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Secure and Private Distributed Source Coding with
Private Keys and Decoder Side Information
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H. Vincent Poor, Life Fellow, IEEE

Abstract—The distributed source coding problem is extended
by positing that noisy measurements of a remote source are
the correlated random variables that should be reconstructed at
another terminal. We consider a secure and private distributed
lossy source coding problem with two encoders and one decoder
such that (i) all terminals noncausally observe a noisy mea-
surement of the remote source; (ii) a private key is available
to each legitimate encoder and all private keys are available
to the decoder; (iii) rate-limited noiseless communication links
are available between each encoder and the decoder; (iv) the
amount of information leakage to an eavesdropper about the
correlated random variables is defined as secrecy leakage, and
privacy leakage is measured with respect to the remote source;
and (v) two passive attack scenarios are considered, where a
strong eavesdropper can access both communication links and a
weak eavesdropper can only choose one of the links to access.
Inner and outer bounds on the rate regions defined under secrecy,
privacy, communication, and distortion constraints are derived
for both passive attack scenarios. When one or both sources
should be reconstructed reliably, the rate region bounds are
simplified.

Index Terms—Secure and private distributed source coding,
remote source, rate-limited public communication, weak eaves-
dropper, passive attack.

I. INTRODUCTION

A fundamental problem with numerous recent applications
is the compression of correlated random sequences observed
by multiple terminals such that another terminal, called a
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decoder, can reconstruct these sequences by using the com-
pressed messages, i.e., the distributed source coding prob-
lem [1]. Smart grids with sensors that measure correlated
sequences, such as voltage levels, that should be transmitted
to a distant node is an example application of this problem.
Similarly, function computation problems, where a fusion
center observes compressed messages to compute a function
of the correlated sequences, are closely related to distributed
source coding problems [2], [3], and security constraints are
generally imposed on both problems since the communi-
cation links can be public [4]. If all transmitted messages
are available to an eavesdropper in the same network, then
it is necessary to provide the decoder an advantage over
the eavesdropper to enable secure source coding or function
computation. Decoder side information that is correlated with
the random sequences to be reconstructed provides such an
advantage [5]–[7]. Limiting the access of the eavesdropper to
a strict subset of all transmitted messages also enables secure
distributed source coding, considered in [8]–[11]. Similarly, a
private key shared only by the legitimate terminals also helps
to hide the source sequences [12], [13].

The posit that a ground truth is the reason for correla-
tions between the random sequences used in a distributed
source coding problem makes the models used more realistic.
For secure function computation [14], [15] and secret-key
agreement [16], [17] problems, which can be considered as
instances of the source coding with side information problem
[18, Section IV- B], the correlations are posited in [3], [19]
to stem from a remote source such that its noisy versions are
these dependent sequences. We similarly assume that there is
a remote source whose noisy measurements are used in the
source coding problems discussed below, which is similar to
the models in [20, Fig. 9] and [21, pp. 78]. Furthermore, in
the chief executive officer (CEO) problem [22] the aim is to
reconstruct a remote (or hidden) source at a decoder by using
the messages transmitted by multiple encoders that observe
noisy measurements of the same remote source. Our problem
is different from the CEO problem, because in our model the
decoder aims to recover encoder observations rather than the
remote source. Therefore, we define the amount of information
leakage to an eavesdropper about the encoder observations as
the secrecy leakage, whereas the leakage about the remote
source is the privacy leakage since the remote source is
common for all encoder observations [23]–[25]. We consider
two encoders, which requires different analysis from [26] with
a single encoder, that observe different noisy measurements of
the same remote source, and we impose joint secrecy and joint
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privacy constraints on the distributed source coding problems
considered; see [27]–[30] for such joint constraints imposed
for secret key agreement problems.

A. Motivations for the Models

We consider a distributed source coding problem with
two encoders, one decoder, and one eavesdropper, in which
private keys are available to the legitimate terminals and all
terminals observe a noisy measurement of a remote source.
Furthermore, between each encoder and the decoder, there is
a public rate-limited communication link. For this problem,
we analyze two passive attack scenarios. In the first scenario,
the eavesdropper can observe both public communication links
and in the second scenario, only one link can be observed by
the eavesdropper.

As a motivation for these models, consider two satellites that
are far apart from each other and that independently capture
noisy images of a sensitive object. The satellites aim to help
a third terminal on Earth, which has its own noisy image
of the same object, in creating a stereographic image of the
sensitive object; see [31] for such a distributed source coding
example. Furthermore, consider an eavesdropper with access
to another noisy image of the object. Suppose all four noisy
images can be modeled as measurements of previous images
of the same object that were captured during past activities,
so previous images represent the remote source and all four
images are correlated. Thus, the eavesdropper is interested
in reconstructing all three images available to the legitimate
parties, as well as the previous images.

Since the satellites are far from each other and have limited
power, they locally compress their images and transmit the out-
put to the third terminal on Earth. Using error correcting codes,
such as concatenated codes used in satellite communication
standards [32], one can achieve negligible error probabilities
at coding rates below the channel capacity, so we model
the public communication links as noiseless and rate-limited.
Moreover, assume that each satellite is equipped with physical
unclonable functions (PUFs), which are digital circuit outputs
that are unclonable and unique to the device that embodies
them, so PUF outputs can be used as the source of local
randomness to extract secret keys [33], [34]. Using public key
cryptography methods, the satellites can securely send their
corresponding secret key to the third terminal on Earth before
image compression and transmission. Alternatively, before
launching the satellites, secret keys can be embedded into
non-volatile memories available in the satellites, which might
make the satellites susceptible to side-channel attacks unlike
PUFs. Moreover, a strong eavesdropper is assumed to be able
to overhear both public communication links. There might be
cases that make overhearing both links difficult. For instance,
both satellites might transmit at approximately the same time
from different positions that are far apart, which forces a weak
eavesdropper with a single receiver to choose which link to
overhear and the eavesdropper’s choice might not be known
by the terminal on Earth.

We study sources that are independent and identically
distributed (i.i.d.) according to a probability distribution with

a discrete alphabet to gain insights into the ultimate limits and
optimal constructions. Source outputs in practical systems are
generally not i.i.d., but it is possible to obtain almost i.i.d.
outputs if, e.g., transform-coding algorithms are applied; see
[35], [36] for transform-coding methods applied to biometric
secrecy systems and PUFs for this purpose. Furthermore,
due to the distributed nature of the problem, a distributed
transform-coding method should be applied. This is possi-
ble by leveraging the distributed Karhunen-Loève transform
(KLT) coding methods given in [37]. Moreover, our asymptotic
results can be extended to finite-length results by applying
similar steps as being applied in [38, Theorem 3] to the wiretap
channel [39]. Direct extensions of our results to continuous-
alphabet random variables are also possible, because our outer
bounds apply to arbitrary random variables and there is a
discretization procedure to extend our achievability proofs to
well-behaved continuous-alphabet random variables such as
Gaussian random variables [40, Remark 3.8].

B. Summary of Contributions

We impose distortion and joint secrecy constraints on the
reconstructed source sequences, a joint privacy constraint on
the remote source, and communication rate constraints on the
communication links between encoders and the decoder to
establish inner and outer bounds on the resulting rate regions.
A summary of our main contributions is as follows.
• We derive inner and outer bounds on the rate region for

the secure and private distributed lossy source coding
problem with two encoders and private keys, in which
an eavesdropper can access all messages transmitted by
encoders. Note that our proofs do not directly follow
from the proofs for the models without private keys.
The bounds differ only in the Markov chain conditions
imposed on the auxiliary random variables. The mea-
surement channel model we consider corresponds to a
physically degraded broadcast channel (BC), which is
an extension of previous source models that include the
classic model with noiseless encoder measurements, i.e.,
a semi-deterministic BC. The terms in the rate region
bounds are shown to be different for low, middle, and
high private key-rate regimes. Furthermore, we show that
a time-sharing random variable enlarges the rate regions
for the low private key-rate regime.

• We next consider that the eavesdropper is weak and can
choose only one of the communication links to access
the transmitted message, which changes the analyses and
bounds for the joint secrecy- and joint privacy-leakage
rates at low and middle private key-rate regimes.

• All inner and outer bounds for the distributed lossy
source coding problems are shown to be straightforwardly
extended to the corresponding lossless settings. Similarly,
our bounds recover previous secure (distributed) source
coding results in the literature, such as in [5], [7],
including the secure and private source coding results
with a single encoder [26].

• We consider a binary remote source and its measurements
through symmetric and more-capable channels to evaluate
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an achievable rate region for secure and private distributed
lossless source coding against a strong eavesdropper.

C. Organization

In Section II, we introduce two secure and private dis-
tributed lossy source coding problems with a remote source.
In Section III, we provide inner and outer bounds, for which
different Markov chain conditions are imposed, on the rate
regions against a strong eavesdropper. In Section IV, we
provide inner and outer bounds on the rate regions against
a weak eavesdropper and also discuss how to simplify the
bounds for the secure and private distributed lossless source
coding problems against a strong or weak eavesdropper. In
Section V, we evaluate a projection of an achievable rate
region for a binary remote source. In Appendices A and B, we
prove the inner and outer bounds on the rate regions against
a strong eavesdropper and a weak eavesdropper, respectively.

D. Notation

Upper case letters X represent random variables, lower case
letters x their realizations, and calligraphic letters X the set
of realizations such that X has probability distribution PX .
A subscript i denotes the position of a variable in a length-
n sequence Xn = X1, X2, . . . , Xi, . . . , Xn. [1 : m] denotes
the set {1, 2, . . . ,m} for an integer m ≥ 1. Define [a]− =
min{a, 0} for a ∈ R. Hb(x) = −x log2 x−(1−x) log2(1−x)
is the binary entropy function. X ∼ Bern(α) represents
a Bernoulli random variable X with success probability α.
BSC(β) denotes a binary symmetric channel (BSC) with
crossover probability β and BEC(γ) a binary erasure channel
(BEC) with erasure symbol e and erasure probability γ.

II. SYSTEM MODELS

We consider the distributed lossy source coding model
with two legitimate encoders, one legitimate decoder, and
an eavesdropper (Eve), as depicted in Fig. 1. Two encoders
Enc1(·, ·) and Enc2(·, ·) observe the noisy measurements X̃n

1

and X̃n
2 of an i.i.d. remote source Xn ∼ Pn

X through memo-
ryless channels PX̃1|X and PX̃2|X in addition to private keys
K1 ∈ [1 : 2nR0 ] and K2 ∈ [1 : 2nR0 ] for R0 ≥ 0, respectively.
Encoder outputs are two indices W1 and W2 that are sent
over separate links with communication-rate constraints. The
decoder Dec(·, ·, ·, ·) observes both indices, as well as the
private keys K = (K1,K2) and another noisy measurement
Y n of the same remote source Xn through a memoryless
channel PY Z|X in order to reconstruct X̃n

1 and X̃n
2 . The other

noisy output Zn of PY Z|X is observed by Eve in addition to
a non-empty subset of the set of indices {W1,W2}, i.e., for a
strong attack scenario Eve observes (W1,W2) and for a weak
attack scenario Eve can choose W1 or W2 but her choice is not
known by the legitimate terminals. Suppose K is uniformly
distributed, hidden from Eve, and independent of the source
output and its noisy measurements.

The source X and measurement (X̃1, X̃2,Y,Z) alphabets
are finite sets.

PX

Enc1(·, ·)K1

PY Z|X

PX̃1|X

Dec (·, ·, ·, ·)

K = (K1,K2)

Eve

W1

Xn

Y n

X̃n
1

Xn

Zn

(
̂̃
Xn

1 ,
̂̃
Xn

2 )

W1

Enc2(·, ·)K2

PX̃2|X

W2

X̃n
2

W2

Fig. 1. A distributed source coding problem with two noisy measurements
(X̃n

1 , X̃
n
2 ) of a remote source Xn, private keys (K1,K2), and noncausal

decoder side information Y n under privacy, secrecy, communication, and dis-
tortion (or reliability) constraints. We consider the following attack scenarios:
a strong Eve observes (W1,W2, Zn), and a weak Eve can choose to observe
only one of the indices in addition to the side information Zn but her choice
is not known by the legitimate terminals.

Consider the distributed lossy source coding model illus-
trated in Fig. 1 such that Eve observes (W1,W2), i.e., strong
Eve. The corresponding rate region is defined as follows.

Definition 1. A distributed lossy tuple
(Rs, R`, Rw,1, Rw,2, D1, D2) ∈ R6

≥0 is achievable against
a strong Eve, given two corresponding private keys each with
rate R0≥ 0, if for any δ > 0 there exist n≥ 1, two encoders,
and one decoder such that

1

n
I(X̃n

1 , X̃
n
2 ;W1,W2|Zn) ≤ Rs + δ (secrecy) (1)

1

n
I(Xn;W1,W2|Zn) ≤ R` + δ (privacy) (2)

1

n
log
∣∣Wj

∣∣ ≤ Rw,j + δ for j=1, 2 (storages) (3)

E
[
d
(
X̃n

j ,
̂̃
Xn

j

)]
≤ Dj + δ for j=1, 2 (distortions) (4)

where ̂̃Xn
j is a function of (W1,W2, Y

n,K) for j = 1, 2

and d(x̃n, ̂̃xn) = 1
n

∑n
i=1 d(x̃i, ̂̃xi) is a per-letter bounded

distortion metric. The secure and private distributed lossy
source coding region RD,strong is the closure of the set of all
achievable distributed lossy tuples against a strong Eve. ♦

Consider next the distributed lossy source coding model
illustrated in Fig. 1 such that Eve observes now either W1 or
W2, i.e., weak Eve. The corresponding rate region is defined
as follows.

Definition 2. A distributed lossy tuple
(Rs, R`, Rw,1, Rw,2, D1, D2) ∈ R6

≥0 is achievable against a
weak Eve, given two corresponding private keys each with
rate R0 ≥ 0, if for any δ>0 there exist n≥1, two encoders,
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and one decoder such that (3), (4), and
1

n
I(X̃n

1 , X̃
n
2 ;Wj |Zn)≤Rs + δ ∀j=1, 2 (secrecy) (5)

1

n
I(Xn;Wj |Zn)≤R`+δ ∀j=1, 2 (privacy). (6)

The secure and private distributed lossy source coding region
RD,weak is the closure of the set of all achievable distributed
lossy tuples against a weak Eve. ♦

Remark 1. Secrecy-leakage rate constraints in (1) and (5)
are equal to the constraints, where (X̃n

1 , X̃
n
2 ) in the imposed

constraints are replaced with (X̃n
1 , X̃

n
2 , Y

n), which follows
due to the Markov chain (Y n, Zn)− (X̃n

1 , X̃
n
2 )− (W1,W2).

Therefore, the imposed constraints also consider the scenario
in which the eavesdropper wants to reconstruct all noisy
measurements of the remote source in addition to wanting to
reconstruct the remote source.

III. SECURE AND PRIVATE DISTRIBUTED SOURCE CODING
AGAINST STRONG EAVESDROPPER

We next provide inner and outer bounds on the rate region
RD,strong; see Appendix A for their proofs.

Denote

j′=(3−j) (7)

and

R∗=
[
I(U1, U2;Z|V1, V2, Q)−I(U1, U2;Y |V1, V2, Q)

]−
(8)

ĎR0 = max
j=1,2

I(Uj ; X̃j |V1, V2, Y ) (9)

Ď

ĎR0 = max
j=1,2

(
I(Vj ; X̃j |Y ) + I(Uj ; X̃j |V1, V2, Y )

)
(10)

PQV1V2U1U2X̃1X̃2XY Z

=PQ|V1V2
PV1|U1

PU1|X̃1
PX̃1|XPV2|U2

PU2|X̃2
PX̃2|XPXPY Z|X .

(11)

Lemma 1 (Inner Bound). The region RD,strong includes
the union over all PQV1V2U1U2|X̃1X̃2

of the rate tuples
(Rs, R`, Rw,1, Rw,2, D1, D2) such that

Rw,1 ≥ I(V1; X̃1|V2, Y ) + I(U1; X̃1|U2, V1, Y ) (12)

Rw,2 ≥ I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y ) (13)

Rw,1 +Rw,2 ≥ I(U2; X̃2|U1, V2, Y ) + I(U1; X̃1|V1, V2, Y )

+ I(V2; X̃2|V1, Y ) + I(V1; X̃1|Y ) (14)

and if R0 < ĎR0, then

Rs ≥ I(U1, U2; X̃1, X̃2|Z) +R∗ − 2R0 (15)
R` ≥ I(U1, U2;X|Z) +R∗ − 2R0 (16)

if ĎR0 ≤ R0 <
Ď

ĎR0, then

Rs ≥ I(V1, V2; X̃1, X̃2|Z) (17)
R` ≥ I(V1, V2;X|Z) (18)

and if R0 ≥ Ď

ĎR0, then

Rs ≥ 0 (19)
R` ≥ 0 (20)

and we have (11) such that

Dj ≥ E
[
d(X̃j ,

̂̃
Xj(U1, U2, Y ))

]
for j=1, 2 (21)

for some reconstruction function ̂̃Xj(U1, U2, Y ). One can limit
the cardinalities to |Vj | ≤ |X̃j | + 6, |Uj | ≤ (|X̃j |+ 6)

2
, and

|Q| ≤ 2.

Lemma 2 (Outer Bound). The region RD,strong is included in
the union of the rate tuples (Rs, R`, Rw,1, Rw,2, D1, D2) in
(14) and

Rw,1 ≥ I(V1; X̃1|V2, Y ) + I(U1; X̃1|V1, U2, Y )

− I(V1;V2|X̃1, Y )− I(U1;U2|X̃1, Y, V1) (22)

Rw,2 ≥ I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y )

− I(V1;V2|X̃2, Y )− I(U1;U2|X̃2, Y, V2) (23)

as well as if R0 < ĎR0, then (15) and (16); if ĎR0 ≤ R0 <
Ď

ĎR0,
then (17) and (18); and if R0 ≥ Ď

ĎR0, then (19) and (20), where
unions are over all PQV1V2U1U2|X̃1X̃2

such that we have (21)

for some reconstruction function ̂̃Xj(U1, U2, Y ) and

(Q,Vj)− Uj − X̃j −X − (X̃j′ , Y, Z) (24)

form Markov chains for j = 1, 2. One can limit the cardinal-
ities to |Vj | ≤ |X̃j |+ 6, |Uj | ≤ (|X̃j |+ 6)

2
, and |Q| ≤ 2.

Secure and private distributed lossy source coding rate
region bounds given in Lemmas 1 and 2 do not match
in general since the set of joint probability distributions
PQV1V2U1U2X̃1X̃2XY Z that satisfy (11) is not equal to the set
that satisfies the Markov chain conditions in (24). We remark
that the negative terms in (22) and (23) are zero if one imposes
(11), and that the time-sharing random variable Q enlarges
the rate region above; see [41], [42] for secure and private
function computation rate region bounds that do not match due
to similar reasons and that are also enlarged and convexified
by using a time-sharing random variable.

IV. SECURE AND PRIVATE DISTRIBUTED SOURCE CODING
AGAINST WEAK EAVESDROPPER

Now, we provide inner and outer bounds on the rate region
RD,weak; see Appendix B for proof sketches.

Denote

R∗∗ =
[
I(Uj ;Z|Vj , Q)− I(Uj ;Y, Vj′ |Vj , Q)

]−
. (25)

Lemma 3 (Inner Bound). The region RD,weak includes
the union over all PQV1V2U1U2|X̃1X̃2

of the rate tuples
(Rs, R`, Rw,1, Rw,2, D1, D2) such that (12)-(14) and if R0 <
ĎR0, then

Rs ≥ max
j=1,2

(
I(Uj ; X̃j |Z) +R∗∗ −R0

)
(26)

R` ≥ max
j=1,2

(
I(Uj ;X|Z) +R∗∗ −R0

)
(27)

if ĎR0 ≤ R0 <
Ď

ĎR0, then

Rs ≥ max
j=1,2

I(Vj ; X̃j |Z) (28)

R` ≥ max
j=1,2

I(Vj ;X|Z) (29)
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and if R0 ≥ Ď

ĎR0, then (19) and (20), where
PQV1V2U1U2X̃1X̃2XY Z is equal to (11) such that we have (21)

for some reconstruction function ̂̃
Xj(U1, U2, Y ). One can

limit the cardinalities to |Vj | ≤ |X̃j |+ 6, |Uj | ≤ (|X̃j |+ 6)
2
,

and |Q| ≤ 2.

Lemma 4 (Outer Bound). The region RD,weak is included
in the union of the rate tuples (Rs, R`, Rw,1, Rw,2, D1, D2)
in (14), (22), and (23), as well as if R0 < ĎR0, then (26)
and (27); if ĎR0 ≤ R0 < Ď

ĎR0, then (28) and (29); and if
R0 ≥ Ď

ĎR0, then (19) and (20), where unions are over all
PQV1V2U1U2|X̃1X̃2

such that we have (21) for some reconstruc-

tion function ̂̃Xj(U1, U2, Y ) and (24) form Markov chains for
j = 1, 2. One can limit the cardinalities to |Vj | ≤ |X̃j | + 6,
|Uj | ≤ (|X̃j |+ 6)

2
, and |Q| ≤ 2.

Remark 2. The main differences between the inner and outer
bounds on RD,strong and RD,weak are the lower bounds on the
secrecy- and privacy-leakage rates, i.e., (15)-(18) vs. (26)-(29),
that result in different rate regions. This follows since the
distortion constraints in (4) determine the lower bounds on the
achievable storage rates, which are the same for both regions
when the same code constructions are used.

One can show that if (X̃n
1 , X̃

n
2 ) should be recon-

structed losslessly, i.e., replace the constraints in (4) with

Pr
[{̂̃
Xn

1 6= X̃n
1

}⋃{̂̃
Xn

2 6= X̃n
2

}]
≤ δ, to consider

secure and private distributed lossless source coding, then the
bounds given in Lemmas 1-4 can be simplified by assigning

Uj = X̃j for j = 1, 2 such that ̂̃Xj(X̃1, X̃2, Y ) = X̃j and
we achieve Dj = 0, which satisfies the reliability constraint
since d(·, ·) is a distortion metric. Simplified inner and outer
bounds for the lossless settings do not match in general due to
different Markov chain conditions imposed, which is similar to
Lemmas 1-4. Note that computation of partially-invertible and
invertible functions [43] is entirely similar to lossless source
reconstruction and similar simplification steps can be applied
to function computation rate region bounds for such functions.
In [41], the auxiliary random variables V1 and V2 are chosen
to be constant for such special function computation settings,
which results in achievable regions that are not necessarily
optimal when a secrecy or privacy constraint is imposed.
Furthermore, since there are two auxiliary random variables to
be optimized for each encoder in Lemmas 1- 4, evaluating the
rate region bounds for secure and private distributed source
coding problems with two encoders is significantly more
involved than evaluating the rate regions for such problems
with a single encoder; see [26] for a Gaussian example for
the latter.

We next evaluate the projection of an achievable rate region
onto the (Rs, R`)-plane for secure and private distributed
lossless source coding against a strong eavesdropper.

V. AN ACHIEVABLE RATE REGION AGAINST STRONG
EAVESDROPPER FOR A BINARY REMOTE SOURCE

Suppose i.i.d. remote source outputs Xn ∼ Bernn(α) and
their measurements through the memoryless channels

PX̃1|X ∼ BSC(β1), PX̃2|X ∼ BSC(β2)

PY |X ∼ BSC(η), PZ|X ∼ BEC(γ) (30)

where α, β1, β2, η, γ∈(0, 1) are fixed and we have γ ≤ Hb(η),
so Z (eavesdropper) is more-capable compared to Y (decoder)
[44, Claims 2 and 4], i.e., I(X;Z) ≥ I(X;Y ) for all PX .
For the lossless scenario, an achievable rate region can be
obtained from Lemma 1 by choosing U1 = X̃1 and U2 = X̃2,
as mentioned above. Thus, for the lossless scenario we have

R∗ =
[
I(X̃1, X̃2;Z|V1, V2, Q)− I(X̃1, X̃2;Y |V1, V2, Q)

]−
(a)
= 0 (31)

where (a) follows since Z is more-capable compared to Y and
(V1, V2, Q) − (X̃1, X̃2) − X − (Y, Z) form a Markov chain.
Moreover, assume that the private-key rate is low, i.e., R0 <
max{H(X̃1|V1, V2, Y ), H(X̃2|V1, V2, Y )}. We then have the
secrecy-leakage rate

Rs ≥ H(X̃1, X̃2|Z)− 2R0

=
∑

z∈{0,1,e}

PZ(z)H(X̃1, X̃2|Z = z)− 2R0

(a)
= γH(X̃1, X̃2)− 2R0

+ (1− γ)(1− α)
(
H(X̃1|X=0) +H(X̃2|X=0)

)
+ (1− γ)α

(
H(X̃1|X=1) +H(X̃2|X=1)

)
= γH(X̃1, X̃2)− 2R0 + (1− γ)

(
Hb(β1) +Hb(β2)

)
(32)

where (a) follows since if Z=e, then (X̃1, X̃2) are indepen-
dent of Z, and because X̃1 and X̃2 are independent given X .
Denote ᾱ=(1−α), β̄1 =(1−β1), and β̄2 =(1−β2). Similarly,
we then have the privacy-leakage rate

R` ≥ I(X̃1, X̃2;X|Z)− 2R0

(a)
= H(X̃1, X̃2|Z)−H(X̃1|X)−H(X̃2|X)− 2R0

(b)
= γH(X̃1, X̃2)− γ

(
Hb(β1) +Hb(β2)

)
− 2R0 (33)

where (a) follows from the Markov chain (X̃1, X̃2)−X −Z
and because X̃1 and X̃2 are independent given X , and (b)
follows by (32). Furthermore, to evaluate (32) and (33), one
can compute the term H(X̃1, X̃2) from

PX̃1X̃2
(x̃1, x̃2)=


(ᾱβ̄1β̄2 + αβ1β2) if (x̃1, x̃2)=(0, 0)

(ᾱβ̄1β2 + αβ1β̄2) if (x̃1, x̃2)=(0, 1)

(ᾱβ1β̄2 + αβ̄1β2) if (x̃1, x̃2)=(1, 0)

(ᾱβ1β2 + αβ̄1β̄2) if (x̃1, x̃2)=(1, 1)

.

VI. CONCLUSION

The classic secure distributed source coding problems were
extended by considering a remote source, where two noisy
measurements of the remote source output are reconstructed at
a decoder that observes (1) private keys shared with legitimate
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terminals; (2) correlated side information that is also a noisy
measurement of the remote source output; and (3) public
indices sent by the legitimate terminals through rate-limited
public communication links. We considered two passive attack
scenarios, in which either a weak eavesdropper can choose
which communication link to access or a strong eavesdropper
can access both links. We derived inner and outer bounds
for these problems when the eavesdropper observes also
another noisy measurement of the remote source output, i.e.,
eavesdropper has correlated side information. The private-key
rate was shown to affect the secrecy- and privacy-leakage rate
terms significantly, which are different for low, middle, and
high key-rate regimes. Furthermore, we showed that even if
a weak eavesdropper can access only a single communication
link, the secrecy- and privacy-leakage rate terms depend on
the joint probability distribution for the low private-key rate
regime.
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[5] D. Gündüz, E. Erkip, and H. V. Poor, “Secure lossless compression with
side information,” in Proc. IEEE Inf. Theory Workshop, Porto, Portugal,
May 2008, pp. 169–173.

[6] R. Tandon, S. Ulukus, and K. Ramchandran, “Secure source coding with
a helper,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2178–2187, Apr.
2013.
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[26] O. Günlü, R. F. Schaefer, H. Boche, and H. V. Poor, “Secure and private
source coding with private key and decoder side information,” Nov.
2022, [Online]. Available: arxiv.org/abs/2205.05068.

[27] O. Günlü, “Multi-entity and multi-enrollment key agreement with corre-
lated noise,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1190–1202,
2021.

[28] L. Kusters and F. M. J. Willems, “Multiple observations for secret-key
binding with SRAM PUFs,” Entropy, vol. 23, no. 5, May 2021.

[29] L. Lai, S. W. Ho, and H. V. Poor, “Privacy-security trade-offs in
biometric security systems - Part II: Multiple use case,” IEEE Trans.
Inf. Forensics Security, vol. 6, no. 1, pp. 140–151, Mar. 2011.
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[41] O. Günlü, “Function computation under privacy, secrecy, distortion, and
communication constraints,” Entropy, vol. 24, no. 1, June 2022.

[42] W. Tu and L. Lai, “On function computation with privacy and secrecy
constraints,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6716–6733,
Oct. 2019.

[43] M. Sefidgaran and A. Tchamkerten, “Computing a function of correlated
sources: A rate region,” in IEEE Int. Symp. Inf. Theory, St. Petersburg,
Russia, July-Aug. 2011, pp. 1856–1860.

[44] C. Nair, “Capacity regions of two new classes of two-receiver broadcast
channels,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4207–4214, Sep.
2010.



7

[45] J. M. Renes and R. Renner, “Noisy channel coding via privacy amplifi-
cation and information reconciliation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7377–7385, Nov. 2011.

[46] M. H. Yassaee, M. R. Aref, and A. Gohari, “Achievability proof via
output statistics of random binning,” IEEE Trans. Inf. Theory, vol. 60,
no. 11, pp. 6760–6786, Nov. 2014.

[47] M. Bloch, Lecture Notes in Information-Theoretic Security. Atlanta,
GA: Georgia Inst. Technol., July 2018.

[48] M. Bloch and J. Barros, Physical-layer Security. Cambridge, U.K.:
Cambridge University Press, 2011.

[49] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge, U.K.: Cambridge
University Press, 2011.

APPENDIX A
PROOFS OF LEMMAS 1 AND 2

A. Proof of Lemma 1 (Inner Bound)

Proof Sketch: We use the output statistics of random
binning (OSRB) method [17], [45], [46] for the achievability
proof by following the steps described in [47, Section 1.6];
see [47] for details. The code construction below proposed
for low private-key rates, i.e., R0 < ĎR0, is similar to the
construction in [41, Section 5.1], but we apply additional
binning steps to leverage the private keys to reduce secrecy-
and privacy-leakage rates. For middle and high private-key
rates, we change the code construction to further reduce the
secrecy- and privacy-leakage rates.

Let (V n
1 , V

n
2 , U

n
1 , U

n
2 , X̃

n
1 , X̃

n
2 , X

n, Y n, Zn) be i.i.d. ac-
cording to PV1V2U1U2X̃1X̃2XY Z that can be obtained by fixing
probabilities PV1|U1

, PU1|X̃1
, PV2|U2

, and PU2|X̃2
in (11) such

that E[d(X̃j ,
̂̃
Xj)] ≤ (Dj + ε) for j = 1, 2 and any ε > 0. To

each vn1 assign two random bin indices Fv1 ∈ [1 : 2nR̃v1 ]
and Wv1 ∈ [1 : 2nRv1 ]. To each un1 assign three random
bin indices Fu1 ∈ [1 : 2nR̃u1 ], Wu1 ∈ [1 : 2nRu1 ], and
Ku1 ∈ [1 : 2nR0 ], where R0 is the private-key rate
defined in Section II. Similarly, random indices (Fv2 ,Wv2) and
(Fu2 ,Wu2 ,Ku2) are assigned to each vn2 and un2 , respectively,
where Fv2 ∈ [1 : 2nR̃v2 ], Wv2 ∈ [1 : 2nRv2 ], Fu2 ∈ [1 : 2nR̃u2 ],
Wu2 ∈ [1 : 2nRu2 ], and Ku2 ∈ [1 : 2nR0 ].

The public indices F1 = (Fv1 , Fu1) and F2 = (Fv2 , Fu2)
represent the choice of the source encoders and the source
decoder. Furthermore, we impose that the messages sent by the
source encoders Enc1(·, ·) and Enc2(·, ·) to the source decoder
Dec(·, ·, ·, ·) are

W1 = (Wv1 ,Wu1 ,K1 +Ku1) (34)
W2 = (Wv2 ,Wu2 ,K2 +Ku2) (35)

where the summations with the private keys are in modulo-
2nR0 , i.e., one-time padding.

We impose the following decoding order
1) using (Y n, Fv1 ,Wv1), the decoder estimates V n

1 as V̂ n
1 ;

2) using (Y n, V̂ n
1 , Fv2 ,Wv2), the decoder estimates V n

2 as
V̂ n
2 ;

3) using (Y n,K1, V̂
n
1 , V̂

n
2 , Fu1 ,Wu1 ,K1+Ku1), the decoder

estimates Un
1 as Ûn

1 ;
4) using (Y n,K2, V̂

n
1 , V̂

n
2 , Û

n
1 , Fu2 ,Wu2 ,K2+Ku2), the de-

coder estimates Un
2 as Ûn

2 .
Swapping the indices 1 and 2 above, one can achieve another
corner point in the achievable rate region. Due to symmetry,

the analysis for the swapped decoding order is entirely similar
to the analysis for the decoding order given above, so we
consider only the latter. We remark that the imposed decod-
ing order corresponds to a layered decoding of the random
sequences.

The public index Fv1 is almost independent of
(X̃n

1 , X̃
n
2 , X

n, Y n, Zn) if we have [46, Theorem 1]

R̃v1 < H(V1|X̃1, X̃2, X, Y, Z)
(a)
= H(V1|X̃1) (36)

where (a) follows since (X̃2, X, Y, Z) − X̃1 − V1 form a
Markov chain. The constraint in (36) suggests that the ex-
pected value, which is taken over the random bin assignments,
of the variational distance between the joint probability dis-
tributions Unif[1 : 2nR̃v1 ] · PX̃n

1
and PFv1 X̃

n
1

vanishes when
n→∞. Moreover, the public index Fu1 is almost independent
of (V n

1 , X̃
n
1 , X̃

n
2 , X

n, Y n, Zn) if

R̃u1 < H(U1|V1, X̃1, X̃2, X, Y, Z)
(a)
= H(U1|V1, X̃1) (37)

where (a) follows from the Markov chain condition
(X̃2, X, Y, Z) − (X̃1, V1) − U1. Similarly, Fv2 is almost in-
dependent of (X̃n

1 , X̃
n
2 , X

n, Y n, Zn) if we have

R̃v2 < H(V2|X̃1, X̃2, X, Y, Z)
(a)
= H(V2|X̃2) (38)

where (a) follows since (X̃1, X, Y, Z) − X̃2 − V2 form
a Markov chain, and Fu2 is almost independent of
(V n

2 , X̃
n
1 , X̃

n
2 , X

n, Y n, Zn) if

R̃u2 < H(U2|V2, X̃1, X̃2, X, Y, Z)
(a)
= H(U2|V2, X̃2) (39)

where (a) follows from the Markov chain condition
(X̃1, X, Y, Z)− (X̃2, V2)− U2.

Using a Slepian-Wolf (SW) [1] decoder that observes
(Y n, Fv1 ,Wv1), one can reliably estimate V n

1 if we have [46,
Lemma 1]

R̃v1 +Rv1 > H(V1|Y ) (40)

since then the expected error probability taken over random
bin assignments vanishes when n → ∞. Similarly, Step 2
estimation, given above as the second step in the imposed
decoding order, is reliable if we have

R̃v2 +Rv2 > H(V2|V1, Y ). (41)

Moreover, one can reliably estimate Un
1 from

(Y n,K1, V
n
1 , V

n
2 , Fu1 ,Wu1 ,K1 +Ku1

) if we have

R0 + R̃u1 +Ru1 > H(U1|V1, V2, Y ). (42)

Similarly, Step 4 estimation is reliable if we have

R0 + R̃u2 +Ru2

> H(U2|V1, V2, U1, Y )
(a)
= H(U2|V2, U1, Y ) (43)

where (a) follows from the Markov chain condition U2 −
(U1, V2, Y )− V1.
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To satisfy (36)-(43), for any ε > 0 we fix

R̃v1 = H(V1|X̃1)− ε (44)

Rv1 = I(V1; X̃1)− I(V1;Y ) + 2ε (45)

R̃u1 = H(U1|V1, X̃1)− ε (46)

R0 +Ru1 = I(U1; X̃1|V1)− I(U1;V2, Y |V1) + 2ε (47)

R̃v2 = H(V2|X̃2)− ε (48)

Rv2 = I(V2; X̃2)− I(V2;V1, Y ) + 2ε (49)

R̃u2 = H(U2|V2, X̃2)− ε (50)

R0 +Ru2 = I(U2; X̃2|V2)− I(U2;U1, Y |V2) + 2ε. (51)

Communication Rates: (45) and (47) result in a commu-
nication (storage) rate of

Rw1
= R0 +Rv1 +Ru1

(a)
= I(V1; X̃1|Y ) +H(U1|V1, V2, Y )−H(U1|V1, X̃1) + 4ε

(b)
= I(V1; X̃1|Y ) + I(U1; X̃1|V1, V2, Y ) + 4ε (52)

where (a) follows since V1 − X̃1 − Y form a Markov chain
and (b) follows since U1− (V1, X̃1)− (V2, Y ) form a Markov
chain. Similarly, (49) and (51) result in a communication rate
of

Rw2
= R0 +Rv2 +Ru2

(a)
= I(V2; X̃2|V1, Y ) +H(U2|U1, V2, Y )

−H(U2|V2, X̃2) + 4ε

(b)
= I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y ) + 4ε (53)

where (a) follows since V2 − X̃2 − (V1, Y ) form a Markov
chain and (b) follows from the Markov chain condition U2 −
(V2, X̃2) − (U1, Y ). By swapping the indices 1 and 2 in the
decoding order given above, one can achieve the other corner
point with

R′w1
= I(V1; X̃1|V2, Y ) + I(U1; X̃1|U2, V1, Y ) + 4ε (54)

R′w2
= I(V2; X̃2|Y ) + I(U2; X̃2|V1, V2, Y ) + 4ε. (55)

Privacy Leakage: Since 1) the private keys K = (K1,K2)
are independent of the source and channel random variables;
2) random encoders given above are constructed indepen-
dently; 3) K is uniformly distributed; and 4) all random bin
indices can be shown to be mutually independent for any ε > 0
such that ε→ 0 when n→∞, we can consider the following
virtual scenario to calculate the leakage. Suppose first that
there is no private key such that the encoder outputs for the
virtual scenario are

ĎW1 = (Wv1 ,Wu1 ,Ku1) (56)
ĎW2 = (Wv2 ,Wu2 ,Ku2). (57)

We first calculate the leakage for the virtual scenario. Then,
given the mentioned four properties and due to the one-time
padding steps in (34) and (35), we can subtract H(K) = 2nR0

from the leakage calculated for the virtual scenario to obtain

the leakage for the original problem. Thus, we have the privacy
leakage

I(Xn;W1,W2, F1, F2|Zn)

= I(Xn; ĎW1,ĎW2, F1, F2|Zn)− 2nR0

(a)
= H(ĎW1,ĎW2, F1, F2|Zn)−H(ĎW1,ĎW2, F1, F2|Xn)−2nR0

(b)
= H(ĎW1,ĎW2, F1, F2|Zn)

−H(Un
1 , U

n
2 , V

n
1 , V

n
2 |Xn)

+H(V n
1 |ĎW1,ĎW2, F1, F2, X

n)

+H(V n
2 |V n

1 ,
ĎW1,ĎW2, F1, F2, X

n)

+H(Un
1 |V n

1 , V
n
2 ,

ĎW1,ĎW2, F1, F2, X
n)

+H(Un
2 |Un

1 , V
n
1 , V

n
2 ,

ĎW1,ĎW2, F1, F2, X
n)− 2nR0

(c)

≤ H(ĎW1,ĎW2, F1, F2|Zn)

−H(Un
1 , U

n
2 , V

n
1 , V

n
2 |Xn) + 4nε′n − 2nR0

(d)
= H(ĎW1,ĎW2, F1, F2|Zn)

− nH(U1, U2, V1, V2|X) + 4nε′n − 2nR0 (58)

where
(a) follows because (ĎW1,ĎW2, F1, F2) − Xn − Zn form a
Markov chain;
(b) follows since (Un

1 , U
n
2 , V

n
1 , V

n
2 ) determine

(Fu1
,Wu1

,Ku1
, Fv1 ,Wv1 , Fu2

,Wu2
,Ku2

, Fv2 ,Wv2);
(c) follows for some ε′n > 0 such that ε′n → 0 when n→∞
since (Fv1 ,Wv1 , X

n) can reliably recover V n
1 by (40) and,

similarly, (Fv2 ,Wv2 , V
n
1 , X

n) can reliably recover V n
2 by

(41) both due to the Markov chain condition

(V n
1 , V

n
2 )− (Un

1 , U
n
2 )− (X̃n

1 , X̃
n
2 )−Xn − Y n. (59)

Moreover, because of the Markov chain condition in
(59) (Fu1 ,Wu1 ,Ku1 , V

n
1 , V

n
2 , X

n) can reliably recover Un
1

by (42) and, similarly, (Fu2
,Wu2

,Ku2
, Un

1 , V
n
1 , V

n
2 , X

n)
can reliably recover Un

2 by (43), which follows from
H(U2|U1, V1, V2, Y ) ≥ H(U2|U1, V1, V2, X) that can be ob-
tained as

H(U2|U1, V1, V2, Y )−H(U2|U1, V1, V2, X)

= I(U2;U1, V1, V2, X)− I(U2;U1, V1, V2, Y )

≥I(U2;U1, V1, V2, X)−I(U2;U1, V1, V2, X, Y ) = 0 (60)

where the last equality follows from the Markov chain condi-
tion (U1, U2, V1, V2)−X − Y ;
(d) follows since (Un

1 , U
n
2 , V

n
1 , V

n
2 , X

n) are i.i.d.
Next, we consider the term H(ĎW1,ĎW2, F1, F2|Zn) in (58)

and provide single letter bounds on it, which requires to
analyze numerous decoding cases. In [3, Section V-A], six
different decodability cases are analyzed for two decoding
steps. We can leverage these results by combining the decoding
order Steps 1 and 2 to treat (V n

1 , V
n
2 ) jointly, as well as

combining Steps 3 and 4 to treat (Un
1 , U

n
2 ) jointly; see also

[41, Section 5.1]. Thus, by replacing V n with (V n
1 , V

n
2 )

and Un with (Un
1 , U

n
2 ) in [3, Section V-A], respectively,

we can apply the results of the six decodability analyses
to (58). Furthermore, the subtracted term in [3, Eq. (54)]
can be mapped to the second term in (58) by applying the
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same replacements. Thus, combining the replaced decodability
analyses with (58), we obtain

I(Xn;W1,W2, F1, F2|Zn)

≤ n
(
[I(U1, U2;Z|V1, V2)− I(U1, U2;Y |V1, V2) + ε]−

+ I(U1, U2;X|Z)− 2R0 + 5ε′n
)
. (61)

We remark that (47) and (51) implicitly assume that
R0 < (min{I(U1; X̃1|V1, V2, Y ), I(U2; X̃2|V2, U1, Y )}+ 2ε),
since the private keys K1 and K2 are used to apply one-
time padding to one bin of Un

1 and Un
2 , respectively. The

communication rate results are not affected by this assump-
tion since both X̃1 and X̃2 should be reconstructed by the
decoder. However, the leakage analysis changes if R0 ≥
(max{I(U1; X̃1|V1, V2, Y ), I(U2; X̃2|V2, U1, Y )} + 2ε), be-
cause then the private keys can be used to apply one-time
padding to the single bins of Un

1 and Un
2 with encoder outputs

Ď

ĎW1 = (Wv1 ,Wu1 +K1) (62)
Ď

ĎW2 = (Wv2 ,Wu2 +K2) (63)

where the bins with indices Ku1 and Ku2 are removed from
the code construction. We then have the privacy leakage

I(Xn; Ď

ĎW1,
Ď

ĎW2, F1, F2|Zn)

= H(Xn|Zn)−H(Xn|Zn,Ď

ĎW1,
Ď

ĎW2, F1, F2)

(a)
= H(Xn|Zn)−H(Xn|Zn,Wv1 ,Wv2 , F1, F2)

(b)

≤ H(Xn|Zn)−H(Xn|Zn, V n
1 , V

n
2 ) + 2ε′n

(c)
= nH(X|Z)− nH(X|Z, V1, V2) + 2ε′n

= nI(V1, V2;X|Z) + 2ε′n (64)

where (a) follows since (Wu1 + K1) is independent of
(Un

1 , U
n
2 , V

n
1 , V

n
2 , X̃

n
1 , X̃

n
2 , X

n, Y n, Zn) due to the one-
time padding with a uniform and independent private
key and, similarly, (Wu2 + K2) is also independent of
(Un

1 , U
n
2 , V

n
1 , V

n
2 , X̃

n
1 , X̃

n
2 , X

n, Y n, Zn), (b) follows since
(V n

1 , V
n
2 ) determine (Wv1 ,Wv2 , Fv1 , Fv2) and for some ε′n >

0 such that ε′n → 0 when n → ∞ because by (37)
Fu1

is almost independent of (V n
1 , X̃

n
1 , X̃

n
2 , X

n, Zn) and by
(39) Fu2

is almost independent of (V n
2 , X̃

n
1 , X̃

n
2 , X

n, Zn),
respectively, and (c) follows because (V n

1 , V
n
2 , X

n, Zn) are
i.i.d.

Consider next that R0 is greater than or equal to the
maximum of (I(V1; X̃1|Y ) + I(U1; X̃1|V1, V2, Y ) + 4ε) and
(I(V2; X̃2|V1, Y ) + I(U2; X̃2|U1, V2, Y ) + 4ε), given in (52)
and (53), respectively. Then, j-th encoder can apply one-time
padding to both Wvj and Wuj for j = 1, 2, so no information
is leaked to the eavesdropper about (Wv1 ,Wu1 ,Wv2 ,Wu2).
Therefore, we obtain the privacy leakage of

I(Xn;F1, F2|Zn)
(a)

≤ I(Xn;F1|Zn) + I(Xn;F2|Zn) + 2ε′n

= I(Xn;Fv1 |Zn) + I(Xn;Fu1 |Zn, Fv1)

+ I(Xn;Fv2 |Zn) + I(Xn;Fu2 |Zn, Fv2) + 2ε′n
(b)

≤ 6ε′n (65)

where (a) follows by (38) and (39) since F2 is almost inde-
pendent of (F1, X

n, Zn) due to the Markov chain condition
F1 − (X̃n

1 , X
n, Zn) − F2 and (b) follows similarly from the

corresponding almost independence results by applying (36)-
(39).

Secrecy Leakage: Similar to the privacy-leakage analysis
above, suppose first the virtual scenario with encoder outputs
given in (56) and (57), and then calculate the leakage for
the original problem by subtracting H(K) = 2nR0 from the
leakage calculated for the virtual scenario. Thus, we obtain

I(X̃n
1 , X̃

n
2 ;W1,W2, F1, F2|Zn)

= I(X̃n
1 , X̃

n
2 ; ĎW1,ĎW2, F1, F2|Zn)− 2nR0

(a)
= H(ĎW1,ĎW2, F1, F2|Zn)

−H(ĎW1,ĎW2, F1, F2|X̃n
1 , X̃

n
2 )− 2nR0

(b)
= H(ĎW1,ĎW2, F1, F2|Zn)−H(Un

1 , U
n
2 , V

n
1 , V

n
2 |X̃n

1 , X̃
n
2 )

+H(V n
1 |ĎW1,ĎW2, F1, F2, X̃

n
1 , X̃

n
2 )

+H(V n
2 |V n

1 ,
ĎW1,ĎW2, F1, F2, X̃

n
1 , X̃

n
2 )

+H(Un
1 |V n

1 , V
n
2 ,

ĎW1,ĎW2, F1, F2, X̃
n
1 , X̃

n
2 )

+H(Un
2 |Un

1 , V
n
1 , V

n
2 ,

ĎW1,ĎW2, F1, F2, X̃
n
1 , X̃

n
2 )−2nR0

(c)

≤ H(ĎW1,ĎW2, F1, F2|Zn)− nH(U1, U2, V1, V2|X̃1, X̃2)

+ 4nε′n − 2nR0 (66)

where (a) follows because (ĎW1,ĎW2, F1, F2)−(X̃n
1 , X̃

n
2 )−Zn

form a Markov chain, (b) follows since (Un
1 , U

n
2 , V

n
1 , V

n
2 )

determine (ĎW1,ĎW2, F1, F2), and (c) follows since
(V n

1 , V
n
2 , U

n
1 , U

n
2 , X̃

n
1 , X̃

n
2 ) are i.i.d. and because

(Fv1 ,Wv1 , X̃
n
1 , X̃

n
2 ) can reliably recover V n

1 by (40)
and, similarly, (Fv2 ,Wv2 , V

n
1 , X̃

n
1 , X̃

n
2 ) can reliably recover

V n
2 by (41) both due to the Markov chain condition

(V n
1 , V

n
2 ) − (X̃n

1 , X̃
n
2 ) − Y n. Recoverability of (Un

1 , U
n
2 )

follows similarly by (42) and (43). The terms in (66) can
be obtained from the terms in (58) by replacing X with
(X̃1, X̃2). Thus, we apply the results of the decodability
analyses from [3, Section V-A], applied to (58) above, also
to (66) such that by replacing X with (X̃1, X̃2) in (61), we
have

I(X̃n
1 , X̃

n
2 ;W1,W2, F1, F2|Zn)

≤ n
(
[I(U1, U2;Z|V1, V2)− I(U1, U2;Y |V1, V2) + ε]−

+ I(U1, U2; X̃1, X̃2|Z)− 2R0 + 5ε′n
)
. (67)

Furthermore, if we have

R0 ≥ max{I(U1; X̃1|V1, V2, Y ), I(U2; X̃2|V2, U1, Y )}+ 2ε

then by applying entirely similar steps as in (64) after replacing
Xn with (X̃n

1 , X̃
n
2 ), we obtain the secrecy leakage

I(X̃n
1 , X̃

n
2 ;W1,W2, F1, F2|Zn)

≤ nI(V1, V2; X̃1, X̃2|Z). (68)

Similarly, after replacing Xn with (X̃n
1 , X̃

n
2 ) in (65), one

can upper bound the secrecy leakage for the high pri-
vate key-rate case, i.e., R0 is greater than or equal to the
maximum of (I(V1; X̃1|Y ) + I(U1; X̃1|V1, V2, Y ) + 4ε) and
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(I(V2; X̃2|V1, Y )+I(U2; X̃2|U1, V2, Y )+4ε), by 6ε′n for some
ε′n > 0 such that ε′n → 0 when n→∞.

Suppose public indices (F1, F2) are generated uniformly at
random and encoders generate (V n

1 , V
n
2 , U

n
1 , U

n
2 ) according

to PV n
1 V n

2 Un
1 Un

2 |X̃n
1 F1X̃n

2 F2
that can be obtained from the

binning scheme applied above. Such a procedure effectu-
ates a joint probability distribution that is almost equal to
PV1V2U1U2X̃1X̃2XY Z one can obtain from the fixed distribution
given in (11) [47, Section 1.6]. Since both leakage metrics are
expectations over all possible realizations (F1 = f1, F2 = f2),
using the selection lemma [48, Lemma 2.2] we prove Lemma 1
by choosing an ε > 0 such that ε → 0 when n → ∞.
The time-sharing random variable Q, for which we impose
PQV1V2

= PQPV1|QPV2|Q, enlarges the rate region via con-
vexification.

B. Proof of Lemma 2 (Outer Bound)

Proof Sketch: Suppose for some n ≥ 1 and δn > 0,
there exist two encoders and a decoder such that (1)-(4)
are satisfied against a strong eavesdropper for some tuple
(Rs, R`, Rw,1, Rw,2, D1, D2) given two private keys each with
rate R0. Define

Vj,i , (Wj , Y
n
i+1, Z

i−1) (69)

Uj,i , (Wj , Y
n
i+1, Z

i−1, Xi−1,Kj) (70)

that satisfy the Markov chain condition

Vj,i − Uj,i − X̃j,i −Xi − (X̃j′,i, Yi, Zi). (71)

For j = 1, 2, we obtain

Dj + δn
(a)

≥ E
[
d
(
X̃n

j ,
̂̃
Xn

j (W1,W2, Y
n,K)

)]
≥ E

[
d
(
X̃n

j ,
̂̃
Xn

j (W1,W2, Y
n,K,Xi−1, Zi−1)

)]
(b)
= E

[
d
(
X̃n

j ,
̂̃
Xn

j (W1,W2, Y
n
i ,K,X

i−1, Zi−1)
)]

(c)
=

1

n

n∑
i=1

E
[
d
(
X̃j,i,

̂̃
Xj,i(U1,i, U2,i, Yi)

)]
(72)

where (a) follows by (4), (b) follows from the Markov chain
condition

Y i−1 − (Y n
i , X

i−1, Zi−1,W1,W2,K)− X̃n
j (73)

and (c) follows from the definition of Uj,i.
Communication Rates: We have

n(Rwj
+ δn)

(a)

≥ log |Wj |
≥ H(Wj |Y n,Kj)−H(Wj |X̃n

j , Y
n,Kj)

(b)
= H(X̃n

j |Y n)−
n∑

i=1

H(X̃j,i|X̃i−1
j ,Wj , Y

n,Kj)

(c)
= H(X̃n

j |Y n)−
n∑

i=1

H(X̃j,i|X̃i−1
j ,Wj , Y

n
i+1, Yi,Kj)

(d)

≥ H(X̃n
j |Y n)−

n∑
i=1

H(X̃j,i|Xi−1, Zi−1,Wj , Y
n
i+1, Yi,Kj)

(e)
=

n∑
i=1

I(Uj,i; X̃j,i|Yi)

(f)
=

n∑
i=1

[I(Vj,i; X̃j,i|Yi) + I(Uj,i; X̃j,i|Yi, Vj,i)]

=

n∑
i=1

[
I(Vj,i; X̃j,i, Vj′,i|Yi)− I(Vj,i;Vj′,i|X̃j,i, Yi)

+ I(Uj,i; X̃j,i, Uj′,i|Yi, Vj,i)

− I(Uj,i;Uj′,i|X̃j,i, Yi, Vj,i)
]

≥
n∑

i=1

[
I(Vj,i; X̃j,i|Vj′,i, Yi)− I(Vj,i;Vj′,i|X̃j,i, Yi)

+ I(Uj,i; X̃j,i|Vj,i, Uj′,i, Yi)

− I(Uj,i;Uj′,i|X̃j,i, Yi, Vj,i)
]

(74)

where (a) follows by (3), (b) follows since Kj is independent
of (X̃n

j , Y
n), (c) follows from the Markov chain condition

Y i−1 − (X̃i−1
j ,Wj , Y

n
i+1, Yi,Kj)− X̃j,i (75)

(d) follows by applying the data processing inequality to the
Markov chain

(Xi−1, Zi−1)− (X̃i−1
j ,Wj , Y

n
i+1, Yi,Kj)− X̃j,i (76)

(e) follows since (X̃n, Y n) are i.i.d. and from the definition
of Uj,i, and (f) follows from the Markov chain condition in
(71).

Next, we bound the sum-rate as

n(Rw1 + δn) + n(Rw2 + δn)

(a)

≥ log(|W1| · |W2|)
≥ H(W1,W2|Y n,K)−H(W1,W2|X̃n

1 , X̃
n
2 , Y

n,K)

(b)
= H(X̃n

1 , X̃
n
2 |Y n)

−
n∑

i=1

H(X̃1,i, X̃2,i|Y n
i ,W1,W2,K, X̃

i−1
1 , X̃i−1

2 )

(c)

≥
n∑

i=1

[
H(X̃1,i, X̃2,i|Yi)

−H(X̃1,i, X̃2,i|Y n
i ,W1,W2,K,X

i−1, Zi−1)
]

(d)
=

n∑
i=1

I(U1,i, U2,i; X̃1,i, X̃2,i|Yi)

(e)
=

n∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|V1,i, V2,i, Yi)

+ I(V1,i, V2,i; X̃1,i, X̃2,i|Yi)
]
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(f)
=

n∑
i=1

[
I(U1,i; X̃1,i, X̃2,i|V1,i, V2,i, Yi)

+ I(U2,i; X̃1,i, X̃2,i|U1,i, V2,i, Yi)

+ I(V1,i; X̃1,i, X̃2,i|Yi)

+ I(V2,i; X̃1,i, X̃2,i|V1,i, Yi)
]

≥
n∑

i=1

[
I(U1,i; X̃1,i|V1,i, V2,i, Yi)

+ I(U2,i; X̃2,i|U1,i, V2,i, Yi)

+ I(V1,i; X̃1,i|Yi) + I(V2,i; X̃2,i|V1,i, Yi)
]

(77)

where (a) follows by (3), (b) follows since K is independent
of (X̃n

1 , X̃
n
2 , Y

n) and from the Markov chain condition

Y i−1 − (W1,W2, Y
n
i ,K, X̃

i−1
1 , X̃i−1

2 )− (X̃1,i, X̃2,i) (78)

(c) follows because (X̃n
1 , X̃

n
2 , Y

n) are i.i.d. and from the data
processing inequality applied to the Markov chain

(Xi−1, Zi−1)−(X̃i−1
1 , X̃i−1

2 ,W1,W2, Y
n
i ,K)−(X̃1,i, X̃2,i)

(79)

(d) follows from the definitions of U1,i and U2,i, (e) follows
from the Markov chain condition

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)− Yi (80)

and (f) follows from the Markov chain condition

V1,i − (U1,i, Yi, V2,i)− (U2,i, X̃1,i, X̃2,i). (81)

Privacy Leakage: We have

n(R` + δn)

(a)

≥ [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ [I(W1,W2;Xn)− I(W1,W2;Y n)]

(b)
= [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ I(W1,W2;Xn|K)− I(K;Xn|W1,W2)

− I(W1,W2;Y n|K) + I(K;Y n|W1,W2)

(c)
= [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ [I(W1,W2;Xn|K)− I(W1,W2;Y n|K)]

− I(K;Xn|W1,W2, Y
n)

(d)

≥
n∑

i=1

[
I(W1,W2;Yi|Y n

i+1, Z
i−1)

− I(W1,W2;Zi|Zi−1, Y n
i+1)

]
+

n∑
i=1

[
I(W1,W2;Xi|Xi−1, Y n

i+1,K)

− I(W1,W2;Yi|Y n
i+1, X

i−1,K)
]
−H(K)

(e)
=

n∑
i=1

[
I(W1,W2;Yi|Y n

i+1, Z
i−1)

− I(W1,W2;Zi|Zi−1, Y n
i+1)

]
+

n∑
i=1

[
I(W1,W2;Xi|Xi−1, Y n

i+1, Z
i−1,K)

− I(W1,W2;Yi|Y n
i+1, X

i−1, Zi−1,K)−2R0

]
(f)
=

n∑
i=1

[
I(W1,W2, Y

n
i+1, Z

i−1;Yi)

− I(W1,W2, Z
i−1, Y n

i+1;Zi)
]

+

n∑
i=1

[
I(W1,W2, X

i−1, Y n
i+1, Z

i−1,K;Xi)

− I(W1,W2, Y
n
i+1, X

i−1, Zi−1,K;Yi)− 2R0

]
(g)
=

n∑
i=1

[
I(V1,i, V2,i;Yi)− I(V1,i, V2,i;Zi)

+ I(U1,i, U2,iV1,i, V2,i;Xi)

− I(U1,i, U2,i, V1,i, V2,i;Yi)− 2R0

]
=

n∑
i=1

[
− I(U1,i, U2,i, V1,i, V2,i;Zi)

+ I(U1,i, U2,i, V1,i, V2,i;Xi)

+ I(U1,i, U2,i;Zi|V1,i, V2,i)

− I(U1,i, U2,i;Yi|V1,i, V2,i)− 2R0

]
(h)

≥
n∑

i=1

[
I(U1,i, U2,i;Xi|Zi)− 2R0

+
[
I(U1,i, U2,i;Zi|V1,i, V2,i)

− I(U1,i, U2,i;Yi|V1,i, V2,i)
]−]

(82)

where (a) follows by (2) and from the Markov chain condition
(W1,W2) − Xn − Zn, (b) follows since K is independent
of (Xn, Y n), (c) follows from the Markov chain condition
(W1,W2,K) − Xn − Y n, (d) follows from Csiszár’s sum
identity [49], (e) follows from the Markov chain condition

(Xi, Yi,W1,W2)− (Xi−1, Y n
i+1,K)− Zi−1 (83)

(f) follows since K is independent of (Xn, Y n, Zn) that are
i.i.d., (g) follows from the definitions of Uj,i and Vj,i, and (h)
follows from the Markov chain condition

(V1,i, V2,i)− (U1,i, U2,i)−Xi − Zi. (84)

We next consider the case R0 ≥ ĎR0, defined in (9),
and provide the corresponding outer bound for the achieved
privacy-leakage rate in (64). We obtain

n(R` + δn)
(a)

≥ H(Xn|Zn)−H(Xn|Zn,W1,W2)

(b)
=

n∑
i=1

[H(Xi|Zi)−H(Xi|Zi,W1,W2, X
n
i+1, Y

n
i+1)]



12

(c)
=

n∑
i=1

[H(Xi|Zi)−H(Xi|Zi, V1,i, V2,i, X
n
i+1)]

≥
n∑

i=1

I(V1,i, V2,i;Xi|Zi) (85)

where (a) follows by (2), (b) follows because (Xn, Zn) are
i.i.d. and from the Markov chain condition

Xi − (Xn
i+1,W1,W2, Z

i)− (Zn
i+1, Y

n
i+1) (86)

and (c) follows from the definitions of V1,i and V2,i. Fur-
thermore, the corresponding outer bound for the high private
key-rate case, i.e., R0 ≥ Ď

ĎR0 defined in (10), with the
privacy-leakage result in (65) follows since conditional mutual
information is non-negative.

Secrecy Leakage: We obtain

n(Rs + δn)

(a)

≥ [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ [I(W1,W2; X̃n
1 , X̃

n
2 )− I(W1,W2;Y n)]

(b)
= [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ I(W1,W2; X̃n
1 , X̃

n
2 |K)−I(K; X̃n

1 , X̃
n
2 |W1,W2)

− I(W1,W2;Y n|K) + I(K;Y n|W1,W2)

(c)
= [I(W1,W2;Y n)− I(W1,W2;Zn)]

+ I(W1,W2; X̃n
1 , X̃

n
2 |K,Y n)

− I(K; X̃n
1 , X̃

n
2 |W1,W2, Y

n)

(d)

≥
n∑

i=1

[
I(W1,W2;Yi|Y n

i+1, Z
i−1)

− I(W1,W2;Zi|Zi−1, Y n
i+1)

]
+H(X̃n

1 , X̃
n
2 |K,Y n)−H(K)

−
n∑

i=1

H(X̃1,i, X̃2,i|X̃i−1
1 , X̃i−1

2 ,W1,W2, Y
n
i ,K)

(e)

≥
n∑

i=1

[
I(W1,W2, Y

n
i+1, Z

i−1;Yi)

− I(W1,W2, Z
i−1, Y n

i+1;Zi)
]

+

n∑
i=1

H(X̃1,i, X̃2,i|Yi)− 2nR0

−
n∑

i=1

H(X̃1,i, X̃2,i|Xi−1, Zi−1,W1,W2, Y
n
i ,K)

(f)
=

n∑
i=1

[
I(V1,i, V2,i;Yi)−I(V1,i, V2,i;Zi)−2R0

+ I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i|Yi)
]

(g)
=

n∑
i=1

[
I(V1,i, V2,i;Yi)− I(V1,i, V2,i;Zi)− 2R0

+ I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i)

− I(U1,i, U2,i, V1,i, V2,i;Yi)
]

=

n∑
i=1

[
−I(U1,i, U2,i, V1,i, V2,i;Zi)− 2R0

+ I(U1,iU2,i, V1,i, V2,i; X̃1,i, X̃2,i)

+ I(U1,i, U2,i;Zi|V1,i, V2,i)

− I(U1,i, U2,i;Yi|V1,i, V2,i)
]

(h)

≥
n∑

i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|Zi)− 2R0

+
[
I(U1,i, U2,i;Zi|V1,i, V2,i)

− I(U1,i, U2,i;Yi|V1,i, V2,i)
]−]

(87)

where (a) follows by (1) and from the Markov chain condi-
tion (W1,W2) − (X̃n

1 , X̃
n
2 ) − Zn, (b) follows because K is

independent of (X̃n
1 , X̃

n
2 , Y

n), (c) follows from the Markov
chain condition

(W1,W2,K)− (X̃n
1 , X̃

n
2 )− Y n (88)

(d) follows from the Csiszár’s sum identity and because (78)
form a Markov chain, (e) follows because (X̃n

1 , X̃
n
2 , Y

n, Zn)
are i.i.d., K is independent of (X̃n

1 , X̃
n
2 , Y

n), and from
the data processing inequality applied to the Markov chain
condition in (79), (f) follows from the definitions of Vj,i and
Uj,i, (g) follows from the Markov chain condition in (80), and
(h) follows from the Markov chain condition

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)− Zi. (89)

Now, we consider the case R0 ≥ ĎR0 and prove the
corresponding outer bound for the secrecy-leakage rate in (68).
We obtain

n(Rs + δn)
(a)

≥ H(X̃n
1 , X̃

n
2 |Zn)−H(X̃n

1 , X̃
n
2 |Zn,W1,W2)

(b)
=

n∑
i=1

[
H(X̃1,i, X̃2,i|Zi)

−H(X̃1,i, X̃2,i|Zi,W1,W2, X̃
n
1,i+1, X̃

n
2,i+1, Y

n
i+1)

]
(c)
=

n∑
i=1

[
H(X̃1,i, X̃2,i|Zi)

−H(X̃1,i, X̃2,i|Zi, V1,i, V2,i, X̃
n
1,i+1, X̃

n
2,i+1)]

≥
n∑

i=1

I(V1,i, V2,i; X̃1,i, X̃2,i|Zi) (90)

where (a) follows by (1), (b) follows because (X̃n
1 , X̃

n
2 , Z

n)
are i.i.d. and from the Markov chain condition

(X̃1,i, X̃2,i)− (X̃n
1,i+1, X̃

n
2,i+1,W1,W2, Z

i)− (Zn
i+1, Y

n
i+1)
(91)

and (c) follows from the definitions of V1,i and V2,i. Moreover,
the corresponding outer bound for the case R0 ≥ Ď

ĎR0 follows
because conditional mutual information is non-negative.

Introduce a uniformly distributed time-sharing random vari-
able Q ∼ Unif[1 : n] independent of other random variables,
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and define X=XQ, X̃j = X̃j,Q, Y =YQ, Z=ZQ, Vj =Vj,Q,
and Uj =(Uj,Q,Q), so

(Q,Vj)− Uj − X̃j −X − (X̃j′ , Y, Z) (92)

form Markov chains for j = 1, 2. The proof of the outer bound
follows by letting δn → 0 and using the support lemma [49,
Lemma 15.4] for the cardinality bounds.

APPENDIX B
PROOFS OF LEMMAS 3 AND 4

Proof Sketches: The proof of the inner bound for the
weak eavesdropper setting follows by using the same random
binning steps used in the proof of Lemma 1, so the same
communication rates are achieved.

Using the definitions given in (56) and (57), and applying
similar steps to (58) we have the secrecy leakage

I(X̃n
1 , X̃

n
2 ;Wj , Fj , Fj′ |Zn)

= I(X̃n
1 , X̃

n
2 ; ĎWj , Fj |Zn)

+ I(X̃n
1 , X̃

n
2 ;Fj′ |ĎWj , Fj , Z

n)− nR0

(a)

≤ H(ĎWj , Fj |Zn)−H(ĎWj , Fj |X̃n
j ) + ε′n − nR0

(b)
= H(ĎWj , Fj |Zn)−H(Un

j , V
n
j |X̃n

j ) +H(V n
j |ĎWj , Fj , X̃

n
j )

+H(Un
j |ĎWj , Fj , X̃

n
j , V

n
j ) + ε′n − nR0

(c)

≤ H(ĎWj , Fj |Zn)−nH(Uj , Vj |X̃j)+2nε′n+ε′n−nR0 (93)

where (a) follows for some ε′n > 0 such that ε′n → 0 when
n→∞ since Fj′ is almost independent of (X̃n

1 , X̃
n
2 , Z

n) by
(36)-(39) and because

Fj′ − (X̃n
1 , X̃

n
2 , Z

n)− (Fj ,ĎWj) (94)

(ĎWj , Fj)− X̃n
j − (Zn, X̃n

j′) (95)

form Markov chains, (b) follows since (Un
j , V

n
j ) determine

(ĎWj , Fj), and (c) follows because (ĎWj , Fj , X̃
n
j ) can recover

V n
j by (40)-(41) and (V n

j ,
ĎWj , Fj , X̃

n
j ) can recover Un

j by
(42)-(43), respectively, which follow since we have

H(Vj |X̃j)
(c.1)
= H(Vj |X̃j , Vj′ , Y )

≤ H(Vj |Vj′ , Y ) ≤ H(Vj |Y ) (96)

and

H(Uj |Vj , X̃j)
(c.2)
= H(Uj |Vj , X̃j , Vj′ , Uj′ , Y )

≤ H(Uj |Uj′ , Vj , Vj′ , Y ) ≤ H(Uj |Vj , Vj′ , Y ) (97)

where (c.1) follows from the Markov chain condition Vj −
X̃j − (Vj′ , Y ) and (c.2) follows from the Markov chain
condition Vj − Uj − X̃j − (Vj′ , Uj′ , Y ).

Next, we provide a single letter upper bound on the term
H(ĎWj , Fj |Zn) in (93) by applying the results in [3, Sec-
tion V - A] that consider six different decodability cases, which
are applied also to (66). However, for the weak eavesdropper
setting, the conditional entropy term measures only the j-
th encoder’s leakage, unlike in (66) where the leakage is
with respect to both encoders. Therefore, we have to adapt
our analysis to the decoding order imposed. If j = 1,

we should then consider a decoder that observes not only
Y n but (Y n, V n

2 ) to measure the leakage about (Un
1 , V

n
1 ).

Furthermore, if j = 2, we should then consider a decoder
that observes (Y n, V n

1 , U
n
1 ) to measure the leakage about

(Un
2 , V

n
2 ). Since the information leakage cannot decrease

when the decoder obtains less information, we can apply the
results in [3, Section V-A], as being applied in [26, Eq. (69)] to
the secure and private source coding model with one encoder,
by replacing Y with (Y, Vj′), so by (93) we obtain

I(X̃n
1 , X̃

n
2 ;Wj , Fj , Fj′ |Zn)

≤ n
(

[I(Uj ;Z|Vj)− I(Uj ;Y, Vj′ |Vj) + ε]−

+ I(Uj ; X̃j |Z)−R0 + 3ε′n

)
+ ε′n. (98)

By replacing (X̃n
1 , X̃

n
2 ) with Xn and applying entirely similar

steps, one can show that we have the privacy leakage

I(Xn;Wj , Fj , Fj′ |Zn)

≤ n
(

[I(Uj ;Z|Vj)− I(Uj ;Y, Vj′ |Vj) + ε]−

+ I(Uj ;X|Z)−R0 + 3ε′n

)
+ ε′n. (99)

If the private-key rate is such that R0 ≥
(max{I(U1; X̃1|V1, V2, Y ), I(U2; X̃2|V2, U1, Y )} + 2ε),
by using the definitions in (62) and (63) we then have the
secrecy leakage

I(X̃n
1 , X̃

n
2 ;Wj , Fj , Fj′ |Zn)

= I(X̃n
1 , X̃

n
2 ; Ď

ĎWj , Fj |Zn)+I(X̃n
1 , X̃

n
2 ;Fj′ |ĎĎWj , Fj , Z

n)

(a)

≤ I(X̃n
j ; Ď

ĎWj , Fj |Zn) + ε′n
(b)

≤ nH(X̃j |Z)−H(X̃n
j |Zn, V n

j ,Wvj , Fj) + ε′n
(c)

≤ nI(Vj ; X̃j |Z) + 2ε′n (100)

where (a) follows because Fj′ is almost independent of
(X̃n

1 , X̃
n
2 , Z

n) by (36)-(39) and since (94) and (95) form
Markov chains after replacing ĎWj with Ď

ĎWj , (b) follows
because (Wuj + Kj) is independent of (V n

j , X̃
n
1 , X̃

n
2 , Z

n)
due to the one-time padding with a uniform and independent
private key, and (c) follows because V n

j determines (Wvj , Fvj )
and because by (37) and (39) Fuj is almost independent of
(V n

j , X
n, Zn). Similarly, by replacing (X̃n

1 , X̃
n
2 ) with Xn,

one can show that we then have the privacy leakage

I(Xn;Wj , Fj , Fj′ |Zn) ≤ nI(Vj ;X|Z) + 2ε′n. (101)

Furthermore, for the high private key-rate regime, we can
apply entirely similar steps as in (65) to show that negligible
privacy and secrecy leakages are achieved.

The proof of the outer bound for the communication rates
and distortion follows from the proof of Lemma 2. Further-
more, for the secrecy- and privacy-leakage outer bound terms,
one can lower bound the term −I(Uj,i;Yi|Vj,i) in [26, Eqs.
(76)(h) and (81)(i)] by the term −I(Uj,i;Yi, Vj′,i|Vj,i), so we
omit the proof.


