
DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees

Bin Hu†, Zongyang Zhang†, Han Chen†, You Zhou†, Huazu Jiang‡, Jianwei Liu†
†School of Cyber Science and Technology, Beihang University

‡SHENYUAN Honors College, Beihang University
Email: {hubin0205, zongyangzhang, chenhan1123, youzhou, anjhz, liujianwei}@buaa.edu.cn

Abstract—Dynamic-committee proactive secret sharing (DPSS)
enables the update of secret shares and the alternation of share-
holders without changing the secret. Such a proactivization
functionality makes DPSS a promising technology for long-
term key management and committee governance. Although
non-asynchronous DPSS schemes have achieved cubic commu-
nication cost w.r.t. the number of shareholders, the overhead
of asynchronous DPSS remains exponential. In this paper, we
fill this gap and propose DyCAPS, an efficient asynchronous
DPSS scheme with a cubic communication cost.

DyCAPS can be efficiently integrated into asynchronous
BFT protocols without increasing the overall asymptotic com-
munication cost. Experimental results show that given a pay-
load of 15 MB per party, DyCAPS achieves member change
in Dumbo2 (CCS 2020) at the cost of 5%–22% throughput
degradation, when the committee size varies from 4 to 22.

1. Introduction

Proactive secret sharing (PSS) [1], [2] is an extension of
the well-known Shamir’s secret sharing [3]. In PSS, a user
(also called a dealer) shares a secret among a committee,
and the shares are freshed periodically and distributedly,
without influencing the original secret. In recent years, there
has been a trend to reconsider the design and applications of
dynamic-committee PSS (DPSS) schemes, first proposed by
Desmedt and Jajodia [4]. DPSS allows the committee to ad-
just its member, size, and threshold over time. This dynamic
feature makes DPSS a promising technology for long-term
key management and committee governance. The design of
DPSS schemes has gained additional significance thanks to
the development of BFT-based blockchains. As pointed out
by Duan and Zhang [5], dynamic-committee BFT protocols
are in great demand in real-world applications. DPSS may
also solve the problem of committee authentication, where
the member change will not influence the public keys of a
committee, saving the efforts to inform the public of new
public keys and revoke the old ones.

However, there is a huge gap in communication costs
between DPSS schemes under different network assump-
tions. Researchers have achieved high performance in pure
or partially-synchronous networks. In these settings, there
is a time bound for the message delivery, so that the mis-
behaviors can be identified efficiently. The state-of-the-art

synchronous DPSS scheme, CHURP [6], requires O(κn2)
bits of communication in the presence of a semi-honest
adversary, where κ is the security parameter, and n is the
committee size. When faced with a malicious adversary,
CHURP consumes O(κn3) bits of communication, which
is still the asymptotically best among existing schemes. As
for the partially synchronous solutions, COBRA [7] achieves
O(κn3) bits of communication in the best case, but the
cost degenerates to O(κn4) in the worst case. However, to
the best of our knowledge, there is little research on DPSS
schemes in asynchronous networks, which only assumes that
the messages will be delivered eventually. Zhou et al. [8]
achieve asynchronous DPSS at the cost of exp(n) commu-
nication, which is far from real-world implementation. The
lack of efficient asynchronous DPSS schemes may hinder
the decentralized systems from adapting to the dynamic
setting, including blockchain systems [9], [10], decentralized
autonomous organizations [11], and threshold-cryptography-
as-a-service systems [12].

Migrating the non-asynchronous DPSS schemes to asyn-
chrony is not straightforward, as most of them [6], [7], [13]
rely on a challenge-response mechanism to make progress.
Such a strategy is inapplicable in asynchronous networks,
because an honest party cannot determine whether the ab-
sence of challenges or responses is due to the unbounded
network latency or malicious behaviors.

In this paper, we propose DyCAPS, an efficient and BFT-
friendly asynchronous DPSS scheme.
Contributions. Our contributions are as follows.

• We propose DyCAPS, the first efficient asynchronous
DPSS scheme with O(κn3) communication cost, closing
the communication cost gap between asynchronous and
non-asynchronous schemes. In the worst case, DyCAPS
beats COBRA [7], which assumes partial synchrony.

• We give a formal definition of asynchronous DPSS and
prove the security of DyCAPS.

• We implement DyCAPS and integrate it into an asyn-
chronous BFT protocol, achieving dynamic committee
without increasing the asymptotic communication cost.

• We evaluate DyCAPS on Amazon EC2 t2.medium in-
stances from 8 regions. The results show that the proac-
tivization for n = 4 and n = 16 completes in around 1.5
and 8 seconds, respectively. Given a payload of 15 MB
per party and n from 4 to 22, the extra latency overhead

1

TABLE 1: Notations

Notation Description
κ Security parameter
s Secret value
e Epoch number
Ce The committee in epoch e
P ei The i-th party in Ce
ne Size of Ce
te Maximum number of corrupted parties in Ce

B(x, y) Bivariate polynomial for the secret sharing
σ Digital signature
σ∗
i Signature share from Pi

FLGcntx Flag, where cntx denotes the context
Cφ Commitment to the polynomial φ(x)
wφ(i) Witness for the evaluation of φ(x) at x = i
∅ Empty set

of DyCAPS is around 5%–22% when compared to the
static-committee Dumbo2 [10].

Organizations. In the rest of this paper, we give the prelim-
inaries in Section 2. The formal description of DyCAPS is
shown in Section 3, and security and performance analysis
of DyCAPS is in Section 4. We show the implementation
results in Section 5 and describe the adjustment of com-
mittee size and threshold in Section 6. The discussion and
conclusion are in Section 7 and Section 8, respectively.

2. Preliminaries

2.1. Notations

We use [n] to denote the set {1, ..., n}, where n ∈ N∗.
Arbitrary-length tuples are denoted as 〈·〉. Sets are mostly
denoted with upper-case calligraphic letters, e.g., S. We
refer to the size of S as |S|. Besides, we use small capital
letters to denote the message type, e.g., COM. As for the
operations, we use left arrows to assign values to variables.

Some special representations are used for particular
meanings, as listed in Table 1. Specifically, we use κ as
the security parameter. The secret value is denoted as s. We
denote the epoch number as e, where e ∈ N∗. The committee
in the e-th epoch is denoted as Ce = {P ei }i∈[ne], where P ei
is the i-th member and ne is the committee size. We use
te as the maximum number of parties the adversary can
corrupt in epoch e. The letter σm denotes digital signatures
of a message m, whereas σ∗m,i is the signature share by Pi.
Flags are referred to as FLG, with a subscript denoting its
context, e.g., FLGcom is the commitment flag. We use Cφ to
denote the commitment to the polynomial φ(x), and wφ(i)
is the witness for the evaluation of φ(x) at x = i.

2.2. System Model

Network model. We assume an asynchronous network,
where an adversary controls the order of the messages,
but the messages will be delivered eventually. Besides, the
parties are connected by authenticated and private channels.

We further assume that these channels are forward-secure,
as demonstrated in [13].
Epoch. We follow Schultz-MPSS [13] and define epochs
according to the local events of each party. An honest party
is active in epoch e if it holds the secret share for this
epoch. Between epochs e and e+1, the committees Ce and
Ce+1 collaboratively execute a handoff protocol to refresh
the secret shares.
Adversary model. We assume a mobile adversary who
adaptively corrupts at most te parties in committee Ce,
such that te < ne/3. The corrupted parties stay malicious
throughout this epoch, and they can misbehave arbitrarily.
Moreover, the adversary is computationally bounded.
Trusted setup. We require a trusted setup to initialize
the KZG polynomial commitment scheme [14] (see Sec-
tion 2.3), which is one of the key ingredients for DyCAPS
to achieve cubic communication cost.
Memory erasure. Following existing DPSS schemes [6],
[7], [13], we require honest parties to erase their memory
before exiting the current epoch. Otherwise, an adversary
may obtain the old shares when it corrupts a party that is
honest in previous epochs.

2.3. Building Blocks

Reliable broadcast (RBC) [15], [16] ensures that all honest
parties deliver the same message, or none delivers any mes-
sage. An RBC protocol satisfies the following properties.
• Agreement1. If an honest party outputs v, then all honest

parties output v.
• Validity. If the leader is honest and input v, then all honest

parties output v.
Multi-valued validated asynchronous Byzantine agree-
ment (MVBA) [17], [18], [19] allows each party to input
a proposal and agree on a valid proposal w.r.t. an external
predicate PMVBA. An MVBA protocol satisfies the following
properties.
• Agreement. If two honest parties have outputs, then their

outputs are the same.
• Termination. If all honest parties input values satisfying
PMVBA, then each honest party outputs a value.

• External validity. If an honest party outputs v, then v is
valid for PMVBA, i.e., PMVBA(v) = 1.

KZG commitment [14] is an efficient polynomial com-
mitment scheme whose output is a single group element.
We mainly use four algorithms: KZG.Setup, KZG.Commit,
KZG.CreateWitness, and KZG.VerifyEval.
• {pp} ← KZG.Setup(t, 1κ): this algorithm sets up the

public parameters for the commitments. It takes as inputs
a degree bound t and a security parameter κ in unary
form. The output is public parameters pp. We sometimes
omit pp for simplicity.

• Cφ ← KZG.Commit(φ(x), pp): this algorithm commits
to a polynomial. It takes as inputs a polynomial φ(x) ∈

1. This property is splitted into consistency and totality in [17].

2

Zp[x] and public parameters pp. The output is a commit-
ment Cφ.

• 〈φ(i), wφ(i)〉 ← KZG.CreateWitness(φ(x), i, pp): this al-
gorithm creates a witness for a polynomial evaluation. It
takes as inputs a polynomial φ(x), an index i, and public
parameters pp. The output is an evaluation φ(i) and a
witness wφ(i).

• 0/1← KZG.VerifyEval(Cφ, i, v, wφ(i), pp): this algorithm
verifies a polynomial evaluation. It takes as inputs a
commitment Cφ, an index i, an evaluation v, a witness
wφ(i), and public parameters pp. It outputs 1 iff v = φ(i).

The KZG scheme satisfies the following properties.
• Correctness. The output of KZG.CreateWitness always

passes KZG.VerifyEval.
• Strong correctness. An adversary cannot commit to a t′-

degree polynomial such that t′ > t, where t is the input
to KZG.Setup.

• Evaluation binding. An adversary cannot generate two
witnesses, wφ(i) and w′φ(i), that both pass KZG.VerifyEval.

• Hiding. Given a t-degree φ(x), a commitment Cφ, and
t evaluation-witness tuples 〈i, φ(i), wφ(i)〉, an adversary
cannot determine φ(i′) with a non-negligible advantage
for any unqueried i′.

• Homomorphism. The commitment to φ(x) = φ1(x) +
φ2(x) can be computed as Cφ = Cφ1

Cφ2
. Similarly,

wφ(i) = wφ1(i)wφ2(i) holds for φ(i) = φ1(i) + φ2(i).
Threshold signature [20] allows a quorum of parties to con-
struct a full signature jointly. It consists of five algorithms:
TS.KeyGen, TS.SigShare, TS.VerifySh, TS.Combine, and
TS.Verify.
• {〈tpk, tvki, tski〉i∈[n]} ← TS.KeyGen(t, n, 1κ): this al-

gorithm generates the threshold key pairs. It takes as
inputs a threshold t, a committee size n, and a security
parameter κ in unary form. The output is a threshold
public key tpk, a set of threshold verifier keys {tvki}i∈[n],
and a set of threshold secret keys {tski}i∈[n]. Each party
Pi is assigned with 〈tpk, {tvki}i∈[n], tski〉. We sometimes
omit tpk and tvki for simplicity.

• σ∗m,i ← TS.SigShare(m, tski): this algorithm generates a
signature share. The input is a message m and a threshold
secret key tski. The output is a signature share σ∗m,i.

• 1/0← TS.VerifySh(m, tvki, σ∗m,i): this algorithm verifies
a signature share. It takes as inputs a message m, a thresh-
old verifier key tvki, and a signature share σ∗m,i. It outputs
1 iff σ∗m,i is correctly generated via TS.SigShare(m, tski).

• σm ← TS.Combine(m, {σ∗m,i}i∈I): this algorithm gener-
ates a full signature from signature shares. The input is
a message m and a share set {σ∗m,i}i∈I , where I is the
index set and |I| > t. The output is a full signature σm.

• 0/1 ← TS.Verify(m, tpk, σm): this algorithm verifies a
signature. It takes as inputs a message m, a threshold
public key tpk, and a full signature σm. It outputs 1 iff
the signature is validated by tpk.

A threshold signature scheme satisfies the following
properties.
• Unforgeability. Given t corrupted parties, a computation-

ally bounded adversary cannot forge a valid full signature

of of any unqueried message m.
• Robustness. In the presence of an adversary who corrupts

at most t parties, every honest party eventually gets a valid
full signature.

3. The DyCAPS Scheme

3.1. Definition of DPSS

A typical secret sharing scheme consists of two proto-
cols, sharing and reconstruction. We add a handoff protocol
to achieve the proactivization of secret shares and support
dynamic committees, as shown in Definition 1.

Definition 1 (Dynamic-committee Proactive Secret Shar-
ing, DPSS). A DPSS scheme consists of three protocols:
DPSS.Share, DPSS.Handoff, and DPSS.Recon.

• {〈si, πi〉Pi∈C} ← DPSS.Share(t, n, s, 1κ): this protocol
shares the secret among the participants. It takes as inputs
a threshold t, a committee size n, a secret value s, and a
security parameter κ in unary form. The output is a set
of share-proof tuples {〈si, πi〉Pi∈C},

• {〈s′j , π′j〉P e+1
j ∈Ce+1} ← DPSS.Handoff({〈si, πi〉P e

i ∈Ce}):
this protocol allows the new committee Ce+1 to obtain
refreshed secret shares from the old committee Ce. The
input is old share-proof tuples {〈si, πi〉P e

i ∈Ce}, and the
output is refreshed tuples {〈s′j , π′j〉P e+1

j ∈Ce+1}.
• v ← DPSS.Recon({〈si, πi〉i∈I}): this protocol recon-

structs the secret. It takes as inputs at least t + 1 valid
share-proof tuples {〈si, πi〉i∈I}, where I is an index set
and |I| > t. The output is a reconstructed secret v.

There may be different versions of DPSS.Share and
DPSS.Recon, depending on the application scenarios. For
example, if a client uses DPSS to store a long-term secret,
it trivially serves as the dealer to distribute and reconstruct
the secret. If a committee wants to jointly generate and
maintain a secret key, a decentralized version of DPSS.Share
is needed, and DPSS.Recon may become unnecessary since
the secret will never be restored due to privacy concerns.

An asynchronous DPSS scheme satisfies the following
properties. For ease of expression, we assume ne = ne+1 =
n, te = te+1 = t, and n = 3t+1 for all e ∈ N∗. Besides, the
following properties refer to the dealer-based DPSS.Share.
• Termination. 1) If the dealer is honest, then all honest

parties terminate DPSS.Share. 2) If an honest party ter-
minates DPSS.Share, then all honest parties terminate
DPSS.Share. 3) If at least n− t honest parties in Ce and
Ce+1 invoke DPSS.Handoff, respectively, then all honest
parties terminate DPSS.Handoff. 4) If all honest parties
invoke DPSS.Recon and all of them have terminated
DPSS.Share or DPSS.Handoff, then all honest parties
terminate DPSS.Recon.

• Completeness. If an honest party obtains a valid share
from DPSS.Share, then each honest party obtains a valid
share from DPSS.Share.

3

• Correctness. If an honest dealer inputs s to DPSS.Share
and v is the output of DPSS.Recon, then v = s. An arbi-
trary number of executions of DPSS.Handoff are allowed
before DPSS.Recon.

• Secrecy. An adversary gains no advantage in extracting
the secret s than random sampling.

3.2. DyCAPS Overview

The life cycle of DyCAPS includes one invocation of
DyCAPS.Share, unlimited executions of DyCAPS.Handoff,
and one call (if any) of DyCAPS.Recon, as depicted in
Figure 1.

DyCAPS.Share is derived from eAVSS-SC [21], which
ensures that every honest party holds a valid secret share at
the end of this protocol. DyCAPS.Handoff first communi-
cates the shares among two committees, and then it utilizes
the building blocks in Section 2.3 to ensure all honest parties
receive consistent shares of a common random polynomial,
which is used to refresh the shares. DyCAPS.Recon collects
the latest shares from the committee members and recovers
the secret.

In the rest of this section, we focus on DyCAPS.Handoff,
which is invoked constantly. The other two protocols are
delayed to Appendix A and Appendix B.

We use 〈t, 2t〉-degree bivariant polynomials and adopt
the dimension-switching technique [6] to prevent the mobile
adversary. The reconstruction threshold is temporarily raised
from t to 2t during DyCAPS.Handoff, so that the adversary
learns no information about the secret even with 2t corrupted
parties. Specifically, the secret s is shared via a sharing
polynomial B(x, y), where B(0, 0) = s. In the normal
state, t + 1 full shares, B(∗, y), are needed to deal with
the inquiries, e.g., generating a signature or decrypting a
ciphertext. In turn, the reduced shares, B(x, ∗), are tem-
porarily used during the handoff, where 2t+ 1 of them are
needed for the inquiries.

The handoff protocol includes three phases: 1) raise the
threshold to 2t and produce reduced shares, 2) refresh the re-
duced shares using a jointly generated bivariant polynomial,
and 3) switch back the threshold to t and restore refreshed
full shares. These phases are referred to as ShareReduce,
Proactivize, and ShareDist, respectively, in CHURP [6]. On
this basis, we introduce an additional phase named Prepare
in DyCAPS, leaving space for selecting new committees
and miscellaneous pre-computations. The four phases of
DyCAPS.Handoff are shown in Figure 2. Throughout this
paper, we refer to Ce and Ce+1 as the old and new commit-
tees, respetively. Similarly, P ei and P e+1

i are called old and
new parties, respectively. Note that “old” and “new” refers
to the epoch, so P ei and P e+1

i might be the same entity.
Prepare. In this phase, a new committee Ce+1 is selected,
and P2P channels are established among all members in Ce
and Ce+1. The public parameters are also delivered to Ce+1

at the same time.
ShareReduce. In this phase, full shares are converted to
reduced shares to withstand the mobile adversary. The old
parties initially hold 2t-degree polynomials as their full

shares. Then, each old party sends a point on its full share
to every new party, who waits for t + 1 valid points to
interpolate a t-degree polynomial as its reduced share.
Proactivize. In this phase, the new committee members
jointly generate random shares to refresh the reduced shares.
Specifically, the parties propose their local randomness, i.e.,
bivariate polynomials, and agree on a candidate set Q. The
randomness from the members in Q comprises a common
random polynomial. Each party obtains a share of this
polynomial, which is added to the reduced shares, making
the refreshed shares independent of the old ones.
ShareDist. In this phase, the new committee converts the
new reduced shares to the full shares. Specifically, parties
send points on their new reduced shares to each other. Each
party interpolates the refreshed full shares using the received
points. At this time, the new committee enters the normal
state and uses full shares to handle the inquiries.

The specific steps of these four phases are illustrated in
the rest of this section.

3.3. Preparation

In the Prepare phase, a new committee is selected, and
public parameters are transferred to it. We do not restrict the
relationship between the new and old committee members,
but we do have a limit on the new size and threshold (see
Section 6).

After the committee selection, the parties in both old
and new committees establish P2P channels with each other.
Once a channel is established, each old party transfers
the public parameters to new parties, including the com-
mitment public key cpk and the commitments to the re-
duced shares. The new parties confirm these parameters by
t + 1 consistent messages. The new committee also calls
TS.KeyGen(t, n, 1κ) to generate key pairs for the threshold
signature scheme.

When an honest party has established at least n− t P2P
connections with each committee, it enters the ShareReduce
phase. The P2P connection requests are still appropriately
handled in the subsequent phases, allowing the slow but
honest parties to connect to the others.

3.4. Share Reduction

In the ShareReduce phase, each new committee member
obtains a t-degree polynomial B(x, ∗) as its reduced share.
The specific procedures are depicted in Figure 3.

Each party P ei has at least 2t+1 commitments CB(x,∗)
and witnesses2 wB(i,∗) from either DyCAPS.Share or the
prior DyCAPS.Handoff. With these elements, P ei may inter-
polate any other commitments and witnesses due to the
homomorphism of KZG commitments. For example, given
B(x, j) =

∑
`∈[2t+1] λ`,jB(x, `), we have CB(x,j) =

2. The witness wB(i,k) is corresponding to the evaluation of B(x, k)
at x = i, rather than B(i, y) at y = k. Throughout this paper, we only
use commitments and witnesses of the reduced shares B(x, ∗).

4

DyCAPS.Share C1 in charge

Prepare ShareReduce Proactivize ShareDist

DyCAPS.Handoff

Inquiry 1 Inquiry 2 Inquiry 3 Inquiry k

C2 in charge ...

DyCAPS.Handoff

Ce in charge

DyCAPS.Recon

Epoch 1 Epoch 2 ... Epoch e

Figure 1: Life cycle of DyCAPS. DyCAPS.Share is invoked at first, and then DyCAPS.Handoff is executed repeatedly.
DyCAPS.Recon is called at the end of the life cycle, if necessary. Inquiries are processed regardless of the handoff.

P e
1

P e
2

P e
3

...

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

Select
Ce+1

P e
1

P e
2

P e
3

...

P e
n

B(1, y)

B(2, y)

B(3, y)

B(n, y)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B(1, 1)

B
(1, 2)

B
(1
, 3
)B
(1
,
n ′

)

B(x, 1)

B(x, 2)

B(x, 3)

B(x, n′)

Generate
Q(x, y)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B′(x, 1)

B′(x, 2)

B′(x, 3)

B′(x, n′)

+Q(x, 1)

+Q(x, 2)

+Q(x, 3)

+Q(x, n)

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n′

B′(1, 1)

B ′
(2, 1)B

′
(3
, 1
)B
′
(n ′

,
1
)

B′(1, y)

B′(2, y)

B′(3, y)

B′(n′, y)

Prepare ShareReduce Proactivize ShareDist
Epoch e Epoch e+ 1

Figure 2: Overview of DyCAPS.Handoff. The polynomial
above each party refers to the share it currently holds.

ShareReduce
1: Upon invocation by P e

i do . Reduce
2: For each P e+1

j ∈ Ce+1 do
3: Interpolate CB(x,j) from {〈`, CB(x,`)〉}`∈[2t+1]

4: Interpolate wB(i,j) from {〈`, wB(i,`)〉}`∈[2t+1]

5: B(i, j)← B(i, y)|y=j

6: Send 〈Reduce, CB(x,j), B(i, j), wB(i,j)〉 to P e+1
j

7: Erase the memory and go off-line

8: Upon invocation by P e+1
i do . Interpolate

9: Upon receiving t+ 1 valid 〈Reduce, CB(x,i), B(∗, i), wB(∗,i)〉 do
10: Interpolate B(x, i)

11: Enter the Proactivize phase

Figure 3: Procedures of ShareReduce.

∏
`∈[2t+1] C

λ`,j

B(x,`) and wB(i,j) =
∏
`∈[2t+1] w

λ`,j

B(i,`), where
{λ`,j}`∈[2t+1] are the Lagrange coefficients.

The specific procedures of ShareReduce involve both old
and new committees, as stated in the following.

Reduce. Each party P ei in the old committee sends a mes-
sage 〈REDUCE, CB(x,j), B(i, j), wB(i,j)〉 to every new party
P e+1
j , where CB(x,j) and wB(i,j) are interpolated from the

aforementioned 2t + 1 commitments and witnesses. After-
ward, P ei erases its memory and goes offline.

Interpolate. Each party P e+1
i in the new committee waits

for t + 1 valid REDUCE messages containing the same
commitment CB(x,i). Using the polynomial evaluations in
these messages, P e+1

i interpolates its reduced share B(x, i)
and enters the Proactivize phase.

3.5. Proactivization

In the Proactivize phase, the reduced shares are re-
freshed by a jointly generated random polynomial. To keep
the secret value s = B(0, 0) invariant, we need a 〈t, 2t〉-
degree random polynomial Q(x, y), such that Q(0, 0) = 0.
From a high level, the sharing polynomial is refreshed as
B′(x, y) = B(x, y)+Q(x, y). This phase only involves the
new commitee Ce+1, and each new party obtains a random
share Q(x, ∗) and adds it to the reduced share B(x, ∗).

To generate such a polynomial Q(x, y), each party col-
lects randomness from the others and agrees on a candidate
set Q. The randomness proposed by the members in Q is
used to compute Q(x, y). There are four requirements for
the joint generation:
1) The agreement on Q eventually terminates.
2) Every honest party P e+1

i in the new committee eventu-
ally obtains its random share Q(x, i).

3) At least one honest party is in Q, so that an adversary
cannot manipulate the randomness of Q(x, y).

4) An adversary obtains no extra information about Q(x, i)
for any uncorrupted P e+1

i .
The first two requirements ensure the termination and

agreement of the proactivization. The third and fourth
requirements guarantee the randomness and secrecy of
Q(x, y), respectively.

Meeting the above requirements is not hard in a non-
asynchronous network, but it becomes challenging when
faced with asynchrony. We illustrate this observation via
two strawman schemes before putting forward our solution.
The first strawman assumes a non-asynchronous network,
while the second is in the asynchronous model but fails to
meet the four requirements.
Strawman I. We start from a primary scheme in the non-
asynchronous setting, where a timeout exists. In this case,
we may decide the candidate set Q by verifiable challenges.

Specifically, we let each party P e+1
i initialize Q as

Ce+1 and generate a random 〈t, 2t〉-degree polynomial
Qi(x, y), such that Qi(0, 0) = 0. Then, each P e+1

i invokes
an RBC instance to broadcast n encrypted polynomials3

Encj(Qi(x, j)), where j ∈ [n], along with n commitments
to these polynomials.

Each P e+1
j waits for the outputs of these n RBC in-

stances and decrypts polynomials Q∗(x, j). An honest party

3. Encj(m) encrypts a message m by Pj ’s encryption public key epkj .

5

Proactivize
1: Upon invocation by P e+1

i with input InitProactivize do
2: Upon receiving InitProactivize from P e+1

i do . Init
3: πi ← ∅
4: FLGcom[1, ..., n]← {0, ..., 0}
5: FLGrec[1, ..., n]← {0, ..., 0}
6: Srec[1, ..., n]← {∅, ..., ∅}
7: Sσ[1, ..., n]← {∅, ..., ∅}
8: Vi[1, ..., n]← {∅, ..., ∅}
9: Generate a 2t-degree polynomial Fi(y), where Fi(0) = 0

10: For each ` ∈ [2t+ 1] do
11: Generate a t-degree polynomial Qi(x, `), where Qi(0, `) = Fi(`)

12: Send Commit to P e+1
i

13: Send Reshare to P e+1
i

14: Upon receiving Commit from P e+1
i do . Commit

15: For each ` ∈ [2t+ 1] do
16: Zi,`(x)← Qi(x, `)− Fi(`)
17: CQi,` ← KZG.Commit(Qi(x, `))
18: CZi,` ← KZG.Commit(Zi,`(x))
19: wZi,`(0) ← KZG.CreateWitness(Zi,`(x), 0)
20: πi ← πi ∪ 〈`, CQi,` , CZi,` , wZi,`(0), gFi(`)〉
21: Call RBC1,i with input 〈Com, πi〉

22: Upon receiving 〈Com, πj〉 from RBC1,j do . Verify
23: Parse πj as 〈`, CQj,k , CZj,` , wZj,`(0), gFj(`)〉`∈[2t+1]

24: If
∏2t+1
m=1(g

Fj(m))λ
2t
m,0 6= 1 then // λ2t

m,0 is the Lagrange coefficient
25: Discard this message and revert
26: For each ` ∈ [2t+ 1] do
27: If KZG.VerifyEval(CZj,` , 0, 0, wZj,`(0)) = 0 ∨ CQj,` 6= CZj,`g

Fj(`) then
28: Discard this message and revert
29: For each P e+1

` ∈ Ce+1 do

30: CQj,` ←
∏2t+1
m=1 C

λ2t
m,`

Qj,m
// λ2t

m,` is the Lagrange coefficient

31: FLGcom[j]← 1

32: Upon receiving Reshare from P e+1
i do . Reshare

33: For each P e+1
j ∈ Ce+1 do

34: For each ` ∈ [2t+ 1] do
35: wQi(j,`) ← KZG.CreateWitness(Qi(x, `), j)
36: Send 〈Reshare, {Qi(j, `), wQi(j,`)}`∈[2t+1]〉 privately to P e+1

j

37: Upon receiving 〈Reshare, {Qj(i, `), wQj(i,`)}`∈[2t+1]〉 from P e+1
j do . Vote

38: Upon FLGcom[j] = 1 then
39: If ∀` ∈ [2t+ 1],KZG.VerifyEval(CQj,` , i, Qj(i, `), wQj(i,`)) = 1 then
40: σ∗j,i ← TS.SigShare(j, tski)
41: For each P e+1

` ∈ Ce+1 do
42: Qj(i, `)←

∑2t+1
m=1 λ

2t
m,`Qj(i,m)

43: wQj(i,`) ←
∏2t+1
m=1 w

λ2t
m,`

Qj(i,m)

44: // λ2t
m,` is the Lagrange coefficient

45: Send 〈Recover, j, Qj(i, `), wQj(i,`), σ
∗
j,i〉 privately to P e+1

`

46: Upon receiving 〈Recover, k,Qk(j, i), wQk(j,i), σ
∗
k,j〉 from P e+1

j do . Recover
47: Upon FLGcom[k] = 1 ∧ TS.VerifySh(k, σ∗k,j) = 1 then
48: If KZG.VerifyEval(CQk,i , j, Qk(j, i), wQk(j,i)) = 1 then
49: Srec[k]← Srec[k] ∪ 〈j,Qk(j, i)〉
50: If |Srec[k]| ≥ t+ 1 then
51: Interpolate t-degree Qk(x, i) from Srec[k]
52: FLGrec[k]← 1

53: Sσ[k]← Sσ[k] ∪ 〈j, σ∗k,j〉
54: If |Sσ[k]| ≥ 2t+ 1 then
55: σk ← TS.Combine(k, {σ∗k,j}〈j,σ∗

k,j
〉∈Sσ[k])

56: Vi[k]← 〈k, σk〉

57: Upon there are t+ 1 full signatures in Vi do . MVBA
58: Call MVBA with input 〈MVBA.In, Vi〉
59: // PMVBA requires |Ṽ | = t+ 1 ∧ ∀〈`, σ`〉 ∈ Ṽ ,TS.Verify(`, σ`) = 1

60: Upon reiceiving 〈MVBA.Out, Ṽ 〉 from MVBA do . Refresh
61: Q ← {P e+1

j |〈j, σj〉 ∈ Ṽ }
62: Upon FLGrec[j] = 1 for all 〈j, σj〉 ∈ Ṽ do
63: Q(x, i)←∑

P e+1
j
∈QQj(x, i)

64: B′(x, i)← B(x, i) +Q(x, i)

65: For each P e+1
` ∈ Ce+1 do

66: CQ(x,`) ←
∏
P e+1
j
∈Q CQj,`

67: Enter the ShareDist phase

Figure 4: Procedures of Proactivize.

raises a verifiable challenge if any decrypted polynomial
is invalid. Depending on the verification results, either the
challenger or the challenged party will be identified as ma-
licious and excluded from Q. Finally, each P e+1

i computes
the random share Q(x, i) =

∑
P e+1

j ∈QQj(x, i).

Analysis. This strawman scheme satisfies the four require-
ments mentioned above:
1) All challenges will arrive in time, so the honest parties

eventually agree on Q and terminate.
2) The verifiable accusation procedure ensures that all hon-

est parties receive valid information from parties in Q
via RBC instances.

3) All honest parties stay included in Q even faced with
malicious challengers.

4) The adversary has at most 2t polynomials Q(x, ∗), which
are insufficient to interpolate Q(x, i), if P e+1

i is honest.
This strawman scheme is straightforward, but the n

RBC instances consume O(κn4) bits of communication.
CHURP [6] reduces the input size of each RBC instance to
O(κn) by dividing the generation of Q(x, y) into two steps,
each with 2t + 1 RBC instances. However, the challenge

procedure is still required, which is not applicable in an
asynchronous network—the honest parties may not raise
or receive challenges in time. Therefore, we need other
methods to determine the candidate set Q.
Strawman II. In this strawman scheme, we relax the net-
work assumption and advance to the asynchronous network.
Inspired by asynchronous BFT protocols [9], [10], we use
voting to avoid the challenge procedure. The voting results
are decided by an MVBA instance, which ensures the agree-
ment of the candidate set Q.

Similar to Strawman I, we require each party to generate
and share a local bivariate polynomial. However, we no
longer need to reliably broadcast the encrypted messages
because there are no challenges to be verified. Instead, each
P e+1
i broadcasts 2t + 1 polynomial commitments CQi,`

=
KZG.Commit(Qi(x, `)) via RBC, where ` ∈ [2t+1]. These
commitments are sufficient to derive the commitments to
any other Qi(x, j), where j ∈ [n]\[2t+1]. P e+1

i also sends
a polynomial Qi(x, `) to each P e+1

` .
Upon receiving the polynomials and commitments, we

let each party use threshold signatures to vote for the correct
parties. Specifically, each P e+1

i multicasts a signature share

6

σ∗j,i = TS.SigShare(j, tski), denoting that it has received a
valid polynomial from P e+1

j . Upon receiving 2t+1 signature
shares for the same j, P e+1

i forms a full signature σj . P e+1
i

waits for t+1 full signatures and formulates Vi as the input
to the MVBA instance, from which all honest parties obtain
the same set Ṽ , such that |Ṽ | = t+1. The candidate set Q
is then denoted as {P e+1

j |〈j, σj〉 ∈ Ṽ }.
Analysis. This strawman scheme satisfies the first and third
requirements, due to the termination of MVBA and the
condition |Ṽ | = t+ 1.

However, a malicious party P e+1
m may get included in

Q if it obtains 2t + 1 votes. In the worst case, only t + 1
honest parties obtain Qm(x, ∗) and vote for P e+1

m , whereas
the other honest parties receive no information from P e+1

m .
These t+1 polynomials are insufficient to recover the other
Qm(x, ∗), whose y-dimension degree is 2t. Therefore, some
honest parties may not obtain Qm(x, ∗), so they cannot
compute Q(x, ∗). Namely, this strawman scheme fails to
meet the second requirement.
Our scheme. In this formal scheme, we enrich the in-
formation contained in each sharing message, so that the
honest parties can help the others restore their shares even
if malicious parties are included in Q.

Specifically, we make a dimension switch and let each
P e+1
i send Qi(∗, y) instead of Qi(x, ∗). In this way, every

party obtains partial information on every random share
Qi(x, ∗). This modification brings in an additional round
of communication to switch back the dimension.

The procedures of Proactivize are described in Figure 4.
We also present the message flows of this phase in Figure 5.

Init. Firstly, each party P e+1
i initializes several empty sets,

including a commitment set πi, two flag sets FLGcom and
FLGrec, two buffers Srec and Sσ, and an MVBA input set
Vi. Then, P e+1

i generates a 2t-degree random polynomial
Fi(y), where Fi(0) = 0. Finally, P e+1

i reshares Fi(y) via
2t+1 random polynomials Qi(x, `), where Qi(0, `) = Fi(`),
` ∈ [2t+ 1], and Qi(x, `) is of t degree.

Commit. Each party P e+1
i generates a commitment set

πi = 〈`, CQi,`
, CZi,`

, wZi,`(0), g
Fi(`)〉`∈[2t+1], where CQi,`

and CZi,`
are commitments to Qi(x, `) and Zi,`(x) =

Qi(x, `) − Fi(`), respectively, wZi,`(0) is the witness for
Zi,`(0) = 0, and gFi(`) is the commitment to Fi(`). Finally,
P e+1
i broadcasts 〈COM, πi〉 via RBC1,i.

Verify. Upon receiving 〈COM, πj〉 from RBC1,j , P e+1
i veri-

fies that the resharing polynomials Qj(x, ∗) are formulated
correctly. Specifically, P e+1

i first verifies Fj(0) = 0 by
checking

∏2t+1
m=1(g

Fj(m))λ
2t
m,0 = 1, where {λ2tm,0} are La-

grange coefficients. Then, P e+1
i verifies Qj(0, `) = Fj(`)

by KZG.VerifyEval(CZj,`
, 0, 0, wZj,`(0)) = 1 and CQj,`

=

CZj,`
gFj(`), where ` ∈ [2t+1]. If any verification fails, the

COM message is discarded, and the changes related to this
message are reverted. Finally, P e+1

i interpolates CQj,`
for

each P e+1
` ∈ Ce+1, and sets FLGcom[j] = 1.

Reshare. P e+1
i sends 〈RESHARE, {Qi(j, `), wQi(j,`)}`∈[2t+1]〉

to each P e+1
j ∈ Ce+1, where wQi(j,`) is the witness. This

step is executed concurrently with the Commit step above.

Vote. Upon receiving a RESHARE message from P e+1
j , party

P e+1
i first verifies it w.r.t. the commitment set πj , which

is delivered from RBC1,j . Then, it formulates a signature
share σ∗j,i = TS.SigShare(j, tski) as a vote for P e+1

j .
Afterward, the contents in the RESHARE message are split
and relayed to the others. Specifically, P e+1

i calculates an
evaluation-witness tuple 〈Qj(i, `), wQj(i,`)〉 and sends it to
each P e+1

` ∈ Ce+1 within a RECOVER message. The vote
σ∗j,i is also included in this message.

Recover. Upon receiving t + 1 valid RECOVER messages
with the same index k, such that TS.VerifySh(k, σ∗k,j) = 1

and KZG.VerifyEval(CQk,i
, ∗, Qk(∗, i), wQk(∗,i)) = 1, P e+1

i
recovers the k-th shares by interpolating a t-degree polyno-
mial Qk(x, i). P e+1

i also waits for 2t + 1 valid votes and
composes a full signature σk = TS.Combine(k, {σ∗k,j}j∈I),
where I contains the indexes of the collected votes. The full
signatures are stored in the MVBA input set Vi.

MVBA. Upon filling the input set Vi with t+1 full signatures,
P e+1
i inputs Vi into MVBA. The external predicate PMVBA

requires the output size |Ṽ | = t+ 1 and the full signatures
within Ṽ are all valid. The candidate set is then referred to
as Q = {P e+1

j |〈j, σj〉 ∈ Ṽ }.
Refresh. Upon receiving Ṽ from MVBA, P e+1

i calculates its
random share Q(x, i) =

∑
P e+1

j ∈QQj(x, i). The reduced
share is thus refreshed as B′(x, i) = B(x, i) + Q(x, i).
Finally, party P e+1

i calculates the commitments CQ(x,`) =∏
P e+1

j ∈Q CQj,`
for all P` ∈ Ce+1 and enters the next phase.

3.6. Share Distribution

In the ShareDist phase, the reduced shares are converted
to full shares. The procedures are shown in Figure 6.

Init. P e+1
i initializes two empty buffers Scom and SB′ .

Commit. P e+1
i commits to the new reduced share B′(x, i)

and broadcasts 〈NEWCOM, CB′(x,i)〉 via RBC2,i.

Distribute. P e+1
i sends 〈SHAREDIST, B′(j, i), wB′(j,i)〉 to

each P e+1
j , where wB′(j,i) is the witness for B′(j, i). This

step is executed concurrently with the Commit step above.

Verify. Upon receiving the NEWCOM message from RBC2,j ,
P e+1
i verifies that the sender P e+1

j uses the common random
polynomial Q(x, y) to fresh its share. Specifically, P e+1

i
verifies CB′(x,j) = CB(x,j)CQ(x,j), which indicates that
B′(x, j) = B(x, j) + Q(x, j). If the verification fails, this
NEWCOM message will be ignored.

Interpolate. P e+1
i waits for 2t+ 1 valid SHAREDIST mes-

sages to interpolate the full share B′(i, y). Next, P e+1
i

multicasts a SUCCESS message to notify the other parties.

Success. Upon having sent the SUCCESS message, P e+1
i

waits for another 2t SUCCESS messages and then enters the
normal state.

7

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

RBC1,1

RBC1,2

RBC1,3

...

RBC1,n

〈Com, π1〉

〈Com, π2〉

〈Com, π3〉

〈Com, πn〉

Init

Commit Verify

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈Resha
re, {Q2(1

, `)}`∈[2t
+1]

〉

〈Reshare, {Q2(2, `)}`∈[2t+1]〉
〈Reshare, {Q

2(3, `)}`∈[2t+1]〉

〈Reshare, {Q
2 (n, `)}̀

∈[2t+
1] 〉

Reshare

Distribute

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈Reco
ver

, 2,
Q2(n

, 3)
, σ
∗
2,n

〉

〈Recover, 2, Q
2 (1, 3), σ ∗

2,1 〉

〈Recover, 2, Q
2(2, 3), σ ∗

2,2 〉
〈Recover, 2, Q2(3, 3), σ

∗
2,3〉

Vote Recover

MVBA

〈MVBA.In, V1〉

〈MVBA.In, V2〉

〈MVBA.In, V3〉

〈MVBA.In, Vn〉

P e+1
1

P e+1
2

P e+1
3

...

P e+1
n

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

〈MVBA.Out, V 〉

MVBA Refresh

Figure 5: Message flow of Proactivize within epoch e+1. In the Vote stage, the emphasized RECOVER messages received
by P e+1

3 refer to the responses to P e+1
2 ’s RESHARE messages. The witnesses are ommitted for clearity of expression.

ShareDist
1: Upon invocation by P e+1

i with input InitDist do
2: Upon receiving InitDist from P e+1

i do . Init
3: Scom ← ∅
4: SB′ ← ∅
5: Send CommitNew to P e+1

i

6: Send Distribute to P e+1
i

7: Upon receiving CommitNew from P e+1
i do . Commit

8: CB′(x,i) ← KZG.Commit(B′(x, i))
9: Call RBC2,i with input 〈NewCom, CB′(x,i)〉

10: Upon receiving Distribute from P e+1
i do . Distribute

11: For each P e+1
j ∈ Ce+1 do

12: 〈B′(j, i), wB′(j,i)〉 ← KZG.CreateWitness(B′(x, i), j)
13: Send 〈ShareDist, B′(j, i), wB′(j,i)〉 privately to P e+1

j

14: Upon receiving 〈NewCom, CB′(x,j)〉 from RBC2,j do . Verify
15: If CB′(x,j) = CB(x,j)CQ(x,j) then
16: Scom ← Scom ∪ 〈j, CB′(x,j)〉

17: Upon receiving 〈ShareDist, B′(i, j), wB′(i,j)〉 from P e+1
j do . Interpolate

18: Upon 〈j, CB′(x,j)〉 ∈ Scom then
19: If KZG.VerifyEval(CB′(x,j), i, B

′(i, j), wB′(i,j)) = 1 then
20: SB′ ← SB′ ∪ 〈j, CB′(x,j), B

′(i, j), wB′(i,j)〉
21: If |SB′ | ≥ 2t+ 1 then
22: Interpolate 2t-dgree B′(i, y) from SB′

23: Multicast Success

24: Upon having sent Success and receiving 2t+1 Success do . Success
25: Enter the normal state

Figure 6: Procedures of ShareDist.

4. Security and Performance Analysis

Due to limited space, we only analyze the security
and performance of DyCAPS.Handoff here. The analysis
of DyCAPS.Share and DyCAPS.Recon are delayed to Ap-
pendix A and Appendix B, respectively.

4.1. Security Analysis

The security of DyCAPS.Handoff involves termination,
correctness, and secrecy. For simplicity of expression, we
continue to assume ne = ne+1 = n and te = te+1 =
t. Without loss of generality, we denote the malicious and
honest parties as {P ∗m}m∈[t] and {P ∗h}h∈[n]\[t], respectively.

Termination. The termination of DyCAPS consists of four
statements (see Section 3.1). Here, we prove the third state-
ment by four lemmas. The remaining proofs are displayed
in Appendix A and Appendix B, as they involve the speci-
fication of DyCAPS.Share and DyCAPS.Recon.

Lemma 1. If at least n − t honest parties from Ce and
Ce+1 invoke DyCAPS.Handoff, respectively, then all honest
parties in Ce terminate DyCAPS.Handoff.

Proof. The old committee Ce is only active in the Prepare
and ShareReduce phases.

In Prepare, all honest old parties will connect to at least
2(n− t) parties, after which they send public parameters to
the new committee and enter the ShareReduce phase.

In ShareReduce, the honest old parties only need to send
messages to the new committee. We now prove that every
honest party in Ce has enough information to generate the
REDUCE messages (line 3-4, Figure 3).

We start from e = 1. Note that DyCAPS.Handoff is
called after DyCAPS.Share, so all honest parties have ter-
minated DyCAPS.Share. Hence, an honest party P ei must
have delivered a commitment set π (line 46, Figure 13) and
at least 2t+1 DISTRIBUTE messages (line 50). The required
commitments CB(x,∗) and witnesses wB(i,∗) are in π (line
14) and DISTRIBUTE messages, respectively (line 44).

For e ≥ 2, the commitments and witnesses are generated
in ShareDist (line 8 and line 17, Figure 6), where the
commitments are broadcast via RBC, and the witnesses are
included in 2t + 1 valid SHAREDIST messages. Combined
with Lemma 3 and Lemma 4 below, the honest parties in
C2 will terminate DyCAPS.Handoff when e = 1. Hence, the
honest parties in C2 have enough information to generate the
REDUCE messages from the prior DyCAPS.Handoff.

By mathematical induction, the honest parties in Ce
terminate DyCAPS.Handoff for all e ≥ 1.

Lemma 2. If at least n − t honest parties from Ce and
Ce+1 invoke DyCAPS.Handoff, respectively, then all honest
parties in Ce+1 terminate Prepare and ShareReduce.

Proof. In Prepare, each honest party in Ce+1 is guaranteed
to connect to at least 2(n− t) parties and deliver the public

8

parameters from any t+ 1 honest old parties. Afterward, it
enters the ShareReduce phase.

In ShareReduce, each honest party in Ce+1 receives at
least n − t valid REDUCE messages. These messages are
sufficient for an honest party to interpolate the reduced share
B(x, ∗) and terminate ShareReduce.

Lemma 3. If at least n − t honest parties from Ce and
Ce+1 invoke DyCAPS.Handoff, respectively, then all honest
parties in Ce+1 terminate Proactivize.

Proof. For an honest party P e+1
i to terminate Proactivize,

it has to obtain the random share Q(x, i). In the following,
we first prove that P e+1

i will proceed to the end of MVBA,
and then P e+1

i obtains the random polynomials Qj(x, i)
generated by every P e+1

j ∈ Q.
The worst situation for P e+1

i is that the corrupted parties
do not send any messages to it. In this case, P e+1

i only
receives n COM from RBC (line 22, Figure 4) and n−t RE-
SHARE messages from the honest parties (line 37). Then the
honest parties will send RECOVER messages to each other
(line 45). Hence, P e+1

i obtains n− t polynomials Qh(x, i)
and full signatures (line 51-55), where {P e+1

h }h∈[n]\[t] are
honest parties. Therefore, P e+1

i is guaranteed to form a valid
proposal Vi as the input to the MVBA instance (line 57),
even without any private message from the corrupted parties.

Similarly, every honest party will have a valid proposal
and invoke the MVBA instance. Due to the termination of
MVBA, each honest party obtains an output Ṽ and candidate
set Q (line 61).

After the termination of MVBA, every honest party can
calculate the random share Q(x, ∗) =

∑
P e+1

j ∈QQj(x, ∗).
We prove this statement in two cases.

Case 1: If the members in Q are all honest, as mentioned
above, P e+1

i has obtained Qh(x, i) for all P e+1
h , h ∈ [n]\[t],

to compute Q(x, i) =
∑

P e+1
h ∈QQh(x, i).

Case 2: If any malicious P e+1
m is included in Q, then

in the worst case, P e+1
i receives no private message from

P e+1
m . However, P e+1

m ∈ Q means 〈m,σm〉 ∈ Ṽ , where
σm corresponds to 2t+1 signature shares (line 55). Hence,
at least t + 1 honest parties have voted for P e+1

m (line
45). These parties have received valid COM and RESHARE
messages from RBC1,m and P e+1

m , respectively. Due to the
agreement of RBC, P e+1

i eventually receives the same COM
message from RBC1,m. Besides, the t + 1 honest parties
receiving RESHARE messages from P e+1

m will distribute
the evaluations Qm(∗, i) via the RECOVER messages (line
45). Consequently, P e+1

i receives t+1 points to interpolate
Qm(x, i), which is then used to compute Q(x, i).

In either case, P e+1
i obtains Q(x, i), refreshs the reduced

shares, and terminates without directly receiving messages
from the corrupted parties.

Lemma 4. If at least n − t honest parties from Ce and
Ce+1 invoke DyCAPS.Handoff, respectively, then all honest
parties in Ce+1 terminate ShareDist.

Proof. Due to Lemma 3, all honest parties in Ce+1 have
refreshed their reduced shares in Proactivize. Therefore, in

the ShareDist phase, each P e+1
i receives at least n− t valid

SHAREDIST messages to interpolate its refreshed full share
B′(∗, y). Similarly, each honest party in Ce+1 obtains at least
2t+ 1 SUCCESS messages and terminates ShareDist.

Theorem 5 (Termination of DyCAPS.Handoff). If at
least n − t honest parties in Ce and Ce+1 invoke
DyCAPS.Handoff, respectively, then all honest parties in
Ce and Ce+1 terminate DyCAPS.Handoff.

Proof. By Lemma 1, the honest parties in Ce terminate
DyCAPS.Handoff. By Lemma 2, Lemma 3, and Lemma 4,
the honest parties in Ce+1 also terminate. Combining these
lemmas, we conclude that all honest parties in Ce and Ce+1

terminate DyCAPS.Handoff.

Correctness. As the Prepare phase does not involve the
secret s, we only need to prove that the secret stays invariant
within the other three phases by Lemma 6, Lemma 7, and
Lemma 8, respectively.

Lemma 6. The secret s stays invariant during ShareReduce,
in the presence of a mobile adversary corrupting at most t
parties in Ce and Ce+1, respectively.

Proof. In ShareReduce, the new committee members wait
for enough REDUCE messages from the old committee and
interpolate the reduced shares. An honest P e+1

i accepts
〈CB(x, i), B(∗, i), wB(∗,i)〉 iff it has received at least t+ 1
messages containing the same commitment CB(x, i) and
the evaluations B(∗, i) all pass the KZG verifications (line
9, Figure 3). Hence, t corrupted parties cannot convince an
honest party with a different commitment.

By Lemma 2, each honest P e+1
i interpolates B(x, i),

whose commitment is attested by t+1 REDUCE messages.
Due to the binding property of the commitment, the polyno-
mial stays invariant in the ShareReduce phase, and so does
the secret value s = B(0, 0).

Lemma 7. The secret s stays invariant during Proactivize,
in the presence of a mobile adversary corrupting at most t
parties in Ce and Ce+1, respectively.

Proof. In Proactivize, the reduced shares are refreshed as
B′(x, ∗) = B(x, ∗)+Q(x, ∗). We have proved by Lemma 3
that each party receives a random share Q(x, ∗). In this part,
we prove that the shares Q(x, ∗) are consistent with the same
Q(x, y), where Q(0, 0) = 0 and Q(x, y) is a 〈t, 2t〉-degree
polynomial for x, y ∈ [n].

Due to the agreement of MVBA, the honest parties re-
ceive the same output Ṽ , which leads to the same candidate
set Q (line 61, Figure 4). Hence, to prove the consistency
of Q(x, ∗) =

∑
Pj∈QQj(x, ∗), we only need to show

that the shares Qm(x, ∗) generated by malicious parties
P e+1
m are consistently interpolated by honest parties, where
P e+1
m ∈ Q.

Suppose the malicious party P e+1
m proposes an illegal

polynomial Q∗m(x, y). Due to the strong correctness of
KZG commitments, the x-dimension degree of Q∗m(x, y)
is bounded by t. Hence, only the y-dimension degree of

9

Q∗m(x, y) can be manipulated to exceed 2t. However, P e+1
m

is only allowed to broadcast 2t+1 commitments via RBC1,m

(line 15-21), and the other commitments are interpolated by
the receivers (line 30). These 2t + 1 commitments fix a
〈t, 2t〉-degree shadow polynomial Q̂m(x, y) in the view of
honest parties. If P e+1

m sends a point on Q∗m(x, y) which
is invalid w.r.t. the commitments to Q̂m(x, y), the receivers
will not accept it (line 39). Therefore, the guaranteed outputs
in Lemma 3 are actually the shares of Q̂m(x, y). Hence, the
honest parties will obtain consistent random shares from
P e+1
m ∈ Q, and the common random polynomial Q(x, y) is

guaranteed to be 〈t, 2t〉-degree.
Besides, within each COM message, the 2t+1 commit-

ments {gFi(`)}`∈[2t+1] ensure Qi(0, 0) = Fi(0) = 0 (line
24), so we have Q(0, 0) =

∑
P e+1

i ∈QQi(0, 0) = 0.
Combining the above proofs, the secret s = B′(0, 0) =

B(0, 0) + Q(0, 0) stays invariant, and each honest party
obtains a new reduced share B′(x, ∗) consistently.

Lemma 8. The secret s stays invariant during ShareDist,
in the presence of a mobile adversary corrupting at most t
parties in Ce and Ce+1, respectively.

Proof. In ShareDist, each party broadcasts the commitment
to its new reduced share via an RBC instance. Each new
commitment CB′(x,∗) is verified w.r.t. the old commitment
CB(x,∗) and the random polynomial’s commitment CQ(x,∗).
If 2t + 1 points within the SHAREDIST messages pass the
KZG verification, the interpolated B′(i, y) is ensured to be
a full share of B′(x, y). Hence, the ShareDist phase does
not change the secret s = B′(0, 0).

Theorem 9 (Correctness of DyCAPS.Handoff). The secret s
stays invariant during DyCAPS.Handoff, in the presence of
a mobile adversary corrupting at most t parties in Ce and
Ce+1, respectively.

Proof. By Lemma 6, Lemma 7, and Lemma 8, the secret
s stays invariant in all four phases. Therefore, we conclude
that the correctness of DyCAPS.Handoff holds.

Secrecy. To prove the secrecy of DyCAPS.Handoff, we first
prove by Lemma 10 that an adversary learns no information
about a random share Q(x, i) if P e+1

i is not corrupted.

Lemma 10. If P e+1
i is an honest party, a computationally

bounded adversary gains no advantage in extracting the
random share Q(x, i) than random sampling.

Proof. An adversary has access to at most t random shares
Q(x,m) and n × t RESHARE messages, each containing
2t + 1 points {Qi(m, `)}, where i ∈ [n] and m ∈ [t] (line
37, Figure 4). In the following, we prove that the adversary
cannot obtain Q(x, i) with the above information.

Firstly, since Q(x, y) is of degree 〈t, 2t〉 (see Lemma 7),
the t polynomials {Q(x,m)}m∈[t] reveal no information
about Q(x, i).

Secondly, if the adversary wants to calculate Q(x, i)
from

∑
P e+1

j ∈QQj(x, i), it needs to obtain Qj(x, i) for all

P e+1
j ∈ Q. As |Q| = |Ṽ | = t + 1 (line 59), at least one

P e
i P e

i P e+1
j P e+1

j P e+1
j

ShareDist

B(x, i) B(i, y)

ShareReduce

B(x, j)

Proactivize

+Q(x, j)

B′(x, j)

ShareDist

B′(j, y)

· · · Epoch e Epoch e + 1

Figure 7: Shares held by P ei and P e+1
j in adjacent epochs.

honest party is included in Q. However, for any honest party
P e+1
h ∈ Q, the adversary has at most t points on the t-

degree polynomial Qh(x, i). Hence, the adversary gains no
advantage on recovering Qh(x, i) than random sampling.

Finally, the t polynomials {Q(x,m)}m∈[t] and the t×n
points on Qj(x, i), where j ∈ [n], are independent, so their
combination also reveals no information about Q(x, i).

In conclusion, if the adversary does not corrupt P e+1
i , it

has no advantage on extracting the polynomial Q(x, i) than
random sampling.

Theorem 11 (Secrecy of DyCAPS.Handoff). An adversary
gains no advantage in extracting the secret s than random
sampling during DyCAPS.Handoff.

Proof. We depict the shares held by P ei and P e+1
j in Fig-

ure 7. Specifically, at the end of epoch e+1, each P ei holds
B(x, i) and B(i, y), and each P e+1

j holds B(x, j), B′(x, j),
and B′(j, y).

By Lemma 10, the adversary cannot obtain the common
random polynomial Q(x, y). Since the refreshed polynomial
is calculated as B′(x, y) = B(x, y) +Q(x, y), the bivariant
polynomials B′(x, y) and B(x, y) are independent in the
adversary’s view.

Hence, without loss of generality, we focus on polyno-
mial B(x, y). The adversary has access to 2t reduced shares
B(x, ∗) and t full shares B(∗, y). These polynomials corre-
spond to 2t2+3t independent evaluations. Since B(x, y) has
(t+1)(2t+1) coefficients, these evaluations are insufficient
to determine the free coefficient s = B(0, 0). Therefore, the
adversary gains no extra information about the secret s.

4.2. Performance Analysis

We evaluate the performance of DyCAPS.Handoff by
communication complexity, which is measured in bits.

In Prepare, each old party sends the public parameters
to the new committee. The communication is dominated by
the O(κn)-sized KZG parameters, which lead to O(κn3)
bits of communication.

In ShareReduce, an old party spreads n REDUCE mes-
sages, each containing three constant-sized elements. There-
fore, the communication cost of this phase is O(κn2) bits.

In Proactivize, communication only takes place within
the new committee. Firstly, each party sends n O(κn)-sized
RESHARE messages to the others. Then, n RBC instances
are invoked, each consuming O(n|m| + κn2) bits of com-
munication [16], where |m| = κn is the input size. Next,
each party sends out n2 O(κ)-sized RECOVER messages.

10

Finally, using sMVBA [19] of O(n2|m|+κn2) communica-
tion complexity4, the MVBA procedure consumes O(κn3)
bits of communication. To sum up, the Proactivize phase
consumes O(κn3) bits of communication.

In ShareDist, each party invokes an RBC instance with
an O(κ)-sized input. Besides, two constant-sized messages,
SHAREDIST and SUCCESS, are sent to each other. Overall,
this phase consumes O(κn3) bits of communication.

Altogether, DyCAPS.Handoff achieves O(κn3) commu-
nication complexity.

5. Implementation and Evaluation

5.1. Implementation

We implement DyCAPS using Golang v1.18 in around
5,500 lines of codes, part of which are adopted from the
CHURP implementation [23]. Our implementation is built
upon the GMP [24] and PBC [25] libraries. We use KZG
commitments [14] and BLS threshold signatures [26] as
black boxes. The source code is public available5.

The commitments and signatures are on an elliptic curve
over Fq, where q is of 512 bits. The bivariant polynomials
are defined over the polynomial ring Fp[x] for a 256-bit
prime p. Besides, we use SHA256 for hashing.

5.2. Evaluation

We deploy DyCAPS on 128 Amazon EC2 t2.medium
instances from 8 regions. Every instance serves as a party.
Experiments are conducted between two honest committees
of the same size.
Communication cost. We first compare the concrete com-
munication cost of DyCAPS with Yurek-DPSS [27], a con-
current work of ours that also achieves O(κn3) communica-
tion complexity. Figure 8 demonstrates that the concrete cost
of DyCAPS is around 3% of Yurek-DPSS. This is due to
the heavy encryption and zero-knowledge proofs in Yurek-
DPSS (around 10 KB per proof). Remarkably, Yurek-DPSS
supports batch proactivization, occurring O(κn2) amortized
overhead, which will be discussed in Section 7.1.
Latency. We focus on the latency of DyCAPS.Handoff here,
i.e., the average time for each new party to obtain the
refreshed full shares. The handoff between the two smallest
committees (n = 4) takes around 1.5 seconds, and when
the committee is scaled to 64 members, the latency grows
to approximately 280 seconds. As shown in Figure 9, the
latency is dominated by the Proactivize phase.

To further identify the major bottleneck, we measure the
step-by-step latency of Proactivize by executing the proce-
dures sequentially6. The results are shown in Figure 10. We

4. The communication cost can be reduced to O(n|m| + κn2) at the
expense of additional rounds [22], but this will not influence the overall
complexity of DyCAPS.

5. https://github.com/DyCAPSTeam/DyCAPS
6. Sequential execution consumes around 20% more seconds than con-

current execution.

0 10 20 30 40 50 60 70

10−1

100

101

102

103

104

Committee size

C
om

m
u
n
ic
at
io
n
co
st

(M
B
)

DyCAPS
Yurek-DPSS

Figure 8: Concrete communication cost of DyCAPS and
Yurek-DPSS [27] in log scale.

0 50 100 150 200 250 300

4

16

28

40

52

64

Latency (s)

C
om

m
it
te
e
si
ze

PrepareOld ShareReduceOld
PrepareNew ShareReduceNew
Proactivize ShareDist

Figure 9: Latency of DyCAPS.Handoff. There is an overlap
between the latencies of the old and new committees, which
are accumulated here for simplicity.

omit the statistics of n = 4 in this figure because they are
too small compared to the others. The growth of latency is
mainly caused by the O(n2) KZG verifications (pairings) in
Verify and Vote. These two steps account for around 42%
(n = 4) to 83% (n = 64) of the latency in Proactivize.
Throughput. Observe that DyCAPS.Handoff includes all
gadgets of Dumbo2 [10]. Therefore, DyCAPS.Handoff may
serve as a dynamic BFT protocol, where the transaction
payloads are sent along with the commitments. We evaluate
DyCAPS.Handoff and Dumbo2 with different payload sizes.
Dumbo2 is implemented with the same building blocks as

16 28 40 52 64
0

25

50

75

100

125

150

Committee size

L
at
en

cy
(s
)

Init Commit Verify Reshare
Vote Recover MVBA Refresh

Figure 10: Step-by-step latency of the Proactivize phase.

11

https://github.com/DyCAPSTeam/DyCAPS

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

Payload size (MB)

L
at
en

cy
(s
)

DyCAPS (n = 4) Dumbo2 (n = 4)

DyCAPS (n = 10) Dumbo2 (n = 10)

DyCAPS (n = 16) Dumbo2 (n = 16)

DyCAPS (n = 22) Dumbo2 (n = 22)

Figure 11: Latency of DyCAPS.Handoff and Dumbo2 with
different payload sizes.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2
·104

Payload (MB)

T
h
ro
u
gh

p
u
t
(t
x
s/
s)

DyCAPS (n = 4) Dumbo2 (n = 4)

DyCAPS (n = 10) Dumbo2 (n = 10)

DyCAPS (n = 16) Dumbo2 (n = 16)

DyCAPS (n = 22) Dumbo2 (n = 22)

Figure 12: Throughput of DyCAPS.Handoff and Dumbo2.

those in DyCAPS. In both protocols, we set the output size
|Ṽ | = t+1, which may be configured up to 2t+1 without
influencing the security properties. Besides, we use 2t + 1
as the threshold of the signature in Dumbo2. The results are
depicted in Figure 11 and Figure 12, respectively, where the
transaction size is set as 250 bytes.

As the payload grows, the latency and throughput of
DyCAPS.Handoff become comparable with Dumbo2 (see
Figure 11 and Figure 12). Given a committee of 22 parties
and a payload of 15 MB per party, the extra latency overhead
of DyCAPS.Handoff is about 22% compared to Dumbo2.
When n is small, this gap is even smaller, i.e., 12.3% at
n = 16, 14.1% at n = 10, and 5% at n = 4. In conclusion,
our implementation equips Dumbo2 with the functionality
of proactivization, with a considerable latency overhead.

6. Change of Size and Threshold

6.1. Change of Size

Given a fixed threshold, the change of committee size is
already taken into consideration in Section 3. However, we
do have a limit on the committee size when n′ < n. That is,
we require n′ > 3t to ensure the security properties. If the
old size n has reached the lower bound, i.e., n = 3t+ 1, a

reduction of t is needed before decreasing n to n′, as shown
in Section 6.2.

6.2. Change of Threshold

Increasing threshold. To increase the threshold from t to
t′, where t′ > t, we need to raise the degree of the refreshed
polynomial B′(x, y) to 〈t′, 2t′〉. An intuitive solution is
directly generating a 〈t′, 2t′〉-degree Q(x, y) and adding it
to B(x, y). However, this method enables the adversary to
recover the secret s = B(0, 0) with t + t′ > 2t reduced
shares B(x, ∗). To fix this problem, we let the old committee
locally perform an additional round of DyCAPS.Handoff,
raising the y-dimension degree to 2t′.

In this additional round, the sharing polynomial B(x, y)
held by Ce is refreshed to Btmp(x, y), which is of 〈t, 2t′〉-
degree. This round only involves the old committee, who
already has the reduced share B(x, ∗) from last handoff (or
the initial sharing), so the Prepare and ShareReduce phases
are omitted. In Proactivize, each P ei generates 2t′+1 random
polynomials Qi(x, `) of degree t, where ` ∈ [2t′ + 1]. The
remaining operations are the same as in Section 3.5 and
Section 3.6. By Lemma 3 and Lemma 4, each P ei obtains a t-
degree reduced share Btmp(x, i) and a 2t′-degree full share
Btmp(i, y). Afterward, the old committee starts the regular
DyCAPS.Handoff and hands over the reduced shares to the
new committee, which subsequently generates a 〈t′, 2t′〉-
degree Q(x, y) and refresh Btmp(x, y) to B′(x, y)7. In this
way, the adversary, who obtains t+ t′ < 2t′ reduced shares
Btmp(x, ∗), cannot recover the secret.

The additional round of DyCAPS.Handoff within the old
committee implicitly requires that n > 3t′. If this is not the
case, one might increase the old committee’s size n before
increasing the threshold.
Decreasing threshold. To reduce the threshold from t to
t′ = t − d, where t > d > 0, we follow prior schemes [6],
[13] and introduce d virtual parties, whose full shares are
exposed to all members. In this way, the degree of B′(x, y)
remains 〈t, 2t〉, while t+1− d full shares from non-virtual
parties are needed to perform the threshold operations.

Specifically, the Prepare phase remains the same. In
the ShareReduce phase, each old party additionally sends
d points on its full share, so that every new party obtains
the reduced shares of d virtual parties. This will not influ-
ence the secrecy, because the adversary only has access to
t+ t′+ d = 2t reduced shares. In the Proactivize phase, all
honest parties (including the virtual ones) vote for the virtual
parties, whose contributions are Qv(x, y) = 0. In this way,
the MVBA instance terminates even if the corrupted parties
withhold the inputs, as shown in Lemma 3. Finally, in the
ShareDist phase, the messages towards the virtual parties
are multicasted so that every party can interpolate the full
shares of the virtual parties.

7. Generating such Q(x, y) requires higher-degree KZG public param-
eters. We adopt the extended KZG scheme by Maram et al. [6].

12

7. Discussion

7.1. Related Work

Table 2 concludes the performance and properties of
several related DPSS schemes.
Non-asynchronous DPSS. CHURP [6] and COBRA [7]
are two state-of-the-art DPSS schemes in synchronous and
partially synchronous networks, respectively. CHURP has a
communication cost of O(κn2) bits in the optimistic case.
However, if any party misbehaves, CHURP falls into the
pessimistic path and consumes O(κn3) bits of communi-
cation8. COBRA achieves O(κn3) bits of communication
complexity, but its worst-case complexity grows to O(κn4)
due to continuous view-changes.

Schultz-MPSS [13] realizes DPSS with a communica-
tion cost of O(κn4) bits. Although it is claimed to support
asynchrony, its underlying network model has recently been
classified as partially synchronous [9].
Asynchronous DPSS. Zhou et al. [8] propose the first asyn-
chronous DPSS. However, their scheme has only theoretical
value as it consumes exponential communication.

Research on asynchronous DPSS is revived recently.
We have noticed two concurrent works, Shanrang [28] and
Yurek-DPSS [27]. Shanrang uses Honeybadger [9] to deal
with asynchrony, at a communication cost of O(κn3 log n)
bits, and it only tolerates t < n/4 corrupted parties. Yurek-
DPSS achieves the same asymptotic complexity as ours, but
they focus on the amortized cost of refreshing multiple se-
crets. Their scheme uses public-key encryptions (PKE) and
zero-knowledge (ZK) proofs, which significantly reduces the
performance, as illustrated in Figure 10. The prover and
verifier time of ZK proofs is also non-trivial. Therefore,
our scheme is more efficient in some scenarios where only
several secrets are refreshed, e.g., dynamic BFT [5]. When
a large batch is used, Yurek-DPSS becomes more practical,
as it is optimized for the batched setting.
Asynchronous complete secret sharing (ACSS). ACSS is
first proposed by Patra et al. [30], where all honest parties
are guaranteed to receive a valid and consistent share from
the sharing protocol. The completeness property of a DPSS
scheme is necessary. Otherwise, some honest parties may
have no shares to be refreshed in the following handoff
protocol. We design our ACSS protocol based on eAVSS-
SC [21] (see Appendix A), which avoids expensive PKE
and ZK proofs. Besides, Yurek-DPSS [27] uses ACSS [16],
[31] during the handoff, which is the main bottleneck of
performance, as discussed in Section 5.2.
Asynchronous distributed key generation (ADKG). The
core of DPSS schemes is an ADKG protocol [32], [33],
where common randomness is jointly generated and added
to the original shares. DyCAPS has the same asymp-
totic communication complexity as several state-of-the-art
ADKG schemes [16], [32], [34], but each party obtains a
random polynomial instead of a random element.

8. We replace the bulletin board in [6] with RBC [16] to calculate the
communication complexity.

7.2. Applications of DyCAPS

Flexible committees for blockchains. Most committee-
based blockchains use BFT protocols [9], [10], [35] to
order the transactions, where the BFT committee is usually
fixed. Using DyCAPS, the committee management becomes
more flexible. Adjusting memberships, size, and threshold
may strengthen the long-term security of committee-based
blockchains against a mobile adversary.

DyCAPS is also promising for proof-of-stake (PoS)
blockchains [36], where the committee changes over time
according to the stakes. Using DyCAPS, the PoS committee
may maintain a consistent key pair to sign the blocks. In this
way, the blockchain users will be relieved of the burden
of recording historical public keys to verify the blocks.
However, there are still open problems for DyCAPS to be
adopted in PoS protocols, including ensuring the memory
erasure of the old parties.
Decentralized identity (DID). The blossom of decentral-
ized applications (DApps) on blockchains [37] has triggered
the public’s interest in DID [38], [39], [40], which refers to
the on-chain assets and credentials. To manage a DID, a
user may refer to DyCAPS to lower the risk of exposing
the secret key. The secret shares may be kept by personal
devices or in the cloud, where the shares are refreshed peri-
odically, and the user may choose to replace some devices
or cloud service providers.
Threshold cryptography as a service. As recently pionted
out by Benhamouda et al. [12], threshold cryptographic
services are attractive in many fields, including private
cloud storage [7], [41], document certification, random bea-
cons [32], [42], and cross-chain bridges [43]. Most scenarios
above might encounter the demand of dynamic committee
and the challenge of asynchrony in practice. DyCAPS takes
a step to takle these problems, and may promote these
services.

8. Conclusion

In this paper, we propose DyCAPS, an efficient asyn-
chronous DPSS scheme with O(κn3) bits of communication
cost. DyCAPS ensures its termination and correctness in
asynchrony and guarantees the privacy of the secret. Due to
its robustness in asynchrony, DyCAPS is suitable for long-
term key management and committee governance. DyCAPS
may facilitate committee-based systems to evolve into a
dynamic setting, especially for blockchains, decentralized
autonomous organizations, and threshold cryptographic ser-
vices. DyCAPS is also attractive for personal use to manage
the secret keys of users.

Acknowledgments

The authors thank Ren Zhang, Haibing Zhang, Zhiguo
Wan, Yanpei Guo, Qitong Liu, and Bingyu Yan for their
helpful suggestions.

13

TABLE 2: Related DPSS schemes. The communication cost is calculated in bits.

Reference Async. Adversary Threshold Best-case1
comm. cost

Worst-case
comm. cost

Trusted
setup

PKE
required

Schultz-MPSS [13] × Mobile t < n/3 O(κn4) O(κn5) ×
√

Opt-CHURP [6] × Mobile &
semi-honest t < n/2 O(κn2) N/A

√
×

Exp-CHURP-A [6] × Mobile t < n/2 N/A O(κn3)
√ √

COBRA [7] × Mobile t < n/3 O(κn3) O(κn4)
√ √

APSS [8]
√

Mobile t < n/3 exp(n) exp(n) × ×
Shanrang [28]

√
Mobile t < n/4 O(κn3 logn) N/A

√ √

Yurek-DPSS [27]
√

Mobile t < n/3 O(κn3) O(κn3) ×2 √

DyCAPS (this work)
√

Mobile t < n/3 O(κn3) O(κn3)
√

×
1 In the best case, all parties behave honestly. In the worst case, there are t corrupted parties behaving maliciously.
2 Given no trusted setup, zero knowledge proofs in [27] may introduce a large constant factor. Besides, these proofs rely
on random oracles [29].

References

[1] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in PODC 1991. ACM, pp. 51–59.

[2] V. Nikov and S. Nikova, “On proactive secret sharing schemes,” in
SAC 2004, ser. LNCS, vol. 3357. Springer, pp. 308–325.

[3] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[4] Y. Desmedt and S. Jajodia, “Redistributing secret shares to
new access structures and its applications,” 1997. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
55.2968&rep=rep1&type=pdf

[5] S. Duan and H. Zhang, “Foundations of dynamic BFT,” in SP 2022.
IEEE, pp. 1317–1334.

[6] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and
D. Song, “CHURP: dynamic-committee proactive secret sharing,” in
CCS 2019. ACM, pp. 2369–2386.

[7] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra:
Dynamic proactive secret sharing for confidential bft services,” in
SP 2022. IEEE Computer Society, 2022, pp. 1528–1528.

[8] L. Zhou, F. B. Schneider, and R. van Renesse, “APSS: proactive secret
sharing in asynchronous systems,” ACM Trans. Inf. Syst. Secur., vol. 8,
no. 3, pp. 259–286, 2005.

[9] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in CCS 2016. ACM, pp. 31–42.

[10] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS 2020. ACM, pp. 803–818.

[11] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F. Wang, “De-
centralized autonomous organizations: Concept, model, and applica-
tions,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 5, pp. 870–878,
2019.

[12] F. Benhamouda, S. Halevi, H. Krawczyk, A. Miao, and T. Rabin,
“Threshold cryptography as a service (in the multiserver and YOSO
models),” in CCS 2022. ACM, pp. 323–336.

[13] D. A. Schultz, B. Liskov, and M. D. Liskov, “MPSS: mobile proactive
secret sharing,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 34:1–
34:32, 2010.

[14] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in ASIACRYPT 2010,
ser. LNCS, vol. 6477. Springer, pp. 177–194.

[15] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, pp. 130–143, 1987.

[16] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and
its applications,” in CCS 2021. ACM, pp. 2705–2721.

[17] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in CRYPTO 2001, ser.
LNCS, vol. 2139. Springer, pp. 524–541.

[18] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in PODC 2019. ACM,
pp. 337–346.

[19] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
dumbo: Pushing asynchronous BFT closer to practice,” in NDSS 2022,
pp. 1–18.

[20] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,” in
PKC 2003, ser. LNCS, vol. 2567. Springer, pp. 31–46.

[21] M. Backes, A. Datta, and A. Kate, “Asynchronous computational
VSS with reduced communication complexity,” in CT-RSA 2013, ser.
LNCS, vol. 7779. Springer, pp. 259–276.

[22] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited,” in
PODC 2020. ACM, pp. 129–138.

[23] CHURPTeam, “Churp,” 2019. [Online]. Available: https://github.
com/CHURPTeam/CHURP

[24] “The GNU multiple precision (GMP) arithmetic library,” 2021.
[Online]. Available: https://gmplib.org/

[25] “Go wrapper for the pairing based cryptography (PBC) library,”
2018. [Online]. Available: https://github.com/Nik-U/pbc

[26] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” J. Cryptol., vol. 17, no. 4, pp. 297–319, 2004.

[27] T. Yurek, Z. Xiang, Y. Xia, and A. Miller, “Long live the
honey badger: Robust asynchronous dpss and its applications,”
Cryptology ePrint Archive, Paper 2022/971, 2022. [Online].
Available: https://eprint.iacr.org/2022/971

[28] Y. Yan, Y. Xia, and S. Devadas, “Shanrang: Fully asynchronous
proactive secret sharing with dynamic committees,” 2022. [Online].
Available: https://eprint.iacr.org/2022/164

[29] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO 1986, ser. LNCS,
vol. 263. Springer, pp. 186–194.

[30] A. Patra, A. Choudhary, and C. P. Rangan, “Efficient statistical
asynchronous verifiable secret sharing with optimal resilience,” in
ICITS 2009, ser. LNCS, vol. 5973. Springer, pp. 74–92.

[31] T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. K. Miller, “hbacss: How
to robustly share many secrets,” in NDSS 2022, pp. 1–18.

[32] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser,
I. Khoffi, M. J. Fischer, and B. Ford, “Scalable bias-resistant dis-
tributed randomness,” in SP 2017. IEEE Computer Society, pp.
444–460.

[33] E. Kokoris-Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness,
consensus, and threshold signatures,” in CCS 2020. ACM, pp. 1751–
1767.

14

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf
https://github.com/CHURPTeam/CHURP
https://github.com/CHURPTeam/CHURP
https://gmplib.org/
https://github.com/Nik-U/pbc
https://eprint.iacr.org/2022/971
https://eprint.iacr.org/2022/164

[34] S. Das, T. Yurek, Z. Xiang, A. K. Miller, L. Kokoris-Kogias, and
L. Ren, “Practical asynchronous distributed key generation,” in SP
2022, pp. 2518–2534.

[35] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in EuroSys 2018. ACM, 2018, pp. 30:1–
30:15.

[36] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in CRYPTO
2017, ser. LNCS, vol. 10401. Springer, pp. 357–388.

[37] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X. Lin, “A
comprehensive survey on smart contract construction and execution:
paradigms, tools, and systems,” Patterns, vol. 2, no. 2, p. 100179,
2021.

[38] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do de-
centralized identity with legacy compatibility, sybil-resistance, and
accountability,” in SP 2021. IEEE, pp. 1348–1366.

[39] .bit, “Your decentralized identity for web3.0 life,” 2022. [Online].
Available: https://www.did.id/

[40] ConsenSys, “Serto: trust with control,” 2022. [Online]. Available:
https://www.serto.id/

[41] A. N. Bessani, E. A. P. Alchieri, M. Correia, and J. da Silva Fraga,
“Depspace: a byzantine fault-tolerant coordination service,” in Eu-
roSys 2008. ACM, pp. 163–176.

[42] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable
distributed randomness beacon with transparent setup,” in SP 2022.
IEEE, pp. 2502–2517.

[43] Y. Li, J. Weng, M. Li, W. Wu, J. Weng, J. Liu, and S. Hu, “Zerocross:
A sidechain-based privacy-preserving cross-chain solution for mon-
ero,” J. Parallel Distributed Comput., vol. 169, pp. 301–316, 2022.

Appendix A.
The Secret Sharing Protocol of DyCAPS

In this section, we present a leader-based asynchronous
complete secret sharing (ACSS) protocol DyCAPS.Share.
The existence of a dealer is necessary for many applications.
For example, a dealer may delegate its secret key to a group
of people to do threshold cryptographic operations. A dealer-
free ACSS may be derived from the Proactivize phase in
Section 3.5, by replacing the requirement of Fi(0) = 0 with
Fi(0) = si, where si is randomly generated by Pi.

A.1. Details of Our ACSS

In DyCAPS.Share, a dealer Pd shares a secret s among
a committee C, which consists of n parties {Pi}i∈[n]. As
the dealer may simply withhold the messages to block the
sharing, we require that if any honest party receives a valid
share from DPSS.Share, then each honest party receives a
valid share at the end of DyCAPS.Share. This is referred to
as the completeness property [30] (see Section 3.1).

Before DyCAPS.Share, a trusted setup is required to
initialize the public parameters of the KZG commitment
scheme [14]. We further assume these parameters are avail-
able for all members. We slightly modify eAVSS-SC [21]

to support a 〈t, 2t〉-degree bivariate sharing polynomial. The
procedures are shown in Figure 13.

Init. The initialization procedures for the dealer Pd and the
committee members {Pi}i∈[n] are different. Specifically, Pd
initializes a proof set π, which originally contains only gs.
Then, Pd generates a 2t-degree random polynomial F (y),
where F (0) = s. F (y) is further extended to 2t+1 random
polynomials B(x, `) of degree t, such that B(0, `) = F (`)
for each ` ∈ [2t+1]. Each committee member Pi only needs
to initialize an empty buffer Sfull and a flag FLGready = 0.

Commit. To prove the correctness of Init, Pd sets π =
{gs, 〈`, CB`

, CZ`
, wZ`(0), g

F (`)〉`∈[2t+1]}, where CB`
and

CZ`
are the commitments to B(x, `) and Z`(x) = B(x, `)−

F (`), respectively, and wZ`(0) is the witness for Z`(0) = 0.

Send. Pd sends 〈SEND, π, {B(i, `), wB(i,`)}`∈[2t+1]〉 to each
Pi ∈ C. At this point, the dealer Pd has finished all the
tasks, and the remaining procedures are conducted by the
committee members.

Echo. Upon receiving the SEND message from the dealer,
Pi verifies that the polynomials B(x, `) are correctly formu-
lated, where ` ∈ [2t+1], following similar verification steps
as in Proactivize. Pi also verifies the evaluation-witness
pairs w.r.t. the commitments in π′. If all verifications return
true, Pi sets π as π′. Then, Pi interpolates a 2t-degree
polynomial B∗(i, y). The witnesses {wB∗(i,j)}Pj∈C are also
interpolated from π. Finally, Pi multicasts 〈ECHO, π〉.
Ready. Upon receiving n−t ECHO messages or t+1 READY
messages with the same π′, Pi checks whether π = π′ holds.
If so, Pi sends 〈READY, π′, SHARE, B∗(i, `), wB∗(i,`)〉 to
each P` ∈ C. Otherwise, Pi resets π as π′ and discards the
interpolated {wB∗(i,`)}P`∈C and B∗(i, y). In the latter case,
Pi multicasts 〈READY, π′, NOSHARE〉.
Distribute. Pi collects n−t READY messages, among which
least t + 1 contain valid shares. Then, Pi interpolates a t-
degree polynomial B(x, i) and sends one point on this poly-
nomial to every P` ∈ C via 〈DISTRIBUTE, B(`, i), wB(`,i)〉.
Recover. Pi collects 2t+1 valid DISTRIBUTE messages and
interpolates a 2t-degree polynomial B(i, y), which is the full
share of s.

The procedures above consumes O(κn2) bits of com-
munication in total.

A.2. Security Analysis

The termination of DyCAPS contains four statements.
We prove the first two statements in this section, along with
the proof of completeness and secrecy of DyCAPS.Share.
The last statement and the proof of correctness is shown in
Appendix B, as they both involve DyCAPS.Recon.

Theorem 12 (Termination of DyCAPS.Share). 1) If
the dealer is honest, then all honest parties ter-
minate DyCAPS.Share. 2) If an honest party termi-
nates DyCAPS.Share, then all honest parties terminate
DyCAPS.Share.

15

https://www.did.id/
https://www.serto.id/

DyCAPS.Share
1: Upon invocation by Pd with input 〈InitShare, s〉 do
2: Upon receiving 〈InitShare, s〉 from Pd do . Init
3: π ← gs

4: Generate a 2t-degree polynomial F (y), where F (0) = s

5: For each ` ∈ [2t+ 1] do
6: Generate a t-degree polynomial B(x, `), where B(0, `) = F (`)

7: Send Commit to Pd

8: Upon receiving Commit from Pd do . Commit
9: For each ` ∈ [2t+ 1] do

10: Z`(x)← B(x, `)− F (`)
11: CB`

← KZG.Commit(B(x, `))

12: CZ`
← KZG.Commit(Z`(x))

13: wZ`(0) ← KZG.CreateWitness(Z`(x), 0)

14: π ← π ∪ 〈`, CB`
, CZ`

, wZ`(0), g
F (`)〉

15: Send Send to Pd

16: Upon receiving Send from Pd do . Send
17: For each Pi ∈ C do
18: For each ` ∈ [2t+ 1] do
19: wB(i,`) ← KZG.CreateWitness(B(x, `), i)

20: Send 〈Send, π, {B(i, `), wB(i,`)}`∈[2t+1]〉 privately to Pi

21: Upon invocation by Pi ∈ C with input InitShare do
22: Upon receiving InitShare from Pi do . Init
23: Sfull ← ∅
24: FLGready ← 0

25: Upon receiving 〈Send, π′, {B(i, `), wB(i,`)}`∈[2t+1]〉 from Pd do . Echo
26: Verify π′ as line 24-28 in Proactivize // {gF (`)}`∈[2t+1] are verified w.r.t. gs

27: Verify {B(i, `), wB(i,`)}`∈[2t+1] w.r.t. π′

28: π ← π′

29: Interpolate a 2t-degree polynomial B∗(i, y) from {〈`, B(i, `)〉}`∈[2t+1]

30: Interpolate {wB∗(i,j)}Pj∈C from {wB(i,`)}`∈[2t+1]

31: Multicast 〈Echo, π〉

32: Upon receiving n− t 〈Echo, π′〉 or t+1 〈Ready, π′, ∗〉 do . Ready
33: If FLGready = 0 then
34: If π′ = π then
35: Send 〈Ready, π′,Share, B∗(i, `), wB∗(i,`)〉 to each P` ∈ C
36: Else
37: π ← π′

38: Discard {wB∗(i,`)}P`∈C and B∗(i, y)
39: Multicast 〈Ready, π′,noShare〉
40: FLGready ← 1

41: Upon receiving n− t 〈Ready, π′, ∗〉 do . Distribute
42: Upon there are t+ 1 valid Ready messages with Share tag do
43: Interpolate B(x, i)

44: Send 〈Distribute, B(`, i), wB(`,i)〉 to each P` ∈ C

45: Upon reiceiving 〈Distribute, B(i, j), wB(i,j)〉 from Pj do . Recover
46: Upon FLGready = 1 do
47: Interpolate CBj

from π

48: If KZG.VerifyEval(CBj
, B(i, j), wB(i,j)) = 1 then

49: Sfull ← Sfull ∪ (j, B(i, j))

50: If |Sfull| ≥ 2t+ 1 then
51: Interpolate a 2t-degree polynomial B(i, y) from Sfull

Figure 13: Procedures of DyCAPS.Share.

Proof. 1) If the dealer is honest, all honest parties eventually
receive SEND messages from the dealer and send ECHO
messages with the same π (line 31, Figure 13). Then, the
conditions in line 32 will eventually be satisfied, and every
honest party will send a READY message in either line 34 or
line 35. The first honest party that sends the READY message
must have received n − t ECHO messages (line 32), since
there are at most t READY messages from the corrupted
parties at that time. Among these ECHO messages, at least
n − 2t = t + 1 messages come from the honest parties.
Namely, at least t+1 honest parties have received the SEND
messages from the dealer. Therefore, when these parties
enter the Ready step, they will each send a READY message
with the SHARE tag (line 35). These t+1 READY messages
are enough for all honest parties to send READY messages,
with SHARE or NOSHARE tag, enter the Distribute step, and
interpolate B(x, ∗) (line 41-43). Finally, all honest parties
send DISTRIBUTE messages, and 2t+1 of them are enough
for the honest parties to interpolate the 2t-degree polynomial
B(∗, y) and terminate DyCAPS.Share.

2) In our DyCAPS.Share, an honest party terminates iff
it has obtained a valid share B(∗, y) (line 51). Therefore,
we refer to the proof of completeness below as the proof of
the second statement of Theorem 12.

Theorem 13 (Completeness of DyCAPS.Share). If an hon-
est party obtains a valid share from DyCAPS.Share, then
each honest party obtains a share from DyCAPS.Share.

Proof. If an honest party obtains a valid share from
DyCAPS.Share, it has received 2t + 1 valid DISTRIBUTE
messages (line 50), where at least t + 1 of them are from
honest parties. These honest parties will send DISTRIBUTE
messages to all the others (line 44). Therefore, the conditions
in line 42 are satisfied. We now prove all honest parties will
receive READY messages from n− t parties as required in
line 41.

The t+1 honest parties sending DISTRIBUTE messages
each has received n−t READY messages (line 41). Namely,
at least n − 2t = t + 1 honest parties have sent READY
messages. Hence, all honest parties will receive at least t+1
READY messages and send their own READY messages (line
32-39). Therefore, all honest parties will proceed from line
41 to line 51 and obtain the shares B(∗, y).
Theorem 14 (Secrecy of DyCAPS.Share). An adversary
gains no advantage in extracting the secret s than random
sampling during DyCAPS.Share.

Proof. The secrecy is only meaningful when the dealer is
honest. Otherwise, the adversary may directly obtain the se-
cret s from the dealer. Given an honest dealer, the adversary
obtains t SEND messages, n ECHO messages, t×n READY
messages, and t × n DISTRIBUTE messages. Besides, the
final polynomial B(∗, y) is the same as B∗(∗, y), which is
interpolated from the SEND message (line 29, Figure 13).
We refer to both B(∗, y) and B∗(∗, y) as full shares in the
following.

16

Without loss of generality, we denote the corrupted
parties as {Pm}m∈[t]. The t SEND messages held by the
adversary correspond to t full shares B∗(m, y), which are
insufficient to interpolate s = B∗(0, 0). The n ECHO mes-
sages only contain public information, i.e., commitments
and witnesses (line 14), so a computationally bounded ad-
versary cannot extract s from these messages. In the subse-
quent steps, each Pm obtains n READY and DISTRIBUTE
messages, respectively. Any t + 1 READY messages with
SHARE tag result in a reduced share B(x,m), and any
2t+1 DISTRIBUTE messages lead to a full shares B(m, y).
Therefore, the adversary has t reduced shares and t full
shares. As B(x, y) is of degree 〈t, 2t〉, the adversary obtains
no information about the secret s = B(0, 0) with these
shares. Remarkably, the adversary will obtain another t
reduced shares during the first handoff, but 2t reduced
shares are still insufficient to recover the secret, as proved
in Lemma 11.

Appendix B.
The Secret Reconstruction Protocol of DyCAPS

Compared to DyCAPS.Share and DyCAPS.Handoff, the
secret reconstruction protocol DyCAPS.Recon is relatively
simple. In the following, we briefly describe DyCAPS.Recon
and analyze its security properties.

B.1. Details of Secret Reconstruction

A dealer-based DyCAPS.Recon protocol only involves
one round of communication between the dealers and com-
mittee members. When a dealer invokes DyCAPS.Recon,
the parties send their full shares B(∗, y) to the dealer,
along with a set of commitments {CB(`,y)}P`∈C , where C
is the current committee. The dealer collects t + 1 valid
shares and interpolates B(x, y). The reconstructed secret is
thus s = B(0, 0). The reconstruction can be as simple as
interpolate B(0, 0) from t + 1 tuples 〈∗, B(∗, 0)〉, where
B(∗, 0) is the evaluation of B(∗, y) at y = 0.

In case there is no dealer, the committee members may
broadcast their shares via RBC, and each of them receives
enough shares to recover the secret.

The communication cost of DyCAPS.Recon does not
exceed O(κn3) in either case.

B.2. Security Analysis

We prove the termination of DyCAPS.Recon and the
correctness of DyCAPS. The proof of secrecy is omitted,
because the secret is exposed to every party in the dealer-
free case, whereas in the dealer-based version, there is no
interaction among the corrupted parties and the honest ones.

Theorem 15 (Termination of DyCAPS.Recon). If all honest
parties invoke DyCAPS.Recon and all of them have termi-
nated DPSS.Share or DPSS.Handoff, then all honest parties
terminate DyCAPS.Recon.

Proof. If all honest parties have terminated DPSS.Share or
DPSS.Handoff, they will each obtain the latest full share
B(∗, y), where B(x, y) is of degree 〈t, 2t〉. Therefore, in
both dealer-based and dealer-free cases, there are at least
n− t valid full shares, so the invoker(s) of DyCAPS.Recon
will recover the secret s = B(0, 0) using any t + 1 full
shares.

Before proving the correctness of DyCAPS, we first
prove by Lemma 16 that all honest parties receive the same
commitment set π.

Lemma 16. If the dealer is honest, then at the end of
DyCAPS.Share, all honest parties agree on the same com-
mitment set π as the dealer sends.

Proof. If the dealer is honest, all honest parties eventually
receive SEND messages from the dealer and send ECHO
messages with the same π. Every honest party will wait
for n − t ECHO messages or t + 1 READY messages with
the same π′. Among these messages, at least one is from
the honest parties, so the commitment set π′ is the same
as that from the dealer. In conclusion, an honest party will
set π as π′ either in line 28 or line 37. Namely, all honest
parties will agree on the same commitment set π, which is
originally sent by the dealer.

Theorem 17 (Correctness of DyCAPS). If an honest
dealer inputs s to DPSS.Share and v is the output of
DPSS.Recon, then v = s. An arbitrary number of executions
of DPSS.Handoff are allowed before DPSS.Recon.

Proof. By Theorem 9, DyCAPS.Handoff keeps the secret s
invariant. Therefore, we only need to consider the situation
where no DyCAPS.Handoff is invoked before DPSS.Recon.

Combining Theorem 12 and Theorem 13, we conclude
that all honest parties terminate DyCAPS.Share, and each
of them obtains a share B(∗, y) in the presence of an honest
dealer. We now prove that the shares are consistent with the
dealer’s input s, i.e., B(0, 0) = s.

By Lemma 16, all honest parties receive the same
commitment set π from the dealer. The polynomial eval-
uations within SEND, READY, and DISTRIBUTE messages
are verified against this π (line 28, 42, and 48, respectively,
Figure 13). Due to the binding property of commitments,
these evaluations correspond to the same polynomial as sent
by the dealer. Therefore, all honest parties receive consistent
shares B(∗, y) as the honest dealer sends.

In DPSS.Recon, the shares B(∗, y) are transferred to the
dealer (or broadcast via RBC) along with the polynomial
commitments {CB(`,y)}P`∈C , where C is the latest commit-
tee. The receiver waits for t+ 1 valid shares with the same
commitment set. The correctness of commitments holds be-
cause at least one honest parties send this set. Afterward, the
dealer verifies the shares against the commitments and then
interpolates the secret v = B(0, 0). The binding property of
commitments guarantees the consistency of v and s.

17

	Introduction
	Preliminaries
	Notations
	System Model
	Building Blocks

	The DyCAPS Scheme
	Definition of DPSS
	DyCAPS Overview
	Preparation
	Share Reduction
	Proactivization
	Share Distribution

	Security and Performance Analysis
	Security Analysis
	Performance Analysis

	Implementation and Evaluation
	Implementation
	Evaluation

	Change of Size and Threshold
	Change of Size
	Change of Threshold

	Discussion
	Related Work
	Applications of DyCAPS

	Conclusion
	References
	Appendix A: The Secret Sharing Protocol of DyCAPS
	Details of Our ACSS
	Security Analysis

	Appendix B: The Secret Reconstruction Protocol of DyCAPS
	Details of Secret Reconstruction
	Security Analysis

