
New Unbounded Verifiable Data Streaming for
Batch Query with Almost Optimal Overhead

Jiaojiao Wu1, Jianfeng Wang1,2, Xinwei Yong1,
Xinyi Huang3, and Xiaofeng Chen1

1 School of Cyber Engineering, Xidian University,
Xi’an, China

{jiaojiaowujj,xwyong}@stu.xidian.edu.cn, {jfwang,xfchen}@xidian.edu.cn
2 Zhengzhou Xinda Institute of Advanced Technology,

Zhengzhou, China
3 Fujian Provincial Key Laboratory of Network Security and Cryptology, College of

Computer and Cyber Security, Fujian Normal University,
Fuzhou, China

xyhuang81@gmail.com

Abstract. Verifiable Data Streaming (VDS) enables a resource-limited
client to continuously outsource data to an untrusted server in a sequen-
tial manner while supporting public integrity verification and efficient
update. However, most existing VDS schemes require the client to gen-
erate all proofs in advance and store them at the server, which leads to
a heavy computation burden on the client. In addition, all the previous
VDS schemes can perform batch query (i.e., retrieving multiple data en-
tries at once), but are subject to linear communication cost l, where l is
the number of queried data. In this paper, we first introduce a new cryp-
tographic primitive named Double-trapdoor Chameleon Vector Commit-
ment (DCVC), and then present an unbounded VDS scheme VDS1 with
optimal communication cost in the random oracle model from aggregat-
able cross-commitment variant of DCVC. Furthermore, we propose, to
our best knowledge, the first unbounded VDS scheme VDS2 with optimal
communication and storage overhead in the standard model by integrat-
ing Double-trapdoor Chameleon Hash Function (DCH) and Key-Value
Commitment (KVC). Both of our schemes enjoy constant-size public key.
Finally, we demonstrate the efficiency of our two VDS schemes with a
comprehensive performance evaluation.

Keywords: Verifiable data streaming · Data integrity · Batch query ·
Optimal overhead.

1 Introduction

With the rapid development of IoT, 5G and cloud computing, a growing num-
ber of devices collect continuous and never-ending data streams and tend to
outsource massive data streams to cloud servers. While it brings in inherent ad-
vantages such as ease of maintenance, convenient access, and lower costs, data

2 Wu et al.

outsourcing also results in data integrity concerns due to the untrusted cloud
servers. Traditional solutions, such as Merkle Hash Tree (MHT) and Verifiable
Database (VDB), can guarantee the integrity of the outsourced database and
support data updates. However, these approaches either require frequent up-
dates to the public verification key as data is appended or have an upper bound
on the size of the database.

Verifiable Data Streaming (VDS), initiated by Schröder and Schröder [14],
enables a resource-limited client to outsource a (potentially unbounded) data
stream D = (d1, d2, . . .) to an untrusted server while supporting public integrity
verification and efficient update. In particular, the public verification key remains
unchanged as data entries are continuously appended to the database. However,
their VDS scheme sets a prior upper bound on the database size.

Recently, a line of research works [11,14,15,19] got rid of the upper bound
and these schemes can be categorized into two different types: tree-based un-
bounded VDS scheme [11,14,15] and signature-based unbounded VDS scheme
[11,19]. However, most practical scenarios require databases to support batch
query that retrieves multiple data entries at once. The first type of unbounded
VDS schemes [11,14,15], constructed by tree-based authentication data struc-
tures, can perform batch query, but are subject to linear communication cost
l, where l is the number of queried data. The second type of unbounded VDS
scheme [19] significantly reduces the query communication cost by using BLS
signature and RSA accumulator. Concretely, this scheme can aggregate signa-
tures to a single value relying on homomorphic properties of BLS signature and
generate a constant-size non-membership witness for these signatures using a
batching technique of RSA accumulator [3]. Nevertheless, the size of the auxil-
iary proof information (i.e., signature identifiers) is linear in the size of a batch
query, which cause high communication costs. In addition, most existing VDS
schemes [11,14,15,19] require that the client generates all proofs in advance and
stores them at the server for subsequent integrity verification, which leads to
a heavy computation burden on the client and huge storage overhead on the
server, respectively. To this end, a naive solution is to transfer the proof genera-
tion from the client to the server. However, this approach may suffer from a key
exposure problem or even fail to support the integrity verification. Therefore,
it is still challenging to design a secure and efficient unbounded VDS scheme
supporting batch queries.
Our Contributions. In this paper, we put forward two new unbounded VDS
schemes VDS1 and VDS2 for batch query with almost optimal overhead in ran-
dom oracle model and standard model, respectively. Both of our schemes enjoy
constant-size public key. A comprehensive comparison of our schemes with previ-
ous works is shown in Table 1. In detail, our main contributions are summarized
as follows.

• We introduce a new cryptographic primitive, Double-trapdoor Chameleon
Vector Commitment (DCVC), which allows us to transfer the computation of
proof generation from the client to the server without key exposure to reduce
client computation and server storage. Then we present an unbounded VDS

New Unbounded VDS for Batch Query with Almost Optimal Overhead 3

Table 1. Comparison with existing VDS schemes

Scheme [14] [15] CVC [11] ACC [11] VADS [19] VDS1 VDS2

Unbounded ✗ ✓ ✓ ✓ ✓ ✓ ✓

Standard Model ✓ ✗ ✓ ✓ ✗ ✗ ✓

Size of Public Key O(1) O(1) O(q2) O(u) O(1) O(1) O(1)

Server Storage O(m) O(n) O(qn) O(n+u) O(n+u) O(n) O(1)

Communication
|π| O(log2m) O(log2n) O(logqn) O(1) O(1) O(1) O(1)

|πb| O(l·log2m)O(l·log2n) O(l·logqn) O(l) O(l) O(1) O(1)

Computation

Append O(log2m) O(log2n) O(1)† O(1) O(1) O(1) O(1)

Query O(log2m) O(log2n) O(logqn) O(u) O(1)‡ O(logqn) O(n)

Verify O(log2m) O(log2n) O(logqn) O(1) O(1) O(logqn) O(1)

Update O(log2m) O(log2n) O(q·logqn) O(1) O(1) O(logqn) O(1)

Note: m denotes the maximum database size. n is the current database size. u is the number of
updates. l is the number of queried data in a batch query. q denotes the number of branches of a
q-ary tree. |π| is the proof size of a single query. |πb| denotes the proof size of a batch query. †: In
the CVC-based scheme [11], the server is required to perform an additional proof update with O(1)
computational complexity after the client appends a data entry. ‡: In the recently proposed scheme
[19], the query process contains an extended Euclidean algorithm with logarithmic time complexity.

scheme VDS1 with optimal communication cost in the random oracle model
from a variant of DCVC with aggregatable cross-commitment.

• We explore a new approach to construct an efficient unbounded VDS scheme
VDS2 by leveraging Double-trapdoor Chameleon Hash Function (DCH) and
Key-Value Commitment (KVC). To the best of our knowledge, our scheme
VDS2 is the first unbounded VDS scheme with optimal communication cost
and server storage in the standard model .

• We implement our schemes VDS1 and VDS2 and perform a comprehensive
evaluation and comparison. The results show that VDS1 and VDS2 are effi-
cient in terms of communication cost, storage cost, and computation cost.

1.1 Related Work

Schröder and Schröder [14] introduced Verifiable Data Streaming (VDS) and pre-
sented the first VDS scheme based on Chameleon Authentication Tree (CAT).
Their proposed scheme sets a fixed upper bound m on the database size, and
the query communication and computation are logarithmic in this upper bound
m. After that, Schröder and Simkin [15] put forward the first unbounded VDS
scheme in the random oracle model to break the upper bound. Subsequently,
Krupp et al. [11] proposed two unbounded VDS schemes in the standard model.
The first scheme is constructed on Chameleon Vector Commitment (CVC) and
a tree structure with logarithmic query communication. The second scheme is
based on bilinear-map accumulator and signature scheme and has constant-size
query communication, but the query computation is linear in the number of up-
dates. However, all the previous VDS schemes are evaluated in a single query,
and for batch query, the query communication of these scheme is increasing lin-
early with the number of queried data. Very recently, Wei et al. [19] presented
an unbounded VDS scheme with data integrity auditing (VADS) in the random

4 Wu et al.

Table 2. Summary of notations

Notation Meaning

λ The security parameter

negl(λ) A negligible function

q The branching number of the tree

pp The public parameter

td1, td2 The double trapdoors of DCVC

cnt The data append counter

f A pseudorandom function

C The commitment value

mi The i-th message of the vector (m1, . . . ,mn)

m⃗I The subvector of the vector (m1, . . . ,mn)

di The i-th data entry of data streaming

d⃗I The queried data entries in a batch query

I The position set of queried data entries in a batch query

|I| The number of queried data entries in a batch query

Ch The double-trapdoor chameleon hash value

oracle model by using BLS signature and RSA accumulator. This scheme sig-
nificantly reduces the batch query communication, but it is still not optimal for
batch query.

In addition, other works to extend VDS, explore many practical applications,
such as integrity preservation and range query. Xu et al. [21] and Sun et al. [17]
considered privacy-preserving data integrity verification in VDS, while Chen et
al. [6] and Miao et al. [13] proposed efficient integrity preservation schemes for
data streaming. Tsai et al. [18] and Xu et al. [20] developed verifiable range
query in data streaming. Most VDS schemes and their extensions require the
client to generate all proofs in advance and store them at the server, which leads
to heavy computation and storage burden on the client and server, respectively.

Therefore, it is interesting to explore new approaches to designing unbounded
VDS scheme for batch query with optimal query communication and server
storage in the standard model.

2 Preliminaries

In this section, we first introduce the notations used in the following (as shown
in Table 2) and briefly review the hardness assumptions and cryptography tools
used in this work.

2.1 Hardness Assumption

Definition 1 (Strong RSA Problem). Given an RSA modulus N = pq and a
random value g ∈ Z∗N , where p and q are two distinct prime number. The strong
RSA assumption holds, if for any probabilistic polynomial-time (PPT) adversary
A and a security parameter λ the probability of outputting a tuple (y, e) s.t. ye = g
mod N is negligible, namely,

Pr[A(N, g)→ (y, e) : ye = g mod N] ≤ negl(λ).

New Unbounded VDS for Batch Query with Almost Optimal Overhead 5

2.2 Shamir’s Trick

Shamir’s trick [16] is a method to compute the xy-root of g ∈ Z∗N without know-
ing the group order ϕ(N), where x, y ∈ Z with gcd(x, y) = 1. Concretely, given an
x-root and a y-root of g ∈ Z∗N , i.e., g1/x mod N and g1/y mod N , one can com-
pute u, v s.t. ux+vy = 1 using the extended Euclidean algorithm and then com-

pute the xy-root of g as g1/xy = g
ux+vy

xy = g
u
y + v

x = (g1/y)u(g1/x)v mod N . We
often denote performing a Shamir’s trick as g1/xy ← ShamirTrick(g1/x, g1/y, x, y).

2.3 Double-trapdoor Chameleon Hash Function

A Double-trapdoor Chameleon Hash Function (DCH) [8,9] is a probabilistic
hash function with collision resistance, which allows one holding hash trap-
doors to find collisions. In particular, a DCH scheme has double hash trapdoors
including the long-term and one-time trapdoors, and the long-term trapdoor
is never exposed. The DCH scheme in [8] consists of the following algorithms
DCH = (DCHKGen,DCHTGen, DCH,DCHCol):

• DCHKGen(1λ): It takes a security parameter λ as input, chooses at random

a λ-bit safe prime p s.t. q
def
= p−1

2 is also a prime, picks x ∈R Z∗q and g ∈ Z∗p
with prime order q, and computes Y = gx mod p. Finally, it outputs the
public parameters pp = (p, q, g) and a long-term hash/trapdoor key pair
(Y, x). The message space isM = Zq.

• DCHTGen(pp): It chooses at random k ∈R Z∗q , computes K = gk mod p, and
outputs a one-time hash/trapdoor key pair (K, k).

• DCHpp(Y,K,m, r): It takes a message m, a random element r ∈ Zq and
the long-term/one-time public hash keys (Y,K), and outputs a hash value
DCh(m, r) = (KY)mgr mod p.

• DCHColpp(x, k,m, r,m′): It takes a message m, a random element r, another
message m′ and the long-term/one-time trapdoors (x, k), and finally outputs
a collision r′ = r + (k + x)(m−m′) mod q, s.t. DCh(m, r) = DCh(m′, r′).

2.4 Key-Value Commitment

A Key-Value Commitment (KVC) [1] is a cryptographic primitive, which allows
one to commit key-value tuples {(k1, v2), (k2, v2), . . . } and to later open the
commitment at any key, and supports adding new key-value tuples and updating
the old value to a new one at an existing key. The commitment size and the
proof size are independent of the number of the tuples 1. The KVC scheme in [1]
consists of the following algorithms KVC = (KGen, KAppend, KUpdate, KOpen,
KVer):

• KGen(1λ, l): It takes a security parameter λ and an integer l ∈ N as in-
put, and chooses two λ/2-bit primes p1 and p2 at random, sets N = p1p2,

1 In this work, we simply consider that the keys are integers {1, 2, . . . }.

6 Wu et al.

picks g∈Z∗N , determines a deterministic collision-resistant function PrimeGen
that maps integers to l+1-bit primes, initials the commitment C ← (1, g)
and the auxiliary information aux ← ∅. Finally, it outputs (pp, C, aux) ←
((N, g,PrimeGen), (1, g), ∅). The message space isM = {0, 1}l.
• KAppendpp(C, i,mi, aux): It takes C=(C1, C2), a new message mi, its posi-
tion i and the auxiliary information aux, updates C ← (C1

ei ·C2
mi mod N,

C2
ei mod N) where ei ← PrimeGen(i), and appends (i,mi) into aux, i.e.,

aux← aux ∪ {(i,mi)}. Finally, it outputs the updated C and aux.
• KUpdatepp(C, i,mi,m

′
i, aux): It takes C = (C1, C2), the old message mi, a

new message m′i, the position i and the auxiliary information aux, updates

C←(C1·
ei
√

C2
m′

i−mi modN,C2) where ei ← PrimeGen(i), and replaces the
i-th message mi with m′i in aux. Finally, it outputs the updated C and aux.

• KOpenpp(i,mi, aux): It takes the position i and aux = (m1, . . . ,mn), com-

putes Si ← g
∏n

j=1,j ̸=i ej mod N and Λi ← ei

√∏n
j=1,j ̸=i S

mj

j mod N , and

finally outputs a proof πi ← (Si, Λi) that mi is the i-th committed message.
• KVerpp(C, i,mi, πi): It takes C = (C1, C2), the message mi, its proof πi =
(Si, Λi) and its position i, and checks if

Si
ei =C2 mod N ∧ C1=Si

mi · Λei
i mod N

where ei ← PrimeGen(i). If true, it outputs 1, else outputs 0.

Batch Opening: Next, we show that the above KVC supports batch openings
(also called subvector openings [3,4,12]).

• KBatchOpenpp(I, m⃗I , aux): It takes an ordered position set I = {i1, . . . , i|I|} ⊂
[n] of the message vector m⃗I = (mi1 , . . . ,mi|I|) and the auxiliary infor-

mation aux = (m1,m2, . . . ,mn), computes SI ← g
∏n

j=1,j /∈I ej and ΛI ←
eI

√∏n
j=1,j /∈I S

mj

j mod N where eI ←
∏

i∈I ei, and finally outputs a proof

πI := (SI , ΛI) that m⃗I is the I-subvector of the committed message.
• KBatchVerpp(C, I, m⃗I , πI): It takes C=(C1, C2), the message subvector m⃗I ,

its proof πI = (SI , ΛI) and its position set I, and checks if

SI
eI =C2 mod N ∧ C1=

∏
i∈I

Si
mi · ΛeI

I mod N

where eI ←
∏

i∈I ei and Si ← SI
eI\{i} for every i ∈ I. If true, it outputs 1,

else outputs 0.

2.5 Verifiable Data Streaming

VDS [11,14] is a protocol between a client and a server, which consists of the
following algorithms VDS = (Setup, Append, Query, Verify, Update).

• Setup(1λ): It takes a security parameter λ as input and generates a key pair
(pk, sk). It outputs the public verification key pk to the server and the secret
key sk to the client.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 7

• Append(sk, d): It takes the secret key sk and a data entry d as inputs. Then
the client sends an append request to the server and the server stores this
new data entry d in the database DB. Finally, it may output an updated
secret key sk′ to the client, but the public verification key does not change.

• Query(pk,DB, i): It takes the public verification key pk, the database DB
and a queried index i. Finally, it outputs the i-th data entry (i, d) along
with a proof πi to the client.

• Verify(pk, i, d, πi): It takes the public verification key pk and the query re-
sponse (i, d, πi) as inputs. If d is the i-th data entry in DB according to πi,
it outputs d, otherwise it outputs ⊥.

• Update(pk, sk,DB, i, d′): It runs between the server and the client. Finally,
the server updates the i-th data entry d with a new data entry d′ and the
client updates the public verification key to pk′ as well as the secret key to
sk′.

Security. Informally, the security of VDS schemes ensures that an attacker
should not be able to modify stored data entries, append further data entries
to the database, and pass the verification with an old data. We describe the
security of VDS by the following experiment VDSsecVDS

A (λ).
Setup: The challenger runs (sk, pk)← Setup(1λ), sets up an empty database

DB, and sends the public verification key pk to the adversary A.
Challenge: When the adversary A appends a new data entry d, the chal-

lenger runs (sk′, i, πi)←Append(sk, d) to append d to its database, and then
returns (i, πi) to the adversary. When the adversary A updates the i-th data en-
try giving a new data entry d′, the challenger runs Update(pk, sk,DB, i, d′) with
the adversary A and then returns (i, πi) to the adversary. The challenger will
always keep the latest public key pk∗ and an ordered sequence of the database
Q = {(1, d1), . . . , (q(λ), dq(λ))}.

Guess: The adversary A outputs a guess (i∗, d∗, π∗), and the experiment
outputs 1 if d∗ ← Verify(pk∗, i∗, d∗, π∗), d∗ ̸= ⊥ and (i∗, d∗) /∈ Q.

Definition 2 (VDS Security). A VDS scheme is secure if for all λ ∈ N and
any PPT adversary A, its advantage Pr[VDSsecVDS

A (λ)=1]≤negl(λ) is negligible.

3 Double-trapdoor Chameleon Vector Commitment

In this section, we first introduce a new cryptographic primitive, Double-trapdoor
Chameleon Vector Commitment (DCVC). Then we present a DCVC construc-
tion based on RSA and a variant of it with cross-commitment aggregation.

3.1 Definition of DCVC

DCVC is an enhancement of Chameleon Vector Commitment (CVC) [11]. Both
of them allow one to commit a vector (m1, . . . ,mq) and to open the commitment
at any position, and one holding trapdoors can find a collision without changing
the commitment. In particular, CVC provides a single trapdoor and may suffer

8 Wu et al.

from key exposure [2,7], while DCVC enjoys double trapdoors, master trapdoor
and specific trapdoor, which may be key-exposure free. A DCVC scheme consists
of the following algorithms:

• DCGen(1λ, q): It takes a security parameter λ and the size of a vector q,
then outputs a public parameter pp, a master trapdoor td1 and a specific
trapdoor td2.

• DCCompp(m1, . . . ,mq): It takes q ordered message vector (m1, . . . ,mq), and
outputs a commitment C and the auxiliary information aux.

• DCOpenpp(i,m, aux): It takes the index i, the corresponding message m, and
aux, outputs a proof π that m is the i-th message in the committed vector.

• DCVerpp(C, i,m, π): It takes the commitment C, the i-th message m and
the corresponding proof π, and outputs 1 iff π is a valid proof that C was
generated for (m1, . . . ,mq) s.t. mi = m.

• DCColpp(i,m,m′, td1, td2, aux): It takes the trapdoors td1 and td2, the index
i, a message m, another message m′, and aux, then outputs an updated aux′

after finding a collision s.t. (C, aux′) is indistinguishable from the output of
CCompp(m1, . . . ,m

′, . . . ,mq).

• DCUpdatepp(C, i,m,m′): It takes the old commitment C, the old message
m, a new message m′, and the corresponding index i, then outputs a new
commitment C ′ and an update information U .

• DCProofUpdatepp(C, πj , j, U): It takes the commitment C, the old proof πj

at the position j, and the update information U , then outputs an updated
proof π′j that is valid with regard to the new commitment C ′.

Definition 3 (Concise). A DCVC scheme is concise if the commitment size
and the proof size are independent of the vector size q.

Definition 4 (Correctness). A DCVC scheme is correct if for all λ ∈ N, any
vector size q, a vector (m1, . . . ,mq) and any index i ∈ {1, . . . , q}, we have

Pr

 (pp, td1, td2)←DCGen(1λ, q)
DCVerpp(C, i,m, π) = 1 : (C, aux)← DCCompp(m1, . . . ,mq)

π ← DCOpenpp(i,m, aux)

 = 1.

Definition 5 (Position Binding). A DCVC scheme is position-binding if for
any PPT adversary A, the probability generating two valid proofs for different
messages (m,m′) at the same position i is negligible. Formally, for all λ ∈ N
and any PPT adversary A, the advantage of A winning the below experiment
Pr[PosBdgDCVC

A (λ) = 1] ≤ negl(λ) is negligible.

Definition 6 (Indistinguishable Collisions). A DCVC scheme has indistin-
guishable collisions if for all λ∈N and any stateful PPT adversary A=(A0,A1),
its advantage of winning the below experiment Pr[CollndDCVC

A (λ) = 1] ≤ negl(λ)
is negligible.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 9

Experiment PosBdgDCVC
A (λ)

(pp, td1, td2)← DCGen(1λ, q)
(C, i,m,m′, π, π′)← ADCCol(pp)
store (C, i) queried to DCCol in Q
if m ̸= m′ ∧ (C, i) /∈ Q
∧ DCVerpp(C, i,m, π)
∧ DCVerpp(C, i,m

′, π′)
output 1

else output 0

Experiment CollndDCVC
A (λ)

(pp, td1, td2)← DCGen(1λ, q)
b← {0, 1}
((m1, . . . ,mq), (i,m

′
i))← A0(pp, td1, td2)

(C0, aux
∗)← DCCompp(m1, . . . ,mi, . . . ,mq)

aux0 ← DCColpp(C0, i,mi,m
′
i, td1, td2, aux

∗)
(C1, aux1)← DCCompp(m1, . . . ,m

′
i, . . . ,mq)

b′ ← A1(Cb, auxb)
if b = b′ output 1 else output 0

3.2 DCVC based on RSA

We present a DCVC scheme based on RSA, which exquisitely combines RSA-
based vector commitment [5] with chameleon hash without key exposure [2,10].
Furthermore, we develop a variant with cross-commitment aggregation. The de-
tails of our scheme DCVC is described as follows:

• DCGen(1λ, l, q): It takes a security parameter λ and two integer l, q ∈ N as in-
puts, chooses two λ/2-bit primes p1 and p2 at random, sets N = p1p2, picks
g ∈ Z∗N randomly, determines a deterministic collision-resistant function
PrimeGen that maps integers to primes with length l + 1 bits. Then it com-
putes q primes e1, . . . , eq that are relatively prime to ϕ(N) = (p1−1)(p2−1),
where ei ← PrimeGen(i) for i = 1, . . . , q. Finally, it outputs the public pa-
rameter pp ← (N, g,PrimeGen), the master trapdoor td1 ← {p1, p2}, and
the specific trapdoor td2 ← {di}i=1,...,n, where di is computed s.t. eidi = 1
mod ϕ(N). The message space isM = {0, 1}l.
• DCCompp(m1, . . . ,mq): It takes a message vector (m1, . . . ,mq) as input,

chooses r← Z∗N randomly, and computes Si ← g
∏q

j=1,j ̸=i ej for i = 1,. . ., q.
Finally, it outputs C←Sm1

1 · · ·S
mq
q r

∏q
i=1 ei modN and aux←(m1,. . .,mq; r).

• DCOpenpp(i,m, aux): It computes S
1/ei
j ← ge[q]\{i,j} for each j ∈ [q] \ {i},

and outputs π ← ei

√∏q
j=1,j ̸=i S

mj

j · r
∏q

j=1,j ̸=i ej mod N .

• DCVerpp(C, i,m, π): If C = Si
m · πei modN output 1, else output 0.

• DCColpp(C, i,m,m′, td2, aux): It computes r′ ← r · (gdi)m−m
′
and outputs

aux′ ← (m1,. . .,m
′,. . .,mq; r

′).

• DCUpdatepp(C, i,m,m′): It computes C ′ ← C ·Sm′−m
i mod N , then outputs

C ′ and U = (i,m,m′).

• DCProofUpdatepp(C, πj , j, U): If j ̸= i, it computes π′j ← πj · (Sm′−m
i)1/ej

mod N , else π′j ← πj .

Cross-Commitment Aggregation. Now we show that our scheme DCVC is
aggregatable across multiple commitments, which means that different openings
from different commitments (e.g., πi,ki

and πj,kj
at the position ki and kj of the

commitments Ci and Cj , respectively) can be merged into a single concise open-
ing π. Moreover, this aggregated proof can be further aggregated, namely cross-
commitment incremental aggregation. Assume that π̂ is already an aggregated

10 Wu et al.

proof of l − 1 commitments {Cj , kj ,mj,kj
, πj,kj

}j∈[l−1]. The cross-commitment
aggregation and verification algorithms are shown as follows:

• DCAggCrosspp({kj}j∈[l−1], π̂, (Cl, kl,ml,kl
, πl,kl

)):

Case 1 : If kl /∈ {kj}j∈[l−1], compute

ρK ← π̂ · (πl,kl
)tlekl

/eK mod N and ρl ← π̂eK/ekl · (πl,kl
)tl mod N,

and then generate an aggregated proof π ← ShamirTrick(ρK , ρl, eK , ekl
) [16].

Case 2 : If kl ∈ {kj}j∈[l−1], compute π ← π̂ · πl,kl

tlekl
/eK . Note that tl ←

H(l, Cl, kl,ml,kl
) and eK ←

∏
j∈[l−1] ekj

.

• DCAggVerpp({Cj , kj ,mj,kj
}j∈[l], π): If the following equation holds output 1,

else output 0. Note that tj ← H(j, Cj , kj ,mj,kj
).

∏
j∈[l]

Cj
tj =

∏
j∈[l]

S
tjmj,kj

kj
π

∏
j∈[l] ekj

gcd(ek1
,...,ekl

) mod N.

Concise. It is obvious that the commitment size and the proof size are inde-
pendent of the vector size q.

Correctness. The correctness of DCVC is straightforward and the correctness of
cross-commitment aggregation comes from the correctness of DCVC and Shamir’s
trick [16]. More details are shown in Appendix A.

Security. Our scheme DCVC is secure. The proofs of position binding, indistin-
guishable collisions and key exposure freeness are detailed in Appendix B.

4 Verifiable Data Streaming from DCVC

In this section, we propose our first scheme VDS1 with optimal query commu-
nication from our scheme DCVC, and show that VDS1 is secure in the random
model.

4.1 High-level Description

Our first scheme VDS1 follows the same framework as Krupp et al. CVC-based
VDS scheme [11] which combines a q-ary tree with the cryptographic primitive
CVC. However, CVC-based VDS scheme [11] requires the client to generate
all proofs in advance and store them at the server, which leads to a heavy
computational burden on the client and a large storage overhead on the server
respectively. To reduce the client computation and server storage, our intuition is
to transfer the proof generation from the client to the server. Unfortunately, this
approach from our intuition may suffer from an inherent key exposure problem
due to the CVC construction [2]. In addition, the query communication for a
single query and a batch query is 2logq n − 1 and l · (2logq n − 1) respectively,
where q is the maximum number of q-ary tree children nodes, n is the size of
the database, and l is the number of queried data in a batch query. To optimize

New Unbounded VDS for Batch Query with Almost Optimal Overhead 11

00

00 0 00 0

0 00 0

1d 2d

3d

3C

0C =

1C = 2C =

3C =

1C 2C 00

0 00 01d 2d3C

0C =

1C = 2C =

1C 2C

0 00 0 0 00 03d
4d3C = 4C =

4C

00

0 00 01d

=

= 2C =

2C

0 00 0 0 00 0= =

Append new data
4d Update data

3d to

2d

3,1

1,2

0,2

0C
1C

1C
3C

3C
3d

4C 4d

3d

4,1

Single query Batch query
1,2 3,10,2

Aggeregate proofs

Aggeregate commitments

1,2 3,10,2
Aggeregate proofs

Aggeregate commitments
C

4,1

C
4C

4C

1,3

1,3

1C
3C

3C
1C

3d 3 4,d d

Fig. 1. Overview of VDS1

query communication, a perfect solution is aggregating all CVC proofs on the
authentication path to a constant-size value. However, this does not work because
CVC does not support cross-commitment aggregation. Thus, our main task is
to design a secure VDS scheme with optimal query communication and better
client computation and server storage efficiency.

To this end, we combine a q-ary tree and an aggregatable cross-commitment
variant of our proposed DCVC without key exposure. Concretely, we first build a
q-ary tree, as shown in Fig. 1, where every node is a DCVC of a q+1-size vector.
The first element of each vector is the data entry, and the q remaining elements
are the node’s q children (or 0 when the children do not exist). The root node
of the tree is initialized to a DCVC of a zero vector and a new node is inserted
into the tree by finding a collision in its parent node. Note that the nodes are
appended to the tree from left to right and the tree grows from top to bottom.
When appending a data entry, the client appends a node corresponding to this
data entry into the tree. When querying a data entry, the server generates proofs
of data along the authentication path without requiring the client to generate
proofs in advance. Furthermore, we aggregate proofs on the authentication path
into a constant-size value by using the feature of cross-commitment aggregation
of DCVC. Thus we get an unbounded VDS scheme in the random model with
optimal query communication O(1) and better server storage O(n).

4.2 Our Construction

Our scheme VDS1 consists of five algorithms VDS1 = (Setup, Append, Query,
Verify, Update), which is based on our scheme DCVC and a q-ary tree. For sake
of readability, we briefly describe the construction of the q-ary tree. In a q-ary
tree, every node is a DCVC of a q+1-size vector. The first element of each vector
is the data entry, and the q remaining elements are q children nodes (or 0 when
children nodes do not exist). Particularly, the root node of the tree is initialized
to a DCVC of a zero vector and a new node is appended into the tree by finding
a collision in its parent node. Note that the nodes are appended to the tree from
left to right and the tree grows from top to bottom. According to the structure
of q-ary tree, we have three functions as following:

12 Wu et al.

Algorithm 1 VDS from DCVC (VDS1)

Setup(1λ, l, q) ▷ Client

1: (pp, td1, td2)← DCGen(1λ, l, q + 1)

2: cnt← 0, k ← {0, 1}λ
3: r0 ← f(k, 0)
4: (C0, aux0)← DCCompp(0, . . . , 0; r0)

▷ aux0 = (0, 0, . . . , 0; r0)
5: sk ← (td1, td2, cnt, k)
6: pk ← (pp, C0)
7: return (sk, pk)

Append(pk, sk, d) ▷ Client

1: i← cnt + 1, p← parent(i), j ← #child(i)
2: cnt← cnt + 1
3: ri ← f(k, i)
4: (Ci, auxi)← DCCompp(0, . . . , 0; ri)

▷ auxi = (0, 0, . . . , 0; ri)
5: aux′i ← DCColpp(Ci, 1, 0, d, td1, td2, auxi)

▷ aux′i = (d, 0, . . . , 0; r′i)
6: rp ← f(k, p)
7: (Cp, auxp)← DCCompp(0, . . . , 0; rp)

▷ auxp = (0, . . . , 0, . . . , 0; rp)
8: aux′p← DCColpp(Cp, j, 0, Ci, td1, td2, auxp)

▷ aux′p = (0, . . . , Ci, . . . , 0; r
′
p)

9: return (i, d, Ci, r
′
i, r

′
p)

Query(pk,DB, i) ▷ Server

1: Pos← ∅, C ← 1
2: L← level(i)
3: πi,1 ← DCOpenpp(1, d, auxi)

4: π ← πi,1

5: Pos← Pos ∪ {1}
6: a← i
7: b← parent(i)
8: for h ∈ [L− 1, 0] do
9: c← #child(a)
10: πb,c ← DCOpenpp(c, Ca, auxb)

11: π←DCAggCrosspp(Pos,π,(Cb,c,Ca,πb,c))

12: C ← C · Ca
ta ▷ ta ← H(a)

13: Pos← Pos ∪ {c}
14: a← b
15: b← parent(b)
16: end for
17: return (i, d, π, C)

Verify(pk, i, d, π, C) ▷ Client

1: e← e1,S ← 1 ▷ e1 ← PrimeGen(1)
2: L← level(i)

3: S ← S · S1
tidi ▷ S1 ← g

∏q+1
j=1,j ̸=1

ej

4: a← i
5: b← parent(i)
6: for h ∈ [L− 1, 0] do
7: c← #child(a)

8: S ← S · Sc
tbCa ▷ Sc ← g

∏q+1
j=1,j ̸=c

ej

9: if gcd(e, ec) = 1 then
10: e← e · ec ▷ ec ← PrimeGen(c)
11: end if
12: a← b
13: b← parent(b)
14: end for
15: if C · C0

t0 = S · πe then return d
16: else return ⊥
17: end if

Update(pk,DB, i, d′) ▷ Client & Server

Client:
1: send (i, d′) to server

Server :
2: (i, d, π̃)← Query(pk,DB, i)

Client:
3: d/⊥ ← Verify(pk, i, d, π̃)

Client & Server :
4: if d← Verify(pk, i, d, π̃) then
5: (C′

i, Ui)← DCUpdatepp(Ci, 1, d, d
′)

6: a← i
7: b← parent(i)
8: for h ∈ [L− 1, 0] do
9: c← #child(a)
10: (C′

b, Ub)← DCUpdatepp(Cb, c, Ca, C
′
a)

11: a← b
12: b← parent(b)
13: end for
14: end if
15: return (C′

L, . . . , C′
0)

• parent(i) = ⌊ i−1q ⌋ is the index of the parent of the node i.

• #child(i) = ((i − 1) mod q) + 2 is the position that the node i is inserted
into its parent.

• level(i) = ⌈logq((q−1)(i+1)+1)−1⌉ is the level that the node i is appended
in the tree.

Next, we give a brief description of our scheme VDS1, the details of which
are shown in Algorithm 1.

• Setup(1λ, l, q): The client generates (pp, td1, td2) ← DCGen(1λ, l, q + 1), ini-
tializes a counter cnt← 0, and picks a random key k ← {0, 1}λ for a secure
pseudorandom function f . Then the client computes r0 ← f(k, 0) and the

New Unbounded VDS for Batch Query with Almost Optimal Overhead 13

Algorithm 2 Batch Query and Verify

BatchQuery(pk,DB, I) ▷ Server

1: Pos← ∅, C ← 1
2: for i ∈ I do
3: Li ← level(i)
4: πi,1 ← DCOpenpp(1, di, auxi)

5: if Pos = ∅ then
6: π ← πi,1

7: else
8: π ← DCAggCrosspp(Pos,π,(Ci,1,di,πi,1))

9: end if
10: Pos← Pos ∪ {1}
11: a← i
12: b← parent(i)
13: for h ∈ [Li − 1, 0] do
14: c← #child(a)
15: πb,c ← DCOpenpp(c, Ca, auxb)

16: π←DCAggCrosspp(Pos,π,(Cb,c,Ca,πb,c))

17: C ← C · Ca
ta ▷ ta ← H(a)

18: Pos← Pos ∪ {c}
19: a← b
20: b← parent(b)
21: end for
22: end for

23: return (I, d⃗I , π, C)

BatchVerify(pk, I, d⃗I , π, C) ▷ Client

1: e← e1,S ← 1 ▷ e1 ← PrimeGen(1)

2: for i ∈ I do
3: Li ← level(i)

4: S ← S · S1
tidi ▷ S1 ← g

∏q+1
j=1,j ̸=1

ej

5: a← i
6: b← parent(i)

7: for h ∈ [Li, 0] do
8: c← #child(a)

9: S ← S · Sc
tbCa ▷ Sc ← g

∏q+1
j=1,j ̸=c

ej

10: if gcd(e, ec) = 1 then
11: e← e · ec ▷ ec ← PrimeGen(c)
12: end if
13: a← b
14: b← parent(b)
15: end for
16: end for

17: if C · (C0
t0)|I| = S · πe then return d⃗I

18: else return ⊥
19: end if

tree root (C0, aux0) ← DCCompp(0, . . . , 0; r0). Finally, it outputs the secret
key sk ← (td1, td2, cnt, k) and public key pk ← (pp, C0).

• Append(pk, sk, d): When appending a new data entry d, the client first parses
sk=(td1, td2, cnt, k) and obtains the index of the new data entry i←cnt+1,
the index of its parent node p← parent(i), the position j←#child(i) that
this data entry will be inserted into its parent, and cnt ← cnt + 1. Next,
the client computes a new node (Ci, auxi) ← DCCompp(0,. . ., 0; ri) where
ri← f(k, i). To insert a new data entry d into the new node Ci, the client
finds a collision by computing aux′i ← DCColpp(Ci, 1, 0, d, td1, td2, auxi). To
append the new node Ci in the tree, the client recomputes the parent node
(Cp, auxp) ← DCCompp(0, . . . , 0; rp) where rp ← f(k, p) and runs aux′p ←
DCColpp(Cp, j, 0, Ci, td1, td2, auxp) to insert Ci as the j-th element of Cp.
Finally, the client sends (i, d, Ci, r

′
i, r
′
p) to the server.

• Query(pk,DB, i): When querying the i-th data entry, the server first obtains
the level L← level(i) of the node i, and then generates an aggregated proof
(π,C) along the authentication path by running algorithm (see Algorithm 1
for details), finally sends the data and its proof (i, d, π, C) to the client.

• Verify(pk, i, d, π, C): The verifier (including the client) parses pk= (pp, C0),
verifies (i, d, π, C) (see Algorithm 1). If v = 1 output d, otherwise output ⊥.

• Update(pk,DB, i, d′): The client and the server perform the update protocol.

1. To update the data entry d to d′ with the index i, the client first re-
trieves the data entry d. Concretely, the client sends the index i and
a new data entry d′ to the server. Then the server and the client run
Query(pk,DB, i)→(i, d, π, C) and Verify(pk, i, d, π, C)→d/⊥ respectively.

14 Wu et al.

2. When the query is validated, the client determines the level L← level(i)
of the updated node and then computes a new root C ′0 as shown in
Algorithm 1. Finally, it updates the public key pk = (pp, C ′0).

3. The server writes the new data entry d′ into DB and runs the same
algorithm to update all commitments (C ′L, . . . , C

′
0) along the path.

Batch Query: Now, we show that VDS1 supports batch query and verifying.

• BatchQuery(pk,DB, I): When performing query on the index set I = {i1,. . ., il}
sent from the client, the server obtains the level Li ← level(i) of the node
i ∈ I and then generates an aggregated proof by running Algorithm 2. Fi-
nally, the server sends the data and its proof (I, d⃗I , π, C) to the client.

• BatchVerify(pk, I, d⃗I , π, C): The verifier (including the client) parses pk =
(pp, C0) and verifies the proof as Algorithm 2. If the equation holds then

output d⃗I , otherwise output ⊥.

4.3 Security Analysis

Theorem 1 (Secure VDS). If f is a pseudorandom function and DCVC is
position binding, then our scheme VDS1 is secure.

Proof. The proof of the theorem proceeds through hybrid games [11]. It starts
with the real game VDSsecVDS1

A (λ) and ends with a hybrid game where the pseu-
dorandom function f is replaced by a random function, then these two games
are computationally indistinguishable.

Game G0: This is the real VDS security game VDSsecVDS1

A (λ), so we have

Pr[VDSsecVDS1

A (λ) = 1] = Pr[G0 = 1].
Game G1: This game is identical to G0 except the pseudorandom function

f is replaced with a random function. By assuming f is pseudorandom, we
immediately get that Pr[G0 = 1]− Pr[G1 = 1] = negl(λ).

In this game, we proceed by the contradiction. Assume there exists an adver-
sary A that can win with non-negligible advantage in the game G1. Then we can
construct an efficient reduction B that uses A to break the security of DCVC.
The reduction B proceeds in two case.

Let (i∗, d∗, π̂, Ĉ) be the tuple returned by the adversary at end of the game.
If the game G1 outputs 1, then it must hold that Verify(pk, i∗, d∗, π̂, Ĉ) = d∗,
d∗ ̸= ⊥ and d∗ ̸= d, where d is the value with index i∗ currently stored in the
database. The honest authentication path of (i∗, d) computed by B is (π̃, C̃).
Observe that both authentication paths (π̂, Ĉ) and (π̃, C̃) must end up at the
public root and they must deviate at some node in the path from i∗ up to
the root. Then, we define the event Diffdata that the two authentication path
deviate exactly at i∗, which means Ci∗ = C∗i∗ . Obviously, Diffdata means that
the adversary may return a valid authentication path that deviates from the
correct path at the internal node. Thus, we have

Pr[G1 = 1] = Pr[G1 = 1 ∧ Diffdata] + Pr[G1 = 1 ∧ Diffdata].

We show that Pr[G1 = 1∧Diffdata] and Pr[G1 = 1∧Diffdata] are negligible in two
cases Diffdata and Diffdata respectively if our scheme DCVC is position binding.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 15

Case Diffdata: In this case, the authentication path (π̂, Ĉ) returned by the ad-
versary deviates from the correct authentication path (π̃, C̃) at i∗, which means
Ci∗ = C∗i∗ .

The reduction B takes as input pp, computes the root (C0, aux0)← DCCompp

(0, . . . , 0; r0) by sampling a randomness, and sets the counter cnt← 0. Then, it
sets pk ← (pp, C0) and runs A(pk) by simulating the game G1.

To answer the append queries of A, e.g., appending a data entry d, B runs
Append(pk, sk, d) algorithm except that pseudorandom values are replaced by
random values by sampling. Note that B does not know the trapdoors of DCVC,
but it can directly compute the new node (Ci, auxi) ← DCCompp (d, . . . , 0; ri)
for the data entry d instead of performing collision at the first position of the
vector and use its collision oracle to append new nodes into the tree only when
necessary. Note that B never uses its collision oracle at the position 1 in Case
Diffdata.

To answer the update queries of A, e.g., updating the data entry d at position
i to a new entry d′, B simply runs Update algorithm. Note that this not require
the trapdoors of DCVC.

The adversary outputs the tuple (i∗, d∗, π̂, Ĉ) at the end of the game. B
computes the honest proof (π̃, C̃) for the data entry d at the position i∗, parses
(π̂, Ĉ) = (π∗i∗ , C

∗
i∗ , . . .) and (π̃, C̃) = (πi∗ , Ci∗ , . . .), and outputs (Ci∗ , 1, d, d

∗, πi∗ , π
∗
i∗).

We know that Ci∗ = C∗i∗ when Diffdata happens, and π∗i∗ must pass the verifica-
tion correctly for d∗ since A wins in this game. Therefore, one can see that the
tuple (Ci∗ , 1, d, d

∗, πi∗ , π
∗
i∗) breaks the position binding of DCVC. Thus,

Pr[G1 = 1 ∧ Diffdata] ≤ Pr[PosBdgDCVC
B (λ) = 1] = negl(λ).

Case Diffdata: In this case, the authentication path (π̂, Ĉ) returned by the
adversary deviates from the correct authentication path (π̃, C̃) at the internal
node.

The reduction B takes as input pp. It then chooses the tree depth l = λ to
set an upper limit on the number of data entry and builds an l size DCVC tree
from bottom to up, where in each DCVC every position which does not point to
a child (especially the first position in the internal node or all the positions in
the leaf node) is set to 0. Let C0 be the root. Then, B sets the counter cnt← 0,
sets pk ← (pp, C0), and runs A(pk) by simulating the game G1.

To answer the append queries of A, e.g., appending a data entry d, B obtains
the index i← cnt+1 for the new data entry, sets cnt← cnt+1, and inserts the
new data entry into the tree by finding a collision in the position 1 of node ni

using collision oracle. Note that B never uses its collision oracle at the position
j > 1 in Case Diffdata. If the adversary A exceeds the upper limit of the number
of data entries, B stops the adversary and starts again by setting l← l · λ.

To answer the update queries of A, e.g., updating the data entry d at position
i to a new entry d′, B simply runs Update algorithm.

At the end of the game the adversary returns the tuple (i∗, d∗, π̂, Ĉ). B parses
(π̂, Ĉ) = (. . . , π∗1 , C

∗
1 , π
∗
0 , C

∗
0) and finds the largest k such that C∗k = Ck, that is,

the authentication path π̂ is still equal to the actual tree from C∗k to the root.

B computes the honest authentication path (π̃, C̃) = (. . . , π1, C1, π0, C0) from i∗

16 Wu et al.

to the root if i∗ is in the tree (i.e., i∗ does not exceed the upper limit), otherwise
computes one from the deepest ancestor of i∗ to the root.

If Ck is the deepest node in the honest path (π̃, C̃) computed by B, the j-th
element committed in Ck by B is 0. Thus, B can compute an honest proof πk

that 0 is the j-th element committed in Ck, and output (Ck, j, 0, C
∗
k+1, πk, π

∗
k).

If Ck is not the deepest node in π̃, there exists a node C∗i = Ck and a
proof πk that Ck+1 is the j-th element committed in Ck. Thus, B outputs
(Ck, j, Ck+1, C

∗
k+1, πk, π

∗
k).

Therefore, the tuple (Ck, j, 0, C
∗
k+1, πk, π

∗
k) or (Ck, j, Ck+1, C

∗
k+1, πk, π

∗
k) breaks

the position binding of DCVC. Thus,

Pr[G1 = 1 ∧ Diffdata] ≤ Pr[PosBdgDCVC
B (λ) = 1] = negl(λ).

In conclusion, the overall advantage of the adversary winning the game is
negligible because it is negligible in both cases. Thus, our scheme VDS1 is secure.

5 Verifiable Data Streaming from KVC

In this section, we propose our second scheme VDS2 with optimal query com-
munication and server storage overhead in the standard model from KVC and
DCH. In the following, we will describe this scheme in detail.

5.1 High-level Description

Our second scheme VDS2 explores a new approach to construct the unbounded
VDS scheme with optimal query communication and server storage overhead in
the standard model. Our main idea is to use KVC to guarantee the verifiabil-
ity of the database in the standard model, and use DCH to make the public
verification key unchanged when data is appended continuously. Concretely, as
shown in Fig.2, the client first initialize a key-value commitment C for an empty
database and a DCH hash value Ch of a pair (0, r̂), and make this hash value
Ch serve as the public verification key. When appending a new data entry di,
the client appends this data entry to the key-value commitment by updating the
commitment C and finding a collision (C, ri) s.t. DCh(0, r̂) = DCh(C, ri). Natu-
rally, when updating a data entry di to d′i, the client updates the commitment
and the public verification key. For single query (or batch query), the server
can generate a constant-size proof that di (or dI) is the i-th (or I-subvector)
committed data entry in the database.

5.2 Our Construction

In the following, we give a brief description of our scheme VDS2=(Setup, Append,
Query, Verify, Update), the details of which are shown in Algorithm 3.

• Setup(1λ, l): The client generates (pp1, C) ← KGen(1λ, l) and (pp2, Y, x) ←
DCHKGen(1λ), sets the counter cnt← 0. Then the client generates the one-

time hash/trapdoor (K̂, k̂)← DCHTGen(pp2), picks a random number r̂ ←

New Unbounded VDS for Batch Query with Almost Optimal Overhead 17

1d 3d

1d 2d 3d

1d 2d

1d

C =

C =

C =

C =

C =

Append

Append

Append

Append

……

1d
3d =

Update

4d

4d

2d

2dC

Single query

r̂

1r

2r

3r

4r

4r

Ch

Ch

Ch

Ch

Ch

Ch

Key-value commitment Chameleon hash

1d
3d = 4d2dC

Batch query

3

1d
3d = 4d2dC

3,4

3d

3 4,d d

Fig. 2. Overview of VDS2

{0, 1}λ, and computes the hash value Ch ← DCHpp2(Y, K̂, 0, r̂). Finally,
the algorithm outputs the secret key sk ← (cnt, x, r̂, C) and the public key
pk ← (pp1, pp2, Y, Ch).
• Append(sk, d): When appending a new data entry d, the client first parses
sk = (cnt, x, r̂, C), obtains the index i← cnt + 1 of the new data entry d,
updates the commitment C ← KAppendpp1(C, i, d), determines a one-time
hash/trapdoor key pair (K, k)←DCHTGen(pp2), finds a collision (C, r) s.t.
DCh(C, r) = DCh(0, r̂) by running r ← DCHColpp2(x, k, 0, r̂, C), and then
increases the counter cnt←cnt+1. Finally, the client sends (i, d, C,K, r) to
the server and the server stores (i, d) in DB as well as updates (C,K, r).
• Query(pk,DB, i): When performing query on the index i sent from the client,
the server computes a proof πi ← KOpenpp1(i, d,DB) that d is i-th data entry
in DB, and sends the data and its proofs (i, d, πi) and (C,K, r) to the client.

• Verify(pk, i, d, πi, C,K, r): The verifier (including the client) parses pk ←
(pp1, pp2, Y, Ch), and then verifies the correctness of (C,K, r) and (i, d, πi) by

checking Ch
?
=DCHpp2(Y,K,C,r) and running the algorithm KVerpp1(C,i,d,πi).

If both are true, then output d, otherwise output ⊥.
• Update(pk, sk,DB, i, d′): The update protocol is run by the client and server.

1. To update the data entry d to d′ with the index i, the client first retrieves
d with the index i from the server. Concretely, the client sends the index
i and the new data entry d′ to the server. Then the server and the client
runs Query(pk,DB, i) → (i, d, πi) and Verify(pk, i, d, πi, C,K, r) → d/⊥
respectively.

2. When the query is validated, the client first updates the commitment C ′

by replacing d to d′. Then the client choose a randomness r̂′ ← {0, 1}λ,
produces the new hash value Ch′, generates a one-time hash/trapdoor
pair (K ′, k′), and finds a collision r′ for the updated commitment C ′.
Finally, the client updates the secret and public keys sk ← (cnt, x, r̂′, C ′)
and pk ← (pp1, pp2, Y, Ch′) and sends (C ′,K ′, r′) to the server.

3. The server writes the new data d′ into DB and updates (C,K, r) to
(C ′,K ′, r′).

Batch Query: We show that VDS2 supports batch query and verifying.

18 Wu et al.

Algorithm 3 VDS from KVC (VDS2)

Setup(1λ, l) ▷ Client

1: (pp1, C)← KGen(1λ, l)

2: (pp2, Y, x)← DCHKGen(1λ)
3: cnt← 0
4: (K̂, k̂)← DCHTGen(pp2)

5: r̂ ← {0, 1}λ

6: Ch← DCHpp2 (Y, K̂, 0, r̂)

7: sk ← (cnt, x, r̂, C)
8: pk ← (pp1, pp2, Y, Ch)
9: return (sk, pk)

Append(sk, d) ▷ Client

1: i← cnt + 1
2: C ← KAppendpp1 (C, i, d)

3: (K, k)← DCHTGen(pp2)
4: r ← DCHColpp2 (x, k, 0, r̂, C)

5: cnt← cnt + 1
6: return (i, d, C,K, r)

Query(pk,DB, i) ▷ Server

1: πi ← KOpenpp1 (i, d,DB)

2: return ((i, d, πi), (C,K, r))

Verify(pk, i, d, πi, C,K, r) ▷ Client

1: v ← Ch
?
= DCHpp2 (Y,K,C, r)

2: ∧ KVerpp1 (C, i, d, πi)

3: if v = 0 then return ⊥
4: else return d
5: end if

Update(pk, sk,DB, i, d′) ▷ Client & Server

Client:
1: send (i, d′) to server

Server :
2: (i, d, πi)← Query(pk,DB, i)

Client:
3: v ← Verify(pk, i, d, πi, C,K, r)

Client:
4: if v = 0 then return ⊥
5: else
6: C′ ← KUpdatepp1 (C, i, d, d′)

7: (K̂′, k̂′)← DCHTGen(pp2)

8: r̂′ ← {0, 1}λ

9: Ch′ ← DCHpp2 (Y, K̂
′, 0, r̂′)

10: (K′, k′)← DCHTGen(pp2)
11: r′ ← DCHColpp2 (x, k

′, 0, r̂′, C′)

12: return (C′, r̂′, Ch′, K′, r′)
13: end if

BatchQuery(pk,DB, I) ▷ Server

1: πI ← KBatchOpenpp1 (I, d⃗I ,DB)

2: return (I, d⃗I , πI)

BatchVerify(pk, I, d⃗I , πI , C,K, r) ▷ Client

1: v ← Ch
?
=DCHpp2 (Y,K,C, r)

2: ∧ KBatchVerpp1 (C, I, d⃗I , πI)

3: if v = 0 then return ⊥
4: else return d⃗I

5: end if

• BatchQuery(pk,DB, I): The client sends the query index set I to the server.

The server computes a proof πI ← KBatchOpenpp1(I, d⃗I ,DB) for the data

entry set d⃗I , and sends the proof (I, d⃗I , πI) and (C,K, r) to the client.

• BatchVerify(pk, I, d⃗I , πI , C,K, r): The verifier (including the client) parses

pk ← (pp1, pp2, Y, Ch), and then verifies v ← Ch
?
= DCHpp2(Y,K,C, r) ∧

KBatchVerpp1(C, I, d⃗I , πI). If v = 1, then output d⃗I , otherwise output ⊥.

5.3 Security Analysis

Theorem 2 (Secure VDS). If KVC is a key-binding key-value commitment
and DCH is a collision-resistant double-trapdoor chameleon hash, then our scheme
VDS2 is secure.

Proof. The proof of the theorem is conducted by executing the game VDSsecVDS2

A (λ).
The adversary A may win the game in two ways, either by finding a collision
in the double-trapdoor chameleon hash, or by breaking the key binding of the
key-value commitment. We will show that the advantage of the adversary in
both case is negligible.

The proof is proceeded by contradiction. Let ((i∗, d∗, π∗), (C∗,K∗, r∗)) is
the tuple returned by the adversary A at end of the game VDSsecVDS2

A (λ). If

New Unbounded VDS for Batch Query with Almost Optimal Overhead 19

the adversary wins in this game, recall that Ch= DCHpp2(Y,K
∗, C∗, r∗), 1 ←

KVerpp1(C
∗, i∗, d∗, π∗), d∗ ̸= ⊥ and (i∗, d∗) /∈ DB. Consider the correct tuple

((i∗, d, π), (C,K, r)) with index i∗. Then we define DCHCol as the event that
C∗ ̸= C such (C∗,K∗, r∗) ̸= (C,K, r). Obviously, we have

Pr[VDSsecVDS2

A (λ) = 1]

=Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol] + Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol].

Case chcol: In this case, Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol] is negligible under the
assumption that DCH is collision-resistant. To this end, we construct an effi-
cient reduction BDCH that uses A to break the collision-resistance of the double-
trapdoor chameleon hash scheme DCH. The reduction BDCH proceeds as follows.

On input a hash public parameter pp2, a hash key Y , and a hash value Ch, the
reduction BDCH computes (pp1, C)← KGen(1λ, l) and sets the counter cnt← 0.
Then, the reduction BDCH runs A(pk) on the public key pk ← (pp1, pp2, Y, Ch)
by simulating the game VDSsecVDS2

A (λ). Note that BDCH does not know the full
secret key sk, i.e., it does not know the trapdoors of DCH, therefore it has to
access to a collision oracle.

To answer the append queries of A, e.g., appending a data entry d, BDCH

sets i ← cnt + 1, computes the commitment C ← KAppendpp1(C, i, d) and the
proof πi ← KOpenpp1(i, d,DB), sends C to its collision oracle, and forwards the
response (K, r) together with the opening proof πi of (i, d) to the adversary A.

To answer the update queries of A, e.g., updating the data entry d at position
i to a new entry d′, BDCH runs Update algorithm by accessing to its collision
oracle, which is similar to the append queries.

The adversary outputs the tuple ((i∗, d∗, π∗), (C∗,K∗, r∗)) at the end of the
game. BDCH computes the honest proof ((i∗, d, π), (C,K, r)) for the data entry d
at the position i∗ after the T queries, and outputs (C,C∗, r, r∗).

Observe that BDCH perfectly simulates the view ofA as in the game VDSsecVDS2

A (λ).
We know that (C,C∗) ̸= (r, r∗) when chcol happens. Since A wins in this game
Ch=DCHpp2(Y,K

∗, C∗, r∗) = DCHpp2(Y,K,C, r). Therefore, one can see that

Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol] ≤ Pr[HashcolDCH
BDCH

(λ) = 1] = negl(λ).

Case chcol: In this case, Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol] is negligible under the
assumption that KVC is key-binding. To this end, we construct an efficient re-
duction BKVC that uses A to break the key-binding of the key-value commitment
scheme KVC. The reduction BKVC proceeds as follows.

On input the public parameter pp1 and the initialed commitment C, the
reduction BKVC computes (pp2, Y, x) ← DCHKGen(1λ) and a chameleon hash
value Ch for (0, r̂) where r̂ ← {0, 1}λ, and sets the counter cnt ← 0. Then,
the reduction BKVC runs A(pk) on the public key pk ← (pp1, pp2, Y, Ch) by
simulating the game VDSsecVDS2

A (λ).
To answer the append queries of A, e.g., appending a data entry d, BKVC sets

i← cnt+ 1, computes the commitment C ← KAppendpp1(C, i, d) and the proof
πi ← KOpenpp1(i, d,DB), and finds a collision (C, r) with respect to the hash

20 Wu et al.

value Ch by using the chameleon-hash trapdoors. The reduction BKVC sends
((i, d, πi), (C,K, r)) to the adversary A.

To answer the update queries of A, e.g., updating the data entry d at position
i to a new entry d′, BKVC runs Update algorithm, which is similar to the append
queries.

The adversary outputs the tuple ((i∗, d∗, π∗), (C∗,K∗, r∗)) at the end of the
game. BKVC computes the honest proof ((i∗, d, π), (C,K, r)) for the data entry d
at the position i∗ after the T queries, and outputs (i, d, d∗, π, π∗).

Observe that BKVC perfectly simulates the view ofA as in the game VDSsecVDS2

A (λ).
We know that (C,C∗) = (r, r∗) when chcol happens. Since A wins in this game,
KVerpp1(C, i

∗, d∗, π∗) = KVerpp1(C, i
∗, d, π) = 1. Therefore, one can see that

Pr[VDSsecVDS2

A (λ) = 1 ∧ chcol] ≤ Pr[KeyBdgKVCBKVC
(λ) = 1] = negl(λ).

Therefore, the overall advantage of the adversary winning the game is negli-
gible. Thus, our scheme VDS2 is secure.

6 Performance Evaluation

In this section, we report a comprehensive evaluation of our proposed two schemes
VDS1 and VDS2. In the following, we first provide the description of experiment
environment and parameter setting, and then discuss the comparison on commu-
nication, storage and time overhead between our two schemes with CVC/ACC-
based VDS schemes [11], and VADS scheme [19].

6.1 Implementation Setup

We implement in Python five VDS schemes including our two schemes VDS1
(Section 4) and VDS2 (Section 5), two VDS schemes in [11], and VADS scheme
[19]. We use PBC-0.5.14 library with a type A elliptic curve for pairing-based
and RSA-based cryptographic primitives, and SHA-256 hash function. We deploy
our experiments on the machine with Intel(R) Core(TM) i9-11900K @ 3.50 GHz
RAM 128GB and Ubuntu 20.04 LTS.

In the following experiment, we first determine the security parameter to
128 bits. To evaluate the time cost of five schemes, we set the database size to
n = 4096, 2048, 1024, the branching number of the tree to q = 32, 64, 128,
256, the block size (i.e., the size of a data entry) to 256 bits, 512 bits and
1024bits, the number of queried data in batch query to l = 10, 50, 100. To
completely quantify the query communication and server storage overhead, we
perform separate experiments by setting the database size to n = 210, 212, 214,
216, 218, 220 and the batch query size to l = 10, 50, 100, 500, 1000, 2000.

6.2 Evaluation

Time Cost. We evaluate the time cost of five schemes in terms of the append
time, the query time, the verify time, the update time, the batch query time, and

New Unbounded VDS for Batch Query with Almost Optimal Overhead 21

CVC ACC VADS VDS1 VDS2
10 2

10 1

100

101

102

Ap
pe

nd
 ti

m
e

co
st

 (m
s)

Block size
256 bits
512 bits
1024 bits

(a) Append time cost

VDS1
(q=32)

VDS1
(q=64)

VDS1
(q=128)

VDS1
(q=256)

VDS2
101

102

103

104

105

Qu
er

y
tim

e
co

st
 (m

s)

Block size
256 bits
512 bits
1024 bits

(b) Query time cost

CVC ACC VADS VDS1 VDS2
10 1

100

101

102

Ve
rif

y
tim

e
co

st
 (m

s)

Block size
256 bits
512 bits
1024 bits

(c) Verify time cost

CVC ACC VADS VDS1 VDS2
10 1

100

101

102

103

104

105

Up
da

te
 ti

m
e

co
st

 (m
s)

Block size
256 bits
512 bits
1024 bits

(d) Update time cost

VDS1
(l=10)

VDS1
(l=50)

VDS1
(l=100)

VDS2
(l=10)

VDS2
(l=50)

VDS2
(l=100)

101

102

103

104

105

106

107

Ba
tc

h
qu

er
y

tim
e

co
st

 (m
s)

Block size
256 bits
512 bits
1024 bits

(e) Batch query time cost

VDS1
(l=10)

VDS1
(l=50)

VDS1
(l=100)

VDS2
(l=10)

VDS2
(l=50)

VDS2
(l=100)

101

102

103

104

105

106

Ba
tc

h
ve

rif
y

tim
e

co
st

 (m
s)

Block size
256 bits
512 bits
1024 bits

(f) Batch verify time cost

Fig. 3. Time cost comparison

the batch verify time. The experiment results show that, as detailed in Fig. 3, our
two schemes are efficient but not optimal. First, we can observe from Fig. 3(a)
and 3(d) that our scheme VDS1 has better append and update time cost than
CVC-based VDS scheme [11] which is also based on a tree structure. This result
reveals that transferring the proof generation from the client to the server not
only optimizes server storage but also improves client and server computation
efficiency. Then we review Table 1 in Section 1 and further observe Fig. 3(a),
3(c), and 3(d). Although our scheme VDS2 has constant client-side append time,
verify time and update time independent of the size of the database, the block
size plays a significant role. The reason is that in our scheme VDS2 the time
cost is dominated by the length of the prime determined by the block size. In
addition, we show the time cost of single query, batch query, and batch verify in
Fig. 3(b), 3(e), and 3(f). The query time cost of our two schemes is determined
by server-side proof computation. According to Fig. 3(b) and 3(e), both single
query and batch query time increase with the block size. Specially, Fig. 3(e)
illustrates that the cost of batch query of VDS2 is independent of the number of
queried data l, while that of VDS1 increases linearly with l. Fig. 3(f) shows that
the cost of batch verify is dominated by block size and batch size l. Generally
speaking, it is necessary to sacrifice computation efficiency to achieve better
query communication and server storage as well as stronger security.

Communication Overhead. The communication overhead is mainly incurred
by retrieving a data entry or multiple data entries in a single query or batch
query. As shown in Fig. 4(a) and 4(b), both our schemes VDS1 and VDS2 reach
the optimal communication overhead O(1) in single query and batch query and

22 Wu et al.

2^10 2^12 2^14 2^16 2^18 2^20
The size of database (n)

0

200

400

600

800

1000

1200
Co

m
m

un
ica

tio
n

ov
er

he
ad

 (b
it)

CVC
ACC
VADS
VDS1
VDS2

(a) Single query

10 50 100 500 1000 2000
The number of queried data in a batch query (l)

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

m
un

ica
tio

n
ov

er
he

ad
 (b

it)

1e6
CVC
ACC
VADS
VDS1
VDS2

(b) Batch query

Fig. 4. Communication overhead comparison

2^10 2^12 2^14 2^16 2^18 2^20
The size of database (n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Se
rv

er
 st

or
ag

e
ov

er
he

ad
 (K

B)

1e5
CVC
ACC
VADS
VDS1
VDS2

Fig. 5. Storage comparison

are superior to all existing scheme. Particularly, the query communication of
VDS1 and VDS2 consists of only two elements and three elements respectively.
Storage Overhead. The server storage overhead in a VDS scheme mainly stems
from the proof storage. The server storage of most existing VDS schemes is at
leastO(n), where n is the database size. The ideal server storage is constantO(1).
Our scheme VDS1 reduces the storage overhead to O(n), and even our scheme
VDS2 achieves the optimal server storage overhead O(1) by eliminating the proof
storage and maintaining only constant-size auxiliary information (consisting of
just three elements). As shown in Fig. 5, the server storage of our scheme VDS2
outperforms that of the other four schemes.

7 Conclusion

In this paper, we explore new approaches to build unbounded VDS schemes for
batch query with optimal query communication and server storage. To this end,
we first introduce a new cryptographic primitive DCVC. Then, we propose an
unbounded VDS scheme VDS1 in the random oracle model from an aggregatable
cross-commitment variant of DCVC, which has optimal communication cost O(1)
and better server storage O(n). Further, we present the first unbounded VDS
scheme VDS2 with optimal communication overhead O(1) and storage overhead
O(1) in the standard model. Both of our schemes enjoy constant-size public
key. Compared with the state-of-the-art [11,19], our two schemes reach optimal
communication and storage overhead, however, the computational performance
is not optimal, so we leave constructing an overall optimal VDS scheme for batch
query to be the future work.

Acknowledgments. This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 6196026014 and 62072357), the Fundamental
Research Funds for the Central Universities (Nos. YJS2212 and ZDRC2204),
and the Open Foundation of Henan Key Laboratory of Cyberspace Situation
Awareness (No. HNTS2022012).

References

1. Agrawal, S., Raghuraman, S.: Kvac: Key-value commitments for blockchains and
beyond. In: ASIACRYPT 2020, Daejeon, South Korea, December 7-11, 2020.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 23

LNCS, vol. 12493, pp. 839–869. Springer (2020)

2. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: SCN 2004, Amalfi, Italy, September 8-10, 2004. LNCS, vol. 3352, pp. 165–179.
Springer (2004)

3. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: CRYPTO 2019, Santa Barbara, CA,
USA, August 18-22, 2019. LNCS, vol. 11692, pp. 561–586. Springer (2019)

4. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally
aggregatable vector commitments and applications to verifiable decentralized stor-
age. In: ASIACRYPT 2020, Daejeon, South Korea, December 7-11, 2020. LNCS,
vol. 12492, pp. 3–35. Springer (2020)

5. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC 2013,
Nara, Japan, February 26 - March 1, 2013. LNCS, vol. 7778, pp. 55–72. Springer
(2013)

6. Chen, C., Wu, H., Wang, L., Yu, C.: Practical integrity preservation for data
streaming in cloud-assisted healthcare sensor systems. Computer Networks 129,
472–480 (2017)

7. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: ISC
2004, Palo Alto, CA, USA, September 27-29. LNCS, vol. 3225, pp. 87–98. Springer
(2004)

8. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures
without key exposure. In: ACNS 2007, Zhuhai, China, June 5-8, 2007. LNCS,
vol. 4521, pp. 18–30. Springer (2007)

9. Chen, X., Zhang, F., Tian, H., Wei, B., Susilo, W., Mu, Y., Lee, H., Kim, K.:
Efficient generic on-line/off-line (threshold) signatures without key exposure. In-
formation Sciences 178(21), 4192–4203 (2008)

10. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In: CRYPTO 2004,
Santa Barbara, California, USA, August 15-19, 2004. LNCS, vol. 3152, pp. 220–
236. Springer (2004)

11. Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nürnberger, S.: Nearly
optimal verifiable data streaming. In: PKC 2016, Taipei, Taiwan, March 6-9, 2016.
LNCS, vol. 9614, pp. 417–445. Springer (2016)

12. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: CRYPTO 2019, Santa Barbara, CA, USA, August 18-22, 2019.
LNCS, vol. 11692, pp. 530–560. Springer (2019)

13. Miao, M., Wei, J., Wu, J., Li, K., Susilo, W.: Verifiable data streaming with effi-
cient update for intelligent automation systems. International Journal of Intelligent
Systems 37(2), 1322–1338 (2022)

14. Schröder, D., Schröder, H.: Verifiable data streaming. In: CCS 2012, Raleigh, NC,
USA, October 16-18, 2012. pp. 953–964 (2012)

15. Schröder, D., Simkin, M.: Veristream - A framework for verifiable data streaming.
In: FC 2015, San Juan, Puerto Rico, January 26-30, 2015. pp. 548–566. Springer
(2015)

16. Shamir, A.: On the generation of cryptographically strong pseudorandom se-
quences. ACM Transactions on Computer Systems 1(1), 38–44 (1983)

17. Sun, Y., Liu, Q., Chen, X., Du, X.: An adaptive authenticated data structure with
privacy-preserving for big data stream in cloud. IEEE Transactions on Information
Forensics and Security 15, 3295–3310 (2020)

24 Wu et al.

18. Tsai, I., Yu, C., Yokota, H., Kuo, S.: VENUS: verifiable range query in data stream-
ing. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications
Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA, April 15-19, 2018.
pp. 160–165. IEEE (2018)

19. Wei, J., Tian, G., Shen, J., Chen, X., Susilo, W.: Optimal verifiable data streaming
protocol with data auditing. In: ESORICS 2021, Darmstadt, Germany, October 4-
8, 2021. LNCS, vol. 12973, pp. 296–312. Springer (2021)

20. Xu, J., Meng, Q., Wu, J., Zheng, J.X., Zhang, X., Sharma, S.: Efficient and
lightweight data streaming authentication in industrial control and automation
systems. IEEE Transactions on Industrial Informatics 17(6), 4279–4287 (2021)

21. Xu, J., Wei, L., Wu, W., Wang, A., Zhang, Y., Zhou, F.: Privacy-preserving data
integrity verification by using lightweight streaming authenticated data structures
for healthcare cyber-physical system. Future Generation Computer Systems 108,
1287–1296 (2020)

A Correctness of DCVC

Correctness. The correctness of our scheme DCVC can be verified as follows.

Smi
i · πei

i = Smi
i ·

(
ei

√√√√ q∏
j=1,j ̸=i

S
mj

j · r
∏q

j=1,j ̸=i ej

)ei

= Smi
i ·

q∏
j=1,j ̸=i

S
mj

j · r
∏q

j=1 ej

=

q∏
j=1

S
mj

j · r
∏q

j=1 ej

= C mod N

The correctness after updates also holds. Similarly, C ′ = Sj
mj · π′j

ej for the

commitment C ′ = C · Sm′−m
i and proofs π′j = πj · ej

√
Sm′−m
i after the message

m at position i is updated to m′.

Cross-Commitment Aggregation Correctness. The correctness of cross-
commitment aggregation follows from the correctness of DCVC and Shamir’s
trick.

– Case1: When kl /∈ {kj}j∈[l−1], gcd(ek1
, . . . , ekl

) = 1 and
∏

j∈[l] ekj

gcd(ek1
,...,ekl

) =∏
j∈[l] ekj

= eKekl
.

ρK = π̂ · (πl,kl
)tlekl

/eK =
(
π̂eK · (πl,kl

)tlekl

)1/eK
mod N

ρl = π̂eK/ekl · (πl,kl
)tl =

(
π̂eK · (πl,kl

)tlekl

)1/ekl mod N

New Unbounded VDS for Batch Query with Almost Optimal Overhead 25

∏
j∈[l]

S
tjmj,kj

kj
π
∏

j∈[l] ekj

=
∏

j∈[l−1]

S
tjmj,kj

kj
· Stlml,kl

kl
·
(
ShamirTrick(ρK , ρl, eK , ekl

)
)∏

j∈[l] ekj

=
∏

j∈[l−1]

S
tjmj,kj

kj
· Stlml,kl

kl
·
((

π̂eK · (πl,kl
)tlekl

)1/eKekl

)∏
j∈[l] ekj

=
∏

j∈[l−1]

S
tjmj,kj

kj
· Stlml,kl

kl
· π̂eK · (πl,kl

)tlekl

=
∏

j∈[l−1]

S
tjmj,kj

kj
· π̂eK · Stlml,kl

kl
· (πl,kl

)tlekl

=
∏

j∈[l−1]

Cj
tj · Cl

tl

=
∏
j∈[l]

Cj
tj mod N

– Case2: When kl ∈ {kj}j∈[l−1], gcd(ek1
, . . . , ekl

) = ekl
and

∏
j∈[l] ekj

gcd(ek1
,...,ekl

) =∏
j∈[l−1] ekj = eK .∏

j∈[l]

S
tjmj,kj

kj
π
∏

j∈[l−1] ekj

=
∏

j∈[l−1]

S
tjmj,kj

kj
· Stlml,kl

kl
·
(
π̂ · πl,kl

tlekl
/eK
)∏

j∈[l−1] ekj

=
∏

j∈[l−1]

S
tjmj,kj

kj
· Stlml,kl

kl
· π̂eK · (πl,kl

)tlekl

=
∏

j∈[l−1]

S
tjmj,kj

kj
· π̂eK · Stlml,kl

kl
· (πl,kl

)tlekl

=
∏

j∈[l−1]

Cj
tj · Cl

tl

=
∏
j∈[l]

Cj
tj mod N

B Security Proof of DCVC

Theorem 3 (Position Binding). If the strong RSA assumption holds, the
scheme DCVC is position binding.

Proof. Suppose there exists an adversary A who wins the game PosBdgDCVC
A (λ)

by producing two valid proofs to two different messages at the same position. We
build a simulator B that may break the strong RSA assumption. The simulator

26 Wu et al.

B takes a strong RSA problem instance (N, z) as input. The simulator B will
use A to compute (y, e) s.t. z = ye mod N as follows.

First, B selects a random i← {1, . . . , q} as a guess for the index i on which
A will break the position binding.

Next, B sets ei←PrimeGen(i) and g←z. For j = 1, . . . , q, j ̸= i the rest of the
public parameters and trapdoors is computed as described by DCGen algorithm.

The adversary A is supposed to output (C,m,m′, j, π, π′) such that m ̸= m′

and both π, π′ are valid proofs at position j. If j ̸= i, the simulator B aborts the
simulation. Otherwise B proceeds as follows. Indeed,

Si
m · πei = Si

m′
· π′ei =⇒ Si

m−m′
= (π′/π)ei .

Let ∆ = m−m′ and Λ = π′/π, the equation above can be rewritten as

g∆
∏

j ̸=i ej = (Λ)ei .

Clearly, the absolute value of ∆ is less than l bits and e1, . . . , eq are (l + 1)-bit
primes, it follows that gcd(∆

∏
j ̸=i ej , ei) = 1. We can get an ei-root of g by use

the Shamir’s trick [16]. Concretely, we can compute two integers α and β such
that α∆

∏
j ̸=i ej + βei = 1 using the extended Euclidean algorithm. Thus,

g = gα∆
∏

j ̸=i ej+βei = (g∆
∏

j ̸=i ej)α · gβei = (Λα)ei · (gβ)ei = (Λαgβ)ei .

Therefore, if A succeeds in the game PosBdgDCVC
A (λ) with probability ϵ, then

B successfully breaks the strong RSA assumption with probability ϵ/q.

Theorem 4 (Indistinguishable Collisions). The scheme DCVC has indis-
tinguishable collisions.

Proof. According to the definition of indistinguishable collisions, any PPT ad-
versary cannot distinguish between a random value and the output of DCCol.

Concretely, in the game CollndDCVC
A (λ) it holds:

(1) The case of collision finding:

C0 = Sm1
1 . . . Smi

i . . . Smq
q r

∏q
i=1 ei

0 ,

aux∗ = (m1, . . . ,mi, . . . ,mq; r0),

and

C0 = Sm1
1 . . . S

m′
i

i . . . Smq
q r′0

∏q
i=1 ei ,

aux0 = (m1, . . . ,m
′
i, . . . ,mq; r

′
0),

where r′0 = r0 · t
mi−m′

i
ei .

(2) The case of no collision finding:

C1 = Sm1
1 . . . S

m′
i

i . . . Smq
q r

∏q
i=1 ei

1 ,

aux1 = (m1, . . . ,m
′
i, . . . ,mq; r1).

New Unbounded VDS for Batch Query with Almost Optimal Overhead 27

The aux0 and aux1 consist of all messages and r′0 and r1 respectively. Since
r0 is a uniformaly random element in Zp, r

′
0 is also a uniformaly random element

in Zp. Thus, r
′
0 and r1 are both uniformly random element in Zp. Therefore, the

probability of any adversary winning the game CollndDCVC
A (λ) is exactly 1/2.

Theorem 5 (Key Exposure Freeness). The scheme DCVC based on RSA is
key exposure freeness.

Proof. Given a collision (m1, . . . ,mi, . . . ,mq; r) and (m1, . . . ,m
′
i, . . . ,mq; r

′), we
can get

Si
mi · πei

i = Si
m′

i · π′eii =⇒ (gdi)mi−m′
i = r′/r.

From the equation above, the information of gdi may be recovered. However,
it is impossible for anyone to compute the trapdoor di from gdi . Therefore, our
scheme DCVC based on RSA is key exposure freeness.

	New Unbounded Verifiable Data Streaming for Batch Query with Almost Optimal Overhead

