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Abstract. SNARK is a well-known family of cryptographic tools that
is increasingly used in the field of computation integrity at scale. In
this area, multiple works have introduced SNARK-friendly cryptographic
primitives: hashing, but also encryption and signature verification. De-
spite all the efforts to create cryptographic primitives that can be proved
faster, it remains a major performance hole in practice. In this paper, we
present a recursive technique that can improve the efficiency of the prover
by an order of magnitude compared to proving MiMC hashes (a SNARK-
friendly hash function, Albrecht et al. 2016) with a Groth16 (Eurocrypt
2016) proof. We use GKR (a well-known public-coin argument system by
Goldwasser et al., STOC 2008) to prove the integrity of hash computa-
tions and embed the GKR verifier inside a SNARK circuit. The challenge
comes from the fact that GKR is a public-coin interactive protocol, and
applying Fiat-Shamir naively may result in worse performances than ap-
plying existing techniques directly. This is because Fiat-Shamir itself is
involved with hash computation over a large string. We take advantage
of a property that SNARK schemes commonly have, to build a protocol
in which the Fiat-Shamir hashes have very short inputs. The technique
we present is generic and can be applied over any SNARK-friendly hash,
most known SNARK schemes, and any public-coin argument system in
place of GKR.

Keywords: SNARK · Hash Verification · Proof Recursion · Proof Com-
position · GKR · Public-Coin · Fiat Shamir · So-Far Digest Model

1 Introduction

Succinct Non-Interactive Argument of Knowledge (zk-)SNARKs are pow-
erful cryptographic tools that allow a prover to convince a verifier that it knows
a witness w such that the relation R (usually drawn from a large family) is sat-
isfied with respect to the public input x 1 (i.e., R(x;w) = 1). Particularly, the
verifier needs less time to verify the proof rather than redoing all the compu-
tation. In the last few years, an ever-growing number of SNARK constructions

1 This can be done without revealing additional information, if the SNARK has addi-
tionally the zero-knowledge property



2 Belling et al.

have emerged, including [23], [2], [8], [14], [30], [36], [11], [32] with various secu-
rity assumptions and performance trade-offs. SNARKs are also widely adopted
in the blockchain world for their applications for privacy (zk-SNARKs) [24] and
scalable computational integrity [10].

Hashing inside a SNARK Several important applications of SNARKs in-
volve proving the computation of numerous hashes: signature and Merkle proof
verification, which usually becomes the main bottleneck in the runtime of the
prover. A SNARK scheme typically works over arithmetic circuits and a prespec-
ified finite field. On the other hand, common hash functions such as SHA256,
Blake2 or Keccak typically work with unsigned integers and bitwise operations,
since they are faster on CPUs. Subsequently, even though they can be embedded
within an arithmetic circuit, they incur a prohibitive overhead on the prover’s
runtime. Due to this fact, numerous works — among which MiMC [1], Posei-
don [22] — have proposed SNARK-friendly hash functions2: functions that are
more efficient to embed in an arithmetic circuit by 2 orders of magnitude. Our
contribution essentially focuses on applying new techniques to speed up the ver-
ification of MiMC hash function, resulting in a speed-up of x35 (more details
in Fig. 16) compared to directly verifying MiMC with Groth16 [23]. However,
the techniques we present can also be applied to other SNARK-friendly hash
functions such as Poseidon [22]. We describe this in Appendix C.

The GKR protocol [20] produces linear time verifiable proofs for multiple
parallel execution of a layered arithmetic circuit C. The works [33], [34], [37]
extend the GKR [20] protocol and improve its performances. In particular, [35]
describes a generalization of the GKR protocol for arbitrary arithmetic circuits
with a directed acyclic graph structure, which - in practice - also has a faster
prover than the original version of GKR. Additionally, it does not require any
particular cryptographic operations (apart from the Fiat-Shamir hashes). From
their construction, we distill in Section 3.1, a variant of GKR tailored for the
MiMC keyed-permutations [1]. The construction of Section 3.1 can be seen as
analog to the custom gates in Ultra-PLONK [18].

Hyrax [32] proposes to compile GKR using discrete logarithm (DLog) as-
sumptions to obtain a zk-SNARK. LegoSnark, [11] presents a generic framework
which enables linking a statement proven using GKR (or more precisely Hyrax
[32]) to other ones using possibly different argument systems. Our work differs
from theirs by embedding the GKR verifier within another SNARK. Our con-
tribution is a construction that allows us to recurse the GKR protocol within a
SNARK.

Proof recursion is a technique that consists in verifying a publicly verifiable
non-interactive proof inside another argument system. This technique can be
used for building incrementally verifiable computation (IVC), proof carrying
data (PCD) and proof aggregation. [5] specifies how to instantiate proof-carrying
data through recursion using a pairing-friendly cycle of elliptic curves. [13]

2 Generally speaking, a SNARK-friendly hash is a hash function that is involved only
with algebraic operations such as multiplication, addition, etc...
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proposes a post-quantum argument system that is compatible with recursion.
[8] proposes a technique for proof-carrying data using a (possibly non-pairing-
friendly) cycle of elliptic curves. [31] describes an argument system optimized for
recursion. Our work extends this model by working on public-coin non-interactive
argument systems.

Technical Aspects and Motivation

The GKR protocol is originally a multi-round public-coin interactive protocol
that is transformed to its non-interactive version by applying the Fiat-Shamir
(FS) transform [12, 4], being sound in the random oracle model.3

At first glance, it may not be convincing to use GKR for hash verification
(proof of correct hash computation). In particular, because the non-interactive
version of GKR itself requires hash computations over long strings, to generate
challenges (by Fiat-Shamir transform). We highlight some technical details which
may convince the reader of the relevance of using GKR for hash verification.

– Parallelization: GKR can be used to efficiently prove and verify multiple
instances of the same circuit in parallel.

– Recursion: We recurse GKR inside a SNARK. Namely, a SNARK is applied
over the verifier of GKR such that the GKR verifier checks the correct com-
putation of all hashes (leveraging the parallelization property of GKR) and
SNARK proves the correct execution of the GKR verifier.

– Practical verification-time: Another key idea that makes GKR very inter-
esting for recursion is that — although its verifier runs asymptotically in
linear time – its practical prover runtime is comparable to the runtime of
the alleged computation itself. Regarding the efficiency, not all circuits are
equally suited for application of GKR. Generally speaking, layered circuits
with a smaller width, a larger depth and lower-degree (at each layer) are
more interesting. This makes hash functions based on the S-Box x → xα,
where α is small, such as Poseidon [22] and MiMC [1] excellent candidates
for GKR. 4

– Compressing the input for Fiat-Shamir: Instead of including the input-output
of GKR in the Fiat-Shamir hashes (as it would be normally required), we
pass a prover-generated commitment which is much shorter. Moreover, we
would adjust Fiat-Shamir to be more efficient inside the circuit.

– Externalizing the commitment: The challenge here is to force the prover,
possibly malicious, to correctly compute the aforementioned commitment.
We discuss how to circumvent this challenge in a non-trivial and efficient

3 Indeed, in [12] the authors proved that GKR is round-by-round sound which implies
security against state restoration attack [12]. In [4] the authors proved that if a
multi-round protocol is secure against such attack, then it is sound in the random
oracle model. Finally, [15] directly discusses the soundness of sumcheck protocol in
the random oracle model.

4 It is also possible to use GKR for Boolean circuits, [19] gives an example on how to
do so.
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way. Note that a more trivial solution is to embed the commitment inside
the circuit of SNARK, which is far less efficient. Our technique provides a
separate constant-size proof, for the correct computation of the commitment,
outside the circuit. This guarantees the soundness of the system as a whole.

Overview of our technique

We present a technique to recurse a public-coin single-round interactive proto-
col inside another SNARK. In public-coin protocols, the verifier sends random
challenges to the prover, which we call “randomnesses”. GKR is an instance of
public-coin protocols.

Our methodology allows the prover to handle the randomnesses efficiently
when compiling to a non-interactive protocol and recursing inside a SNARK. A
naive attempt would be to apply the Fiat-Shamir transform over GKR straight-
forwardly, but this would be inefficient. Indeed, when using the Fiat-Shamir
transform, the verifier, and the prover are required to hash the past transcript
including the inputs of the verifier. If these inputs are very long, this leads to long
hashes to be performed inside the SNARK circuit, and these are expensive. Let
assume n alleged evaluation of the MiMC keyed-permutation Hmimc(x, k) = y.
Applying the Fiat-Shamir transform directly would require hashing all the input-
output x, y, k of the GKR statement and would result in a protocol where we hash
at least 3n field elements to obtain the initial challenge : at least 3 times worse
than directly verifying the same hashes inside a circuit. Our protocol instead ap-
plies the Fiat-Shamir transform over a short input provided by the prover and
externalizes the relevant computations on how this short input was obtained,
outside the circuit. Slightly more in detail, the information that we use to gener-
ate the randomness is a piece of computation (let us call it γv) already required
in the SNARK verification. As an example, consider the Groth16 scheme, where
the verifier must first compute γ, a multi-scalar multiplication (MSM) of the
verification key and the public input (as γ =

∏
i vkxii ). Second, it uses γ and the

rest of the proof inside a pairing check. When we recurse GKR inside Groth16,
we do so in such a way that all the inputs of the GKR protocol are included in
the public inputs. We call γv, the “part” of γ associated with the GKR inputs
(i.e., γ =

∏n
i=0 vkxii = γv ·

∏n
i=n′ vkxii and (x0, . . . , xn′−1) is the public input

corresponding to the GKR statement). In our scheme, the prover computes and
sends γv to the verifier and provides an argument of knowledge that it knows a
witness for γv regarding the appropriate verification key. Note that the prover
still has to prove the correct computation of γv, but the advantage of using γv
for generating the randomness is that,

– the verifier does not have to compute γv by itself.
– the prover is bound to ((x0, . . . , xn′−1)) through γv, since it would be used

in the verification of SNARKs.

In particular, thanks to the second property, we can give an argument system
with constant-size proofs to argue the correct computation of randomness (which
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is indeed H(γv, . . .), computed outside the circuit). Since γv depends on the
outer-layer SNARK scheme, we present two argument systems for the integrity
of γv, separately for Groth16 [23] and PLONK [2] as the outer-SNARK.

Our contribution

Our contribution can be divided into two main parts: theory and implementation.

Theoretical aspects: Although the idea of the paper was initially motivated by
hash verification through recursion over GKR, our theoretical results are general
and can be used for recursion over any public-coin interactive argument system.
More precisely, we present a compiler that receives a single-round public-coin
argument system and a SNARK (to generate the required randomness based
on γv) and outputs an efficient recursion system. We build our compiler step-
by-step, and we analyze the security of each step separately. We prove that if
the inputs to the compiler, and the argument of knowledge (AOK) for correct
computation of the randomness satisfy the common security notion (knowledge-
soundness), then the output of the compiler is also secure.

Implementation aspects: In our implementation, we use Groth16 as the outer-
layer SNARK and recurse it over GKR with MiMC as the hash function. To
improve efficiency, we use the custom gates specified in Fig. 1 and include all
optimizations of [35] and [34] on the sumcheck protocol and GKR. Our imple-
mentation is in Golang and is optimized for massive parallelism (benchmarked
on 96 physical cores). We expand further on that matter in Fig. 16.

Moreover, we use a realization of Fiat-Shamir that is more convenient for our
construction. We call such realization “Fiat-Shamir in the so-far digest model”,
a counterpart of the common “so-far transcript model” (see Appendix I), where
instead of hashing the transcript, we hash the randomness of the previous round
and the last message of the prover. This improves the efficiency overall since the
Fiat-Shamir hash computation is done in the circuit (particularly, this realization
avoids the hashing of public parameters inside the circuit). Working in this
model can be of independent interest for protocols that have some limitations
in the choice of hash functions to instantiate the random oracle. Moreover, in
Appendix I, we demonstrate that applying the Fiat-Shamir transform in the so-
far digest model is sound if it is sound to do it in the so-far transcript model.

2 Background

2.1 Notations

We say f(x) = ω(g(x)), if and only if limx→∞ f(x)/g(x) =∞. Let λ denote the
security parameter. We write f(λ) ≈ h(λ) when |f(λ)− h(λ)| = λ−ω(λ) for two
functions f, h : N → [0, 1]. Then if f(λ) ≈ 0 we say that f is negligible, and if
f(λ) ≈ 1 we say that f is overwhelming. We write y ← A(x) to show that the
algorithm A outputs y on input x. Through the paper, we assume that all the
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algorithms are probabilistic polynomial time (p.p.t.). By x←$X, we mean that
the element x is chosen uniformly at random from the set X. The notation [n]
stands for the set {1, . . . , n}.

To define a security notion, we may define a counterpart game GA as

GA = (wining condition, game interactions)

We say that the adversary A fails (or its advantage in GA is negligible) if,

Pr[ Wining condition : Game interactions for A] ≈ 0

Groups. G denotes a cyclic group of prime order. If G is of order p, g ∈ G, and
x ∈ Zp, then gx denotes the scalar multiplication. For a list of n scalars of Zp
and group elements of G, the multi-scalar multiplication (MSM) is

∏
i∈[n] gi

xi .

When it is clear that g is a generator of G, we may use the notation [x] for gx.

Definition 1 (Bilinear Groups). A bilinear group is a tuple (p,G1,G2,GT , e)
such that: G1,G2,GT all cyclic groups, have prime order p, e(G1,G2)→ GT is a
bilinear, non-degenerate map that is efficiently computable. Also, throughout this
work, g1, g2, gT implicitly denotes generators of, respectively, G1,G2,GT such
that e(g1, g2) = gT .

The argument systems Groth16 [23] and PLONK [2] are proved to be secure
under the q-DLog assumption (Appendix A, Definition 13) and in the Algebraic
Group Model (AGM), formally defined as follows.

Definition 2 (Algebraic adversary in an SRS-based5 protocol [7]). An
algebraic adversary A is a p.p.t algorithm which such that, whenever A outputs
an element A = [a]i ∈ Gi, cA also outputs its linear combination based on srsi,
namely, a vector v of scalars such that A = 〈v , srsi〉 =

∑
j vj · srsij, where srsi

is part of srs belonging to the group Gi. We call such a representation as the
linear-combination representation (LC-representation) of A.

2.2 Argument of Knowledge

We define Rλ to be a relation generator (i.e., (R, z) ← Rλ) such that R is a
polynomial time decidable binary relation. For R(x;w), we call x the statement
and w the witness. The relation generator may also output some side information
z which will be given to the adversary. When we have several families of relations,
we may show their relation generator as RFi (rather than Rλ). We show the set
of true statements by LR = {x : ∃ w R(x;w) = 1}. The definitions in this
section are mainly borrowed from [23].

Definition 3 (non-interactive Argument for Rλ). A Non-Interactive Ar-
gument for Rλ is a tuple of three p.p.t. algorithms (Setup,Prove,Verify) defined
as follows,

5 The structured reference string (SRS) is the set of public parameters generated by
the trusted setup with a special structure
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– σ ← Setup(R): on input R ← Rλ, it generates a reference string σ. All the
other algorithms implicitly receive the relation R.

– π ← Prove(σ, x, w): it receives the reference string σ and for R(x;w) = 1 it
outputs a proof π.

– 1/0← Verify(σ, x, π): it receives the reference string σ, the statement x and
the proof π and returns 0 (reject) or 1 (accept).

For the above argument system, we define the following security requirements.

Definition 4 (Completeness). It says that given a true statement x ∈ LR,
the prover can convince the honest verifier; for all λ ∈ N, R ∈ Rλ, x ∈ LR:

Pr [1 = Verify(σ, x, π) : σ ← Setup(R), π ← Prove(σ, x, w)] = 1

Definition 5 (Soundness). It says that it is not possible to convince the veri-
fier for the wrong statements. For any non-uniform p.p.t. adversary A, we have,

Pr[1 = Verify(σ, x, π) ∧ x /∈ LR : (R, z)← Rλ, σ ← Setup(R), (x, π)← A(σ, z)] ≈ 0

Definition 6 (non-interactive Knowledge-Soundness). It strengthens the
notion of soundness by adding an extractor that can compute a witness from a
given valid proof. The extractor gets full access to the adversary’s state, including
any random coins. Formally, for any non-uniform p.p.t adversary A there exists
a non-uniform (expected polynomial time) extractor XA such that:

Pr

[
1 = Verify(σ, x, π) ∧R(x;w) = 0 :

(R, z)← Rλ, σ ← Setup(R),
((x, π), w)← (A ‖ XA)(σ, z)

]
≈ 0

The advantage of adversary in the knowledge-soundness game (the probability
on the left side) is called as knowledge-error.6

An analog notion of knowledge-soundness can be defined for an interactive pro-
tocol. In this context, the definition is identical except that the extractor is only
given black-box access to the transcript but is nonetheless allowed to rewind it
up to any point in the interaction and to send the arbitrary messages.

Definition 7 (interactive Knowledge-Soundness). An interactive argument
system (P,V) has knowledge-soundness if for all (p.p.t. non-uniform) prover ad-
versaries A there exists an (expected polynomial time) extractor XA with oracle
access to A, allowed to rewind A to any point in the interaction and to send it
arbitrary messages such that the knowledge error in the following is negligible.

Pr

1 = Verify(σ, x, π) ∧R(x;w) = 0 :
(R, z)← Rλ, σ ← Setup(R),

x← A(σ, z)
π ← Transcript , w ← XOA (σ, z, x)

 ≈ 0

6 Although, we only use the notion of knowledge-soundness throughout this work.
The reader should be aware, a more general notion exists : witness-extended emula-
tion.7 Fortunately, in [26] Lindell shows that knowledge-soundness implies witness-
extended emulation. Thus, for simplicity, we restrict ourselves to study knowledge-
soundness of the protocols we describe.
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Where O stands for the oracle access to A pursuing the interactions.

Definition 8 (Succinctness, SNARK). A non-interactive argument system
X for a relation Rλ is succinct if the proof π produced by the prover has size
o(|w|) and the run-time of the verifier is o(|w|) for all relations R drawn from
Rλ. A non-interactive argument system with this property is called SNARK.

2.3 Polynomial commitment

We conveniently adapt the definition of polynomial commitment given by [2,
7] (to its non-interactive version) to match the formalism of the present docu-
ment. Formally, a polynomial commitment is a tuple of p.p.t. algorithms (Setup,
Commit, Prove, Verify) where,

– pp← Setup(1λ, t) generates the public parameters pp suitable to commit to
polynomials of degree < t. It is to be done by a trusted authority.

– C ← Commit(pp, P (X)) outputs a commitment C to a polynomial P (X) of
degree at most t using pp.

– (x, y, πx)← Prove(pp, P (X), x) outputs (x, y, πx) where πx is a proof for the
evaluation of y = P (x).

– 0/1 ← Verify(pp, C, x, y, πx) verifies that y = P (x) is the correct evaluation
of the polynomial committed in C.

The correctness and security of Polynomial Commitments Schemes are defined
in Appendix A. We use the KZG polynomial commitment scheme [25] to infor-
mally refer to the polynomial commitment based on bilinear groups assumptions
(Appendix D). This protocol has been widely studied, extended and applied in
numerous recent works [2], [17], [14].

2.4 Fiat-Shamir

Informally, the Fiat-Shamir heuristic is a tool that allows transforming interac-
tive protocol from a specific class into non-interactive protocols. This specific
class is known as public-coin protocols and is formally defined as follows.

Definition 9 (Public Coin). An interactive protocol between a prover and a
verifier is public-coin if all the messages sent by the verifier to the prover are
randomly and independently sampled from the messages sent by the prover (that
is, random coins from the verifier are publicly available).

In Appendix I, we provide more details on how we adapt and instantiate the
Fiat-Shamir heuristic for our aim in Appendix I and Appendix J.
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2.5 MiMC

In this section and in Section 3, we describe the structure of MiMC and the
idea of GKR, the reader familiar with these concepts can skip them and directly
go to Section 3.1 to see the optimization tailored for GKR over MiMC. On the
other hand, since we are using GKR in a black-box way in our construction, one
interested in the machinery of the construction can directly go to Section 4.

We summarize the construction of MiMC [1]. Let q be a prime, and Fq be
the finite field of order q. Let α be the smallest integer co-prime with q − 1; the
map x → xα defines a bijection of F. Let (ci)0≤i<d be a sequence of F. Define
the round function Ri(x, k) = (x + k + ci)

α. The MiMC secure pseudo-random
permutation is defined as the composite Π(x, k) = Rd−1(•, k) ◦ Rd−2(•, k) ◦
. . . ◦ R1(•, k) ◦ R0(x, k). The authors of [1] suggest that d be chosen so that

d ≥
⌈

log(q)
logα

⌉
and that the round constants (ci) be drawn independently and

uniformly at random in Fq. The MiMC symmetric block cipher is obtained by
Enc(x, k) = Π(x, k) + k. From the cipher, we can obtain a hash function using
the Miyaguchi-Preneel construct [29, 6].

2.6 Sumcheck protocol

The sumcheck protocol [27] is a multi-round interactive protocol for the following
relation where P and a are public inputs and the witness is empty.(P (X), a; ) :

∑
xk−1∈{0,1}

· · ·
∑

x0∈{0,1}

P (x0, . . . , xk−1) = a


where P is a k multivariate polynomial of maximal degree d on each variable.

It consists of k rounds of complexity O(d), each doing sensibly the same thing
(from the verifier’s point of view) and a special final round where the verifier
performs an evaluation of P (X) at a random challenge point and compares the
result with the prover’s messages.

Remark 1. Giraffe describes how to obtain a prover with time linear in the num-
ber of gates in the circuit. This is applicable only if the sumcheck has a specific
form. Libra [34] subsequently proposed an approach for the more general case
where the circuit does not necessarily have a data-parallel structure.

Remark 2. A useful takeaway to understand the role the sumcheck plays in GKR
is to notice that the sumcheck protocol reduces a claim about an exponential
size sum of values of P to a claim on a single evaluation of P at a random point.

3 GKR Protocol; A public-coin argument system

Description As mentioned, GKR generates proofs for the data-parallel exe-
cution of a layered arithmetic circuit. At a high level, it is done by iteratively
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applying a sequence of sumcheck protocols [27], one for each layer of the circuit.
Each iteration of the sumcheck protocol inside GKR establishes consistency be-
tween two successive layers of computation (starting with the output layer, layer
0, and working backwards to the input layer, layer d). While the current sec-
tion introduces the relevant definitions and details our contributions relative to
the GKR protocol itself, the reader can find a description of the protocol in
Appendix B.

Each run of the sumcheck protocol a priori requires the verifier to perform
a costly polynomial interpolation (the special last round). GKR bypasses this
completely: the prover provides the (supposed) value of that interpolation, and
another instance of the sumcheck protocol is invoked to prove the correctness of
this value. In GKR, the only time the final round of the sumcheck protocol is
performed by the verifier is at the last layer (layer d: input layer). In Appendix B,
we give the formal description of GKR for a more general circuit-family as in
[35].

Fiat-Shamir transform The GKR protocol is not constant-round and thus,
one cannot straightforwardly compiles it in the random oracle model. Recent
works [15, 4, 12] have studied the Fiat-Shamir transform of the GKR protocol
and the Fiat-Shamir of the sumcheck protocol. We give an informal justification
for the soundness of GKR in the random oracle model below.

In [12] Canetti et al. proved that GKR is round-by-round sound in the so-far
transcript model. 8 Additionally, the authors of [12] argue that round-by-round
soundness readily implies security against state-restoration attack, which is a
notion introduced in [4]. In [4] the authors argue that if a public-coin interac-
tive protocol is secure against state restoration attack, then its non-interactive
version via Fiat-Shamir is also sound in the random oracle model. Putting it to-
gether, this means GKR is sound in the (so-far transcript) random oracle model.
We also highlight that GKR is widely used in the random oracle model [37, 34,
11].

In our compiler, we essentially need a single-round version of GKR. In essence,
only the first round of communication is initially kept interactive, while all the
other rounds are compiled using the Fiat-Shamir. We elaborate on this version,
its security and instantiation in Appendices I and J.

When embedded in R1CS (or more broadly, any type of algebraic circuit that
does not have special support for hash functions), the performance of the verifier
is dominated by the Fiat-Shamir hashes. Particularly, the verifier generates the
first randomness by hashing the statement supposed to be proven by GKR, this
incurs the prover to perform Fiat-Shamir hashes of size (|x|+ |y|) (corresponding
to the claim Hmimc(x) = y). Since doing so entails the verifier to work with more
computation than it would need to perform the hash itself. We treat this issue in
Section 5.4. Additionally, the verifier and prover perform a logarithmic number
of hashes due to applying Fiat-Shamir to the sumchecks instances.

8 The authors of [12] also argues that their transformation is sound in the standard
model. We do not use this fact in this work.
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Performances The verifier work consists of evaluating once each of the input
and output polynomials. It also has the overhead of the sumchecks, one for each
vertex with a single fan-out and two for the layers that need a multi-fan out
(because it also needs to run protocol 2 (described in Appendix B.2). Each of
the sumchecks has a logarithmic runtime for the verifier. On its hand, the prover
runtime is driven by the sumchecks runtime. They have a runtime of O(N) for
N the number of instances of the batch assignment.

Compiling the GKR verifier in a R1CS The evaluation of the input and
output polynomials requires few multiplication gates: 1 for each input and 1 for
each output. Sumchecks are, however, expensive to verify in practice, and their
cost is driven by the hashes required by the Fiat-Shamir transform. Even though
this is a logarithmic overhead, it has large constants and typically occupies
between 1M to 10M constraints (with Groth16) and twice more with Plonk,
depending on the number of hashes to be proven in the batch.

3.1 Custom gates for the GKR protocols

This section presents our contributions in using the GKR protocol for the MiMC
keyed permutation. We additionally describe a set of custom gates for the Po-
seidon permutation in Appendix C. Following a suggestion in Libra [34], we
define a custom family of gates. Let α be the exponent for MiMC in F, and d
be the number of rounds for the MiMC permutation. Recalling Section 2.5, with
c1, . . . , cd being elements in F, we define Rci,α as the polynomial:

Rci,α(X0, X1) = (X0 +X1 + ci)
α

We then give an overview of the arithmetic circuit C for the MiMC permu-
tation in figure Fig. 1.

· · ·

· · ·

msg

key

outputRc0, α Rc1, α Rcd, α

Fig. 1. Structure of the arithmetic circuit for MiMC

As highlighted in Fig. 1, the gate Rci,α(X0, X1) can just be sequentially
repeated with the appropriate constants and number of rounds to instantiate
a variant of the GKR protocol specialized for the MiMC permutation. In Ap-
pendix C, we present the custom gates for the Poseidon hash.
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4 Challenge of Recursion over Public-Coin Argument
Systems

In this section, we explain the challenge of recursion over public-coin argument
systems.

Concrete Example. Before delving into the abstract matter, we first give a
concrete example of how we intend to embed GKR in a SNARK. Consider, for
instance, the problem of verifying Merkle proofs in, say, Groth16 [23]. The circuit
doing this performs two distinct tasks: (1) routing Merkle paths (i.e., preparing
the inputs to be hashed and deciding the order in which to hash them) and
comparing the final output hash with a public Merkle root hash, (2) actually
computing the hashes.

The circuit performing the first task, call it C′, simply ”believes” the values
output by the hashing sub-circuit. The most straightforward option for the sec-
ond task is to implement the hash as a sub-circuit, i.e., do the second task by
computing the hashes in the circuit. Our solution is different: we verify those
hashes using a GKR verifier sub-circuit. As a result, combining C′ and the GKR
verifier circuit produces a circuit C that verifies Merkle proofs in their entirety.

Naive attempt. We could try to use the GKR verifier inside C in its original
form (non-interactive by Fiat-Shamir). The Fiat-Shamir transform of the GKR
protocol has been well studied, and we know it is sound for rightfully chosen
hash functions. The result would be a sound protocol; however, this approach
comes with a major impediment. In the interactive version, the verifier is asked
to send a challenge to the prover after receiving the response from the prover. In
the Fiat-Shamir transform of GKR, this implies that the verifier has to hash all
the information it has received so far, including the entire GKR statement. This
is 3 times worse than directly checking the hashes in an arithmetic circuit in the
first place. Our goal here is to circumvent the burden of hashing the entire GKR
statement to verify a (non-interactive) GKR proof inside the circuit.

Note that in the Fiat-Shamir transform version that we use, the new random-
ness (for the new round) is obtained by hashing the previous randomness and
the last message, ignoring the past transcript (see Appendix I). Thus, the bottle-
neck in applying GKR for hash verification is generating a challenge for the first
round. That is why we refer to the challenge for the first round as the “Initial
Randomness”, and we consider a public-coin single-round interactive argument
system rather than a multi-round one.

5 Our Compiler for Recursion

This section introduces a generic compiler for building a special class of recur-
sion systems. Let Xb be a public-coin single-round interactive argument system
(corresponding to GKR in our use-case). Our compiler aims at combining Xb
with a SNARK system Xa to get an efficient recursion system (running the ver-
ifier of Xb inside Xa). Based on the challenge we described in Section 4 and
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thanks to an extra proof-system XT for knowledge of committed value – which
we specify later in the present section – we develop a compiler that solves the
problem of initial randomness. Here we give a general intuition of how to build
such compiler.

5.1 Intuition

The compiler goes through two main steps. In the first step, we assume that Xb is
a single-round argument system (where the first prover’s message is not included
in the circuit) and the challenge is available as part of the public input. In the
second step we replace the first message of the prover with a short commitment
(to the public inputs). To clear up this intuition, we illustrate it in the form of
an example for our initial use-case, embedding GKR inside Groth16 for Merkle
proofs.

5.1.1 Protocol 1 We embed the GKR verifier into a sub-circuit of C alongside
C′. We use the GKR statement and the initial randomness as a public input of
the embedding circuit. The resulting circuit C can be succinctly described as
in Fig. 2, while Fig. 3 describe the steps of the protocol. Note that the circuit
involved in the recursion is the part after receiving the challenge ρ (in Fig. 3).

xC′

C′

xG

G

wC′ wG

ρ

Fig. 2. Protocol 1 : Circuit C construction. xC′ and wC′ are the public input vector
and witness vectors of C′. G is a circuit embedding the one-round GKR verifier. The
GKR proof belongs to wG (witness of G). xG is the GKR statement vector, and ρ is
the initial randomness.

Notice the following two points. First, Protocol 1 is interactive (public-coin
single-round), as such, it is not a SNARK. Secondly, the public input vector is
longer (it now contains the GKR inputs/outputs). This is highly undesirable:
the verifier is no-longer sublinear in the circuit size. In this case, the protocol
loses its succinctness, which sounds like a step backward. Nonetheless, one can
argue that this protocol is sound. This will be helpful for analyzing the Protocol
2.
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Protocol 1 : informal description of the recursion technique

P(xC′ , xG , wC′) V(xC′)

xG

ρ ρ←$F∗

. . . . . . . . . . . . . . . . . . .Recursion circuit (below) . . . . . . . . . . . . . . . . . . .

wG ← ProveGKR(xG , ρ)

πC ← ProveGroth16(xC′ , xG , ρ, w
′
C , wG)

πC

VerifyGroth16(πC , xC′ , xG , ρ)

Fig. 3. Protocol 1, We omit the passing of the public parameters. The meaning of the
variable is the one of Fig. 2

5.1.2 Protocol 2 Protocol 2 improves on Protocol 1 by removing the unnec-
essary GKR inputs/outputs from the public inputs of the circuit (more precisely,
pushing them to the witness). This greatly reduces the verifier’s overhead and
brings back the succinctness that we lost with protocol 1. We start from two
observations in the inner-working of the Groth16 presented in Fig. 4. Firstly, the
output of the pairing check can be computed using only γ in place of the public
inputs. Secondly, doing a multi-scalar multiplication (MSM) of a vector of field
element and a set of group elements for which no discrete log is known can be
viewed as a binding commitment analog of the Pedersen commitment.

Verify(vk, π, x)

G, H ← Parse(vk)

γ ← MSM(G, x)

return PairingCheck(H,π, γ)

Fig. 4. Simplified take on the Groth16 verifier

Note that in verification of Groth16 (Fig. 4), we have an MSM where the
entries of G = GC′‖GG‖Gρ correspond to the entries of xC′ , xG , ρ in the MSM.
The idea of protocol 2, is that instead of sending the public inputs to the verifier,
the prover computes γG = MSM(GG , xG) and sends it to the verifier. From there,
the protocol continues as in Protocol 1. When he checks the Groth16 proof, the
verifier chooses ρ and completes MSM by adding the missing parts to γG .
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An issue, is that just doing that is insecure. Indeed, a malicious prover can
pass the verification check for any arbitrary (invalid) x′C′ by sending γ′G = γG +
MSM(GC′ , xC′ − x′C′) where xC′ belongs to L(C′) for which the prover knows a
witness (we shall call such attack ”mix-and-match”).

We rule out this attack by additionally requesting the prover to send an
argument of knowledge that she knows xG such that w.r.t GG we have γG =
MSM(GG , xG). This ensures that the prover cannot use anything aside group
elements in GG in the claim of γG . The Protocol 2 is sound if Protocol 1 is sound
(that implies the binding property of γG) and if the argument of knowledge
ensuring the right computation of γG is sound as well.

Finally, we apply the Fiat-Shamir transform, where the initial randomness
is computed as ρ = HFS(γG). This removes the only interaction of the protocol,
where the verifier sent the GKR initial random coin. Thus, we no longer require
the verifier to hash the GKR statement, but rather, its commitment γG which
consists of a single element.

5.2 Preliminaries for our compiler

Our compiler has three layers. The first layer verifies the GKR proof, or rather,
all the parts that come after the initial randomness, inside a SNARK (Xa) and
sets all the public inputs of GKR, i.e., xG as public inputs of the resulting
SNARK. The second layer of compilation assume that the SNARK Xa has a set
of properties allowing to move the public inputs of GKR to the witness part.
The last layer just applies the Fiat-Shamir transform.

In the present section, we formalize the properties (2-Step verification with
splitting compatibility) that SNARK should satisfy (needed for the second layer).
Informally, we require that computation relative to the public inputs, the Com-
putation step, can be factored out of the rest of the verifier’s computation, the
Justification step. This must be possible in such a way that the public inputs
do not appear in the Justification step, but rather only in the “Computation
step”. We formalize this as 2-steps verification. Finally, we require that the
Computation step can be computed by “recombining” two partial intermediate
results obtained from two complementary subsets of the public input. The latter
property is what we formalize as splitting-compatibility and is defined in the
following, alongside the 2-steps verification property.

Definition 10 (2-Steps Verification). We say that a SNARK system has
2-step verification if the verification algorithm can be expressed as follows,

Verify(vk, x, π) =

{
1. Computation: c← F (vk, x, π)

2. Justification: 0/1← Verify′(vk, c, π)).

Where the input x is not used in the justification-step and c is much shorter
than x (i.e., F is compressing, note that this requirement implies non-trivial
choice of F ). We emphasize that the computation-step may itself include several
steps of computations.
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Remark 3. The 2-steps verification property becomes interesting (and less triv-
ial) when we impose a special property on the computation-step called splitting-
compatible, which we explain in the following.

Example 1. The verifier of Groth16 [23] satisfies the above property. Loosely
speaking, the first part consists in performing an MSM of the public inputs with
a subset of the verification key see the Fig. 4 and the second part is the pairing
check. For PLONK, identifying the computation step is non-trivial. We elaborate
on it in Section 6.2.1. At a high-level, it amounts to computing two things : a
challenge z and evaluating a polynomial PI(z) interpolating the public inputs
vector.

We now, introduce the notions of splitting and partitioning. Informally, they can
be understood as dividing a string to two sub-strings (Fig. 5).

Definition 11 (Splitting, Partitioning). We define splitting (res. partition-
ing) as the map φ : X → XA × XB that maps a vector X to two sub-vectors
XA, XB as follows. Let I be the index set associated with entries of the vector X,
i.e., I = 1, . . . , |X|. We denote a sub-vector of X associated with the index-set
A ⊆ I as XA (using the indexes of A in ascending order).

We say that XA, XB is a splitting of X if for A,B ⊆ I we have A ∪ B = I.
It is partitioning if A,B are partitioning of I as well, namely, A ∩ B = ∅. A
visualization is given in Fig. 5. For convenience, we may abuse the notation to
say A,B is a splitting (or partitioning) of X as X = (A,B).

XA XB

XA
XB

X

splitting

partitioning

Fig. 5. Splitting and partitioning of X to XA, XB .

A splitting-compatible map f is a map that can be split and recombined
according to a splitting σ of its inputs (Fig. 6). As a toy example, one can
consider the Pedersen commitment ga11 · g

a2
2 splitting to ga11 and ga22 according

to the splitting (a1, a2) to a1 and a2. The formal definition is as follows.

Definition 12. (σ-Compatibility) Consider finite subsets A,B,X, Y ⊂ {0, 1}∗,
a map f : X → Y , and a partitioning over its input space as σ : X → A × B.
We say that f is σ-compatible if there exists fA : A → YA and fB : B → YB
and a combiner g : YA × YB → Y such that ∀(a, b) ∈ A × B, f(σ−1(a, b)) =
g(fA(a), fB(b)) (see Fig. 6). We may call fA, fB as the splitting of the map f .
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A×B YA × YB

X Y

g

f

σ

fA, fB

Fig. 6. Splitting-Compatible: the map f is compatible with the splitting σ.

5.3 Building Blocks of The Compiler

The compiler we describe in the following subsection works with several ar-
gument systems (Xa,Xb,XT ) as input that we properly introduce later in the
current section. They must satisfy several requirements that we also specify be-
low (Intuitively, Xa is the outer SNARK, Xb is a replacement for GKR, and XT
is AOK for the commitment generated by the prover).

Requirements on Xa:

– Xa = (Setupa,Provea,Verifya) should be a secure SNARK scheme for a family
of relations RF 0 closed under intersection.

– The verification algorithm Verifya is a 2-step verification (see Definition 10).
– Let Fa be an algorithm in the computation-step of the verification (cf Defini-

tion 10), then for any vk and any partitioning σ of x, the function Fa(vk, •)
should be compatible with σ. In the rest of the paper, we may call such
Fa or its output as the contribution of the public input. We may also use
Fa(x) when vk is implicit. We emphasize that, if computation-step includes
several computations, each of these computations should be splittable (i.e.,
σ-compatible).

Remark 4. Note that the soundness of Xa implies that (Setupa, Fa) — viewed
as a commitment scheme of the public inputs — must be binding as well (see
also Remark 7).

Requirement on Xb:
We require Xb = (Setupb,Proveb,Verifyb) being a public-coin single-round inter-
active argument of knowledge for some relation family RF 1 without any specific
restriction on RF 1. Furthermore, as the protocol is single-round of interaction
Verifyb (and also Proveb) can be split in two part. Each part, Verifyb,1,Verifyb,2
executes respectively the first and the second round of the verifier. We use the
notation πb,1, πb,2 for the prover messages at round (resp.) 1 and 2. Finally, we
require that Verifyb,2 be expressible in a poly(λ)-sized instance of RF 1.

Remark 5. Implicitly, we want to use the GKR protocol as Xb. An apparent
impediment is that GKR is not a single-round protocol, as required. We address
it in Appendix J, where we compile the GKR (non-interactive version) into a
single-round protocol. A second apparent issue is that in practice, GKR does
not prove or argue knowledge of a witness. This corresponds to the trivial case
where the witness is an empty string.
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Requirement on XT :

We introduced above Fa being defined in the computation-step of verification of
Verifiera and σ being a partitioning of the public inputs. Recall that we already
required that Fa be compatible for all partitioning σ : X → L× R (where X is
the set of public input of Xa). As a consequence, we can introduce splittings of
the map Fa as φL, φR and its combiner g (see Definition 12).

Note that in our protocol, we split the public input x to (xL, xR), and delegate
the computation of the map φL to the prover. We require XT being a succinct
non-interactive argument of knowledge for relations of the form RT (vk, σ) =
{(γ;xL) : γ ← φL(xL)} where vk is the verification key of Xa.

Remark 6. XT works over a relation that is defined for fixed vk and σ that are,
respectively, the verification key of Xa and the splitting over the public inputs
of Xa. This point is crucial as it addresses the mix-and-match attack raised in
Section 5.1.2. For the sake of clarity, the role of XT is not just about extracting
xL s.t. γ = φL(xL) but to enforce that γ was obtained only using the correct φL
and no other information.

Remark 7. Following the Remark 4, φL(·) (and similarly for φR) can be seen as
a binding commitment scheme as well. Indeed, if an adversary were able to find
xL 6= x′L such that φL(xL) = φL(x′L), then for all xR, we have x = σ−1(xL, xR) 6=
x′ = σ−1(x′L, xR) and Fa(vk, x) = Fa(vk, x′) which contradicts the soundness of
Xa. The binding property is interesting to intuitively see that we can replace xL
with γv = φL(xL) in the Fiat-Shamir transform, though in our security proofs
we directly reduce the security to the knowledge-soundness.

5.4 Formal Description of Compiler

The compiler proceeds in three layers of compilation, see Fig. 7. Intuitively,
the first step consists of recursing the verifier of Xb (more precisely, the part
coming after the prover response to the random challenge) inside the proof Xa,
where Xb additionally passes its public inputs as part of the public inputs of the
SNARK scheme Xa. Then, a second layer of compilation allows us to delegate
some contributions of public-inputs of Xb (e.g., a subpart of MSM in the contexts
of Groth16 [23]) from the verifier’s computations to the prover’s (or equivalently,
moving a subpart of the public input to the witness part), via the AOK XT . The
last layer simply consists of applying the Fiat-Shamir transform.

Layer 1 Layer 2 FS

χb χT HFS

χa χ′

Fig. 7. Overview of the compiler
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Now we are ready to present the inner-work of each layer separately, as we
are going through the layers, we prove the security for each layer.

5.4.1 The first layer The first layer (L1) takes as input a SNARK scheme Xa
for a relation R′ ∈ RF 0, and a public-coin single-round argument of knowledge
Xb for a relation, R1 ∈ RF1

as in Section 5.3. Note that since Xb is recursed
inside Xa, then Xa should also check for some relation between the public input
and witnesses R1 and the rest of the circuit. Recalling the visualization given
in Fig. 2, here one can imagine R0 as the circuit C′, R1 for the GKR, and the
connection between R0 and R1 is checked through some equality relations (in
the form of splittings). Thus, the relation for Xa can be expressed as follows,

R′ =

(x, ρ;w) :
x0, x1 = σt(x), w0, πb,2 = σu(w)
1← Verifyb(pp1, x1, πb,2, ρ)
1← R0(x0, w0)

 (1)

Where the compiler also receives two splittings σt, σu of the public input and
the witness spaces. Moreover, we require σu to be a partitioning but not σt.
In Appendix E we discuss the choice of σt, σu.

Intuitively, the first layer inherits the security property of the underlying SNARK
Xa and argument system Xb and so for any choice of σu, σt yields a secure pro-
tocol for the following relation,

RL1(R0,R1, σt, σu) =

{
(x ∈ X;w ∈W) :

x0, x1 = σt(x), R0(x0, w0) = 1
w0, w1 = σu(w), R1(x1, w1) = 1

}
(2)

Remark 8. This way of combining relations allows the two instances R0 and R1

to share some part of their public inputs, which is the case in most applications9.
In our use case (SNARK over GKR, for Merkle tree), some public input of Xa
are used in the Merkle tree (because we need to commit to them). This is why
x1 as the public-input of R1 may share some entries with x0, the public-input
of R0. More in details, σt not being a partitioning (but only a simple splitting)
implies equality constraints in addition to the constraints specified by R0 and
R1.

Layer 1 Construction. Fig. 8 describes the construction of layer 1 with inputs
R0,R1, σt, σu,Xa,Xb.

Remark 9. here we are using an equivalent representation of Fig. 3 where the
verifier has all the public input of Xb as its input. This representation is more
compatible with the definition of SNARK, where the prover and the verifier
receive the same public input.

9 Intuitively, we require σu to be a partitioning because the witness ofR1 is “wrapped”
inside the proof π1 and would not be directly accessible for the outer-proof system.
Hence, w0 and w1 cannot overlap.
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Setup(1λ,RL1)

R0,R1, σt, σu ← Parse(RL1)

pp1 ← Setupb(1
λ,R1)

pp′ ← Setupa(1λ,R′) for relation R′ in Eq. (1)

return pp = (pp1, pp′)

Interactive Argument of Knowledge

ProveL1(pp, x, w0, w1) VerifyL1(pp, x)

pp1, pp′ ← Parse(pp)

πb,1 ← Proveb(pp1, x1, w1)

πb,1

ρ ρ←$ C

πb,2 ← Proveb(pp1, x1, ρ, w1)

w′ ← (w0, πb,1, πb,2)

π′ ← Provea(pp′, (x, ρ), w′)

π′ Verifya(pp′, (x, ρ), π′)

Fig. 8. Setup and interactions of layer 1.

Completeness: It follows from the completeness of Xa and Xb. More precisely,
the completeness of Xb guarantees that for the correct statement (x1, ρ) ∈
LR1

where R1(x1, ρ;w1) = 1, the verification of argument system Xb satis-
fies Verifyb(pp1, x1, ρ, w1) = 1. Which gives the right relation consumed by the
argument system Xa (i.e., Eq. (1)), then the completeness of Xa implies that
verification algorithm of Xa (which is also the verification associated with RL1)
outputs 1.

Knowledge-Soundness. Here, we denote our argument system for the layer 1
as XL1, applied over the corresponding relation RL1 (in Eq. (2)). Let Ea and Eb
be the extractors respectively associated with the argument systems Xa and Xb.
If XL1 outputs a valid proof, we can run the extractor Ea to extract a witness w;
a witness for R′ (relation associated with Xa) including a proof associated with
Xb. There are two possible cases;

– Case 1. The witness for R′ is correct (i.e., satisfies the relation R′) : this
means verification Xb passed, and by knowledge-soundness of Xb, the proba-
bility that the extractor Eb fails (i.e., it extracts a non-satisfying witness for
R1 from the proof of Xb) is negligible.
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– Case 2. The relation R′ is not satisfied : it means the extractor Ea failed,
but it can only happen with negligible probability by knowledge-soundness
of Xa.

Wrapping up everything together, the extractor Ea outputs the correct witness
(w0, π) with overwhelming probability. This give a valid proof π for Xb (as part
of the extracted witness), which then the extractor Eb can use it to extract the
correct witness w1.

Theorem 1 (Knowledge-Soundness of XL1). Let Xa,Xb be as required in
Section 5.3. If Xa and Xb have (resp.) knowledge errors εa and εb. Then, the
aforementioned protocol XL1 has knowledge error ε = O(εa + εb).

The formal proof is given in Appendix F.

5.4.2 The second layer As stated in Section 5.4.1, the missing part of our
compiler is that it can only make the two argument systems communicate by
their public inputs. The second layer of compilation solves this problem by al-
lowing moving parts of the public inputs (called v) into the witness (see Fig. 9).
Indeed, the aim is to delegate parts of the computation (involved with v) to the
prover, without breaching the soundness.

Therefore, the second layer takes as input XL1, a public-coin single-round argu-
ment of knowledge for the relation RL1. Let Fa be the computation-step in the
verification algorithm (Definition 10) of XL1 (inherited from Xa)10. Let ξ, ζ be
(res.) the partitioning of the public input and witness space of XL1, and XT be an
AoK for the relation RT (vk, ξ) = {(γv, v) : γv ← ΦL(v)} where (v;xL2) = ξ(x)
(and φL is the left-splitting of Fa, as defined in Section 5.3). The second layer
of compilation builds a SNARK for the relation,

RL2 =

(xL2;wL2) :
ζ(wL2) = (w, v)
x = ξ−1(v, xL2)
RL1(x,w) = 1

 =
{

(xL2;w, v) : RL1(v, xL2;w) = 1
}
(3)

where the second equality holds thanks to the fact that ξ and ζ are partitioning.
The proof consists of tree main parts; the proof of the first layer, the value γv
and a proof generated by XT as the AoK for the relation RT . We also describe
the relation built by the layer 2 in Fig. 9, where x and w are associated with
layer 1, and we are moving v from x to wL2.
Layer 2 Construction The inner-work of the second layer of the compiler
is given in Fig. 10. Here (Prove1,L1,Prove2,L1) stands for the prover algorithm
of layer 1. Note that the verification algorithm of L1 has 2-step verification,
here we use γ as the output of the computation-step and Verify′L1 = Verify′a
as the algorithm for the justification-step (see Fig. 8). Moreover, since Fa (the
map in the computation-step) is compatible with the splitting ξ, we can denote
(φL, φR) and g as the splitting and combiner for Fa (Definition 12). The last
point is that, thought for clarity we use pp, ppT in the setup (Fig. 10), indeed
we have pp ⊂ ppT , this fact is particularly used in the security reduction.

10 Note that if Xa has 2-step verification, then our,XL1 has this property as well.
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ξ ζ−1

x w

xL2 wL2

partitioning

partitioning

Fig. 9. Representation of the layer 2

SetupL2(1λ,RL2)

RL1, ξ ← Parse(RL2)

pp← Setup(1λ,RL1)

RT ← RGenT (ξ, pp)

ppT ← SetupT (1λ,RT )

return ppL2 = (ppT , pp)

Interactive protocol output of layer 2

ProverL2(ppL2, xL2, wL2) VerifierL2(ppL2, xL2)

(ppT , pp)← Parse(ppL2) (ppT , pp)← Parse(ppL2)

w, v ← ζ(wL2)

x← ξ−1(xL2, v)

π1 ← Prove1,L1(pp, x, w)

γv ← φL(v)

πT ← ProveT (ppT , γv, v)

πT , γv, π1

VerifT (ppT , πT , γv)

ρ←$ C

ρ

π2 ← Prove2,L1(pp, x, ρ, w)

π2

γ ← g(γv, φR(xL2‖ρ))

Verif′a(pp, π1, π2, γ)

Fig. 10. Output protocol of the layer 2

Completeness: is straightforward from the completeness of XL1 and XT .

Knowledge-Soundness. Let ET and EL1 be the extractors associated, respec-
tively, with XT and XL1. If our argument system XL2 outputs a valid proof, to
obtain a witness we should run the extractors ET and EL1 (to obtain v and w,
respectively) and the probability that either of these extractors fails is negligible.
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Theorem 2. Let XL1 be a succinct argument of knowledge for a relation RL1

whose verifier has a 2-steps structure and such that it’s computation-steps is
compatible with all partitioning. (We do not require non-interactivity). If XL1

and XT both are knowledge-sound with knowledge-error εL1 and εT (res.), then
the protocol XL2 is knowledge-sound with knowledge-error εL2 = O(εL1 + εT ).

Our proof technique is similar to the one for Theorem 1. The proof is given in
Appendix G.

In Appendix E, we combine layers of compilation together and present the
general form of the relation that our compiler deals with.

5.5 Instantiation of Fiat-Shamir

Here, we present a technical description of how we apply Fiat-Shamir to remove
the interactive round of the protocol. We compile the protocol in the random
oracle model. Below, we discuss instatiation of fiat-shamir for our compiler.

The message to be sent to the random oracle must comprise

– The public parameters of XL2 = (ppT , ppL1)
– The prover message πT , γv, π1

– The public inputs of the protocol xL2

We then instantiate the random oracle with a hash function that can modeled
as a random oracle. Here we do not require the hash function to be efficiently
verifiable in an arithmetic circuit11. Thus, standard hash functions like Keccak,
SHA2-256 or Blake2/3 can be used here.12

As we explain in Appendix I, numerous hash functions, like the one we men-
tion above, work by iteratively updating the state of a hash function before
returning the result. This allows us to precompute the state of the hash function
with the public parameters of XL2 at the end of the setup and only hash the
public inputs of the protocol. This implementation detail is important because
otherwise, one would have to hash the (possibly gigantic) public parameters of
XL2 at every run of the protocol.

6 Instantiating the Compiler

Here, we give a specification for the choice of building blocks: Xa as the outer-
layer SNARK, Xb as the public-coin single-round interactive argument of knowl-
edge, and XT as AOK for the computation of γv. We instantiate Xa by Groth16

11 Unlike the hash function in the single-round version of GKR that we describe in
Appendix J.1 (i.e., GKRs)

12 We have considered the fiat-shamir transformation over our scheme as a solo-protocol
(where our scheme is not part of a larger protocol). If the present protocol is being
used as part of a larger protocol, we recommend designers of such protocols to use
the interactive version of our protocol XL2 and then apply the Fiat-Shamir transform
over this.
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or Plonk and present the single-round GKR as the instantiation for Xb. Finally,
we give a concrete AOK (corresponding to XT ) compatible with the outer-layer
SNARK, that is, Xa. For both Groth16 [23] and Plonk [2], we present our AOK
system XT separately. We emphasize that the AOK system XT is not general
and is built with respect to the underlying Xa.

6.1 Argument of knowledge XT for Groth16

Remember that in our layer 2, the prover sends a commitment γv to a part of
public input (denoted as v) of underlying SNARK Xa, and also an AOK that
commitment is computed correctly. Here, we discuss how to build XT for the case
that Xa is instantiated with Groth16. Note that under the algebraic group model
[16], the Groth16 [23] protocol has witness extended emulation (thus, knowledge-
soundness). It also has the requirement that Xa should satisfy; 2-step verification,
where the public-input contribution Fa is a MSM and so is σ-compatible for any
splitting σ. We provide a protocol XT as the AOK compatible with Groth16.
We remind the reader that the aim of XT is to provide an AOK for the following
relation;

RT (vk, σ) : {(γv; v) : γv = φL(v)}

where vk is the Groth16 verification key, and φL is the left split of Fa (the
computation step of Groth16 verification) according to the splitting ξ, and v
comes from ξ(x) = (v, xL2) splitting of the Groth16’s public input x.

The protocol XT is described in Fig. 11. Assume (G1,G2,GT ;F) to be the
description of a bilinear group, n ∈ N∗ and vk ∈ G1

n the Groth16 verification
key that can be extracted from the public parameters of Groth16. The setup
simply splits vk according to ξ and randomized vkL. The proof is just a MSM of
randomized vkL and v.

Setup(ppGroth16,G1,G2,F, ξ)

σ←$F, g←$G2

(vk ∈ G1,−)← Parse(ppGroth16)

vkL, vkR ← ξ(vk)

L← vkσL

return srs = (ppGroth16, g, g
1
σ ,L)

Prove(L, v)

π ← MSM(L, v)

return π

Verify(vk,L, π, γv, g, g
1
σ )

e(π, g
1
σ )

?
= e(γv, g)

Fig. 11. Argument of Knowledge for Groth16

Note that the above AOK prevents the mix-and-match attack (see Sec-
tion 5.1.2), since the toxic randomness σ is hidden. Slightly more in detail, if the
adversary tries to mix γv with the rest of the verification equation of Groth16,
to pass the verification check of Groth16, it can not pass the verification of XT .

Now we prove the knowledge-soundness of XT in the algebraic group model.
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Scheme public input witness verifier part Prover part Prover contribution

PLONK {wi}i∈[`] {wi}3ni=`+1 {wi}i∈[Q] {wi}i∈[`\Q] C, yz
Ours x = ξ(v, xL2) w xL2 v γv

Fig. 12. Notation-Equivalence for PLONK and our scheme

Theorem 3. Our Argument of Knowledge XT for Groth16 (Fig. 11) is knowledge-
sound in the Algebraic Group Model [16] under the DLog assumption.

Since we are in the algebraic model, the extractor simply receives the LC-
representation of γv and π, which gives the witness. Based on the pairing check,
these LC-representation should satisfy a special equality. We show that the only
way that the adversary passes the equality check for a specific value σ is to break
the DLog assumption. On the other hand, it cannot pass the check for arbitrary
σ, since this imposes a special structure on the LC-representation which essen-
tially forces the relation to hold (so the winning condition cannot be satisfied).
The formal proof is given in Appendix H.

6.2 Argument of Knowledge XT for Plonk

The very popular PLONK [2] protocol is a zk-SNARK for arithmetic constraint
systems. As described by its authors, it does not have the 2-step verification
property. Thus, we cannot directly apply our compiler on the original PLONK
protocol. Fig. 13 illustrates a very simplified view of how the Plonk verifier pro-
cesses its public input. In the following, we borrow the notation of [2]. For an
assignment vector w (meaning the concatenation of the public inputs with the
witness in a single vector), the ` first entries wi≤` denote the public inputs and
wi>` the witness, ppPlonk denotes the public parameters (including the prepro-
cessed inputs) and πPlonk the proof. As in [2], Li denotes the Lagrange polynomial
for the root of unity ωi on a larger subgroup of roots of unity Ω.

As explained in Fig. 13), at a high level, a randomness z, among other ran-
domness, is obtained by hashing the verifier’s input in (1). This randomness is
used as evaluation point for the interpolation polynomial of the public inputs
on Ω in (2). Informally, we could try to pick (1) and (2) as the computation-
step and (3) as the justification-step (see Definition 10). This is unfortunately
invalid: in order to compute z, we need to include the proof in the Fiat-Shamir
hash (denoted by Hash). This illustrates why splitting the computation is no
trivial task.

6.2.1 Our variant of Plonk To bypass the aforementioned problem, we
consider a family of variants of Plonk instead of the original protocol itself. We
use the notations of [2] to make it easier for the reader to determine the changes
compared to the original scheme, although we give the equivalent notation of our
compiler in Fig. 12. In Fig. 14 we represent our variant where the verifier does
not directly evaluate PI(z) as in (2) for [2]. Instead, he splits the public input
into two parts : w(1), w(2) = Part(wi≤`) and computes the KZG commitment to
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the polynomial [PI2(x)]1. We denote by Q the subset of indices selected by Part
for w(1). Part is to be considered as a parameter of the protocol.

Picking Part : w → (w, ∅) yields the same protocol as Plonk. For w(1), w(2) =
Part(wi≤`), it is similar to the PLONK, except that, for generating the ran-
domness z, instead of w(2), we use the KZG commitment [PI2(x)]1 ( Namely,
KZG.Commit(srs, P I2) = [PI2(x)]1 for x given via srs) . As the verifier compute
PI2(x) itself, from a security standpoint the variant described above is not dif-
ferent from PLONK, for any splitting Part. Implicitly, we will select Part = ξ
(from Section 5.4.2) to make it compatible with our compiler. The last point is
that though in [2] they use only the terms [xi]1, [x]2 for i = 0 · · ·n + 5 (as pp),
the security proof is based on srs = ([xi]1, [x

i]2, i = 0 · · ·n+5). Here, we use the
whole srs, since we use the elements of [xi]2 in our AOK system XT .

Our variant of Plonk is secure under the Algebraic Group Model [16] and
has 2-step verification. The computation-step involves the evaluation of hashes
and the polynomial PI(X) over the point X = z. Through our compiler, we split
this computation into two parts; for the hash computation, we use the trivial
splitting given in Fig. 15 where the commitment is computed by the prover. For
splitting PI(X) over the point X = z, the verifier part is PI1(z) and the prover
part is PI2(z). The prover should give a proof for the correct computation of its
share. We present the AOK XT for our Plonk variant in Appendix K.

7 Implementation and Performance Analysis

The implementation is in Golang that is optimized and benchmarked for massive
parallelism : the protocol has been benchmarked over AWS hpc6a instances (96
physical cores and 384 Gb of memory). The implementation uses the libraries
gnark13 and gnark-crypto14 for the finite field arithmetic and the Groth16
implementation. Various kind of optimizations have been carried out : lowering

13 https://github.com/ConsenSys/gnark
14 https://github.com/ConsenSys/gnark-crypto

Verify(ppPlonk, wi<l, πPlonk)

// Implictly, test that the proof and the public

// input are valid fields and subgroup elements

1 : z, · · · other randomnesses← Hash(ppPlonk, wi≤`, πPlonk)

2 : PI(z)) =
∑
i≤`

wiLi(z)

· · ·
3 : b← OtherCheck(ppPlonk,PI(z), πPlonk)

return b

Fig. 13. A very simplified description of the PLONK verifier
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Preprocess(R, [xi]1, [xi]2 : i = 0 · · ·n+ 5)

for i ∈ U : [Li(x)]1 ←
∑
k<|Ω|

Li,k · xk · [1]1

ppPlonk ← PreprocessPlonk(R, {[x
i]1, [x

i]2 : i = 0 · · ·n+ 5})

return pp′ = (ppPlonk, [x
j ]2{[Li(x)]1 : i ∈ U, j = 0 · · ·n+ 5})

Prove(pp′, w)

// We add the following steps at the beginning

w(1), ← Part(wi<l)

[PI2(x)]1 ←
∑
i∈U

wi · [Li(x)]1

· · ·
// Run Plonk’s prover rounds 1, 2, 3

// For the Fiat-Shamir hashes use

// [PI2(x)]1 in place of w(2)

π1,2,3 ← · · ·
· · ·

// Then, at round 4

z← Hash(Transcript)

· · ·
// Resume with the original Plonk prover

· · ·
π4,5 ← · · ·
return (π1,2,3, π4,5)

Verify(pp′, wi<l, π
′)

[PI2(x)]1 ←
∑
i∈U

wi · [Li(x)]1

· · ·
z← Hash(Transcript)

PI1(z)←
∑
i∈Q

wiLi(z)

PI(z) = PI1(z) + PI2(z)

· · ·
// Resume with the normal Plonk verifier

Fig. 14. A variant of the Plonk protocol

w(1) × w(2) YA × YB

{wi}i∈l Y

H

f

ξ

Id, Commit

Fig. 15. Splitting for hash computation; Id is the identical function and Commit is the
KZG commitment.

the overheads of parallelization, pooling the memory to reduce the overheads of
allocations, reducing the number field of arithmetic operations.

In Fig. 16, we give the results of benchmarks measuring the speed at which
our implementation can prove MiMC permutations. The benchmarks are per-
formed using the curve BN254 [3] and the results are presented in Fig. 16. As
a point of comparison, we have benchmarked the prover time of a circuit per-
forming multiple MiMC permutations using gnark’s implementation of Groth16
(without using GKR). For a number 218 of MiMC permutations, it runs in 38.3
sec. This corresponds to proving 6835 hashes per second. Our techniques also
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brings a small improvement in memory usage between the two approaches, but
it is much smaller. That is because the GKR prover still need writing the set of
all the intermediate values at the same time.

Number of Hashes 219 220 221 222 223 224

Initial Randomness 120 ms 196 ms 412 ms 756 ms 1293 ms 2504 ms
Gkr Prover 3.4 s 5.4 s 13.1 s 19.7 s 29.1 s 51.8 s

Groth16 Prover 4.0 s 6.4 s 7.1 s 12.5 s 21.3 s 24.5 s
Total (Gkr) 7.6 s 12.0 s 20.7 s 33.0 s 51.7 s 78.9 s

Hash per second 68400 86500 101000 127000 162000 212000

Fig. 16. Runtime efficiency benchmarks for GKR
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Supplementary materials

A Background

The knowledge-soundness of Groth16 and Plonk is proved based on q-DLog
assumption defined in the following.

Definition 13 (q-Discrete Log Problem [7, 2]). Fix an integer q. The
q-DLog assumption for (G1,G2) states that, given

[1]1, [x]1, . . . , [x
q]1; [1]2, [x]2, . . . , [x

q]2

for uniformly chosen x ∈ Fp, the probability that a p.p.t adversary A outputs x
is negligible.

Polynomial Commitment. Here we define the correctness and the security of
a polynomial commitment scheme.
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Definition 14 (Correctness). We say that a polynomial commitment scheme
has (perfect) completeness if for all P (X), t, λ, x,

Pr

1← Verify(pp, C, y, π) :

pp← Setup(1λ, t)
C ← Commit(pp, P (X))
π ← Prove(pp, P (X), x)
y = P (x)

 = 1

Definition 15 (Secure polynomial commitment [7]). A polynomial com-
mitment (Setup, Commit, Prove, Verify) is secure if it is knowledge-sound w.r.t
the relation,

R = {(x, y;P (X)) : P (x) = y}

The original paper [25] introduces the notion of polynomial commitment.
In [7, 2], the authors gave a general security notion supporting batching of the
proofs and well-detailed for interactive public-coin polynomial commitments. We
expand on this in Appendix D.

Both [2] and [9] provide an analysis of an extended version of the KZG pro-
tocol under the algebraic group model [16] in which the author demonstrate
knowledge soundness [2] and bounded-polynomial extractability [28] of the pro-
tocol. Both these results are achieved using the q-DL assumption.

B Description of the GKR protocol

B.1 Background

In the following section, we will often use the following notations. Let G be a
directed acyclic graph. E(G) denotes the set of edges of G and V (G) the ver-
tex. For two vertices v, v′, (v, v′) is the edge going from v to v′. We assume a
total ordering over V (G) compatible with the natural partial ordering defined
by the edges of G. I : V → V ∗ maps each vertex v to the ordered list of ver-
tices I(v) = {v′ ∈ V (G) : (v′, v) ∈ E(G)} such that ∀v′ ∈ I, (v′, v) ∈ E(G).
Conversely, O(v) = {v′ ∈ V (G) : (v, v′) ∈ E(G)}. We will use directed acyclic
graphs to describe the ”shape” of a computation, as such, we call any vertex v
with I(v) = ∅ an input gate, and any vertex v with O(v) = ∅ an output gate.
In the following, eq denotes the multilinear polynomial eq(X0···n−1, Y0···n−1) =∏
i<n [XiYi + (1−Xi)(1− Yi)].

B.1.1 Layered arithmetic circuits In the following, we give a broad defi-
nition of an arithmetic circuit that encompasses gates with arbitrary low-degree
multivariate polynomials (as opposed to just additions and multiplications). This
broad definition will be useful for specifying custom gates as in [18] (e.g., in
Section 3.1, Appendix C for applying GKR over the MiMC and Poseidon per-
mutations).

Definition 16. An arithmetic circuit C over a ring K is a pair (G, f) where
G is a directed acyclic graph and f maps vertices v of G to |I(v)|-multivariate
polynomials over K.
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Definition 17 (batch assignment). For n ∈ N, a batch assignment B for
an arithmetic circuit C = (G, f) on K is a mapping from V (G) to the set of
n-multilinear polynomials such that

∀x ∈ {0, 1}n,∀v ∈ V (G), B(v)(x) = Rv(B(u0)(x), . . . ,B(uk−1)(x))

where we note I(v) = {u0, ..., uk−1} and Rv = f(v). Equivalently, this corre-
sponds to 2n assignments of an arithmetic circuit. We recall that

In other words, B(v) interpolatesRv(B(u0), . . . ,B(uk−1)) on the hypercube {0, 1}n.
If v is an input gate or an output gate, we call B(v) (resp.) an input or output
polynomial.

Remark 10. If B is a batch assignment to C, then for all v ∈ V (G), if we note
I(v) = (u0, ..., uk−1) and P = f(v), then

∀x ∈ Kn,B(v)(x) =
∑

h∈{0,1}

eq(x, h)P (B(u0)(h), . . . ,B(uk−1)(h))

The later remark is fundamental to the GKR protocol. It gives a relation between
a vertex assignment and its input layer in the form of a summation.

B.2 GKR protocol

The GKR protocol can be described as follows : the prover starts with a de-
scription of an arithmetic circuit C and a batch assignment B to C. The verifier
starts with only the input and output polynomials, (PI) and (PO). Our de-
scription of the GKR protocol is organized in two steps. First, we present a set
of “mini-protocol” and then we give the full description in Fig. 17 using the
mini-protocols.

Mini-protocol 1 : multi-claim reduction The prover wants to convince
the verifier that, given a polynomial P , it holds that P (xi) = yi for k couples
(xi, yi) ∈ K2. The verifier initiates the protocol by sending a random challenge
τ ←$Kk. The prover and the verifier then engage in a sumcheck for the sum
relation ∑

i<k

τiyi =
∑

h∈{0,1}n
(
∑
i<k

τieq(xi, h))P (h)

In the last step of the sumcheck, the verifier is interested in verifying a claim
in the form, for some α and r that were established during the sumcheck.

α =
∑
i<k

τieq(xi, r))P (r)

Instead of letting the verifier directly evaluate P (r), the prover directly sends
a claim of p = P (r). The verifier can then verify that the claimed value of p is
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consistent with the above claim. The protocol then outputs the claim P (r) = p.
At the end of the protocol, the verifier does not learn that P (xi) = yi. But we
have that if any of these claim was wrong, then with overwhelming probability
P (r) 6= p, hence the name “claim reduction”.

Mini-protocol 2 : single-claim reduction The prover is given an assignment
B to C. The verifier is input a claim that for some v, not an input gate, and
Pv = B(v), we have Pv(x) = y. The aim of the mini-protocol 2 is to reduce
the verifier’s claim into a collection of evaluation claims Pu,j(r) = αu for all
u ∈ I(v). As for the mini-protocol 1, this is achieved using a sumcheck protocol,
but over the relation given in Remark 10.

y =
∑

h∈{0,1}n
eq(x, h)Rv(Pu,0(h), . . .)

whereRv is the low-degree polynomial associated to v in the circuit. The rest goes
as in the mini-protocol 1. The protocol outputs claims of the form pu = Pu(r)
and we have that if y 6= Pv(x), then with overwhelming probability, one of the
pu 6= Pu(r) is wrong.

The full GKR protocol The verifier samples a random ρ←$Kn. He then
computes the evaluations of all VO(ρ) and sends ρ to the prover. The prover and
the verifier then engage in an iterative process, going through each vertex of the
arithmetic circuit in reverse order. Each step of the process aims at reducing the
claims, made on the B(v), to the claims on children vertices of v.

C Custom gates for Poseidon

Poseidon [22] applies the Hades [21] strategy to build a SNARK friendly hash
function. It uses the same S-box x → xα as in MiMC, but is optimized to per-
mute messages from multiple field elements (here n + 1) at once. At a high
level, it works by alternating heterogeneous nonlinear layers in which either
only one of the field elements is passed through the S-Box (partial rounds)
: (x0, x1, · · · , xn) → (x0

α, x1, · · · , xn) or in which all field elements are passed
through the S-Box elementwise (full rounds) : (x0, x1, · · · , xn)→ (x0

α, x1
α, · · · , xnα).

The non-linear layers are interleaved with linear layers instantiated by an MDS
matrix.

Although our implementation does not include these custom gates for the
Poseidon permutation, we describe below a list of custom gate to allow obtaining
a GKR variant for the Poseidon permutation.

The S-box for partial-rounds : at the beginning of a partial-S-box layer,
the prover and the verifier both have preemptively agreed on a set of evaluation
claims for the polynomial B(v0), · · · ,B(vn) representing each of the outputs of
the partial-round functions. As only the first entry is modified by the round
function, only it needs to be reduced to a claim on the (unique) polynomial B(u0)
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GKR protocol outlines

// initialize the claim register, it maps each vertex to a list of claim

claims := {}
for each output gate vO :

append claims[vO] with VO(ρ)

// in reverse order

for v ∈ V (G) :

if |claims(v)| > 1 :

claim ′ ←miniProtocol1(v, claims(v))

else :

claim ′ ← claims(v)

// input gate

if I(v) = ∅ :

verifier checks directly claim’

continue

newclaims←miniProtocol2(v, claim)

for {u, claimu} ∈ newclaims :

append claim[u] = claimu

Fig. 17. GKR protocol

for I(v0) = {u0}. For this, we use a GKR round with polynomial R(x0) = xα.
We can then retain all other claims on B(vi>0) for the next round.

The S box for full rounds : Here, we need to do a sumcheck for every claim. At
a high level, we suggest reusing the same sumcheck as for the partial-rounds for
all entries and batch them using a random linear combination. Equivalently, the
verifier samples (r0, · · · , rn)←$Fn+1 public coins and engages with the prover
in the following sumcheck. We note I(vi) = {ui} since they all can have only
one single input vertex.

∑
i≤n

riB(vi)(x) =
∑

h∈{0,1}N
eq(x, h)

∑
i≤n

riB(ui)(h)α


The MDS layers : here we can directly convert the claim (without the claims)
since all operations are linear and since MDS matrices are invertible and the one
we use are typically small : typically at most 16x16 in real-world application.
Namely, if we note M to be the MDS matrix, then we can obtain claims for the
input vertices by multiplying the vector of current claim (properly ordered) by
M−1.



Recursion over Public-Coin Protocols 35

D Batched KZG commitment

In this section, we recall the batched version of the KZG polynomial commitment
of [2, 7]. Their work extends [25] and allows for multipoint opening for multiple
polynomial.

Formally, given a finite field F of prime order and an integer n ∈ N, c we
consider a set of polynomial {P0(X), · · · , Pn−1(X)}, a set of evaluation points
T = {x0, x1, · · ·xt}, a set of evaluation point Si ⊂ T and ri : Si → F, the minimal
degree polynomial mapping each evaluation point Si to a claimed value for the
polynomial Pi. For any subset S ⊂ F, ZS denotes the polynomial

∏
s∈S(X − s).

As in Section 2.3, the protocol satisfies the completeness and computational
knowledge-soundness property in the algebraic group model under the Q−Dlog
assumption. We give a description of the (interactive form) of the protocol in
Fig. 18. The protocol can be transformed in an interactive protocol through
the Fiat-Shamir transforms, as it is public-coin and has a constant number of
rounds.

Setup(F,G1,G2,GT , Q)

x←$F
pp← ([xk]1, [x

k]2)i≤Q

return pp

Commit(pp, P (X) =
∑
i≤Q piX

i)

[P (x)]1 ←
∑
i≤Q

pk[xk]1

return [P (x)]1

Batch Evaluation Opening and Verification

Prove(pp, {[Pi(x)]1, Si, ri, Pi : i < n}) Verify(pp, {[Pi(x)]1, Si, ri : i < n})

γ ←$F

P (X)←
∑
i<n

γiZT\Si(X)(Pi(X)− ri(X))

h(X)← P (X)

ZT (X)

[h(x)]1

∀i < n : Zi ← [ZT\Si(x)]2

F ←
∏
i<n

e(γi[Pi(x)]1 − [ri(x)], [Zi]2)

F
?
= e([h(x)]1 , [ZT (x)]2)

Fig. 18. Batching of KZG
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E Plugging the layers together

Here we just put together both layers to see the general form of the relation. Let
R0 and R1 be the relation associated to (respectively) Xa and Xb (defined in
Section 5.4.1). Our compiler can output a proof system for relations of the form

R′(R0,R1, σx, σw, σ1, κ) =

(x′ ∈ Fl
′
;w′ ∈ Fn

′
) :

wL1, v = ζ(w′)
x′, v = ξ(xL1) R0(x0;w0) = 1
x0, x1 = σt(xL1) R1(x1;w1) = 1
w0, w1 = σu(wL1)


We reuse the notations for the splittings introduced in Section 5.4. To apply the
compiler, one needs to select the appropriate σt, σu, ξ, ζ. To illustrate how to do
so, we give a concrete example of how an assignment for the target relation R′
would be structured. Then we clarify how this relates to the informal description
of the construction in Section 5.1.

We first conveniently split the complete assignment (x′, w′) fine-grained way as,

– θC : the public inputs exclusive to R0

– θG : the public inputs that are shared by R0 and R1

– ψG : the public inputs of R1 shared with the witness of R0

– ψC : the part of the witness exclusive to R0

– w1 : the (entire) witness of R1

To obtain a proof system for R′, one can then successively apply the layer
1 and 2 compilers Section 5.4 and set the following: σt(xL1) = (θC‖θG, θG‖ψG),
σu(wL1) = (ψC , w1), ξ(θC‖θG‖ψG) = (θC‖θG, ψG), ζ(ψC‖ψG‖w1) = (ψG, ψC‖w1).

F Proof of Theorem 1

Let A be the attacker to the knowledge-soundness of XL1. Through Ea, Eb and A
we build an adversary B = (Ba,Bb) that can break the knowledge-soundness of
Xa or Xb. The proof proceeds through defining an auxiliary game H, where we
show that H is computationally indistinguishable from the game for knowledge-
soundness (called G) and the wining probability of the adversary A in H is
negligible (≈ 0).

Game H: is the same as knowledge-soundness game (w.r.t XL1), except that,
we modify the winning condition by adding the condition:

Cond∗ : R1(x1, ρ, w1) = 0 and Verifyb(pp1, x1, ρ, π1) = 1

Then we prove two following claims:

– Claim 1. The game H is computationally indistinguishable from the game
for knowledge-soundness (i.e., G), if Xa is knowledge-sound.
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– Claim 2. The wining probability of A in the game H is negligible, if Xb is
knowledge-sound.

In Lemmas 1 and 2, we give the proof of these claims.

Lemma 1. Claim 1 is true.

Proof. Consider the distinguisher D which aims to distinguish the games H
from G. We build an adversary Ba that simulates the games for D and use the
responses from D to attack the knowledge-soundness of Xa. The simulation is as
follows:

– Ba receives the parameters pp′ for the argument system Xa, runs the setup
for Xb to get pp1 and then sends pp = (pp′, pp1) to D.

– the adversary D responds by x = (x0, x1), π1,1, and Ba sends the randomness
ρ.

– when the adversary D responds with π′, the adversary Ba outputs (x, π) =
(x0, x1, ρ;π′).

We define the event Bad∗ where the Cond∗ is not satisfied. This means if Bad∗

happens with probability ε, then D can distinguish two games with the same
probability (if the adversary wins, we know it is in the game G). We show the
probability that Bad∗ happens is negligible by knowledge-soundness of Xa (i.e.,
ε ≤ εa where εa is the knowledge error for Xa). The reason that the event Bad∗

breaks the knowledge-soundness of Xa is because:

– if R1(x1, ρ;w1) = 1 since the output of D satisfies RL1(x,w) = 0, we con-
clude that one of the equalities in R′ associated with Xa is not satisfied and
therefore Ba has an admissible tuple (x0, x1, ρ, π

′) to break the knowledge-
soundness of Xa.

– if Verifyb(pp1, x1, ρ, π1) = 0, clearly, this means R′ is not satisfied, which
again, gives an admissible output to break the knowledge-soundness of Xa.

Putting together, the probability that D can distinguish two games is the proba-
bility that Bad∗ happens, and the latter is negligible. This proves that two games
G and H are indistinguishable.

Lemma 2. Claim 2 is true.

Proof. To prove that the wining probability of A in the game H is negligible,
we build an attacker Bb that simulates the game H for A and uses the responses
from A to attack the knowledge-soundness of Xb. The simulation is as follows.

– Bb receives the parameters pp1 and runs the setup for Xa to get pp′. Then
it sends pp = (pp′, pp1) to A.

– A responds by x = (x0, x1), π1,1, and Bb sends x1, π1,1 to its challenger and
relays the randomness ρ.

– When A responds with π′, the adversary Bb runs the extraction Ea to extract
the witness (w0, π1,2). Finally, it outputs π1,2.
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By the definition of the game H and Cond∗, the output (x1, ρ;π1) is an admis-
sible output for the knowledge-soundness of Xb. This concludes the knowledge-
soundness of XL1 w.r.t the extractor (Ea, Eb) and with knowledge error εL1 ≤
εa + εb.

G Proof of Theorem 2

Our proof technique is similar to the one for Theorem 1. The difference is that to
define the auxiliary game H, we modify the winning condition to RT (γv; v) = 0.

Proof. Let A be the attacker to the knowledge-soundness of XL2, we build an
adversary B = (BL1,BT ) that uses A as the inner-component to break the
knowledge-soundness of XL1 or XT .

Again, we define an auxiliary game H that is indistinguishable from the
knowledge-soundness game, and the probability that A wins in H is negligible.

Game H: is the same as the game for knowledge-soundness of XL2, except
that, the wining condition is modified by adding the following condition:

Cond∗ : RT (γv; v) = 0

We prove two following claims regarding H.

– Claim 1. Game H is computationally indistinguishable from the game for
knowledge-soundness (i.e., G), if XL1 is knowledge-sound.

– Claim 2. The probability of winning A in the game H is negligible if XT is
knowledge-sound.

Proof of Claim 1: Assume the distinguisher D aims to distinguish H from
G. The adversary BL1 (the attacker to the knowledge-soundness of XL1) simu-
lates the games for the adversary D as follows.

– It receives the parameters for XL1, then runs the rest of the setup algorithm
to get ppT and sends ppL2 = (pp, ppT ) to D.

– when D responds with xL2, π1, πT , γv, the adversary BL1 runs the extractor
ET to extract a witness v from πT , γv. Then, it forwards (x = ξ−1(xL2, v), π1)
to its challenger and relays the challenge ρ.

– when D responds by π2, the adversary BL1 outputs π2.

We claim that the output (x = ξ(v, xL2)) and (π1, π2) is an admissible out-
put to break the knowledge-soundness of XL1. To see this, note that the only
way A can distinguish the two games is when (notCond∗) happens, that is,
when RT (γv; v) = 1 happens. Having RT (γv; v) = 1 and the fact that verifica-
tion XL2 passes, result in passing the verification for XL1 (since the verification
algorithm of XL2 includes the verification algorithm of XL1). While we have
RL1(v, xL2;w) = 0, this complete the proof for claim 1.

Proof of Claim 2: Let A be the attacker trying to win in the game H, we
build the adversary BT that runs A as its inner-component to use its responses
for breaking the knowledge-soundness of XT , the simulation is as follows,
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– It receives the parameters for XT , by the fact that pp ⊂ ppT , it can find pp
and sends ppL2 = (pp, ppT ) to A.

– when A responds with xL2, π1, πT , γv, the adversary BT chooses the chal-
lenge ρ and sends it to A.

– when A responds by π2, it outputs (γv;πT ).

Clearly, (γv;πT ) is an admissible output for breaking the knowledge-soundness
of XT , since in this game we have R(γv; v) = 0 while the verification passes
(since the verification algorithm of XL2 includes the verification algorithm of
XT ).

H Proof of Theorem 3

Proof. Let A be the algebraic adversary attacking the knowledge-soundness of
XT , we show that the probability that it wins is negligible. The adversary receives
srs = (g, g1/σ, ppGroth16,L = vkσL) and outputs the proof π ∈ G1 and the public
input γv ∈ G1. Define srs′ as the elements of srs in G1 that excludes L. It also
outputs the vectors ~a = (~a1,~a2) and ~b = (~b1,~b2) as the LC-representations of

π and γv (where ~a2,~b2 are associated with the part L and ~a1,~b1 are associated

with the part srs′). The extractor E receives ~a,~b. Note that LC-representations
of π and γv can be respectively written as follows (where 〈·, ·〉 stands for the
inner-product of two vectors and DL stands for the discrete logarithm),

LC-representation π: a′1 + σa′2 = 〈DL(srs′),~a1〉+ σ〈DL(vkL),~a2〉

LC-representation γv: b
′
1 + σb′2 = 〈DL(srs′),~b1〉+ σ〈DL(vkL),~b2〉

Since the verification passes, the adversary’s response must satisfy the following
equation (σ being the unknown here),

a′1 + σa′2 = σb′1 + σ2b′2 (4)

There are two possible cases here, either the equation is satisfied independently
of the choice of σ or it has a specific solution (w.r.t. σ as the unknown). We now
discuss what will happen in each case.

1. The first case occurs if and only if a′1 = b′2 = 0 and a′2 = b′1, which then

implies that ~b2 = ~0,~a1 = ~0, ~a2 = ~b1,L = ~a∗ and ~b1 = (~0,~b1,L), for some ~a∗

and ~b1,L being part of ~b1 associated with vkL in the LC-representation. Thus,
the extractor E has indeed extracted ~a∗. But this cannot pass the second con-
dition of the knowledge-soundness game which says MSM(vkL,~a

∗) 6= γv (by
the LC-representation of γv, and the fact that b1,L is associated with the vkL
part). Thus, the probability that the extractor can output a witness satisfying
the required condition is zero in this case.

2. In the second case, we can reduce knowledge-soundness to the DLog problem.
Where the attacker B to the DLog-problem builds srs from its given challenge
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g1, g
σ
1 , runs the adversary A (attacker to the knowledge-soundness), then as ex-

plained in the current case it can solve Eq. (4) to find σ.

Therefore, we have shown that the probability that Eq. (4) has a specific solu-
tion is negligible, which means the case (1) would happen with overwhelming
probability, while in this case, the probability that expected extractor E exists
is zero. Putting together the knowledge-error is at most εDL where εDL is the
probability of breaking DLog-assumption.

I Fiat-Shamir transform in the so-far digest model

In the way that we instantiate the Fiat-Shamir transform, we only hash the
current message and the previous randomness to obtain the new randomness.
We call this model as the so-far digest, instead of the so-far transcript which
is usually used in the original version of Fiat-Shamir transform. We argue that
there is no concrete difference between the two approaches, as ultimately each
Fiat-Shamir randomness depends on the previous transcript. Indeed, each ran-
domness is the digest of the so-far transcript (thus, the name “so-far digest”).

Motivation. In real applications, the random oracle is replaced with a hash
function. And numerous hash functions are updatable, meaning that the hash of
the message

M = M ′‖new block of message

can be built from the new block of the message and a short input, the hash
state after hashing M ′. This means for an updatable hash two models so-far
transcript and so-far digest (with the same hash for all the rounds) are, in
practice, roughly equivalent in terms of performances. The reason we prefer the
so-far digest model is mainly due to our one-round GKR. If we had used the
so-far transcript model, the verifier would still have to hash the entire transcript
from scratch in the second round (public parameters, public inputs, past prover’s
messages etc. . . ). Indeed, in that scenario, the random-coin of the verifier for the
first round would count as a message which is part of the transcript and cannot
be used as a previous hash state. As a result, we would require the prover to
hash a potentially very long string of inputs within a SNARK circuit, but this
is what we are trying to avoid in this work.

I.1 From So-Far Transcript model to So-Far Digest model

Here, we formally define the so-far digest model which provides us with a more
efficient implementation of the Fiat-Shamir transform in the circuit. Then, we
prove that if a protocol is sound in the so-far transcript random oracle model,
it is also sound in the so-far digest random oracle model.

Definition 18 (So-Far Digest Model). Let P be an FS-transform of a public-
coin interactive protocol in the random oracle model. Let also mi and hi be
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respectively, the prover message and the output of the FS-hash in the round i.
In the so-far digest model, we have hi = HFS(mi, hi−1) for i > 1, and h1 =
HFS(m1, pp, x), where pp stands for the public parameters and x is the public
input of the verifier.

Note that in the so-far transcript model we simply have

hi = HFS(so-far Transcripti)

and so-far transcript is whatever the verifier has received so far during the
protocol execution (this includes all the public parameters, the public input of
the verifier and all the messages of the prover).

Theorem 4. If P (defined above) is sound in the so-far transcript model with
soundness error εtr, then it is also sound in the so-far digest model with soundness-
error t−1.εtr where t = (1− 1/2λH ) and λH is the length of the random oracle’s
response (in bits).

Proof. Let A and B be the attacker respectively to the soundness of P in the
so-far transcript model and in the so-far digest model. The attacker A simulates
the soundness game for the adversary B as follows,

– let B outputs the message mi in round i. If later, it sends a RO-query on
(mi, hk) with k = i − 1, the adversary A simply updates the transcript of
its game and forwards mi to its challenger (as its response for the round i)
where it also sends a RO-query to HFS on the updated transcript. It receives
a response hi which would be relayed to B.

– It responds with random values for other cases, and repeat the same re-
sponses for the repeated queries.

In the case of the “Bad Event”, defined in the following, the adversary A would
abort. Otherwise, it outputs the output of B.

Bad Event. is when B sends a RO-query on (m,h) to HFS , for m that has
not been the response for any round, later during the i-th round it sends mi = m
as its message, while we also have hi−1 = h. This means RO-query (m,h) was
responded by a random value while at round i it was required to be responded
based on a RO-query of A (conflicting the simulation). This event happens with
negligible probability since h = hi−1 happens only with 1/2λH where λH is the
output-length of the FS-hash function.

Clearly, the adversary A can win its game if it has not aborted (”Bad Event”
has not happened) and B has won its game.

J One-round GKR

In this section, we explicitly specify a single-round version of the GKR protocol.
We then carefully discuss its security in the random oracle model step-by-step,
motivate our technical choices and finally explain how to instantiate it using
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the Fiat-Shamir transform. We juggle with several variants of the GKR proto-
col. The reader can assume that GKR stands for the original interactive GKR
protocol and GKRs for the single-round version of the GKR protocol. Other in-
termediate versions will be introduced further in the section when appropriate
(see also Fig. 19). We emphasize that the single-round GKR used in the com-
piler Section 5.4 is GKRs that is precisely instantiated by a deterministic hash
function (starting from the second round). We explain how we choose the hash
function in Appendix J.3.

J.1 The single-round version of GKR in the random oracle

We first describe GKRs,RO which is a one-round GKR in the random oracle
model. We specify how the protocol’s challenges are obtained.

– The initial challenge ρ1 is a genuine public-coin sampled by the verifier
– The second challenge ρ2 is obtained by querying the random oracle with

inputs : the last prover message together with ρ1. In particular, the random
oracle is not sent the GKR statement x at this round.
...

– The i-th challenge ρi is obtained by querying the random oracle with the
last prover message together with the previous challenge ρi−1

The reader can see that the present protocol GKRs,RO is somewhat different
from a standard compilation in the random oracle model. Two points are im-
portant here. First, we use a so-far digest (e.g, sending the previous challenge
and the last message) construction while the compiling in the Random Oracle
Model requires to hash all the transcript so far. Secondly, the protocol GKRs,RO
retains an initial genuine interactive round while a common (FS-) transform of
a protocol in the random oracle model does not “let even a single round” of
protocol to remain. While the security of this construction can seem somewhat
intuitive, its security must be studied with great care.

J.2 Analysis in the random oracle model

Before moving forward with the concrete security, we first introduce Lemma 3
which will be used to justify the second point (mentioned above). In the following
theorem we use the intermediate GKR-versions introduced in Fig. 19.

Lemma 3. Our single-round GKR (i.e., GKRs,RO) is sound in the random or-
acle model, if non-interactive GKR (i.e., GKRb) is sound in the so-far digest
random oracle model.

Proof. Let A and B be respectively the attackers to the soundness of non-
interactive GKR and single-round GKR. The adversary A simulates the sound-
ness game for B.
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– when B sends x, the adversary A sends a RO-query to HFS for the input x.
It set the response as the challenge (generated by the verifier) for the first
round and sends it to B

– If B queries the random oracle HFS for the same value x, the adversary A
responds with a different random value.

– When B outputs a proof π, the adversary A outputs x and π.

Note that by this simulation, both protocols are technically the same. But, as
B does not understand what it received at the first round was indeed a response
to a RO-query over x (asked by the verifier, namely A here), from its perspective,
the adversary B is inside a single-round interactive version.

The security analysis consists in a sequence of transformation that starts
from the original GKR protocol finish GKRs,RO. We summarize it in the table
Fig. 19.

Protocol Details Justification

GKR The original protocol, fully interactive -

GKRa full ROM, so-far transcript model Standard ROM

GKRb full ROM, so-far digest model Theorem 4

GKRs,RO Appendix J.1 ROM from the second round, so-far digest Lemma 3

GKRs instantiated one-round GKR Appendix J.3 Fiat-Shamir hash

Fig. 19. Overview of the security reduction

J.3 Instantiation of the random oracle

We apply the Fiat-Shamir heuristic to instantiate the random oracle in GKRs,RO
which results in GKRs. We do so, by selecting a hash function such that:

– It behaves like a random oracle

– It can be efficiently verified in an arithmetic circuit

– When the construction is applied for proving hashes, it is preferable to either
use another hash function (different from the one that is being proved) or
at least to change the parameters of the hash functions.

In our implementation, we use MiMC with different constants. We stress
that, during this step, the transform only applies for the calls to the random
oracle and not the genuine random-coin of the first round. Though finally at the
third layer of our compiler (Section 5.4), we again use the Fiat-Shamir heuris-
tic to instantiate the first round interaction with a hash function (again MiMc
with different parameters). Note that what we are using in the compiler in (Sec-
tion 5.4) is GKRs.
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K Description of AOK XT for our variant of Plonk

Let ωi’s be the n-th roots of unity (such that for public inputs x we have |x| ≤ n,
where in our case ξ(x) = (v, xL2), using our notation Fig. 12), we can derive three
subsets ωL2, ωv, ωn\` ⊂ Ω = {ωi}i where the first two subsets correspond to xL2

and v, respectively.
One can consider PI(X) = PI1(X) + PI2(X) such that the polynomial

PI1(X) is handled by the verifier and over unity roots ωL2 interpolates to the
public inputs of layer 2 (i.e. xL2) while PI2(X) is handled by the prover and in-
terpolates to v over the corresponding unity roots ωv and to zero over ωL2∪ωn\`.
Our compiler, outputs γv = (C, yz) (where C =

∑
i vi[Li(x)]1 is the KZG com-

mitment to PI2(X) =
∑
i viLi(X), and yz = PI2(z)) and an AOK XT , as given

in Fig. 20, allowing the verifier to check that PI2(X) := V (X) evaluates to 0
on the entries ωL2 ∪ ωn\`, and to yz at X = z. The former guarantees that C is
computed using only the correct Lagrange basis, while the latter guarantees the
correct computation of PI2(z). The first part of the proof can be done with a
batch opening of KZG polynomial commitment. Thus, the argument system XT
is a batch opening of KZG at points ωL2 ∪ ωn\` and a single opening for X = z.
In [7] the authors proved the knowledge-soundness of batch KZG opening in the
algebraic group model and based on q-DLog assumption (Appendix A, Defini-
tion 13). Here, our srs is longer but all the extra terms are linear combinations
of elements in the original srs in [7], thus the security still holds in the algebraic
group model.

Setup(pp′,G1,G2,F, ξ)

[Li(x)]1, [x
j ]2 ← pp′

Z(X)←
∏
i∈T

(X − ωi)

Z← Z(x) · [1]2

return

srs = (pp′,L = ([Li(x)]1),Z)

Prove(L, v, z)

v(X) =
∑

vi · Li(X)

yz ← v(z)

π ← KZG.Prove(v(X), yz, z)

π′ ← KZG.Prove(v(X),~0, {ωi}i∈T )

return (π, π′)

Verify(π, π′, C, yz, g
x
1 ,Z)

e(C, [1]1)
?
= e(π, [x− z]2)

e(C, [1]1]
?
= e(π′,Z)

Fig. 20. Argument of Knowledge for PLONK. Here, pp′ is the public parameter of
our variant in Fig. 14, and T is the set of indices associated with the unity roots in
ωL2 ∪ ωn\`
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