
Hawk: Module LIP makes Lattice Signatures
Fast, Compact and Simple

Léo Ducas1,2, Eamonn W. Postlethwaite1, Ludo N. Pulles1, Wessel van
Woerden1

1 CWI, Cryptology Group, Amsterdam, the Netherlands
2 Mathematical Institute, Leiden University, Leiden, The Netherlands

{ewp,lnp}@cwi.nl

Abstract. We propose the signature scheme Hawk, a concrete instan-
tiation of proposals to use the Lattice Isomorphism Problem (LIP) as a
foundation for cryptography that focuses on simplicity. This simplicity
stems from LIP, which allows the use of lattices such as Zn, leading to
signature algorithms with no floats, no rejection sampling, and compact
precomputed distributions. Such design features are desirable for con-
strained devices, and when computing signatures inside FHE or MPC.
The most significant change from recent LIP proposals is the use of mod-
ule lattices, reusing algorithms and ideas from NTRUSign and Falcon.
Its simplicity makes Hawk competitive. We provide cryptanalysis with
experimental evidence for the design of Hawk and implement two pa-
rameter sets, Hawk-512 and Hawk-1024. Signing using Hawk-512 and
Hawk-1024 is four times faster than Falcon on x86 architectures, pro-
duces signatures that are about 15% more compact, and is slightly more
secure against forgeries by lattice reduction attacks. When floating-points
are unavailable, Hawk signs 15 times faster than Falcon.
We provide a worst case to average case reduction for module LIP. For
certain parametrisations of Hawk this applies to secret key recovery and
we reduce signature forgery in the random oracle model to a new problem
called the one more short vector problem.
Keywords: Post-Quantum Cryptography, Signatures, Module Lattice
Isomorphism Problem, Concrete Design, Quadratic Forms.

1 Introduction

Background. Currently the most efficient lattice based signature scheme, and
more generally, one of the most efficient post-quantum signature schemes, is
Falcon [46]. Like its predecessor NTRUsign it has a hash-then-sign design,
but fixes the issue of signature transcript leakage [40] via Discrete Gaussian
Sampling (DGS) [27].

Since its introduction much progress has been made into making DGS more
efficient [18,17,26], in particular by exploiting ideal or module structures [41,20]
such as those of NTRU lattices. Nonetheless, DGS remains particularly difficult
to implement securely and efficiently, especially on constrained devices, and even
more so when side-channel attacks are a concern. In particular, DGS involves

2 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

high precision floating-point linear algebra and the evaluation of transcendental
functions. A decade of research has not provided an entirely satisfactory solution
to such issues.

Recently an idea emerged: use a simple lattice, maybe as simple as Zn [21,11].
More precisely, use a hidden rotation of it. The idea is to base security on the
problem of finding isometries between lattices, i.e. the Lattice Isomorphism Prob-
lem (LIP). While this is not only motivation for LIP based cryptography, it was
noted in [21] that this avoids the difficult DGS step above: sampling from the
Zn lattice is much easier.

This work. The work [21], introducing the LIP based cryptography framework,
mostly focused on theoretical and asymptotic results. In our work we give a
concrete instantiation of their approach, based on simple module lattices, to see
if it is practical and competitive. An attractive choice would be to consider the
most structured option, namely modules of rank one (ideal lattices) over number
fields, however this restricted version of LIP is known to be solvable in classical
polynomial time [28,33].

Instead we work with rank two modules, for which the LIP problem has
already received some cryptanalytic attention [47]. It was quickly noted that
NTRUsign signatures [30] were leaking the Gram matrix of the secret key;
recovering the secret key from this Gram matrix is precisely LIP. While the
NTRUsign scheme was ultimately broken, it was only by exploiting a stronger
form of leakage, not by solving LIP. In conclusion this module LIP problem
is plausibly hard and is clear and simple to state, and therefore appears as a
legitimate basis for cryptography.

We consider the ring R = Z[X]/(Xn + 1) for n a power of two, that is the
ring of integers for some power of two cyclotomic field. This ring is naturally
viewed as an orthogonal lattice. We must then generate a basis of R2 following
some distribution, which we achieve by mimicking NTRUsign key generation
and setting the modulus q = 1. This allows us to make use of efficient techniques
from the literature [30,42,46]. Following the ideas presented in [21] we are able
to show that sampling our keys in this manner gives a worst case to average case
reduction for module LIP. However, this reduction is limited to a large choice
of the parameter that determines the sampling of the public key. In Hawk we
make more aggressive choices based on heuristic and experimental cryptanalysis.

The original design of [21] hashed a message to {0, 1q , . . . ,
q−1
q }

2n
for some

q = poly(n). Another optimisation we propose is to hash the message to a smaller
target space {0, 12}

2n to further simplify Gaussian sampling. For this variant we
provide a reduction in the programmable random oracle model to a new problem:
one more (approximate) SVP. This reduction also requires a specific choice of
parameters, and again Hawk makes more aggressive choices. This problem is
similar to the recently introduced one more inhomogenous short integer solution
problem [1] used to design blind signature schemes from lattices.

We also propose efficient encodings for the public key and signatures of our
scheme. Decoding the keys is cheap and recovering redundant parts is done ef-

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 3

[46] This work Gain [46] This work Gain
Falcon Hawk

(Falcon
Hawk

)
Falcon Hawk

(Falcon
Hawk

)
512 512 1024 1024

AVX2 KGen 7.95ms 4.25ms ×1.87 23.60ms 17.88ms ×1.32
Reference KGen 19.32ms 13.14ms ×1.47 54.65ms 41.39ms ×1.32

AVX2 Sign 193 µs 50µs × 3.9 382 µs 99µs × 3.9
Reference Sign 2449 µs 168 µs ×14.6 5273 µs 343 µs ×15.4

AVX2 Vf 50 µs 19µs ×2.63 99 µs 46µs ×2.15
Reference Vf 53 µs 178 µs ×0.30 105 µs 392 µs ×0.27

Secret key (bytes) 1281 1153 ×1.11 2305 2561 ×0.90
Public key (bytes) 897 1006± 6 ×0.89 1793 2329± 11 ×0.77
Signature (bytes) 652± 3 542± 4 ×1.21 1261± 4 1195± 6 ×1.05

Table 1: Performance of Falcon and Hawk for n = 512, 1024 on an Intel®
CoreTM i5-4590 @3.30GHz processor with TurboBoost disabled. Hawk was com-
piled with -O2 and Falcon with -O3. The Sign timings correspond to batch
usage; “Gain” is more favourable for Hawk in unbatched usage, see Section 5.4.

ficiently with a few number theoretic or fast Fourier transforms. Moreover, we
significantly compress the signature by dropping half of it, which is effectively
computationally free. Decompressing a signature uses Babai’s round-off algo-
rithm [7]. This decompression uses public data during verification, so it is not
a target for side-channel or statistical attacks and does not require masking. Its
use of rounding also allows us to avoid the need for high precision floats.

Performance and comparison. Following Falcon, we propose a reference im-
plementation and an AVX2 optimised implementation. The reference implemen-
tation makes no use of floating-points (though it emulates them during key
generation), whereas the AVX2 version uses floating-points.

On AVX2 CPUs, Hawk-512 outperforms Falcon-512 by a factor of about
2 for key generation and verification and a factor of 4 for signing. The situa-
tion is similar for Hawk-1024. Without floats, Hawk signs 15 times faster than
Falcon, because Hawk uses number theoretic transforms in signing while Fal-
con emulates floating-points. The verification contains a fast decompression that
uses fixed-point arithmetic but uses two number theoretic transforms making it
slightly slower than Falcon. Because the numbers are smaller in Hawk’s secret
key, key generation is faster with Hawk.

Regarding compactness, Hawk-512 signatures are about 110 bytes shorter,
but public keys about 110 bytes larger, than Falcon-512; this puts Hawk-512
on par for certificate chain applications, and should be advantageous for other
applications. Additionally, secret keys are 128 bytes smaller. In Hawk-1024 we
save a little on signatures, but our keys are larger.

4 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We also note that Hawk resists forgery attacks a little better than Falcon.
This is a direct result of being able to use the secret key to efficiently sample
slightly smaller signatures in Z2n than is possible in an NTRU lattice.

The recent variant of Falcon named Mitaka [23] also aims to make the
signing procedure simpler and free from floating-point arithmetic. They achieve
this with some loss in the signing quality compared to Falcon which makes sig-
nature forgeries somewhat easier, but their floating-point implementation signs
twice as fast. In contrast, by using Z2n we obtain an even simpler sampler while
simultaneously improving the signing quality, efficiency and signature size.

Simplicity as a circuit. We claim that our signature scheme is simpler as a
circuit than Falcon and therefore expect the performance gap to be larger on
constrained architectures. In fact, we hope that Hawk or a variant of Hawk may
be simple enough to be implemented within a Fully Homomorphic Encryption
scheme for applications such as blind or threshold signatures [2]. It might also be
easier to mask against side-channel attacks, similarly to how the lack of floating-
points in the sampler simplifies the masking of MitakaZ [23, Sec. 7.3].

Implementation and source code. Our constant-time C implementation and aux-
iliary scripts are open source.1 Included is a SageMath implementation of Hawk.

Roadmap. Section 2 introduces some preliminaries. Section 3 introduces the
signature scheme Hawk. Section 4 details our concrete cryptanalytic model for
Hawk. Section 5 details the parameters for Hawk, its estimated security, and
explains implementation and performance details. Section 6 provides a worst
case to average case reduction for smLIP, the search module LIP problem that
underlies our key generation design. Appendix A examines the key generation
of Hawk and its relation to the smLIP reduction. Appendix B introduces the
one more SVP problem and reduces the strong forgery security of Hawk to it
for particular parametrisations. Appendix C discusses implementation details in
greater depth. Appendix D describes in detail the concrete security model of
Falcon and compares Hawk to it in this model.

1.1 Acknowledgments

The authors thank Nick Genise, Shane Gibbons, Thomas Prest, Noah Stephens-
Davidowitz and the anonymous reviewers for helpful discussions and useful feed-
back. W. vanWoerden was supported by the ERC-ADG-ALGSTRONGCRYPTO
project (no. 740972). The research of L. Ducas and E.W. Postlethwaite was
supported by the European Union’s H2020 Programme under PROMETHEUS
project (grant 780701). L. Ducas and L.N. Pulles were supported by the ERC-
StG-ARTICULATE project (no. 947821).

1 https://github.com/ludopulles/hawk-aux

https://github.com/ludopulles/hawk-aux

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 5

2 Preliminaries

We use bold lowercase letters v to denote column vectors. Bold uppercase letters
B represent matrices, and BT is the transpose. For a real matrix B let B̃ denote
the related Gram–Schmidt matrix. Let [n] = {1, . . . , n} for n ∈ Z≥1. Let log
without subscript denote the natural logarithm.

Lattices and quadratic forms. A full rank, n dimensional lattice Λ is a discrete
subgroup of Rn and is given by a basis B ∈ Rn×n of R-linearly independent
column vectors. A lattice defined by B is Λ(B) = {B · x : x ∈ Zn}. Denote
by λi(Λ) the ith minima of Λ. This is the smallest radius of a centred and
closed ball such that its intersection with Λ contains i linearly independent
vectors. Two bases B,B′ generate the same lattice if there exists a unimodular
matrix U ∈ GLn(Z) such that B ·U = B′. Two lattices Λ,Λ′ are isomorphic if
there exists an orthonormal transformation O ∈ On(R) such that O · Λ = Λ′.
Recovering this transformation is the Lattice Isomorphism Problem (LIP).

Definition 1 (Lattice Isomorphism Problem). Given two isomorphic lat-
tices Λ,Λ′, find O ∈ On(R) such that O · Λ = {O · v : v ∈ Λ} = Λ′.

If Λ,Λ′ are generated by B,B′ respectively, then they are isomorphic if there
exists an orthonormal transformation O ∈ On(R) and a unimodular matrix
U ∈ GLn(Z) such that O · B · U = B′. We can remove the real valued or-
thonormal transformation by moving to quadratic forms. A quadratic form is a
positive definite real symmetric matrix Q ∈ S>0

n (R). For any lattice basis B the
Gram matrix BTB, consisting of all pairwise inner products, is a quadratic form.
Conversely, given a quadratic form Q, Cholesky decomposition finds a basis BQ

such that BT
Q ·BQ = Q and BQ is an upper triangular matrix. Two quadratic

forms Q,Q′ ∈ S>0
n (R) are equivalent if there exists a unimodular U ∈ GLn(Z)

such that UT ·Q ·U = Q′. We have that two lattices are isomorphic if and only
if their Gram matrices are equivalent; this allows us to restate LIP.

Definition 2 (LIP, restated). Given two equivalent forms Q,Q′, find U ∈
GLn(Z) such that UT ·Q ·U = Q′.

The inner product with respect to Q ∈ S>0
n (R) is defined as 〈 · , · 〉Q : Rn ×

Rn → R, (x,y) 7→ xT ·Q · y. The norm with respect to Q ∈ S>0
n (R) is defined

as ‖x‖Q =
√
〈x,x〉Q. Note that for a basis B and vectors x,y ∈ Rn we have

〈Bx,By〉 = xTBTBy = 〈x,y〉BTB ,

and thus the geometry of Λ(B) is fully described by Q = BTB. Moving from lat-
tices to quadratic forms can be viewed as forgetting about the specific embedding
of the lattice in Rn, while maintaining all geometric information. Throughout
the paper we will talk about lattices and quadratic forms interchangeably.

6 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Discrete Gaussian sampling and smoothing. Given a parameter σ ∈ R>0, we
define the Gaussian mass ρσ : Rn → R, x 7→ exp

(
−‖x‖2/2σ2

)
. For any c ∈ Rn

we denote the discrete Gaussian distribution on Λ + c with parameter σ by
DΛ+c,σ which assigns the probability ρσ (x) /

∑
y∈Λ+c ρσ (y) to a point x ∈ Λ+c,

and zero otherwise. We also define a Gaussian mass with respect to Q ∈ S>0
n (R)

as ρQ,σ : Rn → R,x 7→ exp
(
−‖x‖2Q/2σ2

)
. For any c ∈ Rn we denote the

discrete Gaussian distribution on Zn + c with respect to Q and parameter σ by
DQ,Zn+c,σ, which assigns a probability ρQ,σ (x) /

∑
y∈Zn+c ρQ,σ (y) to a point

x ∈ Zn + c, and zero otherwise. If c ∈ Zn we write DQ,σ. If Q = BT ·B, note
that DQ,Zn+c,σ(x) = B−1 · DΛ(B)+B·c,σ(B · x), as ρQ,σ(x) = ρσ(B · x). When
σ is large enough compared to the maximum length of a Gram–Schmidt basis
vector, we can efficiently sample a discrete Gaussian.

Lemma 1 ([12, Lem. 2.3], adapted). There is a PPT algorithm that on
input a quadratic form Q ∈ S>0

n (R), c ∈ Rn and parameter σ ≥
∥∥∥B̃Q

∥∥∥ · (1/π) ·√
log(2n+ 4)/2 outputs a sample according to DQ,Zn+c,σ.

A discrete Gaussian has a similar tail bound to a continuous Gaussian.

Lemma 2 ([9, Lem. 1.5(ii)]). For any lattice Λ ⊂ Rn, point c ∈ Rn and
τ ≥ 1, we have

Pr
x∼DΛ+c,σ

[
‖x‖ > τσ

√
n
]
≤ 2

ρσ (Λ)

ρσ (Λ+ c)
· τne−n2 (τ2−1).

Definition 3. Let Λ̂ denote the dual of Λ. For ε > 0 we define the smoothing
parameter as

ηε(Λ) = argmin
σ>0

[
ρ 1

2πσ

(
Λ̂ \ {0}

)]
≤ ε.

Note that ηε is usually defined with respect to a width s =
√
2πσ. Here its value

is a factor
√
2π smaller than usual. If σ ≥ ηε(Λ) then DΛ+c,σ exhibits several

useful properties. For example, σ is close to the standard deviation of DΛ+c,σ,
with the closeness parametrised by ε, see [36, Lem. 4.3], and cosets have similar
weights. We may say σ is ‘above smoothing’ to refer to σ ≥ ηε(Λ) for some
implicit appropriate ε.

Lemma 3 ([36, Proof of Lem. 4.4]). For any lattice Λ ⊂ Rn, point c ∈ Rn,
and ε ∈ (0, 1), σ ≥ ηε(Λ), we have

(1− ε) ·
(√

2π · σ
)n

det(Λ)
≤ ρσ(Λ+ c) = ρQ,σ(Zn + c′) ≤ (1 + ε) ·

(√
2π · σ

)n
det(Λ)

,

where Q = BTB and c′ = B−1c for any basis B of Λ.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 7

Module lattices and Hermitian forms. A number field K is an algebraic extension
of Q of finite degree n = [K : Q]. We write OK for the ring of integers of a general
number field. In this work, we consider the cyclotomic field K = Q (ζ2n) =
Q
(
e−2πi/2n

) ∼= Q[X]/(Xn+1) where n ≥ 2 is a power of two. This is a CM field
and has conductor m = 2n. Many of the facts below are not true for general
number fields. The ring of integers R ∼= Z[X]/(Xn+1) of K, or any ideal of it, is a
rank n lattice. Indeed, consider its image under the embedding σ : K→ Cn, x 7→
(σ1(x), . . . , σn(x)). Here σ1, σ2, . . . , σn are the n embeddings of K into C, ordered
such that σi+n/2 = σi for i ∈ [n/2] (for m ≥ 3 cyclotomic fields have no real
embeddings). The subset

{
(x1, . . . , xn) ∈ Cn : ∀i ∈ [n/2], xi+n/2 = xi

}
⊂ Cn is

isomorphic as an inner product space to Rn [35, Sec. 2.1]. We implicitly use
this isomorphism and write σ : K→ Rn. We also have the coefficient embedding
vec : K → Qn, a0 + a1X + · · · + an−1X

n−1 7→ (a0, a1, . . . , an−1)
T
, which is an

additive group isomorphism.
The algebraic norm and trace are given by N(x) =

∏n
i=1 σi(x) and Tr(x) =∑n

i=1 σi(x) for x ∈ K. Since the σi are ring homomorphisms the algebraic norm
is multiplicative and the trace is additive. If x ∈ R then N(x) ,Tr(x) ∈ Z. The
embeddings enable us to view K as an inner product space over Q by defining
〈 · , · 〉 : K×K→ Q as

〈f, g〉 = 1

n
·
n∑
i=1

σi(f) · σi(g).

We renormalise by 1
n as there is an isometry, up to a scaling factor of n, from

the complex embedding to the coefficient embedding, i.e. we have 〈f, g〉 =
〈vec(f), vec(g)〉 with the right hand inner product over Rn. This gives a (geomet-
ric) norm on K as ‖ · ‖ : K→ Q, f 7→

√
〈f, f〉, which agrees with the Euclidean

norm of vec(f). As K is a CM field, it has an automorphism · ∗ : K→ K that acts
as complex conjugation on its embeddings, which we call the adjoint operator. It
is the unique automorphism satisfying σi(x∗) = σi(x) for all x ∈ K and i ∈ [n].
Therefore, we have 〈f, g〉 = Tr(f∗g) /n.

For any ` ∈ Z≥1, we define K` =

` times︷ ︸︸ ︷
K⊕ · · · ⊕K (and similarly R`, which is

an R-module). Extend vec : K` → Qn` in the natural way. We extend the inner
product and norm to vectors f ,g ∈ K` by

〈f ,g〉 =
∑̀
i=1

〈fi, gi〉 and ‖f‖ =
√
〈f , f〉.

We write rot(f) =
(
vec(f), vec(Xf), . . . , vec(Xn−1f)

)
∈ Qn×n for f ∈ K, which

is a basis for the lattice σ(f) given by the (possibly fractional) ideal (f), and
extend this to matrices B ∈ Kk×` in the natural way,

rot(B) =

rot(B11) · · · rot(B1`)
...

. . .
...

rot(Bk1) · · · rot(Bk`)

 .

8 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We now define a module lattice. Since R is the ring of integers of a number field,
it is a Dedekind domain and the notion of rank is well defined for R-modules.
Definition 4. Let M ⊂ Kk be an R-module of rank ` ≤ k and define the map
σ = (σ, . . . , σ) : Kk → Rnk, (x1, . . . , xk) 7→ (σ(x1), . . . , σ(xk)). The image σ(M)
is a rank n` lattice in Rnk which we call a module lattice.
We may refer to ‘the module latticeM ’ to mean σ(M). If B ∈ Kk×` is a basis for
an R-module M then rot(B) ∈ Qnk×n` is a basis for the module lattice σ(M).
For B ∈ Kk×` we write B∗ to denote the adjoint transpose, and given a vector
f ∈ K` we write f∗ for the adjoint transpose row vector.

Definition 5. For ` ≥ 1, the set of Hermitian forms H>0
` (K) consists of all

Q ∈ K`×` such that Q∗ = Q and Tr(v∗Qv) > 0 for all v ∈ K` \ {0}.
Equivalently, Q is a Hermitian form whenever rot(Q) is a quadratic form.

For B ∈ K`×` the Gram matrix B∗B is a Hermitian form. Similar to the general
case, we define an inner product with respect to a Hermitian form Q as

〈f ,g〉Q =
1

n
· Tr(f∗Qg) and ‖f‖Q =

√
〈f , f〉Q.

Once again, observe that for any B we have 〈Bf ,Bg〉 = 〈f ,g〉B∗B and ‖Bf‖ =
‖f‖B∗B. We use the above to define a discrete Gaussian over Hermitian forms.
For some Q ∈ H>0

` (K) and x ∈ K` set DQ,σ(x) = Drot(Q),σ(vec(x)). Due to
our choice of K and the definition of our norm, this is equivalent to the natural
definition that follows from ρQ,σ : K` → R, x 7→ exp(−‖x‖2Q/2σ2). Note that
the normalised trace satisfies 〈1, z〉 = Tr(z) /n, which evaluates a polynomial
z = z0 + z1X + · · ·+ zn−1X

n−1 to its constant coefficient z0.

Signature scheme. A signature scheme is a triple of PPT algorithms Π =
(KGen,Sign,Vf) such that Vf is deterministic. On input 1n, KGen outputs a
public and secret key (pk, sk). We assume n can be determined from either key.
On input sk and a message m from a message space that may depend on pk,
Sign outputs a signature sig. On input pk, a message m and a signature sig, Vf
outputs a bit b ∈ {0, 1}. We say sig is a valid signature on m if and only if b = 1.

In our practical cryptanalysis of Section 4 we discuss two types of forgery
an adversary may produce, strong and weak. A strong forgery is a signature on
a message for which an adversary does not know a signature, whereas a weak
forgery is a signature on a message for which an adversary may know signatures.
We call a signature scheme Π for which an adversary cannot produce a weak
forgery strongly unforgeable, and a signature scheme for which an adversary
cannot produce a strong forgery weakly unforgeable. In Appendix B we consider
signature security in a formal game based model.

3 Scheme

In this section we present Hawk.2 We first give a version of Hawk that performs
no compression on its signatures for simplicity, we call this uncompressed Hawk.
2 See https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 9

We then introduce (compressed) Hawk and discuss how the security of Hawk
directly reduces to that of the uncompressed Hawk.

3.1 Uncompressed Hawk

The uncompressed version of our signature scheme is based on the scheme pre-
sented in [21, Sec. 6], but is adapted to number rings for efficiency. The scheme
uses the number ring R = Z[X]/(Xn + 1) with n ≥ 2 a power of two, the
ring of integers of the number field Q(ζ2n). We use the simplest rank 2 module
lattice, R2 ∼= Z2n. We implicitly move between R2 and Z2n via the coefficient
embedding. The secret key is some basis B ∈ SL2(R) where B (resp. rot(B)) gen-
erates R2 (resp. Z2n). In the context of [21, Sec. 6] this matrix represents a basis
transformation applied to the trivial basis I2(K) of R2. The public key is the
Hermitian form Q = B∗ ·B associated to the basis B. A signature for a message
m is generated by first hashing m and a salt r to a point h = (h0, h1)

T ∈ {0, 1}2n.
Applying the transformation B to 1

2h gives us a target 1
2B · h. We then sample

a short element x in the target’s coset R2+ 1
2B ·h via discrete Gaussian samples

on Z and Z + 1/2. By applying the inverse transformation B−1 we compute
the signature s = 1

2h ± B−1x ∈ R2. This is close to 1
2h with respect to ‖ · ‖Q,

and the sign is chosen to prevent weak forgeries, see Algorithm 2 and below.
See Figure 1 for a visualisation when n = 1. Verification checks if the distance∥∥ 1
2h− s

∥∥
Q

between s and 1
2h is not too large, which only requires the public

key Q = B∗B and not the secret key B. We have the following parameters:

1. σpk: controls the length of (f, g)T, the first basis vector of B,
2. σsec: controls the lower bound on the acceptable length of (f, g)T,
3. σsign: controls the length of of a short coset vector,
4. σver: controls the acceptable distance between signatures and halved hashes,
5. saltlen: controls the probability of hash collisions.

Algorithm 1 Key generation for Hawk: KGen(1n)

1: Sample f, g ∈ R with coefficients from DZ,σpk
2: q00 = f∗f + g∗g
3: if 2 | N(f) or 2 | N(g) or ‖(f, g)‖2 ≤ σ2

sec · 2n then
4: restart
5: (F,G)T ← TowerSolveIn,1(f, g) [42, Alg. 4], if ⊥, restart
6: (F,G)T ← (F,G)T − ffNPR

(
f∗F+g∗G

q00
,ffLDL∗R(q00)

)
· (f, g)T [20]

7: B =

(
f F
g G

)
.

8: Q =

(
q00 q01
q10 q11

)
= B∗ ·B.

9: return (pk, sk) = (Q,B)

10 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

h

1
2
h

s

h− s

1
2
Bh

B

B−1 x

Fig. 1: Illustration of signing. First h is sampled (left), then B is applied, a short
lattice point x is sampled from a discrete Gaussian on Z2n + 1

2B · h (right).
Finally B−1 applied to x is subtracted from 1

2h to obtain a lattice point s close
to h/2 in ‖ · ‖Q. We then add h− 2s to ensure we satisfy sym-break(h1 − 2s1).

Algorithm 2 Signing for Hawk: SignB(m)

1: r← U({0, 1}saltlen)
2: h← H (m‖r)
3: t← B · h (mod 2)
4: x← DZ2n+ 1

2
t,σsign

5: if ‖x‖2 > σ2
ver · 2n then

6: restart (optional, see Section 5.3, § Failure checks.)
7: s = (s0, s1)

T = 1
2
h−B−1x (parse x ∈ R2 via vec−1.)

8: if sym-break(h1 − 2s1) is False then
9: s← h− s

10: return sig = (r, s)

Algorithm 3 Verification for Hawk: VfQ(m, sig)

1: (r, s)← sig
2: h← H (m‖r)
3: if s ∈ R2 and sym-break(h1 − 2s1) is True and

∥∥h
2
− s
∥∥2
Q
≤ σ2

ver · 2n then
4: return 1
5: else
6: return 0

For uncompressed Hawk we present KGen in Algorithm 1, Sign in Algo-
rithm 2 and Vf in Algorithm 3. The security parameter n is a power of two and
we assume the internal parameters can be computed from it. We use previous
work [42, Alg. 4] to generate the unimodular transformation B efficiently, by
sampling the first basis vector (f, g)T, and then completing it (if possible) with

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 11

a second basis vector (F,G)
T such that detB = 1. We combine this with the

fast Babai reduction of [20] to obtain a shorter second basis vector (F,G)
T. In

KGen checks are performed prior to completing the basis B. In TowerSolveI [42]
it is necessary for N(f) or N(g) to be an odd integer. We require both to be odd
to use an optimised constant-time greatest common divisor algorithm, identical
to the Falcon reference implementation. Also, we require the squared norm of
(f, g)

T to be longer than σ2
sec · 2n for our concrete cryptanalysis, see Section 4.

Note that the signer has B−1 =

(
G −F
−g f

)
since fG− gF = detB = 1.

In Sign and Vf we check the condition sym-break(h1−2s1), which is required
for strong unforgeability. Without it sig′ = (r,h− s), which can be constructed
from public values, is another valid signature on m if sig = (r, s) is. Given e ∈ R,
we define sym-break(e) to be True if and only if e 6= 0 and the first non zero
coefficient of vec(e) is positive. Checking this condition on h1−2s1 in Vf prevents
a weak forgery attack.

Signature correctness. Assume Sign is called with message m and outputs sig =
(r, s). First, note B−1x ∈ R2 + 1

2h and 1
2h± 1

2h ∈ R2, so s = 1
2h±B−1x ∈ R2.

Second, suppose sym-break(h1 − 2s1) is not satisfied during verification. By
lines 8 and 9 of Algorithm 2, this means sym-break(h1−2s1) and sym-break(2s1−
h1) are both False, therefore h1 = 2s1. Since h ∈ {0, 1}2n, this implies h1 = 0,
i.e. we have found a preimage of (h0, 0)

T for H. By choosing a preimage resistant
H or modelling it as a random oracle, this happens with negl(n) probability. We
allow this failure probability to simplify (compressed) Hawk.

The signing algorithm terminates only if the condition on line 5 is False.
Therefore ‖x‖2 ≤ σ2

ver ·2n. Thus during verification
∥∥h

2 − s
∥∥2
Q

=
∥∥B(h2 − s

)∥∥2 =

‖±x‖2 ≤ σ2
ver · 2n, with −x given by line 9 of Sign.

Storing pk and sk. We now consider how to efficiently store pk and sk, that is,

Q =

(
q00 q01
q10 q11

)
= B∗ ·B and B =

(
f F
g G

)
respectively. For B it is sufficient to only store f and g, but this requires the
computationally expensive recovery of F and G in Sign. We note that computing
F,G is the most expensive part of KGen. Instead, one stores f, g and F since G
can be recovered efficiently from fG− gF = 1. The coefficients of f, g and F are
small so we use a simple encoding with constant-time decoding for them.

For Q by construction we have q10 = q∗01 so one may simply drop q10. More-
over, since det(B) = 1 we have q00q11 − q01q10 = detQ = det(B∗) det(B) = 1,
therefore q11 can be dropped and reconstructed as q11 =

1+q∗01·q01
q00

. In addition,
q00 is self-adjoint and therefore only the first half of its coefficients need to be
encoded. More details are given in Section 5.2.

12 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

3.2 (Compressed) Hawk

Hawk is obtained by dropping s0 from a signature s = (s0, s1)
T in Sign and then

reconstructing it in Vf using public values Q and h. There is a probability that
s0 is not correctly recovered, but it is kept small by rejecting ‘bad’ key pairs in
KGen. In Vf, s0 is recovered by finding a value that makes 1

2h − (s0, s1)
T short

with respect to ‖ · ‖Q. Two ways to reconstruct s0 are Babai’s round-off algorithm
and Babai’s Nearest Plane algorithm [7]. Given that we work with respect to the
norm induced by Q, we must adapt one of these algorithms to quadratic forms.
Because of its simplicity and good performance, we use round-off for Hawk.
Specifically, we use the following to reconstruct s0.

s′0 =

⌈
h0
2

+
q01
q00

(
h1
2
− s1

)⌋
, (1)

where the rounding is coefficientwise and dxc = z for x ∈
(
z − 1

2 , z +
1
2

]
and

z ∈ Z. Hence Vf is adapted to read a signature sig = (r, s1) and reconstruct s′0
using (1), before setting s = (s′0, s1)

T. Observe that s′0 = s0 if and only if⌈
q00
(
h0

2 − s0
)
+ q01

(
h1

2 − s1
)

q00

⌋
= 0.

The fraction inside the rounding function can be rewritten using (q00, q01) =

(f∗, g∗) ·B and B ·
(
h
2 − s

)
= (x0, x1)

T as f∗x0+g
∗x1

f∗f+g∗g . Thus, we certainly recover
the correct s0 from Q, h and s1 if

f∗x0 + g∗x1
f∗f + g∗g

∈
(
−1

2
,
1

2

)n
. (2)

Intuitively, when (f, g) is sampled such that the Euclidean norm of (f∗/q00, g∗/q00)
is sufficiently small, this recovery works almost always. Note∥∥∥∥(f∗q00 , g

∗

q00

)∥∥∥∥2 =
1

n
Tr
(
f∗f + g∗g

q200

)
=

1

n
Tr
(
q−100

)
= 〈1, q−100 〉. (3)

Hence we choose a bound νdec such that decompression works almost always for
keys satisfying 〈1, q−100 〉 < νdec. We provide a computation and value for νdec in
Section 5.1. In summary, Algorithms 1, 2 and 3 are changed as follows for Hawk.

1. In KGen, restart if 〈1, q−100 〉 ≥ νdec.
2. In Sign, restart if x = (x0, x1)

T does not satisfy (2).
3. In Sign, return a signature as (r, s1) instead of (r, s) = (r, (s0, s1)

T
).

4. In Vf, given a signature (r, s1) reconstruct s′0 with (1) and set s = (s′0, s1)
T.

Given the above, a reconstructed signature is correct. In practice we choose
νdec such that (2) is also satisfied except with small probability and forego item
2. in the list, see Section 5.3.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 13

Security relation to the uncompressed variant Note that an adversary that can
create a forgery (strong or weak) against Hawk can also create a forgery (strong
or weak) against uncompressed Hawk. Indeed, if sig = (r, s1) is a forgery against
Hawk then this implies sig = (r, (s′0, s1)

T
) is a forgery against uncompressed

Hawk. Only public quantities are required to recover s′0. Therefore, throughout
we consider the security of uncompressed Hawk. In Appendix B we further
reduce the forgery security of uncompressed Hawk to an assumption called the
one more short vector problem, or omSVP.

4 Cryptanalysis

In this section we provide a concrete cryptanalysis of Hawk. Whereas the formal
security arguments we make in Section 6 and Appendix B increase our confidence
in the design of Hawk, our results here aid us in choosing parameter sets that are
efficient. Throughout we consider uncompressed Hawk. We consider recovering
the secret key from public information and forging a new signature given at
most qs = 264 signatures. We report the various parameters, probabilities and
blocksizes output by our cryptanalysis in Table 2.

We express the constraints on various quantities in our scheme in terms of
Gaussian parameters σ•, even if they are not quantities sampled from a distri-
bution. This allows us to present necessary relationships between these quan-
tities as in Figure 2. In particular for x ← DZd,σ, with σ above smoothing,
E[‖x‖] ≈ σ

√
d [36, Sec. 4]. For example, the verification of signatures is de-

termined by a distance, say `. Instead of referring to `, we use the shorthand
σver = `/

√
d.

σpk ≥ σsec ≥ σver ≥ σsign ≥ σsec

2

: required for security

: required for efficiency

Sec 4.1 (statistical)Sec 4.2 (cryptanalysis)

Sec 5.1 Sec 5.1 Sec 4.2Sec 4.3

Sec 4.3

σ2
sec + σ2

sign > σ2
ver

Fig. 2: A summary of the necessary relationships between the various σ•.

14 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We stress that the relations of Figure 2 are necessary, under our experimental
analysis, conditions for security – any selection must also satisfy the concrete
cryptanalysis below. As a short introduction, σsign is our fundamental parameter,
and we select it first. It ensures that our scheme does not suffer from learning
attacks [40,19] if an adversary is given access to signature transcripts. We then
choose σpk which controls key generation in Algorithm 1. It must be large enough
that recovering the secret key is hard, and also that the cost of computing a
sufficiently good basis to aid with signature forgeries is hard. To this end we
heuristically estimate and verify experimentally σsec, a parameter that represents
the shortest a public basis can be before one recovers the secret key. Finally, σpk
and σver are chosen to ensure various rejection steps, in key generation and
signing respectively, do not occur too frequently, see Section 5.1. The condition
σ2
ver < σ2

sec + σ2
sign encodes the requirement for a good basis to not help with

signature forgeries.

4.1 Choosing σsign

We choose σsign large enough to avoid signatures leaking information about a
secret key. Following [46, Sec. 2.6], for security parameter λ in the face of an
adversary allowed qs signatures, it is enough to set

σsign ≥
1

π
·
√

log(4n(1 + 1/ε))

2
≥ ηε(Z2n),

for ε = 1/
√
qs · λ to lose a small constant number of bits of security. We note

that since we sample from Z2n we may use the orthogonal basis I2n(Z), and
thus the above inequality is also sufficient for efficient sampling via Lemma 1.
We ensure that, following the analysis of Falcon [46, Sec. 3.9.3], our proba-
bility distribution tables have a Rényi divergence at order 513 from their ideal
distributions of less than 1 + 2−79.3

4.2 Key Recovery

In Hawk, the problem of recovering the secret key B ∈ SL2(OK) from the public
key Q = B∗ · B is a (module) Lattice Isomorphism Problem. For the lattice
R2 ∼= Z2n it is equivalent to finding a U ∈ SL2(OK) such that U∗ ·Q ·U = I2(K),
i.e. reducing (any lattice basis corresponding to) Q to an orthonormal basis. As
mentioned in [21], all known algorithms to solve LIP for modules of rank at least
two require finding at least one shortest vector. Therefore we assume that the
best key recovery attack requires one to find a single shortest vector.

3 See https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_
tables.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 15

Unusual-SVP. The shortest vectors in R2 have length 1, which is a factor of order
Θ(
√
n) shorter than predicted by the Gaussian heuristic. Recovering such ‘unusu-

ally’ short vectors is easier than generic shortest vectors, and can be achieved by
running the BKZ lattice reduction algorithm with blocksize β much lower than
the full dimension 2n. Given that for current cryptanalysis there are no signifi-
cant speed-ups for solving the structured variant of this unusual-SVP, we treat
the problem by considering the unstructured version (i.e. as the form rot(Q) or
some rotation of Z2n). The problem of finding an unusually short vector has
received much cryptanalytic attention. This has lead to accurate estimates for
the required BKZ blocksize, see [4] for a survey. As an estimate, given that our
lattice has unit volume and we search for a vector of unit length, we require a
blocksize β such that √

β/d ≈ δ2β−d−1β , (4)

where δβ ≈ (β/2πe)
1/2(β−1). Asymptotically this is satisfied for some β ∈

d/2+o(d). Concrete estimates also simulate the Gram–Schmidt profile, use prob-
abilistic models for the lengths of projected vectors and account for the presence
of multiple shortest vectors [13,8,14,43].

In Figure 3 we plot the estimate given by (4) where the o(d) term is con-
cretised to some constant, the estimate given by the leaky-LWE-estimator [14],
which applies the concrete improvements mentioned above, and experimental
data. These experiments apply the BKZ2.0 algorithm with lattice point enumer-
ation as implemented in [48] to the public form Q, reporting the BKZ block
size required to find a shortest vector. For dimensions which are not powers of
two, the experimental data uses a form sampled by [21, Alg. 1], the unstructured
generation procedure upon which our key generation is based. For some small
power of two dimensions we generate bases via Algorithm 1. We see that below
approximately dimension 80 instances can be solved with LLL reduction, and
that afterwards the required blocksize approximately increments by one when
the dimension increases by two, as (4) would suggest. We also see that above
approximately blocksize 70 the model of [14] appears especially accurate. We
therefore use this model to determine βkey in Table 2. We use a simple progres-
sive strategy where the blocksize increments by one after each tour, which we
expect to require a blocksize perhaps two or three larger than a more optimal
progressive strategy.

Decreasing σpk. For the experiments of Figure 3 we took a large σpk as an attempt
to find a ground truth. We would like to minimise σpk to minimise the size of
our keys and the complexity of computing with them, but without significantly
reducing security. To this end we perform a similar experiment where we fix a
set of dimensions and reduce forms of these dimensions using various σpk < 20.
The results of these experiments are presented in Figure 4. For σpk below a
certain threshold instances can be solved by LLL, then as σpk increases past this
threshold the instances become harder, before reaching an empirical “maximum
hardness” (at least with respect to these experiments) where further increases
in σpk appear to give no extra security.

16 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

60 80 100 120 140 160 180 200 220 240 260 280 300
0

20

40

60

80

100

120

Lattice dimension d

Su
cc
es
sf
ul

bl
oc
ks
iz
e
β

Experimental average
Experimental average (structured)
Prediction of [14]
β = d/2− C from (4)

We ran progressive BKZ (one tour per blocksize) over Zd using an input form generated
with σpk = 20 and report the average successful β that recovered a length one vector
over 40 instances. We used the BKZ simulator and probabilistic model of [14], account-
ing for the d target solutions. See BKZ_simulator.sage and exp_varying_n.sage at
https://github.com/ludopulles/hawk-aux.

Fig. 3: Blocksize required to recover a shortest vector via lattice reduction as a
function of dimension d.

When running BKZ one encounters shorter vectors as β grows. In a random
lattice of unit volume one expects to encounter vectors of length δd−1β ∈ Θ(d)

when β = d/2 + o(d), but for Zd this is also the moment that a vector of
length 1 is found. In fact, the model of [14] predicts that we suddenly jump from
finding vectors of length `0 = Θ(d) to finding a shortest vector of length 1. This
threshold behaviour was observed and discussed in [11, Sec. 6.2]. In our notation
the authors observe the threshold effect once vectors of length approximately√
d/2 are discovered. Our model and experiments suggest the threshold length

is Θ(d) but with a constant smaller than 1. We verified this behaviour for Zd
experimentally. In Figure 5 we plot σsec = `0/

√
d where `0 is the length of the

shortest basis vector after the penultimate tour concludes.
We see that for large enough dimensions the behaviour matches the unusual-

SVP predictions, and we obtain σsec = Θ(
√
d). For Table 2 we take σsec as the

output from the prediction of [14]. We assume the value σsec represents a lower
bound for σpk such that our public forms exhibit maximum hardness. In practice
we take σpk > σsec and reject keys where the length of (f, g)T is shorter than
`0. If we allow shorter (f, g)

T then the public key may give information to an
adversary that she would not have unless she had already recovered the secret
key.

https://github.com/ludopulles/hawk-aux

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 17

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

Standard deviation σ̃pk

Su
cc
es
sf
ul

bl
oc
ks
iz
e
β

d = 180

d = 170

d = 160

d = 150

d = 140

d = 130

d = 120

d = 110

We ran progressive BKZ (one tour per blocksize) over Zd using an input form gen-
erated with various σpk and report the average successful β that recovered a length
one vector over 80 instances. Note that the range of σpk includes values below smooth-
ing, for which the actual standard deviation σ̃pk can be significantly lower than the
Gaussian parameter σpk. See https://github.com/ludopulles/hawk-aux/blob/main/
code/exp_varying_sigma.sage.

Fig. 4: Blocksize required to recover a shortest vector via lattice reduction as a
function of the standard deviation σ̃pk.

We note that the prediction of [14] in Figure 5 is inaccurate for d ≤ 180,
similarly (but more noticeably) to Figure 3. One can improve the accuracy of
estimates for these dimensions by using the geometric series assumption, and
performing several tours so that basis profiles match it, for small blocksizes (say
up to β = 20). Since our estimates converge in the range of feasible experiments,
we choose simplicity instead.

Note that even if the statistical arguments of Section 4.1 allow it, we can-
not take σsign < σsec/2. Indeed, 2 · (12h − s) ∈ Z2n and if σsign < σsec/2 then∥∥2 · (12h− s)

∥∥
Q

= 2‖x‖ ≈ 2σsign
√
d < σsec

√
d. Therefore, doubling a public

quantity given by a signature may describe a shorter lattice vector than those
seen just before secret key recovery.

4.3 Signature Forgery

Strong Forgery. We consider the general problem of forging a signature for some
unsigned message. Specifically, given a target 1

2h for some h ∈ {0, 1}2n, return
an s ∈ Z2n such that

∥∥ 1
2h− s

∥∥
Q
≤ σver

√
d. We use the heuristic that solving

such an approximate CVP instance is at least as hard as solving an approximate

https://github.com/ludopulles/hawk-aux/blob/main/code/exp_varying_sigma.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/exp_varying_sigma.sage

18 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

120 140 160 180 200 220 240

0.6

0.7

Lattice dimension d

σ
se
c

Experimental average
Experimental average (structured)
Prediction of [14]
0.04 ·

√
d+ 0.14

We ran progressive BKZ (one tour per blocksize) over Zd using an input form gen-
erated with σpk = 20 and report the average σsec determined by the shortest basis
vector in the penultimate BKZ tour over 40 instances. See exp_varying_n.sage and
predict_varying_n.sage at https://github.com/ludopulles/hawk-aux.

Fig. 5: Shortest basis vector length before the recovery of a length one vector,
given in terms of σsec.

SVP instance with the same approximation factor over the same lattice. we
determine the expected blocksize β using the BKZ simulator [14] such that our
first basis vector has norm less than σver

√
d, and report it as βforge in Table 2.

Note that since we use the BKZ simulator of [14] to estimate both βkey and
βforge, if σver = σsec then βkey = βforge. Our approach mandates that σver ≤ σsec.
We make this design decision because in our model it means an adversary should
not be able to produce a strong forgery unless the secret key is recovered. Indeed,
when σver ≤ σsec our assumption on approximate CVP says forging a signature
is as hard as finding a vector as short as those found just before key recovery.

Weak Forgery. We consider a weak forgery attack consisting of adding a short
lattice vector to an existing signature for some message, and hoping that it
remains a valid signature for the same message. This vector might come from
the public key, or from lattice reduction effort on it. Its length is assumed to
be at least `0 = σsec ·

√
d, see Section 4.2. We give arbitrarily many such length

`0 vectors to the adversary for free. We estimate the probability the attack
succeeds, i.e. that ‖x+ v‖2 ≤ d · σ2

ver for x ← DZ2n,σsign
and v of length `0.4

If x were sampled from a spherical continuous Gaussian, then considering any
such v would give the same distribution of squared lengths. We examine the
distribution of ‖x+ v‖2 for two “extremal” choices of v; the first has all its
weight in one coordinate, v = (b`0c, 0, . . . , 0), and the second is as balanced as
possible, e.g. v = (1, . . . , 1, 2, . . . , 2) for ‖v‖ = b`0c. Note that the distribution

4 See fail_and_forge_probability at https://github.com/ludopulles/hawk-aux/
blob/main/code/find_params.sage.

https://github.com/ludopulles/hawk-aux
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 19

of ‖x+ v‖2 is invariant under signed permutations of v. We report our estimate
for the success probability of this attack as Pr[weak forgery] in Table 2.

This attack implies the requirement σ2
ver < σ2

sec + σ2
sign. Even if a vector from

a reduced public key is orthogonal to a given signature, then if σ2
ver ≥ σ2

sec+σ
2
sign

adding it will likely be sufficient for a weak forgery.

Comparison with Falcon. Falcon uses a different cryptanalytic model to
determine the blocksizes reported in Table 2. Our model makes use of recent
improvements [14] and enjoys the experimental evidence above. The unusually
short vectors in Zd are a factor about 1.17 shorter than the NTRU lattice of
Falcon, after appropriate renormalisation, and thus key recovery for Hawk
will be slightly easier than Falcon in either model. On the other hand, our
verification bound σver is a factor about 1.15 (Hawk-512) to 1.06 (Hawk-1024)
shorter than Falcon after renormalisation, and thus obtaining strong forgeries
is slightly harder than in Falcon in either model. In both Hawk-512 and Fal-
con-512 key recovery is harder than signature forgery, and thus hardening the
latter, as we do, gives a slightly more secure scheme overall. For Hawk-1024 and
Falcon-1024 key recovery is easier than signature forgery, and in the Falcon
model we obtain a slightly less secure scheme overall. See Appendix D for more
detail on Falcon’s security methodology, and a comparison to Hawk under it.
We also argue there that part of the key recovery methodology of Falcon is
overconservative.

5 Parameters and Performance

In Table 2 we list parameters and the output of our concrete cryptanalysis for
Hawk.5 Section 5.1 explains how these parameters were chosen. We explain the
encoding used for public keys and signatures, and the simple encoding used for
secret keys, in Section 5.2. In Section 5.3 we explain the design choices made in
our constant-time implementation of Hawk, written in C. Finally, Section 5.4
contains the details behind Table 1. More details can be found in Appendix C.

5.1 Parameter Selection

In Hawk we set saltlen = λ+log2 qs, where qs = 264 is the limit on the signature
transcript size. The probability of a hash collision is then less than qs · 2−λ [46,
Section 2.2.2]. Allowing saltlen to depend on λ implies one must know λ before
computing H(m‖r), which is commonly the case. For simplicity Falcon choose
a fixed salt length of 320 bits. This is not optimal for λ = 128. Here Hawk-512
saves 16 bytes on signatures, though this saving is also available to Falcon-512.

The value of σpk for Hawk-512 listed in Table 2 is such that the probability of
‖(f, g)‖2 > σ2

sec · 2n is greater than 99.5% for f, g both with odd algebraic norm

5 See https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.
sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

20 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

and sampled as in KGen. For Hawk-1024, the probability that ‖(f, g)‖2 > σ2
sec·2n

holds for similar f, g is greater than 80%.
There are two failures that may occur during signing in Hawk. Firstly, ‖x‖2

may be too large. Secondly, (2) may be violated, i.e. decompressing sig = (r, s1)
may return s′0 6= s0, the original first component of the signature. We choose
parameters σver and νdec to make such failures unlikely.

For Hawk-512, x is too large with a probability of around 2−22, determined
by convolving the necessary distributions together.6 To obtain a strict upper
bound on this probability one can use a looser tail bound analysis via Lemma 2
and Lemma 3, with ε = 1/

√
qsλ and τ = σver/σsign, which gives 2−17. Similarly

for Hawk-1024, x is too large with a probability of around 2−128 and the tail
bound gives a probability of at most 2−121.

Given a fixed secret key sk = B, we provide a heuristic upper bound on the
probability of decompression (1) giving s′0 6= s0, which is upper bounded by the
probability that (2) does not hold. This also upper bounds the probability a
compressed signature is correct although s0 6= s′0. Heuristically, we assume that
x0, x1 are independently sampled from a normal distribution on Rn with mean 0
and standard deviation σsign. Following Section 3.2 the decompression succeeds
if f

∗x0+g
∗x1

q00
∈ (− 1

2 ,
1
2)
n. Since B is fixed, each coefficient is normally distributed

with mean 0 and variance ‖(f∗/q00, g∗/q00)‖2 · σ2
sign = 〈1, q−100 〉 · σ2

sign, using (3).
Hence the probability that one of the n coefficients is not in the interval (− 1

2 ,
1
2)

is erfc
(

1
2/
(√

2 · 〈1, 1/q00〉 · σsign
))

, where erfc is the complementary error func-
tion. By a union bound, the probability that decompression fails is heuristically
bounded from above by n · erfc

(
1/(
√

8 · 〈1, 1/q00〉 · σsign)
)
. By rejecting keys for

which 〈1, q−100 〉 ≥ νdec, decompression fails for any B heuristically with probabil-
ity at most n · erfc

(
1/
(√

8νdec · σsign
))
.

Taking νdec = 1/1000 in Hawk-512 this upper bound is 2−105. This condition
on (f, g) in KGen fails in about 9% of cases. We empirically determined this by
sampling f and g with odd algebraic norm 100,000 times. Combining this with
the small probability that ‖(f, g)‖ is too small, one can efficiently sample (f, g)
until all requirements, before TowerSolveI is invoked, are met.

In Hawk-1024 we take νdec = 1/3000 and decompression fails on a signa-
ture with probability less than 2−315 for a key satisfying 〈1, q−100 〉 < νdec. This
condition fails in about 0.9% of the cases during sampling of (f, g) inside KGen.

Parametrisations for formal reductions. The parameters above are determined
by concrete cryptanalysis and do not follow our formal reductions. In Section 6
we give a worst case to average case reduction for smLIP, and in Appendix A
show how it applies to the KGen of Hawk. For this reduction to be efficient σpk
must grow exponentially in n. We discuss this in final paragraph of Section 6. In
Appendix B we reduce the strong signature forgery security of Hawk’s design
to omSVP. To ensure the parametrisation of the omSVP problem we reduce to
6 See fail_and_forge_probabilities at https://github.com/ludopulles/
hawk-aux/blob/main/code/find_params.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 21

Hawk-256 Hawk-512 Hawk-1024

Targeted security Challenge NIST-1 NIST-5

Dimension d = 2n 512 1024 2048
Bit security λ 64 128 256

Transcript size limit qs 232 264 264

Signature Std. dev. σsign 1.010 1.278 1.299
Verif. Std. dev. σver 1.040 1.425 1.572

Key Recov. Std. dev. σsec 1.042 1.425 1.974
Key Gen. Std. dev. σpk 1.1 1.5 2

Salt Length (bits) 112 192 320

log2(Pr[sign fail]) −2 −22 −128

Key Recov. (BKZ) βkey 211 452 940
Strong Forgery (BKZ) βforge 211 452 1009

log2(Pr[weak forgery]) −83 −143 −683
Table 2: Parameter sets and their estimated security are given. The dimension,
bit security and transcript size are used to determine σsign. Other standard de-
viations are determined in Section 4. We then estimate the probability that a
signature fails for being too long. The estimated required blocksizes β for BKZ
reduction to achieve key recovery and signature forgery are then given. Finally,
we give the estimated probability of finding a weak forgery via the attack in
Section 4.3.

is not easy we require σver <
√
2σsign and 2σsign < σpk. The existence of plausibly

hard parametrisations of omSVP encourages us that there is no inherent flaw in
our design. We take σpk smaller than this requirement and discuss this further
in Appendix B.

5.2 Encoding

In Hawk both the secret key and x in Sign are sampled from a discrete Gaussian.
As a consequence, the coefficients of the public key and the signature roughly
follow a normal distribution. Therefore, it is beneficial to use the Golomb–Rice
coding [29]. This encoding is used for the signatures in Falcon [46].

For the coding, we use an altered absolute value | · |′ : Z→ [0,∞), x 7→ x for
x ≥ 0 and x 7→ −x − 1 for x < 0. The map that sends x to its sign and |x|′
gives a bijection Z → {0, 1} × Z≥0. Given a quantity that is sampled from a
discrete Gaussian distribution with (an above smoothing) parameter σ, take an
integer k close to log2(σ). To encode a value x ∈ Z, first output the sign of x and
the lowest k bits of |x|′ in binary. Then output b|x|′/2kc in unary, i.e. b|x|′/2kc
zeros followed by a one. Note that Falcon uses | · | where we use | · |′, but their
decoding fails when negative zero is encountered to ensure unique encodings [46,
Section 3.11.2]. An advantage of this altered absolute value is that it sometimes

22 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

saves one bit and is easy to implement: |x|′ is the XOR of x and -(x >> 15)
when x has 16 bits.

We use the Golomb–Rice coding on pk and s1. In particular, for pk the
coefficients of q01 and coefficients 1 up to and including n/2 − 1 of q00 are
encoded, with k = 9 and k = 5 respectively for Hawk-512 and k = 10 and k = 6
for Hawk-1024. The constant coefficient of q00 is output with 16 bits as its size
is much larger than the other coefficients. The second half of q00 can be deduced
from its self-adjointedness. For s1 we use k = 8 and k = 9 in our implementation
for Hawk-512 and Hawk-1024 respectively.

For the secret key, we note the sampler in our implementation of Hawk-512
generates coefficients for f and g with an absolute value at most 13 < 24, we
encode these with 5 bits, one of which is the sign. For the remaining polynomial
F of the secret key, we encode with one byte per coefficient (recall G can be
reconstructed). We use this simple encoding and decoding for our secret key as
it is constant-time. Hawk-1024 requires 6 bits for coefficients of f and g since
the sampler generates values of absolute value at most 18 < 25.

5.3 Implementation Details

We implemented Hawk-512 and Hawk-1024 in the C programming language,
together with an AVX2 optimised implementation. Due to the many algorithmic
similarities between Hawk and Falcon, we were able to reuse a significant
portion of the public implementation of Falcon. The code for key generation
and signing is isochronous; all is constant-time except the encoding of the public
quantities pk and sig. Verification is trivially isochronous as it only uses public
information.

Babai reduction. In KGen we perform another reduction step to make (F,G)
T

smaller than the output of TowerSolveI. TowerSolveI returns an element (F,G)T

whose projection onto the module lattice M = (f, g)
T · R, i.e. the rank n real

lattice with basis C = rot((f, g)T), lies in the fundamental parallelepiped defined
by C. If this projection is uniformly distributed here, the expectation of its
squared norm is n

12 · 2nσ2
pk. However, line 6 in Alg. 1 implies the projection

of (F,G)
T onto M lies in the fundamental domain generated by the Gram–

Schmidt orthogonalisation of the rotations of (f, g)T in bit reversed order. By [44,

Lemma 6.9], the ith vector has an expected norm of
√

2n+1−i
2n ·‖(f, g)‖ for i ∈ [n].

Therefore, the expected squared norm of a point sampled uniformly from this
fundamental domain will be

1

12
· (3n+ 1)n/2

2n
· 2nσ2

pk =
3n+ 1

48
· 2nσ2

pk ≤
n

12
· 2nσ2

pk.

We observe that the squared norm of (F,G) is reduced by a factor of 4/3 by
line 6 of Algorithm 1. This shrinks the Hawk-512 public key size from 1027
bytes on average to 1006.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 23

Sampling and pseudorandomness. We use the SHAKE256 extendable output
function to seed a pseudorandom number generator (PRNG) based on ChaCha20
during sampling in KGen and Sign. As the Gaussian parameters used in the
scheme are fixed, DGS can be performed efficiently with precomputed prob-
ability tables and this PRNG. KGen uses a sampler that requires 64 bits of
randomness. For sampling in Sign we implement DGS for Z+ 1

2 t with t ∈ {0, 1}
that is constant-time over input t and that uses 80 bits of randomness, sufficient
for Section 4.1. This sampler uses a reverse cumulative distribution table scaled
by a factor of 278 similar to [46, Section 3.9.3]. Almost half of the time of Sign
is spent on sampling.

Fast polynomial arithmetic. We want all computations to be performed in time
O(n log n). Addition of two polynomials in R = Z[X]/(Xn + 1) is in O(n), but
naïve multiplication in R requires O(n2) integer multiplications. There are two
ways to achieve O(n log n) via the specific structure of the used number ring.
First, one can use the fast Fourier transform (fft) to perform a multiplication
in O(n log n). Alternatively, one can perform multiplications with the number
theoretic transform (ntt), which works with a prime modulus p ≡ 1 (mod 2n)
that is sufficiently large. Since F×p is a cyclic group of order p−1, there exists an
element ω ∈ F×p of order 2n and one can perform a discrete analog of the fft by
computing f(ωi) ∈ R for all i ∈ (Z/2nZ)× in time O(n log n). When polynomials
are transformed with the fft or ntt, multiplication is coefficientwise. We only
use ntt in the reference implementation.

For the ntt, multiplying two polynomials a(X), b(X) requires p to be twice
larger than the absolute value of any coefficient of a(X), b(X) or a(X)·b(X). This
allows one to recover the correct result in Z via the inverse transformation. In
Hawk-512 and Hawk-1024, p = 12289 is sufficient for signing. In the reference
implementation we use p = 216 + 1 since this Fermat prime allows a faster
multiplication procedure than using Montgomery reduction [39] with p = 12289.
Signing using p = 216 + 1 is 17% faster than using p = 12289. If one wants to
reduce memory usage from 15kB to 8kB for Hawk-512, one can safely use the
prime p = 18433 such that values fit in the 16 bits instead of 32.

By demanding coefficients of s and Q are within 6 standard deviations of
their means, we can bound the integer ‖h− 2s‖Q by a product of two 31 bit
primes. Hence, in the reference implementation of Vf, we can compute the norm
of a signature by computing it with the ntt modulo these two primes.

The fft in our implementation uses double precision floating-point numbers
(double), requiring 8n bytes per polynomial. When a processor has a floating-
point unit and AVX2 support, this fft is much faster than the ntt, but also
requires more RAM.

Divisions and signature decompression. During decoding we require a polyno-
mial division in K to recover G = (1 + gF)/f and q11 = (1 + q10q01)/q00. Since
these exact divisions have output in R, they can be computed with either the
fft or ntt, by performing a division coefficientwise in the transformed domain.
In KGen, it should be checked that all ntt coefficients of f and q00 are nonzero.

24 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

The signature decompression requires a division with rounding to the closest
integral point in R, which can be done efficiently with the fft. One can do this
with fixed-point arithmetic: it is highly unlikely that the numerical error yields
an incorrect rounding. Especially, when we require that the quantity in (2) has
to be in (−0.49, 0.49)n, an absolute error of 0.01 is tolerated.

Failure checks. By default we catch invalid signatures before they are issued. The
first failure check is line 5 of Algorithm 2. A decompression may also output an
incorrect s′0 6= s0. To catch this we could check with fft if (2) holds, and restart
if not. We remove this decompression check, because it is extremely unlikely that
it restarts over the lifetime of a key (see Section 5.1).

Omitting the first check might be necessary when implementing Hawk as a
circuit inside an FHE scheme, where while loops are impractical. This comes at
the cost of a rare but non negligible probability (see Section 5.1) of an invalid
signature, which might be mitigated by reparametrising the scheme.

Note that, in contrast to Falcon, we sample a new salt and therefore receive
a new target t whenever Sign restarts. We make this choice as we do not see how
reusing the same t can be made compatible with the security argument of [27].
Reusing the salt may lead to a statistical leak for Falcon, though it may be
hard to exploit as failures in signing are rare. Nevertheless, we choose to be
cautious when it comes to statistical leaks.

5.4 Performance

We report on the performance of our implementation of Hawk-512 and compare
it to that of Falcon-512 in Table 1. Hawk was compiled with the gcc com-
piler (version 12.1.0) and compilation flag -O2 (and -mavx2 for AVX2), as -O3
actually made the performance worse. The code for Falcon was taken from the
‘Extra’ folder in the Round 3 submission package https://falcon-sign.info/
falcon-round3.zip, and was compiled with the same gcc but had compilation
flags -O3 -march=native.

Memory usage. The reference implementation of Hawk-512 uses 24kB, 15kB
and 18kB of RAM for KGen, Sign and Vf respectively, versus 16kB, 40kB and
4kB for Falcon-512 respectively. Hawk requires more RAM for KGen compared
to Falcon to execute line 6 of Algorithm 1. RAM usage of Falcon’s KeyGen
is more than reported on https://falcon-sign.info as we took the RAM
usage of the API functions, which takes sizes of decoded keys into account. The
AVX2 optimised implementation of Hawk requires 27kB and 24kB for Sign
and Vf respectively, prioritising speed over memory usage. For Hawk-1024 and
Falcon-1024 memory usage roughly doubles.

Batched vs. dynamic signing. For consistency with the Falcon report [46], Ta-
ble 1 reports signing speeds for batched usage, that is, after some precomputation
expanding the secret key (called expand_seckey). If one needs to start from the
secret key without expanding it, the performance of Falcon is significantly

https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 25

Falcon-512 Hawk-512
(Falcon

Hawk

)
Falcon-1024 Hawk-1024

(Falcon
Hawk

)
AVX2 Sign 320 µs 58 µs ×5.5 656µs 114 µs ×5.8
Ref. Sign 5427 µs 168 µs ×32 11868µs 343 µs ×35

Table 3: Performance of dynamic signing for Falcon and Hawk on same PC
with same compilation flags as in Table 1.

affected while the precomputation is much lighter for Hawk. The timings for
dynamic signing are given in Table 3.

6 Module LIP Self Reduction

In this section we give a worst to average case reduction for the search module
LIP problem, which underlies secret key recovery in Hawk. The average case
distribution we give does not match Algorithm 1 exactly, as it does not include
some conditions which may cause a restart. We also replace TowerSolveI, which
‘completes’ f and g into a basis with determinant one via F and G, with Hermite-
Solve. HermiteSolve fails if and only if it is impossible to complete a particular
f, g. We show that the distribution of public keys output by Algorithm 1 af-
ter the above changes enjoys a worst to average case reduction. In Appendix A
we discuss the unaltered public key distribution of Hawk and show that the
reduction is still applicable to Hawk.

Throughout we are concerned with asymptotic security, in contrast to the
main body of the paper where we find efficient parameters that are supported
by concrete cryptanalysis. In particular, the choice of σpk required to make the
reduction efficient is larger than is chosen in our parametrisations for Hawk.

6.1 Module Lattice Isomorphism Problem

Here we introduce a generalisation of the Lattice Isomorphism Problem (LIP) to
module lattices. Given the Hermitian inner product, the correct generalisation
of orthonormal transformations for the module version is to that of unitary
matrices. To avoid confusion with U, which is often used for U ∈ GL`(OK) in
lattice based cryptography, we will use O ∈ U`(KR) = {O ∈ K`×`R : O∗ · O =
I`(K)} for unitary matrices.

Definition 6 (Module Lattice Isomorphism Problem). Given two OK-
modulesM,M ′ ⊂ K` find O ∈ U`(KR) such that O·M = {O·m : m ∈M} =M ′.

Moving to Hermitian forms, the natural translation becomes equivalence under
the action of GL`(OK). However, for simplicity we restrict ourselves to equiv-
alence under the action of SL`(OK), and we denote the equivalence class by
[Q]sl = {U∗ ·Q ·U : U ∈ SL2(OK)}. Throughout we implicitly restrict to K that

26 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

are CM fields, e.g. all cyclotomic fields. Using (generalisations of) the Gentry–
Szydlo algorithm [28,33,31], solving LIP under both actions is equivalent for
such fields. We can now define the worst case module LIP variant. Note that our
worst case and average case problems are within a particular class.

Definition 7 (Worst case smLIP). Given K and Q ∈ H>0
` (K) an instance

of wc−smLIPQ
K,`, the worst case search module Lattice Isomorphism Problem, is

given by Q and any Q′ ∈ [Q]sl. A solution is U ∈ SL`(OK) such that Q′ =
U∗QU.

We now define an average case version of smLIP relevant to Hawk. It is
less general than the worst case version in that we implicitly fix ` = 2 and
consider only power of two cyclotomics with conductor m = 2κ = 2n for K. We
define our average case distribution for any class [Q]sl, but note that the average
case distribution over [I2(K)]sl relates to our key generation in Algorithm 1.
Finally, we define our average case distribution ACσ([Q]sl,K) algorithmically, see
Algorithm 6. This algorithm takes as input a particular form Q and a parameter
σ that controls an internal discrete Gaussian sampling procedure, and outputs
a sample from [Q]sl. One can think of σ = σpk in the case of Hawk.

A subroutine of Algorithm 6 must ‘complete’ a vector (f, g)T ∈ O2
K, if possi-

ble, into a basis Y ∈ O2×2
K with second column (F,G)

T and determinant one. To
perform this operation we define a subroutine called HermiteSolve. This is an al-
gorithm that outputs ⊥ if and only if the particular vector cannot be completed,
and otherwise outputs such a completion.

We also define a procedure Reduce with respect to the form Q. This is a
simpler, but less efficient, version of ffNP used in Algorithm 1. It serves two
purposes; from a theoretical perspective it ensures that the distribution is well
defined, i.e. that the distribution of the output form is independent of the input
form being used to sample, and from a practical perspective it ensures the second
column of the completed basis is relatively short.

Algorithm 4 HermiteSolve (K, f, g): completing f, g if possible.
Require: Conductor m = 2κ cyclotomic K, f, g ∈ OK
Ensure: Completion F,G ∈ OK such that det(Y) = 1 if it exists, else ⊥
1: Let X = (rot(f) rot(g))
2: Find U ∈ GL2n(Z) such that X ·U is in Hermite Normal Form
3: if X ·U 6= (In(Z) 0) then return ⊥
4: Let (vec(G) −vec(F))T be the first column of U return F,G

Algorithm 4 uses the Hermite Normal Form over the integers. If there exist
F,G such that fG − gF = 1 in OK, i.e. such that det(Y) = 1, then the ideal
(f, g) = OK, and this is equivalent to the Hermite Normal Form of (rot(f) rot(g))
being (In(Z) 0) ∈ Zn×2n. One can then check that setting F,G as in Algorithm 4
satisfies fG − gF = 1. Given F,G we use Algorithm 5 to find a short, and

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 27

canonical with respect to Q, pair FQ, GQ that also satisfy fGQ − gFQ = 1.
Note that in Algorithm 5 we require a rounding function that partitions R,
i.e. d · c : R → Z that rounds a + 1/2 to a + 1 so the preimage of integer a is
[a− 1/2, a+ 1/2). This rounding is applied coefficientwise.

Algorithm 5 Reduce (Q, f, g, F,G): reduction of F,G by Q and (f, g).

Require: Conductor m = 2κ cyclotomic K, f, g, F,G ∈ OK, Q ∈ H>0
2 (K)

Ensure: Canonical FQ, GQ reduced with respect to Q and (f, g)

1: Let x = (f, g)T, y = (F,G)T, and ν =
⌈

x∗·Q·y
x∗·Q·x

⌋
∈ OK

2: Let FQ = F − νf , GQ = G− νg return FQ, GQ

Algorithm 6 acσ (Q,K): sampling from ACσ([Q]sl,K).

Require: Conductor m = 2κ cyclotomic K, Q ∈ H>0
2 (K)

Ensure: R ∈ [Q]sl and Y ∈ SL2(OK) such that R = Y∗ ·Q ·Y
1: Parse y1 ← DQ,σ as y1 = (f, g)T ∈ O2

K
2: if HermiteSolve(K, f, g) returns ⊥ then
3: restart
4: else F,G← HermiteSolve(K, f, g)
5: Let y2 = (FQ GQ)T for FQ, GQ ← Reduce(Q, f, g, F,G)
6: Let Y = (y1 y2) and R = Y∗ ·Q ·Y return (R,Y)

The following lemma ensures that a sample R ∈ [Q]sl output by Algorithm 6
only depends on the class [Q]sl, and not on the input representative Q. As a
result the distribution ACσ([Q]sl,K) is well defined. We can then define our
average case module LIP.

Lemma 4. For any power of two cyclotomic K, Q ∈ H>0
2 (K), Q′ ∈ [Q]sl and

σ > 0 the distributions of (R, ·) ← acσ (Q,K) and (R′, ·) ← acσ (Q
′,K) are

equal.

Proof. For Q′ ∈ [Q]sl there exists a U ∈ SL2(OK) such that Q′ = U∗ ·Q ·U. It
is sufficient to show that for any Y created during acσ(Q,K), Y′ = U−1 ·Y is
created within acσ(Q

′,K) with the same probability. Having shown this, since
Y∗ · Q · Y = (Y′)

∗ · Q′ · Y′, the two distributions are equal. Firstly, letting
y′1 = U−1 · y1 we see that ρQ′,σ(y′1) = ρQ,σ(y1). Given that the normalisation
constant for a given σ will be equal over all forms in [Q], the probability of
sampling y′1 ← DQ′,σ is equal to the probability of sampling y1 ← DQ,σ.

We must now show that, after completing y′1 to y′2 via Algorithm 4 and then
reducing it with respect to y′1 and Q′ using Algorithm 5, we have y′2 = U−1 ·y2.
This is precisely the statement that Y′ = U−1 ·Y. Note that Algorithm 4 finds
a solution if one exists. Since U−1 · y2 is such a solution, Algorithm 4 succeeds.

28 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We parse y′1 = (f ′ g′)
T and y′2 = (F ′ G′)

T so that f ′G′ − g′F ′ = 1. For
fixed (f ′, g′), any F̃ , G̃ such that f ′G̃− g′F̃ = 1 are of the form F̃ = F ′ + λ · f ′,
G̃ = G′ + λ · g′ for some λ ∈ OK. For example, one has

f ′ · (G′ − G̃) = g′ · (F ′ − F̃)⇒ G′ − G̃ = g′ ·
(
G′ · (F ′ − F̃)− F ′ · (G′ − G̃)

)
⇒ λ = −

(
G′ · (F ′ − F̃)− F ′ · (G′ − G̃)

)
,

with the same λ for the F ′− F̃ case. If we let ỹ = U−1 ·y2 it is therefore enough
to show that ỹ is the unique reduced completion of y′1 intoY′ ∈ SL2(OK), i.e. y′2.
We have⌈

y′∗1 ·Q′ · ỹ
y′∗1 ·Q′ · y′1

⌋
=

⌈
(U−1 · y1)

∗ ·Q′ · (U−1 · y2)

(U−1 · y1)
∗ ·Q′ · (U−1 · y1)

⌋
=

⌈
y∗1 ·Q · y2

y∗1 ·Q · y1

⌋
= 0,

since y2 is reduced with respect to y1 and Q by the construction of Y in
acs(Q,K). Therefore ỹ is reduced with respect to y′1 and Q′.

Definition 8 (Average case smLIP). Given some power of two cyclotomic K
and Q ∈ H>0

2 (K) an instance of ac−smLIPQ
K,σ, the average case search module

Lattice Isomorphism Problem, is given by Q and an element Q′ ∈ [Q]sl sampled
from ACσ([Q]sl,K). A solution is U ∈ SL2(OK) such that Q′ = U∗ ·Q ·U.

We expect the problem to become harder as the parameter σ increases. In
fact, following [21], if σ is large enough we have equivalence with the correspond-
ing worst case problem, assuming that HermiteSolve does not fail too often.

Lemma 5 (Worst case to average case). Given a machine that can solve
ac−smLIPQ

K,σ in time T with probability ε > 0, for σ ≥ 2Θ(n) · λ2n([rot(Q)]),
one may solve wc−smLIPQ

K,` in expected time T + Esamples · poly(n, log σ) with
probability ε. Here Esamples(n, σ) ≥ 1 is the expected number of times (f g)

T is
(re)sampled in Algorithm 6.

Proof. As input we receive Q ∈ H>0
2 (K) and some Q′ ∈ [Q]sl. By first LLL re-

ducing Q (by considering rot(Q) ∈ Q2n×2n) we can sample efficiently from DQ,σ

via Lemma 1, and thus we can sample (Q′′,U′′)← acσ (Q,K) in time Esamples ·
poly(n, σ) by Algorithm 6. The sample Q′′ is distributed as ACσ([Q]sl,K), and
we have Q′′ = U′′

∗
QU′′. We now have an average case instance between Q′ and

Q′′, which the machine can solve in time T with probability ε. On success we
obtain some U′ such that Q′′ = U′

∗
Q′U′, and U = U′′(U′)

−1 gives a solution
to the worst case instance, i.e. Q′ = U∗QU.

Following the same argument as [21, Lem 3.10] we may reduce σ in the reduction
at the expense of an additive loss from the cost of stronger lattice reduction. In
Appendix A we give a heuristic explanation and matching experimental evidence
for why HermiteSolve fails with probability around 1

4 , which gives Esamples ≈ 4
3 ,

and thus the reduction above is in fact efficient.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 29

References

1. Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Practical, round-optimal
lattice-based blind signatures. Cryptology ePrint Archive, Paper 2021/1565 (2021),
https://eprint.iacr.org/2021/1565

2. Agrawal, S., Stehle, D., Yadav, A.: Round-optimal lattice-based threshold signa-
tures, revisited. Cryptology ePrint Archive, Paper 2022/634 (2022). https://doi.
org/10.4230/LIPIcs.ICALP.2022.41, https://eprint.iacr.org/2022/634

3. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 153–178. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-662-53018-4_6

4. Albrecht, M.R., Ducas, L.: Lattice Attacks on NTRU and LWE: A History of
Refinements, pp. 15–40. London Mathematical Society Lecture Note Series, Cam-
bridge University Press (2021). https://doi.org/10.1017/9781108854207.004

5. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 717–746. Springer, Heidelberg (May 2019). https://doi.org/10.1007/
978-3-030-17656-3_25

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum
key Exchange—A new hope. In: 25th USENIX Security Symposium
(USENIX Security 16). pp. 327–343. USENIX Association, Austin, TX
(Aug 2016), https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim

7. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

8. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Heidelberg (Dec 2018). https:
//doi.org/10.1007/978-3-030-03326-2_13

9. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625–635 (1993)

10. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in Rn.
Discrete Comput. Geom. 13(2), 217–231 (dec 1995). https://doi.org/10.1007/
BF02574039

11. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of Zn? algorithms and cryptography with the simplest lattice.
Cryptology ePrint Archive, Report 2021/1548 (2021), https://eprint.iacr.org/
2021/1548

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC. pp. 575–584. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488680

13. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

14. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)

https://eprint.iacr.org/2021/1565
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://eprint.iacr.org/2022/634
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1017/9781108854207.004
https://doi.org/10.1017/9781108854207.004
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/BF02574039
https://doi.org/10.1007/BF02574039
https://doi.org/10.1007/BF02574039
https://doi.org/10.1007/BF02574039
https://eprint.iacr.org/2021/1548
https://eprint.iacr.org/2021/1548
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1

30 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 329–358. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1_12

15. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009). https://doi.org/10.
1017/CBO9780511581274

16. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820,
pp. 125–145. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78381-9_5

17. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (Aug 2013). https://doi.org/
10.1007/978-3-642-40041-4_3

18. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-
point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 415–432. Springer, Heidelberg (Dec 2012). https://doi.org/10.
1007/978-3-642-34961-4_26

19. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (Dec 2012). https://doi.
org/10.1007/978-3-642-34961-4_27

20. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation. pp. 191–198.
ISSAC ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2930889.2930923

21. Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 643–673. Springer,
Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_23

22. Duda, J., Tahboub, K., Gadgil, N.J., Delp, E.J.: The use of asymmetric numeral
systems as an accurate replacement for huffman coding. In: 2015 Picture Cod-
ing Symposium (PCS). pp. 65–69 (2015). https://doi.org/10.1109/PCS.2015.
7170048

23. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_9

24. Espitau, T., Tibouchi, M., Wallet, A., Yu, Y.: Shorter hash-and-sign lattice-based
signatures. Cryptology ePrint Archive, Paper 2022/785 (2022), https://eprint.
iacr.org/2022/785, https://eprint.iacr.org/2022/785

25. Ferraguti, A., Micheli, G.: On the Mertens–Cesàro theorem for number fields.
Bulletin of the Australian Mathematical Society 93(2), 199–210 (2016). https:
//doi.org/10.1017/S0004972715001288

26. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I.
LNCS, vol. 10820, pp. 174–203. Springer, Heidelberg (Apr / May 2018). https:
//doi.org/10.1007/978-3-319-78381-9_7

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th

https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2022/785
https://eprint.iacr.org/2022/785
https://eprint.iacr.org/2022/785
https://doi.org/10.1017/S0004972715001288
https://doi.org/10.1017/S0004972715001288
https://doi.org/10.1017/S0004972715001288
https://doi.org/10.1017/S0004972715001288
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 31

ACM STOC. pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/
1374376.1374407

28. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_20

29. Golomb, S.: Run-length encodings (corresp.). IEEE Transactions on Information
Theory 12(3), 399–401 (1966). https://doi.org/10.1109/TIT.1966.1053907

30. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (Apr 2003).
https://doi.org/10.1007/3-540-36563-X_9

31. Kirchner, P.: Algorithms on ideal over complex multiplication order. Cryptology
ePrint Archive, Report 2016/220 (2016), https://eprint.iacr.org/2016/220

32. Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model
selection. Annals of Statistics 28(5), 1302–1338 (2000)

33. Lenstra Jr., H.W., Silverberg, A.: Lattices with symmetry. Journal of Cryptology
30(3), 760–804 (Jul 2017). https://doi.org/10.1007/s00145-016-9235-7

34. Li, J., Nguyen, P.Q.: A complete analysis of the BKZ lattice reduction algorithm.
Cryptology ePrint Archive, Report 2020/1237 (2020), https://eprint.iacr.org/
2020/1237

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_1

36. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007). https://doi.org/
10.1137/S0097539705447360

37. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In:
Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665,
pp. 820–849. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49890-3_31

38. MILNOR, J.: Introduction to Algebraic K-Theory. (AM-72). Princeton University
Press (1971), http://www.jstor.org/stable/j.ctt1b9x0xv

39. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
computation 44(170), 519–521 (1985)

40. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. Journal of Cryptology 22(2), 139–160 (Apr 2009). https://
doi.org/10.1007/s00145-008-9031-0

41. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7_5

42. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation us-
ing the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol.
11443, pp. 504–533. Springer, Heidelberg (Apr 2019). https://doi.org/10.1007/
978-3-030-17259-6_17

43. Postlethwaite, E.W., Virdia, F.: On the success probability of solving
unique SVP via BKZ. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol.
12710, pp. 68–98. Springer, Heidelberg (May 2021). https://doi.org/10.1007/
978-3-030-75245-3_4

44. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, Ecole
normale supérieure-ENS PARIS (2015)

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://eprint.iacr.org/2016/220
https://doi.org/10.1007/s00145-016-9235-7
https://doi.org/10.1007/s00145-016-9235-7
https://eprint.iacr.org/2020/1237
https://eprint.iacr.org/2020/1237
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
http://www.jstor.org/stable/j.ctt1b9x0xv
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4

32 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

45. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

46. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

47. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU sig-
natures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9_27

48. development team, T.F.: fpylll, a Python wraper for the fplll lattice reduction
library, Version: 0.5.6 (2021), https://github.com/fplll/fpylll, available at
https://github.com/fplll/fpylll

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/3-540-39200-9_27
https://doi.org/10.1007/3-540-39200-9_27
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 33

A On the failure probability of completion

Crucial to Hawk (and also Falcon) is the completion of a vector (f, g)
T to

a basis with determinant 1 (or q for Falcon). This completion can fail, either
inherently because no such completion exists, or because the fast TowerSolveI
method fails to find it. In this appendix we explain heuristically, and confirm
experimentally, that approximately 1

4 of f, g sampled from a discrete Gaussian
are not completable. This implies that the average case sampler of Algorithm 6
is in fact efficient, for σ large enough to ensure efficient Gaussian sampling. This
is the best case we can hope for, given that we expect 1

4 of such f, g to both
have even algebraic norm, which means they cannot be completed, see below. If
we consider the extra conditions required by Hawk’s KGen, Algorithm 1, most
pertinently that f, g both have odd algebraic norm, then approximately 3

4 of f, g
will cause Algorithm 1 to restart. This is also the best case we can expect, as
we expect half of all pairs to be such that f (exclusive) or g has even algebraic
norm and therefore to fail in Algorithm 1, see below.

We then show that on completable samples TowerSolveI fails with only a small
probability, both in the case of f, g being sampled from a discrete Gaussian,
and also of such f, g that further satisfy the requirements of Algorithm 1. We
can therefore adapt our worst case to average case reduction to Hawk’s KGen.
We begin with some relevant algebra, then examine the number of completable
f, g in the two cases and discuss the probability that TowerSolveI succeeds on
completable cases. We then discuss how to adapt our worst case to average case
reduction to Hawk’s KGen.

Requirements of HermiteSolve and TowerSolveI and algebra. Note that OK is a
Dedekind domain, since K is a number field. For f, g ∈ OK we denote their
principal ideals as (f) = fOK and (g) = gOK. Elements f and g are completable
if and only if (f) and (g) are comaximal; (f)+ (g) = OK. In a Dedekind domain
this is equivalent to the ideal factorisations (f) = pe11 · · · peaa and (g) = qh1

1 · · · qhbb
being such that no pi = qj . Since HermiteSolve always finds a completion if one
exists, it succeeds in exactly these cases. Elements f and g will be completed
by TowerSolveI if and only if the greatest common divisor of algebraic norms
N(f) and N(g) divides q. In our case, where q = 1, this is if and only if N(f)
and N(g) are coprime. This is a potentially stronger condition than (f) and (g)
being comaximal, as in a Dedekind domain it requires not only that no pi = qj
but also that no pi and qj lie above the same rational prime. (In the case of
Falcon where q is the prime 12289, one allows (f) and (g) to both have prime
ideals that lie above 12289 in their ideal factorisations, provided none of these
prime ideals above 12289 are contained in both ideal factorisations.)

The facts in the following discussion are only necessarily true for power of two
cyclotomics. In a power of two cyclotomic with degree n and conductor m = 2n
for a rational prime p we denote by r its ramification degree, by i its inertia
degree and by s its splitting degree, and have the relationship n = ris. That is,
(p) = pr1 · · · prs where pj has ideal norm N(pj) = [OK : pj] = pi. The only ramified
rational prime is 2 which has (r, i, s) = (n, 1, 1). For all other rational primes p

34 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

we have r = 1 and i equals the order of p in (Z/mZ)×. We have φ(m) = n and
for m > 4, i.e. m ≥ 8, we know (Z/mZ)× is not cyclic. Therefore the order of p
in this group is less than n and therefore i < n. Hence for p > 2 and m > 4 we
know s = n/i > 1 and the rational prime is split. When these hypotheses are
satisfied there are no inert rational primes.

In Dedekind domains (integral) ideals decompose uniquely into prime ideals,
and the ideal norm is multiplicative, so N((f)) = N(p1)

e1 · · ·N(pa)
ea . Here, the

pj in the ideal factorisation of (f) do not necessarily all lie above the same
rational prime. Note that N(f) = N((f)), i.e. the algebraic norm of f equals the
ideal norm of its principal ideal. In particular, this means that N(f) is even if and
only if the ideal factorisation of (f) contains the unique prime ideal above 2. For
some f, g, if both algebraic norms are even then the unique prime ideal above 2
is in the ideal factorisations of both (f) and (g), so they cannot be comaximal,
and therefore f, g cannot be completed. Also note that in a Dedekind domain,
for any pair of (integral) ideals a, b such that a ⊂ b there exists an ideal c such
that a = bc, see e.g. [38, p. 9]. In particular, this means that if f ∈ p for some
prime ideal p, then (f) ⊂ p and therefore (f) = pc for some c, so p is a prime
ideal in the ideal factorisation of (f).

For c ∈ Z≥1 a definition of a density Dc for subsets of OcK is given in [25]. This
density is not well defined for all subsets, but in the case of an (integral) ideal a
we have D1(a) = 1/N(a). If we let C = {(f, g) ∈ O2

K : (f) + (g) = OK} then we
have D2(C) = 1/ζK(2), where ζK is the Dedekind zeta function for K. We wish
to define a heuristic for sampling elements from OcK such that they fall into a
subset with probability equal to its density. More precisely, for the appropriate c
we denote by (†) the heuristic that we are sampling x = (x1, . . . , xc) from some
distribution over OcK such that for any X ⊂ OcK for which Dc(X) is well defined,
Pr[x ∈ X] = Dc(X). We will also assume that as a given Gaussian parameter σ
increases, the behaviour of sampling from DΛ,σ becomes closer to that of (†). In
particular, we show experimental evidence for σ = 1.5 below, and assume that
when σ is large enough to satisfy either Algorithm 6 or Lemma 5, heuristic (†)
is at least as valid.

The proportion of completable f and g, and the efficiency of Algorithm 6. Recall
the output of HermiteSolve is ⊥ if and only if the input f, g are not comaximal
ideals. We therefore need to estimate the probability that this occurs. Under (†)
the probability of non comaximal f and g is 1−1/ζK(2). This quantity is investi-
gated in [3, Lem. 1], where it is shown that as our power of two conductor tends
to infinity, ζK(2) tends to 4/3. We therefore expect approximately 1/4 of pairs
(f, g) to be non comaximal. However, we may be concerned that when sampling
f, g from DQ,σ we deviate too far from (†), or that our n is too small for [3,
Lem. 1]. We therefore provide an estimate for this quantity and experimental
results below. In Figure 6 we set Q = I2(K) for power of two cyclotomics K
with n ≥ 4 and σ = 1.5. The estimate is calculated under (†) as follows. First
we consider the single ramified prime 2, with unique prime ideal p above it. We
have Pr[f ∈ p] = 1/N(p) = 1/2 and the same independently for g, hence f, g are
not completable because they share p in their ideal factorisation with probability

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 35

1/4. We therefore assume a starting probability of 3/4 for f, g being completable.
For the next 10,000 rational primes p we calculate (i, s) and approximate the
probability that f and g share none of the s prime ideals above p in their ideal
factorisation as (1− 1/p2i)

s. This is approximate since, for a single prime ideal p
above p, we have Pr[f ∈ p] = Pr[g ∈ p] = 1/N(p) = 1/pi, and so the probability
that at most one of f, g is in p is 1 − 1/p2i. We are assuming this probability
is independent over prime ideals above p. We also assume the probabilities for
distinct p are independent and take the product of the above approximations
with 3/4.

In Figure 7 we present the same experiments where we further enforce that
N(f) and N(g) are both odd and not too short, as required in Algorithm 1.
We calculate our estimated probability by instead starting with probability 1/4,
before multiplying the approximate probabilities (1− 1/p2i)

s, since we now only
allow f 6∈ p and g 6∈ p, for p the unique prime ideal above 2. Our estimates in
this case are therefore exactly one third of our estimates when we allow N(f)
and N(g) to have different parities.

It remains to ensure the sampler within Algorithm 6 is efficient. By Lemma 1
this is ensured by taking σ ≥ ‖B̃rot(Q)‖ · 1π ·

√
log(4n+ 4)/2. Given the experi-

mental accuracy of our theoretical estimates for the proportion of completable
f, g in Figure 6, we assume that sampling from the average case distribution of
Algorithm 6 requires a small constant number of internal repetitions.

On HermiteSolve vs. TowerSolveI. While in theory HermiteSolve is efficient, and
guarantees us the ‘ground truth’ on completability, in practice it is too costly
in terms of both time and space. In Algorithm 1 we therefore make use of the
elegant TowerSolveI of [42]. Recall that TowerSolveI can sometimes fail, even if a
completion was possible.

We give a heuristic argument for the fraction of completable f, g that can
be completed by TowerSolveI. If we are considering f, g under (†) then we start
with probability 3/4 of them being completable via TowerSolveI, which represents
at most one of them having even algebraic norm. When, as in Algorithm 1,
we further demand that both f and g have odd algebraic norm we start with
probability 1/4 of them being successful in Algorithm 1. Again our estimates in
this second case are exactly a third of when we allow N(f) and N(g) to have
different parities. We then proceed similarly to our estimate for completability,
except for a rational prime p with (i, s) we estimate the probability that prime
ideals above p are in the ideal factorisations of at most one of (f) and (g) as
1−(1− (1− 1/pi)

s
)
2
. Here 1−(1− 1/pi)

s is an approximation of the probability
that some prime ideals above p are in the ideal factorisation of e.g. (f), so this
quantity squared is an approximation of the probability that some prime ideals
above p (not necessarily the same ones) are in the the ideal factorisations of
both (f) and (g). This is precisely the event we wish to avoid. See Figure 6 and
Figure 7 for an experimental validation of this method.

Worst case to Hawk KGen. Formally, if we were to replace HermiteSolve with
TowerSolveI in Algorithm 6, or add any of the restart conditions of Algorithm 1,

36 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

the distribution ACσ([Q]sl,K) would no longer necessarily be well defined. For
example, setting Q = I2(K), if (f, g)T = y1 is completable, but not by Tower-
SolveI, then R = Y∗Y would be output by the original Algorithm 6 but not by
one where HermiteSolve has been replaced by TowerSolveI. Since R ∈ [I2(K)]sl
and y1 = (1, 0)

T is completable by both HermiteSolve and TowerSolveI such that
Y = I2(K) we have R = Y∗RY is output by both versions of Algorithm 6.

Our technique to show a reduction from wc−smLIP
I2(K)
K,2 to Hawk KGen

is as follows. We describe an average case distribution that is equivalent to
ACσ([I2(K)]sl,K) in terms of hardness, i.e. one that can be efficiently trans-
formed to and from the original average case distribution. We do this to account
for the different reduction methods used to determine (F,G)

T
= y2 in Algo-

rithm 1 and Algorithm 6, namely ffNP and Algorithm 5 respectively. This new
average case distribution has the exact same output as Algorithm 1 when com-
pletable (f, g)

T
= y1 that do not cause restarts in Algorithm 1 are internally

sampled. Let pr denote the probability that Algorithm 1 restarts when it inter-
nally samples a completable (f, g)

T. If A is an adversary against Hawk’s KGen
using σpk, i.e. a machine that can return B ∈ SL2(OK) such that B∗B = Q for a
Hawk public key Q in time t and with probability ε, then A is an adversary for
ac−smLIP

I2(K)
K,σpk

that runs in time t with probability at least (1− pr) · ε. We give
experimental and theoretical evidence that the component of pr caused by the
use of TowerSolveI and requiring both of N(f) and N(g) to be odd in Algorithm 1
is a constant in Figure 7. The other potential restarts, and their similarly small
contribution to pr, are discussed in Section 5 and Appendix C. If σpk is large
enough then A is transformed into a worst case adversary via Lemma 5.

It remains to describe this equivalent average case distribution. We add a final
step to Algorithm 6 which applies a Hermitian form version of ffNP with respect
to Q to the output form R. This is efficient, and can be efficiently reversed by
applying (a Hermitian form version of) Algorithm 5, hence the two average case
distributions are equivalently hard. If a completable (f, g)

T
= y1 is sampled in

Algorithm 1 and Algorithm 6, Algorithm 1 does not restart, and we apply this
extra postprocessing step to Algorithm 6, then the outputs will be identical.

B The One More SVP Problem

The one more SVP problem, henceforth omSVP, is the problem upon which we
base the forgery security of our signatures. Informally we define an average case
omSVP instance that samples a Q from a distribution over some H>0

` (K) and
gives Gaussian samples according to this Q. If one can find some non zero x that
is sufficiently short with respect to Q, and that is in some sense non trivially
new, then one solves the problem. We show that when this Q is sampled as in
Algorithm 6 and for certain parameters, if one can forge a signature against a
‘provable’ variant of Hawk then in the programmable random oracle model one
can solve an instance of this problem. We then discuss parametrisations of our
omSVP problem that we expect to be hard, with reference to Hawk parameters.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 37

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

log2 n for cyclotomic K of degree n

P
ro
ba

bi
lit
y

Estimated fraction of f, g that are completable
Experimental fraction of f, g that HermiteSolve completes
Estimated fraction of completable f, g that TowerSolveI completes
Experimental fraction of completable f, g that TowerSolveI completes
Fraction of completable f, g under (†) for large n [3, Lem. 1]

The estimated fraction of completable f, g, and the estimated fraction of these that
TowerSolveI is able to complete, are calculated as above. We then set σ = 1.5 and
generate 5000 samples of f, g from a discrete Gaussian distribution over Z and check
which can be completed by HermiteSolve and TowerSolveI.

Fig. 6: Experimental justification that Algorithm 6 is efficient, and TowerSolveI
behaves similarly to HermiteSolve.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

log2 n for cyclotomic K of degree n

P
ro
ba

bi
lit
y

Estimated fraction of f, g that are completable
Experimental fraction of f, g that HermiteSolve completes
Estimated fraction of completable f, g that TowerSolveI completes
Experimental fraction of completable f, g that TowerSolveI completes
Fraction of completable f, g under (†) for large n [3, Lem. 1]

The estimated fraction of completable f, g, and the estimated fraction of these that
TowerSolveI is able to complete, are calculated as above in the case where f, g are
sampled from Algorithm 1. We then set σ = 1.5 and generate 5000 samples of f, g from
Algorithm 1 and check which can be completed by HermiteSolve and TowerSolveI.

Fig. 7: Experimental justification that Algorithm 6 is efficient, and that Tower-
SolveI behaves similarly to HermiteSolve, in the case where f, g are sampled as
in Algorithm 1.

38 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We first define the ROM-SUF-CMA game for signature schemes. Here Sign and
Vf have access to a random oracle RO : {0, 1}∗ → {0, 1}`(n), the output length
of which depends on the security parameter n. The security notion we consider
here is strong unforgeability under chosen message attacks in the random oracle
model, or ROM-SUF-CMA, see Figure 8.

ROM-SUF-CMAΠ,A(1
n)

1 : LSign ← ∅
2 : (pk, sk)← KGen(1n)

3 : (m?, sig?)← AOSign(·),RO(·)(pk)

4 : return JVfRO(·)(pk,m?, sig?) = 1 ∧ (m?, sig?) 6∈ LSignK

OSign(m)

1 : sig← SignRO(·)(sk,m)

2 : LSign ← LSign ∪ {(m, sig)}
3 : return sig

RO(x)

1 : if T [x] = ⊥ then // initially T [x] = ⊥ for all x

2 : T [x]← U({0, 1}`(n))
3 : return T [x]

Fig. 8: The ROM-SUF-CMA game.

Definition 9 (ROM-SUF-CMA security). Let Π = (KGen,Sign,Vf) be a sig-
nature scheme. We say that Π is (t, ε, qs, qh)-ROM-SUF-CMA secure, or strongly
unforgeable under chosen message attacks in the random oracle model, if for any
adversary A running in time at most t, making at most qs queries to its sign-
ing oracle, and making at most qh queries to its random oracle, the probability
Pr[ROM-SUF-CMAΠ,A = 1] ≤ ε.

Next we define a set of length preserving functions of OK that will represent
‘trivial’ wins in our omSVP game. For example, when Z = OQ one can always
negate x to −x while preserving the length with respect to any Hermitian form.

Definition 10. For a number field K let µK be the set of roots of unity.

Lemma 6. For α ∈ OK we have α∗α = 1 ⇐⇒ α ∈ µK.

Proof. If α∗α = 1 then for any field embedding σi we have |σi(α)| = 1 and
therefore |σi(α)j | = 1 for all j ∈ Z. Assume α is not a root of unity, so no such
σi(α)

j
= 1, then {σi(α)j}j∈Z is dense in the unit circle of C, a contradiction.

The converse follows from σi(α
∗α) = |σi(α)|2 and noting that α ∈ µK must have

|σi(α)| = 1 else no power of it will equal 1.

Lemma 7. For any ` ∈ Z≥1 some α ∈ OK has ‖αx‖Q = ‖x‖Q for all x ∈ K`

and Q ∈ H>0
` (K) if and only if α ∈ µK.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 39

Proof. First note if α ∈ µK then ‖αx‖Q = Tr(α∗αx∗Qx) /n = Tr(x∗Qx) /n =
‖x‖Q by Lemma 6. Conversely, if ‖αx‖Q = ‖x‖Q for all x and Q then it must
be true for x = (1, 0, . . . , 0)

T and Q = I`(K), which by unrolling the definitions
tells us

∑n
i=1 σi(α

∗α) = n. Similarly, it must be true for x = (α, 0, . . . , 0)
T and

Q = I`(K), which by unrolling the definitions tells us
∑n
i=1 σi(α

∗α)
2
= n. Note

that for a set of real numbers {yi}ni=1 such that
∑n
i=1 yi =

∑n
i=1 y

2
i = n we have

y1 = · · · = yn = 1. Therefore σi(α∗α) = 1 for all i, and α∗α = 1, then α ∈ µK
by Lemma 6.

In short, the above lemmas tell us that multiplying a solution in our omSVP
game by a root of unity should be considered a trivial win, and disallowed.

Lemma 8. For power of two cyclotomics of conductor m = 2n we have µK =
{Xi : i = 0, . . . , 2n− 1}.

Proof. Recall OK = Z[X]/(Xn + 1) and if α =
∑n−1
i=0 αiX

i then α∗ = α0 −∑n−1
i=1 αiX

n−i. From α∗α = 1 we therefore have
∑n−1
i=0 α

2
i = 1 for αi ∈ Z.

In this instance i = 0 represents the identity and i = n represents negation.

Definition 11 (Average case omSVP). An average case omSVP instance is
the pair ac−omSVP = (Init, samp). On input 1n, Init returns a form Q sampled
from some distribution over some H>0

`n
(Kn), the roots of unity µKn for Kn, a

length bound Ln, and a Gaussian parameter σn. On input Q, samp returns a
sample from DQ,σn .

SAMPLEac−omSVP,A(1
n)

1 : Lsamples ← {0}
2 : (Q, µK, L, σ)← Init(1n)

3 : x? ← Asamp(Q)(Q)

4 : return J‖x?‖Q ≤ L ∧ x? 6∈ LsamplesK

samp(Q)

1 : x← DQ,σ

2 : Lsamples ← Lsamples ∪ {αx}α∈µK

3 : return x

Fig. 9: The SAMPLE game.

The adversary in Figure 9 wins whenever it can use the form Q and the samples
it receives from samp to return some non trivial new element of O`K that is short
enough.

Definition 12 (SAMPLE security). Let ac−omSVP = (Init, samp) be an aver-
age case omSVP instance. We say that ac−omSVP is (t, ε, qo)-SAMPLE secure,
if for any adversary A running in time at most t, and making at most qo queries
to samp, the probability Pr[SAMPLEac−omSVP,A = 1] ≤ ε.

40 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We use the following lemma in our reduction from ac−omSVP to Hawk. Each
signature output by Hawk induces a sample fromDQ,Z2n+ 1

2hi,σsign
for an i.i.d. uni-

formly chosen hi in {0, 1}2n. We show that multiplying such a sample by two
gives a distribution close to a discrete Gaussian over Z2n with Gaussian param-
eter 2σsign.

Lemma 9. Let D represent the distribution formed by first sampling h← U({0, 1}n)
and then returning x← DQ,Zn+ 1

2h,σ
. If σ ≥ ηε(Zn) then

∆(2 ·D,DQ,2σ) ≤ ε/(1− ε).
Proof. For all y ∈ Zn, y/2 lies in a coset of the form Zn + 1

2h for a unique
h ∈ {0, 1}n. We have

Pr[D = y/2] = 2−n·DQ,Zn+ 1
2h,σ

(y/2) = 2−n·ρQ,Zn+ 1
2h,σ

(y/2)/ρQ,σ

(
Zn +

1

2
h

)
and Pr[DQ,2σ = y] = ρQ,2σ(y)/ρQ,2σ(Zn). Note that for any such y we have
ρQ,Zn+ 1

2h,σ
(y/2) = ρQ,2σ(y). It remains to argue about the sizes of 2n ·ρQ,σ(Zn+

1
2h) and ρQ,2σ(Z

n). From Lemma 3 we know that 2nρQ,σ(Zn+ 1
2h), ρQ,2σ(Z

n) ∈
[1−ε, 1+ε]·2n(

√
2πσ)

n
. Therefore, for each such y we have D(y/2) ∈ [1−ε1+ε ,

1+ε
1−ε]·

DQ,2σ(y), and therefore ∆(2 ·D,DQ,2σ) ≤ ε/(1− ε).
We can now show that a ROM-SUF-CMA adversary against Hawk can be

used as a subroutine for a SAMPLE adversary against an ac−omSVP instance.
In the below we consider a ‘provable’ version of Hawk that samples its public
keys exactly from the average case distribution of Algorithm 6. We also con-
sider growing n which are powers of two, and assert that the internal values
(σpk, σsign, σver, saltlen) can be determined from n. Note that we do not expect
the reduction to be bidirectional; intuitively even if one can find an x? that wins
the SAMPLE game, one must also find a message and salt that hashes into a
particular coset to make this a successful signature forgery.

Lemma 10. Let Π = (KGen,Sign,Vf) be the provable version of Hawk de-
scribed above with internal parameters (σpk, σsign, σver, saltlen) such that σsign ≥
ηε(Z2n) for some ε(n) ∈ negl(n) and σver > σsign. Define ac−omSVP = (Init, samp)
such that Init(1n) samples Q ← ACσpk

([I2(K)]sl,K) for K the cyclotomic field
of degree n. Also let Init(1n) output the corresponding µK, the length bound
L = 2σver

√
2n and σ = 2σsign. If A is a (t, δ, qs, qh)-ROM-SUF-CMA adver-

sary against Π with random oracle RO that has output length `(n) = 2n, then
in the reprogrammable random oracle model there exists a (t′, δ′, qo)-SAMPLE
adversary B against ac−omSVP such that t′ ≈ t, qo = qs and

δ′ ≥ δ − abort− sim−multitarget,

where abort, sim and multitarget are made explicit in the proof. In particular,
provided qs, qh, |µK| ∈ poly(n) and saltlen ∈ ω(log n), abort, sim and multitarget ∈
negl(n). Finally, t′ is t plus the time required to query samp qs times, answer qh
RO queries, and reprogram RO at qs points.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 41

Proof. We let B interact with A and reprogram RO. The form Q output by
Init in the SAMPLEac−omSVP,B game is sent by B to A to act as pk in the
ROM-SUF-CMAΠ,A game. Two types of queries from A must be simulated by
B. First, it must simulate RO, which it does via lazy sampling of bitstrings in
{0, 1}2n. Secondly, it must simulate OSign. To do this, on receipt of message
mi from A, B samples a uniform salt ri from {0, 1}saltlen and checks whether
mi‖ri has already been queried by A to RO. If so, B aborts. If not, B queries
samp, receives xi and checks whether ‖xi‖Q > 2σver

√
2n. If so, B aborts. If

not, B reprograms RO(mi‖ri) = hi = parity(xi) and responds to the OSign(mi)
query with sigi = (ri, si = hi/2 ± xi/2). The choice ±xi is made according to
line 8 of Algorithm 2. Here parity : Z2n → {0, 1}2n, (x1, . . . , x2n) 7→ (x1 mod
2, . . . , x2n mod 2) maps an integer vector to the bitstring of its parities. When
A outputs its forgery (m?, sig? = (r?, s?)) in the ROM-SUF-CMAΠ,A game, B
computes h? = RO(m?‖r?) and submits x? = h?−2s? in the SAMPLEac−omSVP,B
game. Note that since the length bound L output by Init is exactly twice the
distance of a valid s? to 1

2h
?, x? will always be short enough if A output a valid

forgery.
We first argue about the probability that B aborts. By a union bound, the

probability that B aborts because some m‖r has already been queried to RO is
at most qs · qh · 2−saltlen. Indeed, the probability is maximised if all qh queries A
makes to RO are of the form m‖u for some fixed message and distinct strings
u of length saltlen, and then A makes qs queries to OSign with m. By the tail
bound of Lemma 2 and a union bound, since σver > σsign the probability that B
aborts because a sample xi from samp is too long is in qs · exp (−Θ(n)). Call the
sum of these probabilities abort.

If B does not abort, we quantify the statistical distance between its sim-
ulations of RO and OSign and their true distributions. When A queries RO
the lazy sampling method of B is exactly correct and thus uniform. When
B reprograms the random oracle at some mi‖ri, it takes value parity(xi) for
xi ← DQ,2σsign . We examine the probability of 2Z2n + c under DQ,2σsign for any
c ∈ {0, 1}2n, since these represent preimages of parity, and compare them to the
ideal (uniform) probability of 2−2n for a bitstring. Using Lemma 3 we can bound
ρQ,2σsign(2Z2n+c) = ρQ,σsign(Z2n+c/2) by recalling σsign ≥ ηε(Z2n). Letting γ =

ρQ,2σsign(Z2n) we therefore know DQ,2σsign(2Z2n+c) ∈ [1−ε, 1+ε]·(
√
2πσsign)

2n
/γ

for all c. We also know that 2−2n is in the same range, therefore the statistical
distance between parity(xi) for xi ← DQ,2σsign and the uniform distribution over
{0, 1}2n is at most ε/(1−ε) ∈ negl(n). Therefore the probability that A behaves
differently given the simulated RO is at most qs · ε/(1 − ε). Next we consider
the simulation of OSign by B. By Lemma 9 we have that the statistical distance
between B−1 · x on line 7 of Algorithm 2 and halving a sample from DQ,2σsign

is at most ε/(1− ε) ∈ negl(n). Therefore, the probability that A behaves differ-
ently given the simulated OSign is at most qs · ε/(1 − ε). Call the sum of these
probabilities sim.

Finally, we discuss the probability that a successful signature forgery from
A (m?, sig? = (r?, s?)) is such that x? = h? − 2s? is not a valid solution to the

42 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

SAMPLEac−omSVP,B game for B. Recall h? = RO(m?‖r?). This happens when
x? ∈ {α · xi}i,α∈µK

or x? = 0, i.e. x? ∈ Lsamples. Since sig? is a successful
forgery we have RO(m?‖r?) = parity(x?). In particular, A has found such an
input output pair for RO where the output is from a set of size |µK| · qs + 1.
This can happen in two ways. First, A may find a preimage of some parity(x)
for x ∈ Lsamples in one of its qh RO queries. We assume that the RO queries of
A never repeat an mi‖ri query it has previously learnt from a signing query,
as in doing so A would learn nothing new. Therefore, these queries give such a
preimage with probability at most qh · (qs · |µK|+ 1) · 2−2n. Second, the forgery
submission of A may imply a preimage of parity(x) for x ∈ Lsamples. In the case
where (m?‖r?) has not been either queried or programmed for RO, this happens
with probability (qs · |µK| + 1) · 2−2n. Finally, since A may return a different
signature on the same message, it is possible that A returns (mi, sig? = (ri, s∗))
where the message and the salt are from a previous signature query. In this case
s? 6= si else it is not a weak forgery. Hence x? = RO(mi‖ri) − 2s? = hi − 2s?.
As s? 6= si we have x? 6= xi, but x? does lie in the same coset 2Z2n + xi. To
ensure that x? is not in L′ = Lsamples \ {xi} we must argue that no x ∈ L′
has parity(x) = parity(xi). We begin by showing αxi for some α ∈ µK \ {±1}
has parity(xi) = parity(αxi) with negligible probability. Indeed, if this equality
holds, then the two bitstrings of length n have a period strictly dividing n.
As n is a power of two, this means the period divides n/2 and there are 2n/2

bitstrings of length n inside parity(xi) with such period. Therefore there is a
2n/22n = 2−n fraction of all cosets that xi could fall into, such that one of its
rotations has the same parity as itself. An output of RO is either chosen uniformly
or as parity(x) for some x ← DQ,2σsign . We know 2−2n, DQ,2σsign(2Z2n + c) ∈
[1− ε, 1+ ε] · (

√
2πσsign)

2n
/γ, and so the maximum probability an output of RO

is any value is 2−2n ·(1+ε)/(1−ε). Therefore the probability xi lies in one of these
“rotational” cosets is 2−n · 2−2n · (1 + ε)/(1− ε) ∈ negl(n). We now turn to αxj
for α ∈ µK and j 6= i. If parity(αxj) = parity(xi) then parity(xj) = parity(α′xi)
for some α′ ∈ µK. Since parity is invariant under negation, there are therefore n
cosets each xj can fall into such that some rotation of it will match the parity of
xi. This happens with probability at most (qs−1)·n·2−2n·(1+ε)/(1−ε) ∈ negl(n).
Finally, we discarded the possibility that parity(xi) = 0 when considering xi such
that rotations share the same parity. Call the sum of the above probabilities
multitarget.

In total, if B does not abort, and A outputs a valid forgery, then B makes
qo = qs queries to samp, samples at most qh uniform strings in {0, 1}saltlen to
simulate RO, and reprograms RO at qs points. Except with probability sim,
A behaves as if it were interacting with the true ROM-SUF-CMAΠ,A game.
Except with probability abort, B outputs some x?, and except with probability
multitarget it is a valid solution to the SAMPLEac−omSVP,B game. Therefore we
have δ′ ≥ δ − abort− sim−multitarget.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 43

B.1 Discussion

Lemma 10 tells us that if qs, qh, |µK| ∈ poly(n) and 2saltlen grows superpolynomi-
ally in n, then B effectively works in the same time and succeeds with the same
probability as A.

There are however instances ac−omSVP = (Init, samp) which are easy to
solve, even without a signature forging adversary against Hawk. We consider
two such situations. Firstly, if L ≥

√
2σ
√
2n then one can sum any two samples

from samp and expect to win with high probability. In Lemma 10 this would
be the case were σver ≥

√
2σsign. Secondly, if Q contains short vectors, then one

may solve the ac−omSVP instance without ever querying samp. In Lemma 10
this would be the case if σpk ≤ 2σver. In fact, the two conditions mentioned are
not just sufficient, but also (close to) necessary for these attacks to work. We will
show, by a concentration bound on the lengths of the samples, that the above
attacks have probability negligible in n of working whenever

σpk > C · 2σver, and σsign > C · σver/
√
2,

for any constant C > 1.
We note that only one of these conditions seems relevant to Hawk. First,

that omSVP requires σpk > 2σver to be hard seems an artefact of our reduction,
since we must half omSVP samples to simulate signature queries. In Hawk our
verification length bound σver

√
2n is exactly half of L and we have σpk > σver.

On the other hand, if σver >
√
2 · σsign then the sum of two signatures will often

be short enough to be a signature. This is not sufficient by itself for a forgery,
but it does lead to the following situation. Let H(m‖r) = h, t = B · h, and
x← DZ2n+ 1

2 t,σsign
, and similarly m′, r′,h′, t′ and x′. Since it is likely ‖x+ x′‖2 ≤

σ2
ver · 2n and x+ x′ ∈ Z2n + 1

2 (t+ t′), h̃ = B−1(t+ t′) becomes another target
in the codomain of H. That is, if an adversary can find some m̃, r̃ such that
H(m̃, r̃) = h̃ they can use x+ x′ to create a signature.

Our parameter sets all satisfy σver <
√
2 · σsign by some margin, though

more expensive attack strategies might yield some extra targets for which to
find preimages of H. Increasing saltlen slighty in Hawk would overcome any
weakness brought about by these techniques, and we leave their exploration to
future work.

Concentration bound. We use Lemma 13 to show for large enough σ the square
length of a vector sampled from DZn,σ is concentrated from below around the
mean. To prove it we require the following lemmas. The first tells us that for well
chosen values of σ the mean of the squared length for the discrete Gaussian is
close to that of the continuous Gaussian. The second upper bounds the Gaussian
mass of the integers outside of a centred open ball.

Lemma 11 ([36, Lem. 4.3] adapted). For Λ of full rank n, σ ≥ 2ηε(Λ) and
x← DΛ,σ we have

E
[
‖x‖2

]
∈
[
1− 2πε

1− ε , 1 +
2πε

1− ε

]
· σ2n.

44 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Lemma 12 ([10, Lem. 2.4] adapted). For t > 0 we have

ρσ(Z \ (−t, t)) ≤ 2 exp(−t2/2σ2) · ρσ(Z).
Lemma 13. Let {Xi}ni=1 be i.i.d. as the square of DZ,σ and X = X1+ · · ·+Xn.
There exists an ε(n) ∈ negl(n) such that if σ ≥ 2ηε(Zn) then there exists some
γ(n) tending to zero such that

Pr[X < (1− γ)µX,l] ∈ negl(n).

For example we may take ε(n) = n− logn, σ ∈ Θ(log n) and γ(n) = 1/ log n.

Proof. We make use of the following form of the Chernoff–Hoeffding bound. If
{Yi}ni=1 are i.i.d. in [0, 1], Y = Y1 + · · ·+ Yn and µY,l ≤ E[Y] then

Pr[Y < (1− γ)µY,l] ≤ exp

(
−γ

2

2
µY,l

)
,

see for example [15, Sec. 1.6]. Our proof strategy is to use a lower bound on the
mean ofX. In particular, we calculate a value t such that ρσ(Z\(−t, t)) ∈ negl(n)
and scale Yi = Xi/t

2, Y = X/t2, and µY,l = µX,l/t
2. While we do not satisfy the

hypothesis for the Chernoff–Hoeffding bound that each Yi is in [0, 1], by a union
bound over the Xi the probability we violate it is in negl(n). Let ε(n) = n− logn

then some σ ∈ Θ(log n) implies E[X] ≥ (1 − 2πε/(1 − ε)) · nσ2 by Lemma 11
and ρσ(Z) ≤ (1 + ε) ·

√
2πσ by Lemma 3. If we set t = σnδ/2 for any δ > 0 then

by Lemma 12

ρσ(Z \ (−t, t)) ≤ 2 exp(−nδ/2)ρσ(Z)
≤ 2(1 + ε) exp(−nδ/2 + log(

√
2πσ)) ∈ negl(n).

We therefore have Pr[Y < (1 − γ)µY,l] ≤ exp
(
−γ2

2 µY,l

)
+ negl(n), for µY,l =

(1 − 2πε/(1 − ε))nσ2/t2 = (1 − 2πε/(1 − ε))n1−δ. For γ = 1/ log n and any
δ ∈ (0, 1) this upper bound is negligible in n. By unscaling we attain the same
negligible probability for X.

In particular, when the hypotheses of Lemma 13 are satisfied we know that for
any constant factor C > 1 the probability that any of poly(d) samples from
DZd,σ have squared length less than d(σ/C)2 is negligible in d = 2n. Let C > 1
be any constant. Given that the public key is constructed from such samples
with σ = σpk, it is sufficient to have σpk > C · 2σver to protect from trivial public
key solutions. For the summations we know that if σsign > C2 · σver/

√
2, then

except with negligible probability all sampled vectors have squared length at
least d(σsign/C)

2
> d(C · σver)2/2. Using similar concentration bounds, and that

any tuple of k = O(1) such vectors are nearly orthogonal, summing them gives,
except with negligible probably, an element of square length at least k ·dσ2

ver/2 ≥
dσ2

ver, which is not a solution.
We have shown asymptotic security for omSVP from these attacks if the

parameters are chosen as mentioned. We leave the concrete security of attacks
on omSVP for future work.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 45

C Details on the implementation

In this appendix we explain in more detail the design choices made in the im-
plementation and include more low-level information than in Section 5.3.

Hawk has a reference implementation and an AVX2 optimised implementa-
tion. Almost all processors with AVX2 support have a floating point unit and
therefore the AVX2 optimised implementation makes extensive use of built in
floating point numbers and will use the fft when a multiplication or division
is needed in the number ring. On the other hand, the reference implementation
uses the ntt for multiplication in the number ring and only uses an fft with
fixed point precision for decompressing signatures in the verification step. As
floating points are required in TowerSolveI during key generation, the reference
implementation emulates floating points (IEEE-754 “binary64” format) in key
generation, and is entirely free of them in signing and verification.

The ordering of the roots in the fft representation is chosen as in Falcon,
the “bit reversal” ordering, and only half the embeddings are stored since the
other half are their complex conjugates. Moreover, of these n fixed-point or
floating point numbers, the first n/2 are the real parts and the last n/2 are the
imaginary parts, giving the performance benefits mentioned at the end of [46,
Sec. 4.2.1]. The advantage of this ordering is that self-adjoint polynomials, like
q00 and q11, only have real embeddings and thus require only half the memory.
An implementer is free to choose their own ordering as long as it is consistent
within the implementation.

C.1 Key generation

Key generation is the same for both implementations, as the majority of the work
is the TowerSolveI procedure. This requires floating points, so in the reference
implementation we emulate them. In [42, Sec. 6], the problem of having a vector
reduction in TowerSolveI using fixed point arithmetic was left open. If one is
able to solve this problem, one can remove all floating point emulation from the
reference implementation of Hawk.

In key generation, f, g are sampled in R with coefficients from DZ,σpk
. This

sampling is performed using a precomputed cumulative density table with 63 bits
of precision and produces values of absolute value at most 13 for Hawk-512 and
at most 18 for Hawk-1024. The kth index of the table (with k = 0, 1, . . . , 12 for
Hawk-512) contains the integer

⌈
263 · PrX←DZ,σpk

[|X| ≥ k + 1]
⌋
so the statisti-

cal distance between DZ,σpk
and the implemented sampling procedure is smaller

than 2−64.
We then check five conditions.

1. N(f) and N(g) are both odd, i.e. both the sum of coefficients of f and the
sum of coefficients of g are odd,

2. ‖(f, g)‖2 > σ2
sec · 2n,

3. f(X) is invertible in Z[X]/(Xn+1, 216+1), i.e. the ntt of f modulo 216+1
has no entry equal to zero,

46 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

4. ff∗ + gg∗ is invertible in Z[X]/(Xn + 1, 2147473409), i.e. the ntt of q00
modulo 2147473409 has no entry equal to zero,

5. 〈1, q−100 〉 < νdec.

The primes 216 +1 and 2147473409 are both 1 (mod 2n) and will be motivated
in sign and verify respectively. The conditions in 3. and 4. are required only in
the reference implementation. However, we check these also in the AVX2 imple-
mentation as a signer should be able to switch to the reference implementation
without changing the key pair and a verifier should be able to use the reference
implementation.

If any of the checks fail, we reject this sample and restart key generation. We
remark that in Falcon if the sum of coefficients of e.g. N(f) is even, then the
final coefficient is resampled until its parity changes. As this slightly alters the
key distribution we choose caution and resample both f and g completely.

The time to find a valid pair (f, g) is much smaller than the time to run Tow-
erSolveI. The implementation of the TowerSolveI algorithm is taken from Falcon
setting q = 1. Since the standard deviation of the coefficients of f and g is smaller
for Hawk, the upper bound on the number of bits required to represent interme-
diate polynomials in the tower of fields is a little smaller. Moreover, in Hawk the
final reduction of (F,G) in the top field is replaced by ffNP [20, Alg. 4], written
in a memory friendly manner where certain polynomials overwrite memory that
is no longer in use. This modification increases the public key size, whereas in
Falcon this would only give a slightly better trapdoor sampler.

The TowerSolveI algorithm fails if N(f) and N(g) are not coprime over Z, or
the returned F,G have a coefficient with absolute value larger than 128, or F,G
do not satisfy the sanity check fG− gF = 1 (mod 2147473409) which is rather
unlikely. The sanity check catches rare cases where the intermediate coefficients
of normed down f, g, F or G may be larger than is supported (see “Coefficient
Sizes” [46, Sec. 4.4.3]). If TowerSolveI fails, we restart key generation. All these
checks are also in the reference implementation of Falcon.

Otherwise, the public key is computed, and the program checks if the encoded
public key is not larger than the allowed maximum size. The encoded public key
first contains a header byte where the four most significant bits are set to zero
and the remaining four bits contain the value log2(n) for the n used in KGen
(512 or 1024). After the header byte follows the used encoding of q00 and q01.

Experimentally the average public key size is 1006.5 bytes (including its
header byte) with a standard deviation of 6.1. To be able to reserve memory
in advance for encoding a public key, we enforce the encoding of a public key
to be of size at most 1043 bytes in Hawk-512, which is 6 standard deviations
above the average, altering the key distribution only a little. In Hawk-1024 an
average public key is of size 2329.2 bytes with a standard deviation of 11.2 and
therefore the encoding of a public key can be at most 2396 bytes long. These
averages were obtained by generating 105 keys.

Moreover, given the small σpk, we know the constant coefficient of q00 fits
in a int16_t. It is checked for all the other coefficients of the quadratic form if
these lie in a certain range. For example, in Hawk-512 the absolute values must

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 47

be (strictly) smaller than 29, 212 and 215 for q00, q01 and q11 respectively. These
bounds provide handles in verification when these elements are multiplied by a
signature.

C.2 Signature generation

A message is hashed to some element h ∈ {0, 1}2n using SHAKE256 on the
bitstring m‖r, with r ∈ {0, 1}320 a random salt. Whenever a check fails in
signing, a new random salt is generated. However, the message is not hashed
again as it is enough to recover the internal state of SHAKE256 after consuming
the message. This approach is only possible as we chose to have the salt last.

First, there is a check if a signature is short enough, which is line 5 in Algo-
rithm 2. Moreover, it is checked that all coefficients of s1 are not too large and
the encoded signature cannot be too large as well, similar to the encoded public
key.

In signing the two implementations differ: the AVX2 version uses double pre-
cision floating point numbers inside the fft while the reference implementation
uses ntt with prime p = 216 + 1.

AVX2. During AVX2 signing we transform the whole basis B into fft represen-
tation. Since G is not stored in the secret key, G = (1 + gF)/f is calculated in
fft representation after f, g, F and 1 are put into fft representation. Note that
the Fourier transform of 1 is a vector with a one in every entry. Then, the hash
h = (h0, h1)

T ∈ R2 is also put into fft representation after which we calculate
t = B · h in fft representation and then invert the fft. From this, the point
x = (x0, x1)

T ← D2Z2n+t,2σsign
is sampled. This sampled point then overwrites

the initial target and is converted to fft representation. With the basis still in
fft representation we can easily compute the second component of B−1x by
computing (−g)x0 + fx1. Now the signature is computed by

s1 =
h1 − ((−g)x0 + fx1)

2
.

Note here that h1 does not need to be converted to fft representation. In addi-
tion, there is a compilation flag -DHAWK_RECOVER_CHECK, which checks if a vector
x satisfies (2).

In batched signing, the basis B is precomputed in fft representation and
therefore cannot be altered. If the compilation flag -DHAWK_RECOVER_CHECK is
added, the expanded secret key also contains 1/(f∗f+g∗g) in fft representation
to make the check faster.

Note that the target B · h only needs to be known modulo 2 to sample x.
However, since f and g need to be in fft representation to compute s1 with
B−1, as far as we know the best approach is to compute Bh exactly and then
reduce it modulo 2. Having a fast multiplication in the ring Z[X]/(2, Xn +1) =
Z[X]/(2, (X + 1)

n
) may result in a faster signing algorithm and would reduce

the memory usage of the current implementation, making this interesting future
work.

48 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Reference implementation. In the reference implementation we use the prime
p = 216 + 1 which is 1 (mod 2048). The coefficients in B · h are distributed
around zero with a standard deviation of less than 400 for Hawk-1024. Since
the prime used in signing is much larger than this standard deviation, the inverse
ntt provides the correct lifting from Z/pZ to Z. Using the special property of
the Fermat prime 216 + 1, multiplication is done using 216 ≡ −1 (mod 216 + 1).
Inverting an element x ∈ Z/pZ is done by calculating xp−2 (mod p), and can be
done for this prime with an addition chain requiring 19 multiplications, which
is faster than the naïve exponentiation by squaring. This inverse is only used
to reconstruct G using G = (1 + gF)/f , and since the third condition in KGen
holds, f is invertible modulo p.

One can reduce the memory usage of signing from 15kB down to 8kB for
Hawk-512 by using a prime p < 216 for example p = 12289 or p = 18433 as then
values can be stored in 16 bits rather than 32 bits. Here to have constant-time
multiplications, one can use Montgomery modular reduction [39] with radix 216,
which also has better performance than the built in modulo operator. Interest-
ingly, there are addition chains for p = 12289 and p = 18433 both requiring 18
multiplications, which is much less than the 26 needed for exponentiation by
squaring. Since a division is as costly for p = 12289 as for p = 18433, it is prefer-
able to use the latter prime as larger integers are supported without incorrect
lifting.

The ntt version of signing is essentially obtained by replacing all fft invo-
cations with ntt invocations. One of the few differences is that the ntt version
calculates s1 by

s1 = (−g, f) · t− x

2
,

where the division by two is performed in Z before passing to the ntt representa-
tion. Here, s1 is calculated correctly with the ntt when the absolute value of the
coefficients of the actual s1 are all smaller than p/2, as otherwise an incorrect lift
from Z/pZ to Z may be chosen when inverting the ntt. If the equivalent equa-
tion from the AVX2 implementation is used, these coefficients must be bounded
by p/4 in absolute value.

In the reference implementation, one cannot supply the compilation flag
-DHAWK_RECOVER_CHECK to perform the recovery check as in (2), because this
check can only be done with little overhead when basis and x are already in
fft representation. To still have this check without the use of emulated floating
point numbers, one could simply run the verification algorithm inside signing,
although this check almost never fails, see Section 5.1.

Sampling in signing. Sampling a single coefficient from D2Z+c,2σsign uses two
precomputed cumulative density tables, one for each center c ∈ {0, 1}. To have
the sampler run in constant time, independent of the centre c and the outcome,
the program reads the two cumulative density tables fully. Algorithm 7 explains
the sampler in pseudocode, where [[P]] is 1 when a proposition P holds and zero

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 49

otherwise. The algorithm uses a table where RCDT[c][i] contains the value⌈
278 · Pr

X←D2Z+c,2σsign

[|X| ≥ 2i+ 2]

⌋
.

As computers do not have built in support for 78 bit numbers, the tabulated
values are split in the implementation into a high part of type uint16_t and a
low part of type uint64_t. The high part contains 15 bits and the low part 63
bits. We get faster constant-time code by not having the highest bit set in both
parts, because checking a < b can be done by looking at the sign bit of a − b
for numbers a, b not having their highest bit set, making comparisons easier and
more efficient. Moreover, after the first 5 entries in the table, the high parts are
all zero and are thus omitted from the table to save memory. More importantly
this makes the comparison of 78 bit numbers easier for i ∈ {5, . . . , 12}.

Algorithm 7 Sampling from 2Z+c with standard deviation 2 σsign: SamplerZ(c)

Require: RCDT having reverse cumulative density tables for support 2Z + c with c ∈
{0, 1}

Ensure: A sample taken from a distribution close to D2Z+c,2σsign
1: u← UniformBits(78)
2: z0 ← 0
3: for i = 0, . . . , 12 do
4: z0 ← z0 + [[u < (1− c) · RCDT[0][i] + c · RCDT[1][i]]]
5: z0 ← 2 · z0 + c
6: z0 ← z0 − 2z0 ·UniformBits(1)
7: return z0

C.3 Signature verification

The implementation for signature verification follows Algorithm 3 closely, but
computes the norm with respect to Q in an efficient way.

AVX2. For the AVX2 version, one first computes q11 via the fft and the equa-
tion q11 = (1 + q10q01)/q00, making use of the fact that numerator and denomi-
nator are both self-adjoint and thus saving some multiplications.

In the recovery of s0 using (1), note that h0 does not need to be in fft
representation. Moreover, t1 = h1 − 2s1 is calculated in fft representation, and
after recovering s0 one sets t0 = h0 − 2s0 in fft representation, after which we

check
∥∥∥(t0, t1)T∥∥∥2

Q
≤ 8n ·σ2

ver. Thus in total there are four fft calls for t0, t1, q00
and q01 and an inverse fft call on t1 · q01/q00 needed to calculate s0.

For computing the norm of t with respect to Q, we use ‖t‖2Q = 1
nTr(t

∗Qt) as
for a ring element x we have Tr(x) =

∑
σ σ(x), where σ ranges over all the field

50 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

embeddings of Q(ζ2n) into C. Recall that the fft representation of x holds all
the σ(x) up to complex conjugation, making the trace easily computable once x
is in fft representation. Moreover, the norm is a real number so we only need
the real part of t∗Qt under the embeddings. For example, we have∥∥∥∥(t00

)∥∥∥∥2
Q

=
1

n

∑
σ

σ (t∗0q00t0) =
1

n

∑
σ

σ(q00)|σ(t0)|2,

where the contribution of some σ is equal to that of its conjugate embedding.
A benefit of calculating the geometric norm using t0, t1, q00, q01 and q11 in fft
representation is that it requires no extra memory. When checking if the norm
does not exceed the norm bound, first we check if the outcome fits in a int32_t
and is positive. It is then rounded to an integer before being compared to the
norm bound.

Reference implementation. In the reference implementation, we still recover s0
using the fft together with (1) but now using fixed-point arithmetic instead of
floating point arithmetic. As there are bounds on coefficients of s1 and q00, q01
from signing and key generation respectively, it is possible to determine bounds
on the absolute value of the numbers for all layers inside the fft. The constant
coefficient of q00 has a different bound to the other coefficients of q00, so this one is
excluded via setting it to zero before transforming q00 to the fft representation.
The fft representation of the constant coefficient of q00 is a constant valued
vector and can thus be easily added afterwards.

Initially we scale up the coefficients of s1, q00 and q01 by a power of two such
that they require at most 29 bits (excluding the sign bit at the beginning). Then,
after each layer of computations within the fft, all numbers are divided by two,
dropping the least significant bit after the fixed point. It is then readily proven
that no overflow happens during the fft computation.

Although the computation here uses less precision than the AVX2 version,
the precision errors before rounding in (1) are so small that rounding to an
incorrect s0 is highly unlikely. By the parameters in Section 5.1, it is extremely
unlikely (probability less than 2−105) that s0 is recovered incorrectly with (1).
By small adaptations to this analysis, it can be shown that heuristically for a
fixed key pair in Hawk-512 with probability at least 1−2−100, all the coefficients
in (1) lie in Z+ (−0.49, 0.49) before being rounded to the nearest integer. This
illustrates that the fixed-point computation can handle even “large” precision
errors of 0.01 (which are rare) as such almost never affect the recovery of s0.

Experimentally, out of 5 · 108 valid generated signatures, where we generate
100 signatures for a key pair before sampling a new one, none failed with this
fixed-point fft recovery of s0 both for Hawk-512 and Hawk-1024.

For the norm calculation, q11 needs to be calculated from q00 and q01 using
the ntt with the 31 bit prime. Here, the inverse of q00 is needed. We use the
extended Euclidean algorithm for this, since verification is trivially isochronous,
i.e. it operates only on public information and so there is no requirement for it

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 51

to be constant-time. The extended Euclidean algorithm has better performance
than exponentiation.

For calculating the norm modulo a prime p, we exploit a property of the ntt,
namely that Tr(x), the sum of fft coefficients of x, is congruent to the sum of
ntt coefficients of x modulo p for any element x ∈ R. The verification calculates
the norm modulo two primes p1, p2, say n1, n2 with ni ∈ {0, 1, . . . , pi − 1} and
then accepts the signature when n1 = n2 and n1 is smaller than the norm bound.
By theoretically determining the maximum norm possible with bounds on the
signature coefficients and the public key coefficients, if this norm is known to be
smaller than p1 · p2 we know by the Chinese remainder theorem that no wrap
around has happened, so no invalid signatures will be accepted.

First, denote the infinity norm of f = f0 + · · ·+ fn−1X
n−1 ∈ R by∥∥f0 + f1X + · · ·+ fn−1X

n−1∥∥
∞ = max

0≤i<n
‖fi‖,

and write t = h− 2s.
For Hawk-1024, the non-constant coefficients of q00 and q11 are at most 210

and 217 in absolute value respectively, while ‖q01‖∞ ≤ 214. The encoding of
signatures requires ‖s1‖∞ < 210. In addition, for bounding the norm, we require
that after recovering s0, we must have ‖s0‖∞ < 214. Thus, ‖t0‖∞ < 215 and
‖t1‖∞ < 211.

We will now use that for polynomials a(X), b(X) ∈ Z[X]/(Xn + 1), we have
‖a(X) · b(X)‖∞ ≤ ‖a(X)‖∞ ·‖b(X)‖∞ ·n. However, to use this bound, we handle
the contribution of the constant terms of q00 and q11 separately as these are larger
than the bounds mentioned above. First, KGen required that ‖f‖∞, ‖g‖∞ < 128
and therefore, 〈1, q11〉 < 2n ·1282 = 225. On the other hand, 〈1, q00〉/σ2

pk behaves
as a χ2-distribution with 2n degrees of freedom, so by setting D = 2n and
x = D/4 in [32, (4.3)], the probability that this quantity is larger than 5n is at
most exp(−n/2), which is miniscule for n = 512 and n = 1024. Therefore, we
can safely say 〈1, q00〉 < 5nσ2

pk < 215. Now combining this with the bound on s0
and s1, the constant terms give a contribution of at most

215 · n · ‖t0‖2∞ + 225 · n · ‖t1‖2∞ ≤ n · (215+2·15 + 225+2·11) < 258.

These bounds on Q and s then imply that,

‖h− 2s‖2Q = ‖t‖2Q ≤ n2 ·
(
22·15+10 + 2 · 215+11+14 + 22·11+17

)
+ 258

≤ 220
(
240 + 241 + 239

)
+ 258 = 15 · 258.

Now given primes p1 = 2147473409 and p2 = 2147389441, one can see that
15 · 258 < p1p2. Of course, this also shows that Hawk-512 can calculate the
norm with these two primes, as the bounds on all numbers are smaller. In both
cases, this shows that no invalid signatures will get accepted as the geometric
norm cannot be above p1p2 for a signature that passes this ntt version of ver-
ification. On the other hand, the extra restriction on ‖s0‖∞ does reject some
valid signatures, but this can be shown to happen with miniscule probability.

52 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Namely, the coefficients for recovered s0, averaged over key pairs and valid sig-
natures s1, follow roughly a Gaussian distribution with σ ≈ 354 and σ ≈ 962
for Hawk-512 and Hawk-1024 respectively. Hence, a simple union bound yields
Pr[‖s0‖∞ ≥ 213] < 2−382 for Hawk-512 and Pr[‖s0‖∞ ≥ 214] < 2−203 for
Hawk-1024.

Moreover, we choose to work with 31 bit primes as the (Montgomery) mod-
ular multiplication requires 64 bit numbers and if one takes a prime of e.g. 62
bits, this requires working with 128 bit integers which is not supported in the C
language.

C.4 Encoding

Recently, Espitau et al. showed in [24] one can improve Falcon’s signatures
sizes by 7%-14% using asymmetric numeral systems (ANS) encoding ([22]) in-
stead of Golomb–Rice encoding. We have tried encoding/decoding public keys
in Hawk using the open-source rANS implementation at https://github.com/
rygorous/ryg_rans and this showed a saving of 15 and 30 bytes for Hawk-512
and Hawk-1024 respectively. Because this saves less than 2% on the public key
sizes but does add signficantly to the code complexity, we did not use this en-
coding in the final version.

D On the Falcon security estimates

In this appendix we describe and explain the security estimates for Falcon-
512 and Falcon-1024 given in [46]. We go on to estimate the security of Hawk
parameters using the Falcon methodology and discuss how part of this method-
ology is overconservative. One high level difference is that Falcon does not use
state of the art BKZ simulation in its security estimates, as opposed to Hawk’s
use of [14]. Instead it uses different heuristics that describe the Gram–Schmidt
lengths (resp. first basis vector length) of a basis after DBKZ [37] reduction
for key recovery (resp. signature forgery). The structure of DBKZ allows for
a cleaner theoretical proof of worst case bounds on e.g. the length of the first
basis vector after DBKZ-β reduction, which are better than the best known for
(standard) BKZ [34]. However, models of the average case behaviour of the two
algorithms predict the same performance.

Falcon key recovery. Broadly speaking, Falcon estimates the cost of key re-
covery using [6, Sec. 6.3], which is hiding behind (4). Following the notation
of [46, Sec. 2.5.1], their estimate for the left hand side is

√
Bσ{f,g}, i.e. an esti-

mate for the length of f or g projected into the final projected sublattice of rank
B. They then consider using DBKZ reduction and appeal to [37, Cor. 2] for its
average case behaviour to obtain their value for their right hand side of (4). The
factor of

√
4/3 will be discussed below. There are several things to note.

First, it appears there is a small mistake in [37, Cor. 2]. Indeed, in the notation
of [37, Sec. 4], when replacing the condition of being less than or equal to √γk in

https://github.com/rygorous/ryg_rans
https://github.com/rygorous/ryg_rans

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 53

(5) of their dynamical analysis, rather than taking
√

GH(k) they should choose
GH(k). This is the difference between setting α = 1

2GH(k) and α = GH(k)
in [37, Cor. 2]. The effect of this change is

‖b∗i ‖ = GH(k)
n+1−2i
k−1 vol(Λ)1/d,

that is, the factor of two in the denominator of the exponent disappears. As a
sanity check, the i = 1 case now follows [37, Cor. 1]. It seems that the security
estimates of Falcon implicitly make this correction.

Second, Falcon approximates GH(k) as
√
k/2πe and also approximates its

exponent to simplify presentation. Indeed, with Falcon’s implicit correction and
in their notation (where n becomes d = 2n), the exponent is (2n+1−2i)/(B−1).
The first index of the final DBKZ-B block is i = d−B + 1 when counting from
1, and therefore to use [37, Cor. 2] we must appeal to the discussion after it that
allows i ≥ B and also ensure B ≤ (d+1)/2 to make sure this is indeed the case.
Then the exponent (2B − 2n + 1)/(B − 1) is (conservatively) approximated as
the larger 2(B − n)/B. We finally arrive at(√

B/2πe
) 2(B−n)

B

= (B/2πe)
1−n/B

.

Third, and most importantly, an early and targetted version of the “di-
mensions for free” technique [16] is used within the [6, Sec. 6.3] methodol-
ogy. Indeed, consider the factor of

√
4/3 in the inequality

√
Bσ{f,g} ≤

√
4/3λ

of [46, Sec. 2.5.1]. This is precisely the condition [16, (3)]. The terms gh(L) and√
4/3 ·gh(Ld) in [16, (3)] relate to

√
dσ{f,g} and

√
4/3λ in [46, Sec. 2.5.1]. Since

we are in a terminal block of size B we have that the Gram–Schmidt vector is the
shortest vector in the given projected sublattice, which we expect to have length
determined by the appropriate Gaussian heuristic. Note that we have n = d and
d = n−B with the left hand side being the notation as in [16] and the right hand
side as in [46]. Hence the

√
(n− d)/n ·gh(L) equaling

√
Bσ{f,g} for Falcon and

Ld being the correct projected sublattice to consider. The sentence “This is be-
cause all remaining Gram–Schmidt norms are larger. . . ” alludes to ensuring [16,
(4)]. As this technique is present in the Falcon v1.0 documentation [45], it
appears to be a concurrent discovery to [16].

A note on “dimensions for free”. For simplicity we chose to report the estimated
BKZ blocksizes required to either recover the key or forge a signature without
applying the dimensions for free techniques [16]. One is then free to take this
“raw” BKZ blocksize and convert it into a cost as is required. In Falcon’s key
recovery methodology they not only use dimensions for free ideas within the
methodology of [6, Sec. 6.3], as explained above, but also then apply directly
the dimensions for free techniques of [16] to their estimated blocksize, i.e. they
also apply dimensions for free within lattice reduction. We argue here that this
is overconservative.

Intuitively, the dimensions for free technique works by sieving in a projected
sublattice (of a smaller rank) than the lattice you wish to find a short vector in.

54 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

When the sieve terminates it contains exponentially many (in the smaller rank)
short vectors in the projected sublattice. These vectors are then lifted to the full
lattice and the shortest returned. If the basis of the full lattice has sufficiently
good properties, e.g. after BKZ-β reduction for some well chosen β, and the rank
of the projected sublattice is not too small, then we expect one of these lifted
vectors to be the shortest vector in the full lattice.

In particular, if Λ is our lattice of rank d, and Λi our projected sublattice of
rank d−i, we assume that on termination our sieve contains {v ∈ Λi\{0} : ‖v‖ ≤√
4/3 · gh(Λi)}. Under the Gaussian heuristic we expect this set to contain

approximately (4/3)
(d−i)/2 vectors. On the other hand, a sieve that is run on Λ

is assumed to contain {v ∈ Λ\{0} : ‖v‖ ≤
√
4/3·gh(Λ)} when it terminates, a set

of expected size (4/3)d/2. Immediately we see a problem: the bespoke dimensions
for free idea used in Falcon’s key recovery, as explained in the “Falcon key
recovery” paragraph above, requires all vectors in the final projected sublattice
of rank B of length less than or equal to

√
4/3 ·

∥∥b∗d−B+1

∥∥ to be in the sieve
database. However, if we use the general dimensions for free technique of [16]
within lattice reduction, in this final block we only sieve in some further projected
sublattice of a smaller rank and lift to it. This means that, regardless of how
long or short the lifted vectors are, there are simply not enough of them.

More specifically, following [46, Sec. 2.5.1] we set i ∈ Θ(B/ logB) so that the
rank of the projected sublattice that is sieved in is of the order B(1− 1/ logB).
The sieve database after termination therefore represents a

(4/3)
(B(1−1/ logB)−B)/2

= (4/3)
−B/2 logB

fraction of the required number of vectors. It may be possible to use ideas for
solving LWE from [5, Sec. 6] in this instance. Here one final sieve is performed on
a terminal projected sublattice of a larger rank than is used for lattice reduction,
but it would require any security estimation to cost at least one call to an SVP
oracle on a lattice of rank larger than B(1− 1/ logB).

Signature forgeries. To estimate the cost of forging signature on a message Fal-
con examines the cost of sufficient lattice reduction on an embedding lattice.
However, their choice of embedding parameter K =

√
q makes this approach the

same as assuming that approximate CVP is at least as hard as approximate SVP
with the same approximation factor on the same lattice, as we do. The difference
is that for Hawk we use BKZ simulation to determine the required blocksize
to solve this approximate SVP, whereas Falcon again appeals to [37, Cor. 2].
Specifically, they set i = 1, approximate GH(B) as

√
B/2πe and perform a sim-

plification of the exponent. Indeed, (2n−1)/(B−1) is (conservatively) simplified
to the smaller 2n/B and we obtain(√

B/2πe
)(2n−1)/(B−1)

· (qn ·K)
1/(2n+1) ≈

(√
B/2πe

)2n/B
· √q

= (B/2πe)
n/B · √q

≤ β

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 55

as our condition. Note that here β is a bound on the norm of a signature and
not a blocksize for lattice reduction algorithms.

Hawk and Falcon compared. In this section we apply the Falcon security
methodology to Hawk to be able to give a comparison in equal terms. We first
describe what we expect by phrasing the problem of key recovery as unusual
SVP, and the problem of signature forgery as approximate SVP.

Firstly, for key recovery the approach of [6, Sec. 6.3] requires less lattice
reduction effort the shorter the projections of the unusually short vector, i.e. the
left hand side of (4), are. As a more general principal, the shorter, i.e. more
unusual, a lattice vector is compared to what we may expect from a random
lattice using either a heuristic such as the Gaussian heuristic, or worst case
bounds such as Minkowski, the easier it is to find with lattice reduction. This
conflicts slightly with the idea that finding short vectors in lattices is hard – this
is true provided a given vector is not much shorter than all others. To understand
how Hawk and Falcon compare under any security estimates that make use
of the fact that their lattices contain vectors shorter than expected, we should
compare how much shorter than expected they are in either case. For Hawk
we have vectors of length 1 and expect vectors of length gh(Zd). For Falcon
we have vectors of expected length

√
d · σ{f,g} and expect vectors of length

gh(Zd) · √q. Given that σ{f,g} = 1.17 ·
√
q/d for Falcon, we see that the short

vectors of Hawk are a factor of (
√
d · σ{f,g}/gh(Zd) ·

√
q)/(1/gh(Zd)) = 1.17

times more ‘unusual’ than those of Falcon. This suggests that key recovery for
Hawk should be slightly easier than in Falcon.

Signature forgery tells the opposite story. Recall that we are assuming the
cost of solving approximate CVP with some approximation factor is at least
the cost of solving approximate SVP with the same approximation factor over
the same lattice, and that for the particular choice of embedding parameter
K, Falcon’s security methodology is the same. Here we are looking for lattice
vectors that are longer than what we expect to be the shortest, and the difficulty
of doing so grows as their lengths get closer to that of the shortest vector. Note
that below we consider Hermite SVP, where the approximation factor is relative
to the normalised volume of the lattice, and not to the actual shortest vector. In
Hawk we have vol(Zd)1/d = 1, and search for a vector of length

√
dσver. That

is the approximation factor is
√
dσver. In Falcon we have vol(Λ)1/d =

√
q and

search for vectors of length β = 1.1
√
d · σ. That is, the approximation factor is

1.1
√
dσ/
√
q. The Falcon condition is a factor of 1.1σ/√qσver times looser, which

is approximately 1.15 and 1.06 for Falcon-512 and Falcon-1024 respectively.
As such we expect it to be slightly easier to forge signatures for Falcon.

In Table 4 we report the estimated blocksizes for key recovery and signature
forgery against Hawk-{512, 1024} and Falcon-{512, 1024} using the Falcon
methodology. For key recovery we report the blocksizes both with the factor of√
4/3 found in [46, Sec. 2.5.1], and then without it. With it, we argued above

that it is overconservative to further apply dimensions for free to the lattice
reduction, whereas without it we choose to do so.

56 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Parameters βkey (
√

4/3) βkey (d4f) βforge βforge (d4f)

Hawk-512 436 416 434 395
Falcon-512 458 440 411 374
Hawk-1024 898 866 970 901
Falcon-1024 936 904 952 884

Table 4: Estimating the security of Hawk and Falcon using the Falcon
methodology. Here βkey followed by (

√
4/3) denotes Falcon’s approach of us-

ing dimensions for free techniques in the final block during key recovery. On
the other hand, (d4f) denotes using dimensions for free techniques only within
lattice reduction [16]. Note that βkey (

√
4/3), βforge and βforge (d4f) match the

table in [46, Sec. 2.5.1]. Only βkey (d4f) differs, and is higher, since we argue
above the “double” application of dimensions for free techniques is overconserva-
tive. See function falcon_blocksizes at https://github.com/ludopulles/
hawk-aux/blob/main/code/find_params.sage.

As we can see, in each case key recovery is a little easier for Hawk and sig-
nature forgery a little easier for Falcon. In particular, since signature forgery is
easiest for both Hawk-512 and Falcon-512, under the Falcon security method-
ology Hawk-512 is slightly more secure than Falcon-512 and vice versa for
Hawk-1024 and Falcon-1024. Our arguments regarding the double application
of dimensions for free techniques in key recovery attacks do not change the se-
curity of Falcon-512, since for these parameters forgeries are estimated to be
easier both in Table 4 and in the table of [46, Sec. 2.5.1]. However, in Falcon-
1024 we find that the security increases slightly compared to the table of [46,
Sec. 2.5.1].

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

	Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

