
1

Multi-User Dynamic Searchable Symmetric
Encryption with Corrupted Participants

Javad Ghareh Chamani, Yun Wang, Dimitrios Papadopoulos, Mingyang Zhang, and Rasool Jalili

Abstract—We study the problem of multi-user dynamic searchable symmetric encryption (DMUSSE) where a data owner stores its
encrypted documents on an untrusted remote server and wishes to selectively allow multiple users to access them by issuing keyword
search queries. Specifically, we consider the case where some of the users may be corrupted and colluding with the server to extract
additional information about the dataset (beyond what they have access to). We provide the first formal security definition for the
dynamic setting as well as forward and backward privacy definitions. We then propose µSE, the first provably secure DMUSSE
scheme and instantiate it in two versions, one based on oblivious data structures and one based on update queues, with different
performance trade-offs. Furthermore, we extend µSE to support verifiability of results. To achieve this, users need a secure digest
initially computed by the data owner and changed after every update. We efficiently accommodate this, without relying on a trusted
third party, by adopting a blockchain-based approach for the digests’ dissemination and deploy our schemes over the permissioned
Hyperledger Fabric blockchain. We prototype both versions and experimentally evaluate their practical performance, both as
stand-alone systems and running on top of Hyperledger Fabric.

Index Terms—Dynamic Multi-User Searchable Symmetric Encryption, Secure Cloud Computing, Data Outsourcing

F

1 INTRODUCTION

DATA sharing and outsourcing has emerged as an essen-
tial component of modern computing environments

such as cloud and collaborative computing. However, data
security and privacy issues are amongst the greatest con-
cerns for data owners that wish to participate in such ser-
vices [23]. Data encryption can solve this problem, however,
it limits one’s ability to compute on encrypted data, unless
one is willing to use techniques such as fully homomorphic
encryption [24], that significantly hamper performance.

One fundamental task in this setting is that of searching
on encrypted data. E.g., consider the scenario where a data
owner wants to outsource a database of files and retain
the ability to search for files that contain specific keywords
afterward. Searchable symmetric encryption (SSE), originally
proposed by Song et al. [45], aims to solve this problem in
an efficient manner by slightly relaxing the strict privacy
requirements. It allows the server to directly search on the
encrypted data after receiving a query, at the cost of learn-
ing some leakage information, such as search pattern (which
search queries refer to the same keyword—but without ex-
plicitly revealing the keyword) and access pattern (which files
are returned for a query). There has since been a plethora of
works in SSE, e.g., improving its efficiency, or handling more
expressive queries and dynamic datasets (see Section 2).

However, most existing works consider the single-user
setting where only one data owner uploads data to the server

• J.Ghareh Chamani, Y.Wang, and D.Papadopoulos are with the Depart-
ment of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong.
E-mail:{jgc@cse, ywangik@cse, dipapado@cse}.ust.hk

• J.Ghareh Chamani, and R.Jalili are with the Department of Computer
Engineering, Sharif University of Technology, Tehran, Iran.
E-mail:{gharehchamani@ce, jalili@}.sharif.edu

• M.Zhang is with Poisson Lab, Huawei Technologies, Beijing, China.
E-mail:zhangmingyang4@huawei.com

and is the only one that can subsequently issue queries.
Although this can be useful for individual data outsourcing,
it cannot readily be applied in other real-world scenarios.
Consider the setting where multiple institutions wish to
collaborate by sharing their data securely (e.g., hospitals
that want to share patients’ data). For such scenarios where
one or more data owners upload their data and wish
to allow other participants to query (a subset of) it, we
need a stronger cryptographic primitive (Figure 1). Multi-
user searchable symmetric encryption (MUSSE), originally pro-
posed by Curtmola et al. [16], is applicable to such cases.

MUSSE with Corrupted Participants. The majority of
MUSSE schemes from the literature consider the case where
all users are honest and mutually trusting and the only ad-
versary is the server who wishes to learn as much as
possible about the encrypted dataset. This simplifies things
as the only goal is to mitigate the leaked information to
the server. However, this assumption is too strong for many
applications where corrupted or compromised users may
collaborate with the server in order to extract information
about parts of the dataset not shared with them, or learn the
keywords searched by other users. As demonstrated by the
works of Van Rompay et al. [54] and Grubbs et al. [27], this
can lead to catastrophic cross-user leakage-abuse attacks.

In order to address this issue, some works introduced
multi-user schemes that achieve security against corrupted
participants, a term that refers to users that are corrupted
by or collude with the adversary (who controls the server).
Note that this is a strictly stronger threat model compared
to “standard” searchable encryption that considers only the
server to be controlled by the adversary and it captures
a broad number of adversarial settings. E.g., users being
hacked by the adversary that has also compromised the
server, or misbehaving users that collude with the server

2

Outsource Dataset (Setup)

Share/UnShare with key K1/K2

Fig. 1: MUSSE model for patients’ datasharing

in order to extract information about the dataset that cannot
be inferred by what they have already been granted access
to. In the related literature, this “extended” threat model is
referred to by different terms, such as client-server collusion
(e.g., [27], [42], [43]) or corrupted users [41], whereas other
works use the term corrupted, colluding, or adversarially-
controlled users interchangeably [28], [42], [54], [55].1 In
terms of security formulation, all these correspond to a
definition that allows the adversary to have access to the
internal state of corrupted/colluding users (see Section 4).

Popa et al. [42], [43] introduced the notion of “cross-
user” leakage, however, their security definition is suscep-
tible to the attack of [27]. Hamlin et al., [28] strengthened
this definition to eliminate cross-user leakage and proposed
a lightweight construction; more recently Su et al. [48] ex-
tended this to also achieve verifiability of results. However,
both these works only work for static datasets, i.e., there is
no efficient secure way to handle data insertions or deletions
after the initial setup phase. The same limitation holds for
the recent work of [61] and other works in the area that
moreover are either rather inefficient due to the use of ex-
pensive cryptographic primitives [51], [56], [66], or assume
a different setting with multiple non-colluding servers [55].
Finally, Patel et al. [41] proposed a different approach by
limiting (but not eliminating) cross-user leakage, but their
scheme cannot support dataset updates either. Moreover,
its cross-user leakage is considerable: If a user has access
to the same document as a compromised party, its queried
keywords from this document can be leaked to the server.

Dynamic Searchable Encryption. Dynamic searchable en-
cryption schemes can efficiently support updates on the
outsourced database (without re-running the “expensive”
setup), which is a necessary property for most real-world
applications. Besides the efficiency aspect, supporting up-
dates introduces additional security concerns regarding in-
formation that can be leaked due to updates. Two security
properties have been proposed for dynamic schemes: (i)
schemes that do not reveal whether an update operation is
related to previously searched keywords are called forward-
private [13], [46], and schemes that do not reveal during a
search that files that contained the searched keyword were
deleted since the last search are called backward-private [7],
[46]. Developing efficient dynamic SSE schemes that achieve
these two important properties has attracted significant
attention in the literature (e.g., [7], [17], [25], [50]). However,

1. A similar notion of user-server collusion has been studied in the
context of server-aided multi-party computation, e.g., [3], [30].

to the best of our knowledge, there is no previous work in
dynamic MUSSE (DMUSSE) with corrupted participants that
considers or formally defines them.

Verifiable MUSSE. One additional property for SSE
schemes is verifiability [6], [15], i.e., that a misbehaving server
cannot return a fake search result (by omitting or erro-
neously adding documents). For dynamic datasets, this also
implies freshness (i.e., the effect of all previous updates is
accounted for). While there are many works that study this
property, a straight-forward manner that has been heavily
adopted is via deploying an authenticated data structure
like a Merkle tree [37] on top of the encrypted index stored
by the server. Search results can be verified given the
Merkle-root digest and the corresponding tree paths.

For the single-user case, verifiability can be achieved in
this manner, even in the presence of updates, as the owner
just locally computes and stores the new digest. However,
verifiable DMUSSE poses the additional difficulty that the
new digest has to be transmitted to all the users. Doing
this via direct communication may not be feasible (e.g.,
users are not guaranteed to always be online). On the other
hand, if the server is used as an intermediary to store the
new digest so that users can download it later, it can give
outdated digests to the users, e.g., ignoring recent updates.
As far as we know, existing works on verifiable MUSSE with
corrupted parties do not handle updates—in which case, it
is much easier to verify results as the digest is computed
only once at the setup phase.

1.1 Our Results

In this paper, we focus on the problem of multi-user dy-
namic searchable encryption with corrupted participants.
As explained above, none of the existing MUSSE schemes
in this setting can support dynamic datasets. Hence, we first
provide a necessary new security definition for DMUSSE
(Section 4), including appropriate leakage functions for for-
ward and backward privacy. Then, we propose µSE2 a novel
scheme that achieves our security definition (Section 5). We
instantiate µSE in two versions (O-µSE and Q-µSE) with
different efficiency trade-offs. To the best of our knowledge,
our constructions are the first forward and backward-private
DMUSSE schemes secure against corrupted participants. We
also extend µSE to achieve verifiability using the standard
secure digest approach (e.g., see [6]). To solve the problem of
efficient digest dissemination, we use a blockchain protocol.
After each update, the owner issues a transaction with the
new digest and users can retrieve it from the blockchain
and use it for result verification. Since in our target setting
all users are known to the data owner, a permissioned
blockchain is a natural candidate; in our implementation
we use Hyperledger Fabric [21] (Section 6).

Experimental Evaluation. We evaluate the performance of
both µSE versions via two sets of experiments (Section 7).
First, we measure pure computation time to estimate their
computational demands. Then, to benchmark them in a real
application scenario, we set up five AWS cloud machines
instantiating multiple users and the data server and we mea-

2. Pronounced muse (/myüz/). In ancient Greece, a Muse was one of
the nine inspirational goddesses of arts and science.

3

sure end-to-end time, including communication overhead,
Fabric blockchain overhead, and computation time.

Our results show that both our schemes have low com-
putational overhead. In terms of search time, they take
<46ms for retrieving a result of 100 document id’s and
<111ms for retrieving a large result of 10K id’s from a
dataset of 1M records. Updates are also quite fast as it takes
less than 5ms of computation to add/remove a keyword
to/from a file. Since there is no previous DMUSSE secure
against corrupted parties for comparison, we compare our
schemes’ search performance against previous static ones.
Surprisingly, our results show that our schemes are up to
3 and 5 orders of magnitude faster than the static schemes
MKSE [28] and mx-u [41], respectively (while the latter also
suffers from cross-user leakage).

Regarding end-to-end times, our experiments show that
the blockchain overhead (issuing transactions) is the main
bottleneck for searches with small result sizes (e.g., Fabric
operations take >85% of the execution time). As the result
size increases, the ratio changes (e.g., Fabric takes 31% and
86% of Q-µSE and O-µSE search time for 10K result size in
a dataset of 1M records). Overall, Q-µSE is more efficient
in our end-to-end experiments. That said, our evaluation
shows that each one may be suitable for specific use cases:
Q-µSE for active users with frequent searches while O-
µSE in settings with infrequent operations and when small
permanent client storage is necessary (Section 7.4).

1.2 Overview of Techniques & Challenges
Here, we provide an overview of our techniques and de-
scribe the challenges we faced.
Defining security for DMUSSE with corruptions. Our def-
inition extends the one recently proposed by Patel et al. [41]
for the static setting. Even though our definition can tolerate
cross-user leakage, we stress that our constructions do not
have such leakage. Moving from the static to the dynamic
setting introduces challenges because the adversary may
issue update queries at arbitrary times (intermixed with
searches) to infer additional information. Moreover, com-
pared to the single-user definition (e.g., [5]) we need to
consider additional sharing or “unsharing” of documents.
To capture security in this setting, we adopt a reactive
real/ideal game approach (Definition 1). Furthermore, we
define forward and backward privacy for the multi-user
setting by identifying appropriate leakage functions. Our
definitions can be viewed as the analogue of the ones
proposed in [7] for the single-user setting.
Building multi-user schemes from single-user ones. Our
main idea for building µSE is to start from an efficient
single-user scheme and replicate it multiple times, once
for each user. In this way, cross-user leakage is avoided
as each deployment uses a different key, at the cost of
increased storage at the server (which we believe can be
a reasonable trade-off, given the low cost of storage). Our
selected scheme is MITRA from [25] which is dynamic
and forward/backward private. A similar approach is taken
in [28] but that scheme can only handle static datasets.
Moreover, it requires a separate query for every document in
order to search for a keyword, hence, as shown in Section 7
µSE achieves significantly faster search operations.

Handling updates securely. While this replication approach
seems to achieve our main security goal, there is one impor-
tant issue that stops us from using MITRA as is, “off the
shelf”. The problem is that in single-user schemes during
updates the owner/user simply has to modify its local state
whereas in DMUSSE communication between the owner
and all the affected users is necessary. If we assume such
direct communication is always possible, then indeed MI-
TRA can be used for µSE in a black-box manner. However,
in practice direct communication may be infeasible (e.g., it
is unreasonable to assume users are “always online”).

Hence, we need to modify the way MITRA handles
updates, storing update information at the server so that
users can retrieve it prior to their next query. Done naively
this would introduce additional leakage. Somewhat infor-
mally, MITRA requires that the user keeps for each key-
word a counter of how many times it has been inserted/re-
moved, which changes after every update. If the server
could deduce which keyword counter is altered by an
update this would compromise the forward privacy of our
µSE schemes. To address this, we propose two alternative
DMUSSE constructions based on MITRA that deviate in
how they handle updates: i) O-µSE, and ii) Q-µSE.

O-µSE: Storing counters obliviously at the server. In
O-µSE, we instantiate the array of keyword counters of
MITRA via a separate oblivious map (OMAP) [60] for each
user, stored at the server. This is an oblivious key-value
dictionary, that entirely hides the access patterns from the
server. During updates, the data owner updates the neces-
sary OMAPs on the server (incrementing counters). During
a search, the user first accesses the correct keyword counter
from its OMAP and then proceeds to run the search. In this
manner, the clients need tiny local storage as the counters
are stored obliviously at the server. For our scheme, we use
the OMAP of [60] which is based on the classic PathORAM
of [47]. One issue that we face when deploying it is that
it is an OMAP “with stash”, a small state that needs to
be maintained locally and accessed during every OMAP
access. In our setting, each OMAP is accessed by both the
data owner and its respective user, hence this stash needs to
be transferred. To avoid direct communication we store this
stash at the server, downloading it before every operation
(by the respective party) and uploading it again afterwards.
This has no effect in the asymptotics of O-µSE and minimal
effect in practice (the fixed-upper-bound stash is just a few
KB in our evaluation).

Q-µSE: Queue-based µSE. The downside of O-µSE is that
operations are somewhat slowed down due to the OMAP
access. With Q-µSE we take a different approach, requiring
users to store keyword counters locally. The server stores an
encrypted update queue for each user. During updates, the
data owner appends to the users’ queues the keyword and
the incremented counter. Then, during a search the user first
“flushes” its queue, increments its local counters, and then
runs the query. Compared to O-µSE, this construction can
have faster search and updates (especially in high latency
networks as the oblivious map of O-µSE requires multiple
roundtrips) as long as a user interacts frequently and its
queue does not grow too long, at the cost of increased
local storage. Both constructions are proven secure and for-

4

ward/backward private as per our definitions. We discuss
the performance trade-offs they achieve in Section 7.4.
Verifiability & Deployment on Hyperledger Fabric. Mak-
ing our schemes verifiable is rather straight-forward by cre-
ating a Merkle-ized version of the involved data structures.
For O-µSE this entails the OMAP (which is already in a
“nice” tree structure as it relies on PathORAM). For Q-µSE,
we build a Merkle tree for a user’s queue with the updates
sequentially stored at the leafs. In this way, no matter how
many updates the user is “missing” the proofs consist only
of two paths. In both cases, a Merkle tree is deployed over
the MITRA dictionary that stores the actual entries.

However, the challenge of how to securely propagate
the Merkle root after each update remains. We solve this
problem using a permissioned blockchain. After every up-
date, the new digest is posted to the Hyperledger Fabric [21]
blockchain via a transaction by the data owner. Prior to a
search, users can securely retrieve the latest digest via the
blockchain. In this way, result verifiability is guaranteed
from the blockchain protocol’s consensus security. Note
that the blockchain is only used for digest retrieval. The
encrypted dataset is still stored off-chain at the untrusted
server, as storing it on-chain would be inefficient.

2 RELATED WORK

Dynamic searchable encryption has been extensively stud-
ied, both in the single-user (e.g., [5], [17], [25], [31], [46])
and the multi-user (e.g., [62], [63], [67]) setting. However,
none of the existing multi-user schemes are secure against
corrupted users colluding with the server, neither has this
property been defined in the dynamic setting. Multi-user
searchable symmetric encryption was defined by Curtmola
et al. [16] and numerous subsequent works have revisited
and improved it in several aspects (e.g., [1], [32], [33], [35],
[49], [53], [56], [59]). However, only a handful of them
remain secure in the presence of corrupted and colluding
users [28], [41], [48], [55], [56], [66] and all of them work only
for static datasets. Furthermore, with the exception of [28]
none of them explicitly considers the sharing of different
subsets of the dataset with different users.

Backward privacy was formally defined in [7] and sub-
sequent works proposed improved constructions (e.g., [17],
[25], [50]) in the single-user setting.

Verifiability for SSE has been the focus of many works
(e.g., [6], [12], [48], [65]). We adopt the “black-box” approach
of building a “Merkle-ized” version of the encrypted dataset
(e.g., see [6]). The interplay between oblivious primitives
and SSE has also been studied extensively [7], [17], [18], [25],
[40]. Another line of work combines keyword search with
blockchain protocols to guarantee fairness of payments [9],
[29], [65]. Finally, other works have studied SSE for more
expressive queries [11], [19] and public-key searchable en-
cryption [4]; both are beyond the scope of this paper.
Relation to Multi-key Searchable Encryption. The notion
of multi-key searchable encryption was first introduced
by Popa et al. [42], [43] to refer to multi-user searchable
encryption systems where data is encrypted with different
keys per user. It explicitly requires that a user’s query can
be submitted as a constant-size token even when multiple
different datasets (owned by different parties) are shared

with her. Hence, while in principle a multi-key searchable
encryption can be built by running multiple instances of
searchable encryption, this would increase the search token
size to linear in the number of datasets shared with the
user so it does not satisfy this efficiency requirement. The
first multi-key searchable encryption construction [43] was
based on elliptic curves with bilinear pairings, however, that
construction (and inherently that definition) was shown to
be susceptible to leakage-abuse attacks [27].

Since then there have been a few follow-up works
that proposed alternative formulations, the most recent of
which was by Hamlin et al. [28] (also adopted in [48]).
Comparing that definition with ours (Definition 1) in terms
of security, we note that the one from [28] is weaker as
it is indistinguishability-based and selective-only (i.e., the
adversary must declare all its queries before receiving any
other information), whereas ours is simulation-based and
adaptively secure. However, their model integrates multiple
data-owners that may possibly also be corrupted (collabo-
rating with the server to learn the contents of users’ queries).
On the contrary, we assume that the data owner is honest.

The same paper introduces two schemes, an efficient one
based on PRFs and another based on indistinguishability
obfuscation that is mostly of theoretical interest at this point.
Interestingly, similar to our µSE, their first scheme is also
based on replication as it maintains a separate encoding
of each document for each user. The difference is that
searching for a keyword requires a separate lookup for each
document, whereas with µSE this takes only one lookup
per previous insertion/deletion for this keyword. This can
make a big difference in search efficiency as shown in our
experimental evaluation (Section 7). Apart from this, we be-
lieve that, when restricted to the static setting, both schemes
can be shown to satisfy the same security properties with
some modifications, mainly to replace PRFs with a hash
function modeled as a random oracle for both of them. To
make our search token constant-size and achieve security
against server-owner collusion, we can moreover use the
“classic” token trick of [10] in the random oracle model
(already mentioned for MITRA in [25]) and run all sharing
phases locally at the user instead of the owner, as in [28].

TEE-assisted Searchable Encryption. A relatively recent
line of work tries to build searchable encryption by relying
on trusted execution environments, such as Intel SGX (e.g., [2],
[14], [22], [38], [57], [58]—a comparative survey can be found
in [64]). From a security perspective, using such TEE one
needs to consider possible sources of information leakage,
such as memory access patterns and other side-channels [8],
[34]. In particular, one aspect of leakage in TEE-assisted
searchable encryption is leakage due to enclave memory
accesses. At a high level, to avoid meaningful leakage all
the executed algorithms need to be oblivious which may
introduce additional overhead. Indeed, some existing works
(e.g., [14], [38], [58]) either omit this from their leakage
profile or assume it can be solved by orthogonal techniques
for eliminating such leakage. That said, the existence of a
trusted area inside the untrusted server allows for increased
efficiency (e.g., by running client-side routines inside the
TEE one can avoid costly round-trips). In Section 7.4, we
discuss the potential of combining µSE with TEE solutions.

5

3 CRYPTOGRAPHIC PRELIMINARIES

We denote by λ ∈ N a security parameter and by v(λ)
a negligible function in λ. PPT stands for probabilistic
polynomial-time. For a set D, we denote its size by |D|.
Our protocols involve three types of parties: a data owner,
a server, and several users. The more complex setting with
multiple data owners can be covered by running a separate
instance of our protocol for each of them. Assume a file
set D with identifiers id1, . . . , id|D|, each of which contains
textual keywords from a given alphabet Λ. Let the dataset
DB consist of (keyword, file identifier) pairs, such that
(w, id) ∈ DB if and only if the file id contains keyword
w. For each w, let DB(w) denote the set of files that contain
keyword w. Let W denote the set of keywords that contains
all the keywords from DB, |W | denote the number of dis-
tinct keywords and N denote the total number of (keyword,
file identifier) pairs. For each user u, Access(u) denotes all
files that user u has access to and AccList(id) the set of
users with access to the file with identifier id. Therefore,
id ∈ Access(u) if and only if u ∈ AccList(id). For a
keyword w and user u, DBu(w) consists of the identifiers of
all files that contain w and to which u has access to. For a set
of users U , Access(U) is the set of file identifiers to which
at least one u ∈ U has access. Finally, for file identifier id,
Kw(id) shows the keywords in that file at the setup time.
Kwt(id) shows those keywords at timestamp t but, when it
is clear from the context we drop the superscript t.

Pseudorandom Functions. Let Gen(1λ) ∈ {0, 1}λ be a key
generation function, and F : {0, 1}λ × {0, 1}` → {0, 1}`

′
be

a pseudorandom function (PRF) family. F is secure if for all
PPT adversaries Adv, |Pr[K ← Gen(1λ); AdvF (K,·)(1λ) =
1] − Pr[AdvR(·)(1λ) = 1]| ≤ v(λ), where R : {0, 1}` →
{0, 1}`′ is a random function.

Oblivious Data Structures. Oblivious data structures are
privacy-preserving versions of regular data structures. For-
mally, all equal-length sequences of data accesses (read-
s/writes) become indistinguishable from each other. Obliv-
ious RAM (ORAM) [26] provides oblivious array accesses.
One of the most popular and efficient ORAMs is PathO-
RAM [47]. Wang et al. [60] proposed more general oblivious
data structures such as oblivious maps (OMAP). An OMAP
is a key/value dictionary that provides three procedures:
(i) SETUP for initialization, (ii) INSERT to add a key/value
pair, and (iii) FIND to retrieve a value for a given key. In the
following, we use dictionary notation to denote Find/Insert
from/to an OMAP (e.g., Dict[k] refers to the value corre-
sponding to key k in OMAP Dict). For our O-µSE scheme,
we use the OMAP from [60] as a black box; for completeness
we include the OMAP algorithms in Appendix A.

4 DMUSSE AND VERIFIABILITY DEFINITIONS

In this section, we propose our dynamic multi-user SSE defi-
nition which follows that of [41] with some modifications for
generality and to support dataset modification (e.g., adding
an Update algorithm and converting the Search algorithm
to an interactive protocol). Then, we define forward and
backward privacy in the dynamic multi-user setting. Finally,
we provide the appropriate definition of verifiability.

4.1 DMUSSE Definition

A dynamic multi-user searchable symmetric encryption scheme
(DMUSSE) consists of five algorithms: Setup, Enroll, Share,
Update, and Search that are executed between a data owner,
a server, and several users:

• Setup(1λ, N, |W |, |U |, D): on input security parameter λ,
total size of dataset N , size of distinct keyword set |W |,
total number of users |U |, and a set of initial files D
consisting of tuples {id,Kw(id)}id∈D} of a file identifier
id and the set of keywords Kw(id) in file id, it outputs
(K,xSet, {Kid}id∈D, uSet, auxD) where K is the master
secret key of the owner, xSet is an encrypted version of
D, {Kid} is a separate secret key for each file in D, uSet is
an initially empty set for users’ authorization tokens, and
auxD is a set of auxiliary data of D for the owner. Both
xSet and uSet are sent to the server while K , {Kid}id∈D ,
and auxD are kept private.

• Enroll(1λ, u): on input user id u and security parameter
λ, it outputs user key Ku. It adds the new user u to the
system. The data owner stores Ku privately and sends it
to the user u. When the new user is enrolled, it does not
have any access rights yet.

• Share(K,u, id,Kwt(id),mod): on input data owner mas-
ter key K , user u, file identifier id, set of keywords
Kwt(id) in file id, and mode mod (which can be share
or add&share), either shares an existing file with user u
or first adds a new file and then shares it with user u.
It outputs xSet′ which is the encrypted version of file id
for user u, and auxDu which is auxiliary data for user u
and contains {Kid}id∈Access(u). It may also output a (new
or existing) key Kid for file id. Then, xSet′ is sent to the
server who includes it to xSet and updates uSet to note
that u has access to id. Kid and auxDu are stored at the
owner and privately shared with user u.

• Update(K, id,WList, op, {auxDu }u∈U , {Ku}u∈U) is a pro-
tocol for inserting/removing a list of keywords to/from
an existing file. On input master secret key K , file iden-
tifier id, list of keywords WList, operation op which can
be add or del, users’ auxiliary information {auxDu }u∈U ,
and the users’ secret key, it outputs aux′Du which is the
updated version of the auxiliary information for each user.
Furthermore, it outputs xSet′, which is sent to the server
to update xSet.

• Search(w,Ku, aux
D
u ; xSet, uSet): this is a (possibly inter-

active) protocol run between the server and a user u that
wishes to retrieve DBu(w). The user’s inputs are search
keyword w, secret key Ku, and auxiliary data auxDu . The
server’s inputs are encrypted dataset xSet and autho-
rization list uSet. After executing the interactive protocol,
besides DBu(w) the user may get an updated version of
auxDu . The server gets a possibly updated version of xSet.

We tried to make this definition general for reasons of
backwards-compatibility. For instance, our constructions do
not use file keys Kid, however, previous static schemes [41]
need such keys. Finally, we use the standard simplifying
convention from the literature that if the user wishes to
retrieve the actual files for w after a search, this can be done
by an additional roundtrip, not included in the above.

An additional functionality which can be helpful in
DMUSSE is UnShare. It revokes access of a user to a file and

6

prevents the user from searching over that file afterward.
We assume that files that have been unshared with a user u
cannot be shared with u again.
• UnShare(K,u, id,Kwt(id), auxDu): on input master key
K , user u, file identifier id, set of keywords Kwt(id) in
file id, and user’s auxiliary data, it revokes the user access
to id. It outputs xSet′ which is the updated version of
encrypted files that u has access to, uSet′ which is the
updated set of authorization tokens, and aux′Du which is
the updated auxiliary data for u. xSet′ and uSet′ are sent
to the server to be included in xSet and uSet, and aux′Du
is stored at the owner and is privately shared with u.

4.2 Security vs. Corrupted Participants

Here we provide our DMUSSE security definition for
the setting where some users may be corrupted or colluding
with the server. As mentioned above, all previous multi-
user searchable encryption definitions only consider such a
threat model in the static setting, so our definition for the
dynamic case can be viewed as a generalization.

We adopt the standard real/ideal game ap-
proach [16], [46] parametrized by leakage functions
L = {LStp,LEnrl,LShr,LUpdt,LSrch,LUnShr} where LStp
corresponds to the leakage during Setup, and likewise
for the rest of the leakages and functions. Our definition
considers an interactive game between the adversary Adv
and a challenger. At a high level, to capture the concept of
corrupted users, we allow Adv to explicitly select the sets of
users U and corrupted users C (C ⊆ U) to be enrolled in the
system. For those users declared corrupted, Adv receives all
their information and internal state.

In the real game, Adv interacts with the algorithms
of the scheme, while in the ideal one it interacts with a
simulator that is only given the leakage function for each
operation Adv requests and must simulate the behaviour of
the algorithms. A secure DMUSSE scheme with leakage L
should reveal nothing aboutDB other than this leakage, i.e.,
the adversary should be unable to distinguish between the
real and the ideal execution with non-negligible advantage.
The two games are presented in Figures 2, 3 and the formal
security definition is as follows:
Definition 1. A DMUSSE scheme Σ is adaptively-secure in
the presence of corrupted participants with respect to leakage
function L, iff for any PPT adversary Adv issuing a polyno-
mial number of queries q, there exists a stateful PPT simu-
lator Sim = (SimSetup, SimEnroll, SimShare, SimUpdate,
SimSearch, SimUnShare) such that |Pr[RealU,C,ΣAdv (λ, q) =

1]− Pr[IdealU,C,ΣAdv,Sim,L(λ, q) = 1]| ≤ v(λ).

We believe our definition is a natural extension of the one
from [41] to the dynamic setting. The main difference is the
interactive nature of the game but this deviation is necessary
in order to capture adaptive security in the dynamic setting,
where the adversary may issue updates at arbitrary times.
We stress that the definition of [28] achieves a stronger
security property against a colluding server and data own-
ers that wish to infer users’ queries. However, we have
two observations regarding the definition of [28]. First, the
original file encryption phase is run by each user separately
(i.e., the owner essentially “delegates” file ownership to the

user) in order to guarantee security against server-owner
collusion. This seems to be problematic in the dynamic
setting, as one would have to delegate update responsibility
to all entailed users (who have to remain always online) as
well. Second, the ability for the owner (and only the owner)
to periodically learn which keywords were searched may
be an attractive feature in certain data sharing scenarios
(e.g., the owner may want to check hospitals’ queries in our
patients’ data sharing scenario).

4.3 Forward and Backward Privacy

Forward and backward privacy aim to control what infor-
mation is leaked in relation to modifications to the dataset.
Here, we provide the first formal definition of these prop-
erties for the multi-user case in the presence of corrupted
users. Informally, a scheme is forward-private if a new mod-
ification cannot be connected to a previous operation when
it occurs [7]. E.g., it should be impossible to tell whether an
insertion is for a new keyword or one that was previously
searched. To capture forward privacy, we first define some
auxiliary functions, for timestamp t.

KwLeakage(u, id, t) =

{
Kwt(id) if u is corrupted
|Kwt(id)| if u is honest

WLeakage(u,WList) =

{
WList if u is corrupted
|WList| if u is honest

We will use these functions to demonstrate the leakage in
modification operations for different user types (honest and
corrupted). Now, we can define forward privacy as follows.

Definition 2. A dynamic multi-user searchable symmetric en-
cryption scheme with a coalition C of corrupted users is forward-
private iff the Share, UnShare, and Update leakage functions
(LShr,LUnShr,LUpdt) can be written as:
LShr(K,u, id,Kwt(id),mod, t) =
L′(id, u,KwLeakage(u, id, t),mod)

LUnShr(K,u, id,Kwt(id), auxDu , t) = L′(id, u)
LUpdt(K, id,WList, op, {auxDu }u∈U , {Ku}u∈U , t) =
L′(id,WLeakage(u,WList), op,AccList(id))

where L′ denotes a stateless function.

Compared to the single-user forward-privacy defini-
tion [7], [46], ours must account for leakage not only from
file updates but also from file sharing/unsharing. Therefore,
sharing a file with a corrupted user should not leak any
information about previous operations (including search,
update, and share) which were executed for honest users.
In contrast to this, with the mx-u scheme of Patel et al. [41],
if a file is shared between corrupted and honest users at
time t, the server can learn all previous searched keywords
on that file even before time t.

When a file is shared with a corrupted user the adversary
trivially learns all keywords in it. If the user is honest, the
only leakage is the number of keywords. Furthermore, the
size and content of the file depend on the timestamp of
the query execution (due to updates). Thus, we defined
KwLeakage(u, id, t) to receive as input both the user type
and the timestamp. Similar to share, update should either
reveal the updated keywords or their numbers according to

7

b← RealU,C,ΣAdv (λ, q):

1: (D,U, C)← Adv(1λ);
2: (σ0 = {K, auxD, {Kid}id∈D}, EDB0 = {xSet, uSet})←Setup(1λ, N, |W |, |U |, D);
3: (σ0 = σ0 ∪ {Ku}u∈U)←Enroll(1λ, U); . Run Enroll for all users u ∈ U
4: for i = 1 to q do
5: qi ← Adv(1λ, EDB0, aux

D
C , τ1, . . . , τi−1); . τk is messages from user/owner to server in each query protocol

6: if qi.type is Share then
7: (σi = {auxDqi.u}, EDBi)←Share(K, qi.u, qi.id,Kw(qi.id), qi.mod, σi−1;EDBi−1);
8: else if qi.type is Update then
9: (σi = {auxDu }u∈U , EDBi)←Update(K, qi.id, qi.WList, qi.op, {auxDu ,Ku}u∈U , σi−1;EDBi−1);

10: else if qi.type is Search then
11: (σi = {auxDqi.u}, DBqi.u(qi.w);EDBi)←Search(qi.w,Kqi.u, aux

D
qi.u, σi−1;EDBi−1);

12: else if qi.type is UnShare then
13: (σi = {auxDqi.u}, EDBi)←UnShare(K, qi.u, qi.id,Kw(qi.id), auxDqi.u, σi−1;EDBi−1);

14: return b← Adv(1λ, EDB0, aux
D
C , τ1, τ2, . . . , τq)

Fig. 2: Real experiment for the DMUSSE scheme with user set U and coalition C of corrupted users.

b← IdealU,C,ΣAdv,Sim,L(λ, q):

1: (D,U, C)← Adv(1λ);
2: (stS , EDB0)←SimSetup(1λ, N, |W |, |U |, |D|)
3: (stS)← stS ∪ SimEnroll(1λ, U);
4: for i = 1 to q do
5: qi ← Adv(1λ, EDB0, aux

D
C , τ1, . . . , τi−1);

6: if qi.type is Share then
7: (stS ; τi, EDBk)←SimShare(stS ,

LShr(qi, qi.u);EDBi−1)
8: else if qi.type is Update then
9: (stS ; τi, EDBk)←SimUpdate(stS ,

LUpdt(qi, qi.u);EDBi−1)
10: else if qi.type is Search then
11: (stS ; τi, EDBk)←SimSearch(stS ,

LSrch(qi, qi.u);EDBi−1)
12: else if qi.type is UnShare then
13: (stS ; τi, EDBk)←SimUnShare(stS ,

LUnShr(qi, qi.u);EDBi−1)

14: return b← Adv(1λ, EDB0, aux
D
C , τ1, τ2, . . . , τq);

Fig. 3: Ideal experiment for the DMUSSE scheme with user
set U and coalition C of corrupted users.

the user type (WLeakage(u,WList)). Although the explicit
leakage of the share operation in some cases can be smaller
(e.g., when a file is shared with an honest user after being
added to the dataset the number of keywords in the file is
not newly leaked information as it can be computed based
on the initial size and the query history), for simplicity we
assume all share operations leak the same information.

Backward privacy limits the information that the server
can learn during a search for keyword w for which some
entries have been deleted since the last search. Bost et al. [7]
gave the formal definition for the single-user case. Here,
we propose our backward privacy definition for DMUSSE
schemes. Again, we must first define some helper functions.

Let Q be a list with one entry for each executed query
in a sequence of operations. For searches, the entry in Q is
(t, w, u, Search) where t is the timestamp, w is the searched
keyword, and u is the user who runs the search query. For

updates, the entry is (t, id,WList, op, U, Update) where id
is the identifier of modified file, WList is the set of key-
words for update operation, op = add/del, and U is the set
of users who are affected by the operation (AccList(id)). For
shares, the entry is (t, id,Kwt(id),mod, u, Share) where
mod = share/add&share. Finally, for unsharing, the entry
is (t, id, u, UnShare). Now we can define Time(w, u) =
{(t, id)| ((t, id,Kwt(id),mod, u, Share) ∈ Q : w ∈
Kwt(id) ∨ (t, id,WList, add, U, Update) ∈ Q : w ∈
WList ∧ u ∈ U)) ∧ ∀t′(((t′, id,WList, del, U, Update) ∈
Q : w ∈ WList ∧ u ∈ U) ∨ ((t′, id, u, UnShare) ∈ Q :
w ∈ Kwt

′
(id))) → (t′ < t)}. To put it simply, this

is the function that returns all (timestamp, file-identifier)
tuples of keyword w for user u that have been added by
either a Share or an Update operation to DB and have
not been deleted or unshared afterwards. Next, function
Update(w, u) = {t|((t, id,Kwt(id),mod, u, Share) ∈ Q :
w ∈ Kwt(id) ∨ (t, id,WList, op, U, Update) ∈ Q : w ∈
WList, u ∈ U)} returns the timestamps of sharing and of
each addition/deletion operation related to keyword w for
user u. Finally, we define:

SrchLeakage(w, u) =

{
w if u is corrupted
⊥ if u is honest

Using these functions, we now define backward privacy.

Definition 3. A dynamic multi-user searchable symmetric en-
cryption scheme with a coalition C of corrupted users is backward-
private iff the Search leakage function can be written as:
LSrch(w,Ku, aux

D
u ; xSet, uSet) =

L′
(u,Time(w, u),Update(w, u), SrchLeakage(w, u))

where L′ denotes a stateless function.

Our definition reveals two important pieces of informa-
tion for w during a search: (i) the files currently containing
w that u has access to, and (ii) the timestamps of all previous
updates for w affecting u. The first is unavoidable if the user
wishes to subsequently retrieve the actual files (except if the
files are stored in oblivious storage)—none of our construc-
tions explicitly leaks this information during file id retrieval.
The second captures backward privacy by hiding the id
of files previously containing w and only revealing when

8

previous related updates took place, along the lines of the
definition of [7]. Indeed, if we assume no corrupted users,
our definition would be a natural extension of the Type-II
backward privacy of [7] to the multi-user setting. Finally,
SrchLeakage(w, u) leaks the searched keyword only if the
query is executed by a corrupted user.

4.4 Verifiability
In what follows, we give the definition of verifiable DMUSSE
(VDMUSSE). The basic idea of VDMUSSE is to modify
DMUSSE algorithms and use authenticated data structures
(e.g., [36], [52]) so that the user can check whether the
server is sending back the correct result of search queries
(DBu(w)) without dropping/modifying parts of it. To im-
plement such an idea, Setup creates a verification token ∆
at the beginning. When a user is enrolled in the system, ∆
is shared with it. Subsequent operations (including Share,
Update, UnShare, and maybe Search) may update ∆ and all
users are notified. During a search for w, the server sends a
verification proof Π with the result. Using Π and ∆, the user
verifies the correctness of the result. A VDMUSSE contains
an additional algorithm Verify:
• Verify(Ku, aux

D
u ,∆,Π, w, IdSet): on input secret key Ku,

auxiliary data auxDu , verification token ∆, proof Π, key-
word w, and a set of file identifiers which is the response
of the search query, it outputs true if the verification test
passes, otherwise outputs false.

We define the verifiability of VDMUSSE by comput-
ing the advantage of the adversary in producing incorrect
results that still pass verification via the following game
between adversary and challenger. The adversary, play-
ing the role of the server, chooses the dataset and the
corrupted users and it receives from the challenger the
result of running Setup and the corrupted parties’ keys.
The adversary then issues polynomially many queries of
Share/Update/UnShare/Search to the challenger and re-
ceives corresponding responses. The challenger executes
these queries while recording the current state of the dataset
and all scheme variables. Finally, the adversary provides a
result set IdSet, user u, and proof Π′ and the challenger
runs Verify on them using the latest locally stored digest
∆. The adversary wins if IdSet is not the correct result
(6= DBu(w), where DBu is the latest dataset version for u,
according to the challenger’s state), u is not corrupted, and
Verify accepts. The following definition captures the above
(similar to the one from [6] for the single-user case):

Definition 4. A dynamic multi-user searchable symmetric en-
cryption scheme is verifiable if for all λ, any PPT adversary Adv
who plays the above game can win with probability at most v(λ).

5 µSE CONSTRUCTION

In this section, we propose our dynamic multi-user forward
and backward private SSE constructions. We explain how to
extend them to achieve verifiability in Section 6.

One of the main challenges in proposing DMUSSE is
to provide an efficient mechanism for distributing updates
among the affected users. We propose two constructions
that address this issue in different ways: (i) O-µSE which
is based on an oblivious map, and (ii) Q-µSE which uses

update queues. At a high level, both our schemes adopt the
approach of MITRA from [25] for building the encrypted
dataset index. That is, they use a key-value map to store the
encrypted values of the form (file identifier, operation) for
the keywords in each file. The location of these key-values in
the map are computed via a PRF, using a separate incremen-
tal per-keyword counter. These counters are stored at the
data owner and are incremented after each update. A copy
of these counters may also be stored at each user, depending
on the files it has access to. To search for a specific keyword
w, the user first looks up the corresponding counter (cnt)
and then asks the server to return all encrypted values of
the map that correspond to keys (w, 1), . . . , (w, cnt). Finally,
it decrypts the returned ciphertexts and extracts the file
identifiers for w, excluding deleted files. Note that since
we do not store the whole address space for all keywords
and file identifiers (we only keep the existing mappings
by computing PRFs), collisions may happen and two (file
identifier, operation) pairs may be mapped to the same
location. The probability of such a collision can be made
negligibly small in the parameter λ by setting a large enough
PRF output (see [20] for more details). In what follows, we
explain our two schemes and analyze their efficiency and
security. Since they are similar in most of their parts, we
present their pseudocodes together.

5.1 OMAP-BASED µSE

O-µSE stores each user’s keyword counters in a separate
OMAP on the server that maps keywords to counters. We
note that each OMAP is instantiated with a different key
which is only shared with the data owner and that user.
To execute an update or share, the data owner interacts
with the corresponding users’ OMAPs on the server to
modify keyword counters as necessary. When a user wants
to execute a search, it must first fetch the last value of
the keyword counter from its OMAP and then proceed to
request the map keys as explained above. Below, we explain
the O-µSE procedures in more detail.

Setup. The setup algorithm is presented in Algorithm 1. In
the beginning, on input security parameter λ, total dataset
size N , size of keyword set |W |, total number of users |U |,
and an empty initial data set, the data owner generates a se-
cret key K (we omit initial dataset encryption from setup to
simplify the presentation). Then, it initiates two empty maps
DictW and UserKeys. DictW is used to store encrypted
entries and UserKeys is used to store users’ secret keys.
After that, the data owner creates a map of lists AccessList
to store mappings of file identifiers to users who have access
to them. UserKeys and AccessList are stored locally in σ
(which plays the role of auxD in DMUSSE definition and is
given to all other procedures), whereas DictW and a copy
of AccessList are sent to the server (DictW corresponds to
xSet and AccessList corresponds to uSet according to our
DMUSSE definition). Note that AccessList is used by the
server for access control during file retrieval—it does not
appear in the file identifier extraction process below. Note
that, although we could store the encrypted values of each
user in a separate map, we store all encrypted values in one
map (DictW) for simplicity of design and explanation.

9

Algorithm 1 µSE Setup(1λ, N, |W |, |U |,⊥)

Owner:
1: K ← Gen(1λ)
2: DictW,UsersKeys← empty map
3: FileCnts← empty map of maps . For Queue-based
4: Queues← empty map of queues . For Queue-based
5: AccessList← empty map of lists
6: σ ← (FileCnts, AccessList, UsersKeys)
7: EDB ← (DictW, Queues, AccessList)
8: Send EDB to the server

User (u):
9: if u.type is OMAP-based then OMAP.key←⊥

10: else if u.type is Queue-based then FileCnt← empty

Enroll. The data owner registers user u for future files
sharing. First, it generates secret key Ku ← Gen(1λ) for
user u and stores it in UserKeys. Then, it initializes an
OMAP for user u with capacity |W | and sends it to the
server. Finally, it sends Ku and OMAPu.key to the user.
Share. In the share algorithm (Algorithm 2), the owner first
adds user u to the list of users who have access to the given
file (AccessList[id]). Then, it loads the user key Ku from
UserKeys[u] (line 3). For each keyword w in file id, it checks
whether the keyword counter OMAPu[w] is initialized or
not. In the latter case, the value will be initialized to 0. Next,
the data owner increments the keyword counter and stores
its current value in cnt (line 8). After that, it computes the
encrypted values and their locations on the server. For the
location, the PRF G with key Ku and (keyword, keyword
counter) tuple as the input of the function is computed (line
13). The output of the PRF function is XORed with the file
identifier concatenated with “add” operator to construct the
encrypted value. In the last step, all pairs of (addr, val) and
(u, id) are sent to the server who adds u to AccessList[id]
and stores (addr, val) in DictW (lines 17-18). Clearly, dif-
ferent modes (share and add&share) do not change the
algorithm significantly since a separate copy of the target
file id is created for each user u. Indeed, all Share operations
are implicitly executed in add&share mode.
Update. Algorithm 3 describes the update process. First, the
data owner gets all the users who have access to the target
file id from AccessList[id]. For each user u in AccessList[id],
it extracts the corresponding key Ku and for each keyword
w in set WList checks whether the user’s keyword counter
has been initialized or not (OMAPu[w]). If not, the counter
is set to 0. Then, it increments the counter and runs the PRF
G with key Ku to compute the encrypted value val and its
location addr on the server for each keyword (lines 13-15).
Finally, the (addr, val) pairs for all keywords and users are
sent to the server to be stored in DictW (lines 17-18).
Search. The search process is shown in Algorithm 4. When
user u wants to search for files containing keyword w, it
first retrieves the keyword counter OMAPu[w] from the
server, which corresponds to the total number of updates
related to w (line 2). Then, it generates a list of locations for
these entries in DictW by evaluating the PRF G on input
GKu

(w, i||0) for i = 1, . . . , OMAPu[w] (line 9). Note that
these are the locations computed during earlier shares and
updates for w and user u. The list is sent to the server who
retrieves the encrypted values from DictW and sends them

Algorithm 2 µSE Share(K,u, id,Kwt(id),mod, σ)}
Owner:

1: AccessList[id]← AccessList[id] ∪{u}
2: KeyValues←⊥; CntDiffs←⊥
3: if u.type is OMAP-based then Ku ←UsersKeys[u]
4: else (Ku,K

′

u)←UsersKeys[u]
5: for w in Kwt(id) do
6: if u.type is OMAP-based then
7: if OMAPu[w] = ⊥ then OMAPu[w]=0
8: OMAPu[w]++ ; cnt← OMAPu[w]
9: else if u.type is Queue-based then

10: if FileCnts[u][w] = ⊥ then FileCnts[u][w] = 0

11: FileCnts[u][w]++ ; cnt← FileCnts[u][w]
12: CntDiffs← CntDiffs ∪ (u,EncK′

u
(w, cnt))

13: addr = GKu(w, cnt||0)
14: val = (id||add)⊕GKu(w, cnt||1)
15: KeyValues← KeyValues ∪ (addr, val)

16: Send KeyValues, CntDiffs, and (u, id) to the server
Server:
17: AccessList[id]← AccessList[id] ∪{u}
18: Insert all (addr, val) in KeyValues into DictW
19: Insert all (u, diff) in CntDiffs into Queues[u]

Algorithm 3 µSE Update(K, id,WList, op, σ)

Owner:
1: userList← AccessList[id]; KeyValues←⊥; CntDiffs←⊥
2: for u in userList do
3: if u.type is OMAP-based then Ku ←UsersKeys[u]
4: else (Ku,K

′

u)←UsersKeys[u]
5: for w in WList do
6: if u.type is OMAP-based then
7: if OMAPu[w] = ⊥ then OMAPu[w]=0
8: OMAPu[w]++ ; cnt← OMAPu[w]
9: else if u.type is Queue-based then

10: if FileCnts[u][w] = ⊥ then FileCnts[u][w] = 0

11: FileCnts[u][w]++ ; cnt← FileCnts[u][w]
12: CntDiffs← CntDiffs ∪ (u,EncK′

u
(w, cnt))

13: addr = GKu
(w, cnt||0)

14: val = (id||op)⊕GKu
(w, cnt||1)

15: KeyValues← KeyValues ∪ (addr, val)

16: Send KeyValues and CntDiffs to the server
Server:
17: Insert all (addr, val) in KeyValues into DictW
18: Insert all (u, diff) in CntDiffs into Queues[u]

back to the user (lines 11-13). The user decrypts them by
computing the PRF values GKu(w, i||1) for i = 1, . . . , cnt
and XORing the i-th of them with the i-th ciphertext. Finally,
it extracts all (id||op) pairs and removes deleted id’s.

5.2 QUEUE-BASED µSE
Q-µSE uses a different approach from O-µSE for maintain-
ing keyword counters. It stores keyword counters locally at
each user and whenever the data owner performs an update
or share it stores the new values of the counters in a separate
queue for each user on the server in encrypted form, using
symmetric encryption. The secret key for each queue is

10

Algorithm 4 µSE Search(w,Ku,K
′

u, σ;EDB)

User:
1: TList = { }; Rw = {}
2: if u.type is OMAP-based then cnt← OMAPu[w]
3: else if u.type is Queue-based then
4: diffs← fetch Queues[u] from the server
5: for diff in diffs do
6: (w′, cnt)← DecK′

u
(diff)

7: FileCnt[w′] = cnt

8: cnt← FileCnt[w]

9: for i = 1 to cnt do TList = TList ∪ {GKu
(w, i||0)}

10: Send TList to the server
Server:
11: Fw = {}
12: for i = 1 to TList.size do Fw = Fw ∪DictW[TList[i]]
13: Send Fw to the user
User:
14: for i = 1 to Fw.size do
15: (id||op) = Fw[i]⊕GKu

(w, i||1)
16: Rw = Rw ∪ (id||op)
17: Remove deleted id’s from Rw and return Rw

shared only between data owner and target user. When the
user wants to execute a search query, it first “flushes” its
queue and fetches all counter modifications that happened
since the last search from the server. Then, it updates the
local keyword counters and proceeds with the search. We
stress that all other parts of the scheme remain the same as
O-µSE. In what follows, we explain the Q-µSE procedures
omitting parts that are similar to O-µSE:

Setup. The setup algorithm is the same as O-µSE (Algo-
rithm 1), except that the owner initiates two empty maps:
FileCnts stores each user’s keyword counters and Queues
stores the updates of the counters for each user separately
on the server. On the other hand, each user initiates an
empty map FileCnt to store its own counters locally.

Enroll. The only difference with O-µSE is that the owner
creates an empty map FileCnts[u] for the user’s keyword
counters which it keeps locally, instead of OMAPu. Fur-
thermore, it generates a key K

′

u for a semantically-secure
symmetric encryption scheme using KeyGen(1λ). This will
be used to encrypt encrypt counter updates later.

Share. For each distinct keyword w in file id, the data owner
checks whether the corresponding counter FileCnts[u][w]
has been initialized or not. In the latter case, it will be
initialized to 0 (line 10). Then, it increments the counter
and encrypts its new value (lines 11-12). Finally, (addr, val),
(u, id) pairs, and the encrypted counter information will be
sent to the server to be stored in the user’s queue Queues[u]
(line 19). Similar to O-µSE, share and add&share modes
are treated in the same manner.

Update. As with Share, the only difference between Q-µSE
and O-µSE is that keyword counters are updated locally
and stored in the corresponding users’ queues on the server.

Search. In the search process (Algorithm 4), the only differ-
ence is that instead of retrieving the keyword counter from
the oblivious map, the user first fetches the contents of its
queue, decrypts them, and updates its local counter array

FileCnt[w] (lines 4-8). Then, the user uses the updated value
of the counter and continues with the search as in O-µSE.

5.3 Revoking Document Access
In Section 4, we included in the DMUSEE algorithms an Un-
Share operation whose goal is to revoke a user’s access to a
document. Intuitively, its purpose in a dynamic scheme is to
limit the user’s knowledge of the document to whatever has
been queried so far. A first observation regarding unsharing
in our security model where corrupt users may collaborate
with the server is that this “strong” goal is unobtainable: The
server can always store the old version of the encrypted
dataset (prior to the unshare) and keep sharing it with the
user. Hence, a more realistic goal in this setting is to ensure
that the user cannot learn any information about future versions
of the unshared document.

In both versions of µSE, unsharing id is implemented by
notifying the server to remove the user from the document’s
authorization list. This incurs negligible overhead as it does
not entail any cryptographic operations and it satisfies our
forward privacy definition from Section 4. Then, the owner
does not include the user whose access has been revoked
from future iterations of Update regarding id, which guar-
antees the goal outlined above. Observe that the user may
still get information about versions of id prior to unsharing.
If one wants to avoid this, one alternative that maintains
forward privacy would be to implement unsharing by re-
enrolling the user with a new key and re-sharing all the
documents it has access to (excluding id). This clearly incurs
a very large overhead. Moreover, we argue that it does not
satisfy our goal in a meaningful way: due to the counter-
based approach of µSE the user may still infer information
about the state of id prior to unsharing via future queries:
If a counter for searched keyword w remains the same right
before and after unsharing, then w 6∈ id, else w ∈ id. Hence,
we chose to implement the first method for unsharing due
to its much better performance.

5.4 Security Analysis and Asymptotic Efficiency
Here, we analyze the security of our schemes and their
asymptotic performance.
Security Analysis. Both our schemes are secure with respect
to Definition 1 with leakage profiles that achieve forward
and backward privacy (Definitions 2,3). In both of them
the (add, val) pairs during updates and shares are com-
puted with a PRF using a fresh counter, thus they are
indistinguishable from random. For O-µSE, the deployed
oblivious map entirely hides from the server which are the
affected keywords during all accesses to it; the server only
learns who are the affected users. For Q-µSE, due to the
semantic security of the encryption scheme used to encrypt
the queues again the only leaked information is which users’
queues are accessed. Hence, during searches, the only thing
that is revealed to the server, beyond the id of the querying
user u, is the number of previous updates for w and when
they took place (since the server can always remember when
it last accessed the corresponding dictionary locations). Fi-
nally, since separate OMAPs/queues with different keys are
used for each user and the PRF key used for each user is also
different, we manage to eliminate all cross-user leakage.

11

We are now ready to state the following theorem for the
security of our schemes (full proofs in Appendix B).

Theorem 1. Assuming G is a secure PRF, queues are encrypted
with a semantically secure encryption scheme, and OMAP
is a secure oblivious map, Q-µSE and O-µSE are secure
(Definition 1) and forward/backward private (Definitions 2,3)
DMUSSE schemes with the following leakage:
LShr = {id, u,KwLeakage(u, id, t),mod}
LUnShr = {id, u}
LUpdt = {id,WLeakage(u,WList), op,AccList(id)}
LSrch = {u,Time(w, u),Update(w, u), SrchLeakage(w, u)}

Asymptotic Efficiency. Setting up an initially empty dataset
takes O(1) operations. Enroll takes O(1) with Q-µSE and
O(|W |) with O-µSE as the latter sets up the user’s OMAP.
Share for a single keyword w requires computing add, val
(O(1) operations). It also entails updating the counter in
OMAP for O-µSE (O(log2 |W |) operations, assuming con-
stant block size), or updating Queues for Q-µSE (O(1) oper-
ations). Clearly, this grows linearly with the number of key-
words in Kwt(id). This also characterizes communication
size. Update entails the same overheads (per keyword and
per affected user). Finally, UnShare has O(1) computation
and communication overhead.

Regarding searches, let aw denote the counter for the
total number of previous updates for keyword w and user
u. For O-µSE, u has to execute an OMAP look-up to extract
this counter (O(log2 |W |) computation time and communi-
cation size, as above). For Q-µSE, |diffs| denotes the size of
the queue received from the server. This can vary between
0 and N (size of dataset). In both cases, after computing aw
the user executesO(aw) operations to retrieve the encrypted
file identifiers. Indeed, the computation and communica-
tion complexity of search for O-µSE and Q-µSE would be
O(aw+log2 |W |) andO(aw+|diff|), respectively. Comparing
the two, for settings with few updates or small intervals
between searches, Q-µSE can be better while with frequent
updates or “sparse” searches O-µSE may be better.

The server storage in both schemes is O(N) per user,
assuming N (keyword-file-operation) entries in the dataset.
Of course, this corresponds to the worst case where the
entire dataset is shared with each user. On the other hand,
the OMAP stash size for O-µSE is O(log |W | · ω(1)) but
this downloaded by the users for each operation, without
asymptotically increasing computation or communication,
so the permanent user storage is O(1) O-µSE. For Q-µSE
it is O(|W |) as users need to store their keyword counters.
Finally, with Q-µSE Share, Update, and Search, requireO(1)
roundtrips, whereas with O-µSE they require O(log|W |)
roundtrips, due to OMAP look-ups. Depending on the net-
work latency in a given application, this may significantly
affect the performance.

6 VERIFIABLE µSE
Our above schemes are not secure against a server that
provides a false result, e.g., by dropping or modifying (parts
of) it. In this section, we explain how to extend our µSE
schemes to VDMUSSE to achieve result verifiability.

As explained previously, a general blueprint for verifia-
bility (e.g., see [6]) is to protect the integrity of the encrypted

data via a Merkle tree. Our schemes’ setup algorithm builds
an encrypted index (DictW) that can be treated as an array.
It is then straight-forward to compute a Merkle tree over it
and publish its root as the verification digest. Users issuing
searches get the corresponding tree proofs from the server
and verify each DictW access with respect to this digest.
Hence, they can ensure that no element of the result was
omitted, changed, or erroneously added.

In addition to the encrypted data itself, the integrity of
the keyword counters needs to be protected. Otherwise,
a misbehaving server can provide an outdated OMAP or
queue version during the search operation which leads to
an outdated or incorrect search result. To prevent this, a
similar Merkle tree technique can be used. We note that the
situation is somewhat more complicated for O-µSE than Q-
µSE. With the latter, queue entries are updated only by the
owner during Update/Share operations—consequently, so
does the digest. With the former, OMAP blocks are shuf-
fled whenever keyword counters are accessed, including
during Search queries issued by users. Hence, even search
operations change the digest. Clearly, the overall additional
overhead of verifiability in terms of computation complexity
and communication size is logarithmic.

We refer to the verifiable versions of our schemes that are
achieved by using the above technique as VQ-µSE and VO-
µSE. We state the following theorem for their verifiability.

Theorem 2. Assuming H is a collision-resistant hash function
used to build the Merkle trees described above, VO-µSE and VQ-
µSE are verifiable according to Definition 4.

Proof Sketch. Recall that during the verifiability game, the
challenger stores the dataset DB initially chosen by the
adversary. It then makes a list I and on each Update/Share
operation it stores entry (addr, val, u, w, id, op, type,∆) in
the i−th cell of I, for all u ∈ AccList(id) and all w ∈WList
in Update and for all w ∈ Kwt(id) in Share where type is
Share or Update, respectively, and op is add or del. Even-
tually, the adversary produces its challenge IdSet, u, w,Π′.
The challenger runs Verify for it, using the latest ∆ ∈ I . Let
us examine the case |IdSet| 6= |DBu(w)|, where DBu(w)
is the correct search result for w and user u with respect
to the latest dataset version. Hence, the keyword w counter
computed locally by the challenger is different but V erify
accepts for the correct ∆. This means that Π′ includes a
collision in H , for both schemes. The only remaining case
we need to argue is when |IdSet| = |DBu(w)| but IdSet 6=
DB(u). Again, as part of verification, the challenger recur-
sively hashes IdSet with Π′, computes the Merkle root and
compares it with ∆. Clearly, if IdSet 6= DB(u) and the
comparison succeeds, Π′ contains a collision for H along
the path in the tree. We conclude that the advantage of the
adversary is negligible.

6.1 Deploying Verifiable µSE on Hyperledger Fabric

Next, we explain how verifiable µSE can be implemented
in practice. Recall that the main issue has to do with the
dissemination of digests among users. Direct communica-
tion between the data owner and users may be infeasible,
whereas relying on the server (or a third party) for storing

12

 0.1

 1

 10

 100

 1000

10
3

10
4

10
5

10
6

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

DB Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Result Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

(b)

10
2

10
3

10
4

10
3

10
4

10
5

10
6

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

DB Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

F:%96
S:%3
U:%1

F:%96
S:%3
U:%1

F:%95
S:%4
U:%1

F:%93
S:%6
U:%1

F:%89
S:%10
U:%1

F:%86
S:%13
U:%1

F:%87
S:%12
U:%1

F:%86
S:%13
U:%1

(c)

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Result Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

F:%93
S:%6
U:%1

F:%93
S:%6
U:%1

F:%93
S:%6
U:%1

F:%92
S:%6
U:%1

F:%86
S:%10
U:%3

F:%91
S:%8
U:%1

F:%91
S:%8
U:%1

F:%87
S:%12
U:%1

F:%70
S:%23
U:%7

F:%31
S:%35
U:%34

(d)

Fig. 4: Search computation vs.: (a) variable |DB| for result size 100 on stand-alone machine, (b) variable result size for
|DB| = 1M on stand-alone machine, (c) variable |DB| for result size 100 in end-to-end setting, (d) variable result size for
|DB| = 1M in end-to-end setting.

the digests is insecure in cases of compromise or misbehav-
ior. Our approach is to use a blockchain protocol for storing
and managing the digests without relying on a trusted third
party. In particular, we deployed our µSE schemes atop Hy-
perledger Fabric [21], a permissioned blockchain protocol
designed for a closed set of participants who, while they
may not fully trust each other (they may be competitors in
the same industry), can still cooperate under a governance
model that is built off of what trust does exist between them,
such as a legal agreement. In the simplest implementation,
each participant runs a blockchain node (except for the
server that does not need access to the blockchain). For
completeness, we provide the necessary code for setting up
µSE on Fabric in Appendix C.

Modifications to µSE. To implement verifiable µSE on
Hyperledger Fabric, its procedures should be modified as
follows. At the setup phase, in addition to uploading EDB
to the server, each data owner issues a Fabric transaction
to publish its digest (i.e., the root of its dataset’s Merkle
tree), computed as explained above. Whenever a new user
is enrolled for this data owner, the latter provides read
permission of its digest to the user. The data owner also
executes a blockchain transaction to store the digest for the
user’s counters (i.e., the root of the “Merkle-ized” OMAP
tree for VO-µSE, or the root of the queues Merkle tree for
VQ-µSE). Finally, it gives permissions for this digest to the
user. For VQ-µSE this is a read permission, whereas for VO-
µSE this is a read&write permission; recall that the OMAP
state changes after every access, including reads, hence the
user must be able to compute the new digest after searches.

During each Update/Share, the data owner also issues
a new blockchain transaction with the updated digest; this
serves to ensure the integrity and freshness of subsequent
search results. When executing a Search operation, the user
first retrieves the digest from Fabric. Then, it proceeds to
run the remainder of the query with the server, verifying
the result against the retrieved digest (note that the server
does not need to have access to the blockchain at any point;
it receives data directly from the data owners). Finally, for
VO-µSE, the user needs to compute the new counters digest
and issue a Fabric transaction to update it on the blockchain.

7 EXPERIMENTAL EVALUATION

For our experimental evaluation we implement the ver-
ifiable versions of O-µSE and Q-µSE in C++ with
OpenSSL [44], using AES-256 as PRF. We consider two

settings: (i) a single machine with four-core Intel i5-7600
3.5GHz processor, running Ubuntu 16.04 LTS, with 40GB
RAM, 500GB HDD, and AES-NI for measuring computation
times, and (ii) five t2.xlarge AWS machines with four-core
Intel Xeon E5-2676 v3 2.4GHz processor, running Ubuntu
16.04, with 16GB RAM, 100GB SSD hard disk, and AES-NI,
for measuring end-to-end times. The average RTT among
the AWS machines is 20ms (various EU locations). Since
there is no other DMUSSE scheme in the corrupted user
setting, we compare ours with state-of-art static MUSSE
constructions. We implement the MKSE scheme of [28] to
compare its search performance with ours. We also report
comparison with mx-u [41] which, however, is considerably
slower as it relies on public-key operations—it also suffers
from cross-user leakage, unlike our schemes and MKSE.

We mainly measure execution time and communication
size for search and update operations (with verification). We
consider synthetic datasets of size |DB| = 103–106, setting
|W | and number of files to one-hundredth of |DB| (unless
otherwise specified). We vary the search result size from 1–
104. Since the performance of Q-µSE depends on the size of
the update queue, we execute experiments separately with
a small and large update queue size (100 and 10K). Before
searches, we delete 10% of the corresponding entries at
random to account for the impact of deletions (except when
the result size is 1). We report the average of 10 executions.

7.1 Stand-Alone Machine Measurements

First, we examine the pure computational time of O-µSE
and Q-µSE on a single machine, thus ignoring overheads
due to blockchain transactions and transmission time.

Search Performance. Figure 4(a) shows the search time of
O-µSE and Q-µSE (for update queue size 100 and 10K)
and variable database size (for |DB| = 103, update queue
10K would correspond to an extreme case where the entire
dataset is deleted and re-written multiple times; we only
include this point for completeness). As is evident, the
search computation time for Q-µSE increases very slightly
with the database size; this increase is due to the change in
the Merkle tree height for verification. On the other hand,
the O-µSE time increases more steeply since the cost of each
OMAP access increases with |DB|. Figure 4(b) shows the
search computation time for variable result size. Observe
that it increases more sharply with the result size than with
|DB|, as per our analysis in Section 5.4. As the search
result size increases, the file identifier extraction (i.e., PRF

13

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

S
iz

e
 (

K
B

y
te

)

Result Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

(a)

10
-1

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

S
iz

e
 (

K
B

y
te

)

DB Size

O-µSE
Q-µSE

(b)

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Result Size

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

MKSE

(c)

 0

 50

 100

 150

 200

 250

 300

10
2

10
3

10
4

10
5

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of Files

O-µSE
Q-µSE(|Q|=100)
Q-µSE(|Q|=10K)

MKSE

(d)

Fig. 5: Communication size for: (a) search vs. variable result size for |DB| = 1M, (b) update vs. variable |DB|. Search time
vs: (c) variable result size for |DB| = 1M, (d) variable number of files for |DB| = 1M and |Result| = 100.

10
-2

10
-1

10
0

10
1

10
3

10
4

10
5

10
6

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

DB Size

O-µSE
Q-µSE

(a)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

10
3

10
4

10
5

10
6

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

DB Size

O-µSE
Q-µSE

F:%96
S:%3
O:%1

F:%96
S:%3
O:%1

F:%95
S:%4
O:%1

F:%93
S:%6
O:%1

F:%98
S:%1
O:%1

F:%98
S:%1
O:%1

F:%98
S:%1
O:%1

F:%98
S:%1
O:%1

(b)

 0.1

 1

 10

 100

 1000

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Queue Size

Q-µSE(|Result|=100)
Q-µSE(|Result|=10K)

(c)
Fig. 6: Update computation vs. variable |DB| in (a) stand-
alone machine (b) end-to-end setting. (c) Search vs. variable
queue size for |Result| = 100 and |Result| = 10K.

evaluations) time dominates all other overheads and all
three methods’ search times become approximately equal.

Overall, both schemes have excellent performance and
their execution time is in the order of milliseconds (even for
a large result size of 10K it is <111ms). Further comparing
the two schemes, we see that in general O-µSE lies between
Q-µSE with large queue and Q-µSE with small queue.
Throughout all executions, Q-µSE with small queue is 0.9-
10× faster than O-µSE and 1.7-93× faster than Q-µSE with
large queue. One can argue that O-µSE would be more
appropriate for scenarios where users execute search queries
rarely or the update frequency is high (hence the update
queue size grows fast). On the other hand, Q-µSE may
be more useful for settings where users run search queries
frequently or the number of updates is low.

Figure 5(a) shows the total communication size for
searches as the result size changes. The communication
size of Q-µSE with small queue size is roughly linear. For
O-µSE, when the result size is small, communication is
dominated by OMAP accesses. Even for searches with small
results it is not below a threshold (406KB). As the result
size increases, the search result itself exceeds the OMAP
overhead and becomes the main factor for communication
size. Likewise, Q-µSE with large queue needs to fetch many

counter updates which enforces a big overhead even for
small result sizes. Concretely, O-µSE and Q-µSE with large
queue have very similar communication size (the ratio of
the former over the latter is 1-1.3×). Throughout all our
experiments, Q-µSE with small queue size needs 1-103×
less communication than O-µSE (e.g., Q-µSE with queue
size 100, 10K, and O-µSE transmit 6KB, 323KB, and 406KB
in total for a database of 1M records and result size 10).
Effect of Queue Size. Clearly, for Q-µSE the queue size
plays a crucial role in the scheme’s performance. To measure
this, we measure the search computation time of Q-µSE
for variable queue sizes (Figure 6(c)). We fix |DB| to 1M
and vary the queue size between 1 and 10K for two result
sizes (100 and 10K). As expected, the search computation
time increases proportionally to the queue size. This implies
that the overhead of updating the counters for a user with
infrequent search operation can become high with Q-µSE.
Furthermore, the impact of queue size on search perfor-
mance with small results is more evident than on searches
with truly large results (e.g. for result 10K, the impact is
almost imperceptible in the figure).
Update Performance. Figure 6 (a) shows the update compu-
tation time vs. variable database size for a single keyword
insertion/deletion. As expected, Q-µSE is faster (12-59×)
than O-µSE as it only needs to store one key-value pair
and an encrypted counter on the server while O-µSE re-
quires accessing the OMAP. That said, both schemes have
very good update performance (<5ms). Regarding update
communication size (Figure 5 (b)), for both schemes it
increases almost linearly with |DB|. However, it increases
more steeply for O-µSE due to the increase of the OMAP
tree height (e.g., the communication size of Q-µSE for a
database with size 1M is 1KB while O-µSE transfers 426KB).
Storage. Recall that in O-µSE we store the OMAP stash
at the server which minimizes the client storage, making
it O(1) for O-µSE and O(|W |) for Q-µSE (which requires
maintaining the update counters). Concretely, for a database
of size 106 and 10K keywords, the permanent user storage
is approximately 64B for O-µSE and and 360KB for Q-µSE.

7.2 End-to-End Execution Time with Fabric
In this section, we evaluate the end-to-end performance of
our schemes. We run O-µSE and Q-µSE over five AWS
machines (in Sweden, Germany, Ireland, Italy, and France)
connected over WAN with 20ms average latency. We con-
figure a Hyperledger Fabric blockchain over four of these
machines and use the last one as the data server. Each of

14

the blockchain machines hosts a peer node of Fabric. One
of them runs as the data owner (also operating a Fabric
Orderer and Certificate Authority) while the rest run users.

Figure 4(c) shows the search time breakdown for variable
|DB| and result size 100 (F denotes the time related to Fabric
operations, S the server time, and U the user computation
time). O-µSE is considerably slower than Q-µSE due to the
extra Fabric transaction for updating the digest. Further-
more, Q-µSE performs similarly for both queue sizes (100
or 10K). Despite the difference in the number of counter
updates, Fabric transactions and roundtrips (which is the
bottleneck of search time) are the same. In general, Q-
µSE is 19.4-21.2× faster than O-µSE depending on the
database size (e.g., the search time of Q-µSE and O-µSE
is approximately 234ms and 4.6s for |DB| = 106).

We also evaluated the search performance for database
size 1M and variable result size. As Figure 4(d) shows, for
small result sizes O-µSE is considerably slower than Q-µSE.
However, as the result size increases, the user computation
time (in order to extract the ids) becomes the dominating
factor (the user and server computation time vary from 1%
and 8% of the computation to 33% and 35% while the Fabric
cost decreases from 91% to 31%). Since this is the same for
all schemes, the performance gap between them closes.

Finally, Figure 6(b) shows the update time breakdown
for variable database sizes. The performance gap between
O-µSE and Q-µSE is mainly the result of the extra Fabric
transaction of O-µSE for updating the Merkle root of the
OMAP (the Fabric cost is >93% of the total update time).
According to our experiments, Q-µSE is 2-2.1× faster than
O-µSE for update operations (e.g., Q-µSE and O-µSE up-
date time are roughly 4s and 8.5s respectively).

7.3 Comparison with Previous Static MUSSE Schemes

Here, we compare the performance of µSE with MSKE [28]
and mx-u [41]. Recall that both these schemes are static and
do not support updates after the initial setup, hence we can
only compare search times.

Figure 5(c) compares the search computation times of
µSE with MKSE, for variable result size and |DB| = 1M .
Clearly, MKSE is slower than both our schemes. This is
expected as its performance is proportional to the total
number of files in the dataset while the search time of
µSE only depends on the actual result size. Obviously, as
the result size increases, the performance of all schemes
becomes similar. Throughout these experiments, Q-µSE and
O-µSE are 3-417× and 3-39× faster than MKSE. The effect
of the number of files on the performance of the schemes
is depicted in Figure 5(d) which shows the search time for
variable number of files, and fixed |DB| = 1M and result
size 100. As the figure shows, MKSE search time increases
with the number of files and is considerably slower than
µSE while our schemes’ performance is virtually unaffected
by the number of files in the dataset (recall that the perfor-
mance of µSE is linear in the result size which is fixed for
this experiment). In general, Q-µSE and O-µSE are 4-279×
and 39-50× faster than MKSE (e.g., Q-µSE and O-µSE take
less than 46ms while MKSE takes 180-230ms).

Turning our attention to the mx-u scheme, the com-
parison is more straight-forward, as it requires a number

of group exponentiations that is linear in the number of
files in the dataset which makes it significantly slower than
our schemes. According to the reported numbers (Fig 1.c
of [41]), its search time in a database of 104 files is 10.5s
while both our schemes take less than 46ms to search in
a similar dataset and on the same machine (228-12635×
faster). Moreover, recall that mx-u has cross-user leakage
which makes it less secure than µSE. That said, it has the
advantage that its encrypted dataset size (stored at the
server) does not grow with the number of users, as is the
case for µSE and MKSE.

7.4 Discussion

Performance Trade-offs Between our Schemes. Our ex-
perimental evaluation allows us to draw some conclusions
about the trade-offs offered by our two schemes and identify
in which cases one is preferable to the other. First, updates
are always much more efficient with Q-µSE hence in appli-
cations where update performance is important this should
be the adopted solution. On the other hand, with Q-µSE
the search performance depends on the number of updates
executed since the previous search for this user; in theory
this can be huge, as large as |DB| itself. O-µSE achieves
a better worst-case bound as retrieving the word counter
always takes only one OMAP operation. However, due to
the additional roundtrips for the OMAP, in practice Q-µSE
would only be worse in terms of search for extreme cases
where a user has been “offline” for very long periods.

The main drawback of Q-µSE is that it requires dedi-
cated permanent storage at the client side for the keyword-
counter pairs. Assuming 106 keywords, each of size 16Bytes
plus one update counter, this would result in at least 20MB
of local storage. Although this is small enough for most
applications, it could be problematic for applications that
support multi-device access for the same user (see discus-
sion in [17]). On the other hand, with O-µSE each user
only stores its secret key (as the OMAP stash is stored on
the server), which makes it better for applications where
“portability” of access is required.

Deploying µSE with TEE. One possible way to improve
our O-µSE scheme’s efficiency is by relying on a TEE at
the server. The advantage would be that client-side over-
heads would be delegated to this TEE, in particular the
OMAP client-side routines that O-µSE uses for storing
keyword counters, including storing the OMAP stash inside
the enclave. This approach would eliminate the need for
multiple communication roundtrips that, as shown in our
experimental evaluation, is currently the main bottleneck.

However, recall that to avoid additional leakage due to
enclave memory accesses, we must ensure that all algo-
rithms executed in TEE are oblivious. To eliminate this in
TEE-O-µSE we would have to replace the OMAP of [60]
with a doubly-oblivious map [39]. In practice this would incur
additional overhead but we still believe the performance
benefits make it an interesting goal for future work.

8 CONCLUSION

In this work, we studied the problem of dynamic multi-
user searchable encryption (DMUSSE) that is secure against

15

corrupted users that may collaborate with the server. We
proposed a formal security definition, as well as appropriate
forward and backward privacy notions for this setting. We
developed the first provably secure and forward-backward-
private DMUSSE schemes and described how they can
be modified to achieve result verifiability. We prototyped
both our constructions and experimentally evaluated their
performance both on a stand-alone machine and when
implemented over the Hyperledger Fabric permissioned
blockchain in order to facilitate efficient digest dissemina-
tion. Our experiments show that our schemes have very low
practical overheads, outperforming previous ones that do
not support updates and/or suffer from cross-user leakage.

Our work leaves many open problems, such as investi-
gating whether we can remove the oblivious data structure
from our O-µSE construction to reduce the communication
overhead, and to leverage TEE to improve our schemes’
efficiency. Furthermore, it would be interesting to examine
whether it is possible to propose a generic secure com-
piler for efficiently converting single-user DSSE schemes to
(forward-and-backward private) DMUSSE.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work was supported in part by Hong Kong RGC
grant ECS-26208318 and a Huawei HIRP award.

REFERENCES

[1] James Alderman, Keith M Martin, and Sarah Louise Renwick.
Multi-level access in searchable symmetric encryption. In Interna-
tional conference on Financial Cryptography and Data Security, 2017.

[2] Ghous Amjad, Seny Kamara, and Tarik Moataz. Forward and
backward private searchable encryption with sgx. In Proceedings
of the 12th European Workshop on Systems Security, pages 1–6, 2019.

[3] Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopou-
los, Alessandra Scafuro, and Nikos Triandopoulos. Server-aided
secure computation with off-line parties. In ESORICS 2017, Pro-
ceedings, Part I, volume 10492, pages 103–123, 2017.

[4] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. Public key encryption with keyword search.
In EUROCRYPT, 2004.

[5] Raphael Bost. Σoϕoς : Forward secure searchable encryption. In
ACM CCS, pages 1143–1154, 2016.

[6] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Veri-
fiable dynamic symmetric searchable encryption: Optimality and
forward security. IACR Cryptol. ePrint Arch., 2016:62, 2016.

[7] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward
and backward private searchable encryption from constrained
cryptographic primitives. In ACM CCS 2017, pages 1465–1482.

[8] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys
to the intel SGX kingdom with transient out-of-order execution. In
USENIX Security 2018,. USENIX Association.

[9] Chengjun Cai, Jian Weng, Xingliang Yuan, and Cong Wang. En-
abling reliable keyword search in encrypted decentralized storage
with fairness. IEEE TDSC, 18(1):131–144, 2021.

[10] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, M Rosu, and Michael Steiner. Dynamic Searchable
Encryption in Very-Large Databases: Data Structures and Imple-
mentation. In NDSS, 2014.

[11] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,
Marcel-Cătălin Roşu, and Michael Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In
CRYPTO 2013, pages 353–373. 2013.

[12] Qi Chai and Guang Gong. Verifiable symmetric searchable encryp-
tion for semi-honest-but-curious cloud servers. In Proceedings of
IEEE International Conference on Communications, ICC 2012, Ottawa,
ON, Canada, June 10-15, 2012, pages 917–922. IEEE, 2012.

[13] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In John Ioannidis,
Angelos D. Keromytis, and Moti Yung, editors, Applied Cryptog-
raphy and Network Security, Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005, Proceedings, volume 3531
of Lecture Notes in Computer Science, pages 442–455, 2005.

[14] Yaxing Chen, Qinghua Zheng, Zheng Yan, and Dan Liu. Qshield:
Protecting outsourced cloud data queries with multi-user access
control based on SGX. IEEE Trans. Parallel Distributed Syst.,
32(2):485–499, 2021.

[15] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and
Kui Ren. Verifiable searchable symmetric encryption from indis-
tinguishability obfuscation. In ASIA CCS, 2015.

[16] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostro-
vsky. Searchable symmetric encryption: improved definitions and
efficient constructions. In Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, October 30 - November 3, 2006, pages 79–88. ACM, 2006.

[17] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopou-
los, and Charalampos Papamanthou. Dynamic searchable encryp-
tion with small client storage. In NDSS, 2020.

[18] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Pa-
pamanthou. Searchable encryption with optimal locality: Achiev-
ing sublogarithmic read efficiency. In CRYPTO 2018, pages 371–
406, 2018.

[19] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Pa-
pamanthou, and Saurabh Shintre. SEAL: attack mitigation for
encrypted databases via adjustable leakage. In USENIX Security
2020, pages 2433–2450, 2020.

[20] Mohammad Etemad, Alptekin Küpçü, Charalampos Papaman-
thou, and David Evans. Efficient dynamic searchable encryption
with forward privacy. PoPETs, 2018(1):5–20, 2018.

[21] Hyperledger Fabric. https://hyperledger-
fabric.readthedocs.io/en/release-1.4/whatis.html.

[22] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn,
Florian Kerschbaum, and Ahmad-Reza Sadeghi. HardIDX: Practi-
cal and secure index with SGX. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 386–408. Springer, 2017.

[23] Gartner Risk Management. Top 10 emerging risks of q2 2018.
https://www.gartner.com/ngw/globalassets/en/risk-audit/
documents/top-ten-emerging-risks-Q2-2018.pdf, 2018.

[24] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, pages 169–178, 2009.

[25] Javad Ghareh Chamani, Dimitrios Papadopoulos, C. Papaman-
thou, and R. Jalili. New constructions for forward and backward
private symmetric searchable encryption. In CCS, 2018.

[26] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, May 1996.

[27] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas
Ristenpart, and Vitaly Shmatikov. Breaking web applications built
on top of encrypted data. In CCS’ 16, pages 1353–1364, 2016.

[28] Ariel Hamlin, Abhi Shelat, Mor Weiss, and Daniel Wichs. Multi-
key searchable encryption, revisited. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, pages 95–124. Springer, 2018.

[29] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xi-
angyang Luo, and Kui Ren. Searching an encrypted cloud meets
blockchain: A decentralized, reliable and fair realization. In IEEE
Conference on Computer Communications, INFOCOM 2018, 2018.

[30] Seny Kamara, Payman Mohassel, and Mariana Raykova. Out-
sourcing multi-party computation. Cryptology ePrint Archive,
Report 2011/272, 2011.

[31] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dy-
namic searchable symmetric encryption. In ACM CCS 2012.

[32] Masahiro Kamimura, Naoto Yanai, Shingo Okamura, and Ja-
son Paul Cruz. Key-aggregate searchable encryption, revisited:
Formal foundations for cloud applications, and their implementa-
tion. IEEE Access, 8:24153–24169, 2020.

[33] Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang,
and Bing Wang. Efficient encrypted keyword search for multi-
user data sharing. In ESORICS, 2016.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading kernel memory from user space. In USENIX
Security 2018, pages 973–990, 2018.

https://www.gartner.com/ngw/globalassets/en/risk-audit/documents/top-ten-emerging-risks-Q2-2018.pdf
https://www.gartner.com/ngw/globalassets/en/risk-audit/documents/top-ten-emerging-risks-Q2-2018.pdf

16

[35] Zheli Liu, Zhi Wang, Xiaochun Cheng, Chunfu Jia, and Ke Yuan.
Multi-user searchable encryption with coarser-grained access con-
trol in hybrid cloud. In IEEE EIDWT, 2013.

[36] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael
Gertz, April Kwong, and Stuart G Stubblebine. A general model
for authenticated data structures. Algorithmica, 39(1):21–41, 2004.

[37] Ralph C. Merkle. A certified digital signature. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 218–238. Springer, 1989.

[38] Antonis Michalas, Alexandros Bakas, Hai-Van Dang, and
Alexandr Zalitko. MicroSCOPE: Enabling Access Control in
Searchable Encryption with the Use of Attribute-Based Encryption
and SGX. In NordSec 2019, Proceedings, pages 254–270, 2019.

[39] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa,
and Raluca Ada Popa. Oblix: An efficient oblivious search index.
In IEEE Symposium on Security and Privacy (SP), pages 279–296.

[40] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter.
Dynamic searchable encryption via blind storage. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, pages 639–654, 2014.

[41] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Symmetric
searchable encryption with sharing and unsharing. In ESORICS
2018, pages 207–227. Springer, 2018.

[42] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer, Nick-
olai Zeldovich, and Hari Balakrishnan. Building web applications
on top of encrypted data using Mylar. In USENIX NSDI 14.

[43] Raluca Ada Popa and Nickolai Zeldovich. Multi-key searchable
encryption. Cryptology ePrint Archive, Report 2013/508, 2013.

[44] The OpenSSL Project. https://www.openssl.org/, 2003.
[45] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig.

Practical techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy, 2000.

[46] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Prac-
tical dynamic searchable encryption with small leakage. In NDSS,
2014.

[47] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an
extremely simple oblivious RAM protocol. In CCS’ 13.

[48] Yaping Su, Jianfeng Wang, Yunling Wang, and Meixia Miao.
Efficient verifiable multi-key searchable encryption in cloud com-
puting. IEEE Access, 7:141352–141362, 2019.

[49] Shi-Feng Sun, Joseph K Liu, Amin Sakzad, Ron Steinfeld, and
Tsz Hon Yuen. An efficient non-interactive multi-client searchable
encryption with support for boolean queries. In ESORICS’ 16.

[50] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin
Sakzad, Viet Vo, and Surya Nepal. Practical backward-secure
searchable encryption from symmetric puncturable encryption. In
CCS, 2018.

[51] Shi-Feng Sun, Cong Zuo, Joseph K Liu, Amin Sakzad, Ron Ste-
infeld, Tsz Hon Yuen, Xingliang Yuan, and Dawu Gu. Non-
interactive multi-client searchable encryption: Realization and im-
plementation. IEEE TDSC, 2020.

[52] Roberto Tamassia. Authenticated data structures. In European
symposium on algorithms, pages 2–5. Springer, 2003.

[53] Cédric Van Rompay, Refik Molva, and Melek Önen. Multi-user
searchable encryption in the cloud. In Information Security, pages
299–316, 2015.

[54] Cédric Van Rompay, Refik Molva, and Melek Önen. A leakage-
abuse attack against multi-user searchable encryption. Proceedings
on Privacy Enhancing Technologies, 2017(3):168 – 178, 2017.

[55] Cédric Van Rompay, Refik Molva, and Melek Önen. Fast two-
server multi-user searchable encryption with strict access pattern
leakage. In ICICS, 2018.

[56] Cédric Van Rompay, Refik Molva, and Melek Önen. Secure and
scalable multi-user searchable encryption. In SCC@AsiaCCS, 2018.

[57] Viet Vo, Shangqi Lai, Xingliang Yuan, Surya Nepal, and Joseph K
Liu. Towards efficient and strong backward private searchable
encryption with secure enclaves. In ACNS 2021, pages 50–75, 2021.

[58] Viet Vo, Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Surya Nepal,
and Joseph K Liu. Accelerating forward and backward private
searchable encryption using trusted execution. In ACNS 2020,
pages 83–103, 2020.

[59] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Peiyi Han, Hezhong
Pan, and Binxing Fang. Idcrypt: A multi-user searchable symmet-
ric encryption scheme for cloud applications. IEEE Access, 6:2908–
2921, 2018.

[60] Xiao S. Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil
Stefanov, and Yan Huang. Oblivious data structures. In CCS’ 14.

[61] Yun Wang and Dimitrios Papadopoulos. Multi-User Collusion-
Resistant Searchable Encryption with Optimal Search Time. In
AsiaCCS 2021, pages 252–264, 2021.

[62] Lei Xu, Chungen Xu, Joseph K Liu, Cong Zuo, and Peng Zhang.
A multi-client dynamic searchable symmetric encryption system
with physical deletion. In ICICS, 2017.

[63] Yanjiang Yang, Haibing Lu, and Jian Weng. Multi-user private
keyword search for cloud computing. In IEEE CLOUDCOM, 2011.

[64] Hyundo Yoon and Junbeom Hur. A comparative analysis of
searchable encryption schemes using sgx. In ICTC 2020, pages
526–528. IEEE, 2020.

[65] Yinghui Zhang, Robert H Deng, Jiangang Shu, Kan Yang, and
Dong Zheng. TKSE: Trustworthy keyword search over encrypted
data with two-side verifiability via blockchain. IEEE Access,
6:31077–31087, 2018.

[66] Rang Zhou, Xiaosong Zhang, Xiaojiang Du, Xiaofen Wang, Guowu
Yang, and Mohsen Guizani. File-centric multi-key aggregate
keyword searchable encryption for industrial internet of things.
IEEE Transactions on Industrial Informatics, 14(8):3648–3658, 2018.

[67] Rang Zhou, Xiaosong Zhang, Xiaofen Wang, Guowu Yang, and
Wanpeng Li. Keyword searchable encryption with fine-grained
forward secrecy for internet of thing data. In ICA3PP, pages 288–
302, 2018.

Javad Ghareh Chamani received his M.Sc. de-
gree in software engineering from Sharif Uni-
versity of Technology, Iran, in 2014. He is cur-
rently pursuing a Dual Ph.D. degree at the Hong
Kong University of Science and Technology and
Sharif University of Technology. His research in-
terests include searchable encryption, database
security, data outsourcing, and secure cloud-
computing.

Yun Wang received a MPhil degree in computer
science and engineering from the Hong Kong
University of Science and Technology in 2020.
She is currently a PhD student at the Hong
Kong University of Science and Technology and
her research interests include cloud computing,
cloud security, and database outsourcing.

Dimitrios Papadopoulos is an assistant pro-
fessor at the Computer Science and Engineer-
ing Department of the Hong Kong University of
Science and Technology. He received his Ph.D.
in computer science from Boston University in
2016 and has published multiple papers in in-
ternational conferences and journals. His re-
search is focused on the development of cryp-
tographic protocols for verifiable computation,
zero-knowledge proofs, searchable encryption,
oblivious computation, and other applications.

Mingyang Zhang graduated from Tsinghua Uni-
versity, China in 2018 with a master’s degree,
and is working at Huawei’s Poisson Lab as a
blockchain software engineer.

Rasool Jalili received his Ph.D. in computer
science from University of Sydney, Australia, in
1995. He then joined the Department of Com-
puter Engineering, Sharif University of Technol-
ogy in 1995. He has published more than 140
papers in international journals and conference
proceedings. He is now an associate profes-
sor,doing research in the areas of computer
dependability and security, access control, dis-
tributed systems, and database systems in his
Data and Network Security Laboratory.

1

APPENDIX
APPENDIX A
OMAP
The OMAP of [60] is based on storing an AVL-tree in-
side PathORAM [47]. Each AVL-tree node stores a key, a
value, and some information about corresponding PathO-
RAM nodes. Each OMAP find/insert operation consists of
a logarithmic number of PathORAM accesses to traverse
the height of the AVL-tree including dummy accesses, if
necessary, to reach maximum height. In what follows, we
explain this OMAP API briefly. We refer interested readers
to [60] for more detailed descriptions.
• (T, root) ← SETUP(1λ, N): Given security parameter λ,

and an upper bound N on the number of elements,
the client executes T ← ORAM.INITIALIZE(1λ, N) to
initialize an ORAM (PathORAM). Then, it creates the root
of the AVL tree by allocating an empty node rootID,
assigns a random position rootPos, and stores it in T .
Finally, the client uploads T to the server and maintains
the ORAM state and root information locally.

• (root′, data) ← FIND(key, root): Given the search key
key and the root root, it returns the corresponding value
data using an interactive protocol between the client and
server. In the first step, the client fetches the tree root and
compares the given key with the retrieved one. Based on
the comparison result, it retrieves the left or the right
child using the PathORAM position stored in the root
node. It repeats this process until the node with key key is
found (if it exists) and pads the number of accesses with
dummies to hide the depth at which the block was found.
Next, all the fetched nodes are re-mapped to new random
positions in the PathORAM, re-encrypted, and sent to the
server with PathORAM eviction. The client also updates
its local state and root information.

• root′ ← INSERT(key, val, root): Given a key-value pair
(key, val) and root, it inserts this entry to the map, in a
similar manner as FIND except that it creates a new node
for the entry. After insertion, it may have to execute a
BALANCE sub-protocol to re-balance the AVL tree.

APPENDIX B
PROOF OF THEOREM 1
B.1 O-µSE Proof

We prove the security of O-µSE using the following games.
It is important to note that all the following descriptions for
the simulator are related to honest users. For the corrupted
users, the simulator executes real operations because the
adversary has access to all inputs and states of the corrupted
users (all this information is given to the simulator as input).
Therefore, any execution other than the actual execution can
be distinguished by the adversary.
Game−0 This is the RealU,C,Σ game as defined in Figure 2.
Game−1 This game is the same as Game−0, except that

the values GK(w, cnt||b) for b = 0, 1 which are computed
during Update and Share operations are replaced by
values sampled uniformly at random from the range of G
({0, 1}λ′

). Since the output of G is used for addr construc-
tion in the search operation, the simulator makes a list I.

Algorithm 5 µSE Simulator

Setup(1λ, N, |W |, |U |, |D|) timestamp = 0
1: DictW← empty maps with size
2: UsersKeys← empty map with
3: Queues← empty map of |U | queues
4: AccessList← empty map of lists
5: I← empty list for bookkeeping
6: EDB ← (DictW, Queues, AccessList)
7: Return EDB

Enroll(1λ, u ∈ U)
1: if u is corrupted then
2: Ku ← Gen(1λ)
3: Set FileCnts[u] to 0 for all keywords
4: if u is OMAP-Based then
5: UsersKeys[u]= Ku; Run OMAP.SETUP(1λ, |W |)
6: Return Ku, the OMAP and its key
7: else
8: K

′

u ← KeyGen(1λ); UsersKeys[u]= (Ku,K
′

u)
9: Return (Ku,K

′

u)

10: else if u is OMAP-Based then
11: Return simulated OMAP.SETUP(1λ, |W |)
12: else K

′

u ← KeyGen(1λ); UsersKeys[u]= K
′

u

Share(id, u,KwLeakage(u, id, t),mod)
1: AccessList[id]← AccessList[id] ∪{u}
2: KeyValues←⊥; CntDiffs←⊥
3: Load Ku,K

′

u from UsersKeys[u] based on u type
4: if u is corrupted then
5: for w in Kwt(id) do
6: if u.type is OMAP-based then
7: if OMAPu[w] = ⊥ then OMAPu[w]=0
8: OMAPu[w]++ ; cnt← OMAPu[w]
9: else if u.type is Queue-based then

10: if FileCnts[u][w] = ⊥ then FileCnts[u][w] = 0

11: FileCnts[u][w]++ ; cnt← FileCnts[u][w]
12: CntDiffs← CntDiffs ∪ (u,EncK′

u
(w, cnt))

13: addr = GKu(w, cnt||0)
14: val = (id||add)⊕GKu(w, cnt||1)
15: KeyValues← KeyValues ∪ (addr, val)

16: else
17: for 1 to |Kwt(id)| do
18: if u.type is OMAP-based then
19: execute OMAP simulator
20: else if u.type is Queue-based then
21: CntDiffs← CntDiffs ∪ (u,EncK′

u
(0))

22: addr
$←− {0, 1}λ′

; val $←− {0, 1}λ′

23: I[timestamp, u]=(addr, val); timestamp++
24: KeyValues← KeyValues ∪ (addr, val)

25: Return KeyValues, CntDiffs, and (u, id)

Let us assume that the timestamp of the update/share is
i. The simulator stores entry (addr, val, u, w, id, op, type)
in the i−th cell (timestamp) of I for all u ∈ AccList(id)
and all w ∈ WList in Update and for all w ∈ Kwt(id)
in Share, where type is share or update and op is add or
del. During Unshare, the simulator only removes the user

2

Algorithm 6 µSE Simulator

UnShare(id, u)
1: AccessList[id]← AccessList[id] \ {u}

Update(id,WLeakage(u,WList), op,AccList(id))
1: userList← AccessList[id]
2: KeyValues←⊥; CntDiffs←⊥
3: for u in userList do
4: Load Ku, K

′

u from UsersKeys[u] based on u type
5: if u is corrupted then
6: for w in WList do
7: if u.type is OMAP-based then
8: if OMAPu[w] = ⊥ then OMAPu[w]=0
9: OMAPu[w]++ ; cnt← OMAPu[w]

10: else if u.type is Queue-based then
11: if FileCnts[u][w] = ⊥ then
12: FileCnts[u][w] = 0

13: FileCnts[u][w]++ ; cnt← FileCnts[u][w]
14: CntDiffs← CntDiffs ∪ (u,EncK′

u
(w, cnt))

15: addr = GKu
(w, cnt||0)

16: val = (id||op)⊕GKu
(w, cnt||1)

17: KeyValues← KeyValues ∪ (addr, val)

18: else
19: for 1 to |WList| do
20: if u.type is OMAP-based then
21: Execute OMAP simulator
22: else if u.type is Queue-based then
23: CntDiffs← CntDiffs ∪ (u,EncK′

u
(0))

24: addr
$←− {0, 1}λ′

; val $←− {0, 1}λ′

25: KeyValues← KeyValues ∪ (addr, val)
26: I[timestamp, u]=(addr, val); timestamp++
27: Return KeyValues and CntDiffs.

Search(u,Time(w, u),Update(w, u), SrchLeakage(w, u))
1: TList = { }
2: if u is corrupted and u.type is OMAP-based then
3: cnt← OMAPu[w]
4: else if u is honest and u.type is OMAP-based then
5: Execute OMAP simulator
6: else if u.type is Queue-based then
7: fetch Queues[u] from the server
8: if u is corrupted then
9: for i = 1 to FileCnt[u][w] do

10: TList = TList ∪ {GKu(w, i||0)}
11: else
12: TList←Extract addrs from list I using Update(w, u)
13: Return TList and the result R using Time(u,w)

from the access list of the target file. In a search operation
for keyword w, it performs a scan over I to identify the
entries that match w (instead of creating TList by PRF
evaluation) and sends their corresponding addrs to the
server. Furthermore, it constructs set R which contains
files currently containing the target keyword for the target
user and sends R to the server too. Since in Game−0 the
PRF is never computed on the same input twice during
updates and shares, Game−1 is indistinguishable from

Game−0 from the security of the PRF.
Game−2 This game is the same as Game−1, except that

all OMAP operations (SETUP, INSERT, and FIND) are re-
placed with corresponding OMAP simulated operations
for each user, computed by the OMAP simulators that
exist from the OMAP security. The simulator also expands
list I of Game−1 to store all the information about in-
sertions and modifications of files (such as update time
and file creation time) during Update and Share. During
search operations, first the simulator executes the OMAP
simulator find. Furthermore, the counter of the target
keyword in the search operation (which was previously
retrieved from OMAP) is derived from I. Specifically, it
scans I to extract addrs related to the target user and
target keyword and sends the corresponding entries to the
server. Finally, it scans I and extracts search result R (files
contain search keyword for target user). Since OMAP is
secure, Game−2 is indistinguishable from Game−1.

Game−3 This game is the same as Game−2, except that
we remove w and id from table I. The latter was used in
Update/Share operations to construct val by computing
id||op ⊕ r, where r was chosen uniformly at random.
Since the output of such XOR operations is also dis-
tributed uniformly at random, we can replace val by a
value sampled uniformly at random. Therefore, during
the update/share, there would not be any need for id
anymore. During the search, we assume that the simula-
tor gets some external information including Time(w, u)
and Update(w, u). Based on these, it uses Update(w, u)
to find all addrs and uses Time(w, u) to find R. Observe
that Time(w, u), Update(w, u), and the modified version
of I (which does not have w and id) provide exactly
the same information as Game−2. Therefore, Game−3
is indistinguishable from Game−2.

Game−4 This is IdealU,C,Σ as defined in Figure 3 where the
Sim runs the code described in the previous game.

The pseudocode of the µSE simulator for both honest and
corrupted users is presented in Algorithms 5 and 6.

B.2 Q-µSE Proof

The proof of Q-µSE is the same as O-µSE, except that
in Game−2, instead of simulating OMAP we replace all
encryptions of counter updates with encryptions of 0’s. The
games for the Q-µSE security proof are as follows:

Game−0 This is the RealUC,Σ game as defined in Figure 2.
Game−1 The same as Game−1 in Appendix B.1.
Game−2 This game is the same as Game−1, except that

during Update/Share it sends encryptions of 0s for all
users in AccList(id) to the server. During Search oper-
ations, first it retrieves these “encrypted” queues. Then,
it scans I to extract addrs of updates that have been
executed for the target user and target keyword to send
to the server. Finally, it scans I to extract the set R which
contains files currently containing the target keyword
for the user. Game−2 is indistinguishable from Game−1
from the semantic security of the encryption scheme.

Game−3 The same changes to Game−2 as those described
in Game−3 in Appendix B.1.

Game−4 Same as Game−4 in Appendix B.1.

3

APPENDIX C
HYPERLEDGER FABRIC PSEUDOCODE

To implement verifiable µSE in Hyperledger Fabric, we
need to define three components in the Fabric architec-
ture. (i) Model defines the entities and their relation in the
blockchain. (ii) Permission rules describe the resources each
participant has access to. (iii) Transaction logic explains the
operations that need to be executed for each blockchain
transaction. The pseudocode of these components for ver-
ifiable µSE are provided in Algorithms 7, 8 and 9.

Algorithm 7 Hyperledger Fabric Model

1: asset MerkleRoot identified by rootId {
2: o String rootId
3: o String rootHash
4: → Owner owner
5: }
6: participant Owner identified by ownerId {
7: o String ownerId
8: o String secret
9: }

10: participant Client identified by clientId {
11: o String clientId
12: }
13: transaction ChangeRoot {
14: →MerkleRoot root
15: o String newHash
16: o String secret
17: }
18: event RootChangeNotification {
19: →MerkleRoot root
20: }

Algorithm 8 µSE Transaction Logic

1: function changeRoot(rootChange) {
2: if (rootChange.secret == rootChange.root.owner.secret){
3: rootChange.root.rootHash = rootChange.newHash;

. Update root hash
4: return getAssetRegistry(”MerkleRoot”)

.then(function(assetRegistry){
{return assetRegistry.update(rootChange.root);})

.then(function(){
{var event = getFactory().newEvent(

”RootChangeNotification”); . Create event
event.root = rootChange.root;
emit(event);}); . Fire off the event

5: }}

Algorithm 9 Hyperledger Fabric Permissions

1: rule EveryoneAccessSystemRessources {
2: description: ”Grant r/c access to system resources”
3: participant: ”**”
4: operation: READ, CREATE
5: resource: ”org.hyperledger.composer.system.**”
6: action: ALLOW
7: }
8: rule OwnerAccessChangeroot {
9: description: ”Grant owner access to create ChangeRoot”

10: participant: ”Owner”
11: operation: CREATE
12: resource: ”ChangeRoot”
13: action: ALLOW
14: }
15: rule OwnerAccessItsObject {
16: description: ”Grant owner u/c access to its own record”
17: participant(t): ”Owner”
18: operation: UPDATE, CREATE
19: resource(v): ”Owner”
20: condition: (v.getIdentifier() == t.getIdentifier())
21: action: ALLOW
22: }
23: rule OwnerAccessItsMerkleTree {
24: description: ”Grant owner r/u/c to its Merkle tree”
25: participant(t): ”Owner”
26: operation: READ,UPDATE, CREATE
27: resource(v): ”MerkleRoot”
28: condition: (v.owner.getIdentifier() == t.getIdentifier())
29: action: ALLOW
30: }
31: rule ClientAccessMerkleRoot {
32: description: ”Grant client read access to Merkle trees”
33: participant: ”Client”
34: operation: READ
35: resource: ”MerkleRoot”
36: action: ALLOW
37: }

	Introduction
	Our Results
	Overview of Techniques & Challenges

	Related Work
	Cryptographic Preliminaries
	DMUSSE and Verifiability Definitions
	DMUSSE Definition
	Security vs. Corrupted Participants
	Forward and Backward Privacy
	Verifiability

	SE Construction
	OMAP-based SE
	Queue-based SE
	Revoking Document Access
	Security Analysis and Asymptotic Efficiency

	Verifiable SE
	Deploying Verifiable SE on Hyperledger Fabric

	Experimental Evaluation
	Stand-Alone Machine Measurements
	End-to-End Execution Time with Fabric
	Comparison with Previous Static MUSSE Schemes
	Discussion

	Conclusion
	References
	Biographies
	Javad Ghareh Chamani
	Yun Wang
	Dimitrios Papadopoulos
	Mingyang Zhang
	Rasool Jalili

	Appendix A: OMAP
	Appendix B: Proof of Theorem 1
	O-SE Proof
	Q-SE Proof

	Appendix C: Hyperledger Fabric Pseudocode

