
Secure Maximum Weight Matching Approximation on General
Graphs (Full Version)⋆
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Abstract. Privacy-preserving protocols for matchings on general graphs can be used for applications
such as online dating, bartering, or kidney donor exchange. In addition, they can act as building blocks
for more complex protocols. While privacy preserving protocols for matchings on bipartite graphs are a
well-researched topic, the case of general graphs has experienced significantly less attention so far. We
address this gap by providing the first privacy-preserving protocol for maximum weight matching on
general graphs. We present two protocol variants, which both compute an 1/2−approximation instead
of an exact solution in favor of scalability. For N nodes, the first variant requires O(N log2 N) rounds
and O(N3 logN) communication, and the second variant requires only O(N logN) rounds and O(N3)
communication. We implement both variants and find that the first variant runs in 14.9 minutes
for N = 300 nodes, while the second variant requires only 5.1 minutes for N = 300, and 12.5 minutes
for N = 400.
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1 Introduction

Secure Multi-Party Computation (MPC) allows multiple parties to evaluate some function on their private
inputs using a distributed protocol that keeps everything that a party cannot derive from its input and
output private [Yao82]. It has been used to devise privacy-preserving protocols for a variety of matching
problems on graphs that are used, e.g., for fingerprint identification [BS15], kidney donor exchange [BMW22],
matching medical students to medical residency programs or students to schools or universities [Gol06; DE16;
Ria+17], and are used as subroutines for tackling entirely different problems [Wül+17]. While almost all of
these approaches are specifically designed for bipartite graphs only, use cases such as online dating, bartering,
or kidney exchange can profit from or even require to use general graphs.

To the best of our knowledge, Breuer et al. [BMW22] have proposed the first and to date only privacy-
preserving protocol for matching on general graphs. Their protocol always returns an exact solution, but
exhibits a high complexity of O(N4) (communication) rounds and O(N5) communication (i.e., traffic) for N
nodes. This yields a run time of more than a day for N = 40 which may be infeasible for use cases where
strict time constraints or large graphs are given.

Our Contributions. We present the first approximation protocol for maximum weight matching (MWM)
on weighted general graphs. Here, the objective is to find a matching that maximizes the sum of weights of
its edges. Our protocol thus approximatively solves a more general problem than the maximum matching
problem (i.e., the MWM problem where all weights are 1) for which Breuer et al. [BMW22] present an exact
solution. Our protocol achieves a high scalability while computing an approximation of the exact solution
only. Yet it guarantees that the computed matching has at least half of the maximally possible weight, which
dependent on the use case may be well-acceptable.

We use randomization to obtain two variants of the protocol that give certain unbiasedness guarantees
between edges of equal weight or their corresponding nodes. The complexity of the first variant for N
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nodes is O(N log2 N) rounds and O(N3 logN) communication. The faster, second variant requires O(N logN)
rounds and O(N3) communication. Our implementation using the MPC framework MP-SPDZ [Kel20]
demonstrates the protocol’s scalability. We focus on security against a passive adversary given an honest
majority for which we can use the three-party MPC protocol by Araki et al. [Ara+16] as a basis. Given
a LAN setting, this results in the first protocol variant that provides stronger unbiasedness guarantees
running in 14.9 minutes with 17.1 GB communication for N = 300. The second variant runs in 12.5 minutes
with 16.4 GB communication for N = 400.

Applications. In general, privacy-preserving matching protocols are of interest to be used as a building
block for more complex protocols. For instance, Wüller et al. [Wül+17] use a building block for maximum
weight perfect matchings in the bipartite case to find exchange cycles for bartering. We broaden our motivation
for MWM approximation by the following two use cases:

For online dating it is especially important to protect the users’ data like sexuality and sexual preferences
that may be subject to social stigma. Privacy-preserving approaches that allow users to query similar user
profiles from an encrypted database [Yi+16; WW18] exist, but another approach is to directly match pairs of
people with high expected compatibility. While dating is even used to illustrate, e.g., the stable matching
problem (also called stable marriage problem) or Hall’s marriage theorem [Hal35] (e.g., in [Knu96; Gol06;
Die17]), these cases concern bipartite graphs and thus assume heterosexuality where man and women are
matched. Matchings on general graphs can instead be used to additionally allow to model monogamous
relationships free of further assumptions regarding sexuality. Furthermore, weights can be used to represent a
non-binary interpersonal compatibility measure. We argue that for online dating it is valid to tolerate losses
from the approximation to enhance scalability as good but suboptimal matches may be sufficient and the
quality of matches could even be increased by using larger pools of participants.

Another use case is multi-party bartering where commodities are traded between parties without in-
volvement of a currency. MPC can be applied to keep the commodities offered and wanted by the parties
private. This has already been done letting parties trade their commodities in exchange cycles (e.g., [Wül+17;
WMW17b; WMW17a]). For cases where each party wants to trade with at most a single designated party to
reduce logistic effort, a matching protocol for general graphs can be used to match parties that can trade
among themselves. Weights can be used to model the participants’ satisfaction with certain trades. If it is not
indispensable to find the optimal trades, or the benefit of using larger pools of participants outweighs the
benefit of exact solutions, using an approximation instead of an exact solution may again be a valid option.

Outline. The remainder of this paper is structured as follows: In §2, we introduce the required definitions,
notations, and building blocks regarding MPC and graph theory. §3 discusses related work. Our protocol for
privacy-preserving MWM approximation is presented in §4 and evaluated in §5. In §6, we give an outlook
regarding future work.

2 Preliminaries

2.1 Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) allows p parties to evaluate a function on their private inputs using
a distributed protocol such that no party is able to learn information that it cannot derive from its own input
and output [Yao82]. In this section we give a formal definition of the security to be provided by our protocols,
specify how inputs and intermediate results are represented and used in basic arithmetic operations, and
discuss building blocks for operations that we require later.

2.1.1 Security To formalize the security guarantees of our protocol, we use standard definitions as in [Can00;
AL17; Lin17]. We assume an honest majority, meaning that an adversary can only corrupt a minority of
parties. Furthermore, we suppose that each pair of parties is connected by a private, authenticated channel.
We focus on passive security where an adversary learns the corrupted parties’ views on the computation but
cannot modify their behavior and proceed by giving a brief definition of passive security.
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Let parties P0, ..., Pp−1 compute a function F : ({0, 1}∗)p → ({0, 1}∗)p that may be probabilistic using a
corresponding protocol π. We define I as the set of all corrupted parties’ indexes, let x̂ contain all parties’
inputs, and let x̂I only contain the corrupted parties’ inputs. Let FI(x̂) be all corrupted parties’ results
of F on input x̂. Furthermore, we introduce a statistical security parameter σ ∈ N. Finally, for an execution
of protocol π with fixed σ let viewπ

I (x̂, σ) contain the input, random tape, and received messages of all
corrupted parties and let outputπ(x̂, σ) contain all parties’ outputs. Then, protocol π securely computes F
if there is a probabilistic polynomial-time algorithm S, called a simulator, s.t. for all I with |I| < p/2

{(S(1σ, I, x̂I ,FI(x̂)),F(x̂))}x̂,σ

and

{(viewπ
I (x̂, σ),output

π(x̂, σ)}x̂,σ

are statistically indistinguishable. Note that this definition implies that the view of the corrupted parties
leaks nothing that cannot be efficiently derived from their own inputs and outputs as S produces statistically
indistinguishable views. It also implies correctness of the protocol except for negligible probability.

2.1.2 Representation of Secret Values We require arbitrary linear secret-sharing schemes in the
arithmetic domain, i.e., for values in either Fq for large prime q or Z2k for integer k, and in the binary
domain, i.e., for values in F2. To make our high-level protocol independent of low-level primitives, we use a
generic arithmetic black-box (ABB) [DN03] that defines the exact sharing semantics, allows to secret-share
and reconstruct values in the required domains, and that allows to run basic arithmetic or binary operations,
i.e., linear combinations and computing the product or AND of two secret-shared values. Hence, technically
we require our protocol to be secure in the FABB-hybrid model where during a protocol execution, the parties
access a incorruptible trusted third party to run ABB operations [Can00].

The binary domain is used alongside the arithmetic domain to implement non-linear functionality efficiently
using edaBits [Esc+20] and daBits [RW19] based on the ABB to switch between both domains. To attain
passive security given an honest majority, we require the ABB to be implemented by a protocol that is
secure in this setting. This requirement is met, e.g., by the BGW-protocol [BGW88] or the arithmetic three-
party protocol by Araki et al. [Ara+16] for the arithmetic domain, and by a variant of the BGW-protocol
on F2k [CCD88] or the binary three-party protocol by Araki et al. [Ara+16] for the binary domain.

The linearity of the used secret-sharing schemes allows computing any linear combination of secret-shared
values in the same domain using no communication. Communication is only required for multiplications/ANDs,
secret-sharing values, or reconstructing values using the ABB implementation. Similar to Catrina and
de Hoogh [CH10] we use the invocations of such primitives that require communication as a metric for
communication complexity. Note that an invocation can also be described as one atomic interactive operation.
Thus, the number of invocations yields the communication complexity. We distinguish between invocations in
the arithmetic and binary domains as binary invocations require less communication due to their smaller
domain. Multiple invocations can be executed in parallel in a single round if none of them depends on the
result of another one. In this context, parallelization refers to executing the required communication in a
joined manner instead of sequentially executing all invocations to minimize the impact of network latency.

For a secret-shared value x we write [x]. Addition and multiplication operators are overloaded allowing to
write terms like [x] + c · [y] + [x] · [y] representing the corresponding operations on secret-shared values for
more concise notation. In the following, let notation [x] always correspond to the arithmetic domain if not
explicitly stated otherwise.

Finally, we restrict our values in the arithmetic domain to the interval {−2b−1, ..., 2b−1 − 1} for a fixed
number of bits b. This later is required to enable secure comparison between secret-shared values and
expects Zp or Z2k to be sufficiently large w.r.t. b and the statistical security parameter σ [Esc+20]. A secret
integer x is represented by xmod p respectively xmod 2k in the chosen arithmetic domain [CH10; Esc+20].
The previously discussed arithmetic operations can be extended to secret-shared signed integers by running
them on their corresponding representations [CH10; Esc+20].
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2.1.3 Building Blocks We use a MUX gate where one of two secret-shared values [x], [y] can be selected
depending on an additional secret-shared bit [b]. We use notation [b] ? [x] : [y] which evaluates to [x] if b = 1
and [y] otherwise. Recall that by an invocation we denote an atomic interactive operation in the arithmetic or
binary domain. It is easy to see that said functionality can be implemented as ([x]− [y]) · [b] + [y] requiring a
single arithmetic invocation. For public values x and y, [b] ?x : y := (x− y) · [b]+ y requires no communication.

For two secret-shared vectors [xi]0≤i<n, [yi]0≤i<n we write [xi]0≤i<n · [yi]0≤i<n to denote their dot product.
This can trivially be computed using n multiplications in a single round. Note that for specific secret-sharing
schemes, significantly more efficient variants may exist. For instance, for Shamir’s secret-sharing scheme [Sha79]
dot products can be computed using a single arithmetic invocation [CH10].

As we require multiple non-linear functions, e.g., for comparisons we use edaBits [Esc+20] and daBits [RW19]
to switch between arithmetic and binary domains which significantly improves practical performance. Escudero
et al. [Esc+20] use edaBits and daBits to provide a comparison gate LTZ that given a secret-shared signed b
bit integer [x] as input returns [1] if x < 0 and [0] otherwise. Note that this gate is based on one by Catrina
and de Hoogh [CH10] that does not use edaBits and daBits. We also require a comparison gate EQZ that
given input [x] returns [1] if x = 0 and [0] otherwise. This can be constructed by applying edaBits and daBits
to Catrina and de Hoogh’s [CH10] equality gate in its variant using their gate KOrL. Gates LTZ and EQZ
require O(1) arithmetic invocations, O(b) binary invocations and O(log b) rounds. Furthermore, a constant
number of edaBits and daBits is required. Regarding the efficient generation of edaBits and daBits, we refer
to [Esc+20; RW19].

We also require a gate DEMUXn that given input [x] where n is the maximum value of x, i.e., 0 ≤ x ≤ n
returns [yi]0≤i<n s.t. for all 0 ≤ i < n, [yi] = [1] if i = x and [yi] = [0] otherwise.3 First, an edaBit can be
used to compute a bit-decomposition of [x] in the binary domain [Esc+20]. Then, the DEMUX protocol
by Launchbury et al. [Lau+12] can be applied to the bit-decomposition to compute the indicator vector
in the binary domain.4 The entries of the vector can then be converted back to the arithmetic domain
using a daBit for each entry [RW19]. Gate DEMUXn requires O(1) arithmetic invocations, O(n) binary
invocations, O(log log n) rounds, O(1) edaBits and O(n) daBits.

Finally, we need a gate RND BIT that has no input and returns a secret-shared bit in the arithmetic
domain that is chosen uniformly at random from {0, 1}. For the domain Fq such gate requiring constant
arithmetic invocations and rounds exists as shown by Damg̊ard et al. [Dam+06]. For Z2k , similar results
exist, e.g., for SPDZ2k [Cra+18; Dam+19].

2.2 Graph Theory

In this work, we only consider graphs that are weighted, finite, and undirected. Furthermore, we assume all edge
weights to be positive integers. Without loss of generality, such a graph can be represented as G := (V,E, ω)
with a set of vertices V := {0, ..., N−1} for someN ∈ N, a set of undirected edges E ⊆ {{u, v}|u, v ∈ V ∧u ̸= v},
and edge weights ω : E → N. Let M be the number of edges. For E′ ⊆ E we define ω(E′) :=

∑
e∈E′ ω(e).

A matching M ⊆ E on G is a set of edges s.t. all edges are disjoint, i.e., e ∩ f = ∅ for all e ̸= f ∈ M.
Then, a maximum weight matching (MWM) is a matching that has maximal ω(M) among all matchings. As
a c−approximation for MWM, we define an algorithm that on each graph with an MWM M∗ computes a
matching M s.t. ω(M) ≥ c · ω(M∗), i.e., that has at least fraction c of the maximally possible weight.

A graph G := (V,E, ω) can be represented by an adjacency matrix (weightu,v)u,v∈V where weightu,v =
ω({u, v}) if {u, v} ∈ E and weightu,v = 0 otherwise for all u, v ∈ V . Note that the matrix is symmetrical due
to the graph being undirected and its diagonal are all zeros. Thus, it is sufficient to use an upper triangular
adjacency matrix (weightu,v)0≤u<v<N . In the following, we call each pair of different nodes {u, v} a potential

edge and differentiate actual edges by calling them real edges. We denote the set of potential edges by Ê and
its cardinality by M̂ := |Ê| =

(
N
2

)
∈ O(N2).

3 We include n in the input domain as one option to obtain a vector only containing [0] which will become useful
later.

4 The resulting vector is padded to a dimension being a power of two but the padding can simply be discarded
without changing asymptotic complexity.
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3 Related Work

We identify two main research directions that are related to our work. (1) Non-privacy-preserving approxima-
tion algorithms for MWM on general graphs. (2) Existing privacy-preserving protocols for matching problems
that are related to MWM on general graphs.

3.1 Approximation Algorithms for Maximum Weight Matching

Two well-known polynomial time algorithms for MWM on general graphs are Edmond’s blossom algo-
rithm [Edm65] with run time O(MN2) and its optimization by Gabow [Gab90] with run time O(MN +
N2 logN). There also exist further optimizations that require additional constraints (e.g., [GT91; HK12;
Pet12]). Due to the exact algorithms’ high complexity, multiple approximations have been developed to
further increase scalability if exact solutions are not essential (e.g., [Pre99; DH03; DH05; PS04; HH10; DP14]).

A trivial 1/2−approximation for MWM is a greedy algorithm that has been mentioned by Avis [Avi83]
and Preis [Pre99] (cf. Alg. 1). It can be implemented to run in time O(M logN) [Pre99] and has a particularly
easy structure. In §4 we show that due to its structure it is suitable as foundation of our protocol requiring
the execution of only O(N3) operations in a secure setting.

Algorithm 1: Greedy MWM Approximation [Pre99]

Input :Weighted graph G = (V,E, ω)
Output :Matching M on G

1 M← ∅;
2 while E ̸= ∅ do
3 Let e ∈ E be an edge of maximal weight;
4 M←M ∪ {e} ; // add edge e to M
5 E ← E \ {f ∈ E | e ∩ f ̸= ∅} ; // delete incident edges

6 end

Further 1/2−approximations [Pre99; DH03] have a lower time complexity of O(M). The approximation
by Preis [Pre99] uses multiple nested loops, recursive calls and conditional blocks that depend on the input.
As a secure protocol must not leak private knowledge by its control flow, this approximation would require
significant changes to be used as foundation of such a protocol. Most likely these changes would nullify
the run time advantage the approximation has compared to the greedy algorithm. The approximation by
Drake and Hougardy [DH03] utilizes two nested loops where each could run up to O(N) times. To not leak
private knowledge, a secure protocol would need to execute both loops for the maximally required iterations
yielding O(N2) iterations already. As each iteration searches for a heaviest edge adjacent to a given node, a
secure protocol’s complexity would increase to at least O(N3). Thus, there is no advantage of using it instead
of the greedy approach.

There also exist (2/3−ϵ)−approximations for arbitrary ϵ > 0 that run in O(1/ϵ·M) [DH05] and O(log(1/ϵ)·
M) [PS04]. They are based on sophisticated approaches to find paths to augment intermediate matchings in
an efficient manner. These techniques appear not to be well suited as basis for an efficient secure protocol.

Further (3/4 − ϵ)− and (4/5 − ϵ)−approximations exist [HH10] but have a higher run time and more
complex definitions that render them unsuitable for maximizing scalability. Duan and Pettie [DP14] have
shown that arbitrarily good approximations that even run in linear time w.r.t. M exist, but the general
complexity of their approach makes it appear unfeasible to derive an efficient secure protocol. Furthermore,
the sophisticated techniques used in these advanced approaches may hide significant constant factors regarding
time complexity.

5



3.2 Secure Protocols for Matching Problems

To the best of our knowledge, to date there is no privacy-preserving protocol for MWM on general graphs.
However, the protocol of Breuer et al. [BMW22] computes an unweighted maximum matching on a general
graph based on an algorithm that is specifically designed for the unweighted case. While the protocol guarantees
optimality of the computed matching, it has a complexity of O(N4) rounds and O(N5) communication for N
nodes. This results in its run time exceeding one day for N = 40. In contrast to this, our protocol only computes
a 1/2−approximative solution but exhibits far lower complexities, i.e., O(N log2 N) rounds and O(N3 logN)
communication (cf. §4.3) or O(N logN) rounds and O(N3) communication (cf. §4.4). Furthermore, we consider
the more general problem of maximum weight matching on general graphs whereas the protocol of Breuer et
al. [BMW22] only operates on unweighted graphs.

A related problem to maximum matching on general graphs is maximum matching on bipartite graphs,
where the graph is partitioned into two sets of nodes s.t. there are no edges that connect two nodes of the same
set. Several privacy-preserving protocols for maximum (weight) matching on such bipartite graphs have already
been proposed (e.g., [AC17; BS15; Wül+17]) for different use cases such as multi-party bartering [Wül+17]5

or secure fingerprint identification [BS15].
A special use case for secure bipartite matching is private stable matching where each node states its

preferences over the nodes in the other set. The goal is then to compute a matching between the nodes s.t.
there are no pairs of nodes from the two groups who would prefer each other over their computed match.
There exist multiple secure protocols [Gol06; DE16; Ria+17] for this use case that ensure that the preferences
of the nodes are kept private.

However, none of these existing protocols for bipartite matching can act as the foundation for our protocol
as they heavily rely on the graphs being bipartite whereas our goal is to devise a protocol that computes a
matching on general graphs.

Finally, Araki et al. [Ara+21] propose a highly scalable protocol for graph analysis. While they show
how to apply it to a selection of graph problems, they depend on existing message-passing algorithms for
these problems. As it is unclear how to base a message-passing algorithm on any of the discussed matching
algorithms, and especially the greedy approximation (cf. Alg. 2), their protocol appears not to be applicable
here.

4 Privacy-Preserving Maximum Weight Matching Approximation

We base our protocol for MWM approximation on the greedy MWM approximation algorithm documented by
Avis [Avi83] and Preis [Pre99] (cf. Alg. 1) due to its low concrete run time complexity to maximize scalability.
Note that the algorithm specifies that in each iteration an edge of maximal weight is chosen but does not
specify which edge to choose if there are multiple options. Thus, we start by defining an unambiguous version.

Let ≺d be defined as the following ordering of potential edges for a graph with N nodes:

{0, 1} ≺d {0, 2} ≺d ... ≺d {0, N − 1} ≺d {1, 2} ≺d {1, 3} ≺d ...

Choosing an edge of maximal weight that is minimal w.r.t. ≺d then is sufficient to unambiguously give the
deterministic greedy MWM approximation algorithm in Alg. 2.

Let the input of our protocol for arbitrary but fixed number of nodes N be a secret-shared adjacency
matrix [weightu,v]0≤u<v<N . As no information about the edges besides the output may be leaked, our protocol
works on potential edges, i.e., pairs of nodes u ̸= v. By the definition of the adjacency matrix, potential
edges {u, v} that are no real edges can be identified by [weightu,v] being [0].

We proceed by giving a building block for our protocol that can be used to efficiently search for heaviest
edges in §4.1. Then, we describe our basis protocol that implements the functionality computed by Alg. 2
in §4.2. Finally, we propose two ideas on randomizing functionality and protocol and briefly discuss their
implementation in §4.3 and §4.4 yielding the two variants of our protocol.

5 Here, multiple parties exchange their goods in a cyclic fashion. The approach by [Wül+17] does not allow to limit
the length of a cycle. Hence, it is not applicable to our use case.
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Algorithm 2: Deterministic Greedy MWM Approximation (based on [Pre99])

Input :Weighted graph G = (V,E, ω)
Output :Matching M on G

1 M← ∅;
2 while E ̸= ∅ do
3 Let Emax ⊆ E exactly contain all edges of maximal weight;
4 Let e ∈ Emax be the minimal edge in Emax w.r.t. ≺d;
5 M←M ∪ {e} ; // add edge e to M
6 E ← E \ {f ∈ E | e ∩ f ̸= ∅} ; // delete incident edges

7 end

4.1 Heaviest Edge Search

A central part of our protocol is to efficiently search for an edge of maximal weight to be added to the matching
in each iteration. Our desired functionality takes a collection of n ∈ N potential edges {[edge ui], [edge vi]}
with weights [edge weighti] for 0 ≤ i < n as input. Let k ∈ {0, ..., n − 1} be minimal s.t. edge weightk is
maximal. Then we define ([edge uk], [edge vk]) as the output if edge weightk > 0. If edge weightk = 0, there
exists no real edge and we define ([N ], [N ]) as the output where it holds that N ̸∈ V .

[weight0,1] [weight0,2] [weight0,3] [weight1,2] [weight1,3] [weight2,3]

Fig. 1: Structuring of potential edge weight comparisons for N = 4. Comparisons are performed in filled nodes
only.

The näıve approach to realize given functionality is to run a linear search over all M̂ = (N2 − N)/2
potential edges which requires M̂ − 1 ∈ O(N2) comparisons run in sequential order. While no approach based
on binary comparisons that uses less comparisons exists, multiple comparisons can be executed in parallel to
reduce the number of required communication rounds. Hence, we execute comparisons as reduction operators
on a binary tree as, e.g., in [CH10] which is depicted in Fig. 1.

If on some layer n > 1 potential edges are being compared, the next layer handles ⌈n/2⌉ potential edges.
Thus, O(log M̂) = O(logN) layers are required where the comparisons on a single layer can be executed in
parallel.

To realize the functionality using the given binary tree structure, we use a recursive approach as given in
the gate specification in Alg. 3. If only one edge is given, its encoding is returned if and only if it is a real edge,
i.e., its weight is greater than zero. Otherwise, ([N ], [N ]) is returned as it is required by the functionality. For
multiple edges, pairs of edges are compared. When a pair consisting of edges 2i and 2i+ 1 for appropriate i is
compared the first one proceeds to the next layer if and only if 1− LTZ([weight2i]− [weight2i+1]) evaluates
to [1], i.e., weight2i ≥ weight2i+1 (line 11 in Alg. 3). Note that this way edges with lower index are preferred
if the weight is equal as required by the functionality’s definition.

4.1.1 Correctness and Security It is easy to see that for n = 1, the gate implements the previously
described functionality correctly. For arbitrary n > 1, let k be minimal s.t. edge weightk is maximal. The
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Algorithm 3: Heaviest Edge Search

1 Gate HEAVIESTn([edge ui]0≤i<n, [edge vi]0≤i<n, [edge weighti]0≤i<n):
Input :Collection of potential edges {edge ui, edge vi} with weights edge weighti for 0 ≤ i < n
Output :Edge ([edge ui], [edge vi]) with minimal i where weight edge weighti > 0 is maximal or

([N ], [N ]) if edge weighti = 0 for all 0 ≤ i < n
2 if n = 1 then

// Check if heaviest edge is a real edge; return ([N ], [N ]) otherwise

3 [invalid]← EQZ(edge weight0);
4 [a]← [invalid] ? [N ] : [edge u0];
5 [b]← [invalid] ? [N ] : [edge v0];
6 return ([a], [b])

7 else
8 n′ ← ⌈n/2⌉;
9 pairs← ⌊n/2⌋;

// Compare pairs of edges

10 for i← 0 to pairs− 1 in parallel do
11 [first]← 1− LTZ([edge weight2i]− [edge weight2i+1]);
12 [edge u′

i]← [first] ? [edge u2i] : [edge u2i+1];
13 [edge v′

i]← [first] ? [edge v2i] : [edge v2i+1];
14 [edge weight′i]← [first] ? [edge weight2i] : [edge weight2i+1];

15 end
// Handle last edge if number of edges is odd

16 if n′ > pairs then
17 [edge u′

n′−1]← [edge un−1];
18 [edge v′

n′−1]← [edge vn−1];
19 [edge weight′n′−1]← [edge weightn−1];

20 end
// Recursive call

21 return HEAVIESTn′
([edge u′

i]0≤i<n′ , [edge v′
i]0≤i<n′ , [edge weight′i]0≤i<n′)

22 end

potential edge with index k is an input to HEAVIEST⌈n/2⌉ as it is compared to at most one edge and by
definition of k has higher weight or equal weight and lower index. It also holds that multiple edges proceeding
to the next layer do not change their order. Thus, gate HEAVIESTn implements the functionality correctly
for arbitrary integer n ≥ 1 by induction.

All used gates and arithmetic primitives are secure. Thus, gate HEAVIESTn implements the functionality
securely as it can be simulated by calling the simulators for the used operations on private data following the
publicly known flow of execution.

4.1.2 Complexity Regarding the gate’s complexity, it is easy to see that the complexity for n = 1 is O(1)
arithmetic invocations and O(b) binary invocations in O(log b) rounds, and that O(1) edaBits and daBits are
required. For arbitrary n > 1, the complexity excluding the recursive call is O(n) arithmetic invocations, O(nb)
binary invocations, O(log b) rounds, and O(n) edaBits and daBits. Thus, the total complexity including
the recursive call is O(n) arithmetic invocations, O(nb) binary invocations, O(log n · log b) rounds, and O(n)
edaBits and daBits.

4.1.3 Optimization of the First Layer If HEAVIESTn is called for a collection of publicly known
potential edges in publicly known order but with private weights, edge ui and edge vi for 0 ≤ i < n do not
have to be secret-shared. Thus, lines 12 f. in Alg. 3 only require a multiplication of a secret-shared and a
constant value reducing the amount of required communication. Note that this optimization does not change
the gate’s asymptotic complexity. We denote the resulting modified gate by HEAVIESTn

clear. Note that it
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still recursively calls HEAVIEST⌈n/2⌉ as the selection of potential edges being the input to the recursive call
depends on the weights and thus is private. It is easy to see that the modified gate implements a modification
of former functionality where public inputs edge ui, edge vi for 0 ≤ i < n are used correctly and securely.

4.2 Deterministic MWM Approximation

Recall that Alg. 2 executes multiple iterations until no edges remain where in each iteration it

1. selects the minimal edge w.r.t. ≺d among all edges of maximal weight (§4.2.1),
2. adds the selected edge to the matching (§4.2.2),
3. and deletes all edges that are incident to the selected one (§4.2.3).

For our approach, a fixed number of iterations is necessary as only running iterations until no edges remain
would leak the size of the resulting matching. Thus, our protocol executes ⌊N/2⌋ iterations which is the
maximal possible size of a matching between N nodes. If no real edges remain, further iterations do not
extend the matching any longer.

The resulting base protocol is given in Alg. 4. In the following, we explain how the different steps of each
iteration are implemented. Then, we conclude correctness and security in §4.2.4 and the overall complexity in
§4.2.5.

Algorithm 4: Secure Deterministic MWM Approximation

Input :Weighted graph G encoded by [weightu,v] for 0 ≤ u < v < N
Output :Matching M on G, encoded by [partneru] for u ∈ V s.t. partneru = v if ∃v ∈ V : {u, v} ∈M,

partneru = N otherwise

1 [partneru]← [N ] for u ∈ V ;
2 for 0 ≤ u < v < N do
3 e← edge index(u, v);
4 edge ue ← u;
5 edge ve ← v;
6 [edge weighte]← [weightu,v];

7 end
8 for ⌊N/2⌋iterations do

// Search for heaviest edge

9 ([a], [b])← HEAVIESTM̂
clear((edge ue)0≤e<M̂ , (edge ve)0≤e<M̂ , [edge weighte]0≤e<M̂ );

10 [indicator au]u∈V ← DEMUXN ([a]);

11 [indicator bu]u∈V ← DEMUXN ([b]);
// Add selected edge to the matching

12 [partneru]u∈V ← [partneru]u∈V +([b]−N) · [indicator au]u∈V + ([a]−N) · [indicator bu]u∈V ;
13 if not last iteration then

// Delete blocked edges

14 [indicatoru]u∈V ← [indicator au]u∈V + [indicator bu]u∈V ;
15 for 0 ≤ u < v < N in parallel do
16 e← edge index(u, v);
17 [edge weighte]← [edge weighte] · (1− [indicatoru]) · (1− [indicatorv]);

18 end

19 end

20 end
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4.2.1 Selecting an Edge Recall that in each iteration of Alg. 4, the minimal edge w.r.t. ≺d among all

edges of maximal weight is to be selected. Gate HEAVIESTM̂
clear gets a collection of potential edges as input

and returns the edge of minimal index among all edges of maximal weight if at least one real edge exists.

Thus, ordering all edges w.r.t. ≺d leads to HEAVIESTM̂
clear yielding the desired output if there still are real

edges.

We use a public function edge index(u, v) that maps two nodes u < v to the index of the corresponding
potential edge w.r.t. ≺d, i.e., edge index(0, 1) = 0, edge index(0, 2) = 1, ..., edge index(0, N − 1) = N −
2, edge index(1, 2) = N − 1, .... Thus, for two potential edges {u, v} and {w, x} it holds that {u, v} ≺d

{w, x} if and only if edge index(u, v) < edge index(w, x). Note that using gate HEAVIESTM̂
clear instead of

gate HEAVIESTM̂ is valid because mapping edge index(u, v) is public.

Before the first iteration is executed, all potential edges are ordered by ≺d in lines 2 ff. which does not

require any communication. In each iteration, the ordered edges then are used as input to HEAVIESTM̂
clear

in lines 9 ff. The complexity of selecting an edge hence is O(N2) arithmetic invocations, O(N2b) binary
invocations, O(logN · log b) rounds, and O(N2) edaBits and daBits (cf. §4.1.2).

4.2.2 Adding an Edge to the Matching We represent each edge {u, v} in the matching by set-
ting [partneru] to [v] and [partnerv] to [u] in Alg. 4. By [partneru] = [N ] we encode that node u is matched
to no other node. Thus, all secret-shared values [partneru] are initialized to [N ].

If a real edge {a, b} is chosen in some iteration, it is not possible just to access [partnera] and [partnerb]
as this would leak the chosen edge. Instead, we use gate DEMUXN to generate two indicator vectors that
contain value [1] at index a respectively b and value [0] at other indexes. If edge selection and deletion
work correctly, a and b are not matched at the start of the iteration where they are selected implying
that [partnera] = [partnerb] = [N ]. Additionally, it holds that a ̸= b. Then, lines 12-12 update [partneru]
for u ∈ V to:

[partneru] + ([b]−N) · [indicator au] + ([a]−N) · [indicator bu]

=


[N ] + ([b]−N) · [1] + ([a]−N) · [0], if u = a,

[N ] + ([b]−N) · [0] + ([a]−N) · [1], if u = b,

[partneru] + ([b]−N) · [0] + ([a]−N) · [0], if u ̸∈ {a, b}


=


[b], if u = a,

[a], if u = b,

[partnerv], if u ̸∈ {a, b}.

Thus, [partneru]u∈V is correctly updated if a real edge {a, b} is chosen. Otherwise, no real edges re-

main and [a] = [b] = [N ] are returned by HEAVIESTM̂
clear. In this case, each indicator entry is [0] so

that [partneru]u∈V keeps unchanged.

Generating the two indicator vectors requires O(1) arithmetic invocations, O(N) binary invocations,
O(log logN) rounds, O(1) edaBits and O(N) daBits. The subsequent operation on vectors takes O(1) arithmetic
invocations per index and therefore a total of O(N) arithmetic invocations which can be parallelized into a
single round. Thus, the total complexity consists of O(N) arithmetic and binary invocations, O(log logN)
rounds, O(1) edaBits, and O(N) daBits.

4.2.3 Deleting Incident Edges Deleting all edges incident to a real edge {a, b} in Alg. 4 again requires to
access all edges in order to not leak any information about {a, b}. In the used representation it is sufficient to
set the weights of all edges to delete to zero. This is achieved by lines 13-19. Note that as a small optimization
this deletion procedure is not executed in the last iteration as the potential edge weights are never queried
afterwards.
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Both indicator vectors from the previous step in §4.2.2 are added together yielding a vector [indicatoru]u∈V

that contains value [1] at indexes a and b and value [0] at other indexes. Then, the weight of each potential
edge {u, v} with corresponding index e is set to

[edge weighte] · (1− [indicatoru]) · (1− [indicatorv]) =


[edge weighte] · [1] · [1], if u, v ̸∈ {a, b},
[edge weighte] · [1] · [0], if u ̸∈ {a, b} ∧ v ∈ {a, b},
[edge weighte] · [0] · [1], if u ∈ {a, b} ∧ v ̸∈ {a, b},
[edge weighte] · [0] · [0], if u, v ∈ {a, b}


=

{
[edge weighte], if {u, v} ∩ {a, b} = ∅,
[0], if {u, v} ∩ {a, b} ≠ ∅.

Thus, all incident edges are correctly deleted if a real edge {a, b} is added to the matching. If no real edge is
found it holds that [a] = [b] = [N ] so that each indicator entry is [0] and no weights are changed.

Both formerly computed indicator vectors can be added without communication. Updating all edge
weights takes O(N2) arithmetic invocations in O(1) rounds.

4.2.4 Correctness and Security By the correctness of the gate HEAVIESTclear and the considerations
before, it is easy to see that our protocol given in Alg. 4 would implement Alg. 2 correctly if it terminated as

soon as no edges remain. If no edges remain, HEAVIESTM̂
clear returns ([N ], [N ]). As previously discussed,

neither weights nor the encoding of the resulting matching are altered in this case. Thus, the protocol given
in Alg. 4 implements Alg. 2 correctly.

All used primitives and gates are secure. Thus, the protocol can be simulated by following the flow of
execution and calling the corresponding simulator for each operation on secret data.

4.2.5 Complexity Recall that by N , we denote the number of nodes and by b, we denote the number of bits
for secret-shared integers. Summing up the complexities for each single phase of an iteration yields a complexity
of O(N2) arithmetic invocations, O(N2b) binary invocations, O(logN · log b) rounds, and O(N2) edaBits and
daBits. Thus, the total complexity is O(N3) arithmetic invocations, O(N3b) binary invocations, O(N logN ·
log b) rounds, and O(N3) edaBits and daBits.

4.3 Random Edge Selection

Recall that to get an unambiguous version of the original greedy MWM approximation algorithm (cf. Alg. 1)
we introduced an ordering ≺d on all potential edges to decide which edge to match if multiple edges of
the same maximal weight exist. Thus, the static ordering ≺d induces advantages in getting matched for
some edges compared to other edges of the same weight. Depending on the specific use case, this may be
an undesired bias, especially if entities modeled by nodes or edges compete in getting matched or selected.
Ideally, no entity should have an unfair disadvantage solely resulting from the arbitrary usage of ordering ≺d.

A natural way to tackle this problem is to select an edge among all edges of maximal weight Emax (cf.
Alg. 2) uniformly at random in each iteration. In the following, we discuss and sketch how such a random
edge selection can be implemented in a secure manner. We start by showing how a single randomly chosen
ordering can be used to realize the desired functionality in §4.3.1. Then, we proceed by discussing why such
an ordering has to be kept private in §4.3.2 and modify our protocol from Alg. 4 accordingly in §4.3.3.

4.3.1 Using Random Orderings In the following, by OX we denote the set of all strict total orderings
on X. We propose to replace the deterministic edge ordering ≺d in Alg. 2 by an ordering ≺r drawn uniformly
at random from all strict total orderings on the potential edges, i.e., OÊ . This approach only requires small
changes in our protocol and is equivalent to the previously discussed random edge selection:
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Proposition 1. Drawing an ordering ≺r uniformly at random from OÊ and using it instead of ≺d in Alg. 2
is equivalent to selecting an edge uniformly at random from all edges of maximal weight in each iteration.

Proof. Let Alg. 2 be in some fixed iteration i in which the set of all still existing real edges of maximal weight
is Emax. Note that Emax may depend on the ordering ≺r. Furthermore, let ≺′

r∈ OEmax
be arbitrary but fixed.

The probability that ≺′
r on Emax is induced by the initially randomly drawn ≺r in iteration i is

P(≺r induces ≺′
r |Emax set of max. weight edges in iteration i).

We claim that ≺r inducing ≺′
r and Emax being the set of maximum weight edges in iteration i are

statistically independent events. Let E′ be the set of all edges that have equal weight as the edges in Emax.
Thus, previous iterations have removed edges from E′ to eventually obtain Emax. Let e be such a removed
edge.

Edge e may have been removed in an iteration where it was added to the matching. This implies that it
was minimal w.r.t. ≺r among all possible candidates which is statistically independent of the ordering of the
remaining candidates. Thus, this event is also independent of ≺′

r. The same iteration may also have removed
edge e′ ∈ E′ due to being incident to e which trivially also is statistically independent of ≺′

r. The remaining
case is that e has been removed in an iteration where an edge of higher weight was added to the matching. As
such step only considers the ordering of higher weight edges, the deletion of e also is statistically independent
of ≺′

r.
Thus, the probability that ≺′

r on Emax is induced by the initially randomly drawn ≺r simplifies to P(≺r

induces ≺′
r). As each possible ordering on Emax can be embedded in equally many orderings on Ê, each

possible ≺′
r has equal possibility of being induced by ≺r drawn uniformly at random. Thus, each element

of Emax has equal possibility of being minimal w.r.t. ≺′
r and hence being added to the matching in iteration i.

4.3.2 Public vs Private Random Ordering Modifying our protocol to use a public randomly chosen
ordering ≺r of the potential edges can be achieved easily by changing the mapping edge index(u, v) in Alg. 4
according to ordering ≺r. We show next that this approach is not secure as it leaks information that is not
leaked by the ideal functionality.

Let there be be a graph with two edges e := {0, 1} and f := {1, 2} and let M := {e} be the output of a
protocol implementing random edge selection using a random ordering ≺r. If ≺r is private, it can only be
derived that ω(e) > ω(f) or ω(e) = ω(f) ∧ e ≺r f . If ≺r is public, it is known whether e ≺r f or f ≺r e. In
the first case, it can only be derived that ω(e) ≥ ω(f). The second case allows to derive that ω(e) > ω(f) as f
would be chosen otherwise. Note that this is strictly more knowledge on the edge weights than for private ≺r.
Hence, it is important to keep the random ordering ≺r on the potential edges private.

4.3.3 Protocol for Random Edge Selection One natural way of using a private random ordering ≺r of
all potential edges is to privately shuffle the collection of edges generated in lines 2 ff. of Alg. 4. Such random

shuffling would directly induce a random ordering ≺r. Gate HEAVIESTM̂ returning the edge of minimal
index among all edges of maximal weight Emax would be equivalent to it returning the edge minimal w.r.t. ≺r

in Emax.
6 Note that this approach would lead to mapping edge index(u, v) not being public. This would

make significant changes especially to the edge deletion in lines 13-19 of Alg. 4 necessary as they strongly
depend on the mapping being public. We benchmarked several possible changes to allow this approach that
all led to significantly lower performance than the approach discussed in the following.

Instead of shuffling all edges, we directly modify gate HEAVIESTM̂ and its version HEAVIESTM̂
clear

to respect a private random ordering ≺r. At the start of the protocol, a random value [re] is drawn for
each potential edge e ∈ Ê. To this end, gate RND BIT is called b − 1 times for each [re] to obtain

bits [b0], ..., [bb−2] and set [re] ←
∑b−2

i=0 2
i · [bi]. This securely generates [re] s.t. re is drawn uniformly at

6 Note that HEAVIESTM̂
clear cannot be used as the nodes of the input edges are not publicly known after private

shuffling.

12



random from {0, ..., 2b−1 − 1}. Note that the restriction of the domain is required by our used integer
representation that is utilized by the comparison gates. The complexity of generating all [re] is O(N2b)
arithmetic invocations in O(1) rounds which does not alter the total asymptotic complexity of our protocol.
Then, we define ≺r as

≺r:= {(e, f) ∈ Ê × Ê|re < rf}.
Note that the resulting ≺r only is a strict total ordering if all drawn random numbers are distinct.

Recall that HEAVIESTM̂ and its variant select the first edge e of two selected edges e, f if and only
if weighte ≥ weightf which prefers the edge of lower index if the weights are equal. Instead, we now
require e to be selected if and only if weighte > weightf ∨ (weighte = weightf ∧ e ≺r f) which is equivalent
to weighte > weightf ∨ (weighte = weightf ∧ re < rf ). It is easy to see that this predicate can be evaluated
using three comparison gates (LTZ and EQZ) and one multiplication.7 In addition, the random values have to

be carried along the computation together with the nodes and weights of each edge in HEAVIESTM̂ and its
variant. The asymptotic complexity of the gates and thus also the one of the protocol remains unchanged by
implementing random edge selection. Note that these gate calls contribute the highest asymptotic complexity
to each of the protocol’s iterations which is still increased by a constant factor by the proposed changes.
Thus, an only constant but not negligible overhead is to be expected.

Finally, recall that the proposed modification depends on all random values being distinct. Increasing the
number of bits b decreases the probability of a collision. Let b0 be the minimal number of bits necessary to
represent all arithmetic values handled by our protocol correctly. Note that b0 depends on the exact range
that weights are picked from. Then, our protocol works correctly except for a probability that is negligible in
statistical security parameter σ if we set

b = max{b0, ⌈σ/2 + 4 log2 N⌉}. (1)

Proposition 2. Let b = max{b0, ⌈σ/2 + 4 log2 N⌉}. Then, all drawn random values re for e ∈ Ê using b− 1
bits each are distinct except for negligible probability.

Proof.

P(∃e ̸= f ∈ Ê : re = rf ) ≤
M̂2

2 · 2b−1
=

(
N
2

)2
2max{b0,⌈σ/2+4 log2 N⌉}

≤ N4

2σ/2+4 log2 N
=

N4

2σ/2 ·N4
=

1

2σ/2

with the first inequation given by Katz and Lindell [KL14].

It is easy to see that the resulting protocol therefore is secure.
By setting b according to Eq. (1), the round complexity is now given by O(N logN · log b) = O(N logN ·

(logN +σ+ b0)) and the number of binary invocations is O(N3b) = O(N3(logN +σ+ b0)). This also increases
the length of required edaBits. Other previously discussed complexities are independent of b.

4.4 Node Shuffling

In specific applications as online dating or multi-party bartering, different entities can be represented by
nodes and compete in getting matched to other entities’ nodes. Some kind of compatibility measure can be
used to determine if two nodes are connected by an edge and to define edge weights. While random edge
selection may not necessarily be required, none of the entities should gain any advantage from the specific
node that it is represented by together with the static ordering ≺d. In this case, a solution that we will
later show to be more efficient than random edge selection (cf. §4.3) is to randomize the mapping between
entities and their nodes. In the following, we generalize and formalize this approach, point out its difference
to random edge selection, and then elaborate on its implementation.

7 Note that for evaluating the logical or an addition is sufficient as weighte > weightf and weighte = weightf are
mutually exclusive.
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4.4.1 Using Graph Isomorphisms Let G = (V,E, ω) be a weighted graph and π be a permutation on V .
In the following, by π(G) we denote the result of using π on G as a graph isomorphism, i.e.,

π(G) := (V,E′, ω′) where

E′ := {{π(u), π(v)}|{u, v} ∈ E}
ω′({π(u), π(v)}) := ω({u, v})∀{u, v} ∈ E.

Furthermore, we define π(M) := {{π(u), π(v)}|{u, v} ∈ M} for a matching M on G. Clearly, π(M) is a
matching on π(G) of equal weight.

We define our node shuffling approach as follows: For a weighted graph G, a permutation π on its nodes
is drawn uniformly at random from all such permutations and π(G) is computed. Then, Alg. 2 is used to
deterministically compute a matching M′ on π(G) using ordering ≺d. Finally, π

−1(M′) is computed and
returned. It is easy to see that this approach returns a matching on G that has at least half of the maximally
possible weight. Also, the values representing the nodes of G do not play any role when computing the
matching due to being randomly permuted before.

More formally, let the new approach compute a probabilistic function f mapping weighted graphs to
matchings. The computed function f then is invariant under node permutation:

Definition 1. A (probabilistic) function f mapping weighted graphs to matchings is invariant under node
permutation if and only if for any weighted graph G and permutation τ on its nodes, the distributions induced
by f(G) and τ−1(f(τ(G))) are equal.

Note that the proposed approach is more general than randomly mapping entities to nodes as it works
on any graph input. Thus, we have realized an additional layer of abstraction. In use cases as described in
the beginning of this section, entity i may be mapped to node i which then is mapped to a random node by
permutation π.

4.4.2 Node Shuffling vs Random Edge Selection The motivation of node shuffling specifically is
to nullify any effect that the values representing the nodes of G have on the result, i.e., realize invariance
under node permutation. It is easy to see that this is also achieved by the previously proposed random edge
selection approach which does not use ≺d and thus does not depend on the nodes’ values. In the following,
we will briefly show that on the other hand, node shuffling computes a different function than the previous
approach and thus does not provide random edge selection.

Proposition 3. Using node shuffling leads to computing another functionality than when using random edge
selection.

Proof. Let a weighted graph with four nodes be given that is a path of three edges {0, 1}, {1, 2}, {2, 3} of
equal weight. In the first iteration, random edge selection picks edge {1, 2} with probability 1/3. The matching
cannot be extended further. With probability 2/3, the matching {{0, 1}, {2, 3}} results where any of both
edges may be selected first.

Regarding node shuffling, there are 4! = 24 possible permutations. We observe that in the first iteration,
edge {0, 1} corresponding to edge {π(0), π(1)} in the permuted graph is selected due to being minimal among
all candidates w.r.t. ≺d if and only if π(0) = 0 or π(1) = 0 ∧ π(0) < π(2). This holds for exactly 3! + 3!/2 = 9
possible permutations. Thus, the edge is selected with probability 9/24 = 3/8. The symmetrical case holds
for edge {2, 3} yielding that matching {{0, 1}, {2, 3}} results with probability 6/8 > 2/3.

4.4.3 Protocol for Node Shuffling It is easy to see that given an adjacency matrix of the input graph G,
a permutation can be applied to the graph by permuting first the rows and then the columns of its adjacency
matrix by the same permutation. Note that this approach does not directly work on an upper triangular
adjacency matrix [weightu,v]0≤u<v<N as used in our protocol. An easy fix is to set [weightv,u]← [weightu,v]
for 0 ≤ u < v < N and [weightu,u]← [0] for u ∈ V temporarily without communication.
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Zahur et al. [Zah+16] demonstrate how an oblivious Waksman network [Wak68] can be used to shuffle, i.e.,
permute a set of items according to a permutation drawn uniformly at random. We use their approach as it
is already implemented in MP-SPDZ [Kel20] that we also implement our protocol in. The oblivious Waksman
network consists of gadgets for oblivious swapping of two elements [x], [y] depending on a control bit [b]. In
our setting, this is possible by setting the outputs to [x′]← [b] ? [y] : [x] and [y′]← [x]+ [y]− [x′] using a single
arithmetic invocation. Now, we let a party locally compute a random permutation and derive control bits
for the Waksman network given the permutation. These control bits are secret-shared and all parties jointly
execute the permutation evaluating the Waksman network using the oblivious swapping gadgets. We repeat
this procedure with another party computing a random permutation until the inputs are shuffled ⌈p/2⌉ times
with p being the number of parties. Thus, at least one permutation is computed by an honest party and the
resulting composition of all used permutations is drawn uniformly at random from all possible permutations
and unknown to any minority of parties.

The Waksman network for N inputs uses O(N logN) swapping gadgets on O(logN) layers. To not swap
single secret-shared values but rows and columns of dimension N , we can replace each swapping gadget
by N swapping gadgets used in parallel. This yields a complexity of O(N2 logN · p) arithmetic invocations
and O(logN · p) rounds. In addition, O(N logN · p) control bits need to be secret-shared in parallel. As they
are multiplied by values in the arithmetic domain, we secret-share them in the same domain. Thus, the
complexity remains as previously stated.

After permuting the adjacency matrix according to some permutation π, we use Alg. 4 to deterministically
compute a matching M′ on π(G). It remains to show how to derive matching M = π−1(M′) on G.

Recall that M′ is encoded by [partner′u] for u ∈ V s.t. partner′u = v if there is a v ∈ V with {u, v} ∈M′

and partner′u = N otherwise. We permute [partner′u]u∈V by π−1 using the inverse of the previously lo-
cally chosen permutations to obtain [partner′′u]u∈V . Furthermore, we apply π to [idu]u∈V where we ini-
tialize [idu] ← [u] for u ∈ V . Both steps can be executed in parallel and cost O(N logN · p) arith-
metic invocations and O(logN · p) rounds. Then, we pad the result [id′u]u∈V by [id′N ] ← [N ]. Finally,
we set [partneru] ← DEMUXN+1([partner′′u]) · [id′i]0≤i≤N for all u ∈ V in parallel. This step costs O(N2)
arithmetic invocations, O(N2) binary invocations, O(log logN) rounds, O(N) edaBits and O(N2) daBits
using näıve dot product calculation by N + 1 arithmetic multiplications each. Note that a more efficient
protocol for dot products as given for Shamir’s secret-sharing [CH10] decreases the number of arithmetic
invocations to O(N).

It remains to prove that the result correctly represents π−1(M′). Let {u, v} ∈ π−1(M′) implying
that {π(u), π(v)} ∈M′. Thus, partner′′u = partner′π(u) = π(v) < N . Then:

[partneru] = DEMUXN+1([partner′′u]) · [id′i]0≤i≤N = [id′partner′′u ] = [id′π(v)] = [π−1(π(v)] = v.

Now, let u not be matched, i.e., partner′′u = partner′π(u) = N . Then:

[partneru] = [id′partner′′u ] = [id′N ] = [N ].

Using node shuffling only increases the number of arithmetic invocations from O(N3) to O(N3+N2 logN ·p)
and the required rounds from O(N logN · log b) to O(N logN · log b+ logN · p) compared to the deterministic
protocol. Note that in an outsourcing setting, the number of parties p is usually small so that the increase of
complexity is insignificant. For high p, other shuffling approaches like selecting a random value per item to
shuffle and securely sort according to such random values [MSZ15] may be more efficient due to not requiring
to shuffle in O(p) phases where different parties input their permutations. We also note that for specific
cases there exist faster appropriate shuffling approaches as, e.g., in [Ara+21] with O(N2) communication in
constant rounds for p = 3.
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5 Evaluation

Next we evaluate the run time and network traffic for our MWM approximation protocol in its random edge
selection variant (cf. §4.3) and its node shuffling variant (cf. §4.4). After selecting a linear secret-sharing
scheme and corresponding protocol (§5.1) and the benchmark setting (§5.2), we present our findings in §5.3.

5.1 Underlying Primitives

We implemented our protocol variants using the MPC framework MP-SPDZ [Kel20] version 0.3.2.8 As
underlying MPC protocol that implements the required ABB (cf.§2.1.2) securely in presence of a passive
adversary and an honest majority, we focused on the three-party case, and therefore used the three-party
(p = 3) protocol by Araki et al. [Ara+16]. Their work provides an ABB implementation for arithmetic or
binary operations in the domains Fq or Z2k , and F2, respectively. We used Fq as our arithmetic domain
together with the provided binary domain. In addition, we give a comparison to using Shamir’s secret-sharing
scheme [Sha79] for p = 3 or more parties in §A.

5.2 Benchmark Setting

We executed the protocol variants in a LXC container with access to 200 GiB of RAM and one CPU core
being assigned to each party. The host CPU is an AMD EPYC 7702P with a total of 64 cores, a base clock
of 2.0 GHz, and hyperthreading enabled. We consider a LAN setting with a bandwidth of 1 GBit/s and a
round-trip time of 1 ms. This together with using three parties corresponds the use case of, e.g., online dating
or bartering where one or more service providers may run the protocol on behalf of the clients using three
geographically close servers with high-bandwidth low-latency connections. The required network behavior is
simulated with the tools tc (traffic control) and NetEm.

We measured the run times and generated traffic for both of our randomized protocol variants, i.e., the
ones for random edge selection (cf. §4.3) and node shuffling (cf. §4.4). We did not run the deterministic base
protocol (cf. §4.2) alone as it is used as sub-protocol of our node shuffling variant where we measured its share
of the total run time. Each protocol was executed 10 times for different numbers of nodes N : Random edge
selection was measured for up to N = 300, and node shuffling for up to N = 400. We took the arithmetic mean
as final run times. As number of bits b and statistical security parameter σ, we used the MP-SPDZ default
values, i.e., b = 64 and σ = 40. Not that this is sufficient regarding the security of the random edge selection
variant with b0 = 64 and N ≤ 300, i.e., max{b0, ⌈σ/2 + 4 log2 N⌉} = max{64, 53} = 64 (cf. Proposition 2).

Note that loops in MP-SPDZ are entirely unrolled at compile-time if they are fully parallelized. This leads
to immense RAM utilization when compiling our protocol. Ultimately, our restriction to 200 GiB of RAM
prevented us from benchmarking our protocol for more than N = 300 with random edge selection or more
than N = 400 with node shuffling.

For the random edge selection protocol, we let the input of the protocol be an already generated adjacency
matrix. The node shuffling variant was specifically motivated by nodes representing certain entities that want
to get matched. Therefore, we benchmarked it together with an exemplary computation of a corresponding
adjacency matrix to give a pointer on the cost of matrix generation: For each entity or node, we use an
integer vector of dimension 50 as input. Then, for each pair of nodes we compute the squared Euclidean
distance between their vectors X and Y , i.e., (X − Y ) · (X − Y ). In the adjacency matrix, we define two
nodes as compatible and connect them by an edge, if their squared distance is below a certain threshold, and
otherwise not. In this case, the weight is set to some fixed offset minus their squared distance where the offset
is sufficiently high s.t. the resulting weight is positive. Thus, we implemented a basic compatibility measure
that allows matching nodes with distance below a certain threshold and prefers to match nodes with lower
distance. Note that communication and run time of the remaining protocol are independent of the specific
adjacency matrix.

8 https://github.com/data61/MP-SPDZ/releases/tag/v0.3.2
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5.3 Results

In Fig. 2 and Tab. 1 we give the run times and global communication for both protocol variants and different
numbers of nodes N .
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Fig. 2: Arithmetic means, minima and maxima of the protocol variants’ run times and global communication
over 10 iterations. Minima and maxima are hardly visible for run time due to low deviations and not visible
for communication due to zero deviations.

Table 1: Arithmetic means of the protocol variants’ run times and global communication over 10 iterations.

N
Random Edge Selection Node Shuffling

Time Comm. Time Comm.

50 5.9 s 85.3 MB 3.3 s 41.1 MB
100 32.0 s 635.9 MB 14.0 s 274.3 MB
150 1.8 min 2.1 GB 39.8 s 909.4 MB
200 4.3 min 5.1 GB 1.5 min 2.1 GB
250 8.5 min 9.9 GB 2.9 min 4.0 GB
300 14.9 min 17.1 GB 5.1 min 7.0 GB
350 - - 8.3 min 11.1 GB
400 - - 12.5 min 16.4 GB

The average run times for random edge selection are ≈32.0 s for N = 100, and ≈14.9 min for N = 300.
For node shuffling, they are ≈14.0 s for N = 100, ≈5.1 min for N = 300, and ≈12.5 min for N = 400. The
maximal measured deviation over all iterations is ≈6.8%. The overall run times of the node shuffling variant
are significantly lower than the run times of random edge selection. For N = 300, the node shuffling variant
is ≈2.9 times faster than random edge selection.

The total traffic generated by all three parties together for random edge selection is ≈635.9 MB for N = 100,
and ≈17.1 GB for N = 300. The communication for node shuffling amounts to ≈274.3 MB for N =
100, ≈7.0 GB for N = 300, and ≈16.4 GB for N = 400. Thus, random edge selection also requires significantly
more communication than node shuffling. This results in an overhead of ≈2.4× for N = 300 compared to the
node shuffling variant.

Both variants run in under 15 minutes for up to 300 with run time and traffic scaling polynomially
bounded which matches our previous theoretical complexity analysis. Thus, we can deduce that they scale
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well for an increasing number of nodes. Depending on the use case, especially the node shuffling variant could
be feasible for thousands of nodes.

Recall that our node shuffling variant satisfies invariance under node permutation but not random edge
selection while our random edge selection variant satisfies both (cf. §4.4.2). Our results show that this stronger
guarantee comes at a significant cost. While the random edge selection variant still yields low run times in
our benchmarks, use cases that do not necessarily require random edge selection can significantly profit from
using the node shuffling variant instead.

5.3.1 Microbenchmarks We also measured the share that each phase of our protocol variants has in the
overall run time. The results for node shuffling are given in Fig. 3a where we partition the total run time into
the times required to generate the example adjacency matrix as described previously in §5.2, to shuffle the
adjacency matrix, to compute a matching, to reverse the shuffling on the resulting matching on the shuffled
graph, and remaining operations like inputs and outputs.
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Fig. 3: Split of the run time for both protocol variants.

Generating the adjacency matrix takes ≈38.2% of the total run time for N = 10, drops below 2%
for N = 160 and is at only ≈0.7% for N = 400. In absolute values, its run time increases to ≈5.0 s
for N = 400. Shuffling the adjacency matrix costs ≈4.5% of the total run time for N = 10 decreasing down
to ≈0.6% for N = 400 corresponding to ≈4.8 s. Note that this phase’s share of the run time does not decrease
smoothly. This is caused by MP-SPDZ internally padding the number of items to shuffle to powers of 2 which
does not change the asymptotic complexity.9 Reversing the shuffling never takes more than 0.2 s and the
remaining operations take at most ≈0.02 s which is an insignificant fraction of the total run time.

The matching phase itself clearly dominates the run time for increasing N taking ≈54.8% of it for N = 10
but already more than 90% for N ≥ 60 and more than 95% for N ≥ 100. Its share increases up to ≈98.7%
for N = 400. This is due to it having the highest asymptotic complexity w.r.t. N . Note that the phase exactly
is the deterministic base protocol from §4.2. This especially shows that achieving invariance under node
permutation comes at nearly no cost except for very small graphs which is the reason why we do not give a
detailed evaluation of the deterministic case alone.

For random edge selection, the results are given in Fig. 3b. The only phase besides the matching phase
and insignificant input and output phases is the generation of random numbers for all potential edges. This
takes less than 0.6 s for each tested N ≤ 300 and thus is insignificant. In particular, ≈99.9% of the total run
time are given by the matching phase for N = 300. Recall that this phase is only extended by comparing

9 This padding is done as the original Waksman network [Wak68] works on powers of 2. Note that there is an
optimized version where a padding is not required [BD02].
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the random numbers in addition to edge weights. This tells that the overhead induced by the additional
comparisons and corresponding operations indeed yields a significant increase in run time.

6 Conclusion and Future Work

In this paper, we have presented two scalable variants of a protocol for secure maximum weight match-
ing 1/2−approximation. Both variants of our protocol have different qualities regarding unbiasedness and
efficiency satisfying different demands that may arise from specific use cases. The faster variant’s complexity
is O(N logN) rounds and O(N3) communication for N nodes yielding a run time of ≈12.5 minutes for N = 400.
The slower variant offers an additional notion of unbiasedness costing an increase by a factor of O(logN)
regarding rounds and communication which yields a run time of ≈14.9 minutes for N = 300.

Regarding future work, we see three main directions. First, our protocol’s performance may be evaluated
using an ABB implementation and building blocks for a different security setting, e.g., for malicious security.
Second, new protocols can be developed using other approximations that offer better quality guarantees or
even exact algorithms as their basis. Here it is of special interest how much performance one must pay in
order to get better results, i.e., investigating the trade-off between quality of results and run time. Third,
while our approximation guarantees results to be at least half as good as exact ones, their concrete quality
can be significantly higher depending on the properties of the input graphs. Thus, an empirical study of the
resulting matchings’ quality could be of interest when using our protocol for a specific use case.
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A Evaluation Using Shamir’s Secret-Sharing

Shamir’s secret-sharing scheme [Sha79] is another linear secret-sharing scheme that can be used to as a
basis for a passively secure protocol in the honest majority setting [BGW88; AL17]. While the three-party
protocol by Araki et al. [Ara+16] is newer than the original BGW-protocol [BGW88] based on Shamir’s
secret-sharing scheme, the BGW-protocol [BGW88] allows to use an arbitrary number of parties p. As
MP-SPDZ [Kel20] allows to run the same high-level protocol on different low-level protocols, we are able
to give a short comparison between both low-level protocols. This allows to assess the cost of switching to
Shamir’s secret-sharing scheme which is not restricted to three parties.

For the arithmetic domain, we again use Fq. While Shamir’s secret-sharing scheme requires a field that has
cardinality larger than the number of parties, MP-SPDZ allows using F28 to embed the binary domain in. We
additionally run our protocol using Shamir’s secret-sharing for node shuffling with N ∈ {100, 200, 300}, and
three and ten parties. Again, we use ten iterations for each case. This allows to assess the overhead resulting
from using Shamir’s secret-sharing scheme in the three-party case and the additional overhead from using it
for more parties. We only run benchmarks for the node shuffling variant of our protocol. The measured run
times and traffic in comparison to the previous measured run times (cf. §5.3) are given in Tab. 2.

Table 2: Arithmetic means of the protocol’s node shuffling variant’s run times and global communication
over 10 iterations using different underlying protocols and numbers of parties p.

N
p = 3 parties p = 10 parties

Araki et al. [Ara+16] Shamir [Sha79]/BGW [BGW88] Shamir/BGW

Time Comm. Time Comm. Time Comm.

100 14.0 s 274.3 MB 34.2 s 769.6 MB 3.4 min 34.0 GB
200 1.5 min 2.1 GB 4.6 min 5.8 GB 25.3 min 255.3 GB
300 5.1 min 7.0 GB 16.3 min 19.7 GB 85.3 min 859.2 GB

The results show that using Shamir’s secret-sharing scheme for p = 3 parties is significantly less efficient
than using the protocol by Araki et al [Ara+16]. The run time increases by a factor of up to 3.2× for N = 300.
The communication increases by a factor of more than 2.8× for all N .
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Increasing the number of parties for Shamir’s secret-sharing scheme to p = 10 yields for N = 300 5.2× the
run time and 43.6× the communication of using the same secret-sharing scheme for p = 3. For lower N , these
factors are higher. Compared to using the protocol by Araki et al [Ara+16], this is an overhead of 16.7×
regarding run time and 122.7× regarding communication for N = 300. Thus, using Shamir’s secret-sharing
scheme to increase the number of parties is possible but comes at cost of significant overheads compared to
the three-party case based on the work of Araki et al [Ara+16].
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