that each ciphertext query is of the form{

(xi1,0,x
i
1,1), (mi

0,m
i
1) (for slot 1), or

(xi2,0,x
i
2,1) (for slot 2).

Let S be the set of all those slot 2 ciphertext queries in which xi2,0 6= xi2,1. Then in this
world, for queries in S, we replace the value β encrypted in 2ABE ciphertext, ct2 with 0.

Game2: This world differs from the previous in the following ways. In this world, in response
to queries in set S, ct′′2 is simulated using the LO simulator.

52

Game3: This world differs from the previous in the following ways. Let S ′ be the set of slot
1 ciphertext queries satisfying one of the following two conditions: (i) xi1,0 6= xi1,1 (ii)

(xi1,0 = xi1,1) and (mi
0 6= mi

1). In this world, ct′1 encrypts 0 instead of α for all queries in
S ′.

Game4: This world differs from the previous in the following ways. In this world, in response
to queries in set S ′, ct′′1 is simulated using the LO simulator.

Indistinguishability of Hybrids. We now show that the consecutive hybrids are indistin-
guishable. We let Ex denote the event that the adversary A outputs correct guess for the
challenge bit b at the end of Gamex.

Claim 7.2. Assume that 2ABE satisfies strong Ada-IND security (Definition 3.3). Then, Game0

and Game1 are computationally indistinguishable. That is,

|Pr[E0]− Pr[E1]| ≤ negl(λ).

Proof. We show that if A distinguishes between Game0 and Game1 with non-negligible
probability then there exists an adversary B who can break strong Ada-IND security of 2ABE
using A. The reduction is as follows:

1. The 2ABE challenger samples (2ABE.msk, 2ABE.pp) ← 2ABE.Setup(1λ) and b′ ← {0, 1}
and sends 2ABE.pp to B.

2. Upon receiving the public parameters 2ABE.pp from 2ABE challenger, B does the following.

(a) Samples (2ABE′.msk, 2ABE′.pp)← 2ABE′.Setup(1λ) and sets pp = (2ABE.pp, 2ABE′.pp).
It implicitly sets the master secret key as (msk = (2ABE.msk, 2ABE.msk′).

(b) Invokes A with pp as public parameters and chooses a bit b← {0, 1}.

3. B then responds to key queries and challenge queries from A as follows:

Key Queries:

(a) For each key query for a function F , from A, B makes a key query for F to 2ABE
challenger and receives 2ABE.skF from the challenger.

(b) Computes 2ABE′.skF ← 2ABE′.KeyGen(2ABE′.pp, 2ABE′.msk, F).

(c) Sets skF = (2ABE.skF , 2ABE
′.skF) and returns it to A.

Ciphertext Queries: Each ciphertext query from A is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xi2,0,x
i
2,1) (for slot 2),

Upon receiving such a query, B does the following:

(a) For slot 1 queries:

i. Samples α←M.

ii. Sends xi1,b to 2ABE challenger as slot 1 ciphertext query, to which the 2ABE
challenger replies with ct1.

53

iii. Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1b, α)

iv. Defines f1[ct1, ct
′
1] and computes

ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],mi

b, α).

v. Returns ct′′1 to A.

(b) For slot 2 queries:

i. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk,xi2,b)

ii. Samples β ←M.

iii. If xi2,0 6= xi2,1, then sets µi0 = β, µi1 = 0, else sets µi0 = β, µi1 = β.

iv. Sends xi2,b, (µ
i
0, µ

i
1) as ciphertext query for slot 2 to the 2ABE challenger.

v. The 2ABE challenger computes and returns slot 2 ciphertext as

ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b, µ
i
b′),

where b′ is the coin chosen by the challenger, which is fixed throughout the game.

vi. B defines f2[ct2] and computes

ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β).

vii. Returns ct′′2 to A.

4. In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0, to the 2ABE
challenger.

We can observe that if b′ = 0, then B simulated Game0, else Game1. Hence, if A can distinguish
between the two hybrids, then B can win against 2ABE challenger.

Assuming strong Ada-IND security of 2ABE, we get

|Pr[E0]− Pr[E1]| ≤ negl(λ).

Admissibility of B: We show that if A is admissible for strong 2PE security then B is also
admissible for strong 2ABE security. Observe that the key queries issued by B to the 2ABE
challenger are the same key queries as issued by A to B. Consider the challenge queries issued
by B. If for some function F for which key query has been made, F (xj11,b,x

j2
2,b) = 1 then we need

to ensure that µj20 = µj21 (since 2ABE encrypts message in slot 2, the message equality condition
is required for query index j2, i.e. corresponding to slot 2). Since, the ciphertext queries with
the same attributes are issued by A to B, admissibility of A demands that xj22,0 = xj22,1. But,

when xj22,0 = xj22,1, B takes µj20 = µj21 = β, as desired.

Claim 7.3. Assume that LO is a secure lockable obfuscation scheme (Definition 2.9). Then
Game1 and Game2 are computationally indistinguishable. That is,

|Pr[E1]− Pr[E2]| ≤ negl(λ).

Proof. We show that if A can distinguish between Game1 and Game2 with non-negligible
probability then there exists an adversary B who can distinguish between LO obfuscated programs
and simulated programs using A, thus breaking the security of LO. The reduction is as follows:

1. Upon being challenged by LO challenger, B does the following:

54

(a) Samples public parameters and master secret for 2PE as (pp,msk = (2ABE.msk,
2ABE′.msk)) ← Setup(1λ) and invokes A with pp. B also samples a bit b.

(b) A issues polynomially many key queries and ciphertext queries to which B responds
as follows:

Key Queries:
For each key query for a function F from A, B returns skF ← KeyGen(pp,msk, F) to
A.
Ciphertext Queries: To answer each ciphertext query, which is of the form{

(xi1,0,x
i
1,1), (mi

0,m
i
1) (for slot 1), or

(xi2,0,x
i
2,1) (for slot 2),

B does the following:

i. For slot 1 queries:

A. Samples α←M.

B. Computes

ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk,xi1,b)

and
ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1,b, α)

.

C. Defines f1[ct1, ct
′
1] and computes

ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],mi

b, α).

D. Sends ct′′1 to A.

ii. For slot 2 queries:

A. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk,xi2,b).

B. If xi2,0 = xi2,1,

• Samples β ←M
• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b, β).

• Defines f2[ct2] and computes

ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β).

C. Else if xi2,0 6= xi2,1,

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b,0), defines f2[ct2]
and sends it along with ct′2 to the LO challenger.

• The LO challenger returns either an obfuscated circuit or a simulated circuit
which B sets as ct′′2.

D. Sends ct′′2 to A.

(c) In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0, to LO
challenger.

55

We can observe that if the LO challenger returned obfuscated programs, then B simulated
Game1, else if LO challenger returned simulated programs, then B simulated Game2. Hence,
if A distinguishes between the two games, then so does B between obfuscated and simulated
programs. Assuming LO is secure, we get

|Pr[E1]− Pr[E2]| ≤ negl(λ).

Claim 7.4. Assume that 2ABE′ satisfies strong Ada-IND security (Definition 3.3). Then, Game2

and Game3 are computationally indistinguishable. That is,

|Pr[E2]− Pr[E3]| ≤ negl(λ).

Proof. We show that if A can distinguish between Game2 and Game3 with non-negligible
probability then there exists an adversary B who can break strong Ada-IND security of 2ABE′

using A. The reduction is as follows:

1. The 2ABE′ challenger samples (2ABE′.msk, 2ABE′.pp)← 2ABE′.Setup(1λ) and b′ ← {0, 1}
and sends 2ABE′.pp to B.

2. Upon receiving the public parameters 2ABE′.pp from 2ABE′ challenger, B does the following.

(a) Samples (2ABE.msk, 2ABE.pp)← 2ABE.Setup(1λ) and sets pp = (2ABE.pp, 2ABE′.pp).
B implicitly sets msk = (2ABE.msk, 2ABE′.msk).

(b) Invokes A with pp as public parameters and chooses a bit b← {0, 1}.

3. B then responds to key queries and ciphertext queries from A as follows:

Key Queries:

(a) Upon receiving a key query for function F from A, B makes a key query for F to
2ABE′ challenger and receives 2ABE′.skF from 2ABE′ challenger.

(b) Computes 2ABE.skF ← 2ABE.KeyGen(2ABE.pp, 2ABE.msk, F).

(c) Sets skF = (2ABE.skF , 2ABE
′.skF) and returns it to A.

Ciphertext Queries: Each ciphertext query i from A is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xi2,0,x
i
2,1) (for slot 2),

Upon receiving such a query, B does the following:

(a) For slot 1 queries:

i. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk,xi1,b)

ii. Samples α←M.

iii. If the queryi ∈ S ′, i.e.
(xi1,0 6= xi1,1) OR (xi1,0 = xi1,1) and (mi

0 6= mi
1))

• Sets µi0 = α and µi1 = 0 and sends ciphertext query (xi1,b, (µ
i
0, µ

i
1)) to the

2ABE′ challenger.

56

• The 2ABE′ challenger computes and returns slot 1 ciphertext as

ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1,b, µ
i
b′).

iv. Else, if the queryi 6∈ S ′, i.e.
(xi1,0 = xi1,1) and (mi

0 = mi
1)

• Sets µi0 = α and µi1 = α and sends ciphertext query (xi1,b, (µ
i
0, µ

i
1)) to the

2ABE′ challenger.

• The 2ABE′ challenger computes and returns slot 1 ciphertext as

ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1,b, µ
i
b′),

where b′ is the coin chosen by the challenger, which is fixed throughout the
game.

v. B defines f1[ct1, ct
′
1] and computes

ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],mi

b, α).

vi. Sends ct′′1 to A.

(b) For slot 2 queries:

i. Sends ciphertext query xi2,b for slot 2 to the 2ABE′ challenger. The 2ABE′

challenger computes and returns slot 2 ciphertext as

ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk,xi2,b).

ii. If the queryi ∈ S, i.e. (xi2,0 6= xi2,1)

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b,0).

• Defines f2[ct2] and simulates ct′′2 = LO.Sim(1λ, 1|f2[ct2]|, 1|ct′2|).

iii. If the queryi 6∈ S, i.e. (xi2,0 = xi2,1)

• Samples β ←M and computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b, β).

• Defines f2[ct2] and computes ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β).

iv. Sends ct′′2 to A.

4. In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0, to the 2ABE′

challenger.

We can observe that if b′ = 0, then B simulated Game2, else Game3. Hence, if A distinguishes
between the two hybrids, then B wins against 2ABE′ challenger.

Assuming strong Ada-IND security of 2ABE′, we get

|Pr[E2]− Pr[E3]| ≤ negl(λ).

Admissibility of B: We show that if A is admissible for strong 2PE security then B is also
admissible for strong 2ABE′ security. Observe that the key queries issued by B are the same key
queries as issued by A. Now consider the challenge queries issued by B. If there is a function F
for which key has been queried, such that F (xj11,b,x

j2
2,b) = 1 then we need to ensure that µj10 = µj11

(since, 2ABE′ encrypts message in slot 1, the message equality condition is required for query
index j1). Since, the challenge queries for the same attributes are issued by A to B, admissibility
of A demands that xj11,0 = xj11,1 and mj1

0 = mj1
1 . But, in this case, B takes µj10 = µj11 = α, as

desired.

57

Claim 7.5. Assume that LO is a secure lockable obfuscation scheme (Definition 2.9). Then
Game3 and Game4 are computationally indistinguishable. That is,

|Pr[E3]− Pr[E4]| ≤ negl(λ).

Proof. We show that if A can distinguish between Game3 and Game4 with non-negligible
probability then there exists an adversary B who can distinguish between LO obfuscated programs
and simulated programs using A, thus breaking the security of LO. The reduction is as follows:

1. Upon being challenged by LO challenger, B does the following:

(a) Samples public parameters and master secret for 2PE as (pp,msk=(2ABE.msk,
2ABE′.msk))← Setup(1λ) and invokes A with pp. B also samples a bit b.

(b) A issues polynomially many key queries and ciphertext queries to which B responds
as follows:

Key Queries:
For each key query for a function F from A, B returns skF ← KeyGen(pp,msk, F) to
A.

Ciphertext Queries: To answer each ciphertext query, which is of the form{
(xi1,0,x

i
1,1), (mi

0,m
i
1) (for slot 1), or

(xi2,0,x
i
2,1) (for slot 2),

B does the following:

i. For slot 1 queries:

A. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk,xi1,b).

B. If (xi1,0 = xi1,1) and (mi
0 = mi

1),

• Samples α←M.

• Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1,b, α).

• Computes
ct′′1 = LO.Obf(1λ, f1[ct1, ct

′
1],mi

b, α).

C. Else,

• Computes ct′1 = 2ABE′.Enc1(2ABE′.pp, 2ABE′.msk,xi1,b,0) and defines
f1[ct1, ct

′
1].

• Sends f1[ct1, ct
′
1],mi

b to LO challenger.

• The LO challenger returns either an obfuscated or a simulated program,
which B sets as ct′′1.

D. B sends ct′′1 to A.

ii. For slot 2 queries:

A. Computes ct′2 = 2ABE′.Enc2(2ABE′.pp, 2ABE′.msk,xi2,b).

B. If xi2,0 = xi2,1,

• Samples β ←M
• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b, β).

• Defines f2[ct2] and computes

ct′′2 = LO.Obf(1λ, f2[ct2], ct′2, β).

58

C. Else if xi2,0 6= xi2,1,

• Computes ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,xi2,b,0).

• Defines f2[ct2] and simulates

ct′′2 = LO.Sim(1λ, 1|f2[ct2]|, 1|ct′2|).

D. Sends ct′′2 to A.

(c) In the end, A outputs a bit b̂. If b̂ = b, then B returns b′′ = 1, else b′′ = 0, to LO
challenger.

If the LO challenger returned obfuscated programs, then B simulated Game3, else if LO challenger
returned simulated programs, then B simulated Game4. Hence, if A distinguishes between the
two games, then so does B between obfuscated and simulated programs. Assuming LO is secure,
we get

|Pr[E3]− Pr[E4]| ≤ negl(λ).

Claim 7.6. Pr[E4]− 1
2 = 0

Proof. We argue that the adversary cannot obtain any information of b in Game4. We
first observe that the only possible way for the adversary to learn information of b is to
make challenge ciphertext queries, since decrypting ciphertexts do not convey any information
of b. However, responses to challenge ciphertext queries does not convey any information
of b either as we see below. In Game4, a challenge ciphertext for slot 1 is computed as
ct′′1 = LO.Sim(1λ, 1|f1[ct1,ct′1]|, 1|m

i
b|). The distribution of ct′′1 depends only on the lengths of

function f1[ct1, ct
′
1] and message mi

b. We observe that |f1[ct1, ct
′
1]| further depends only on the

lengths of ct1 and ct′1, which in turn depends only on the lengths of the underlying message and
attribute. Similarly, challenge ciphertext for slot 2 is computed as ct′′2 = LO.Sim(1λ, 1|f2[ct2]|, 1|ct′2|).
We can see that ct′′2 does not convey any information of b because of the same reason as above.

Applications. By applying the above conversion to two input ABE scheme with strong security
in Sec. 4, we obtain a candidate construction of two input PE scheme with strong security. A
caveat here is that the resulting scheme cannot necessarily be proven secure under LWE in the
bilinear generic group model as one might expect. The problem here is that our conversion
uses the decryption algorithm of the underlying two input ABE scheme in a non-black box way,
which especially uses the code of the group operations. To claim the security of the resulting
scheme, we heuristically assume that the two-input ABE scheme in Sec. 4 is strongly secure
even in the standard model if we implement the bilinear generic group model with concrete
well-chosen bilinear group and then apply the above conversion. We note that this kind of
heuristic instantiation is widely used in the context of cryptographic hash functions and bilinear
maps. We also mention that we can apply the above conversion to the two input ABE scheme
in Sec. 5. Since the scheme is proven secure in the standard model, the construction does not
suffer from the above problem.

59

8 Three-Input ABE from Pairings and Lattices

In this section, we provide a candidate construction for 3ABE using the structure of [BV22]
and [AY20] as discussed in Section 1. Leveraging ideas from the Brakerski-Vaikuntanathan
construction [BV22], we also obtain a candidate for 2ABE for P – we provide this construction in
Section 9. Our 3ABE scheme supports NC1 circuits. More formally, it supports attribute space
Aλ = {0, 1}`(λ) and any circuit class F = {Fλ}λ that is subclass of {C3`(λ),d(λ)}λ with arbitrary
`(λ) ≤ poly(λ) and d(λ) = O(log λ), where C3`(λ),d(λ) is a set of circuits with input length 3`(λ)
and depth at most d(λ).

8.1 Construction

The construction is defined as follows:

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ), k =
k(λ), noise distribution χ, χ̂ over Z, τ0 = τ0(λ), τ = τ(λ), τ ′0 = τ ′0(λ), τt = τt(λ) and B =
B(λ) as specified in Sec. 8.2. It samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2).
It then sets L := (5`+ 1)m+ 1 and proceeds as follows.

1. Samples BGG+ scheme:

(a) Samples (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

(b) Samples random matrix B = (B1, . . . ,B3`) ← (Zn×mq)3` and a random vector
u← Znq .

2. Samples w0 ← Z∗q , W← (Z∗q)k×L.

3. Samples BV scheme:

(a) Samples C along with its trapdoor C−1
τ ′0

as

(C,C−1
τ ′0

)← TrapGen(12(`+1)n, 1k, q), where

C> = (C2`+1,0‖C2`+1,1‖ . . . ‖C3`,0‖C3`,1‖C3`+1‖C3`+2) ∈ (Zk×nq)2(`+1).

4. Outputs

pp = (A,B,C,u), msk =
(

A−1
τ0 ,C

−1
τ ′0
, w0,W

)
.

KeyGen(pp,msk, F): On input the public parameters pp, master secret key msk and a circuit
F , compute BGG+ function key for circuit F as follows:

1. Compute HF = EvalF(B, F) and BF = BHF .

2. Compute [A‖BF]−1
τ from A−1

τ0 and sample r ∈ Z2m as r> ← [A‖BF]−1
τ (u>).

3. Output the secret key skF := r.

Enc1(pp,msk,x1, µ): On input the public parameters pp, master secret key msk, attribute vector
x1, message bit µ, encryption for slot 1 is defined as follows:

1. Set m = d qK eµ(1, . . . , 1) ∈ Zkq . We define K = 2τt
√
nk. .

2. Samples LWE secret S← Zk×nq and error terms e0 ← χk, E← χk×m, Ei,x1,i ← χ̂k×m,

for i ∈ [`], and Ei,b ← χ̂k×m, for i ∈ [`+ 1, 3`] and b ∈ {0, 1}.
3. For i ∈ [`], computes

ψi,x1,i := S(Bi − x1,iG) + Ei,x1,i ∈ Zk×mq .

60

4. For i ∈ [`+ 1, 3`], b ∈ {0, 1}, computes

ψi,b := S(Bi − bG) + Ei,b ∈ Zk×mq .

5. Computes ψ3`+1 := SA + E ∈ Zk×mq and ψ>3`+2 := Su> + e>0 ∈ Zk×1
q .

6. Sample Ŝ3`+1 ← Zn×mq , ŝ3`+2 ← Znq , {Ŝ2`+i,b}i∈[`],b∈{0,1} ← (Zn×mq)2`, Ê ← χk×m,

ê0 ← χk, Ê2`+i,b ← χ̂k×m for i ∈ [`], b ∈ {0, 1}.

7. Compute all possible “BV encodings” for slot 3 attribute x3 and construct Ĉ1 as
follows:

Ĉ1 = ({ψi,x1i}i∈[`], {ψi,b}i∈[`+1,2`],
b∈{0,1}

, {Ci,bŜi,b + Êi,b + ψi,b}i∈[2`+1,3`],
b∈{0,1}

,

C3`+1Ŝ3`+1 + Ê + ψ3`+1,C3`+2ŝ
>
3`+2 + ê>0 + ψ>3`+2 + m>) ∈ Zk×Lq

Here, we assume that the entries of Ĉ1 are vectorized in some fixed order.

8. Sample tx1 ← Z∗q and

9. Output ct1 = ([tx1w0]1, [tx1Ĉ1 �W]1.

Enc2(pp,msk,x2): On input the public parameters pp, master secret key msk, attribute vector
x2, encryption for slot 2 is defined as follows:

1. Set Ĉ2 = (1k×`m, {ψ̂`+i,x2,i}i∈[`],1k×2`m,1k×m,1k×1), where

ψ̂`+i,b :=

{
1m ∈ Zmq if b = x2,i

0m ∈ Zmq if b 6= x2,i

for i ∈ [`] and b ∈ {0, 1}.

2. Sample tx2 ← Z∗q and output ct2 = ([tx2/w0]2, [tx2Ĉ2 �W]2.

Enc3(pp,msk,x3): Given input the public parameters pp, master secret key msk, attribute
vector x3, encryption for slot 3 is defined as follows:

1. Compute [(C2`+1,x3,1‖ . . . ‖C3`,x3,`
‖C3`+1‖C3`+2)>]−1

τt from C−1
τ ′0

and sample short

vector tx3 such that
tx3C2`+i,x3,i

= 0 for all i ∈ [`], tx3C3`+1 = tx3C3`+2 = 0, as

t>x3
← [(C2`+1,x3,1‖ . . . ‖C3`,x3,`

‖C3`+1‖C3`+2)>]−1
τt (0>).

2. Output ct3 = tx3 .

Dec(pp, skF , ct1, ct2, ct3): On input the public parameters pp, the secret key skF for circuit F
and ciphertexts ct1, ct2 and ct3 corresponding to the three attributes x1, x2 and x3, the
decryption algorithm proceeds as follows:

1. Takes the coordinate-wise pairing between ciphertexts for slot 1 and slot 2:

Computes [v0]T = [tx1tx2]T and [V]T = [tx1tx2Ĉ1 � Ĉ2]T as e(ct1, ct2).

61

2. Expands obtained matrix:
Let x = (x1,x2,x3). Expands [V]T to obtain:

[Vi]T = [tx1tx2ψi,xi]T for i ∈ [`], [Vi,b]T = [tx1tx2ψ
′
i,b]T , where

ψ′i,b =

{
ψi,xi if b = xi

0 if b = 1− xi
, for i ∈ [`+ 1, 2`], b ∈ {0, 1}.

[Vi,b]T = [tx1tx2(ψi,b + Ci,bŜi,b + Êi,b)]T for i ∈ [2`+ 1, 3`], b ∈ {0, 1},

[V3`+1]T = [tx1tx2(C3`+1Ŝ3`+1 + Ê + ψ3`+1)]T ,

[v>3`+2]T = [tx1tx2(C3`+2ŝ
>
3`+2 + ê>0 + ψ>3`+2 + m>)]T .

3. Recovers BGG+ ciphertext components for third slot:

Let us denote Vi,xi as Vi for i ∈ [2`+ 1, 3`].

Computes [tx3Vi]T = [tx1tx2tx3(ψi,xi + Êi,xi)]T for i ∈ [2`+ 1, 3`],

[tx3V3`+1]T = [tx1tx2tx3(ψ3`+1 + Ê)]T and [tx3v
>
3`+2]T = [tx1tx2tx3(ψ>3`+2 + m> +

ê>0)]T .

(because tx3Ci,xi = 0 for i ∈ [2`+ 1, 3`], tx3C3`+1 = tx3C3`+2 = 0)

4. Computes function to be applied on BGG+ ciphertexts:

Computes ĤF,x = EvalFX(F,x,B).

5. Performs BGG+ decryption in the exponent:

(a) Let us denote Vi,xi as Vi for i ∈ [`+ 1, 2`].

(b) Computes [tx3Vi]T for i ∈ [2`].

(c) Forms [tx3Vx]T = [tx3V1‖ . . . ‖tx3V3`]T , r = (r1 ∈ Zmq , r2 ∈ Zmq).

(d) Then computes

[v′]T :=
[(

tx3v
>
3`+2 −

(
tx3V3`+1r

>
1 + tx3VxĤF,xr>2

))]
T

6. Recover exponent via brute force if F (x) = 0:

After simplification, for F (x) = 0, we get v′ = tx1tx2(tx3m
> + e′), where e′ is the

combined error. Find η ∈ [−B,B]∪[−B−dq/2e, B−dq/Ke]∪[−B+dq/Ke, B+dq/2e]
such that [v0]ηT = [v′]T by brute-force search. If there is no such η, output ⊥. In
the correctness, we show that η can be found in polynomial steps. To speed up the
operation, one can employ the baby-step giant-step algorithm.

7. Output 0 if η ∈ [−B,B] and 1, otherwise.

8.2 Parameters and Correctness

We choose the parameters for the 3-ABE scheme as follows:

m = n1.1 log q, k = θ(n` log q), q = 2Θ(λ)

τ0 = n log q logm, τ = m3.1` · 2O(d) τ ′0 = ω(
√

2n(`+ 1) log q log k),

χ = SampZ(3
√
n), χ̂ = SampZ(6

√
nm2), B = `m5n3kττt · 2O(d).

We can set τt to be arbitrary polynomial such that τt > τ ′0. The parameter n may be chosen as
n = λc for some constant c > 1.

62

Correctness To see correctness, we first make following observations:

1. Let x = (x1,x2,x3), then

Ĉ1 � Ĉ2 = ({ψi,xi}i∈[`], {ψ′i,b}i∈[`+1,2`],b∈{0,1}, {Ci,bŜi,b + Êi,b + ψi,b}i∈[2`+1,3`],
b∈{0,1}

,

C3`+1Ŝ3`+1 + Ê + ψ3`+1,C3`+2ŝ
>
3`+2 + ê>0 + ψ>3`+2 + m>),

where

ψ′i,b =

{
ψi,xi if b = xi

0 if b = 1− xi
, for i ∈ [`+ 1, 2`], b ∈ {0, 1}.

Hence, on expanding V, the decryptor obtains

[Vi]T = [tx1tx2ψi,xi]T for i ∈ [2`],

[Vi,b]T = [tx1tx2(Ci,bŜi,b + Êi,b + ψi,b)]T , for i ∈ [2`+ 1, 3`], b ∈ {0, 1},

[V3`+1]T = [tx1tx2(C3`+1Ŝ3`+1 + Ê + ψ3`+1)]T ,

[v>3`+2]T = [tx1tx2(C3`+2ŝ
>
3`+2 + ê>0 + ψ>3`+2 + m>)]

Here, recall that we represent Vi,xi by Vi, for i ∈ [`+ 1, 2`].

2. Recovering {ψ2`+i,x3,i}i∈[`], ψ3`+1 and ψ3`+2:

For i ∈ [`],

tx3V2`+i,x3,i = tx1tx2(tx3(ψ2`+i,x3,i + Ê2`+i,x3,i) + tx3C2`+i,x3,iŜ2`+i,x3,i)

= tx1tx2tx3(ψ2`+i,x3,i + Ê2`+i,x3,i) (because tx3C2`+i,x3,i = 0).

tx3V3`+1 = tx1tx2(tx3(ψ3`+1 + Ê) + tx3C3`+1Ŝ3`+1)

= tx1tx2tx3(ψ3`+1 + Ê) (because tx3C3`+1 = 0)

= tx1tx2tx3(SA + E + Ê).

tx3v
>
3`+2 = tx1tx2(tx3(ψ>3`+2 + m> + ê>0) + tx3C3`+2ŝ

>
3`+2)

= tx1tx2tx3(ψ>3`+2 + m> + ê>0) (because tx3C3`+2 = 0)

= tx1tx2tx3(Su> + m> + (e>0 + ê>0)).

Representing tx3Vi,xi by tx3Vi for i ∈ [2`+ 1, 3`] gives us, for i ∈ [2`+ 1, 3`],

tx3Vi = tx3Vi,xi

= tx1tx2tx3(ψi,xi + Êi,xi)

= tx1tx2tx3(S(Bi − xiG) + Ei,xi + Êi,xi).

63

3. Next, observe that:

tx3Vx = tx3(V1, . . . ,V2`,V2`+1, . . . ,V3`)

= tx1tx2tx3(S(B1 − x1G) + E1,x1 , . . . ,S(B2` − x2`G) + E2`,x2` ,

S(B2`+1 − x2`+1G) + E2`+1,x2`+1
+ Ê2`+1,x2`+1

, . . . ,S(B3` − x3`G) + E3`,x3` + Ê3`,x3`)

= tx1tx2tx3S((B1, . . . ,B3`)− (x1G, . . . , x3`G))

+tx1tx2tx3((E1,x1 , . . . ,E3`,x3`) + (0k×2`m, Ê2`+1,x2`+1
, . . . , Ê3`,x3`))

= tx1tx2tx3S(B− x⊗G) + tx1tx2tx3(Ex + Êx3),

(where Ex = (E1,x1 , . . . ,E3`,x3`) and Êx3 = (0k×2`m, Ê2`+1,x2`+1
, . . . , Ê3`,x3`)).

4. Performing BGG+ evaluation and decryption in the exponent yields:

[v′]T = [(tx3v
>
3`+2 − (tx3V3`+1r

>
1 + tx3VxĤF,xr>2))]T

= [tx1tx2tx3(Su> + m> + e>0 + ê>0)− tx1tx2tx3(SA + E + Ê)r>1

− tx1tx2tx3(S(B− x⊗G) + Ex + Êx3)ĤF,xr>2]T

= [tx1tx2tx3(Su> + m> − S(Ar>1 + (BHF − F (x)G)r>2)

+ tx1tx2tx3(e>0 + ê>0 − (E + Ê)r>1 − (Ex + Êx3)ĤF,xr>2)]T

(∵ (B− x⊗G)ĤF,x = BHF − F (x)G (Lemma 2.13))

Replacing BHF by BF , (r1, r2) by r, tx3(e>0 + ê>0 − (E + Ê)r>1 − (Ex + Êx3)ĤF,xr>2) by
e′ and for F (x) = 0, we get:

[v′]T = [tx1tx2(tx3(Su> + m> − S(A‖BF)r>) + e′)]T

= [tx1tx2(tx3(Su> + m> − Su>) + e′)]T (∵ (A‖BF)r> = u>)

= [tx1tx2(tx3m
> + e′)]T = [v0]

(tx3m
>+e′)

T

Thus, by brute force search we get η = tx3m
> + e′.

5. Bounding error e′:
Recall that we set χ = SampZ(3

√
n), χ̂ = SampZ(6

√
nm2). By the definition of SampZ, we

have ‖e0‖∞, ‖ê0‖∞ ≤ 3n, ‖E‖∞, ‖Ê‖∞ ≤ 3n. and ‖Ei,b‖∞, ‖Êi,b‖∞ ≤ 6nm2 for i ∈ [3`]

and b ∈ {0, 1}, ‖r‖∞ ≤
√
nτ , ‖tx3‖∞ ≤

√
nτt, and ‖ĤF,x‖∞ ≤ m · 2O(d), where the last

inequality follows from Lemma 2.13. Thus, we have

e′ = tx3(e>0 + ê>0 − (E + Ê)r>1 − (Ex + Êx3)ĤF,xr>2)

≤ k
√
nτt(6n+ 6n1.5mτ + 24`m5n1.5τ · 2O(d))

= O(`m5n2kττt · 2O(d)) ≤ B

by our choice of B.

6. Bounding tx3m
>:

When message bit b = 0, then tx3m
>=0. For b = 1, dq/Ke ≤ |tx3m

>| ≤ τt
√
nk · dq/Ke

(where K = 2τt
√
n · k), unless tx3m

> = 0. Thus, for b = 0, η ∈ [−B,B] and for
(b = 1, and B < d q

2K e), η ∈ [−B − dq/2e,−dq/Ke+B] ∪ [dq/Ke −B,B + dq/2e], unless

64

tx3m
> = 0. Observe that |tx3m

>| ∈ {0, d qK e, 2 · d
q
K e, . . . , τt

√
nk · d qK e}. Thus, η can take

only 2B + 4Bτt
√
nk different values. Since, B, k, τt are polynomially bounded, η can be

found by brute force search in polynomial steps.

The probability that tx3m
> = 0 is non-negligible but bounded away from 1 and hence this

may be amplified as discussed below.

Amplifying Correctness. Above, we set m = µ · (q/K)(1, . . . , 1). Note that for correctness,
we require that tx3m

> 6= 0. However, since we are constrained to sample tx3 polynomially
bounded (since the message must be recovered from the exponent), the probability that tx3m

> =
0 is non-negligible, leading to error in correctness. A simple method to amplify correctness
is to simply run the scheme in parallel λ times, and output 0 only if all instances output 0.
This (standard) trick allows to make the correctness error exponentially small, although with
the disadvantage of reducing efficiency. We note that we can do better by replacing the vector
u with λ vectors u1, . . . ,uλ and providing λ secret keys r1, . . . , rλ corresponding to each one.
Similarly, we can provide λ encodings of the message bit, decrypt each one of them and output
0 only if all instances output 0. However, we choose not to clutter the (already complex) formal
description with this added complication for ease of exposition.

8.3 Discussion of Security

Compared to [BV22], we require slightly different security requirements for the encodings (even
though neither works formalize this). First, we need the encoding to retain security even if some
of the masks are stripped off, as long as only one encoding for the same position is revealed. We
expect this to be secure since these stripped off encodings are fresh BGG+ encodings and should
be secure by BGG+ security. Second, in their case, only a single BGG+ secret key is generated
per each instance of BGG+, which is sampled afresh for each ciphertext, while in our case, we
use the same BGG+ instance throughout the system and generate multiple secret keys for it. On
the other hand, in our case, the encodings all live in the exponent, unlike their case, where they
live “downstairs”. Hence, the attacker gets restricted to only linear attacks by GGM whereas
the attacker has more freedom in their construction.

9 Two-Input ABE for Polynomial Circuits using BV22

In this section, we construct candidate two input ABE scheme using the structure of [BV22]
scheme. Unlike other schemes in the paper, the construction below does not employ pairings
and thus is expected to be post-quantum secure. Besides, it can support polynomial-size circuits
with any depth. Formally, it supports attribute space Aλ = {0, 1}`(λ) and any circuit class
F = {Fλ}λ that is subclass of {C2`(λ),d(λ)}λ with arbitrary `(λ) ≤ poly(λ) and d(λ) ≤ poly(λ),
where C2`(λ),d(λ) is a set of circuits with input length 2`(λ) and depth at most d(λ).

9.1 Construction

The construction is defined as follows:

Setup(1λ) : On input 1λ, the setup algorithm defines the parameters n = n(λ), m = m(λ),
k = k(λ), noise distribution χ, χ̂ over Z, τ0 = τ0(λ), τ = τ(λ), τ ′0 = τ ′0(λ), τt = τt(λ) and
B = B(λ) as specified in Sec. 8.2. Let ` be the length of the attributes and d be the
maximum depth of circuits. Then the setup algorithm does the following.

65

1. Samples BGG+ master secret and public keys:

(a) Samples (A,A−1
τ0)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

(b) Samples random matrices B = (B1, . . . ,B2`)← (Zn×mq)2` and a random vector
u← Znq .

2. Samples (C,C−1
τ ′0

)← TrapGen(12n(`+1), 1k, q), where

C> = (C`+1,0‖C`+1,1‖ . . . ‖C2`,0‖C2`,1‖C2`+1‖C2`+2) ∈ (Zk×nq)2`+2.

3. Outputs
pp = (A,B,C,u), msk = (A−1

τ0 ,C
−1
τ ′0

).

Enc1(pp,msk,x1, µ) : On input the public parameters pp, master secret msk, attribute vector
x1 and message bit µ, encryption for slot 1 does the following:

1. Sets m = d qK eµ(1, . . . , 1) ∈ Zkq . We define K = 2τt
√
nk.

2. Samples a random secret matrix S← Zk×nq and error vectors/matrices as e0 ← χk,

E ← χk×m, Ei,x1,i ← χ̂k×m for i ∈ [`], and Ei,b ← χ̂k×m for i ∈ [` + 1, 2`] and
b ∈ {0, 1}.

3. Computes
ψi,x1,i = S(Bi − x1,iG) + Ei,x1,i for i ∈ [`],

ψi,b = S(Bi − bG) + Ei,b for i ∈ [`+ 1, 2`], b ∈ {0, 1},

ψ2`+1 = SA + E, ψ>2`+2 = Su> + e>0 .

4. For i ∈ [`+ 1, 2`], b ∈ {0, 1}, samples

Ŝi,b ← Zn×mq , Ŝ2`+1 ← Zn×mq , ŝ2`+2 ← Znq ,

Êi,b ← χ̂k×m, Ê← χk×m, ê0 ← χk.

5. Computes ψ̂i,b = Ci,bŜi,b + Êi,b + ψi,b for i ∈ [`+ 1, 2`], b ∈ {0, 1},

ψ̂2`+1 = C2`+1Ŝ2`+1 + Ê + ψ2`+1, ψ̂>2`+2 = C2`+2ŝ
>
2`+2 + ê>0 + ψ>2`+2 + m>.

6. Outputs ct1 = ({ψi,x1,i}i∈[`], {ψ̂i,b}i∈[`+1,2`],b∈{0,1}, ψ̂2`+1, ψ̂2`+2).

Enc2(pp,msk,x2): On input the public parameters pp, master secret key msk and an attribute
vector x2, encryption for slot 2 is defined as follows:

1. Computes [(C2`+1‖C2`+2‖C`+1,x2,1‖ . . . ‖C2`,x2,`)
>]−1
τt from C−1

τ ′0
and samples a short

vector tx2 such that

tx2(C2`+1‖C2`+2‖C`+1,x2,1‖ . . . ‖C2`,x2,`) = 0 mod q as

t>x2
← [(C2`+1‖C2`+2‖C`+1,x2,1‖ . . . ‖C2`,x2,`)

>]−1
τt (0).

2. Returns ct2 = tx2 .

66

KeyGen(pp,msk, F) : On input the public parameters pp, master secret key msk and a function
F , the keygen algorithm does the following.

1. Generates BGG+ function key:

(a) Computes HF = EvalF(B, F) and BF = BHF .

(b) Computes [A‖BF]−1
τ from A−1

τ0 and samples r ∈ Z2m

as r> ← [A‖BF]−1
τ (u>).

2. Returns skF = r.

Dec(pp, skF , ct1, ct2) : On input the public parameters pp, key skF = r, and slot 1 and slot 2
ciphertexts ct1, ct2, the decryption algorithm does the following.

1. Parses the public parameters pp as

(A,B,C,u)

and the ciphertexts for slot 1 and slot 2 as

ct1 = ({ψi,x1,i}i∈[`], {ψ̂i,b}i∈[`+1,2`],b∈{0,1}, ψ̂2`+1, ψ̂2`+2), ct2 = tx2 .

2. Computes

tx2V = tx2(ψ1,x1,1‖ . . . ‖ψ`,x1,`‖ψ̂`+1,x2,1‖ . . . ‖ψ̂2`,x2,`‖ψ̂2`+1‖ψ̂>2`+2).

3. Expands tx2V to obtain

tx2Vi,x1,i = tx2ψi,x1,i for i ∈ [`], tx2V`+i,x2,i = tx2ψ̂`+i,x2,i for i ∈ [`],

tx2V2`+1 = tx2ψ̂2`+1, tx2v
>
2`+2 = tx2ψ̂

>
2`+2.

4. Forms r = (r1 ∈ Zmq , r2 ∈ Zmq) and x = (x1,x2).

Let,
(V1,x1‖ . . . ‖V2`,x2`) = Vx.

5. Computes ĤF,x = EvalFX(F,x,B).

6. Computes
v = (tx2v

>
2`+2 −

(
tx2V2`+1r

>
1 + tx2VxĤF,xr>2)

)
.

7. Outputs 0 if v ∈ [−B,B] and 1, otherwise.

Correctness: To see correctness, we first make following observations:

1. Let x = (x1,x2).

On expanding tx2V, the decryptor obtains, for i ∈ [`],

67

tx2Vi,x1,i = tx2ψi,x1,i

= tx2S(Bi − x1,iG) + tx2Ei,x1,i .

tx2V`+i,x2,i = tx2ψ̂`+i,x2,i

= tx2(C`+i,x2,i
Ŝ`+i,x2,i + Ê`+i,x2,i + ψ`+i,x2,i

)

= tx2S(B`+i − x2,iG) + tx2(E`+i,x2,i + Ê`+i,x2,i).

tx2V2`+1 = tx2ψ̂2`+1

= tx2(C2`+1Ŝ2`+1 + Ê + ψ2`+1)

= tx2SA + tx2(E + Ê).

tx2v
>
2`+2 = tx2ψ̂

>
2`+2

= tx2(C2`+2ŝ
>
2`+2 + ê>0 + ψ>2`+2 + m>)

= tx2(Su> + m>) + tx2(e>0 + ê>0).

2. Next, observe that:

tx2Vx = tx2(V1, . . . ,V`,V`+1, . . . ,V2`)

= tx2S(B− x⊗G) + tx2(Ex + Êx2),

where Ex = (E1,x1 , . . . ,E2`,x2`) and Êx2 = (0k×`m, Ê`+1,x`+1
, . . . , Ê2`,x2`).

3. Finally, we get,

v = tx2v
>
2`+2 − (tx2V2`+1r

>
1 + tx2VxĤF,xr>2)

= tx2(Su> + m> − S(Ar>1 + (BHF − F (x)G)r>2))

+ tx2(e>0 + ê>0 − (E + Ê)r>1 − (Ex + Êx2)ĤF,xr>2)

= tx2(Su> + m> − S(A‖BF)r>) + e′

= tx2(Su> + m> − Su>) + e′

= tx2m
> + e′

where e′ = tx2(e>0 + ê>0 − (E + Ê)r>1 − (Ex + Êx2)ĤF,xr>2).

4. As discussed in section 8.2, the error e′ is bounded by O(`m5n2kττt2
O(d)), and txm> = 0

when b = 0 and txm> ≤ τt
√
nk · d q

2τt
√
nk
e for b = 1. Thus, for b = 0, v ∈ [−B,B] and for

(b = 1, and B < q
4k
√
nτt

), v /∈ [−B,B] unless txm> = 0. The probability that txm> = 0 is

non-negligible but bounded away from 1 and hence this may be amplified as discussed in
section 8.2.

68

Acknowledgement This work was partly supported by the DST “Swarnajayanti” fellowship,
Cybersecurity Center of Excellence, IIT Madras, National Blockchain Project, European Union
Horizon 2020 Research and Innovation Program Grant 780701, BPIFrance in the context of the
national project RISQ (P141580), and the ANR AMIRAL project (ANR-21-ASTR-0016). The
third author was partially supported by JST AIP Acceleration Research JPMJCR22U5 and
JSPS KAKENHI Grant Number 19H01109, Japan.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, 2010.

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to
multi-client inner-product functional encryption. In ASIACRYPT, 2019.

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner.
Decentralizing inner-product functional encryption. In PKC, 2019.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-
input functional encryption for inner products: Function-hiding realizations and
constructions without pairings. In CRYPTO, 2018.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt,
2011.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
techniques for bootstrapping and instantiation. In Eurocrypt, 2019.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input
inner-product functional encryption from pairings. In EUROCRYPT, 2017.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional
encryption from pairings. In CRYPTO, 2021.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO, 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai.
Indistinguishability obfuscation without multilinear maps: iO from LWE, bilinear
maps, and weak pseudorandomness. In CRYPTO, 2019.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Eurocrypt, 2014.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption
from lwe and pairings in the standard model. In TCC, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings
and lwe. In EUROCRYPT, 2020.

69

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay.
Practical functional encryption for quadratic functions with applications to predicate
encryption. In CRYPTO, 2017.

[BFF+14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,
and Benedikt Schmidt. Automated analysis of cryptographic assumptions in generic
group models. In CRYPTO, 2014.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT, 2015.

[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and Daniel
Wichs. Non-trivial witness encryption and null-io from standard assumptions. In
SCN, 2018.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. FOCS, 2015.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe: Unbounded
attributes and semi-adaptive security. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO, 2016.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption
and succinct ciphertext policy abe. In ITCS, 2022.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

[BW19] Ward Beullens and Hoeteck Wee. Obfuscating simple functionalities from knowledge
assumptions. In IACR International Workshop on Public Key Cryptography, 2019.

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
ASIACRYPT, 2018.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, 2010.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In CRYPTO, 2015.

70

[CW14] Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved
delegation for boolean formula. In SCN, 2014.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for
inner product with full function privacy. In PKC, 2016.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded)
multi-input inner product functional encryption from the k-Linear assumption. In
PKC, 2018.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In EUROCRYPT, 2014.

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability
obfuscation from simple-to-state hard problems: New assumptions, new techniques,
and simplification. In EUROCRYPT, 2021.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS,
2017.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM CCS, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
ABE for branching programs. In ASIACRYPT, 2015.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based
encryption for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In Crypto, 2015.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials over r to build io. In EUROCRYPT, 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In STOC, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn
over large fields, dlin, and constant depth prgs. In EUROCRYPT, 2022.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, 2008.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC,
2012.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT, 2016.

71

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
PRGs. In Crypto, 2017.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, 2010.

[LT19] Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions
in the standard model from LWE. In ASIACRYPT, 2019.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, 2016.

[LW11] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based
encryption. In Eurocrypt, pages 547–567, 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based
encryption: Achieving full security through selective techniques. In Crypto, 2012.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In IMACC, 2005.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Eurocrypt, 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key fhe. In EUROCRYPT, 2016.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In CRYPTO, pages
191–208, 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In EUROCRYPT, 2012.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009.

[SBC+07] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In SP, 2007.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Eurocrypt, 1997.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. In ASIACRYPT, 2019.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In
CRYPTO, 2019.

[Wat12] Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC, 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In FOCS, 2017.

72

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Single User Attribute Based Encryption
	Lockable Obfuscation
	Batch Inner Product Functional Encryption
	Lattice Preliminaries
	kpABE Scheme by Boneh et al.
	Bilinear Map Preliminaries

	Multi-Input Attribute Based and Predicate Encryption
	Strong Security for k-ABE and k-PE
	Generalization to Multi-Slot Message Scheme

	Two-Input ABE for NC1 from Pairings and LWE
	Construction
	Security

	Two-Input ABE for NC1 in Standard Model
	Assumption
	Construction
	Security

	Compiling TEXT to TEXT via Lockable Obfuscation
	Construction
	Security

	Two-Input PE with Stronger Security
	Construction
	Security

	Three-Input ABE from Pairings and Lattices
	Construction
	Parameters and Correctness
	Discussion of Security

	Two-Input ABE for Polynomial Circuits using BV22
	Construction

