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Abstract. Doubly-extendable cryptographic keyed functions (deck) generalize the
concept of message authentication codes (MAC) and stream ciphers in that they
support variable-length strings as input and return variable-length strings as output.
A prominent example of building deck functions is Farfalle, which consists of a set
of public permutations and rolling functions that are used in its compression and
expansion layers. By generalizing the compression layer of Farfalle, we prove its
universality in terms of the probability of differentials over the public permutation
used in it. As the compression layer of Farfalle is inherently parallel, we compare it
to a generalization of a serial compression function inspired by Pelican-MAC. The
same public permutation may result in different universalities depending on whether
the compression is done in parallel or serial. The parallel construction consistently
performs better than the serial one, sometimes by a big factor. We demonstrate this
effect using Xoodoo[3], which is a round-reduced variant of the public permutation
used in the deck function Xoofff.
Keywords: keyed hashing, public permutations, universal hashing, parallel, serial,
differential probability

1 Introduction
The doubly-extendable cryptographic keyed (deck) function is a relatively recent crypto-
graphic primitive introduced by Daemen et al. [11]. A deck function generalizes a MAC
function and a stream cipher in that it supports variable-length strings as input and returns
variable-length strings as output.

Farfalle is a construction for building deck functions from a set of b-bit public permuta-
tions and rolling functions and was introduced in 2017 by Bertoni et al. [5]. It consists
of a compression phase followed by an expansion phase. The compression phase has two
steps, namely, the generation of a variable-length sequence of b-bits secret masks followed
by the parallel compression of strings. Each b-bit secret mask is added to a b-bit input
string block using a group addition. A public permutation is then applied to each block of
the resulting string. The output of all the permutation calls are added together, resulting
in a variable called the accumulator.

Farfalle is a type of function called protected hash (also called hash-then-encrypt).
The goal of such a function is to achieve pseudorandom function (PRF) security. This is
defined in terms of the advantage of an optimal attacker of distinguishing it from a random
oracle, when keyed with a uniformly random key unknown to the attacker. Protected
hash functions can be described as follows. For a keyed compression function Fk and a
fixed-input length cryptographic function Pk′ , the output Z for a given input m is defined
as Z = Pk′(Fk(m)). We can now isolate the contribution of the compression function Fk to
the PRF security of the protected hash function by assuming that Pk′ is PRP secure. Then
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the PRF advantage of the protected hash function is upper bound by the sum of the PRF
advantage and the success probability, taken over the key space of k of an optimal attacker
to generate collisions in the output of Fk: distinct m,m′ such that Fk(m) = Fk(m′).

This probability is in turn upper bound by the so called ε-universality [24] of F . This
is the maximum taken over all distinct message pairs of the probability taken over all keys
k, that two distinct messages result in the same output. A typical application of protected
hash functions is message authentication code (MAC) computation. Another mainstream
approach of building a MAC is the so called Wegman-Carter(-Shoup) (WC(S)) [25] [23],
that requires a nonce in the input. Given a fixed-input-length cryptographic function
Pk′ , a nonce n, a keyed compression function Fk and an input string m, the output is
a tag T that corresponds to the input m and is given by T = Pk′(n) + F (m). In the
case of Wegman-Carter, the function Pk′ is assumed to satisfy some level of PRF security.
In the case of Wegman-Carter-Shoup, Pk′ should be hard to distinguish from a random
permutation, i.e., it is a pseudo-random permutation (PRP). The security of WC(S)
depends on the ability of an attacker to generate forgeries, i.e, creating a valid (m′, n, T ′)
tuple whereby the attacker may have obtained one or more valid (m,n, T ) tuple from a
tag generation oracle. The probability of generating a successful forgery is upper bound by
the so called ε-∆universality [24] of F . This is an upper bound on the probability taken
over all keys k of two distinct input strings having a specific output difference.

Both approaches make use of a keyed compression function which we refer to as keyed
hash functions. When looking at the proposed keyed hash functions in cryptographic
literature, we can divide them into three categories. The first category makes use of
strong cryptographic primitives. Notable examples are block-cipher-based modes such as
CBC-MAC [2], CMAC [20],PMAC [7], Protected Counter Sums [3] and LightMAC [21].
For these modes PRF advantages can be expressed in terms of the PRP advantage of
the underlying block cipher. Other examples are hash-function-based constructions such
as NMAC [1] and HMAC [1] that also follow a reductionist security approach. In most
of these constructions there is actually no clear separation between the keyed hashing
component and PRF/PRP component and both are built using the same primitive and
use the same key.

The second category are simple functions built from multiplication and addition, often
in a large finite field. The best known examples are GMAC, used in the authentication
encryption mode GCM [22], and poly1305 [4]. The universality of these functions can be
derived using simple mathematical arguments. This approach gives functions that are more
efficient than those in the first category in many modern CPUs thanks to the presence
of dedicated instructions for efficient big integer multiplication of even multiplication in
binary fields, e.g., the CLMUL instruction set.

The third category uses fixed-length public permutations. Examples include Farfalle,
and the compression phase of Pelican MAC [15], which compresses a variable length input
in a serial way using a CBC-MAC like construction, but with a public permutation taking
the place of the block cipher. This approach leads also to improved performance. For
example per 16-byte input block compression in Pelican MAC requires 4 unkeyed AES
rounds while CBC-MAC and PMAC require a full 10-round keyed AES. On platforms
where there is no dedicated hardware support for efficient multiplication, like the ARM
cortex M3/M4, it is even competitive with functions in the second category. In dedicated
hardware this approach is likely to lead to more efficient compression for the same security
level as functions making use of multiplication as despite its mathematical simplicity, fast
multiplication has a large footprint in hardware.

The problem with this third category is that their security cannot be reduced to the
PRP or PRF security of some underlying primitive as in the first category and also the
simple mathematical arguments of the second category do not apply. For the serial case
there is some analysis by Daemen et al. in [14] and [16] and by Dobraunig et al. in [18]
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but they assume a random permutation. For the parallel case there is some analysis in [5]
and [11] but these are not rigorous and seem to be meant more as design rationale.

1.1 Our Contributions
In this paper we provide a rigorous security analysis of permutation-based keyed hashing
without relying on a random permutation. We propose a framework that idealizes the
compression phases of Farfalle and Pelican MAC in order to derive upper bounds on
their universalities, under the assumption of long independent keys. This framework is
meaningful in the same way that cryptanalysis of block ciphers under the assumption
of independent round keys is meaningful, or in the same way that proofs on bounds for
the distinguishing/differentiating advantage in the random permutation model, like for
sponge [6], duplex [13] or Even-Mansour [19] are meaningful.

We express the ε-universality and ε-∆universality of the constructions we present as a
function of the probability of differentials of the underlying permutations.

Our main contributions are:

• In Section 2 we introduce the notion of key-then-hash functions and we generalize
the concept of differentials over them. By using this generalization, we are able to
define the differential probability of a differential over such keyed hash functions.

• In Sections 3 and 4 we prove that the universality of serial and parallel key-then-hash
functions using a public permutation can be expressed in terms of the probability
of differentials over the underlying permutation using the new notion of differential
probability over keyed hash functions.

– We show that serial universal hashing using a public permutation f is both
maxa,∆ DPf (a,∆)-universal and maxa,∆ DPf (a,∆)-∆universal. This result is
given in Theorem 1.

– We show that the ε-universality of parallel hashing using a public permutation
f is maxa

∑
∆ DP2

f (a,∆)-universal and as such has the potential to result in
better bounds than the ε-universality of serial hashing using the same f . This
result is given in Theorem 2 and Theorem 3.

• In Section 5 we apply these results on Xoodoo[3], a round-reduced version of the
public permutation used in Xoofff [11].

2 Preliminaries
In this section we define the basic notation and definitions required to follow the analysis
presented in this paper.

2.1 Notation
Our hash functions operate on strings of elements of an abelian group 〈G,+〉 with the
neutral element written as 0. We call the elements of G blocks, denote the set of `-block
strings as G` and the set of strings of length 1 up to κ as BS(G, κ) = ∪κ`=1G`. We denote
strings in bold, like m, their blocks by mi, with indexing starting from 1 and the length of
a string m as |m|. For a string of ` zeroes we write 0`.

In this paper we work with variables x ∈ G that have a value that depends on the
key k. We denote the probability that a variable x has value X by Pr(x = X). In words,
Pr(x = X) is the fraction of the keyspace for which variable x has value X. We call two
variables independent if Pr(x = X,x′ = X ′) = Pr(x = X) Pr(x′ = X ′) for all X,X ′ ∈ G.
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The probability mass function (PMF) of a variable x, denoted as gx, is the array of
values Pr(x = X) over all values X. We have gx(X) = Pr(x = X), with the probability
taken over the key space. Clearly, ∀X : 0 ≤ gx(X) ≤ 1 and

∑
X gx(X) = 1. As such, a

PMF can be seen as a mapping g : G→ [0, 1].
The convolution of two PMFs gx, gy, denoted as gx ∗ gy, is given by:

gz = gx ∗ gy ⇐⇒ ∀Z : gz(Z) =
∑
X

gx(X)gy(X − Z) ,

with − determined by the group operation of G and the summation done over R.
We denote the uniform PMF over G by U: so ∀X ∈ G U(X) = 1

#G . When we
have two independent variables x, y ∈ G then the PMF of their sum (in G) is the
convolution of their PMFs. Moreover, if z = x + y with x and y independent, then
maxZ gz(Z) ≤ min (maxX gx(X),maxY gy(Y )). It immediately follows that convolution
with an independent uniform variable results in a uniform variable.

2.2 ε-Universality and ε-∆Universality
As discussed in Section 1, the security of our keyed hash functions in their relevant use cases
is determined by their ε-universality and ε-∆universality [24]. We adapt these definitions
to our notation in this section.
Definition 1 (ε-universality [24]). A keyed hash function F is said to be ε-universal if
for any distinct strings m,m∗

Pr[Fk(m) = Fk(m∗)] ≤ ε .

Definition 2 (ε-∆universality [24]). A keyed hash function F is said to be ε-∆ universal
if for any distinct strings m,m∗ and for all ∆ ∈ G

Pr[Fk(m)− Fk(m∗) = ∆] ≤ ε .

We will prove upper bounds on the universalities of our constructions in Sections 3.2
and 4.2.

2.3 Key-Then-Hash functions
We study keyed hash functions that take as input elements of BS(G, κ) and return an
element of G. The keys are elements of Gκ. When processing an input, the key is
first added to the input and then an unkeyed function is applied to the result. We
refer to this special case of keyed hash functions as key-then-hash functions. A key-
then-hash function is denoted as F and is defined as F : Gκ × BS(G, κ) → G with
Fk(m) = F (k + m). The addition of two strings m,m∗ with |m| ≤ |m∗| is defined as
m′ = m + m∗ = m1 +m∗1,m2 +m∗2, . . . ,m|m| +m∗|m|, so the sum of two strings is as long
as the shortest of the two.

In Sections 3 we show a construction for serial key-then-hash functions whose primitive
is a public permutation and in Section 4 we show a parallel construction for key-then-hash
functions which also makes use of a public permutation as its underlying primitive.

2.4 Differential Probability over Fixed-length Functions
Definition 3 (Differential probability). The differential probability of a differential (a, b)
over a permutation f : G→ G, denoted as DPf (a, b), is:

DPf (a, b) = #{x ∈ G | f(x+ a)− f(x) = b}
#G .

We say that input difference a propagates to output difference b with probability DPf (a, b).
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If DPf (a, b) > 0, we call input difference a and output difference b compatible through
f . In our bounds maxa 6=0,b DPf (a, b) plays an important role and we denote it by MDPf .
The differential probabilities of all differentials with a common input difference a form a
PMF that we denote as DPa, so we have DPa(b) = DPf (a, b).

A useful quantity is the Euclidean norm of DPa given by
∑

b DP2
a(b). We denote it

by NDPf (a) and denote the maximum of this norm over all input differences by MNDPf ,
hence MNDPf = maxa 6=0

∑
b DP2

f (a, b).

2.5 Differentials over Key-Then-Hash Functions and their Differential
Probability

Classically, the definition of a differential is defined over fixed-length functions. The
introduction of variable-length input makes the definition of a differential non-trivial due
to the fact that two strings may differ in value but also in length. In this section, we
generalize the concept of differentials to variable-length functions and define the differential
probably of such differentials over key-then-hash functions. The core of our proofs in
Sections 3.3, 4.3 and 4.4 relies on understanding the relationship between the probability
of differentials of the keyed hash function and those of its underlying permutation.
Proposition 1. For a key-then-hash function, the probability that two messages m,m∗
with |m| ≤ |m′| result in an output difference ∆ through Fk is given by the following ratio:

Pr [Fk(m)− Fk(m∗) = ∆] = #{k ∈ Gκ | F (a + k)− F (0|a|+λ + k) = ∆}
#Gκ

,

where λ = |m′| − |m| and a is taken as a ∈ G|m| such that m = a + m∗.

Proof. We start by looking at the probability of any pair of strings m,m∗ leading to an
output difference ∆:

Pr [Fk(m)− Fk(m∗) = ∆] = #{k ∈ Gκ | F (m + k)− F (m∗ + k)}
#Gκ

.

Now we prove that given an offset o ∈ Gκ the following holds:

Pr [F (m + k)− F (m∗ + k) = ∆] = Pr [F (m + o + k)− F (m∗ + o + k) = ∆] .

We denote S = {k ∈ Gκ | F (m+k)−F (m∗+k) = ∆} ⊆ Gκ and we note the following
property. Since Gκ is an abelian group, adding an offset o to every element of S does
not change its size. Furthermore, since string addition is associative, offsetting m,m∗ by
o is equivalent to adding o to every element of S. Therefore, by choosing o such that
m∗ + o = 0|m∗|, we get the expression in Proposition 1.

The tuple (a, λ) can be seen as the string equivalent of an input difference. This leads
us to the following definition of a difference.
Definition 4 (Difference between two strings). We define the difference between two
strings m,m∗ with |m| ≤ |m∗| as the pair (a, λ) ∈ G|m| × Z≥0 where a = m1 −m∗1,m2 −
m∗2, . . . ,m|m| −m∗|m| and λ = |m∗| − |m|.

When λ = 0 we say a difference is equal-length and otherwise we say it is unequal-length.
Now, we define the probability of differentials over F .
Definition 5 (Generalized differentials and their DP). Given an input difference (a, λ)
and an output difference ∆, the differential probability of the differential (a, λ,∆) over F ,
denoted as DPF (a, λ,∆) is given by:

DPF (a, λ,∆) = #{k ∈ Gκ | F (a + k)− F (0|a|+λ + k) = ∆}
#Gκ

.
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Figure 1: The serialization Serial[f ]

In order to simplify notation, when λ = 0 we omit it from the differential. Note that if
we take λ = 0 and a = a ∈ G we get the classical definition of differential probability.

As for fixed-length functions, the differential probabilities of all differentials with a
common input difference (a, λ) form a PMF that we denote as DPF (a,λ), so we have
DPF (a,λ)(∆) = DPF (a, λ,∆). From Definitions 1 and 2, we can say that a keyed hash
function F is maxa,λ DPF (a, λ, 0)-universal and maxa,λ,∆ DPF (a, λ,∆) -∆universal. We
focus for the rest of the paper on proving upper bounds on the differential probability of
our constructions.

3 Serial Key-Then-Hash Construction
We will consider the universality of serial key-then-hash functions based on an unkeyed
permutation f . The construction is described in Section 3.1. The main theorem is provided
in Section 3.2. We show that the universality of such construction is equal to the maximum
differential probability over all non-trivial differentials of the underlying permutation. We
prove Theorem 1 in Section 3.3.

3.1 Construction
We define the serialization of a public permutation in Algorithm 1 and depict it in Figure 1.
The construction takes as parameters a public permutation f : G→ G and a maximum
string length κ. Its inputs are a key k ∈ Gκ and a message m ∈ BS(G, κ) and it returns a
digest h ∈ G.

Algorithm 1: The serialization Serial[f ]
Parameters : A public permutation f : G→ G and a maximum length κ
Inputs : A key k ∈ Gκ and a message m ∈ BS(A, κ)
Output : A digest h ∈ G
Processing :
x←m + k
h← 0
for i← 1 to |m| do

h← f(xi + h)
end
return h

3.2 Security of the Serial Construction
In this section we express the universality of the serialization of a public permutation f
in terms of the probability of differentials over f . Furthermore, we prove that Serial[f ] is
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ε-universal and ε-∆universal for the same value of ε.

Theorem 1 (Universality of Serial[f ]). The serialization of a public permutation f ,
Serial[f ], is MDPf -universal and MDPf -∆universal.

3.3 Proof of Theorem 1
In order to determine the probability of differentials over Serial[f ](a, λ,∆), denoted as
DPS, we have to consider both equal-length and unequal-length differences. We show
in Lemma 1 that differentials with unequal-length input differences all have DPS = 1

#G
regardless of a and ∆. In Lemma 2 we prove a recursive expression for DPS for equal-length
differences with |a| > 1. By combining these two lemmas we are able to construct a proof
for Theorem 1.

Lemma 1 (DPS of unequal-length differences). For any differential (a, λ,∆) with λ > 0,
DPS = 1

#G .

Proof. Let m,m∗ be two strings with length |m| < |m∗| and difference (a, λ, b). The
probability that Serial[f ](m + k) = x is 1

#G since it is the result of f(cv + k|m| +m|m|),
where cv is the intermediate value accumulating the first |m| − 1 blocks. Since we take the
probability over all keys, and therefor over all values of k|m|, the probability distribution of
the permutation input is uniform and hence also its output. Similarly, the probability that
Serial[f ](m∗+k) = y is 1

#G since it is the result of f(cv∗+k|m∗|+m|m∗|), where cv∗ is the
intermediate value accumulating the first |m∗| − 1 blocks. The value of y is independent of
the value of x since they result from f being computed under the addition of k|m| and k|m∗|
respectively and they are two secret key blocks chosen independently of each other from
a uniform distribution. We get that the output difference is ∆ if x = ∆ + y. Hence, we
can partition the sample space. We use the following condition. Serial[f ](m + k) = ∆ + y
given the event Serial[f ](m∗ + k) = y. Each partition has probability 1

#G2 . By applying
the law of total probability we obtain the expression in Lemma 1.

Lemma 2 (DPS of an extra message block with λ = 0). Let (a, a) be the concatenation
of a ∈ BS(G, κ) and a ∈ G. The differential probability of the differential ((a, a),∆) over
Serial[f ] is given by:

DPS((a, a),∆) =
∑
t∈G

DPS(a, t)DPf (a + t,∆) .

Proof. We prove this using the law of total probability. We start by looking at the
conditional probability that a + t propagates to ∆ through f given that a propagates to t
through Serial[f ] for any value t ∈ G. Since the key blocks are chosen independently and
at random from a uniform distribution these two events are independent from each other.
Therefore, it happens with probability DPS(a, t)DPf (a + t,∆). By applying the law of
total probability we get the expression in Lemma 2.

Theorem 1. Using Lemma 2, we first show that the DP of an equal-length differential
((a, a),∆) is upper bounded by max∆′ DPS(a,∆′):

DPS((a, a),∆) =
∑
t∈G

DPS(a, t)DPf (a + t,∆)

≤
∑
t∈G

(max
t

DPS(a, t))DPf (a + t,∆)

= max
∆′

DPS(a,∆′)
∑
t

DPf (t,∆) .
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Since f is a permutation, we have
∑
t DPf (t,∆) =

∑
t DPf−1(∆, t) = 1 and we obtain:

DPS((a, a),∆) = max
∆

DPS(a,∆) . (1)

As (1) holds for any input difference (a, a) and output difference ∆ we have:

max
(a,a),∆

DPS((a, a),∆) ≤ max
a,∆

DPS(a,∆) .

It follows that the maximum DP over all equal-length differentials with an input differ-
ence of length ` is upper bounded by the maximum DP over all equal-length differentials
with an input difference of length `− 1. This can be applied recursively until we reach
` = 1, yielding maxa1,∆ DPS(a1,∆) = maxa1,∆ DPf (a1,∆) = MDPf . So the maximum DP
over all equal-length differentials is MDPf .

For unequal-length differentials Lemma 1 states that the DP equals 1
#G . As MDPf >

1
#G , this finishes the proof.

4 Parallel Key-Then-Hash Construction
Similarly to Section 3, we consider the universality of a construction based on an unkeyed
permutation f . However, in this construction, strings are compressed in a parallel way. In
Section 4.1 we define the construction. The main theorems of this section are provided in
Section 4.2. In Sections 4.3 and 4.4 we prove Theorems 2 and 3 respectively.

4.1 Construction
We describe the parallelization of a public permutation in Algorithm 2 and depict it in
Figure 2. The construction takes as parameters a public permutation f : G → G and a
maximum string length κ. The inputs are a key k ∈ Gκ and a string m ∈ BS(G, κ) and it
returns a digest h ∈ G.

Algorithm 2: The parallelization Parallel[f ]
Parameters : A public permutation f : G→ G and a maximum length κ
Inputs : A key k ∈ Gκ and a message m ∈ BS(G, κ)
Output : A digest h ∈ G
x←m + k
h← 0
for i← 1 to |m| do

h← h+ f(xi)
end
return h

4.2 Security of Parallel Construction
In this section we describe the universality of the parallelization of a public permutation f
in terms of the differential probability of f . Unlike the serialization of a public function,
the ε-universality and ε-∆ universality of Parallel[f ] are in general different.

Theorem 2 (∆-Universality of Parallel[f ]). The parallelization of a public permutation
f , Parallel[f ], is MDPf -∆universal.

Theorem 3 (Universality of Parallel[f ]). The parallelization of a public permutation f ,
Parallel[f ], is MNDPf -universal.
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Figure 2: The parallelization Parallel[f ]

4.3 Proof of Theorem 2
In Lemma 3 we show that the PMF of an input difference to Parallel[f ], denoted as
DPP(a,λ), can be obtained by convolution of the PMFs DPai

and the uniform distribution
U.
Lemma 3 (DP of differentials over Parallel[f ] ). The PMF of an input difference (a, λ)
to Parallel[f ] is given by:

DPP(a, λ) = DPa1 ∗ DPa2 ∗ . . . ∗ DPa`
∗U .

Proof. Assume we process from left to right. We will express the PMF of the chaining
value after processing a new block with difference a as a function of the PMF of the
chaining value before processing that new block. We denote the difference in the partial
message by a. Per definition we have for the PMF of that chaining value DPP(a). The
PMF of the difference in the new block is DPa. The new value of the chaining value is the
sum of these two variables. If the PMFs are independent, then the resulting PMF is given
by the convolution of the two. These PMFs are indeed independent, as the two PMFs are
governed by non-overlapping key blocks and their distribution is over all possible keys.
This can be applied recursively and we obtain for any two partial messages of equal length
that DPP(a) = DPa1DPa2 . . .DPa|a| .

Now we will absorb a new block that is only present in one of the two messages.
The difference between the two messages is now simply the value of the output of the
permutation for the input block in the longest message. The PMF of this value is the U
distribution as its input due to the presence of a key block. The new value of the chaining
value is the sum of these two variables. These PMFs are independent, as the two PMFs
are here also governed by non-overlapping key blocks. Therefore the PMF of the sum is
the convolution of the PMFs. Convolution with the uniform distribution gives again the
uniform distribution.

Combining the two results proves the lemma.

Theorem 2. Similarly to the proof of Theorem 1, we will prove an upper bound on
maxa,λ,∆ DPP(a, λ,∆).

By applying Lemma 3, we get the following upper bounds:

max
a,λ,∆

DPP(a, λ,∆) ≤ max
{

max
a,∆∈G

DPP(a,∆), max
a,λ,∆

DPP(a, λ,∆)
}

= max
{

max
a,∆∈G

DPf (a,∆),max
x∈G

U(x)
}

= max
a,∆∈G

DPf (a,∆).
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4.4 Proof of Theorem 3
In this section we will prove Theorem 3 by using the same technique used in the proof of
Theorem 2 but on two-block equal-length differentials.

Theorem 3. Since f is a permutation, it is impossible to achieve a 0 output difference with
single block equal-length differences. From the proof of Theorem 2, we know that the
following holds:

max
a,λ

DPP(a, λ, 0) ≤ max
a1,a2,∆∈G

DPP((a1, a2),∆) (2)

= max
a1,a2,∆∈G

∑
t∈G

DPf (a1, t)DPf (a2,∆− t) . (3)

The right-hand part of (3) can be seen as a scalar product of vectors with components
indexed by t. The scalar product of two vectors is upper bound by the maximum of the
norm of the two vectors where the norm of a vector is the sum of squares of its coordinates.
Hence, we have the following upper-bound.

max
a,λ

DPP(a, λ, 0) ≤ max
{∑
t∈G

DP2
f (a1, t),

∑
t∈G

DP2
f (a2,∆− t)

}

= max
{∑
t∈G

DP2
f (a1, t),

∑
t∈G

DP2
f (a2, t)

}
.

This is true for any a1 or a2, hence we have:

max
a,λ

DPP(a, λ, 0) ≤ max
a∈G

∑
t∈G

DP2
f (a, t) .

Equality is achieved by taking a2 = −a1.

5 Application to Xoodoo
In this section we determine, bound and estimate the quantities of Xoodoo that determine
the universalities in our keyed hash constructions: MDPf and MNDPf . In Sections 5.1
and 5.2 we provide some the background knowledge required to understand this section.
In Sections 5.3 and 5.4 we discuss MDPf and MNDPf of Xoodoo[3] and Xoodoo[4]
respectively.

By Theorem 1 it immediately implies the MDPf -universality and MDPf -∆universality
of Serial[Xoodoo[3]] and Serial[Xoodoo[4]], and by Theorems 2 and 3 the MDPf -
∆universality and MNDPf -universality of Parallel[Xoodoo[3]] and Parallel[Xoodoo[4]].

5.1 Differential Propagation Basics
As we will only discuss differential probabilities over f , we will just write DP for DPf .
Determining the DP of differentials over an iterated permutation passes via differential
trails: a chaining of differentials over a sequence of successive rounds.

Definition 6 (Differential trail). An r-round differential trail, denoted as Q, is a sequence
of r + 1 differences: an input difference, r − 1 intermediate differences and an output
difference, where the round differentials (qi−1, qi) have non-zero DP, namely,

Q = (q0, q1, q2, . . . , qr−1, qr) with DP(qi−1, qi) > 0 for all i .
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The differential probability of a trail, denoted DP(Q), is the probability that a random
pair with input difference q0 propagates via intermediate differences q1, q2, . . . to output
difference qr.

A useful concept when studying differential propagation is the restriction weight.
Definition 7 (Restriction weight of a differential [9]). The restriction weight of a differential
DP(a, b) > 0 is defined as w(a, b) = − log2 DP(a, b).
Definition 8 (Restriction weight of a differential trail [9]). The restriction weight of a
differential trail Q = (q0, q1, . . . , qr−1) is defined as w(Q) =

∑
i w(qi−1, qi), hence the sum

of the restriction weights if its round differentials.
In the following we will omit the qualification “restriction” and simply speak of weight.

We use the term weight profile of a trail for the sequence of weights of its round differentials.
The weight of any given round differential is in general easy to compute and hence so is
the weight of any given trail. Often 2−w(Q) is a good approximation for DP(Q). If the
propagation through the round differentials of a trail are independent, we call it a Markov
trail and it satisfies DP(Q) = 2−w(Q). This is not the case in general and an attention point
that must be verified. Trails are linked to differentials: the DP of an r-round differential is
the sum of the DPs of all trails connecting input difference and output difference:

DP(a, b) =
∑

Q with q0=a,qr=b
DP(Q) .

Trails with common input and output difference contribute to the same differential and
are said to cluster. We call a trail that is the only one in its differential a lone trail.

Papers on trail search often report on large sets of trails with common features rather
than individual trails. These sets are called trail cores.
Definition 9 (Differential trail core [17]). An r-round differential trail core, denoted as
Q̃, is a set of differential trails over r rounds with a shared core of intermediate differences
(q1, q2, . . . , qr−1) with DP(qi, qi+1) > 0 for all 1 ≤ i < r − 1.

Given an r-round trail core Q̃ and an r-round differential (a, b), the trail core will
contribute to DP(a, b) if a is compatible with q1 and qr−1 with b.

Determining NDPf (a) requires computing of DP(a, b) for all output differences b and
in typical iterated permutations this is infeasible. However, it is reasonable to assume that
for a given input difference a all output differences b with DP(a, b) > T are known. Then
we can use the following lemma to upper bound NDPf (a).
Lemma 4. For any limit T , we have:

NDPf (a) ≤
∑

b with DP(a,b)>T

DP2(a, b) + T.

Proof. Partitioning the differentials gives:∑
b

DP2(a, b) =
∑

b with
DP(a,b)>T

DP2(a, b) +
∑

b with
DP(a,b)≤T

DP2(a, b) .

The second sum in the right-hand side is at most T , namely, using∑
b

DP(a, b) = 1

gives ∑
b with

DP(a,b)≤T

DP2(a, b) =
∑

b with
DP(a,b)≤T

DP(a, b)DP(a, b) ≤ T
∑

b with
DP(a,b)≤T

DP(a, b) ≤ T .

This proves the lemma.
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5.2 Differential Propagation in Xoodoo

Xoodoo is a family of 384-bit permutations with a classical iterated structure: it iteratively
applies a round function to a state. It is parameterized by its number of rounds: Xoodoo
with r rounds is denoted Xoodoo[r]. The round function consist of a linear layer that
we will call λ followed by a non-linear layer called χ. The non-linear layer has algebraic
degree two. A consequence of this is that in round differentials the value of DP(a, b) is
fully determined by the input difference a and hence the same for all compatible output
differences b [11]. Moreover, the inverse of χ also has algebraic degree 2 and therefore in
round differentials the value of DP(a, b) is also fully determined by the output difference b
and hence the same for all compatible input differences a. The consequence of these two
properties is that all trails in a trail core have the same weight and we can speak about
w(Q̃) without ambiguity, with w(Q̃) the weight of any trail in the core.

Thanks to the shift-invariance of the Xoodoo round function, trails (and trail cores)
occur in classes with members that are equivalent under horizontal shifts. These classes
have size 2d with d ranging from 0 to 7. The vast majority of trail cores are in classes of
size 27 = 128.

The non-linear layer χ operates in parallel and independently on 3-bit parts of the
state, the so-called columns: it is a layer of invertible non-linear S-boxes. This has its
implications for clustering. A trail core Q̃ contributes to a differential (a, b) if a and q1 are
compatible. The input difference a fully determines the difference at the input of χ of the
first round: it is λ(a). So λ(a) and q1 must be compatible over χ.

A non-zero difference in a column at the input of χ can only propagate to a non-zero
difference at its output and A zero difference in a column at its input can only propagate
to a non-zero difference at its output. So λ(a) must be active in exactly the same columns
as q1. We say that λ(a) and q1 must have the same column activity pattern. Similarly,
λ(qr−1) and b must have the same column activity pattern.

From this follows that a trail in trail cores Q̃ can only cluster with a trail in trail core
Q̃′ if q1 and q′1 have the same column activity pattern and if qr−1 and q′r−1 have the same
column activity pattern.

5.3 MDPf and MNDPf of Xoodoo[3]

In the Xoodoo GitHub repository [10] there is a list available of all 3-round trail core
classes of Xoodoo[3] with weight up to 52. The list has 201 entries. In [8] it is reported
that all 3-round trails with weight up to 50 are lone Markov trails. The lowest weight, 36, is
attained by 4 trail core classes, hence under reasonable assumptions, we have MDPf = 2−36.
The assumptions are that there are no trail cores with weight above 50 clustering to form
a differential with DP > 2−36. This would require the clustering of at least 254−36 = 218

Markov trails. The fact that there are only 201 trail core classes with weight below 52
that contain only lone Markov trails makes this extremely unlikely.

For estimating MNDPf it is interesting to make use of Lemma 4. For its application,
we need to make a reasonable assumption on the limit T . If trails remain to be lone
Markov trails up to some weight, e.g., 70, the DP of differentials coincides with the values
predicted by the weights of trails and we can take T = 2−54. Clearly, as the weight of
trails increases, the likelihood of clustering and dependence of round differentials does
increase. Still, as discussed in [8], it is unlikely these effects are noticeable for trails in
non-aligned permutations such as Xoodoo, unless their weight is close to the permutation
width. For Xoodoo this is 384, very far from 50.

Lemma 5. Assuming that all differentials with DP(a, b) > T for T > 2−54 correspond to
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lone Markov trails, we can upper bound MNDPf as

MNDPf ≤ T + max
a

∑
Q̃ with w(Q̃)<54
and DP(a,q1)>0

2w(qr−1)−2w(Q̃).

Proof. The contribution of a trail core Q̃ to NDPf (a) is only non-zero if q1 is compatible
with a, and in that case it is 2w(qr−1)−2w(Q̃). Namely, in a trail core with q1 compatible with
a given input difference a there are 2w(qr−1) trails, that each have DP equal to 2−w(Q̃).

For two trail cores to contribute to NDPf (a) for some value of a, they must have equal
column activity patterns in q1. Or in other words, two trail cores that have different
column activity patterns in q1 cannot both contribute to NDPf (a) for some a. We can
partition the trail cores in the 201 trail core classes per their activity pattern in q1: we
call these activity classes. Then for each partition we just add the contributions of the
trail cores as in Lemma 5.

Over all 3-round trail cores in [10] the ones that have highest contribution to MNDPf (a)
for some input difference a have weight profile (4, 4, 28) and they contribute 228−2×36 = 2−44.
There are three of them and they are described in [11] and called single-orbital fans. For
each single-orbital fan, there are 4 other trail cores with the same column activity pattern
in q1, that contribute to MNDPf (a) respectively 2−54, 2−54, 2−56 and 2−58, resulting in
2−44 + 2−53 + 2−56 + 2−58 +T = (1.00226)× 2−44 +T . All other classes of trail core classes
result in lower values for NDPf (a). We see that the value of NDPf (a) is dominated by its
“lightest” trail core and that additional trail cores make it go up only slightly. We think it
is reasonable to expect that this is also the case for the (unknown) trail cores with weight
above 52. Still, for MNDPf to deviate significantly from 2−44, T would have to go up to
2−45 or so, which would imply considerable clustering and/or non-Markov trails.

So we conclude that MNDPf ≈ 2−44 and this value reflects the contribution of the
single-orbital fan as dominant trail core. We see that for Xoodoo[3], MDPf is a factor 28

larger MNDPf .

5.4 MDPf and MNDPf of Xoodoo[4]
The trail cores of Xoodoo[4] are far less documented than those of Xoodoo[3]. Still, [12]
reports that the 4-round trails with lowest weight have weight 80 and documents these
trail core classes, only 2 of them.

It is not known whether the trails in these trail cores classes are Markov trails. Moreover,
they have a high degree of symmetry and the trail cores in the classes cluster two-by-two.
Assuming Markov trails and no more clustering occurs this would yield MDPf = 2−79.
Based on arguments in [8] we do not expect non-Markov behaviour and/or additional
clustering trails to affect this value significantly.

For MNDPf we need again to look at the weight profiles of the trail cores. Those of
two trail core classes are respectively (32, 24, 16, 8) and (8, 16, 24, 32) .

If we approximate MNDPf by the contribution of single trail cores, the former would
give NDPf (a) ≈ 2−160+32 = 2−128 and the latter NDPf (a) ≈ 2−160+8 = 2−152. However,
as said, the trail cores cluster two-by-two: the clustering trail cores have equal differences
q1 and different differences q3, but with equal activity patterns. When fixing an input
difference a, in each trail core there are 232 trails to different output differences b, all with
weight 80. Among those 233 output differences, there are exactly 216 where two trails
arrive and therefore they have DP(a, b) = 2−79. So assuming all these trails are Markov
trails, their contribution to NDPf (a) is (233 − 216)2−160 + 2162−158 = (233 + 2163)2−160 =
1.00005× 2−127.
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Due to the limited knowledge about 4-round trails we cannot tell whether there are no
trail cores that lead to a lower value of MNDPf . Still, an interesting observation is that
the preliminary value of MDPf is a factor 248 higher than that of MNDPf .

6 Conclusion
By assuming long independent keys, we are able to idealize the compression phase of
Farfalle. The assumption allowed us to study a class of keyed hash functions that first add
a key to the input string and then do unkeyed processing. We study it by first generalizing
the notion of differentials over said class of keyed hash functions by also taking into account
the difference in length between two input strings. We then show that it is possible to
express the universality of our constructions in terms of the probability of differentials
over the underlying public permutation. In the case of serial key-then-hash functions, we
show that the universality and ∆universality is given by MDPf of the public permutation.
These upper bounds are tight and are achieved by equal-length message pairs with a
message difference of length 1. For parallel key-then-hash functions, we show that the
universality is given by MNDPf and the ∆universality is given by MDPf . These upper
bounds are once again tight and are achieved by equal-length message pairs with a message
difference of length 2 and 1 respectively. While MDPf is a very well known property of
public permutations, MNDPf is still not well studied. For many public permutations,
MNDPf is significantly smaller than MDPf thus making it a very compelling case to use
them in parallel key-then-hash instead of serial.
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