
ENIGMAP: Signal Should Use Oblivious Algorithms for Private Contact Discovery

Afonso Tinoco 1,2

atinoco@andrew.cmu.edu
Sixiang Gao 1

sixiangg@andrew.cmu.edu
Elaine Shi 1

runting@gmail.com

1 Carnegie Mellon University, 2 Instituto Superior Técnico

Abstract—Leveraging hardware enclaves technology, Signal
was the first to offer a privacy-preserving contact discovery
service, where users can discover whether their friends have
signed up for the service, without divulging their entire address
books. The crux of their design is an algorithm to search for the
user’s contacts such that the access patterns are independent
of the queries.

To achieve this, Signal implemented a naı̈ve batched linear
scan algorithm that scans through the entire database for each
batch of queries. Signal published a high-profile blog post
arguing that for billion-sized databases, batched linear scan
outperforms the asymptotically superior oblivious algorithms.
While subsequent works revisited the same question, we still do
not have conclusive evidence why Signal should use oblivious
algorithms instead.

Our work is motivated by the observation that the previ-
ous enclave implementations of oblivious algorithms are sub-
optimal both asymptotically and concretely. We make the key
observation that for enclave applications, the number of page
swaps should be a primary performance metric. We there-
fore adopt techniques from the external-memory algorithms
literature, and we are the first to implement such algorithms
inside hardware enclaves. We also devise asymptotically better
algorithms for ensuring a strong notion of obliviousness that
resists cache-timing attacks. We complement our algorith-
mic improvements with various concrete optimizations that
save constant factors in practice. The resulting system, called
ENIGMAP, achieves 5.5× speedup over Signal’s linear scan
implementation, and 21× speedup over the prior best oblivious
algorithm implementation, at a realistic database size of 256
million and a batch size of 1000. The speedup is asymptotical
in nature and will be even greater as Signal’s user base grows.

1. Introduction

Mobile messenger applications such as Signal and What-
sApp provide a contact discovery service to its users. In
contact discovery, a client with a local address book wants to
discover which of the friends in its address book have signed
up for the messenger service. The most straightforward way
to accomplish this is for the client to upload its entire
address book to the server — indeed, this is the approach
taken by WhatsApp [1]. The drawback is clear: the client
completely loses control of its private data.

To protect the client’s privacy, Signal, a private mes-
saging service, deployed hardware-assisted techniques for
private contact discovery [2]. In this way, Signal users can
discover contacts without revealing their address book to the
server. Signal published a blog post [2] that explains their
algorithm in detail. The Signal server is equipped with an
Intel SGX secure processor. Such a secure processor creates
a trusted enclave on the server that acts as a root of trust.
The client can encrypt its address book to the enclave’s
public key, such that the address book can be decrypted
only within the enclave, and any data that leaves the enclave
is encrypted again. It is a long known fact that encryption
alone is not sufficient for achieving privacy. In the case of
contact discovery, the server has a large database of users
(e.g., a billion entries [2]) that resides in external memory,
i.e., untrusted memory and disk. If the server can observe
which entries are matched through the access patterns, then
privacy is lost. To clarify, the server’s database itself is not
secret, but the client’s address book is.

A standard approach for hiding a program’s access pat-
terns is called Oblivious RAM (ORAM), originally proposed
by Goldreich and Ostrovksy [3], [4]. A line of subsequent
works aimed to make ORAM practical [5]–[7]. Among
these works, Path ORAM [6] stands out as one of the
most practical ORAM algorithms known to date. With
Path ORAM, we can compile any program to an oblivious
counterpart incurring only an O(log2N) factor overhead in
runtime. Therefore, one straightforward solution is to use
Path ORAM to compile a standard (non-oblivious) binary
search tree algorithm (e.g., AVL tree [8]), resulting in an
oblivious binary search tree. This approach would allows us
to perform each search in O(log3N) time.

1.1. Oblivious Algorithms vs. Batched Linear Scan:
The Race is On

Signal’s findings. Naturally, Signal investigated using Path
ORAM for their private contact discovery application. In
2017, they published a high-profile blog post [2] discussing
their findings. They argue that in practice, for billion-sized
databases, Path ORAM is not as efficient as a naı̈ve batched
linear scan algorithm. Specifically, the batched linear scan
algorithm makes a pass over the entire database to answer
a batch of β queries, where each query specifies a user’s

handle (e.g., email address or phone number), and recall
that our goal is to return the corresponding entry from the
database if found. Clearly, the linear scan incurs O(N)
runtime for each batch, and amortized to each query, the cost
is O(N/β). Although batched linear scan is asymptotically
much worst than Path ORAM, Signal argued that it has
better concrete performance than Path ORAM. Therefore,
this is the algorithm they eventually implemented in their
open source repository [9].
Oblix’s findings. Oblix [10] pointed out that rather than us-
ing Path ORAM to compile a non-private binary search tree
algorithm into an oblivious counterpart, Signal should have
adopted an oblivious binary search tree [11], [12] instead.
At a very high level, an oblivious binary search tree [12]
piggybacks the binary search tree’s index structure on top
of the position-map data structure of Path ORAM [11]. This
trick allows us to support each search query in O(log2N)
time, which is a logarithmic factor more efficient than the
generic compilation approach.

The authors of Oblix then implemented an efficient
oblivious binary search tree inside the SGX enclave, and
evaluated its performance. They showed that at a batch size
of 1000, their implementation starts to outperform Signal’s
implementation when the database contains billions of en-
tries; at a batch size of 100, their implementation starts to
outperform Signal at a database size of roughly 100 million.

In summary, Oblix’s findings show that oblivious al-
gorithms are definitively more competitive when the batch
sizes are small (e.g., 100 or smaller). However, if batch sizes
are large in practice (e.g., 1000), then the reason for Signal
to switch to oblivious algorithms is not compelling enough.
Other related work. Some other related works such as
ObliDB [13] can also be used to support Signal’s contact
discovery application. However, as acknowledged in their
own paper [13], their performance is not as competitive as
Oblix for this application, since ObliDB aims to support
general relational database queries. We therefore use Oblix
as a state-of-the-art baseline in this paper. We review addi-
tional related work in Section 1.4.

1.2. Sub-Optimality of Oblix’s Implementation

Our work was initially motivated by the observation that
Oblix’s implementation [10] turns out to be sub-optimal both
asymptotically and concretely. There are two main reasons
that leads to the sub-optimality.
Choice of metric. Most of the theoretical work on oblivious
algorithms [3]–[6] use the program’s runtime (i.e., number
of instructions) in a word-RAM model as a primary perfor-
mance metric, and consequently Oblix adopted the runtime
as primary metric too. Henceforth in the paper, whenever we
say runtime, we mean the number of instructions — this is
standard terminology from the algorithms literature.

However, for an enclave-based setting, runtime should
only be considered as a secondary metric. The more sig-
nificant performance bottleneck is actually the overhead of
page swaps between the enclave and the untrusted operating

system (OS). As we know, the hardware enclave has limited
resident memory (e.g., 128MB) and cannot cache the entire
database (stored in an oblivious data structure). Whenever
the enclave wants to access the oblivious data structure, it
needs to ask the OS to help perform a page swap. The page
swap is an expensive operation for a few reasons. First, it
incurs a context switch which is a heavy-weight operation
itself. Second, the page swap must fetch and store data at a
4KB granularity even if the algorithm only wants to access
a single byte. Third, although the original database is not
secret, the oblivious data structure must nonetheless be en-
crypted. During this page swap, the enclave needs to decrypt
the data fetched from external memory, and when writing
the page back, the enclave must re-encrypt it. We stress
that this encryption/decryption process happens in software
and should be differentiated from the enclave’s memory
encryption mechanism which is performed in hardware.
Further, even if the enclave’s algorithm wants to read only
a single byte out of the 4KB (i.e., it only needs to decrypt 1
byte), when writing the page back, it must nonetheless re-
encrypt the entire page such that the OS cannot tell which
byte was modified.

In summary, the combination of the context switch, page
transfer, and encryption/decryption overhead makes page
swap a major bottleneck for enclave applications. Oblix
did not optimize for this metric in their algorithm and
implementation.
Sub-optimal algorithm for strong obliviousness. The orig-
inal Path ORAM [6] and oblivious data structure [12] papers
presented the ORAM algorithm in a client-server setting.
Since the client is trusted, the ORAM client algorithm
itself need not be oblivious. In the context of hardware
enclaves, a security concern is cache-timing attacks [14]–
[17]. By exploiting the fact that the enclave shares the CPU
caches with the untrusted applications running on the same
machine, the adversary can potentially exploit cache-timing
attacks to learn the access patterns within the enclave.

To defend against cache-timing attacks, several works
in this space [18], [19], including Oblix [10] suggested a
strong notion of obliviousness, often referred to as strong
obliviousness [18], [19] or double obliviousness [10]. With
strong obliviousness, we not only require that the page-level
access patterns be oblivious, but also that the access patterns
within the enclave be oblivious too. In other words, we want
to make the ORAM client itself oblivious too.

Although there exist known approaches for making the
ORAM client oblivious [7], [20], Oblix [10] came up with
their own techniques for this purpose. In particular, to
perform the eviction algorithm along an ORAM tree path,
part of their algorithm performs a double-loop over the
logarithmically sized tree path, thus incurring O(log2N)
overhead. This is asymptotically suboptimal in comparison
with the best known algorithm [7], [20].

1.3. Our Results and Contributions

We revisit the “oblivious algorithm vs. linear scan”
question in the context of hardware enclaves. We design

2

TABLE 1: Asymptotical comparison. N is the maximum number of entries in the multimap, B denotes the page size
(typically 4KB), M is the size of the enclave’s resident memory (up to 128MB), and β is the batch size. Õ(·) hides

poly log log factors.

Scheme Cost per batch of operations Cost of initialization
page swaps runtime page swaps runtime

Signal [2] O(N/B) O(β2 +N) O(N/B) O(N)

Oblix [10] O(β log2N) O(β log3N) O(N
B

log2N) O(N log3N)

ENIGMAP O(β logB N · logN) Õ(β log2N) O(N
B

logM
B

N
B
) Õ(N logN)

and implement ENIGMAP, an enclave-assisted multi-map
data structure that can be used to perform key-value lookups
and support private contact discovery. Under a realistic
database size of 256 million, we achieve 5500×, 530×,
53×, 5.5× speedup w.r.t. Signal’s open source implementa-
tion, at a batch size of 1, 10, 100, and 1000, respectively. In
comparison with Oblix, we achieve a 21× speedup regard-
less of the batch size. Our performance gain is asymptotical
in nature, so for billion-sized databases, our speedup w.r.t.
both Signal and Oblix will be even greater.

At first sight, it may seem surprising that we can achieve
such a big speedup over Oblix despite the relative maturity
of this line of work — specifically, oblivious algorithms are
simple data structures that have been thoroughly explored
in numerous practical settings [13], [21]–[27]. Indeed, our
savings come not just from system-level optimizations but
also from asymptotical improvements (see Table 1).

We adopt ideas from an elegant line of work that origi-
nated in the algorithms community, called external-memory
algorithms [28], [29]. In external-memory algorithms, we
care about minimizing the number of cache misses of a
program. It turns out that the external-memory model is a
perfect fit for enclave applications where we can think of
the enclave memory as a cache, and think of page swaps
as cache misses. Although external-memory algorithms are
a well-known body of work [28], [29], to the best of our
knowledge, we are the first to implement and evaluate such
algorithms in the hardware enclave context. We now explain
our contributions more concretely.

Locality friendly layout. Recall that in an oblivious binary
search tree algorithm that leverages a Path ORAM tree as an
underlying data structure [12], every search query requires
visiting O(logN) paths in the ORAM tree (where each
path travels from the root to some leaf). Inspired by known
external-memory algorithms [30], [31], we adopt a locality-
friendly layout for storing the (encrypted) ORAM tree in
external memory. This allows us to incur only O(logB N)
page swaps for visiting a path where B denotes the page
size. In comparison, Oblix uses a simple heap layout for
storing the ORAM tree, and they incur O(logN) overhead
for visiting a path.

Efficient initialization algorithm. We devise new algo-
rithms for initializing the oblivious data structure that
achieve asymptotical savings relative to Oblix’s approach.
Our new initialization algorithm also adopts ideas from the

external-memory algorithms literature such that we can op-
timize the number of page swaps. As shown in Table 1, our
initialization algorithm incurs O(N

B log M
B

N
B) page swaps

and O(N logN) runtime, where B is the page size and M is
the enclave’s resident memory size. In comparison, Oblix’s
initialization algorithm incurs O(N log2N) page swaps and
O(N log3N) runtime.
Ensuring strong obliviousness. In comparison with Oblix,
we employ asymptotically more efficient algorithms [20]
for ensuring strong obliviousness that allows us to save a
logarithmic factor in runtime (see Table 1).

We examined Oblix’s code and point out various sub-
tleties for ensuring strong obliviousness at an implemen-
tation level. We rely on known techniques [32], [33] to
avoid these pitfalls and guarantee both data obliviousness
and instruction-trace obliviousness within the enclave.
Practical optimizations. We introduce various optimiza-
tions that would save us a constant factor in practice. We
adopt a multi-level cache design that involves a page-level
cache outside the enclave, a bucket-level cache inside the
enclave, and a binary-search-tree-level cache. Moreover, we
suggest a new optimization that saves a 2× to 3× factor for
the data structure’s insertion algorithm. Our locality-friendly
layout also achieves a constant-factor saving in comparison
with the standard Emde Boas layout [30], [31] from the
external-memory algorithms literature.
Implementation and open source. We have implemented
ENIGMAP and open sourced the code at https://github.
com/odslib/EnigMap (the site has been anonymized for the
submission). Besides the numbers mentioned earlier, we
provide a more in-depth performance evaluation, and show
the breakdown of performance overhead, as well as the
effect of various optimizations.

Signal has between 40 million to billions of users [2],
[34], [35]; moreover, their user base has been rapidly grow-
ing [35]. Based on our findings and these known statistics,
we conclude that it would be compelling for Signal to
switch to using oblivious algorithms for their private contact
discovery service.

1.4. Additional Related Work

Oblivious RAM and oblivious algorithms. Oblivious
RAM was first proposed by Goldreich and Ostrovsky [3],
[4] who gave a hierarchical construction with O(log3N)

3

https://github.com/odslib/EnigMap
https://github.com/odslib/EnigMap

overhead, assuming the existence of one-way functions.
Several subsequent works [36]–[41] made some further
improvements on top of the hierarchical framework. Shi
et al. [5] first proposed a new binary-tree based paradigm
for constructing ORAM, which removes the assumption on
one-way functions. The framework was improved in several
subsequent works [6], [7], [23], and Path ORAM [6] stands
out as one of the most practical algorithms for a secure
processor or client-server setting.

While ORAM allows us to compile any program into an
oblivious counterpart generically, a line of work has focused
on customized oblivious algorithms [12], [32], [42] such that
we can outperform generic compilation for specific (classes
of) computation tasks. Wang et al. [12] showed oblivious
algorithms for binary search trees that outperform generic
ORAM compilation by a logarithmic factor — both Oblix
and our work are based on their algorithm.
Oblivious algorithms meet hardware enclaves. Besides
the aforementioned works Oblix [10] and ObliDB [13], the
recent work Snoopy [21] also implemented oblivious algo-
rithms in a hardware enclave context. Snoopy’s focus, how-
ever, is how to parallelize multiple instances of oblivious
data structures to increase throughput. In their experiments,
they used Oblix [10] as one choice of a single instance. In
this sense, ENIGMAP is orthogonal and complementary to
Snoopy, and it should not be hard to replace Oblix with
ENIGMAP in Snoopy’s implementation which should lead
to significantly better performance.

Earlier, several works such as Raccoon [43], Zero-
Trace [27] and Kloski [44] also implemented variants of
Path ORAM inside an SGX enclave. However, they did not
implement an efficient oblivious binary search tree, and thus
would not be competitive for our application.
Oblivious algorithms in a client-server setting. Another
line of works, including Ring ORAM [23], Obladi [22] and
others [12], [36], [37], [45] implemented oblivious algo-
rithms in a client-server setting. In a client-server setting,
the main performance bottleneck is the bandwidth, and the
client-side algorithm need not be implemented obliviously.
Other approaches for private contact discovery. Private
set intersection (PSI) [46] is a cryptographic protocol that
allows two parties to compute the intersection of their re-
spective sets, without revealing additional information about
their private sets. PSI techniques can also be applied to pri-
vate contact discovery. Moreover, a line of works [47]–[52]
have focused on optimizing the asymptotical and concrete
performance of psi. However, the recent work of Kales et
al. [48] pointed out that PSI is not ready yet to scale to
billion-sized databases such as in Signal’s scenario.

2. Problem Statement

In private contact discovery [2], the server has a database
of users each identified by some handle such as email or
phone number. Each user’s record may store some extra
information of the user, e.g., geographical location, last time
online, etc. The client has a list of friends, and it wants to

retrieve the records corresponding to its friends. The client
is privacy-conscious, i.e., it does not want to leak to the
server who its friends are.

2.1. Architecture and Threat Model

We assume that the server is equipped with secure
hardware enclaves such as Intel’s SGX. Although recent
works have uncovered some attacks for off-the-shelf trusted
hardware [53], [54], it is outside the scope of this paper to
consider how to design provably secure trusted hardware —
an orthogonal line of work focuses on this goal [55]–[57].
Although we use Intel’s SGX as a testbed to demonstrate our
ideas, our algorithmic constructions are generic and apply
to known hardware enclave technologies in general.

As our threat model, we assume that the server’s operat-
ing system may be compromised, and there may be insiders
in the facilities hosting the server who can perform physical
attacks — we assume that the physical attacks cannot break
the tamper-resistance of the hardware enclave.

Hardware encryption of enclave memory. A physical
attacker can perform cold-boot style attacks to read off
memory contents. However, recall that all the enclaves’
memory pages are hardware-encrypted which prevents a
cold-boot attacker from learning their contents.

Enclave’s page swaps and software encryption of pages.
The enclave’s page swaps are performed by the untrusted
operating system (OS). To prevent the OS from observ-
ing secret contents of any page that is swapped out, the
pages must be encrypted before they are handed over the
OS. Similarly, pages swapped into the enclave must be
decrypted before computation can take place. The above
encryption/decryption processes are performed in software.

Access pattern leakage channel. When handling the en-
clave’s page swaps, the untrusted OS can directly observe
the page-level access patterns of the enclave program, i.e.,
the indices of the memory pages that the enclave swaps in
and out. We also assume that the attacker can perform cache-
timing style attacks to glean information about the memory
accesses made by the program running inside the enclave.

2.2. Oblivious Multimap

The private contact discovery problem can be solved
with a map data structure that implements a key-value store
where all keys are distinct. Just like in the Oblix [10] paper,
we define a slightly more expressive data structure, that is,
a multimap, whose abstraction is defined below:
• Init(I): on receiving an input array I containing key-

value pairs, initialize a multi-map data structure;
• Size(k): return the number of occurrences of the key k

in the data structure;
• Find(k, i, j): on receiving a key k, two indices i and j

where j ≥ i, return the i-th to the j-th key-value pair
whose key matches k. If multiple entries exist with the
same key k, we order all the entries based on the value

4

v and index them based on this ordering. Note that the
array output by Find is of fixed length j − i + 1, and
if there are not enough key-value pairs with the key k,
we simply pad the output array with filler entries of the
form ⊥;

• Insert(k, v): insert a key-value pair of the form (k, v)
into the data structure;

• Delete(k, v): delete one occurrence of the key-value pair
(k, v).

Correctness is implied by the above definition of the
abstraction. We now define obliviousness.

Strong obliviousness. Since all data that leaves the secure
hardware enclave will be encrypted, we may assume that
the adversary can only observe the access patterns but not
the data content itself. The following definition intuitively
says that the adversary cannot learn any secret information
(besides the types of the requests and the lengths of inputs
and outputs) by observing the access patterns.

Let {op`}`∈[m] be a request sequence of length m where
each op` is of the form (Size, k), (Find, k, i, j), (Insert, k, v),
or (Delete, k, v). {op`}`∈[m]We say that two request se-
quences {op`}`∈[m] and {op′`}`∈[m] are trace-equivalent, iff

1) they have the same length;
2) each op` and op′` have the same type of operation; and
3) if op` = (Find, i, j) and op′` = (Find, i′, j′) are both

Find operations, then it must be that j′ − i′ = j − i.

Given some initial array I, let Accesses(I, {op`}`∈[m])
be the access patterns observed when initializing the array
with Init(I) followed by executing the request sequence
{op`}`∈[m]. Here the access patterns including the sequence
of physical locations visited as well as whether each phys-
ical access is a read or write operation. Moreover, the
access patterns include both the instruction fetches as well
as the memory requests made by the program. We say
that a multi-map implementation satisfies obliviousness, iff
there exists a negligible function negl(·), such that for
any two input arrays I and I′ of the same length, for
any two trace-equivalent request sequences {op`}`∈[m] and
{op′`}`∈[m], the random variables Accesses(I, {op`}`∈[m])
and Accesses(I′, {op′`}`∈[m]) have negl(λ) statistical dis-
tance, where λ is a security parameter, and we assume that
the multi-map is invoked with the security parameter λ.

We stress that our obliviousness notion is very strong
and inherently resists cache-timing-style attacks. Since we
require that even word-level (not just page-level) access
patterns be oblivious, it means that even if the adversary
can observe the memory accesses of the program inside
the enclave (e.g., through cache-timing attacks), it cannot
learn any secret information. Earlier works have referred
to this notion as either strongly oblivious [18], [19] or as
doubly oblivious [10]. In a practical implementation, our
notion requires obliviousness not only on the data accesses,
but also the instruction trace, and we will discuss how we
ensure instruction-trace obliviousness in Section 5.2.

2.3. Microbenchmarks and Performance Metrics

What should be the primary performance metric? To
the best of our knowledge, almost all prior works [10], [27],
[43], [44] that implement oblivious algorithms for hardware
enclaves focus on optimizing the runtime (i.e., number of
instructions) of the algorithm — using standard algorithmic
terminology, these works consider the enclave program as
a Random Access Machine (RAM), and use the RAM’s
runtime as a primary metric. We observe that this is actually
not the right metric for characterizing the performance of
enclave programs.

In hardware enclave architectures, the enclave typically
has a limited amount of resident memory. When the resident
memory is not enough, the enclave needs the operating
system’s help to swap pages in and out of the enclave, from
insecure memory (or disk). In common hardware enclave
architectures today, such page swaps are performed at a 4KB
granularity — even if the enclave just wants to read a single
byte that resides outside the enclave, it has to perform a 4KB
page swap, since the page is the atomic unit of I/O in and
out of the enclave.

Therefore, besides the algorithm’s runtime, another pri-
mary metric for an enclave program is the number of page
swaps. A page swap is a heavy-weight operation since 1)
context switches are necessary for performing page swaps;
and 2) we need to perform software encryption and de-
cryption of memory pages (see also Section 2.1). Both
of the above are expensive operations. To better illustrate
the performance profile, we conducted microbenchmarking
of the overheads of various operations. Figure 1 shows
the cost of the following operations relative to MOV-4096,
i.e., moving 4KB data inside the enclave’s secure memory
without triggering any page swap:
• Encryption/Decryption - encrypting/decrypting 4KB of

data using AES256-GCM via AES-NI.
• OCall - moving 4KB of data from inside the enclave to

outside followed by moving 4KB of data to the enclave.
• DiskSwap - writting a 4KB page to disk followed by

reading a 4KB page from disk.
In the figure, the cost of MOV-4096 is normalized to 1×.
We see that the cost of a page swap is 30× to 40× more
expensive than MOV-4096.
The external memory model. In the algorithms literature,
there is an elegant line of work called external-memory
algorithms [28], [29] that is a perfect fit for modeling the
performance of hardware enclave architectures. To under-
stand the external memory model, it is easiest to contrast
it with the standard RAM model. In the RAM model, the
atomic unit of data for CPU instructions and for I/O are the
same, and thus the number of CPU instructions (commonly
referred to as the RAM’s runtime) also coincide with the
number of I/Os, assuming each CPU step performs a single
memory read and write. The external memory model, first
proposed Aggarwal and Vitter [28], considers an abstract
machine where the atomic unit of data for I/O, often called
a block, is larger than the unit of data that CPU instructions

5

Figure 1: Microbenchmarks: A page swap between inside
and outside the enclave incurs the OCall overhead, the

decryption overhead, and possibly part of the encryption
overhead depending on how many bytes are read. A page
swap is about 30× to 40× more expensive than moving

4KB in memory within the enclave.

operate on. Even if the CPU wants to read just one word
from memory, it has to fetch the entire block that the word
resides in. Further, the CPU has some cache of size M that
can cache some blocks it has recently fetched. The primary
performance metric for an external-memory algorithm is the
number of cache misses or equivalently, the I/O cost (i.e.,
the number of blocks fetched from or written to memory).

In the context of hardware enclaves, the page size
(typically 4KB) corresponds to the block size B, and the
enclave’s resident memory size corresponds to the cache
size M (typically 128MB). We will focus on optimizing the
number of page swaps, which corresponds to the I/O cost
of an external-memory algorithm.

In the external-memory model, intuitively we want al-
gorithms with good locality. In other words, once the CPU
fetches an entire block from memory, it had better make
maximal utilization of this block before caching it out to
memory again.

3. Background on Oblivious RAM and Obliv-
ious Data Structures

In this section, we provide some background on Path
ORAM [6] and oblivious data structures [12].
Terminology. As mentioned, in this paper, we study algo-
rithms in the external-memory model. To avoid terminology
collision, we differentiate the terms entry and page. An entry
is an atomic unit that the data structure operates on, whereas
a page is the minimal unit of I/O between the enclave and
the outside world. Typically a page is 4KB in size, and it
can contain multiple entries.

In comparison, the standard literature on oblivious algo-
rithms adopts the RAM model, and thus does not differenti-
ate an entry and a page — both are referred to as a block [5],
[6]. However, we must differentiate them since we are now
in the external-memory model.

3.1. Non-Recursive Path ORAM

Path ORAM, proposed by Stefanov et al. [6], is an effi-
cient instantiation of the tree-based ORAM framework [5].
We will actually use the Path ORAM data structure to realize
an oblivious AVL tree — to do this, we do not need the

particular recursion structure of Path ORAM [6] since we
will override it with the logical indexing structure of the
AVL tree. Therefore, below we introduce the background
on the pre-recursion data structure of Path ORAM.

Data structure. The primary data structure of Path ORAM
is a binary tree (henceforth called the ORAM tree) with N
leaves where N is the maximum number of elements in the
multimap. Each node in the tree is called a bucket. A bucket
can hold up to 4 entries, and an entry can either be real or a
filler. Filler entries do not store actual information, they are
just there for security. Jumping ahead, later in our oblivious
data structure application, each real entry will correspond to
a node in the logical AVL tree.

Additionally, there is also a stash whose size is super-
logarithmic in the security parameter for holding overflow-
ing entries. Henceforth, we simply assume that the stash is
part of the root node, i.e., the root node has somewhat larger
size than the remaining nodes in the ORAM tree.

Path invariant. Each entry is assigned to a random path
(i.e., from the root to some random leaf node) in the ORAM
tree. The entry can reside in any bucket along its designated
path. Henceforth, we use the term position identifier denoted
pos to refer to the path assigned to an entry.

Operations on the ORAM tree. For the time being, we
make a simplifying assumption and assume that all entries
in the logical multimap has distinct keys. Later on in Sec-
tion 3.2, we shall discuss how to remove this assumption.
We may assume that each entry is of the form (k, data, pos),
where k denotes the key, data is a payload string, and pos
is the position identifier of the entry. The oblivious AVL
tree application requires a specific format for the data field
which we shall elaborate on in Section 3.2.

There are three types of operations on the ORAM tree:

• ReadRm(k, pos): Given a key k and a position identifier
pos, read the path identified by pos. If an entry with
the key k is found, remove the entry from the path and
return the fetched entry.

• Add(k, data, pos): Given a key k, some payload string
data, and a new position identifier pos, add the entry
(k, data, pos) to the root bucket.

• Evict(pos): Given a path identified by pos, perform an
eviction operation on the path (including the stash). An
eviction operation re-arranges the entries on the path
such that they are packed as close to the leaf level as
possible, while still respecting the path invariant.

If we want to read or write an entry identified by k in the
ORAM tree, we first need to find out its position identifier
pos — we will describe how to achieve this in an oblivious
AVL tree in Section 3.2. Once we know both k and pos, we
perform the following:

1) first call data← ReadRm(k, pos);
2) next call Add(k, data′, pos′) where data′ is the new data

to overwrite with or the same as the returned data if no
update is needed, and pos′ denotes a randomly selected
new path;

6

3) next call Evict(pos) where pos is the path which we have
just read from.

3.2. Oblivious AVL Tree

A multimap data structure can be realized with an AVL
tree, and our goal is to make the AVL tree obliviousness
by relying on the ORAM tree data structure introduced in
Section 3.1. We first give some background on the AVL tree.
An AVL tree is a balanced binary search tree [8]. The logical
data structure, henceforth referred to as the AVL tree or the
logical tree, imposes a balancing invariant: each node’s left
subtree and right subtree can have a height difference of at
most 1. As such, the maximum depth of an AVL tree with
N nodes is 1.44 log2N [8], [12].

We want to make the AVL tree oblivious, and we rely
the oblivious data structure techniques of Wang et al. [12].
The idea is to store each entry (i.e., node) of the AVL tree
inside a single physical ORAM tree. Henceforth, we refer to
a pair ptr := (k, pos) as a pointer, which contains a key k
and a position identifier — as mentioned, for the time being,
we assume that each key in the multimap data structure is
distinct and we later remove this assumption in Section 3.2.
Each entry (i.e., node) of the AVL tree, stored in the physical
ORAM tree, is of the following format:

(ptr, lptr, rptr, v)

where v denotes the value, and the fields ptr, lptr, and rptr
denote the pointers of the current node, its left child, and its
right child in the logical AVL tree. If a node does not have
a left or right child, the corresponding lptr or rptr is ⊥.

Supporting the AVL tree operations. We now describe
how to support the AVL tree operations when the AVL tree
nodes are stored in an ORAM tree. Henceforth, we may
assume that the entry corresponding to the root of the AVL
tree is always stored at a fixed position. We first provide
an explanation ignoring the issue of padding, and then we
explain the padding that is necessary for hiding the lengths
of each AVL tree path and ensuring obliviousness.

Find(k) starts from the root node (stored at a fixed
position) and walks down a logical path in the AVL tree.
To fetch each node in the AVL tree, we need to read a path
in the ORAM tree. The key is how to discover its position
identifier. This is easy due to the way that each entry stores
the position identifiers of its two children. In this way, once
we find the parent node, we immediately learn the keys and
position identifiers of the two children. Now, depending on
whether the logical path wants to go left or right, we can
look up the corresponding path in the ORAM tree (i.e.,
ReadRm), and find the next node along the logical path.
After we call ReadRm for any entry looked up, we assign
it a random new path and add it back by calling Add, and
then perform an eviction by calling Evict(pos) on the read
path identified by pos.

We now describe how to perform Insert(k, data). Here
we use the notation data to denote the entire payload string
of an entry besides the key, where the format of each entry

was explained above. To insert an element with the key
k, we first perform a lookup for the key k, which walks
down some path in the logical AVL tree. This identifies the
right position in the logical tree to insert the new entry.
After inserting the entry into the logical tree, we perform a
rebalancing operation to maintain the balancing invariant of
the AVL tree. The AVL tree’s rebalancing operation touches
exactly the same path that was looked up. These nodes
can be fetched using the same way as in Find — recall
that whenever we find a parent, we immediately know the
position identifiers of both its children. Rebalancing might
modify some of the nodes’ parent-children relationships.
During the rebalancing operation, we assign a new random
path to all entries that are touched during by the rebalancing.
Each node modifies its children’s keys (if needed) and
position identifiers. Now, all of the modified entries will
be added back to the root bucket, and we perform eviction
on every path that was involved during the ReadRm phase.

Delete(k) can be supported in a similar manner as the
insertion, since it also walks down a logical path, and then
performs rebalancing involving the logical path just looked
up, as well as the sibling of each node on the path.

To realize the full multimap, we additionally have to
support Size(k) and the more general version Find(k, i, j)
which take the multiplicity of each key into account, as
well as Init(I) — we will describe how to support these
operations in Section 3.2.

Padding. In the logical AVL tree, each path may have
different length, and the maximum length is 1.44 logN .
Recall that we store each node of the AVL tree in an ORAM
tree. To make the scheme fully oblivious, we need to hide the
length of the AVL tree paths visited. Therefore, we always
pad the number of requests to the ORAM tree to some worst-
case amount for every operation.

Supporting key multiplicity. So far, we have assumed
that all keys are distinct. In our final multimap abstraction,
there may be multiple entries sharing the same key. We can
easily support key multiplicity using standard techniques
described by Cormen et al. [58] — the same techniques were
adopted by Oblix [10]. We need to following modifications
to AVL-tree nodes: 1) Make the key of each AVL node
now be a triplet (original_key,value,uid) to ensure
key uniqueness where uid is a unique identifier (e.g., a
monotonic counter that counts the total number of insertions
when the entry is first inserted); and 2) add a counter field
to each AVL node that counts how many nodes with the
same original key are on the left and right subtrees of
that node. The former modification makes sure that the
new keys of all AVL tree nodes are distinct. The latter
modification makes it possible to efficiently search for the i-
th to the j-th occurrences of some specified key; moreover, it
allows us to efficiently support the Size(k) operation. Using
standard techniques, we can easily modify the algorithm to
always maintain correctness of the counter fields during the
insertion and rotation processes.

Recall that in our multimap definition earlier in Sec-
tion 2.2, we require that entries with the same key be sorted

7

…

……

(a) ENIGMAP’s
locality-friendly layout

(b) Oblix’s heap layout

Figure 2: Layout of ORAM tree in external memory. Each
page contains roughly the same number of nodes (although

their area does may not appear equal in the drawing).

by their value field. In many practical applications, we need
not sort entries with the same key by their values. For
example, it may also be ok to sort entries of the same key
by the time of insertion. In this case, we can make the new
key simply (original_key,uid). In this way, we can store
the value field in a separate data ORAM as an optimization
when the value field is large in size (see Appendix B.2).

4. ENIGMAP: Algorithmic Improvements

4.1. Locality-Friendly ORAM Tree Layout

As mentioned, for secure enclave programs, the primary
performance metric should be the number of page swaps in
and out of the enclave (also called the I/O cost). We now de-
scribe a locality-friendly layout that allows us to accomplish
each AVL-tree operation with only O(logN · logB N) page
swaps where B denotes the page size. In comparison, earlier
works such as Oblix [10] and ObliDB [13] incur O(log2N)
page swaps, and thus we achieve both asymptotical and
concrete improvement over prior works.

Our locality-friendly layout adopts an elegant idea that
originally comes from the algorithms community [30], [31].
Recall that in our oblivious AVL tree algorithm, all logical
operations eventually boil down to accessing paths in the
ORAM tree. Our goal is to minimize the page swaps neces-
sary whenever a path in the ORAM tree needs to be visited.
The most naı̈ve way to pack the ORAM tree in physical
memory is to use a standard heap layout: i.e., simply write
the root node first, then its two children, then the four nodes
at the next level of the tree, and so on (see Figure 2b).
However, this approach requires O(logN) page swaps for
accessing a path. By contrast, in ENIGMAP, we pack each
subtree (represented by a triangle in Figure 2a) of depth
L = blog2Bc into a memory page of size B. This way,
accessing a path incurs only O(logB N) page swaps, which
is asymptotically better than the naı̈ve scheme above.

An alternative but slightly different approach is to use
the standard Emde Boas layout [30], [31]. The Emde Boas
layout relies on a clever recursion to pack the tree nodes
into memory pages, with the advantage that the algorithm

is cache-agnostic [30], [31], i.e., it need not know the page
size B and the enclave’s resident memory size M . However,
to achieve the cache-agnostic property, the price is a factor
of up to 2× blowup in performance. This up to 2× blowup
comes from two main factors 1) Emde Boas’s recursion may
not stop at the concretely optimal choice of L; and 2) if there
is some remainder empty space in a page after packing a
triangle, the Emde Boas layout would start to pack the next
triangle into this remaining space. While this saves space by
a factor of at most 2, it may increase the number of page
swaps by a small constant factor in practice.

Fortunately, in an enclave setting, we know the exact
page size B and the enclave resident memory size M .
Therefore, it is better to use a cache-aware (as opposed
to cache-agnostic) memory layout as shown in Figure 2a,
which saves up to 2× factor in the number of page swaps
in comparison with the standard Emde Boas layout.

4.2. Efficient Initialization Algorithm

We describe a new initialization algorithm that achieves
significant asymptotical as well as concrete improvement
over prior works such as Oblix [10]. Our initialization algo-
rithm can be accomplished with O(N

B log M
B

N
B) page swaps

and O(N logN) runtime. In comparison, the initialization
algorithm of Oblix [10] incurs O(N log3N) runtime and
O(N log3N) page swaps1.

The task of initialization is the following: we are given
an initial array I containing (k, v) pairs stored in memory.
We want to obliviously initialize a data structure that would
support the Size, Find, Insert and Delete operations men-
tioned in Section 2.2.

Our new initialization algorithm proceeds in two stages:
• Stage 1: Stage 1 aims to accomplish the following: 1)

each entry picks a random position identifier in the
ORAM tree; 2) assign all entries to a unique node in
an AVL-tree; and 3) each parent in the AVL-tree learns
the keys and position identifiers of its two children.

• Stage 2: By the end of stage 1, we have created all
entries of the ORAM tree, and assigned them random
position identifiers. The goal of stage 2 is to insert all
these entries into the ORAM tree while packing them as
close to the leaf level as possible. At the end of stage 2,
we should output the ORAM tree in memory using the
locality-friendly layout mentioned in Section 4.1.

4.2.1. Algorithm for Stage 1. We devise the following
algorithm to accomplish stage 1:
1) Sort the initial array I in increasing order of the key

field k, and let the resulting array be X. Since the
initial database I is not secret, we can use a non-
oblivious, external-memory sorting algorithm. We rec-
ommend using a multi-way merge sort which achieves
O(N

B log M
B

N
B) page swaps and O(N logN) runtime.

1. It is possible to turn it into O(N logN) page swaps by using an
external memory optimized sort.

8

At this moment, we will encrypt the sorted array. Hence-
forth, although not explicitly noted, all memory is as-
sumed to be encrypted.

2) Each entry in the sorted array X picks a random position
identifier for itself. Henceforth, we regard the sorted
array X as the in-order traversal of the logical AVL-
tree. Given each entry in position i of the sorted array
X, we use left(i) and right(i) to denote the indices of
its two children.

3) Let root be the index of the root node of the AVL-tree.
Call the following recursive algorithm Propagate(root)
such that each parent learns the keys and position iden-
tifiers of its two children.

Propagate(r)

a) let lptr = Propagate(left(r)),
b) let rptr = Propagate(right(r)),
c) Store (lptr, rptr) to X[r],
d) Return the key and position identifier in X[r].

Performance bounds. We now analyze the performance of
the above algorithm. The sorting step takes O(N

B log M
B

N
B)

number of page swaps and O(N logN) runtime. Encrypting
the entire memory array and assigning a random position
identifier to each element in the array takes only O(N/B)
page swaps and O(N) runtime. For the third propagation
step, clearly its runtime is O(N). Its number of page swaps
Q(N) can be analyzed through the following recurrence:

Q(n) =

{
2Q(n/2) + 1 if n > B

2 o.w.

Thus, we conclude that the propagation step consumes at
most O(N/B) page swaps.

In summary, stage 1 costs O(N
B log M

B

N
B) number of

page swaps and O(N logN) runtime.

4.2.2. Algorithm for Stage 2 (Warmup). By the end of
stage 1, we have prepared all entries to be inserted into the
ORAM tree, and each entry has been assigned a random
position identifier. Our goal is to place these entries into the
ORAM tree, and pack them as close to the leaf as possible.

To achieve this, we compute the contents of each level
of the ORAM tree one by one, starting from the leaf level.
Initially, each level is stored in a contiguous memory region.
At the end of the algorithm, we need to convert the layout
to the locality-friendly layout mentioned in Section 4.1.

We shall employ an oblivious bin placement algorithm
denoted BinPlace which obliviously places the real elements
in an input array into bins, and outputs the output bins as
well as a remainder array containing all overflowing ele-
ments — we review oblivious bin placement in Appendix A.
Our stage 2 algorithm is described below where level log2N
denotes the leaf level, and level 0 denotes the root level:

1) Let Y be the array output by stage 1, which con-
tains all N entries to be inserted into the ORAM

tree, and each entry stores its own randomly chosen
position identifier.

2) For ` = log2N, . . . ,
1
3 · log2N :

• scan Y and mark each (real) entry’s destination
as the bucket in level ` of the ORAM tree that
it can reside in;

• TreeLevel[`],Y ← BinPlace(Y) where
BinPlace is parametrized with the bin size
Z = 4, and the total number of bins m = 2`;

• truncate Y and preserve only the first half.
3) For each level ` = 1

3 · log2N − 1, . . . , 0, for each
bucket in level `, for each slot in the bucket:

linearly scan through Y and and fill the slot with
an entry that can reside in the bucket, replace the
chosen entry with a filler in Y.

4) Change the tree’s layout from level-by-level layout
to the locality-friendly layout described in Sec-
tion 4.1.

The above stage 2 algorithm incurs O(N
B log M

B

N
B) page

swaps and O(N logN) runtime. We defer its correctness
and performance analysis to Appendix A.

Remark 4.1. Oblix’s initialization algorithm [10] is similar
to our warmup algorithm. They used vanilla bitonic sort that
is not optimized for the number of page swaps, and their
paper states their algorithm’s runtime to be O(N log3N).
Oblix also did not evaluate their initialization algorithm.

4.2.3. Improved Algorithm for Stage 2. We describe how
to employ techniques from Ramachandran and Shi [19] in a
non-blackbox manner to simplify the algorithm (in a practi-
cal implementation) and improve its concrete performance
by a constant factor.

In stage 2, roughly speaking, we want to sort elements
into the tree nodes they are destined for. Our key observation
is that the elements’ destinations are randomly chosen.

Building block: oblivious random bin assignment. We
will leverage the oblivious random bin assignment (ORBA)
algorithm which is a building block in Ramachandran and
Shi’s oblivious sorting algorithm [19]. Let Z = ω(logN)
and suppose we have n/Z bins each of capacity 2Z. Given
an input array with a total of n real or filler elements,
suppose that each real element chooses a random bin as a
destination. An ORBA algorithm allows us to route the real
elements into their destination bins without revealing their
destinations. If a bin receives fewer than 2Z elements, it will
be padded with fillers to a capacity of 2Z. The probability
that each destination bin receives more than 2Z elements is
negligibly small in N as long as Z = ω(logN).

Improved algorithm for stage 2. We will assume that the
enclave’s resident memory size M = ω(logN) which is a
standard “tall-cache” assumption and is also true in practice.

1) Let Z = M/C for a sufficiently large constant C > 1,
and let `∗ be a level in the tree with N/Z nodes, and let
T1, . . . , TN/Z be the subtrees with roots in level `∗.

9

Imagine that each subtree is associated a super-bin of
capacity 2Z, and each element’s position identifier de-
termines which super-bin it wants to go to. Use ORBA to
route all real entries into their destined super-bins.

2) For i = 1 to N/Z, do the following. Fetch the i-th
super-bin into the enclave. We know that this super-bin
should be packed into subtree Ti, and some elements may
be leftover afterwards. We can accomplish this packing
through invoking an oblivious bin placement algorithm at
each layer (unlike the earlier stage 2 algorithm, we do
not truncate the remainder array at each layer). Since the
entire subtree and the super-bin fits within the enclave’s
memory, we can compute the subtree Ti and the leftover
elements within the enclave.
Let R1, . . . , RN/Z be the leftover arrays at the end of
this step, one for each subtree, and each array has size
Z ′ = ω(logN) ≤ Z except with negligible in N proba-
bility. We can make sure that R1, . . . , RN/Z are stored in
a contiguous region in external memory.

3) Now, for layer j = `∗− 1 down to the root level, we will
compute layer j of the tree in the following manner:
• Let k be the number of tree nodes in the current layer,

this also means that we start with exactly 2k leftover
arrays. Group the leftover arrays into k pairs such that
each array is paired with its neighbor.

• The analysis in Stefanov et al. [6] implies that the
total number of real elements in each pair is upper
bounded by Z ′ except with negligible probability. We
now merge each pair and sort all the real elements to
the front in the merged array. We truncate each merged
array from the end to a size of Z ′.

• Let R1, . . . , Rk be the k merged arrays. The buck-
ets in the current tree level are defined as R1[1 :
4], . . . , Rk[1 : 4].

• Replace the first four elements of each R1, . . . , Rk

with fillers, and the resulting arrays are the new left-
over arrays to be input to the next iteration. If this is
the root level, the singleton leftover array is the stash.

4) Finally, use the same approach as the earlier stage 2
algorithm to transform all levels j from `∗ down to the
root to a locality-friendly layout.

Performance bounds. Ramachandran and Shi [19] sug-
gest an ORBA algorithm that achieves O(N

B log M
B

N
B) page

swaps and O(N logN) runtime. Step 1 takes only one
ORBA invocation on O(N) elements. Step 2 can be accom-
plished with O(N/B) page swaps and O(N(log logN)3)
runtime if we use bitonic sort. In Step 3, for a level of the
tree with k nodes, we consume O(k · (log logN)2) runtime
and O(kZ ′/B) page swaps. Since even for the largest level,
k = N/Z, the total number of page swaps is at most
O(N/B). Step 4 takes at most O(N/B) page swaps and
O(N) runtime due to the same analysis as before.

Summarizing all steps, the total page swaps is
O(N

B log M
B

N
B) and the total runtime is O(N logN). We

note that when we instantiate Ramachandran and Shi’s
ORBA algorithm, if we use bitonic sort to sort poly-
logarithmically sized arrays, then there will be an extra

log logN factor in the runtime, but the number of page
swaps is unaffected.

5. ENIGMAP: Architecture and Practical Op-
timizations

5.1. Secure Multi-Level Caching

5.1.1. Caches for Physical Storage. ENIGMAP relies on
multiple levels of caching to speed up performance.
• Page-level cache outside the enclave. Outside the se-

cure enclave, we implement a page-level LRU cache
that stores the most recently used, software-encrypted
memory pages, to reduce the disk I/O.

• Bucket-level cache inside the enclave. Inside the enclave,
we implement a bucket-level LRU cache that stores the
most recently used buckets (of the ORAM tree) to reduce
the number of page swaps in and out of the enclave.

Both of these caches are caching physical accesses — since
physical accesses are already made secure by our oblivious
algorithms, the caches here do not leak any information.

Observe that an LRU cache is a simple method for
approximating a “tree-top” cache. Since every access to the
ORAM tree always accesses the root bucket, and will more
likely access buckets near the root, earlier works in this
space have suggested the idea of tree-top caching [23], [25],
[26], i.e., caching a small number of levels near the root.

5.1.2. AVL-Level Cache. Observe that to insert an element
into the AVL tree, we first access a path in the AVL tree to
find where to insert. We then access exactly the same path to
perform rebalancing. Recall that accessing each node in the
AVL tree translates to accessing a path in the ORAM data
structure; thus accessing a path in the AVL tree translates
to accessing O(logN) paths in the ORAM tree. Now, since
the second pass touches exactly the same AVL tree nodes
as the first pass, we would like to save these nodes in a
cache such that during the second pass, we need not get
them again from the ORAM data structure.

The most naı̈ve approach is to cache all O(logN)
ORAM tree paths during the first pass. During the second
pass, we need not make additional accesses to the ORAM
data structure. After the second pass, we make O(logN)
evictions altogether — roughly speaking, this is the ap-
proach taken by Oblix [10]. The drawback is that we will
need a O(log2N)-sized cache, which is costly in terms of
enclave memory. Recall that the enclave has limited resident
memory, thus the AVL-level cache is competing with other
caches such as the bucket-level cache mentioned earlier.

Our approach: sticky entries. We use a different ap-
proach called sticky entries. During the first pass, we fetch
O(logN) ORAM-tree paths. Each time we fetch an ORAM-
tree path,
1) We mark the entry of interest (i.e., the entry that stores

the AVL-tree node that we care about) as “sticky” in the
ORAM’s stash;

10

2) We then perform eviction on the read path, however,
sticky entries are pinned on the stash and will not get
evicted.

Now, during the second pass, we simply fetch all the AVL-
tree nodes needed directly from the stash without having
to make any access request to the ORAM data structure.
More concretely, we make a linear scan over the stash for
every AVL-tree node needed during the second pass2. At this
moment, we also remove the sticky marks from the relevant
entries in the stash so they can get evicted in the future.

Thus, using sticky entries, we effectively implemented
an AVL-tree level cache. Below, we argue the follow-
ing: i) the ORAM’s stash size will be upper bounded by
O(logN+R) with probability 1−exp(−Ω(R)), a significant
improvement over the O(log2N)-sized cache of the earlier
naı̈ve approach; and ii) our “sticky entries” cache does not
affect security.

Batched eviction and stash size bound. Using this ap-
proach, essentially, each time we add k = O(logN) ele-
ments to the stash, we perform the same number of evic-
tions. This approach is equivalent to “batched evictions” in
earlier works on Oblivious Parallel RAM [59] — however
earlier works used batched evictions for a different purpose
than us. Furthermore, earlier works [59] showed a stochastic
domination result: the number of blocks in heights log2(2k)
or smaller of the ORAM tree are stochastically dominated
by non-batched eviction — this stochastic domination result
holds also for Path ORAM. Thus, we can reuse the same
stochastic analysis as Path ORAM [6], and we conclude
that the stash does not exceed O(logN + R) except with
exp(−Ω(R)) probability.

Security of sticky entries. Recall that earlier bucket-level
and page-level caches are caches for physical storage —
in this case security is automatically guaranteed by the
obliviousness of the algorithm. By contrast, the sticky entries
implement a cache for the logical AVL-tree. It is not hard to
see that this optimization does not break security, since the
fact that the second pass of the AVL-tree’s Insert algorithm
touches the same path as the first pass is publicly known.

5.2. Ensuring Strong Obliviousness

As mentioned, to provably defend against cache-timing
attacks, we want the algorithm to have memory-trace oblivi-
ousness even within the enclave. Earlier works have referred
to this notion as strongly oblivious [18], [19] or doubly
oblivious [10]. To achieve strong obliviousness, we make
sure that 1) the data accesses are oblivious even within the
enclave; and 2) the instruction traces are oblivious.

2. One optimization here is to obliviously sort the stash after the first
pass, and move all the sticky entries to the front. This way, we only need
to scan through the first 1.44 log2N entries of the stash to find each
sticky entry — this optimization, however, does not matter too much to
the concrete performance since most of the computation overhead comes
from the ORAM-tree’s eviction algorithm.

5.2.1. Data Obliviousness Within the Enclave. To ensure
that the data trace is oblivious within the enclave, we rely
on 3 oblivious sorts on the path (including the stash) to im-
plement the Evict algorithm of Path ORAM. The algorithm
was described in the earlier work of Wang et al. [20] (see
Figure 2 in their paper), although they employ this idea for
a different setting: they want an ORAM suitable for secure
computation, and therefore they use the same idea to convert
the ORAM’s eviction algorithm to a circuit.

Combining the oblivious-sort-based eviction algorithm
and our locality-friendly ORAM tree layout, a ReadRm
and an Evict operation along an ORAM-tree path costs
O(logB N) number of page swaps and Õ(logN) run-
time, where Õ(·) hides (log logN)2 factors (assuming that
Bitonic sort [60] is used as the oblivious sorting algorithm).
For both metrics, we achieve asymptotical improvement
over Oblix [10]: Oblix’s path read and eviction algorithm
incurs O(logN) page swaps and Ω(log2N) runtime. This
is because they run a double loop on the metadata of the
path, and they do not use the locality-friendly layout.

5.2.2. Instruction-Trace Obliviousness. We use standard
techniques for ensuring instruction-trace obliviousness [32],
[33]. If there is a secret conditional (e.g., a if instruction
with a condition that depends on a secret variable), we must
ensure that the two branches have the same memory trace,
including both the data trace and the instruction trace —
this also implies that the length of these traces must also
be identical for both branches. For example, in the program
below, we have an if statement conditioning on a secret
variable X .

1 if (X) { B = C; } ||| CMOV(X,B,C);
2 else { D = E; } ||| CMOV(!X,D,E);

To ensure that it is instruction-trace obliviousness, we im-
plement it as two CMOV instructions. A CMOV(X, U, V)
instruction checks whether the bit X is set. If so, it assigns
the register V to the register U , and else it does nothing.

Function calls inside secret branches are a more complex
problem. We use the phantom function call idea from prior
work [32]. Specifically, we add an extra “phantom flag”
to the relevant function calls. If the phantom flag is set,
the function call would incur the same memory trace but
effectively do nothing and cause no side effect. Whenever
convenient, we simply hoist function calls outside secret ifs
to avoid this issue.
Example. As a concrete example, Figure 3 is Oblix [10]’s
code for searching the AVL tree. Their implementation is
not instruction-trace oblivious for several reasons:
1) Lines 7 and 8 check if the current key is what we are

searching for, and if so, immediately exit the while loop.
This leaks information about the structure of the AVL
tree, and thus breaks instruction-trace obliviousness.

2) Lines 7-14 are a secret if statement, however, different
branches incur different instruction traces.
In our implementation of the same algorithm, we always

make 1.44 log2N ORAM accesses regardless of when we

11

1 fn find_helper(avl_key: &AVLKey<K> /.../) //...
2 {
3 let mut root_key = root_key.clone();
4 while let Some(r_key) = root_key {
5 let cur_node = self.ods_ref.borrow_mut().

access(Read(ActualOp, &r_key), server)? //
...

6 if cur_node.key() == avl_key {
7 return Ok(Some(cur_node));
8 } else if avl_key < cur_node.key() {
9 root_key = cur_node.left_key();

10 } else {
11 root_key = cur_node.right_key();
12 }
13 }
14 return Ok(None);
15 }

Figure 3: Oblix’s AVL tree search code violates
instruction-trace obliviousness.

actually find the key. Further, we use the CMOV trick men-
tioned earlier to ensure that the instruction traces are always
identical for all branches of secret ifs.

5.3. Additional Concrete Optimizations

We perform some other optimizations that would lead to
constant-factor savings in practice. In the interest of space,
we discuss them in Appendix B.

6. Implementation and Experimental Results

6.1. Implementation and Evaluation Methodology

Implementation. We implemented our oblivious multimap
as an extensible library enigmap_lib that can easily
be integrated with any enclave framework. The library
enigmap_lib consists of 5000 lines of C++ code (3500
lines of code, 1500 lines of tests). In our experiments, we
integrated our library enigmap_lib with the Intel SGX
SDK — integration takes less than 100 lines of C++ code
plus 10 lines of edl definitions.
Open source. All of our code has been open sourced and
is publicly available at https://github.com/odslib/EnigMap.
Experimental setup and baselines of comparison. All the
experiments (for ENIGMAP and Signal’s implementation)
were run on the same desktop machine with an AMD 5900X
processor, running at 4.2Ghz, in SGX simulation mode. Our
machine is equipped with 64 GB of RAM and a Samsung
970 EVO M.2 SSD drive. In our experiments, the key and
value sizes are both 64 bits.

We compare ENIGMAP with the following baselines:
• Signal’s private contact discovery. We downloaded

Signal’s private contact discovery implementation [9],
which uses (batched) linear scans to answer queries.

• Oblix. Oblix’s code is not open source, but we were
able to obtain a copy of their code from the authors

Figure 4: Comparison of ENIGMAP and Signal

Figure 5: Cost breakdown and the effects of several
optimizations for N = 220.

of Oblix [10]. We were not able to compile their code
though, since their code is compatible with only certain
versions of Rust packages. We could not find any infor-
mation regarding which version to use.
Fortunately, we are still able to compare with Oblix
despite not being able to compile their code. In the
Oblix paper, they reported the speedup of Oblix over
Signal’s implementation running on the same machine
(i.e., their machine). By comparing our relative speedup
with their reported relative speedup both over Signal’s
implementation, we are also able to compare with Oblix.
Besides Oblix [10], other implementations of oblivi-

ous multimaps exist, e.g., ObliDB [13], which implements
a more general oblivious database, can also be used as
an oblivious multimap. However, as acknowledged in the
ObliDB paper [13], their oblivious multimap performance
is not as good as the Oblix implementation since ObliDB
is geared towards general database queries. Therefore, we
conclude that Oblix and Signal’s implementation are the
state-of-the-art baselines of comparison.

6.2. Experimental Results

Should Signal switch to using oblivious algorithms? Fig-
ure 4 compares ENIGMAP’s search performance against Sig-
nal. Signal can support a batch of queries through through
a single linear scan of the database. To support a batch of β

12

https://github.com/odslib/EnigMap

Figure 6: Initialization cost of ENIGMAP

Figure 7: ENIGMAP: cost of different operations

queries, their algorithm incurs O(β2 +N) runtime [10] and
O(N/B) page swaps. In our implementation, we process
the requests in the batch one by one.

Signal’s number of monthly active users increased from
20 million at the end of 2020, to 40 million in 2021 (see also
Figure 9 of Appendix 9). The had more than 105 million
downloads as of May, 2021, and more than 50 million
installs on Android devices [34], [35]. In Signal’s blog
post [2], they stated that they want to support billion-sized
databases. Therefore, we conclude that Signal has between
40 million to billions of registered users.

Our experiments show that at a database size of 226 (i.e.,
67 million), our speedup over Signal is 1750×, 170×, 20×,
2×, at a batch size of 1, 10, 100, 1000, respectively. At a
database size of 228 (i.e., 256 million), our speedup over
Signal is 5500×, 530×, 53×, 5.5× at a batch size of 1,
10, 100, 1000, respectively. At a batch size of 1, 100, and
1000, ENIGMAP starts to outperform Signal at a database
size of 211, 221, and 225, respectively.

Although the prior work Oblix [10] considered batch
sizes of 1, 10, 100, 1000 in their evaluation, we observe
that Signal’s implementation actually supports a maximum
batch size of β = 8192. Even at β = 8192, our experiments
show that ENIGMAP starts to outperform Signal when the
database size is more than 256 million.

We conclude that there are convincing reasons why,
given Signal’s rapidly growing user base, they should switch
an oblivious algorithms for realistic batch sizes.

Comparison with Oblix. The Oblix paper [10] reported a
speedup of 128× over Signal for a database size of 226 at
a batch size of 1. Comparing our speedup (reported earlier)
and their speedup over Signal, we achieve a relative speedup
of 14× over Oblix at a database size of 226, and a relative
speedup of 21× over Oblix at a database size of 228.

For any database our minimum speedup over Oblix is 6
at a database size of 214, with an increasing speedup as N
increases due to the difference in asymptotics.

Cost breakdown. Figure 5 shows the breakdown of our
costs into three categories: 1) computational overhead, 2)
the cost of page swaps (including encryption/decryption and
OCall overhead); and 3) disk I/O. In this figure, we use a
database size of 220.

The rightmost bar is with all of our optimizations turned
on, whereas the leftmost bar named “Base” is without any
optimization. The y-axis plots the relative slowdown over
the rightmost bar. From the leftmost bar to the rightmost bar,
we turn on the following optimizations one by one, which
shows the effect of these optimizations: 1) locality-friendly
layout; 2) page-level caching; and 3) bucket-level caching.
The figure confirms that absent our optimizations, the major-
ity of the overhead comes from the page swap and disk I/O
overhead. These optimizations together significantly reduce
the page swap and disk I/O overhead, such that the total
performance is improved by a 1.5× factor. At a database
size of 220, our final construction outperforms Oblix by 8×.
This means that even our unoptimized base performance is
roughly 5× to 6× faster than Oblix. This is because even
without the optimizations and the locality-friendly layout,
the runtime overhead of our algorithm is asymptotically
better than Oblix’s implementation (see Table 1). Another
interesting observation is that with all the optimizations
turned on, the page swap and disk I/O overhead is somewhat
even with the computational overhead. Finally, the runtime
in the base version looks slightly less than the rest, and this
is due to the side effects of running the profiler.

Initialization cost. Figure 6 shows initialization cost of
ENIGMAP in comparion with the following two baselines:
1) Using ENIGMAP’s insertion algorithm to insert the en-

tries one by one (called “naı̈ve” in the figure); and
2) Oblix’s initialization algorithm (we implemented their

initialization algorithm for comparison).
At a database of size 226, our initialization algorithm is
10× faster than our own naı̈ve initialization algorithm, and
even our naı̈ve algorithm performs 5× faster than Oblix’s
algorithm. At a database size of roughly one million, Oblix’s
initialization algorithm starts to perform even worse than our
naı̈ve initialization — this is the moment when the database
does not fit in enclave memory, and Oblix’s initialization
algorithm is not efficient in terms of page swaps.

Cost for different operations. Figure 7 shows the cost
for different operations w.r.t. the database size. As we can

13

see, insertion is about 1.5× to 2× more expensive than
search, and deletion is 5× more expensive than insertion.
This is because insertion needs to perform rebalancing in
one node, and deletion needs to perform more rebalancing
than insertion.

References

[1] Whatsapp legal. https://www.whatsapp.com/legal/.

[2] Technology preview: Private contact discovery for signal. https://
signal.org/blog/private-contact-discovery/, 2017.

[3] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. J. ACM, 1996.

[4] O. Goldreich. Towards a theory of software protection and simulation
by oblivious RAMs. In STOC, 1987.

[5] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li.
Oblivious RAM with O((logN)3) worst-case cost. In ASIACRYPT,
2011.

[6] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol. J. ACM,
65(4), April 2018.

[7] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM:
On Tightness of the Goldreich-Ostrovsky Lower Bound. In CCS,
2015.

[8] Georgy Adelson-Velsky and Evgenii Landis. An algorithm for the
organization of information. In Proceedings of the USSR Academy
of Sciences, 1962.

[9] Signal’s private contact discovery open-source implementation. https:
//github.com/signalapp/ContactDiscoveryService/.

[10] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa,
and Raluca Ada Popa. Oblix: An efficient oblivious search index. In
2018 IEEE Symposium on Security and Privacy (SP), pages 279–296.
IEEE, 2018.

[11] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla,
Mariana Raykova, and Daniel Wichs. Optimizing ORAM and using
it efficiently for secure computation. In Privacy Enhancing Technolo-
gies Symposium (PETS), 2013.

[12] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan,
Elaine Shi, Emil Stefanov, and Yan Huang. Oblivious Data Structures.
In CCS, 2014.

[13] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query
processing for secure databases. Proc. VLDB Endow., 13(2), 2019.

[14] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In ACM Conference on Computer
and Communications Security (CCS), pages 199–212, New York, NY,
USA, 2009. ACM.

[15] John Demme, Robert Martin, Adam Waksman, and Simha Sethu-
madhavan. Side-channel vulnerability factor: A metric for measuring
information leakage. In International Symposium on Computer Ar-
chitecture (ISCA), 2012.

[16] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in paas clouds. In CCS, 2014.

[17] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In 19th
ACM conference on Computer and communications security, pages
305–316. ACM, 2012.

[18] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-
oblivious and data-oblivious sorting and applications. In SODA, 2018.

[19] Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms for
multicores. In Proceedings of the 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’21, page 373–384,
New York, NY, USA, 2021. Association for Computing Machinery.

[20] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, Abhi Shelat, and
Elaine Shi. Scoram: Oblivious ram for secure computation. In ACM
CCS, 2014.

[21] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks,
and Raluca Ada Popa. Snoopy: Surpassing the scalability bottleneck
of oblivious storage. In SOSP ’21: ACM SIGOPS 28th Symposium
on Operating Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 655–671. ACM, 2021.

[22] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit
Agarwal, and Lorenzo Alvisi. Obladi: Oblivious serializable trans-
actions in the cloud. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 727–743, 2018.

[23] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov,
Elaine Shi, Marten van Dijk, and Srinivas Devadas. Constants count:
Practical improvements to oblivious RAM. In USENIX Security,
2015.

[24] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk,
and Srinivas Devadas. Design space exploration and optimization of
path oblivious RAM in secure processors. In ISCA, pages 571–582,
2013.

[25] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi,
Kriste Asanovic, John Kubiatowicz, and Dawn Song. Phantom:
Practical oblivious computation in a secure processor. In ACM
Conference on Computer and Communications Security (CCS), 2013.

[26] Chang Liu, Michael Hicks, Austin Harris, Mohit Tiwari, Martin Maas,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In ASPLOS, 2015.

[27] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace
: Oblivious memory primitives from intel SGX. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018, 2018.

[28] Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity
of Sorting and Related Problems. Commun. ACM, 31(9):1116–1127,
September 1988.

[29] Erik D. Demaine. Cache-oblivious algorithms and data structures. In
Lecture Notes from the EEF Summer School on Massive Data Sets.
BRICS, University of Aarhus, Denmark, June 27–July 1 2002.

[30] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton.
Cache-oblivious b-trees. SIAM J. Comput., 35(2):341–358, 2005.

[31] Harald Prokop. Cache-oblivious algorithms. Master thesis, MIT,
1999.

[32] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine
Shi. ObliVM: A programming framework for secure computation. In
IEEE S & P, 2015.

[33] Chang Liu, Michael Hicks, and Elaine Shi. Memory trace oblivious
program execution. CSF ’13, pages 51–65, 2013.

[34] Signal (software). https://en.wikipedia.org/wiki/Signal (software).

[35] Khushi Agrawal. Signal statistics: Usage, revenue, & key facts. https:
//www.feedough.com/signal-statistics-usage-revenue-key-facts/.

[36] Peter Williams and Radu Sion. Usable PIR. In Network and
Distributed System Security Symposium (NDSS), 2008.

[37] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel
oblivious file system. In CCS, 2012.

[38] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In ICALP,
2011.

14

https://www.whatsapp.com/legal/
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://github.com/signalapp/ContactDiscoveryService/
https://github.com/signalapp/ContactDiscoveryService/
https://en.wikipedia.org/wiki/Signal_(software)
https://www.feedough.com/signal-statistics-usage-revenue-key-facts/
https://www.feedough.com/signal-statistics-usage-revenue-key-facts/

[39] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles
out of mud: practical access pattern privacy and correctness on
untrusted storage. In CCS, pages 139–148, 2008.

[40] Dan Boneh, David Mazieres, and Raluca Ada Popa.
Remote oblivious storage: Making oblivious RAM practical.
Manuscript, http://dspace.mit.edu/bitstream/handle/1721.1/62006/
MIT-CSAIL-TR-2011-018.pdf, 2011.

[41] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical obliv-
ious RAM. In Network and Distributed System Security Symposium
(NDSS), 2012.

[42] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg,
Nina Taft, and Elaine Shi. Graphsc: Parallel secure computation made
easy. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, 2015.

[43] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015, pages 431–446. USENIX Association, 2015.

[44] Pan Zhang, Chengyu Song, Heng Yin, Deqing Zou, Elaine Shi, and
Hai Jin. Klotski: Efficient Obfuscated Execution against Controlled-
Channel Attacks, page 1263–1276. 2020.

[45] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana Raykova, and
Joshua Schiffman. Shroud: Ensuring private access to Large-Scale
data in the data center. In 11th USENIX Conference on File and
Storage Technologies (FAST 13), 2013.

[46] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set
operations. In Advances in Cryptology - CRYPTO 2005: 25th An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, 2005.

[47] Yan Huang, Peter Chapman, and David Evans. Privacy-preserving
applications on smartphones. In Proceedings of the 6th USENIX
Conference on Hot Topics in Security, 2011.

[48] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias
Senker, and Christian Weinert. Mobile private contact discovery at
scale. In 28th USENIX Security Symposium (USENIX Security 19),
2019.

[49] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
2017.

[50] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI:
scaling private contact discovery. Proc. Priv. Enhancing Technol.,
2018.

[51] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable
private set intersection based on OT extension. ACM Trans. Priv.
Secur., 21(2):7:1–7:35, 2018.

[52] Carmit Hazay and Yehuda Lindell. Efficient protocols for set in-
tersection and pattern matching with security against malicious and
covert adversaries. In TCC, 2008.

[53] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. Commun. ACM, jun 2020.

[54] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to
the Intel SGX kingdom with transient out-of-order execution. In
Proceedings of the 27th USENIX Security Symposium, August 2018.

[55] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In Proceedings of
the 25th USENIX Conference on Security Symposium, 2016.

[56] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright, Sizhuo Zhang,
Arvind, and Srinivas Devadas. MI6: secure enclaves in a specu-
lative out-of-order processor. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2019, Columbus, OH, USA, October 12-16, 2019, 2019.

[57] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers.
A hardware design language for timing-sensitive information-flow
security. In Özcan Özturk, Kemal Ebcioglu, and Sandhya Dwarkadas,
editors, Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015, 2015.

[58] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. The MIT Press, 2nd edition, 2001.

[59] T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: unifying statis-
tically and computationally secure orams and oprams. In TCC (2),
volume 10678 of Lecture Notes in Computer Science, pages 72–107.
Springer, 2017.

[60] Kenneth E. Batcher. Sorting networks and their applications. In
American Federation of Information Processing Societies: AFIPS
Conference Proceedings, pages 307–314, 1968.

[61] T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious
hashing revisited, and applications to asymptotically efficient ORAM
and OPRAM. In Asiacrypt, 2017.

Appendix A.
Deferred Details for the Warmup Initialization
Algorithm

In this section, we give more details on the warmup stage
2 algorithm for initializing the data structure.

Preliminary: oblivious bin placement. Oblivious bin
placement [59] solves the following problem. Suppose we
are given an input array of length n containing real and filler
elements3. Each real element in the input array wants to go
to some destination bin among a total of m destination bins,
and each destination bin has a maximum capacity of Z. We
want to output the following two arrays:
• a result array of length m ·Z representing the concatena-

tion of all destination bins, where each bin is packed with
as many elements destined for it as possible, subject to
a maximum capacity of Z. Moreover, any unfilled slots
in a destination bin is padded with fillers; and

• a remainder array of length n, which contains the ele-
ments that cannot fit into its destined bin, padded with
fillers at the end to a length of n.
Chan and Shi [59] showed that the above task can be

accomplished with O(1) number of oblivious sorts and lin-
ear scans through arrays of length at most O(n+m ·Z) (see
Appendix A of their paper). Therefore, the algorithm costs
O(N

B log M
B

N
B) number of page swaps and O(N logN)

runtime, if we use an external-memory oblivious sorting
algorithm such as the one by Ramachandran and Shi [19].
In practice, we use bitonic sort rather than AKS to sort the
poly-logarithmically sized instances and there is an extra
log logN factor in the runtime.

Correctness. For the warmup stage 2 algorithm to be cor-
rect, we need to argue that except with negligibly small
probability, it must be that in Step 2, every level ` =
log2N, . . . ,

1
3 · log2N can successfully pack at least half

of the remaining (real) entries. If so, then the truncation

3. We often use n to denote the size of a problem instance, where N
represents the size of the database globally.

15

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf

of the remainder array Y does not drop any real element.
To see this, observe that if we throw n balls into n bins,
the expected number of empty bins is n/e for large n. Due
to Azuma’s inequality, the probability that the number of
empty bins exceeds n/2 is upper bounded by exp(−Ω(n)).
Observe also that the number of elements that cannot be
packed into the buckets in the current tree level is upper
bounded by the number of empty bins.

Performance bounds. In Step 2, each level ` costs
O(n

B log M
B

n
B) page swaps and O(n log n) runtime where

n = 2`. Step 3 costs O(n1/3 · n1/3/B) = O(n2/3

B) page
swaps and O(n2/3) runtime.

It remains to analyze the performance bound for Step 4.
Observe that we can have L = blog2Bc outstanding readers
that scan through L levels of the tree, and have a writer that
creates the pages (represented by the triangles in Figure 2a)
for these L levels along the way. As long as the enclave’s
resident memory M can fit at least L+ 1 pages, i.e., M ≥
c ·B log2B for some suitable constant c, then, Step 4 can be
accomplished with O(N/B) page swaps and O(N) runtime.

In summary, the entire stage 2 of the algorithm incurs
O(N

B log M
B

N
B) page swaps and O(N logN) runtime.

Appendix B.
Additional Optimizations

B.1. Optimizing the AVL-Tree Insertion Algorithm

In the AVL-tree Insert algorithm, we rely on a new
technique that reduces the number of ORAM-tree accesses
by a factor of 2× to 3×.

In the earlier work of Wang et al. [12] as well as
Oblix [10], the AVL-tree insertion algorithm is implemented
in a recursive manner. Specifically, after first walking down
a path and finding a place to insert, the algorithm now
makes a second pass. It starts at the root, and compares
the key to be inserted with the current node. Depending
on the comparison result, it recursively calls the insertion
algorithm on the left or right subtree.

For example, Figure 8 is Oblix’s recursive implemen-
tation. The issue with this implementation is similar to
that of Figure 3, i.e., the implementation is not doubly
oblivious. Specifically, the big if-else statement in Lines
6-22 conditions on a secret variable. However, depending
on which branch is taken, sometimes we perform a recursive
call to insert helper and the balance operation, but
sometimes not. In other words, different branches exhibit
different instruction traces. As a result, the total total number
of recursive calls also depends on the key that is being
inserted.

To fix this problem, one can always make fake recursive
calls and balance operations as we walk down the path, even
when it is actually not needed. However, this would result
in a 2× to 3× blowup in runtime (depending on whether
we adopt AVL-level caching tricks) since we will need to
access two additional sibling nodes for every node along the

1 fn insert_helper(
2 node: AVLNode,
3 root_key: &Option<AVLKey>
4) -> AVLNode
5 {
6 if let &Some(ref r_key) = root_key {
7 let mut cur_node = self.ods_ref
8 .borrow_mut()
9 .access(Read(ActualOp, r_key), server)?

10 .expect("Node should be in the cache.")
;

11 if node.key() < cur_node.key() {
12 child = self.insert_helper(node, &

cur_node.left_key(), server)?;
13 cur_node.set_left_child(Some(child));
14 server.Write(ActualOp, cur_node);
15 self.balance(cur_node, server)
16 } else if (node.key() > cur_node.key())

{
17 // same as lines 15-18, but for right

subtree (...)
18 } else /*...*/
19 } else {
20 server.Write(ActualOp, node.clone());
21 self.root_size += 1;
22 Ok(node.into_child())
23 }
24 }
25

Figure 8: Oblix’s AVL tree insert code violates
instruction-trace obliviousness.

path — indeed, the work of Wang et al. [12] incurs an extra
3× overhead for this reason.

We avoid this constant-factor blowup through the follow-
ing idea: during the first pass, we not only find where the
insertion point is, we also compute all the AVL-tree nodes
that will be involved in the rotation operation — there are
at most 3 such nodes. At the end of the first pass, we can
also compute a rotation plan, including whether a rotation
is needed, what type of rotation it is, and the new parent-
child relationships of the nodes involved in the rotation. In
the second pass, we walk down the same path again. If the
node is not involved in the rotation, we make a fake update
to its contents; otherwise we make a real update based on
the rotation plan we have computed during the first pass. In
both passes, we always pad the length of the AVL-tree path
to the worst case, i.e., 1.44 log2N even if the actual length
is shorter.

B.2. Data and Metadata ORAM Trees

Recall that our data structure stores key-value pairs. In
some applications, the value field can be large. For example,
in Signal’s application, the key corresponds to a user’s ID,
and the value field can store the user’s record, including

16

Figure 9: Signal’s monthly active users [34]

email, phone number, and location. In case that the value
field is large, we can rely on an idea from earlier works [12],
and use two separate ORAM trees: one metadata tree, and
one data tree. In the data ORAM tree, we store the value
fields of all entries. In the metadata ORAM tree, we store the
AVL tree nodes, and each entry is of the following modified
format:

(ptr, lptr, rptr, vptr)

where ptr, lptr, and rptr are defined in the same way
as Section 3.2, and vptr stores the the position identifier
of the value field in the data ORAM tree. In this way,
whenever we read an AVL tree node (i.e., a metadata entry),
we know exactly which path to visit to retrieve its value
field. Of course, at this moment, the value field in the
data ORAM tree will gain a new position identifier, and
the corresponding metadata entry is notified of this change.
Note that this optimization is applicable when we need not
order entries of the same key by the value field (see also the
paragraph “supporting key multiplicity” in Section 3.2). In
Signal’s private contact discovery application, the keys are
distinct, so this optimization is applicable.

Appendix C.
Supplemental Figure

Figure 9 shows the rapid growth of Signal’s active
monthly users. Note that the number of actively monthly
users is a conservative lower bound on the total number of
registered users.

Appendix D.
Additional Discussions

Upon receiving a batch of requests, Signal creates a hash
table for these requests using a strong oblivious algorithm.
Due to the need to be strong oblivious, their algorithm
for initializing the hash table takes O(β2) time [10]. A
more efficient solution is to employ the oblivious two-tier
hash table suggested by Chan et al. [61]. Although Chan
et al. [61] pointed out that such an oblivious hash table
can only support non-recurrent lookups, it is nonetheless
safe to use it in Signal’s scenario, even if the keys in the
database may have multiplicity which seemingly violates
the non-recurrent property. This is because in this particular

scenario, the database itself is not private and only the user’s
queries are private.

Unfortunately, just improving the hash table initializa-
tion will not help Signal too much, since from Figure 4,
we can see that after the database size exceeds roughly one
million, Signal’s overhead is strictly dominated by the linear
scan rather than the hash table initialization.

17

	Introduction
	Oblivious Algorithms vs. Batched Linear Scan: The Race is On
	Sub-Optimality of Oblix's Implementation
	Our Results and Contributions
	Additional Related Work

	Problem Statement
	Architecture and Threat Model
	Oblivious Multimap
	Microbenchmarks and Performance Metrics

	Background on Oblivious RAM and Oblivious Data Structures
	Non-Recursive Path ORAM
	Oblivious AVL Tree

	EnigMap: Algorithmic Improvements
	Locality-Friendly ORAM Tree Layout
	Efficient Initialization Algorithm
	Algorithm for Stage 1
	Algorithm for Stage 2 (Warmup)
	Improved Algorithm for Stage 2

	EnigMap: Architecture and Practical Optimizations
	Secure Multi-Level Caching
	Caches for Physical Storage
	AVL-Level Cache

	Ensuring Strong Obliviousness
	Data Obliviousness Within the Enclave
	Instruction-Trace Obliviousness

	Additional Concrete Optimizations

	Implementation and Experimental Results
	Implementation and Evaluation Methodology
	Experimental Results

	References
	Appendix A: Deferred Details for the Warmup Initialization Algorithm
	Appendix B: Additional Optimizations
	Optimizing the AVL-Tree Insertion Algorithm
	Data and Metadata ORAM Trees

	Appendix C: Supplemental Figure
	Appendix D: Additional Discussions

