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Abstract. Anonymity of public key encryption (PKE) requires that,
in a multi-user scenario, the PKE ciphertexts do not leak information
about which public keys are used to generate them. Corruptions are
common threats in the multi-user scenario but anonymity of PKE under
corruptions is less studied in the literature. In TCC 2020, Benhamouda
et al. first provide a formal characterization for anonymity of PKE under
a specific type of corruption. However, no known PKE scheme is proved
to meet their characterization.
To the best of our knowledge, all the PKE application scenarios which
require anonymity also require confidentiality. However, in the work by
Benhamouda et al., different types of corruptions for anonymity and
confidentiality are considered, which can cause security pitfalls. What’s
worse, we are not aware of any PKE scheme which can provide both
anonymity and confidentiality under the same types of corruptions.
In this work, we introduce a new security notion for PKE called ANON-
RSOk&C security, capturing anonymity under corruptions. We also in-
troduce SIM-RSOk&C security which captures confidentiality under the
same types of corruptions. We provide a generic framework of construct-
ing PKE scheme which can achieve the above two security goals simulta-
neously based on a new primitive called key and message non-committing
encryption (KM-NCE). Then we give a general construction of KM-NCE
utilizing a variant of hash proof system (HPS) called Key-Openable HPS.
We also provide Key-Openable HPS instantiations based on the matrix
decisional Diffie-Hellman assumption. Therefore, we can obtain various
concrete PKE instantiations achieving the two security goals in the stan-
dard model with compact ciphertexts. Furthermore, for some PKE in-
stantiation, its security reduction is tight.

⋆ A preliminary version of this paper appears in ASIACRYPT 2022. This is the full
version.
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1 Introduction
Anonymity of PKE under corruptions. The (single-user) IND-CCA secu-
rity has been the de facto standard security for public-key encryption (PKE)
schemes and is the target security of NIST PKE standardization for the next
decades. It provides message confidentiality under CCA attacks. Meanwhile,
anonymity is another security requirement for PKE and is not provided by the
IND-CCA security. Roughly speaking, anonymity of PKE requires that, in a
multi-user scenario, the PKE ciphertexts do not leak information about which
public keys are used to generate them. The IK-CPA/CCA security given by
Bellare et al. [BBDP01] is the first formalization of anonymity of PKE.

In such multi-user scenarios, multiple key pairs are generated, potentially
correlated plaintexts are encrypted and sent to many receivers. Both the secret
keys and the encrypted messages could be leaked due to accidents and/or adver-
sarial attacks, which affects both the confidentiality and the anonymity of the
PKE scheme. Researchers capture such threats by formalizing different types of
corruptions in different multi-user scenarios. Many efforts have been made to
establish confidentiality under corruptions and the study to selective-opening
attacks are such examples.

However, anonymity of PKE under corruptions is much less studied. To the
best of our knowledge, it is not considered until recently by Benhamouda et al.
[BGG+20] in TCC 2020. They propose anonymity against selective-opening for
PKE which is the first (and, to the best of our knowledge, also the only) formal
definition of anonymity for PKE under corruptions. We will call this security as
ANON-COR (anonymity under corruptions) security in this work. The ANON-
COR security defined in [BGG+20] is as follows. Given n public keys of n users,
an adversary submits t messages of its choice, and then receives t challenge ci-
phertexts, which are encryptions of the t messages under t distinct random public
keys out of the n user public keys. Next, the adversary can adaptively corrupt
Q < n users one at a time, obtaining their secret keys. (We will call such kind
of corruption as post-challenge user corruption.) ANON-COR security requires
that no feasible adversary can corrupt more than Q

n +ϵ (for some constant ϵ > 0)
fraction of the ciphertext-encrypting keys with non-negligible probability.

Unfortunately, no known PKE scheme is proved to have ANON-COR secu-
rity. Actually, Benhamouda et al. [BGG+20] only prove that their suggested
PKE scheme achieves a simplified version of ANON-COR security (where the
adversary is restricted to corrupt some users at once) and conjecture that it also
achieves the ANON-COR security. They leave constructing an ANON-COR se-
cure PKE scheme as an interesting problem.

Furthermore, we think the ANON-COR security is restricted in the following
sense.

– Non-adaptive. The ANON-COR security is non-adaptive in the sense that
the adversary is not allowed to obtain any user secret key before seeing the
challenge ciphertexts. This restricts its application scenario since, in the real-
world, some users may be fully controlled by the adversary from the very
beginning and the adversary may corrupt other users at any time.
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– Single-challenge. The ANON-COR security considers a single-challenge set-
ting where each public key is used only once to encrypt a single challenge
message. This restriction limits its application scenario since, in practice,
each public key is often used multiple times (for example, the application
scenario in [BGG+20]1).

Thus, we raise the following research question.

Q1: For PKE schemes, can we provide an achievable security formalization
which provides anonymity under more adaptive corruptions in the multi-
challenge setting?

Anonymity and confidentiality under the same types of corruptions.
We are not aware of any application scenario which only requires anonymity
but not confidentiality of PKE schemes2. To the best of our knowledge, all the
PKE application scenarios in the real world which require anonymity also re-
quire confidentiality. As an example, Benhamouda et al. [BGG+20] consider a
blockchain application scenario which requires both of the two security guaran-
tees. However, Benhamouda et al. capture the two security guarantees under dif-
ferent types of corruptions. More precisely, as shown in [BGG+20, Section 2.6],
the scheme E1 requires both anonymity under post-challenge user corruption
(ANON-COR security) and confidentiality under the receiver selective opening
(RSO) corruption.

Although the ANON-COR security is called “anonymous against selective-
opening” in [BGG+20], we want to note that the post-challenge user corruption
considered in ANON-COR security is different from the RSO corruption con-
sidered for confidentiality. The RSO corruption [BDWY12, HPW15] considers
an adversary, after seeing many challenge ciphertexts for different receivers (to-
gether with their public keys), is able to open a subset of the challenge cipher-
texts (via corrupting a subset of the receivers to obtain their secret keys and
received messages). However, the ANON-COR adversary is not able to specify
some challenge ciphertexts and open them.

When the two security guarantees (anonymity and confidentiality) are both
required, it is more desirable to capture them under the same types of corrup-
tions. Taking [BGG+20] as an example, where anonymity and confidentiality
are both required for the scheme E1 in [BGG+20], it does not make sense for
1 In the Committee-Selection phase of the evolving-committee proactive secret sharing

scheme considered in [BGG+20], some users are selected as committee members.
Each committee member will encrypt one fresh secret key using its long term public
key (ct ← E1.Encpk(esk)). Since the same user may be selected as a committee
member multiple times, the user’s public key may be used multiple times to encrypt
multiple messages.

2 Actually, it does not make sense to only consider the anonymity of some PKE without
considering its confidentiality. If confidentiality can be sacrificed, one can trivially
achieve anonymity by assigning the identity map as the encryption and decryption
algorithm, so that the ciphertext equals the message and is independent of any public
key.
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the adversary to attack anonymity only using the post-challenge user corruption
and attack confidentiality only using the RSO corruption. Actually, there is no
anonymity guarantee under the RSO corruption and no confidentiality guarantee
under the post-challenge user corruption. This implies that, when the adversary
is able to use both post-challenge user corruption and RSO corruption, it is
possible that neither anonymity nor confidentiality holds for the PKE scheme.
Consequently, when the two security guarantees are required under corruptions,
they should be captured under the same types of corruptions.

Unfortunately, we are not aware of any PKE schemes which can provide the
two security guarantees under the same types of corruptions. Thus, we raise our
second research question.

Q2: Can we construct a PKE scheme which provides both anonymity and
confidentiality under the same types of corruptions?

We answer the above two research questions affirmatively in this work.
Our contributions. In this work:

– We formalize the notion of ANONymity under Receiver Selective Opening
attacks (in the k-challenge setting), adaptive user Corruptions and Chosen
Plaintext / Ciphertext Attacks, which we call ANON-RSOk&C-CPA/CCA
security for short. To capture confidentiality under the same types of cor-
ruptions, we also formalize the notion of SIM-RSOk&C-CPA/CCA security.

– We provide a generic framework of constructing PKE schemes, achieving
both ANON-RSOk&C-CCA security and SIM-RSOk&C-CCA security (we
denote them as AC-RSOk&C-CCA security for simplicity), based on a new
primitive called key and message non-committing encryption (KM-NCE).

– We give a general construction of KM-NCE utilizing a variant of hash proof
system (HPS) [CS02] which we call Key-Openable HPS.

– Finally, we provide Key-Openable HPS instantiations from the matrix deci-
sional Diffie-Hellman (MDDH) assumption [EHK+13].

When plugging the HPS instantiations into the general construction frame-
work, we can obtain an AC-RSOk&C-CCA secure PKE scheme in the standard
model which provides anonymity and confidentiality simultaneously under both
adaptive user corruptions and RSO corruptions. Moreover, our scheme enjoys
the properties that 1) the ciphertext is compact (i.e., ciphertext overhead3 is
the size of a constant number of group elements [HJR16], or more generally, is
independent of the message length [HKM+18]), and 2) the security reduction
is tight4. To the best of our knowledge, our scheme is the first PKE scheme
achieving anonymity under adaptive corruptions (which is stronger than the
ANON-COR security), thus solving the problem raised by Benhamouda et al.
3 Ciphertext overhead means the ciphertext bitlength minus plaintext bitlength

[HJR16].
4 Tight reduction means that the security loss of the reduction is independent of the

number of users, the number of challenges and the number of queries raised by the
adversary.
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[BGG+20] in TCC 2020. Also, our scheme is the first PKE scheme achieving
RSOk-CCA security in the standard model with compact ciphertexts and tight
security.

AC-RSOk&C security derived from KM-NCE. We take the approach of non-
committing encryption [CFGN96, CHK05, HKM+18] to achieve AC-RSOk&C
security. We introduce a new primitive called key and message non-committing
encryption (KM-NCE), which is some kind of “message & public key-non-
committing” encryption. Informally, KM-NCE allows one to generate fake ci-
phertexts via a fake encryption algorithm, and enables one to open k fake ci-
phertexts to any k messages under any public key (by showing an appropriate
secret key) via an opening algorithm.

We formalize two security properties for KM-NCE. One is a single-user and k-
challenge security notion called KMNCk-CPA/CCA security (c.f., Definition 4),
and the other is robustness (c.f., Definition 5). Intuitively, KMNCk-CPA/CCA
security requires that the real secret key together with k real ciphertexts (en-
crypting k messages chosen by the adversary) should be computationally indis-
tinguishable from the opened secret key and k fake ciphertexts.

KM-NCE serves as our core technical tool, and we show that KMNCk-
CPA/CCA secure and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure
PKE. Due to the relative simplicity of KMNCk-CPA/CCA security (single-user,
no simulator) in comparison to AC-RSOk&C-CPA/CCA security (multi-user,
simulation-based), it is easier and conceptually simpler to construct KM-NCE
and prove its security first than constructing AC-RSOk&C-CPA/CCA secure
PKE directly.

Generic construction of KM-NCE. To construct KM-NCE, we propose a new
building block called Key-Openable HPS, by equipping Hash Proof System (HPS)
[CS02] with a hashing key opening algorithm HOpenk. Informally, given k in-
stances, k hash values and the random coins used to sample them, a projection
key (public key of HPS), and a corresponding hashing key (secret key of HPS)
as the input, HOpenk can output another hashing key such that 1) the out-
putted hashing key corresponds to the same projection key and 2) the given
k hash values are exactly hash values of the k instances under the outputted
hashing key. We also define some new properties for the key-openable HPS, in-
cluding openabilityk (c.f., Definition 9) and universalityk+1 (c.f., Definition 10).
By using key-openable HPS as an essential building block, we present a generic
construction of KMNCk-CCA secure KM-NCE.

Instantiations. For concrete instantiations, we provide key-openable HPS in-
stantiations based on the MDDH assumption. Due to the good versatility of the
MDDH assumption, we can obtain various concrete instantiations of KM-NCE.
Plugging the concrete instantiations into our general framework, we obtain AC-
RSOk&C-CCA secure PKE schemes with compact ciphertexts in the standard
model. For some concrete PKE instantiation, we can even tightly prove its AC-
RSOk&C-CCA security.
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Related works. The anonymity of PKE is first formalized by Bellare et al.
[BBDP01] and they call it “key-privacy”. Many follow up works continue research
in this direction, such as [HT05, ABN10, Moh10]. Anonymity for PKE under
corruptions is firstly considered by Benhamouda et al. [BGG+20].

The IND-CCA security in the multi-user setting with adaptive user corrup-
tions except challenge is given in [BS20, LLP20]. Lee et al. [LLP20] propose
the first PKE scheme in the random oracle model with tight IND-CCA secu-
rity reduction in the multi-user setting with adaptive user corruptions except
challenge.

In the research area of receiver selective opening (RSO) corruption for PKE,
Bellare et al. [BDWY12] point out that IND-CPA security does not imply
SIM-RSO-CPA security. Hazay et al. [HPW15] show that RSO security can be
achieved from variants of non-committing encryption. Subsequent works [JLL16,
JLL17, HKM+18, HLC+19] consider CCA security in the RSO setting and pro-
vide PKE schemes with RSO-CCA security. Yang et al. [YLH+20] consider RSO-
CCA security in the multi-challenge setting. SIM-RSO-CCA secure PKE schemes
with compact ciphertexts are proposed by Hara et al. [HKM+18] and Huang et
al. [HLC+19].

2 Preliminaries

We assume that the security parameter λ is an (implicit) input to all algorithms.
For any positive integer n, we use [n] to denote the set {1, · · · , n}. For a finite set
S, we use |S| to denote the size of S. For random variables X and Y over a finite
set S, their statistical distance is ∆(X ,Y) := 1

2

∑
s∈S |Pr[X = s]− Pr[Y = s]|.

We recall the formal definitions of PKE, collision-resistant hash functions
and universal hash functions together with the leftover hash lemma in Appendix
A.1, A.2 and A.3, respectively.

3 Anonymity and Confidentiality under Corruptions

In this section, we firstly introduce the notion of Anonymity under Receiver
Selective Opening attacks (in the multi-challenge setting), adaptive user Cor-
ruptions and Chosen Plaintext / Ciphertext Attacks, which we call ANON-
RSOk&C-CPA/CCA security (k ∈ N). Then, we introduce the notion of SIM-
RSOk&C-CPA/CCA security (k ∈ N), to capture confidentiality under the same
types of corruptions. Finally, we also introduce the notion of AC-RSOk&C-
CPA/CCA security, to capture ANON-RSOk&C-CPA/CCA security and SIM-
RSOk&C-CPA/CCA security in one notion for convenience.

3.1 Anonymity under Corruptions

ANON-RSOk&C security. We formalize a simulation-based anonymity def-
inition under receiver selective opening attacks and adaptive user corruptions,
which we call ANON-RSOk&C security (k ∈ N).
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Expanony-rso&c-cpa-real
PKE,A,n,t,k (λ), Expanony-rso&c-cca-real

PKE,A,n,t,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Distpk, (m
∗
j,γ)j∈[t],γ∈[k], st)←$ A

Ocor,1, Odec
1 (pp, (pki)i∈[n])

(ij)j∈[t] ←$ Distpk

(c∗j,γ ←$ Enc(pp, pkij ,m∗
j,γ))j∈[t],γ∈[k]

C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗j,γ)j∈[t],γ∈[k], st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Distpk, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return skij

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (∃ j′ ∈ Iop s.t. i = ij′): Return ⊥
m := Dec(pp, ski, c)
Return m

Expanony-rso&c-cpa-ideal
PKE,S,n,t,k (λ), Expanony-rso&c-cca-ideal

PKE,S,n,t,k (λ):
Iop := ∅; Icor := ∅

(Distpk, (m
∗
j,γ)j∈[t],γ∈[k], st)←$ S

O(s)
cor,1

1 (1λ)

(ij)j∈[t] ←$ Distpk

PKcor := {(j, ij) | ij ∈ Icor, j ∈ [t]}

out←$ S
O(s)

cor,2,O
(s)
op

2 (PKcor, st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Distpk, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
If ∃ j′ ∈ [t] s.t. i = ij′ :

Return (j′, ij′)

Return NULL

O(s)
op (j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return ij

Fig. 1 Experiments for defining ANON-RSOk&C-CPA/CCA security of scheme PKE.

Informally speaking, assume that there are n users, and that a PPT ad-
versary is allowed to (i) adaptively corrupt the users (i.e., obtaining their secret
keys) at any time, and (ii) make receiver selective opening queries (i.e., obtaining
the corresponding secret keys and the challenge messages) after seeing a chal-
lenge ciphertext vector of length t < n. ANON-RSOk&C security requires that
whatever the adversary (seeing the challenge ciphertext vector) deduces about
which public keys are used to generate the challenge ciphertext vector, can also
be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 1. (ANON-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is ANON-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n, t (where 0 < t ≤ n),
and any PPT adversary A = (A1,A2), there is a PPT simulator S = (S1,S2),
such that for any PPT distinguisher D, the advantage Advanon-rso&c-atk

PKE,A,S,D,n,t,k(λ) :=∣∣∣Pr[D(Expanon-rso&c-atk-real
PKE,A,n,t,k (λ)) = 1]− Pr[D(Expanon-rso&c-atk-ideal

PKE,S,n,t,k (λ)) = 1]
∣∣∣

is negligible, where Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) and Expanon-rso&c-atk-ideal

PKE,S,n,t,k (λ) are de-
fined in Fig. 1, and atk ∈ {cpa, cca}. In both of the experiments, we require that
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for all Distpk output by A1 and S1, it holds that (1) Distpk is efficiently samplable,
and (2) for all (ij)j∈[t] ←$ Distpk, ij1 ̸= ij2 for any distinct j1, j2 ∈ [t].

Remark 1. Our security notion ANON-RSOk&C-CPA/CCA grants the adver-
sary multiple, adaptive opening queries (i.e., Oop), like [BHK12].

Remark 2. In Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) where atk ∈ {cpa, cca}, there are totally

n public keys (pki)i∈[n], and only t of them (i.e., (pkij )j∈[t]) are used to generate
the challenge ciphertexts (c∗j,γ)j∈[t],γ∈[k]. Note that (i) by querying the opening
oracle Oop on j ∈ [t] directly, A can obtain skij corresponding to some specified
(c∗j,γ)γ∈[k]; (ii) by querying the corruption oracle Ocor,1 or Ocor,2, A can obtain
some corresponding secret keys of the n public keys, but cannot ask for the secret
key corresponding to some specified c∗j,γ since it may not know the value of ij .

ANON-RSOk&C-CPA ⇒ ANON-COR. We show that ANON-RSOk&C-
CPA security implies the ANON-COR security [BGG+20].

Informally, the experiment for defining ANON-COR security is as follows. At
the beginning, the challenger generates n public keys (pki)i∈[n], and sends them
to an adversary A. After receiving t (t < n) messages from A, the challenger
randomly samples t distinct public keys from (pki)i∈[n], uses them to encrypt
the t messages respectively, and sends the t ciphertexts back to A. Then, A
can access to a corruption oracle adaptively, by querying it on any i ∈ [n] and
receiving ski as a response. Denote by Q the total number of corruption queries
made by A. ANON-COR security requires that for any ϵ > 0 and any λ < t,
Q < n(1− ϵ), no PPT adversary A can compromise more than Q

n + ϵ fraction of
the ciphertext-encrypting keys with non-negligible probability. Formal definition
of ANON-COR security is given in Appendix B.

Note that any ANON-COR adversary can be seen as an ANON-RSOk&C-
CPA adversary A which (i) ignores (c∗j,γ)2≤γ≤k for all j ∈ [t] if k > 1, (ii) does
not query Ocor,1 or Oop, (iii) queries Ocor,2 Q times, and (iv) the output dis-
tribution Distpk always samples t distinct indexes i1, · · · , it uniformly random
from [n]. The fraction of the ciphertext-encrypting keys that ANON-COR ad-
versary compromises over (pkij )j∈[t] can be computed directly from experiment
Expanon-rso&c-cpa-real

PKE,A,n,t,k (λ). ANON-RSOk&C-CPA security guarantees that there
is a simulator S such that Expanon-rso&c-cpa-ideal

PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real
PKE,A,n,t,k (λ)

are indistinguishable. Note that in Expanon-rso&c-cpa-ideal
PKE,S,n,t,k (λ), S has no infor-

mation about (ij)j∈[t] except for the responses obtained via querying O(s)
cor,1,

O(s)
cor,2. Hence, the fraction of the “ciphertext-encrypting” indexes that S com-

promises over (ij)j∈[t] is nearly Q
n . Therefore, the indistinguishability between

Expanon-rso&c-cpa-ideal
PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real

PKE,A,n,t,k (λ) implies the advantage of
the ANON-COR adversary is negligible.

3.2 Confidentiality under Corruptions
SIM-RSOk&C security. In order to capture confidentiality under the same
corruptions which are considered in ANON-RSOk&C security, we introduce a
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new security notion, called SIM-RSOk&C security. We stress that SIM-RSOk&C
security is similar to SIM-RSOk security [YLH+20], except that the SIM-RSOk&C
adversary is allowed to corrupt the receivers at any time (i.e., even before seeing
the challenge ciphertexts).

Informally, assume that there are n users, and that a PPT adversary is al-
lowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys) at
any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length n. SIM-RSOk&C security requires that whatever the
adversary (seeing the challenge ciphertext vector) deduces about the challenge
messages, can also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 2. (SIM-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is SIM-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n > 0, and any PPT
adversary A = (A1,A2), there is a PPT simulator S = (S1,S2), such that for
any PPT distinguisher D, the advantage Advsim-rso&c-atk

PKE,A,S,D,n,k(λ) :=∣∣∣Pr[D(Expsim-rso&c-atk-real
PKE,A,n,k (λ)) = 1]− Pr[D(Expsim-rso&c-atk-ideal

PKE,S,n,k (λ)) = 1]
∣∣∣

is negligible, where Expsim-rso&c-atk-real
PKE,A,n,k (λ) and Expsim-rso&c-atk-ideal

PKE,S,n,k (λ) are de-
fined in Fig. 2, and atk ∈ {cpa, cca}. In both of the experiments, we require that
for all Distm output by A1 and S1, Distm is efficiently samplable.

SIM-RSOk&C-ATK ⇒ SIM-RSOk-ATK. We claim that SIM-RSOk&C-
ATK security (ATK ∈ {CPA,CCA}) implies simulation-based RSO security
in the multi-challenge setting (i.e., SIM-RSOk-ATK security) [YLH+20].

Generally, SIM-RSOk-ATK security requires that for any PPT adversary A
in the real experiment of SIM-RSOk-ATK, there is a simulator S, such that the
final output of the ideal experiment and that of the real experiment are indistin-
guishable. Standard SIM-RSO-ATK security [HPW15, HKM+18, HLC+19] is a
special case of SIM-RSOk-ATK security (i.e., k = 1). For completeness, formal
definition of SIM-RSOk-ATK security is given in Appendix B.

The reason that SIM-RSOk&C-ATK security implies SIM-RSOk-ATK secu-
rity is as follows. Note that any SIM-RSOk-ATK adversary A can be seen as
a SIM-RSOk&C-ATK adversary which does not query the corruption oracles
Ocor,1,Ocor,2. SIM-RSOk&C-ATK security guarantees the existence of a simu-
lator S ′, such that the final output of the ideal experiment and that of the real
experiment are indistinguishable. Hence, for the final output of the ideal exper-
iment ((m∗i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out), it also holds that Icor = ∅ (i.e., S ′

has never queried O(s)
cor,1,O

(s)
cor,2). Hence, a SIM-RSOk-ATK simulator S can be

constructed from S ′.
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Expsim-rso&c-cpa-real
PKE,A,n,k (λ), Expsim-rso&c-cca-real

PKE,A,n,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Distm, st)←$ A
Ocor,1, Odec
1 (pp, (pki)i∈[n])

(m∗
i,γ)i∈[n],γ∈[k] ←$ Distm

(c∗i,γ ←$ Enc(pp, pki,m∗
i,γ))i∈[n],γ∈[k]

C := {(i, c∗i,γ) | i ∈ [n], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗i,γ)i∈[n],γ∈[k], st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (ski, (m

∗
i,γ)γ∈[k])

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (i ∈ Iop): Return ⊥
m := Dec(pp, ski, c)
Return m

Expsim-rso&c-cpa-ideal
PKE,S,n,k (λ), Expsim-rso&c-cca-ideal

PKE,S,n,k (λ):
Iop := ∅; Icor := ∅

(Distm, st)←$ S
O(s)

cor,1
1 (1λ)

(m∗
i,γ)i∈[n],γ∈[k] ←$ Distm

Mcor := {(i, (m∗
i,γ)γ∈[k]) | i ∈ Icor}

out←$ S
O(s)

cor,2,O
(s)
op

2 (Mcor, st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return (m∗

i,γ)γ∈[k]

O(s)
op (i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (m∗

i,γ)γ∈[k]

Fig. 2 Experiments for defining SIM-RSOk&C-CPA/CCA security of scheme PKE.

3.3 Combining Anonymity and Confidentiality under Corruptions

We introduce the notion of AC-RSOk&C-CPA/CCA security, to capture ANON-
RSOk&C-CPA/CCA security and SIM-RSOk&C-CPA/CCA security in one no-
tion for convenience.

Informally, assume that there are n users, and that a PPT adversary is al-
lowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys) at
any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length t < n. AC-RSOk&C security requires that whatever
the adversary (seeing the challenge ciphertext vector) deduces about which pub-
lic keys or messages are used to generate the challenge ciphertext vector, can
also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 3. (AC-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is AC-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n, t (where 0 < t ≤ n),
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Expac-rso&c-cpa-real
PKE,A,n,t,k (λ), Expac-rso&c-cca-real

PKE,A,n,t,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Dist, st)←$ A
Ocor,1, Odec
1 (pp, (pki)i∈[n])

(ij , (m
∗
j,γ)γ∈[k])j∈[t] ←$ Dist

(c∗j,γ ←$ Enc(pp, pkij ,m∗
j,γ))j∈[t],γ∈[k]

C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗j,γ)j∈[t],γ∈[k], st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return (skij , (m

∗
j,γ)γ∈[k])

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (∃ j′ ∈ Iop s.t. i = ij′): Return ⊥
m := Dec(pp, ski, c)
Return m

Expac-rso&c-cpa-ideal
PKE,S,n,t,k (λ), Expac-rso&c-cca-ideal

PKE,S,n,t,k (λ):
Iop := ∅; Icor := ∅

(Dist, st)←$ S
O(s)

cor,1
1 (1λ)

(ij , (m
∗
j,γ)γ∈[k])j∈[t] ←$ Dist

Mcor := {(j, ij , (m∗
j,γ)γ∈[k]) | ij ∈ Icor, j ∈ [t]}

out←$ S
O(s)

cor,2,O
(s)
op

2 (Mcor, st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
If ∃ j′ ∈ [t] s.t. i = ij′ :

Return (j′, ij′ , (m
∗
j′,γ)γ∈[k])

Return NULL

O(s)
op (j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return (ij , (m

∗
j,γ)γ∈[k])

Fig. 3 Experiments for defining AC-RSOk&C-CPA/CCA security of scheme PKE.

and any PPT adversary A = (A1,A2), there is a PPT simulator S = (S1,S2),
such that for any PPT distinguisher D, the advantage Advac-rso&c-atk

PKE,A,S,D,n,t,k(λ) :=

∣∣∣Pr[D(Expac-rso&c-atk-real
PKE,A,n,t,k (λ)) = 1]− Pr[D(Expac-rso&c-atk-ideal

PKE,S,n,t,k (λ)) = 1]
∣∣∣

is negligible, where Expac-rso&c-atk-real
PKE,A,n,t,k (λ) and Expac-rso&c-atk-ideal

PKE,S,n,t,k (λ) are defined
in Fig. 3, and atk ∈ {cpa, cca}. In both of the experiments, we require that for
all Dist output by A1 and S1, it holds that (1) Dist is efficiently samplable, and
(2) for all (ij , (m∗j,γ)γ∈[k])j∈[t] ←$ Dist, ij1 ̸= ij2 for any distinct j1, j2 ∈ [t].

Note that, AC-RSOk&C security can be easily simplified to guarantee only
ANON-RSOk&C security (when the adversary chooses a distribution Dist that
has no entropy in the message part) and can also be simplified to guarantee only
SIM-RSOk&C security (by letting n = t).
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4 AC-RSOk&C Secure PKE from KM-NCE

In this section, we introduce a new primitive called key and message non-
committing encryption (KM-NCE), and two security requirements, KMNCk-
CPA/CCA and robustness, for it. Then, we show that KMNCk-CPA/CCA se-
cure and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure PKE.

4.1 Key and Message Non-Committing Encryption
Now we provide the definition of key and message non-committing encryption
(KM-NCE) and security properties for this primitive. Informally, a KM-NCE
scheme is a PKE scheme with the property that there is a way to generate
fake ciphertexts without any public key, such that any k fake ciphertexts can
be later opened to any k messages (by showing an appropriate secret key).
This primitive is an extension of receiver non-committing encryption (RNCE)
in [CHK05, HPW15, HKM+18]. Generally speaking, the main differences be-
tween KM-NCE and RNCE are that (i) KM-NCE is defined in the k-challenge
setting, for some constant k, and (ii) the algorithm, generating fake ciphertexts,
of KM-NCE does not take any public key as input, while that of RNCE needs
the public key.

For k ∈ N, a key and message non-committing encryption scheme KM-NCE in
the k-challenge setting, with a message spaceM, consists of six PPT algorithms
(Setup,Gen,Enc,Dec,Fake,Openk).

– Setup: The setup algorithm, given a security parameter 1λ, outputs a public
parameter pp.

– Gen: The key generation algorithm, given pp, outputs a public key pk, a
secret key sk and a trapdoor key tk.

– Enc: The encryption algorithm, given pp, pk and a message m ∈M, outputs
a ciphertext c.

– Dec: The (deterministic) decryption algorithm, given pp, sk and c, outputs
m ∈M∪ {⊥}.

– Fake: The fake encryption algorithm, given pp, outputs a fake ciphertext c′

and a trapdoor td.
– Openk: The opening algorithm, given (pp, tk, pk, sk), k fake ciphertexts (c′γ)γ∈[k],

k trapdoors (tdγ)γ∈[k] correponding to (c′γ)γ∈[k], and k messages (mγ)γ∈[k],
outputs a secret key sk′.

For KM-NCE, standard correctness is required. Formally, we require that
for any pp generated by Setup, any (pk, sk, tk) generated by Gen(pp) and any
m ∈M, it holds that Dec(pp, sk,Enc(pp, pk,m)) = m.

Definition 4. (KMNCk-CPA/CCA). For k ∈ N, a KM-NCE scheme KM-NCE =
(Setup,Gen,Enc,Dec,Fake,Openk), in the k-challenge setting, is KMNCk-ATK
secure (where ATK ∈ {CPA,CCA}), if for any PPT adversary A = (A1,A2,
A3), the advantage Advkmnc-atk

KM-NCE,A,k(λ) :=∣∣∣Pr[Expkmnc-atk-real
KM-NCE,A,k (λ) = 1]− Pr[Expkmnc-atk-sim

KM-NCE,A,k (λ) = 1]
∣∣∣
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Expkmnc-cpa-real
KM-NCE,A,k (λ), Expkmnc-cca-real

KM-NCE,A,k (λ) :

pp←$ Setup(1λ)

(pk, sk, tk)←$ Gen(pp)

((m∗
γ)γ∈[k], st1)←$ A

Odec
1 (pp, pk)

(c∗γ ←$ Enc(pp, pk,m∗
γ))γ∈[k]

st2 ←$ A
Odec
2 ((c∗γ)γ∈[k], st1)

b′ ←$ A3(sk, st2)

Return b′

Odec(c) :

If c ∈ {c∗γ | γ ∈ [k]}: Return ⊥
m := Dec(pp, sk, c)
Return m

Expkmnc-cpa-sim
KM-NCE,A,k (λ), Expkmnc-cca-sim

KM-NCE,A,k (λ) :

pp←$ Setup(1λ)

(pk, sk, tk)←$ Gen(pp)

((m∗
γ)γ∈[k], st1)←$ A

Odec
1 (pp, pk)

((c∗γ , td
∗
γ)←$ Fake(pp))γ∈[k]

st2 ←$ A
Odec
2 ((c∗γ)γ∈[k], st1)

sk′ ←$ Openk(pp, tk, pk, sk, (c∗γ , td∗γ ,m∗
γ)γ∈[k])

b′ ←$ A3(sk
′, st2)

Return b′

Fig. 4 Experiments for defining KMNCk-CPA/CCA security of scheme KM-NCE.

is negligible, where experiment Expkmnc-atk-real
KM-NCE,A,k (λ) and Expkmnc-atk-sim

KM-NCE,A,k (λ) are
defined in Fig. 4, and atk ∈ {cpa, cca}.

We also define a statistical robustness for KM-NCE.
Definition 5 (Robustness). A KM-NCE scheme KM-NCE = (Setup,Gen,Enc,
Dec,Fake,Openk), in the k-challenge setting (k ∈ N), is robust, if the probability
ϵrob
KM-NCE(λ) :=

Pr

[
pp←$ Setup(1λ), (pk, sk, tk)←$ Gen(pp),

(c, td)←$ Fake(pp)
: Dec(pp, sk, c) ̸= ⊥

]
is negligible.

4.2 Generic Construction of AC-RSOk&C Secure PKE from
KM-NCE

In this section, we show that for k ∈ N, a KMNCk-CPA (resp. KMNCk-CCA)
secure and robust KM-NCE scheme implies an AC-RSOk&C-CPA (resp. AC-
RSOk&C-CCA) secure PKE scheme. Specifically, we have the following theorem.

Theorem 1. If a KM-NCE scheme KM-NCE = (Setup,Gen,Enc,Dec,Fake,Openk),
in the k-challenge setting (k ∈ N), is KMNCk-CPA (resp. KMNCk-CCA) secure
and robust, then PKE = (Setup,Gen,Enc,Dec) is an AC-RSOk&C-CPA (resp.
AC-RSOk&C-CCA) secure PKE scheme.5

5 For PKE = (Setup,Gen,Enc,Dec), we require that (i) the public parameter pp gen-
erated by Setup can be used for multiple users, and (ii) Gen does not output tk (i.e.,
the key generation algorithm of PKE firstly invokes the key generation algorithm of
KM-NCE to generate (pk, sk, tk), and then outputs (pk, sk), ignoring tk).
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Proof of Theorem 1. We just prove that a KMNCk-CCA secure and robust
KM-NCE scheme implies an AC-RSOk&C-CCA secure PKE scheme. The proof
for the case of CPA is analogous and much easier, so we omit the details here.

Let n and t be arbitrary polynomials satisfying 0 < t ≤ n. Let A = (A1,A2)
be any PPT adversary attacking PKE = (Setup,Gen,Enc,Dec) in the sense of
AC-RSOk&C-CCA, and D be any PPT distinguisher. Without loss of generality,
we assume that A never repeats an oracle query. Specifically, we assume that if
A1 has queried oracle Ocor,1 on some i, then A2 will not query Ocor,2 on i.

We proceed in a series of games.
Game G−1: This is exactly the Expac-rso&c-cca-real

PKE,A,n,t,k (λ) experiment, i.e., G−1 =

Expac-rso&c-cca-real
PKE,A,n,t,k (λ).

More specifically, in G−1, the challenger firstly generates pp ← $ Setup(1λ)
and ((pki, ski, tki) ←$ Gen(pp))i∈[n], and sends (pp, (pki)i∈[n]) to A1. The chal-
lenger initiates Iop := ∅ and Icor := ∅, and keeps track of all A’s issued
queries to Ocor,1,Ocor,2,Oop by maintaining these two sets. Then, the challenger
answers A1’s Ocor,1,Odec oracle queries with (ski)i∈[n]. After receiving Dist,
the challenger samples (ij , (m

∗
j,γ)γ∈[k])j∈[t] ← Dist, computes (c∗j,γ ←$ Enc(pp,

pkij ,m
∗
j,γ))j∈[t],γ∈[k], sets that C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}, and sends

(c∗j,γ)j∈[t],γ∈[k] to A2. Then, the challenger continues to answer A2’s Ocor,2,Oop,
Odec oracle queries with (ski)i∈[n]. Finally, when A2 returns out, the challenger
returns ((ij , (m

∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out) as its final output.

Game G0: Game G0 is the same as G−1, except that two sets Iop-sk and Icor-sk
are introduced in G0. Informally, Iop-sk is introduced to ensure that if A2 submits
a query Ocor,2(i) such that the secret key corresponding to pki has already been
given to A via oracle Oop, then the challenger will directly return the secret key
previously given to A2; Icor-sk is introduced to ensure that if A2 submits a query
Oop(j) such that the secret key corresponding to pkij has already been exposed
to A in a previous corruption query, then the challenger will directly return the
secret key previously given to A2.

Specifically, the differences between G0 and G−1 are as follows. The challenger
additionally initiates Iop-sk := ∅ and Icor-sk := ∅ at the beginning, and answers
A’s Ocor,1,Ocor,2,Oop oracle queries as below:

- on a query Ocor,1(i) where i ∈ [n], the challenger sets Icor := Icor ∪ {i} and
Icor-sk := Icor-sk ∪ {(i, ski)}, and returns ski to A1;

- on a query Ocor,2(i) where i ∈ [n], the challenger firstly sets Icor := Icor∪{i}.
If there is some j′ ∈ Iop such that ij′ = i, then there must be some tuple
(j′, i, ski) ∈ Iop-sk, and in this case the challenger sets Icor-sk := Icor-sk∪{(i,
ski)}, and returns ski to A2; otherwise, it sets Icor-sk := Icor-sk ∪ {(i, ski)},
and returns ski to A2;

- on a query Oop(j) where j ∈ [t], the challenger firstly sets Iop := Iop ∪ {j}.
If ij ∈ Icor, there must be some tuple (ij , skij ) ∈ Icor-sk, and in this case
the challenger sets Iop-sk := Iop-sk ∪ {(j, ij , skij )}, and returns skij to A2;
otherwise, it sets Iop-sk := Iop-sk ∪ {(j, ij , skij )}, and returns skij to A2.
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Since all the secret keys (ski)i∈[n] are generated at the beginning and will
not be updated during the proceedings of G−1, the modifications introduced in
game G0 do not change A’s view. Hence, Pr[D(G0) = 1] = Pr[D(G−1) = 1].

Game Gî (̂i ∈ [n]): For all î ∈ [n], Gî is the same as Gî−1, except that

(1) when generating the challenge ciphertexts, if there is some j′ ∈ [t] such that
(ij′ /∈ Icor) ∧ (ij′ = î), the challenger generates (c∗j′,γ)γ∈[k] with algorithm
Fake instead of Enc, i.e., ((c∗j′,γ , td∗j′,γ)←$ Fake(pp))γ∈[k];

(2) for A2’s each Ocor,2 oracle query i, if there is some j′ ∈ [t] satisfying (j′ /∈
Iop) ∧ (ij′ = î), the challenger returns sk′ij′ ←$ Openk(pp, tkij′ , pkij′ , skij′ ,

(c∗j′,γ , td
∗
j′,γ ,m

∗
j′,γ)γ∈[k]) to A2; otherwise, it answers this query as in Gî−1;

(3) for A2’s each Oop oracle query j, if the corresponding ij satisfies (ij /∈
Icor) ∧ (ij = î), the challenger returns sk′ij ← $ Openk(pp, tkij , pkij , skij ,

(c∗j,γ , td
∗
j,γ ,m

∗
j,γ)γ∈[k]) to A2; otherwise, it answers this query as in Gî−1.

Game Gn+î (̂i ∈ [n]): For all î ∈ [n], game Gn+î is the same as Gn+î−1, except
that for A2’s each Odec oracle query (i, c), if (∃(ij , c∗j,γ) ∈ C s.t. ij = î ∧ c∗j,γ =
c) ∧ (i /∈ Icor), the challenger returns ⊥ to A2; otherwise, it answers this query
as in game Gn+î−1.

We present the following two lemmas whose proofs are given in Appendix
C.1 and C.2.

Lemma 1. For each î ∈ [n], |Pr[D(Gî) = 1]−Pr[D(Gî−1) = 1]| ≤ Advkmnc-cca
KM-NCE,B,k(λ)

for some PPT adversary B.

Lemma 2. For each î ∈ [n], |Pr[D(Gn+î) = 1] − Pr[D(Gn+î−1) = 1]| ≤ t · k ·
ϵrob
KM-NCE(λ).

Note that in game G2n, (i) when generating the challenge ciphertexts, for each
j ∈ [t] such that ij /∈ Icor, the corresponding challenge ciphertexts (c∗j,γ)γ∈[k] are
generated with algorithm Fake; (ii) any Ocor,2 oracle query i ∈ [n] such that
i = ij′ for some j′ /∈ Iop is answered with algorithm Openk; (iii) any Oop oracle
query j ∈ [t] such that ij /∈ Icor is answered with algorithms Openk; (iv) any
Odec oracle query (i, c) is answered with ⊥ if there is some j ∈ [t] and γ ∈ [k]
such that (ij , c

∗
j,γ = c) ∈ C and c∗j,γ is generated with algorithm Fake. Now, a

PPT simulator S = (S1,S2) can be constructed as in Fig. 5.
Since S simulates G2n perfectly for A, we derive that

Expac-rso&c-cca-ideal
PKE,S,n,t,k (λ) = G2n.

Therefore, Advac-rso&c-cca
PKE,A,S,D,n,t,k(λ) = |Pr[D(G−1) = 1]− Pr[D(G2n) = 1]|

≤ n ·Advkmnc-cca
KM-NCE,B′,k(λ) + n · t · k · ϵrob

KM-NCE(λ) (1)

for some PPT adversary B′. This completes the proof of Theorem 1. ■
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S
O(s)

cor,1
1 (1λ) :

pp←$ Setup(1λ); ((pki, ski, tki)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; Iop-sk := ∅; Icor-sk := ∅; CS := ∅; (Dist, st)←$ AOcor,1,Odec
1 (pp, (pki)i∈[n])

stS = (pp, (pki, ski, tki)i∈[n], Iop, Icor, Iop-sk, Icor-sk, CS ,Dist, st)
Return (Dist, stS)

S
O(s)

cor,2,O
(s)
op

2 (Mcor, stS) :

For j ∈ [t]:
If ∃ (j, ij , (m

∗
j,γ)γ∈[k]) ∈Mcor: (c∗j,γ ←$ Enc(pp, pkij ,m∗

j,γ))γ∈[k]

Else: ((c∗j,γ , td
∗
j,γ)←$ Fake(pp))γ∈[k]; CS := CS ∪ {c∗j} // the information about td∗j is stored by S2

out←$ AOcor,2,Oop,Odec
2 ((c∗j,γ)j∈[t],γ∈[k], st)

Return out

On query Ocor,1(i):
If i /∈ [n]: Return ⊥
O(s)

cor,1(i); Icor := Icor ∪ {i}; Icor-sk := Icor-sk ∪ {(i, ski)}
Return ski

On query Ocor,2(i):
If i /∈ [n]: Return ⊥
resp←$ O(s)

cor,2(i); Icor := Icor ∪ {i}
If resp = (j′, ij′ = i, (m∗

j′,γ)γ∈[k]) for some j′:
If j′ ∈ Iop: //in this case, there must be some (j′, ij′ , skij′ ) ∈ Iop-sk

Icor-sk := Icor-sk ∪ {(i, skij′ )}; Return skij′

Else:
sk′

ij′
←$ Openk(pp, tkij′ , pkij′ , skij′ , (c

∗
j′,γ , td

∗
j′,γ ,m

∗
j′,γ)γ∈[k]); Icor-sk := Icor-sk ∪ {(i, sk′

ij′
)}

Return sk′
ij′

If resp = NULL:
Icor-sk := Icor-sk ∪ {(i, ski)}; Return ski

On query Oop(j):
If j /∈ [t]: Return ⊥
(ij ,m

∗
j )←$ O(s)

op (j); Iop := Iop ∪ {j}
If ij ∈ Icor: //in this case, there must be some (ij , skij ) ∈ Icor-sk

Iop-sk := Iop-sk ∪ {(j, ij , skij )}; Return (skij , (m
∗
j,γ)γ∈[k])

Else:
sk′

ij ←$ Openk(pp, tkij , pkij , skij , (c∗j,γ , td∗j,γ ,m∗
j,γ)γ∈[k]); Iop-sk = Iop-sk ∪ {(j, ij , sk′

ij )}
Return (sk′

ij ,m
∗
j )

On query Odec(i, c):
If ∃ (j, ij , (m

∗
j,γ)γ∈[k]) ∈Mcor s.t. (i = ij) ∧ (c ∈ {c∗j,γ | γ ∈ [k]}): Return ⊥

If (c ∈ CS) ∨ (i ∈ Icor) ∨ (∃ j′ ∈ Iop s.t. i = ij′): Return ⊥
m := Dec(pp, ski, c)

Return m

Fig. 5 Simulator S = (S1,S2) in the proof of Theorem 1.

5 KM-NCE from Key-Openable Hash Proof System

In this section, we present a generic construction of KM-NCE that is needed in
the AC-RSOk&C secure PKE construction in Sect. 4.2. Our main building block
is a new variant of Hash Proof System (HPS), called Key-Openable HPS. We
firstly recall the definition of HPS from [CS02], and then formalize our new Key-
Openable HPS. Next, we show how to construct KM-NCE from Key-Openable
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HPS. Jumping ahead, we will give concrete instantiations of Key-Openable HPS
from the matrix decisional Diffie-Hellman assumption in Sect. 6.

5.1 Recall: Hash Proof System

In this subsection, we recall the formal definition of HPS according to [CS02]. For
applications in constructing KM-NCE, we require that HPS has two parameter
generation algorithms, a master parameter generation algorithm MPar and an
(ordinary) parameter generation algorithm Par.

Definition 6 (Hash Proof System). A hash proof system HPS = (MPar,Par,
Pub,Priv) consists of a tuple of PPT algorithms:

– mpar ←$ MPar(1λ): The master parameter generation algorithm outputs a
master public parameter mpar, which implicitly defines the universe set X
and the hash value space Π.

We assume that there are PPT algorithms for sampling x←$ X uniformly
and sampling π ←$ Π uniformly. We require mpar to be an implicit input of
other algorithms.

– par←$ Par(mpar): The (ordinary) parameter generation algorithm takes mpar
as input, and outputs an (ordinary) public parameter par, which implicitly
defines (L,SK,PK, Λ(·), α), where L ⊆ X is an NP-language, SK is the
hashing key space, PK is the projection key space, Λ(·) : X −→ Π is a family
of hash functions indexed by a hashing key sk ∈ SK, and α : SK −→ PK is
the projection function.

We assume that Λ(·) and α are efficiently computable and there are PPT
algorithms for sampling x ←$ L uniformly together with a witness w, and
sampling sk←$ SK uniformly. We require par to be an implicit input of other
algorithms.

– π ← Pub(pk, x, w): The public evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ L, with the help of a projection key pk = α(sk) and
a witness w for x ∈ L.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of HPS requires that, for all possible
mpar ←$ MPar(1λ) and par ←$ Par(mpar), all hashing keys sk ∈ SK with pk :=
α(sk) the corresponding projection key, all x ∈ L with all possible witnesses w,
it holds that Pub(pk, x, w) = Λsk(x) = Priv(sk, x).

HPS is associated with a subset membership problem (SMP), which asks
whether an element is uniformly chosen from L or X . SMP can be extended to
multi-fold SMP by considering multiple elements.

Definition 7 (Multi-fold SMP). The multi-fold SMP related to HPS is hard,
if for any PPT adversaryA and any polynomial Q, it holds that AdvQ-msmp

HPS,A (λ) :=



18 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng∣∣ Pr[A(mpar, par, {xγ}γ∈[Q]) = 1] − Pr[A(mpar, par, {x′γ}γ∈[Q]) = 1]
∣∣ ≤ negl(λ),

where mpar ←$ MPar(1λ), par ←$ Par(mpar), xγ ←$ L and x′γ ←$ X for each
γ ∈ [Q].

Tag-based HPS. We recall a tag-based variant of HPS from [CS02, QLC15], by
allowing the hash functions Λ(·) to have an additional element called label/tag
as input. More precisely, in a tag-based HPS, the public parameter par also
implicitly defines a tag space T . Meanwhile, the hash functions Λ(·), the public
evaluation algorithm Pub and the private evaluation algorithm Priv also take
a tag τ ∈ T as input. Accordingly, perfect correctness requires Pub(pk, x, w,
τ) = Λsk(x, τ) = Priv(sk, x, τ) for all tags τ ∈ T .

5.2 Key-Openable HPS

We present the formal definition of our new Key-Openable HPS.

Definition 8 (Key-Openable Hash Proof System). Let k ∈ N. A key-
openable hash proof system HPS = (MPar,Par,Pub,Priv,HOpenk) consists of a
tuple of PPT algorithms:

– (MPar,Par,Pub,Priv) is a hash proof system as per Definition 6. Recall that
the master parameter mpar output by MPar(1λ) implicitly defines (X ,Π),
and there are PPT algorithms for sampling x←$ X uniformly and sampling
π ←$ Π uniformly. We denote by RX and RΠ the randomness spaces for
sampling x←$ X and π ←$ Π respectively.

– In addition to public parameter par, Par(mpar) also outputs a trapdoor in-
formation td, which will be later used by HOpenk.

– sk′/⊥ ←$ HOpenk(td, pk, sk, (xγ , rxγ , πγ , rπγ )γ∈[k]): The hashing key opening
algorithm takes as input the trapdoor td, a projection key pk ∈ PK, a hashing
key sk ∈ SK satisfying pk = α(sk), and k tuples (xγ , rxγ

, πγ , rπγ
)γ∈[k] where

xγ ∈ X with sampling randomness rxγ
∈ RX and πγ ∈ Π with sampling

randomness rπγ
∈ RΠ for each γ ∈ [k], and outputs another hashing key

sk′ ∈ SK satisfying pk = α(sk′) and πγ = Λsk′(xγ) for each γ ∈ [k], or a
special symbol ⊥ indicating the failure of opening.

Tag-based Key-Openable HPS. A key-openable HPS = (MPar,Par,Pub,Priv,
HOpenk) is a tag-based key-openable HPS, if (MPar,Par,Pub,Priv) is a tag-based
HPS (cf. Sect. 5.1), and HOpenk also takes a set of tags (τγ)γ∈[k] as input so
that its output sk′ satisfies pk = α(sk′) and πγ = Λsk′(xγ , τγ) for each γ ∈ [k].

Below we define a new statistical property for (tag-based) key-openable HPS,
called openabilityk. It stipulates the statistical indistinguishability between (sk(0),

(π
(0)
γ )γ∈[k]) and (sk(1), (π

(1)
γ )γ∈[k]), where sk(0) is a uniformly sampled hashing

key, π(0)
γ = Λsk0(xγ) for xγ ←$ X with randomness rxγ

, π(1)
γ is uniformly sampled

from Π with randomness r
π
(1)
γ

, and sk(1) is generated by HOpenk(td, pk, sk
(0),

(xγ , rxγ
, π

(1)
γ , r

π
(1)
γ

)γ∈[k]). Here the subscript k indicates the opening of hashing
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Exp
openk
HPS,A(λ):

mpar←$ MPar(1λ), (par, td)←$ Par(mpar). sk←$ SK, pk := α(sk).
For γ ∈ [k], xγ ←$ X with sampling randomness rxγ .
(τγ)γ∈[k] ←$ A(mpar, par, td, pk, (xγ , rxγ )γ∈[k]).
For γ ∈ [k], π

(0)
γ := Λsk(xγ , τγ ).

For γ ∈ [k], π
(1)
γ ←$ Π with sampling randomness r

π
(1)
γ

.
sk(0) := sk. sk(1) ←$ HOpenk(td, pk, sk, (xγ , rxγ , π

(1)
γ , r

π
(1)
γ

, τγ )γ∈[k]).
b←$ {0, 1}.
b′ ←$ A(mpar, par, td, pk, (xγ , rxγ , π

(b)
γ )γ∈[k], sk

(b)).
If b′ = b: Return 1; Else: Return 0.

Fig. 6 Experiment for defining the Openabilityk property of (tag-based) key-openable
HPS, where the framed parts only appear in the experiment for tag-based HPS.

Exp
univk+1

HPS,A (λ):
mpar←$ MPar(1λ), (par, td)←$ Par(mpar). sk←$ SK, pk := α(sk).
For γ ∈ [k], xγ ←$ X .
(τγ)γ∈[k] ←$ A(mpar, par, pk, (xγ)γ∈[k]).
For γ ∈ [k], πγ := Λsk(xγ , τγ).
(x, τ, π)←$ A(mpar, par, pk, (xγ , πγ)γ∈[k]).
If (x ∈ X \ L) ∧ (τ /∈ {τγ}γ∈[k]) ∧ (π = Λsk(x, τ)): Return 1; Else: Return 0.

Fig. 7 Experiment for the Universalk+1 property of tag-based key-openable HPS.

key w.r.t. k hash values. For tag-based key-openable HPS, the adversary can
additionally determine the tags (τγ)γ∈[k] w.r.t. which the hash values are com-
puted. It is not hard to see that this property implies the usual smoothness
property of HPS [CS02] and also implies that L is a sparse subset of X .

Definition 9 (Openabilityk). A (tag-based) key-openable HPS is openablek,
if for any (unbounded) adversary A, it holds that ϵopenk

HPS,A(λ) := |Pr[Exp
openk

HPS,A(λ)

= 1]− 1/2| ≤ negl(λ), where Exp
openk

HPS,A(λ) is defined in Fig. 6.

Next we define a statistical property for tag-based HPS, called universalk+1,
which is an extension of the universal2 property proposed in [CS02].

Definition 10 (Universalk+1). A tag-based key-openable HPS is universalk+1,
if for any (unbounded) adversary A, it holds that ϵunivk+1

HPS,A (λ) := Pr[Exp
univk+1

HPS,A (λ)

= 1] ≤ negl(λ), where Exp
univk+1

HPS,A (λ) is defined in Fig. 7.

Finally, we define a statistical property, called efficient randomness resam-
pling on Π, which demands that besides the (aforementioned) sampling algo-
rithm of Π which samples uniform element π ∈ Π with sampling randomness rπ,
there is a randomness resampling algorithm ReSmpΠ that takes as input π ∈ Π
and outputs a sampling randomness rπ. These two ways of sampling/resampling
are statistically indistinguishable.
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pp←$ Setup(1λ):
mpar←$ MPar(1λ). m̃par←$ M̃Par(1λ).
// mpar implicitly defines (X , Π).
// m̃par implicitly defines (X , Π̃).
H ←$ H.

Return pp := (mpar, m̃par, H).

(pk, sk, tk)←$ Gen(pp):
(par, td)←$ Par(mpar). (p̃ar, t̃d)←$ P̃ar(m̃par).
// par implicitly defines (L,SK,PK, Λ(·), α).
// p̃ar implicitly defines (L, S̃K, P̃K, Λ̃(·), α̃, T ).
sk←$ SK, pk := α(sk).
s̃k←$ S̃K, p̃k := α̃(s̃k).

Return (pk := (par, p̃ar, pk, p̃k), sk := (sk, s̃k),

tk := (td, t̃d)).

c←$ Enc(pp, pk,m ∈ Π):
x←$ L with witness w.
d := Pub(pk, x, w) +m ∈ Π.
τ := H(x, d) ∈ T .
π̃ := P̃ub(p̃k, x, w, τ) ∈ Π̃.

Return c := (x, d, π̃).

m/⊥ ← Dec(pp, sk, c):
Parse c = (x, d, π̃).
τ := H(x, d) ∈ T .
If π̃ ̸= Λ̃s̃k(x, τ): Return ⊥.
m := d− Λsk(x) ∈ Π.

Return m.

(c, td)←$ Fake(pp):
x←$ X with sampling randomness rx.
d←$ Π.
π̃ ←$ Π̃ with sampling randomness rπ̃.

Return (c := (x, d, π̃), td := (rx, rπ̃)).

sk′ ←$ Openk(pp, tk, pk, sk, (cγ , tdγ ,mγ ∈ ERΠ)γ∈[k]):
Parse tk = (td, t̃d), cγ = (xγ , dγ , π̃γ), tdγ = (rxγ , rπ̃γ ).
For γ ∈ [k], eγ := dγ −mγ ∈ Π.

reγ ←$ ReSmpΠ(eγ).
// Note that reγ is an samp. rand. for eγ ∈ Π.
sk′ ←$ HOpenk(td, pk, sk, (xγ , rxγ , eγ , reγ )γ∈[k]).
For γ ∈ [k], τγ := H(xγ , dγ) ∈ T .
s̃k

′
←$ H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ , π̃γ , rπ̃γ , τγ)γ∈[k]).

Return sk′ := (sk′, s̃k
′
).

Fig. 8 Construct. of KM-NCE = (Setup,Gen,Enc,Dec,Fake,Openk) from HPS, H̃PS,H.

Definition 11 (Efficient Randomness Resampling on Π). The hash value
space Π of HPS supports efficient randomness resampling, if there exists a PPT
algorithm ReSmpΠ , s.t. the statistical distance ϵΠ-resmp

HPS (λ) := ∆((π, rπ), (π
′,

r′π′)) ≤ negl(λ), where mpar ←$ MPar(1λ), π ←$ Π with sampling randomness
rπ, π′ ←$ Π and r′π′ ←$ ReSmpΠ(π′).

5.3 Generic Construction of KM-NCE from Key-Openable HPS

The building blocks for constructing KM-NCE are as follows.

– Let HPS = (MPar,Par,Pub,Priv,HOpenk) be a key-openable HPS, whose
hash value space Π is an (additive) group and has an efficient randomness
resampling algorithm ReSmpΠ .

– Let H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk) be a tag-based key-openable HPS,
which shares same universe X and same language L with HPS.

– Let H = {H : X ×Π → T } be a family of collision-resistant hash functions
(cf. Definition 16 in Appendix A.2), where Π is the hash value space of HPS
and T is the tag space of H̃PS.

We present the generic construction of KM-NCE = (Setup,Gen,Enc,Dec,Fake,

Openk) from HPS, H̃PS and H in Fig. 8. The message space is Π. Note that
our generic construction of KM-NCE from key-openable HPS is reminiscent of
[HLLG19], which constructs PKE scheme from another variant of HPS (the so-
called quasi-adaptive HPS).

The perfect correctness of KM-NCE follows from those of HPS and H̃PS di-
rectly. Next, we show its KMNCk-CCA security.
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Theorem 2 (KMNCk-CCA security of KM-NCE). Assume that (1) HPS is
openablek, has a hard multi-fold SMP, supports efficient randomness resampling
on Π, (2) H̃PS is universalk+1 and openablek, (3) H is collision-resistant. Then
the KM-NCE in Fig. 8 is KMNCk-CCA secure.

Concretely, for any PPT adversary A against the KMNCk-CCA security of
KM-NCE that makes at most Qd decryption queries, there exist PPT adversaries
B1, B2 and unbounded adversaries B3, B4, B5, s.t.

Advkmnc-cca
KM-NCE,A,k(λ) ≤ Advk-msmp

HPS,B1
(λ) + 2 ·Advcr

H,B2
(λ) + 2Qd · ϵ

univk+1

H̃PS,B3

(λ) (2)

+ 2ϵ
openk

HPS,B4
(λ) + 2ϵ

openk

H̃PS,B5

(λ) + 2k · ϵΠ-resmp
HPS (λ).

Proof of Theorem 2. We prove the theorem by defining a sequence of games
G0-G8, with G0 = Expkmnc-cca-real

KM-NCE,A,k (λ) and G8 = Expkmnc-cca-sim
KM-NCE,A,k (λ), and show-

ing adjacent games indistinguishable. By Pri[·] we denote the probability of a
particular event occurring in game Gi.
Game G0: This is the Expkmnc-cca-real

KM-NCE,A,k (λ) experiment. Thus, Pr[G0 = 1] =

Pr[Expkmnc-cca-real
KM-NCE,A,k (λ) = 1].

In this game, when receiving (m∗γ)γ∈[k] from A, the challenger generates c∗γ
using the real encryption algorithm Enc(pp, pk,m∗γ). More precisely, it samples
x∗γ ←$ L with witness w∗γ , computes d∗γ := Pub(pk, x∗γ , w

∗
γ) + m∗γ , τ∗γ := H(x∗γ ,

d∗γ), π̃∗γ := P̃ub(p̃k, x∗γ , w
∗
γ , τ
∗
γ ), and sets c∗γ := (x∗γ , d

∗
γ , π̃
∗
γ). It returns (c∗γ)γ∈[k]

to A. When answering decryption queries Odec(c) for A with c = (x, d, π̃), the
challenger computes τ := H(x, d), and outputs ⊥ immediately if c ∈ {c∗γ}γ∈[k] ∨
π̃ ≠ Λ̃s̃k(x, τ). Otherwise, it computes m := d − Λsk(x) and returns m to A. In
the last step of this game, the challenger sends the real secret key sk = (sk, s̃k)
to A.
Game G1: It is the same as G0, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger computes d∗γ and π̃∗γ using sk = (sk, s̃k) instead

of using the witness w∗γ of x∗γ . Namely, d∗γ := Λsk(x
∗
γ) + m∗γ and π̃∗γ := Λ̃s̃k(x

∗
γ ,

τ∗γ ). By the perfect correctness of HPS and H̃PS, this change is conceptual. So
Pr[G1 = 1] = Pr[G0 = 1].
Game G2: It is the same as G1, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples x∗γ ←$ X instead of x∗γ ←$ L. Note that

neither the witness w∗γ of x∗γ (if x∗γ ←$ L) nor the sampling randomness rx∗
γ

of
x∗γ (if x∗γ ←$ X ) is needed in G1 and G2, thus it is straightforward to construct a
PPT adversary B1 against the multi-fold SMP, such that |Pr[G2 = 1]−Pr[G1 =

1]| ≤ Advk-msmp
HPS,B1

(λ).
Game G3: It is the same as G2, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a new rejection rule: it
outputs ⊥ immediately if τ ∈ {τ∗γ }γ∈[k], where τ = H(x, d) and τ∗γ = H(x∗γ , d

∗
γ)

for each γ ∈ [k].
Let Bad denote the event that A ever queries Odec(c) with c = (x, d, π̃), such

that (x, d) /∈ {(x∗γ , d∗γ)}γ∈[k] but τ ∈ {τ∗γ }γ∈[k]. We first show that G2 and G3 are
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identical if Bad does not occur, i.e., either (x, d) = (x∗γ0
, d∗γ0

) for some γ0 ∈ [k]
or τ /∈ {τ∗γ }γ∈[k]. In the case that (x, d) = (x∗γ0

, d∗γ0
) for some γ0 ∈ [k], Odec(c)

would be rejected both in G2 and G3 due to c = c∗γ0
∈ {c∗γ}γ∈[k]∨π̃ ̸= Λ̃s̃k(x, τ). In

the case that τ /∈ {τ∗γ }γ∈[k], the new rejection rule added in G3 does not apply, so
Odec(c) is the same in G2 and G3. Overall, G2 and G3 are identical when Bad does
not occur, thus by the difference lemma, |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Pr3[Bad].

To bound Pr3[Bad], it is straightforward to construct a PPT adversary B2
against the collision resistance of H, so that Pr3[Bad] ≤ Advcr

H,B2
(λ). Conse-

quently, |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advcr
H,B2

(λ).
Game G4: It is the same as G3, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a second new rejection rule:
it outputs ⊥ immediately if x ∈ X \ L. We note that this new rule may not
be PPT checkable, thus the challenger may not be PPT. This does not matter,
since the following arguments (before this rule is removed) are statistical.

Let Forge denote the event that A ever queries Odec(c) with c = (x, d, π̃), such
that τ /∈ {τ∗γ }γ∈[k], π̃ = Λ̃s̃k(x, τ) but x ∈ X \L. Clearly, G3 and G4 are identical
unless Forge occurs, thus by the difference lemma, |Pr[G4 = 1] − Pr[G3 = 1]| ≤
Pr4[Forge].

To bound Pr4[Forge], we analyze the information about s̃k that A may obtain
in game G4 before it finishes the Odec queries: A obtains p̃k = α(s̃k) in pk and
obtains {π̃∗γ = Λ̃s̃k(x

∗
γ , τ
∗
γ )}γ∈[k] in {c∗γ}γ∈[k]; for Odec queries, the challenger will

not output m unless x ∈ L (due to the new rejection rule added in G4), thus
Odec reveals nothing about s̃k beyond p̃k = α(s̃k).

Then by the universalk+1 property of tag-based H̃PS, for one Odec(c) query
made by A, it holds that τ /∈ {τ∗γ }γ∈[k], π̃ = Λ̃s̃k(x, τ) but x ∈ X \ L with
probability at most ϵ

univk+1

H̃PS,B3

(λ). By a union bound over at most Qd number of
Odec queries, we get that Pr4[Forge] ≤ Qd · ϵ

univk+1

H̃PS,B3

(λ). Thus, |Pr[G4 = 1] −

Pr[G3 = 1]| ≤ Qd · ϵ
univk+1

H̃PS,B3

(λ). For completeness, we provide a description of the
reduction algorithm B3 in Appendix C.3.
Game G5: It is the same as G4, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples d∗γ ←$ Π uniformly (instead of d∗γ :=

Λsk(x
∗
γ) +m∗γ). Moreover, in the last step of this game, the challenger computes

e∗γ := d∗γ −m∗γ ∈ Π and resamples re∗γ ←$ ReSmpΠ(e∗γ) for each γ ∈ [k], then
invokes sk′ ←$ HOpenk(td, pk, sk, (x

∗
γ , rx∗

γ
, e∗γ , re∗γ )γ∈[k]), and sends (sk′, s̃k) to A.

We have the following lemma whose proof is given in Appendix C.4.

Lemma 3. There exists an unbounded B4 against the openablek property of
HPS, s.t. |Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2 · ϵopenk

HPS,B4
(λ) + 2k · ϵΠ-resmp

HPS (λ).

Game G6: It is the same as G5, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples π̃∗γ ←$ Π̃ uniformly with randomness

rπ̃∗
γ

(instead of π̃∗γ := Λ̃s̃k(x
∗
γ , τ
∗
γ )). Moreover, in the last step of this game,
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the challenger computes s̃k
′
←$ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ , rx∗

γ
, π̃∗γ , rπ̃∗

γ
, τ∗γ )γ∈[k]), and

sends (sk′, s̃k
′
) to A. We have the following lemma. The proof of this lemma is

similar to that of Lemma 3, and is given in Appendix C.5.

Lemma 4. There exists an unbounded B5 against the openablek property of
tag-based H̃PS, s.t. |Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2 · ϵopenk

H̃PS,B5

(λ).

Game G7: It is the same as G6, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the second new rejection
rule added in G4. In other words, it does not check whether x ∈ L or x ∈ X \ L
anymore. We note that the challenger in G7 is now PPT again.

The change from G6 to G7 is symmetric to that from G3 to G4. By a similar
argument, we get |Pr[G7 = 1]− Pr[G6 = 1]| ≤ Qd · ϵ

univk+1

H̃PS,B3

(λ).

Game G8: It is the same as G7, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the first new rejection
rule added in G3. In other words, it does not check whether τ ∈ {τ∗γ }γ∈[k] or not
anymore.

The change from G7 to G8 is symmetric to the change from G2 to G3. Similarly,
we have that |Pr[G8 = 1]− Pr[G7 = 1]| ≤ Advcr

H,B2
(λ).

Finally, we note that G8 is exactly the Expkmnc-cca-sim
KM-NCE,A,k (λ) experiment.

– For each γ ∈ [k], c∗γ := (x∗γ , d
∗
γ , π̃
∗
γ), where x∗γ ←$ X with sampling random-

ness rx∗
γ
, d∗γ ←$ Π, and π̃∗γ ←$ Π̃ with randomness rπ̃∗

γ
, the same as the c∗γ

generated by Fake(pp).
– Odec(c) queries are answered by Dec(pp, sk, c) when c /∈ {c∗γ}γ∈[k].
– In the last step, (sk′, s̃k

′
) is generated by first computing e∗γ := d∗γ −m∗γ ∈ Π

and resampling re∗γ ←$ ReSmpΠ(e∗γ) for each γ ∈ [k], then invoking sk′ ←
$ HOpenk(td, pk, sk, (x

∗
γ , rx∗

γ
, e∗γ , re∗γ )γ∈[k]) and s̃k

′
←$ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ ,

rx∗
γ
, π̃∗γ , rπ̃∗

γ
, τ∗γ )γ∈[k]) with τ∗γ := H(x∗γ , d

∗
γ), the same as Openk(pp, tk, pk, sk,

(c∗γ , rc∗γ ,m
∗
γ)γ∈[k]) where rc∗γ = (rx∗

γ
, rπ̃∗

γ
).

Thus, Pr[G8 = 1] = Pr[Expkmnc-cca-sim
KM-NCE,A,k (λ) = 1].

Taking all things together, we obtain (2), thus Theorem 2 follows. ■
Finally, we show the robustness.

Theorem 3 (Robustness of KM-NCE). The proposed KM-NCE in Fig. 8 is
robust (cf. Definition 5) with ϵrob

KM-NCE(λ) ≤ 1/|Π̃|, where Π̃ is the hash value
space of H̃PS.

Proof of Theorem 3. For pp←$ Setup(1λ), (pk, sk, tk)←$ Gen(pp), (c, td)←
$ Fake(pp), we analyze the probability ϵrob

KM-NCE(λ) = Pr[Dec(pp, sk, c) ̸= ⊥].

– For (pk, sk, tk)←$ Gen(pp), we have sk = (sk, s̃k) where s̃k←$ S̃K.
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– For (c, td) ←$ Fake(pp), we have c = (x, d, π̃) where x ←$ X , d ←$ Π and
π̃ ←$ Π̃.

– Then in Dec(pp, sk, c), it first checks whether or not π̃ = Λ̃s̃k(x, τ) holds,
where τ := H(x, d), and returns ⊥ if the check fails.

Since π̃ is uniformly chosen from Π̃ and independent of x, d and s̃k, so the check
π̃ = Λ̃s̃k(x, τ) passes with probability 1/|Π̃|. Overall, we have ϵrob

KM-NCE(λ) =

Pr[Dec(pp, sk, c) ̸= ⊥] ≤ Pr[π̃ = Λ̃s̃k(x, τ)] = 1/|Π̃|. ■

6 Concrete Instantiations
In this section, we show concrete instantiations of key-openable HPS based on
the matrix decisional Diffie-Hellman (MDDH) assumption [EHK+13]. As a re-
sult, we can obtain concrete instantiations of KM-NCE, which in turn yields
AC-RSOk&C-CCA secure PKE schemes with compact ciphertexts. For certain
instantiation, the resulting PKE can even achieve tight AC-RSOk&C-CCA se-
curity.

6.1 Recall: Matrix Distribution
We recall the definition of matrix distribution defined in [EHK+13].

In this section, we use bold uppercase letters to represent matrices and bold
lowercase letters to represent (column) vectors. Let GGen be a PPT algorithm
that on input 1λ returns G = (G, q, P ), a description of an (additive) cyclic
group G with a generator P of order q which is a λ-bit prime. For a ∈ Zq, define
[a] := aP ∈ G as the implicit representation of a in G. More generally, for a
matrix A = (aij) ∈ Zn×m

q , we define [A] as the implicit representation of A
in G, i.e., [A] := (aijP ) ∈ Gn×m. Note that from [a] ∈ G it is generally hard
to compute the value a (discrete logarithm problem is hard in G). Obviously,
given [a], [b] ∈ G and a scalar x ∈ Z, one can efficiently compute [ax] ∈ G and
[a + b] ∈ G. Similarly, for A ∈ Zm×n

q ,B ∈ Zn×t
q ,AB ∈ Zm×t

q , given [A],B
one can efficiently compute [A]B := [AB] ∈ Gm×t and given A, [B], one can
efficiently compute A[B] := [AB] ∈ Gm×t.
Definition 12 (Matrix Distribution). Let d, k ∈ N+. Dd+k,d is called a ma-
trix distribution if it outputs matrices in Z(d+k)×d

q of full rank d in polynomial
time.

As in [EHK+13], let Ud+k,d be the uniform distribution over Z(d+k)×d
q . With-

out loss of generality, for A ← $ Dd+k,d, we assume that A (the upper square
submatrix of A) is invertible.
Definition 13 (The Dd+k,d-Matrix Decision Diffie-Hellman Assumption,
Dd+k,d-MDDH). Let Dd+k,d be a matrix distribution. The Dd+k,d-Matrix Deci-
sion Diffie-Hellman (Dd+k,d-MDDH) Assumption holds relative to GGen if for
each PPT adversary A, the advantage

Advmddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]|
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is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ Dd+k,d,
w←$ Zd

q and u←$ Zd+k
q .

As shown in [EHK+13], Dd+k,d-MDDH assumption is a generalization of a
large range of assumptions. By setting the matrix distribution Dℓ,k to specific
distributions, Dd+k,d-MDDH assumption can capture DDH assumption, k-Linear
assumption, k-Cascade assumption and many other assumptions.

The MDDH assumption can be generalized into a multi-instance version. We
recall the Q-fold MDDH assumption as defined in [EHK+13].

Definition 14 (Q-fold Dd+k,d-Matrix Decision Diffie-Hellman Assump-
tion). Let Q be a positive integer and Dd+k,d be a matrix distribution. The Q-fold
Dd+k,d-Matrix Decision Diffie-Hellman Assumption holds relative to GGen if for
each PPT adversary A, the advantage

AdvQ-mddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [AW]) = 1]− Pr[A(G, [A], [U]) = 1]|

is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ Dd+k,d,

W←$ Zd×Q
q and U←$ Z(d+k)×Q

q .

6.2 Openablek HPS Instantiation

In this subsection, we provide a key-openable HPS instantiation with openablek
and efficient randomness resampling properties based on the MDDH assumption.
This HPS can be seen as a generalization of the DDH-based HPS in [CS02].
Inspired by the technique in [HKM+18, HJR16], we are able to make the hash
value space of our HPS to be compact and efficient randomness resamplable.
Meanwhile, this does not affect the openability of our HPS.

More precisely, fixing some group generation algorithm GGen, some positive
integers d, k, some matrix distribution Dd+k,d and some polynomial l = l(λ)
(which can be set as the desired message length of the PKE scheme), consider
HPS = (MPar,Par,Pub,Priv,HOpenk) in the following.

– MPar(1λ). The master parameter generation algorithm runs G = (G, q,
P ) ← $ GGen(1λ). Let Hu = {Hu : G → {0, 1}} be a family of universal
hash functions based on group G. The algorithm selects Hu ← $ Hu and
returns mpar := (G, d, k, l,Dd+k,d,Hu) which implicitly defines the instance
space X := Gd+k with randomness space RX := Zd+k

q and the hash value
space Π := {0, 1}l with randomness space RΠ := Zl

q. Given mpar, one can ef-
ficiently sample a uniform element x from X by selecting rx = x←$ RX and
setting x := [rx] = [x]. For simplicity, we define an efficiently computable
function Hu,l : Gl → {0, 1}l where Hu,l([a]) := (Hu([a1]), · · · ,Hu([al])) for all
[a] = [a1, · · · , al] ∈ Gl. Then, one can also efficiently sample a uniform ele-
ment π from Π by selecting rπ = π ←$ RΠ and setting π := Hu,l([π]) ∈ Π.
(Actually, π is only statistical close to uniform. According to the leftover hash
lemma (Lemma 6 in Appendix A.3) together with the union bound, the sta-
tistically distance between π and uniform distribution over Π is bounded by
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l
2

√
2
q , which is exponentially small for polynomially bounded l. Therefore,

we omit this statistical distance here.)
– Par(mpar). The (ordinary) parameter generation algorithm selects matrix

A ∈ Z(d+k)×d
q ←$ Dd+k,d, then it returns par := [A] and td := A.

The public parameter par (together with mpar) implicitly defines the lan-
guage as L := [span(A)] = {[Aw] | w ∈ Zd

q}. The hashing key space
SK := Z(d+k)×l

q and the projection key space PK := Gd×l. The projec-
tion function α maps sk = S ∈ SK to pk = [P] ∈ PK where [P] = [A⊤]S
and α is efficiently computable given par and sk. For sk = S ∈ SK, the hash
function Λsk(·) maps an element x = [x] ∈ X to Hu,l(S

⊤[x]) ∈ Π and it is
efficiently computable given sk and x.
Given par, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Zd

q and computing
x = [x] = [A]w.

– Pub(pk, x, w). Given public key pk = [P] ∈ PK, an instance x = [x] =
[Aw] ∈ L, and its witness w = w, the public evaluation algorithm outputs
π = Hu,l([P

⊤]w) ∈ Π.
– Priv(sk, x). Given secret key sk = S ∈ SK and x = [x] ∈ X , the private

evaluation algorithm outputs π = Hu,l(S
⊤[x]) ∈ Π.

– HOpenk(td, pk, sk, (xγ , rxγ , πγ , rπγ )γ∈{1,··· ,k}). Given td = A, pk = [P], sk =

S, xγ = [xγ ], rxγ
= xγ , πγ = Hu,l([πγ ]) and rπγ

= πγ ∈ Zl
q for all γ ∈ {1,

· · · , k}, the open algorithm computes sk′ = S′ ∈ Z(d+k)×l
q by solving the

following system of linear equations,

S′⊤ (A | x1 | · · · | xk) = (S⊤A | π1 | · · · | πk) mod q. (3)

Note that, given td = A and the randomnesses (rxγ = xγ)γ∈{1,··· ,k}, one can
easily compute the square matrix M = (A | x1 | · · · | xk) ∈ Z(d+k)×(d+k)

q .
If M is invertible, one can compute and output

S′⊤ = (S⊤A | π1 | · · · | πk) ·M−1 mod q.

If M is not invertible, algorithm HOpenk outputs ⊥.

Note that the hash value space Π = {0, 1}l is an additive group with group
operation ⊕ (string xor). We define its randomness resample algorithm ReSmpΠ
in Fig. 9.

Theorem 4. The above instantiation HPS (1) is a key-openable HPS; (2) has
a hard multi-fold SMP under the multi-fold Dd+k,d-MDDH assumption (i.e., for
any PPT adversaryA, there exists a PPT adversary B such that Advk-msmp

HPS,A (λ) ≤
Advk-mddh

Dd+k,d,GGen,B(λ)); (3) is openablek and (4) supports efficient randomness re-
sampling on Π with algorithm ReSmpΠ .

We put the proof of Theorem 4 in Appendix C.6.
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ReSmpΠ(b = (b1, · · · , bl) ∈ {0, 1}l):
//Implicit input: Hu ∈ mpar

For i ∈ {1, · · · , l}:
ri ←$ OnebitReSmp(Hu, bi)

Return r := (r1, · · · , rl)

OnebitReSmp(Hu, bi ∈ {0, 1}):
For j ∈ {1, · · · , λ}:

rj ←$ Zq

If Hu([rj ]) = bi: Return rj
Return ⊥

Fig. 9 Randomness resample algorithm ReSmpΠ for hash value space Π = {0, 1}l of
the hash proof system HPS. The algorithm OnebitReSmp will return ⊥ and terminate
after λ iterations, which makes it a polynomial-time algorithm.

6.3 Openablek and Universalk+1 Tag-based HPS Instantiation

In this subsection, we provide a tag-based key-openable HPS instantiation with
both openablek and universalk+1 properties based on the MDDH assumption.
This tag-based HPS can be seen as a generalization of the tag-based HPS from
the DDH assumption in [CS02]. More precisely, fixing some group generation
algorithm GGen, some positive integers d, k and some matrix distribution Dd+k,d,
consider instantiation H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk) in the following.

– M̃Par(1λ). The master parameter generation algorithm runs G = (G, q, P )←
$ GGen(1λ) and returns m̃par := (G, d, k,Dd+k,d) which implicitly defines the
instance space X := Gd+k with randomness space RX := Zd+k

q and the hash
value space Π̃ := G with randomness space RΠ̃ := Zq.6 Given mpar, one can
efficiently sample a uniform element x from X by selecting rx = x ←$ RX
and set x = [rx] = [x]. One can also efficiently sample a uniform element π̃

from Π̃ by selecting rπ̃ ←$ RΠ̃ and set π̃ = [rπ̃].
– P̃ar(m̃par). The (ordinary) parameter generation algorithm selects matrix

A ∈ Z(d+k)×d
q ←$ Dd+k,d, then it returns p̃ar := [A] and t̃d := A.

The public parameter p̃ar (together with m̃par) implicitly defines the lan-
guage as L := [span(A)] = {[Aw] | w ∈ Zd

q}.7 The hashing key space
S̃K := Z2d+2k

q and the projection key space P̃K := G2d. The projection

function α̃ maps s̃k = s =

(
s1
s2

)
∈ S̃K (where s1, s2 ∈ Zd+k

q ) to p̃k = [p] =[
p1

p2

]
=

[
A⊤

A⊤

]
s ∈ P̃K (where [pi] =

[
A⊤si

]
∈ Gd for i ∈ {1, 2}) and

α̃ is efficiently computable given p̃ar and s̃k. The tag space is T := Zq. For
s̃k = s ∈ S̃K, the hash function Λ̃s̃k(·, ·) maps an element x = [x] ∈ X

together with a tag τ ∈ T to π̃ = s⊤
[
x
τx

]
=

[
s⊤1 x+ τs⊤2 x

]
∈ Π̃ and it is

efficiently computable given s̃k, x and τ .
6 To get an instantiation H̃PS which satisfies the conditions of Theorem 2, H̃PS needs

to share the same universe set X with HPS. In that way, we can set (G, d, k,Dd+k,d)
in m̃par to be exactly the same with the ones in mpar.

7 Similarly, we set p̃ar := par and t̃d := td to make sure H̃PS shares the same language
L with HPS.
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Given p̃ar, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Zd

q and computing
x = [x] = [Aw].

– P̃ub(p̃k, x, w, τ ). Given public key p̃k = [p], witness w = w of instance
x = [Aw] and tag τ , the public evaluation algorithm outputs the hash value

π̃ =
[
p⊤

]( w
τw

)
.

– P̃riv(s̃k, x, τ). Given secret key s̃k = s, x = [x] and tag τ , the private evalua-

tion algorithm outputs π̃ = s⊤
[
x
τx

]
.

– H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ
, π̃γ , rπ̃γ

, τγ)γ∈{1,··· ,k}). Given trapdoor t̃d = A,
public key p̃k = [p], secret key s̃k = s, instance xγ = [xγ ] with random-
ness rxγ = xγ , hash value π̃γ = [rπ̃γ

] with randomness rπ̃γ
and tag τγ for all

γ ∈ {1, · · · , k}, the open algorithm computes s̃k
′
= s′ ∈ Z2d+2k

q by solving
the following system of linear equations.

s′⊤E = (s⊤1 A, s⊤2 A, rπ̃1
, · · · , rπ̃k

) mod q, E =

(
A x1 · · · xk

A τ1x1 · · · τkxk

)
.

(4)
Matrix E has 2d+ 2k rows and 2d+ k columns.
• If matrix (A | x1 | · · · | xk) has full column rank d + k, then matrix
E has full column rank 2d + k and there are qk possible solutions for
s′ to make Equation (4) hold. Algorithm H̃Openk selects and outputs a
uniformly random solution.

• Otherwise, algorithm H̃Openk outputs ⊥.
Note that given t̃d = A, tags (τγ)γ∈{1,··· ,k} and the randomnesses (rxγ =
xγ)γ∈{1,··· ,k}, one can easily compute the matrix E. The right hand side of

Equation (4) is also efficiently computable given s̃k =

(
s1
s2

)
and random-

nesses (rπ̃γ
)γ∈{1,··· ,k}.

Theorem 5. The above instantiation H̃PS (1) is a tag-based key-openable HPS;
(2) is universalk+1 and (3) is openablek.

We put the proof of Theorem 5 in Appendix C.7.

6.4 Concrete AC-RSOk&C-CCA secure PKE Instantiation

We instantiate our PKE scheme by plugging the instantiations, HPS in Section
6.2 and H̃PS in Section 6.3, into the generic KM-NCE construction in Fig. 8.
By Theorem 1, we immediately get a PKE instantiation that can achieve AC-
RSOk&C-CCA security in the standard model with compact ciphertexts. If we
set the matrix distribution Dd+k,d (i.e., the matrix distribution used to sample
matrix A by the key generation algorithm Gen) to be uniform matrix distribution
Ud+k,d, the resulting PKE can achieve tight AC-RSOk&C-CCA security.
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Setup(1λ) :

G := (G, q, P )←$ GGen(1λ)
Hu ←$ {Hu : G→ {0, 1}}
H ←$ {H : Gd+k × {0, 1}l → Zq}

Return pp := (G, d, k, l,Dd+k,d,Hu, H)

Gen(pp) :

A ∈ Z(d+k)×d
q ←$ Dd+k,d

S←$ Z(d+k)×l
q ,P := A⊤S

s1, s2 ←$ Zd+k
q

p1 := A⊤s1,p2 := A⊤s2
pk := ([A], [P], [p1], [p2])

sk := (S, s1, s2)

Return (pk, sk)

Enc(pp, pk,m) :

w ←$ Zd
q , x := [A]w ∈ Gd+k

d := Hu,l([P
⊤]w)⊕m ∈ {0, 1}l

τ := H(x, d) ∈ Zq

π̃ := [p⊤
1 ]w + τ [p⊤

2 ]w ∈ G
Return c := (x, d, π̃)

Dec(pp, sk, c) :

Parse c = (x = [x], d, π̃)

τ := H(x, d) ∈ Zq

If π̃ ̸= s⊤1 [x] + τs⊤2 [x]: Return ⊥
Return m := d⊕ Hu,l(S

⊤[x])

Fig. 10 Concrete AC-RSOk&C-CCA secure PKE instantiation.

Fixing some group generation algorithm GGen, some positive integers d, k,
some matrix distribution Dd+k,d and some polynomial l = l(λ), the instantiation
PKE = (Setup,Gen,Enc,Dec) with message space {0, 1}l is shown in Fig. 10. This
scheme can be viewed as a generalization of the DDH-based scheme in [HKM+18,
Fig. 3] and both schemes are variants of the Cramer-Shoup encryption scheme
[CS02].

We can see that, for the PKE scheme in Fig. 10, the ciphertext length is
(d + k + 1) × |G| + l for messages of length l and the ciphertext overhead is
the size of a constant number of group elements (since d and k are both fixed
constants), which is also independent of the message length. This suggests that
the PKE instantiation in Fig. 10 has compact ciphertexts [HJR16, HKM+18].

We note that our PKE can achieve tight AC-RSOk&C-CCA security for cer-
tain instantiation. Taking a closer look at the AC-RSOk&C-CCA security of our
MDDH-based PKE instantiation, we obtain the following inequality by com-
bining equation (1) in Theorem 1, equation (2) in Theorem 2 and Theorem 4
together.

Advac-rso&c-cca
PKE,A,S,D,n,t,k(λ) ≤ n ·Advkmnc-cca

KM-NCE,B′,k(λ) + n · t · k · ϵrob
KM-NCE(λ)

≤ n ·Advk-mddh
Dd+k,d,GGen,B1

(λ) + 2n ·Advcr
H,B2

(λ) + 2Qdn · ϵ
univk+1

H̃PS,B3

(λ) + 2n · ϵopenk

HPS,B4
(λ)

+ 2n · ϵopenk

H̃PS,B5

(λ) + 2kn · ϵΠ-resmp
HPS (λ) + n · t · k · ϵrob

KM-NCE(λ). (5)

The 2Qdn ·ϵ
univk+1

H̃PS,B3

(λ)+ 2n ·ϵopenk

HPS,B4
(λ)+2n ·ϵopenk

H̃PS,B5

(λ)+2kn ·ϵΠ-resmp
HPS (λ)+

n · t · k · ϵrob
KM-NCE(λ) part in equation (5) does not affect tightness of the reduc-

tion since it is statistically small. Only reductions to computational properties
matter to tightness of the reduction, i.e., the term n ·Advk-mddh

Dd+k,d,GGen,B1
(λ)+2n ·

Advcr
H,B2

(λ). This security loss n and 2n are introduced because 1) in the proof
of Theorem 1 (KMNCk-CCA + robustness ⇒ AC-RSOk&C-CCA), we handle
one user at a time with n game transitions (cf. Lemma 1), and in each transi-
tion, a term Advkmnc-cca

KM-NCE,B′
1,k

(λ) is incurred; 2) according to Theorem 2, the term
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Advkmnc-cca
KM-NCE,B′

1,k
(λ) contains Advk-msmp

HPS,B′′
1
(λ) + 2 ·Advcr

H,B2
(λ); and 3) according

to Theorem 4, Advk-msmp
HPS,B′′

1
(λ) ≤ Advk-mddh

Dd+k,d,GGen,B1
(λ).

Alternatively, if we set the matrix distribution to be uniform matrix distribu-
tion (i.e., Dd+k,d := Ud+k,d), we can avoid such security loss by integrating the
proofs of Theorem 1, Theorem 2 and Theorem 4. We can handle the n reductions
to the k-fold Ud+k,d-MDDH assumption (i.e., n ·Advk-mddh

Ud+k,d,GGen,B1
(λ)) and the

2n reductions to the collision-resistance of H (i.e., 2n · Advcr
H,B2

(λ)) for all n
users at one time (while keeping the reductions to other statistical properties
unchanged, namely one user at a time). Specifically,

– we can change all the kn ciphertexts (of all n users) at one time, corre-
sponding to the game transition G1 to G2 in the proof of Theorem 2, and the
indistinguishability can be reduced to the Ud+k,d-MDDH assumption using
Lemma 5 in below;

– we can handle collisions of all users at one time, corresponding to the game
transitions G2 to G3 and G7 to G8 in the proof of Theorem 2.

With this strategy, we obtain a tight reduction with Advmddh
Ud+k,d,GGen,B1

(λ) +

2 · Advcr
H,B2

(λ), instead of n · Advk-mddh
Ud+k,d,GGen,B1

(λ) + 2n · Advcr
H,B2

(λ), to the
computational properties. Thus, the PKE scheme enjoys tight security reduction.

Lemma 5. For any adversary A, any positive integer d, k, n, any matrix distri-
bution Dd+k,d and any group generation algorithm GGen, we define the advantage
Adv

(n,k)-mddh
Dd+k,d,GGen,A(λ) :=∣∣Pr[A(G, ([Ai], [Xi])

n
i=1) = 1]− Pr[A(G, ([Ai], [X

′
i])

n
i=1) = 1]

∣∣
where G ← $ GGen(1λ),Ai ← $ Dd+k,d,Wi ← $ Zd×k

q ,Xi := AiWi and X′i ←
$ Z(d+k)×k

q for all i ∈ {1, · · · , n}. Then, for any PPT adversary A and uniform
matrix distribution Ud+k,d, there exists a PPT adversary B such that

Adv
(n,k)-mddh
Ud+k,d,GGen,A(λ) ≤ Advmddh

Ud+k,d,GGen,B(λ) +
k + 1

q − 1
. (6)

We put the proof of Lemma 5 in Appendix C.8.
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Appendix
A More Definitions
A.1 Public Key Encryption Scheme
We recall the formal definition of public key encryption scheme here.
Definition 15. A public key encryption scheme PKE = (Setup,Gen,Enc,Dec)
with message space M consists of four algorithms.

– Setup. The PPT setup algorithm on input the security parameter 1λ outputs
a public parameter pp, which can be used for multiple users.

– Gen. The PPT key generation algorithm on input the public parameter pp
outputs a pair of public key and secret key (pk, sk).

– Enc. The polynomial time encryption algorithm on input pp, a public key pk
and a message m ∈M, outputs a ciphertext c.

– Dec. The deterministic polynomial time decryption algorithm on input pp, a
secret key sk and a ciphertext c, either outputs a message m ∈M or outputs
a failure symbol ⊥.

PKE has perfect correctness if Dec(pp, sk, c) = m for all pp ←$ Setup(1λ), all
(pk, sk)←$ Gen(pp), all m ∈M and all c←$ Enc(pp, pk,m).

A.2 Collision-Resistant Hash Function
Definition 16 (Collision-Resistant Hash Function). A family of hash func-
tions H is collision-resistant, if for any PPT adversary A, the following advan-
tage is negligible in λ

Advcr
H,A(λ) := Pr[x1 ̸= x2 ∧H(x1) = H(x2)|H ←$ H(1λ), (x1, x2)←$ A(H)].
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A.3 Universal Hash Function and Leftover Hash Lemma

Definition 17 (Universal Hash Function [WC81]). A family of hash func-
tions H = {H : X → Y} is universal, if for all x, x′ ∈ X with x ̸= x′, it holds
that

Pr[H(x) = H(x′) | H←$ H] ≤ 1

|Y|
.

Lemma 6 (Leftover Hash Lemma [HILL99]). Let H = {H : X → Y} be a
family of universal hash functions. Then it holds that

∆((H,H(X)), (H, Y )) ≤ 1

2
·

√
|Y|
|X |

where H←$ H, X ←$ X , Y ←$ Y and ∆(·) denotes the statistical distance.

B Some security notions

We recall the notion of simulation-based receiver selective opening security in
the multi-challenge setting [YLH+20] as follows. Here we recall the version that
the adversary is granted multiple opening queries. Without loss of generality, we
implicitly assume that all the messages are the same size.

Definition 18. (SIM-RSOk-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is SIM-RSOk-ATK secure (where ATK ∈ {CPA,CCA}), if for
any polynomially bounded n > 0, and any PPT adversary A = (A1,A2), there
is a PPT simulator S = (S1,S2), such that for any PPT distinguisher D, the
advantage Advsim-rso-atk

PKE,A,S,D,n,k(λ) :=

|Pr[D(Expsim-rso-atk-real
PKE,A,n,k (λ)) = 1]− Pr[D(Expsim-rso-atk-ideal

PKE,S,n,k (λ)) = 1]|

is negligible, where Expsim-rso-atk-real
PKE,A,n,k (λ) and Expsim-rso-atk-ideal

PKE,S,n,k (λ) are defined in
Fig. 11, and atk ∈ {cpa, cca}. In both of the experiments, we require that for all
Distm output by A1 and S1, Distm is efficiently samplable.

When k = 1, SIM-RSOk-CPA/CCA security is standard simulation-based
receiver selective opening (SIM-RSO-CPA/CCA) security [HPW15, HKM+18,
HLC+19].

Next, we recall the ANON-COR security [BGG+20], as follows.

Definition 19. (ANON-COR). A PKE scheme PKE = (Setup,Gen,Enc,Dec)
is anonymous under selective opening attacks (ANON-COR secure), if for any
ϵ > 0, any λ < {t,Q} < n(1−ϵ) and any PPT adversary A, A wins the following
game with only negligible probability:

(1) The challenger runs pp←$ Setup(1λ), generates ((pki, ski)←$ Gen(pp))i∈[n],
and sends (pp, (pki)i∈[n]) to A.

(2) A sends t messages (m∗1, · · · ,m∗t ) to the challenger.
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Expsim-rso-cpa-real
PKE,A,n,k (λ), Expsim-rso-cca-real

PKE,A,n,k (λ) :

pp←$ Setup(1λ)
((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; C := ∅

(Dist, st)←$ A
Odec
1 (pp, (pki)i∈[n])

(m∗
i,γ)i∈[n],γ∈[k] ←$ Distm

(c∗i,γ ←$ Enc(pp, pki,m∗
i,γ))i∈[n],γ∈[k]

C := {(i, c∗i,γ) | i ∈ [n], γ ∈ [k]}

out←$ A
Oop, Odec
2 ((c∗i,γ)i∈[n],γ∈[k], st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, out)

Oop(i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (ski, (m

∗
i,γ)γ∈[k])

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If i ∈ Iop: Return ⊥
m := Dec(pp, ski, c)
Return m

Expsim-rso-cpa-ideal
PKE,S,n,k (λ), Expsim-rso-cca-ideal

PKE,S,n,k (λ):
Iop := ∅
(Distm, st)←$ S1(1λ)
(m∗

i,γ)i∈[n],γ∈[k] ←$ Distm

out←$ SO(s)
op

2 (st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, out)

O(s)
op (i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (m∗

i,γ)γ∈[k]

Fig. 11 Experiments for defining SIM-RSOk-CPA/CCA security of a PKE scheme
PKE.

(3) The challenger randomly samples t distinct indexes {i1, · · · , it} ⊂ [n], com-
putes (c∗j ← Enc(pp, pkij ,m

∗
j ))j∈[t], and sends (c∗j )j∈[t] to A.

(4) A adaptively chooses indexes i′1, · · · , i′Q ∈ [n] one at a times, and receives
ski′ℓ for each i′ℓ (ℓ ∈ [Q]).

(5) A wins the game if he opens more than Q
n + ϵ fraction of the ciphertext-

encrypting keys indexed by A.

C Omitted Proofs

C.1 Proof of Lemma 1
Proof of Lemma 1. We construct a KMNCk-CCA adversary B against scheme
KM-NCE as follows.

On input of (pp, pk), B sets pk̂i := pk and maintains five sets Iop, Icor,
Iop-sk, Icor-sk, C, which are initially empty. For all indices i ∈ {1, . . . , n} \ {̂i},
B generates (pki, ski, tki)←$ Gen(pp). It finally sends (pp, (pki)i∈[n]) to A1. A1

adaptively issues Ocor,1,Odec oracle queries and B answers the queries as follows.
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– On query Ocor,1(i) where i ∈ [n], if i = î, B aborts and outputs a random
bit as B’s final output; otherwise B returns ski and sets Icor := Icor ∪ {i},
Icor-sk := Icor-sk ∪ {(i, ski)}.

– On query Odec(i, c), if i ∈ Icor, B returns ⊥; else if i = î, B invokes its own
decryption oracle on c; else (i.e., i ̸= î), B returns Dec(pp, ski, c).

In the challenge phase, A1 submits a distribution Dist. B first samples (ij ,

(m∗j,γ)γ∈[k])j∈[t] ←$ Dist. If there does not exist any j′ ∈ [t] such that ij′ = î,
B aborts and outputs a random bit; else (i.e., there is some j′ ∈ [t] such that
ij′ = î), B returns (m∗γ)γ∈[k] := (m∗j′,γ)γ∈[k] to its KMNCk-CCA challenger.

Receiving the challenge ciphertexts (c∗γ)γ∈[k] from the KMNCk-CCA chal-
lenger, B generates the challenge ciphertexts for A as follows. For each j ∈ [t],
if (ij ∈ Icor) ∨ (n ≥ ij > î), B computes (c∗j,γ ←$ Enc(pp, pkij ,m∗j,γ))γ∈[k]; else
if ij < î, B computes ((c∗j,γ , td

∗
j,γ) ←$ Fake(pp))γ∈[k]; else (i.e., ij = î), B sets

(c∗j,γ)γ∈[k] := (c∗γ)γ∈[k]. Finally, B sends (c∗j,γ)j∈[t],γ∈[k] to A2 and sets C = {(ij ,
c∗j,γ) | j ∈ [t], γ ∈ [k]}.

After receiving the challenge ciphertexts (c∗j,γ)j∈[t],γ∈[k], A2 adaptively issues
Ocor,2,Oop,Odec oracle queries and B answers the queries as follows.

– On query Ocor,2(i) where i ∈ [n], if there is some j′ ∈ [t] such that ij′ = i, B
proceeds as follows:
1. If j′ ∈ Iop, then there must be some tuple (j′, ij′ = i, ski) ∈ Iop-sk, and B

returns ski to A2, and sets Icor := Icor∪{i}, Icor-sk := Icor-sk∪{(i, ski)}.
2. Else if (j′ /∈ Iop) ∧ (i = î), B sets ski = sk′ and Icor := Icor ∪ {i},
Icor-sk := Icor-sk∪{(i, ski)}, where sk′ is B’s challenge secret key obtained
from its KMNCk-CCA challenger, and returns ski to A2.

3. Else if (j′ /∈ Iop)∧(i < î), B returns ski ←$ Openk(pp, tki, pki, ski, (c
∗
j′,γ ,

td∗j′,γ ,m
∗
j′,γ)γ∈[k]) to A2, and sets Icor := Icor∪{i}, Icor-sk := Icor-sk∪{(i,

ski)}.
4. Else (i.e., (j′ /∈ Iop) ∧ (i > î)), B returns ski to A2, and sets Icor :=
Icor ∪ {i}, Icor-sk := Icor-sk ∪ {(i, ski)}.

Otherwise (i.e., there does not exist any j′ ∈ [t] satisfying ij′ = i), B proceeds
as follows:
1. If i = î, B aborts and outputs a random bit.
2. Else (i.e., i ̸= î), B returns ski and sets Icor := Icor ∪ {i}, Icor-sk :=
Icor-sk ∪ {(i, ski)}.

– On query Oop(j) where j ∈ [t], B firstly sets Iop := Iop ∪ {j}. If ij ∈ Icor,
there must be some tuple (ij , skij ) ∈ Icor-sk, and B returns skij to A2;
otherwise (i.e., ij /∈ Icor), B proceeds as follows:
1. If ij = î, B sets skij := sk′ and Iop-sk := Iop-sk∪{(j, ij , skij )}, where sk′

is B’s challenge secret key obtained from its KMNCk-CCA challenger,
and returns skij to A2.

2. Else if ij < î, B returns skij ← $ Openk(pp, tkij , pkij , skij , (c
∗
j,γ , td

∗
j,γ ,

m∗j,γ)γ∈[k]) to A2, and sets Iop-sk := Iop-sk ∪ {(j, ij , skij )}.
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3. Else (i.e., ij > î), B returns skij to A2, and sets Iop-sk := Iop-sk ∪{(j, ij ,
skij )}.

– On query Odec(i, c), if (i ∈ Icor) ∨ (∃j′ ∈ Iop s.t. i = ij′) ∨ ((i, c) ∈ C), it
returns ⊥; else if i = î, B invokes its own decryption oracle on c; else (i.e.,
i ̸= î), B returns Dec(pp, ski, c).

At last, receivingA2’s final output out, B computes b′ ←$ D((ij , (m∗j,γ)γ∈[k])j∈[t],
Dist, Iop, Icor, out), and returns b′ as its own final output.

That’s the construction of the KMNCk-CCA adversary B. Now we compute
B’s advantage.

We say that an event Evt̂i occurs, if (i) for A1’s each Ocor,1 oracle query
i ∈ [n], i ̸= î, and (ii) for the sampled tuple (ij , (m

∗
j,γ)γ∈[k])j∈[t], there is some

j ∈ [t] such that ij = î. Note that if Evt̂i does not occur, B will return a random
bit as its final output.

For simplicity, we use Ereal
B (resp. Esim

B ) to denote Expkmnc-cca-real
KM-NCE,B,k (λ) (resp.

Expkmnc-cca-sim
KM-NCE,B,k (λ)). Thus, we obtain that

Advkmnc-cca
KM-NCE,B,k(λ)

= |Pr[Ereal
B = 1]− Pr[Esim

B = 1]| (7)
= |(Pr[Ereal

B = 1|Evt̂i] · Pr[Evt̂i] + Pr[Ereal
B = 1|¬Evt̂i] · Pr[¬Evt̂i])

−(Pr[Esim
B = 1|Evt̂i] · Pr[Evt̂i] + Pr[Esim

B = 1|¬Evt̂i] · Pr[¬Evt̂i])| (8)
= |Pr[Ereal

B = 1|Evt̂i]− Pr[Esim
B = 1|Evt̂i]| · Pr[Evt̂i] . (9)

Eq. (9) is derived because Pr[Ereal
B = 1|¬Evt̂i] = Pr[Esim

B = 1|¬Evt̂i] = 1
2 .

On the other hand, recalling the descriptions of Game Gî and Game Gî−1,
we notice that when Evt̂i does not occur, Gî and Gî−1 are identical from A’s
point of view. As a result,

Pr[D(Gî) = 1|¬Evt̂i] = Pr[D(Gî−1) = 1|¬Evt̂i] .

Hence, we obtain that

|Pr[D(Gî) = 1]− Pr[D(Gî−1) = 1]|
= |(Pr[D(Gî) = 1|Evt̂i] · Pr[Evt̂i] + Pr[D(Gî) = 1|¬Evt̂i] · Pr[¬Evt̂i])
−(Pr[D(Gî−1) = 1|Evt̂i] · Pr[Evt̂i] + Pr[D(Gî−1) = 1|¬Evt̂i] · Pr[¬Evt̂i])|

= |Pr[D(Gî) = 1|Evt̂i]− Pr[D(Gî−1) = 1|Evt̂i]| · Pr[Evt̂i] . (10)

Observe that, B does not abort (and return a random bit) if and only if Evt̂i
occurs. If B does not abort, it perfectly simulates game Gî or Gî−1 for A and D,
and B’s final output is D’s output, i.e.,

Pr[Ereal
B = 1|Evt̂i] = Pr[D(Gî−1) = 1|Evt̂i] , (11)

Pr[Esim
B = 1|Evt̂i] = Pr[D(Gî) = 1|Evt̂i] . (12)
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Combining Eqs. (10)-(12), we obtain that

|Pr[D(Gî) = 1]− Pr[D(Gî−1) = 1]|

= |Pr[Esim
B = 1|Evt̂i]− Pr[Ereal

B = 1|Evt̂i]| · Pr[Evt̂i]. (13)

Hence, combining Eqs. (9) and (13), we finish the proof of Lemma 1. □

C.2 Proof of Lemma 2

Proof of Lemma 2. Observe that, the only differences between Gn+î and Gn+î−1 is
that when A2 issues an Odec oracle query (i, c) satisfying (∃(ij , c∗j,γ) ∈ C s.t. ij =
î ∧ c∗j,γ = c ∧ i ̸= î) ∧ (i /∈ Icor), the challenger returns ⊥ to A2 in game Gn+î,
and the challenger returns Dec(pp, ski, c := c∗j,γ) to A2 in game Gn+î−1. Since
KM-NCE is robust and all the challenge ciphertexts are generated with Fake
in Gn+î−1, for any j′ ∈ [t] and any γ′ ∈ [k], Dec(pp, ski, c∗j′,γ′) returns ⊥ with
overwhelming probability. So we obtain that |Pr[D(Gn+î) = 1]−Pr[D(Gn+î−1) =

1]| ≤ t · k · ϵrob
KM-NCE(λ). □

C.3 Full description of B3 in the Proof of Theorem 2

Let Forge denote the event that A ever queries Odec(c) with c = (x, d, π̃), such
that τ /∈ {τ∗γ }γ∈[k], π̃ = Λ̃s̃k(x, τ) but x ∈ X \L. Clearly, G3 and G4 are identical
unless Forge occurs, thus by the difference lemma, |Pr[G4 = 1] − Pr[G3 = 1]| ≤
Pr4[Forge].

To bound Pr4[Forge], we construct an unbounded adversary B3 against the
universalk+1 property of tag-based H̃PS as follows. B3 will simulate G4 for A.

– In the beginning, B3 is given (m̃par, p̃ar, p̃k, (x∗γ)γ∈[k]), where m̃par←$ M̃Par(1λ),
(p̃ar, t̃d)←$ P̃ar(m̃par), s̃k←$ S̃K, p̃k := α̃(s̃k), and x∗γ ←$ X for each γ ∈ [k].

– B3 invokes mpar←$ MPar(1λ), samples H ←$ H, and sets pp := (mpar, m̃par,
H). It then invokes (par, td) ← $ Par(mpar), samples sk ← $ SK, computes
pk := α(sk), and sets pk := (par, p̃ar, pk, p̃k). B3 also computes an s̃k

∗
∈ S̃K

such that p̃k = α̃(s̃k
∗
).

– B3 forwards (pp, pk) to A, and simulates Odec oracle for A as follows. For
Odec(c) query with c = (x, d, π̃), B3 computes τ := H(x, d), and outputs ⊥
immediately if c ∈ {c∗γ}γ∈[k] or τ ∈ {τ∗γ }γ∈[k] or x ∈ X \ L or π̃ ̸= Λ̃s̃k

∗(x, τ)

using s̃k
∗
. Otherwise, it computes m := d − Λsk(x) ∈ Π, and returns m to

A.
– B3 receives (m∗γ)γ∈[k] from A, and prepares (c∗γ := (x∗γ , d

∗
γ , π̃
∗
γ))γ∈[k] as

follows. For each γ ∈ [k], B3 sets x∗γ as the one in its own challenge,
and computes d∗γ := Λsk(x

∗
γ) + m∗γ and τ∗γ := H(x∗γ , d

∗
γ). Then B3 returns

(τ∗γ )γ∈[k] to its own challenger, and receives (π̃∗γ)γ∈[k] from its challenger,
where π̃∗γ := Λ̃s̃k(x

∗
γ , τ
∗
γ ). For each γ ∈ [k], B3 sets π̃∗γ as the one it received

from its own challenge.
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– B3 sends (c∗γ := (x∗γ , d
∗
γ , π̃
∗
γ))γ∈[k] to A, and continues the simulation of Odec

oracle for A as described above.
– Finally, when A finishes all Odec queries and asks for a secret key sk = (sk,

s̃k), B3 terminates the interaction with A. Then B3 randomly picks one Odec
query c = (x, d, π̃) made by A (from all the Qd queries), computes τ := H(x,
d), and outputs (x, τ, π̃) to its own challenger.

Firstly, we claim that B3 perfectly simulates G4 for A except the very last
secret key query.

• Note that B3’s simulation of oracle Odec (using s̃k
∗
) is identical to the Odec in

G4 (using s̃k). The reason is, due to the new rejection rule added in G4, Odec
outputs ⊥ immediately if x ∈ X \ L, and for x ∈ L, Λ̃s̃k

∗(x, τ) = Λ̃s̃k(x, τ)

always holds by the perfect correctness of H̃PS.
• B3’s computation of (c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ))γ∈[k] is identical to that in G4.

Then we analyze the advantage of B3. It is clear to see that B3’s output (x,

τ, π̃) succeeds, i.e., satisfying x ∈ X \L∧τ /∈ {τ∗γ }γ∈[k]∧ π̃ = Λ̃s̃k(x, τ), as long as
Forge occurs and exactly occurs in the Odec query chosen by B3. Consequently,
we get that ϵ

univk+1

H̃PS,B3

(λ) ≥ 1
Qd
· Pr4[Forge].

Overall, |Pr[G4 = 1]− Pr[G3 = 1]| ≤ Pr4[Forge] ≤ Qd · ϵ
univk+1

H̃PS,B3

(λ).

C.4 Proof of Lemma 3

Lemma 3 (G4 → G5) There exists an unbounded B4 against the openablek prop-
erty of HPS, such that |Pr[G5 = 1]−Pr[G4 = 1]| ≤ 2·ϵopenk

HPS,B4
(λ)+2k ·ϵΠ-resmp

HPS (λ).

Proof. We construct an unbounded B4 by invoking A, as shown below.

– In the beginning, B4 is given (mpar, par, td, pk, (x∗γ , rx∗
γ
, π
∗(b)
γ )γ∈[k], sk

(b)), where
mpar←$ MPar(1λ), (par, td)←$ Par(mpar), sk←$ SK, pk := α(sk), x∗γ ←$ X
with randomness rx∗

γ
, π∗(0)γ := Λsk(x

∗
γ), sk(0) := sk, π∗(1)γ ← $ Π with ran-

domness r
π
∗(1)
γ

, sk(1) ← $ HOpenk(td, pk, sk, (x
∗
γ , rx∗

γ
, π
∗(1)
γ , r

π
∗(1)
γ

)γ∈[k]), and
b←$ {0, 1}. B4 is asked to guess the value of b.

– B4 invokes m̃par←$ M̃Par(1λ), samples H ←$ H, and sets pp := (mpar, m̃par,

H). It then invokes (p̃ar, t̃d) ← $ P̃ar(m̃par), samples s̃k ← $ S̃K, computes
p̃k := α̃(s̃k), and sets pk := (par, p̃ar, pk, p̃k). B4 also computes an sk∗ ∈ SK
such that pk = α(sk∗).

– B4 forwards (pp, pk) to A, and simulates Odec oracle for A as follows. For
Odec(c) query with c = (x, d, π̃), B4 computes τ := H(x, d), and outputs ⊥
immediately if c ∈ {c∗γ}γ∈[k] or τ ∈ {τ∗γ }γ∈[k] or x ∈ X \ L or π̃ ̸= Λ̃s̃k(x, τ).
Otherwise, it computes m := d − Λsk∗(x) ∈ Π using sk∗, and returns m to
A.
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– B4 receives (m∗γ)γ∈[k] from A, and prepares (c∗γ := (x∗γ , d
∗
γ , π̃
∗
γ))γ∈[k] as fol-

lows. For each γ ∈ [k], B4 sets x∗γ as the one in its own challenge, com-
putes d∗γ := π

∗(b)
γ +m∗γ using its own challenge π

∗(b)
γ , τ∗γ := H(x∗γ , d

∗
γ), and

π̃∗γ := Λ̃s̃k(x
∗
γ , τ
∗
γ ).

– B4 sends (c∗γ := (x∗γ , d
∗
γ , π̃
∗
γ))γ∈[k] to A, and continues the simulation of Odec

oracle for A as described above.
– Finally, B4 sends (sk(b), s̃k) to A, and receives a bit b′ from A. B4 sends b′

to its own challenger.
We analyze the advantage of B4. Firstly, we note that B4’s simulation of

oracle Odec (using sk∗) is identical to the Odec in G4 and G5 (using sk). The
reason is, due to the new rejection rule added in G4, Odec will not output m
unless x ∈ L, and for x ∈ L, Λsk∗(x) = Λsk(x) always holds by the perfect
correctness of HPS. Next, we claim that B4 perfectly simulates G4 when b = 0,
and simulates G5 with a statistical distance k · ϵΠ-resmp

HPS (λ) when b = 1.

• In the case b = 0, for each γ ∈ [k], d∗γ := π
∗(0)
γ +m∗γ = Λsk(x

∗
γ) +m∗γ , and in

the last step, B4 sends (sk(0) = sk, s̃k). This is the same as G4.
• In the case b = 1, for each γ ∈ [k], d∗γ := π

∗(1)
γ + m∗γ where π

∗(1)
γ ← $ Π

with randomness r
π
∗(1)
γ

, so d∗γ is uniformly distributed over Π, the same
as G5. Moreover, in the last step, B4 sends (sk(1), s̃k) to A, where sk(1) ←
$ HOpenk(td, pk, sk, (x

∗
γ , rx∗

γ
, π
∗(1)
γ , r

π
∗(1)
γ

)γ∈[k]).
Note that in G5, the challenger would compute e∗γ := d∗γ−m∗γ = π

∗(1)
γ and

resample re∗γ ←$ ReSmpΠ(e∗γ) for each γ ∈ [k], invoke sk′ ←$ HOpenk(td, pk,

sk, (x∗γ , rx∗
γ
, e∗γ , re∗γ )γ∈[k]), and send (sk′, s̃k) to A.

By the efficient randomness resampling property on Π, the sampling
randomness r

π
∗(1)
γ

is statistically close to the resampled randomness re∗γ in
G5 with statistical distance ϵΠ-resmp

HPS (λ). Therefore, sk(1) (computed using
(r

π
∗(1)
γ

)γ∈[k]) is statistically close to sk′ (computed using (re∗γ )γ∈[k]) in G5

with statistical distance k · ϵΠ-resmp
HPS (λ).

Overall, in the case b = 1, B4’s simulation is statistical close to G5 with
statistical distance k · ϵΠ-resmp

HPS (λ).
Consequently, we have

ϵ
openk

HPS,B4
(λ) = |Pr[b′ = b]− 1

2 |
= 1

2 · |Pr[b
′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|

≥ 1
2 ·

(
|Pr[G5 = 1]− Pr[G4 = 1]| − k · ϵΠ-resmp

HPS (λ)
)
.

This completes the proof of Lemma 3. □

C.5 Proof of Lemma 4
Lemma 4 (G5 → G6) There exists an unbounded B5 against the openablek prop-
erty of tag-based H̃PS, s.t. |Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2 · ϵopenk

H̃PS,B5

(λ).
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Proof. This proof is similar to the proof of Lemma 3. We construct an unbounded
B5 by invoking A, as shown below.

– In the beginning, B5 is given (m̃par, p̃ar, t̃d, p̃k, (x∗γ , rx∗
γ
)γ∈[k]), where m̃par←

$ M̃Par(1λ), (p̃ar, t̃d) ←$ P̃ar(m̃par), s̃k ←$ S̃K, p̃k := α̃(s̃k), and x∗γ ←$ X
with randomness rx∗

γ
.

– B5 invokes mpar←$ MPar(1λ), samples H ←$ H, and sets pp := (mpar, m̃par,
H). It then invokes (par, td) ← $ Par(mpar), samples sk ← $ SK, computes
pk := α(sk), and sets pk := (par, p̃ar, pk, p̃k). B5 also computes an s̃k

∗
∈ S̃K

such that p̃k = α̃(s̃k
∗
).

– B5 forwards (pp, pk) to A, and simulates Odec oracle for A as follows. For
Odec(c) query with c = (x, d, π̃), B5 computes τ := H(x, d), and outputs ⊥
immediately if c ∈ {c∗γ}γ∈[k] or τ ∈ {τ∗γ }γ∈[k] or x ∈ X \ L or π̃ ̸= Λ̃s̃k

∗(x, τ)

using s̃k
∗
. Otherwise, it computes m := d − Λsk(x) ∈ Π, and returns m to

A.
– B5 receives (m∗γ)γ∈[k] from A, and prepares (c∗γ := (x∗γ , d

∗
γ , π̃
∗
γ))γ∈[k] as fol-

lows. For each γ ∈ [k], B5 sets x∗γ as the one in its own challenge, sam-
ples d∗γ ← $ Π, and computes τ∗γ := H(x∗γ , d

∗
γ). Then B5 returns (τ∗γ )γ∈[k]

to its own challenger, and receives ((π̃
∗(b)
γ )γ∈[k], s̃k

(b)
) from its challenger,

where π̃
∗(0)
γ := Λ̃s̃k(x

∗
γ , τ
∗
γ ), s̃k

(0)
:= s̃k, π̃∗(1)γ ←$ Π̃ with randomness r

π̃
∗(1)
γ

,

s̃k
(1)
← $ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ , rx∗

γ
, π̃
∗(1)
γ , r

π̃
∗(1)
γ

, τ∗γ )γ∈[k]), and b ← $ {0, 1}.
B5 is asked to guess the value of b. For each γ ∈ [k], B5 sets π̃∗γ := π̃

∗(b)
γ

contained in its own challenge.
– B5 sends (c∗γ := (x∗γ , d

∗
γ , π̃
∗
γ))γ∈[k] to A, and continues the simulation of Odec

oracle for A as described above.
– Finally, B5 computes e∗γ := d∗γ −m∗γ ∈ Π and resamples re∗γ ←$ ReSmpΠ(e∗γ)

for each γ ∈ [k], invokes sk′ ← $ HOpenk(td, pk, sk, (x
∗
γ , rx∗

γ
, e∗γ , re∗γ )γ∈[k]),

sends (sk′, s̃k
(b)

) to A, and receives a bit b′ from A. B5 sends b′ to its own
challenger.

We analyze the advantage of B5. Firstly, we note that B5’s simulation of
oracle Odec (using s̃k

∗
) is identical to the Odec in G5 and G6 (using s̃k). The

reason is, due to the new rejection rule added in G4, Odec outputs ⊥ immediately
if x ∈ X \ L, and for x ∈ L, Λ̃s̃k

∗(x, τ) = Λ̃s̃k(x, τ) always holds by the perfect
correctness of H̃PS. Next, we claim that B5 perfectly simulates G5 when b = 0,
and perfectly simulates G6 when b = 1.

• In the case b = 0, for each γ ∈ [k], π̃∗γ := π̃
∗(0)
γ = Λ̃s̃k(x

∗
γ , τ
∗
γ ), and in the last

step, B5 sends (sk′, s̃k
0)

= s̃k) to A. This is the same as G5.
• In the case b = 1, for each γ ∈ [k], π̃∗γ := π̃

∗(1)
γ ← $ Π̃ with randomness

r
π̃
∗(1)
γ

, the same as G6. Moreover, in the last step, B5 sends (sk′, s̃k
(1)

), where
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s̃k
(1)
← $ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ , rx∗

γ
, π̃
∗(1)
γ , r

π̃
∗(1)
γ

, τ∗γ )γ∈[k]), also the same as
G6.

Consequently, we have

ϵ
openk

H̃PS,B5

(λ) = |Pr[b′ = b]− 1
2 |

= 1
2 · |Pr[b

′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|
= 1

2 · |Pr[G6 = 1]− Pr[G5 = 1]|.

This completes the proof of Lemma 4. □

C.6 Proof of Theorem 4
Proof of Theorem 4. First of all, for any mpar = (G, d, k, l,Dd+k,d,Hu), any
par = [A], any sk = S ∈ SK and pk = [P] ∈ PK where [P] = α(sk) = [A⊤S], if
x = [x] = [Aw] ∈ L with witness w = w, then

Pub(pk, x, w) = Hu,l([P
⊤]w) = Hu,l([S

⊤Aw]) = Hu,l(S
⊤[x]) = Priv(sk, x).

Thus, the instantiation HPS in Section 6.2 is a valid hash proof system with
perfect correctness.

Next, we prove the following claim which states that the instantiation HPS
has a hard k-fold SMP under the k-fold Dd+k,d-MDDH assumption.
Claim. For any PPT adversary A, there exists a PPT adversary B such that

Advk-msmp
HPS,A (λ) ≤ Advk-mddh

Dd+k,d,GGen,B(λ).

Proof of Claim. The construction of B is straightforward. After getting inputs (G,
[A], [X]) where G = (G, q, P )←$ GGen(1λ),A←$ Dd+k,d and [X] ∈ G(d+k)×k, B
selects Hu ←$ Hu and sets mpar = (G, d, k, l,Dd+k,d,Hu), par = [A] and returns
A(mpar, par, [X]).

If every column of X is uniformly chosen from span(A), then A gets properly
distributed public parameters together with k uniform elements from language
L. If every column of X is uniformly chosen from Zd+k

q , then [X] is uniformly
distributed over X k. Thus, the claim follows. □

Next, we show that if algorithm HOpenk does not output ⊥, then the out-
putted key sk′ is correct. More precisely, we prove the following claim.
Claim. For any mpar ←$ MPar(1λ), any (par, td) ←$ Par(mpar), any secret key
sk ∈ SK with its public key pk := α(sk), any instances (xγ)γ∈{1,··· ,k} ∈ X k

with their sampling randomnesses (rxγ )γ∈{1,··· ,k} ∈ (RX )
k, any hash values

(πγ)γ∈{1,··· ,k} ∈ Πk with their sampling randomness (rπγ )γ∈{1,··· ,k} ∈ (RΠ)k

and any sk′ ←$ HOpenk(td, pk, sk, (xγ , rxγ , πγ , rπγ )γ∈{1,··· ,k}), if sk′ ̸= ⊥, then it
holds that

pk = α(sk′) and πγ = Λsk′(xγ) for all γ ∈ {1, · · · , k}.
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Proof of Claim. For any par = [A] with trapdoor td = A, any sk = S ∈ SK,
pk = [P] = [A⊤S], any xγ = [xγ ] ∈ X with sampling randomness rxγ = xγ , any
πγ = Hu,l([πγ ]) ∈ Π with randomness rπγ = πγ ∈ RΠ for all γ ∈ {1, · · · , k},
and any sk′ ←$ HOpenk(td, pk, sk, (xγ , rxγ

, πγ , rπγ
)γ∈{1,··· ,k}), if sk′ = S′ ∈ SK

is not ⊥, S′ is the (only) solution to the linear equation system (3). So it
holds that S′⊤A = S⊤A = P⊤ mod q and S′⊤xγ = πγ mod q. This implies
pk = [P] = [A⊤]S′ = α(sk′) and πγ = Hu,l([πγ ]) = Hu,l(S

′⊤[xγ ]) = Λsk′(xγ) for
all γ ∈ {1, · · · , k}. Thus, instantiation HPS is a valid key-openable hash proof
system and the above claim follows. □

Next we prove the following claim which shows that HPS is openablek.

Claim. For any (unbounded) adversary A, ϵopenk

HPS,A(λ) ≤
k

q
.

Proof of Claim. We prove the claim by showing that (mpar, par, td, pk, (xγ , rxγ
,

π
(0)
γ )γ∈{1,··· ,k}, sk

(0)) is statistically close to (mpar, par, td, pk, (xγ , rxγ
, π

(1)
γ )γ∈{1,··· ,k},

sk(1)) in game Exp
openk

HPS,A(λ) in Figure 6.
For mpar = (G, d, k, l,Dd+k,d,Hu), par = [A], td = A, pk = [P], xγ = [xγ ]

and rxγ
= xγ for γ ∈ {1, · · · , k}, let M = (A | x1 | · · · | xk) ∈ Z(d+k)×(d+k)

q ,
then two subcases are possible.

– M is invertible. In this case, the secret key sk(0) = S follows a uniform
distribution conditioned on P = A⊤S. Furthermore, π(0)

γ = Hu,l([πγ ]) equals
Hu,l([S

⊤xγ ]) for all γ ∈ {1, · · · , k}. We see that the following equation holds.

S⊤(A | x1 | · · · | xk) = (P⊤ | π1 | · · · | πk).

Since M is invertible, (π1 | · · · | πk) follows a uniform distribution over Zl×k
q

due to the conditional uniform distribution of S. Moreover, the conditional
distribution of (S,π1, · · · ,πk) can be generated as follows. We first select
uniform rπγ = πγ from Zl

q for all γ ∈ {1, · · · , k} and calculate

S⊤ = (P⊤ | π1 | · · · | πk) ·M−1.

And this calculation is exactly what the algorithm HOpenk does when M

is invertible. Thus, the conditional distribution of ((π(0)
γ )γ∈{1,··· ,k}, sk

(0)) is
identical to the conditional distribution of ((π(1)

γ )γ∈{1,··· ,k}, sk
(1)) in this sub-

case.
– M is not invertible. We show that this subcase happens with probability at

most k
q in game Exp

openk

HPS,A(λ).
Since A has full column rank, the event that M is not invertible is equivalent
to the event that there exists some γ ∈ {1, · · · , k} such that

xγ ∈ span(A | x1 | · · · | xγ−1).

In game Exp
openk

HPS,A(λ), xγ is uniformly selected from Zd+k
q for every γ ∈

{1, · · · , k}. Thus, for any fixed γ ∈ {1, · · · , k}, the probability that xγ ∈
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span(A | x1 | · · · | xγ−1) is upper bounded by qd+γ−1

qd+k ≤ 1
q . Thus, by union

bound, the probability that M is not invertible is upper bounded by k
q .

The above claim follows after combining the two subcases. □

Finally, we prove the following claim showing that HPS supports efficient
randomness resampling on Π with algorithm ReSmpΠ in Figure 9.

Claim. ϵΠ-resmp
HPS (λ) ≤ l

2λ
+ l(λ+1)√

2q
.

Proof of Claim. We prove this claim by showing that

∆l := ∆((Hu, π, rπ), (Hu, π
′, r′π′)) ≤

l

2λ
+

l(λ+ 1)√
2q

for Hu ←$ Hu, π = Hu,l([s]) = (Hu([s1]), · · · ,Hu([sl])) with rπ = s = (s1, · · · ,
sl) ←$ Zl

q, π′ = (b1, · · · , bl) ←$ {0, 1}l and r′π′ = (r′1, · · · , r′l) ←$ ReSmpΠ(b1,
· · · , bl) where r′i ← $ OnebitReSmp(Hu, bi) for all i ∈ {1, · · · , l} according to
algorithm ReSmpΠ in Figure 9. More precisely speaking, we have that

∆l = ∆


Hu ,

Hu([s1])
...

Hu([sl])

,

s1
...
sl

 ,

Hu ,

b1
...
bl

,

OnebitReSmp(Hu, b1)
...

OnebitReSmp(Hu, bl)


 .

By a hybrid argument we get that ∆l ≤ l ·∆1 where

∆1 := ∆((Hu,Hu([s]), s), (Hu, b,OnebitReSmp(Hu, b)))

where Hu ←$ Hu, s←$ Zq and b←$ {0, 1}.
To show that ∆1 is statistically small, we first show that

p⊥ := Pr
Hu←$ Hu
b←$ {0,1}

[OnebitReSmp(Hu, b) = ⊥]

is small. According to Figure 9, algorithm OnebitReSmp tries λ times. For the j-
th attempt, the algorithm randomly selects rj ←$ Zq and tests whether Hu([rj ])
equals b. If all the λ attempts fail, algorithm OnebitReSmp outputs ⊥. So we
have that

p⊥ = Pr
Hu←$ Hu
b←$ {0,1}
rj←$ Zq

 λ∧
j=1

(Hu([rj ]) ̸= b)

 ≤ Pr
hj←$ {0,1}
b←$ {0,1}

 λ∧
j=1

(hj ̸= b)

+∆u,λ

=
1

2λ
+∆u,λ,

where ∆u,λ := ∆((Hu,Hu([r1]), · · · ,Hu([rλ])), (Hu, h1, · · · , hλ)) for Hu ← $ Hu,
rj ←$ Zq and hj ←$ {0, 1}. By a hybrid argument, we have that ∆u,λ ≤ λ ·∆u,1
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where ∆u,1 := ∆((Hu,Hu([r])), (Hu, h)) for Hu ← $ Hu, r ← $ Zq and h ← $ {0,
1}. We have that ∆u,1 ≤ 1√

2q
due to the leftover hash lemma (c.f., Lemma 6)

together with the fact that Hu is a family of universal hash function. Thus, we
have that

p⊥ ≤
1

2λ
+

λ√
2q

. (14)

Next, we define a perfect one-bit resample algorithm PerfectOnebitReSmp as
follows.

PerfectOnebitReSmp(Hu, b ∈ {0, 1}):
Define set R(Hu, b) := {s ∈ Zq | Hu(s) = b}

If R(Hu, b) ̸= ∅:
s′ ←$ R(Hu, b)

Else:
s′ := ⊥

Return s′

Fig. 12 Perfect one-bit randomness resample algorithm PerfectOnebitReSmp.

Note that this algorithm is only conceptual and its running time is not a
concern here. Intuitively, if for function Hu there exists preimage of b, algorithm
PerfectOnebitReSmp always outputs a uniform preimage. Otherwise it outputs
⊥. Thus, for Hu ←$ Hu and b←$ {0, 1}, we have that

∆p := ∆((Hu, b,OnebitReSmp(Hu, b)), (Hu, b,PerfectOnebitReSmp(Hu, b))) ≤ p⊥.

The reason is that when algorithm PerfectOnebitReSmp does not output ⊥, al-
gorithm OnebitReSmp can still output ⊥ with probability no larger than p⊥.
Then

∆1 = ∆((Hu,Hu([s]), s), (Hu, b,OnebitReSmp(Hu, b)))

≤ ∆((Hu,Hu([s]), s), (Hu, b,PerfectOnebitReSmp(Hu, b)))︸ ︷︷ ︸
Denoted as ∆′

1

+∆p.

We will show that ∆′1 is small. Before that, we first focus on the following
statistical distance. Namely, for Hu ←$ Hu, s←$ Zq and b←$ {0, 1}, consider

∆((Hu,Hu([s])), (Hu, b))

=
1

2

∑
h∈Hu

∑
β∈{0,1}

|Pr[(Hu,Hu([s])) = (h, β)]− Pr[(Hu, b) = (h, β)]|

=
∑
h∈Hu

Pr[Hu = h] · 1
2

∑
β∈{0,1}

|Pr[h([s]) = β | Hu = h]− Pr[b = β | Hu = h]|

=
∑
h∈Hu

Pr[Hu = h] · 1
2

∑
β∈{0,1}

∣∣∣∣ |R(h, β)|
q

− 1

2

∣∣∣∣ (15)
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where the set R(h, β) is the preimage set defined in Figure 12.
Finally, for Hu ←$ Hu, s←$ Zq and b←$ {0, 1}, we consider

∆′1 = ∆((Hu,Hu([s]), s), (Hu, b,PerfectOnebitReSmp(Hu, b)))

=
1

2

∑
h∈Hu

∑
β∈{0,1}

∑
µ∈Zq∪{⊥}

∣∣∣∣∣∣
Pr[(Hu,Hu([s]), s) = (h, β, µ)]

−
Pr[(Hu, b,PerfectOnebitReSmp(Hu, b)) = (h, β, µ)]

∣∣∣∣∣∣
=

∑
h∈Hu

Pr[Hu = h]

· 1
2

∑
β∈{0,1}

∑
µ∈Zq∪{⊥}

∣∣∣∣∣∣
Pr[(h([s]), s) = (β, µ) | Hu = h]

−
Pr[(b,PerfectOnebitReSmp(h, b)) = (β, µ) | Hu = h]

∣∣∣∣∣∣︸ ︷︷ ︸
Denoted as δ(h,β)

We claim that for any h ∈ Hu and any β ∈ {0, 1},

δ(h, β) =

∣∣∣∣ |R(h, β)|
q

− 1

2

∣∣∣∣ .
The reason is as follows.

– If |R(h, β)| = 0, then Pr[(h([s]), s) = (β, µ) | Hu = h] = 0 for any µ because it
is not possible that β has preimage under function h. Similarly we have that
Pr[(b,PerfectOnebitReSmp(h, b)) = (β, µ) | Hu = h] = 0 for any µ ∈ Zq and
Pr[(b,PerfectOnebitReSmp(h, b)) = (β,⊥) | Hu = h] = 1

2 due to the random
choice of b. Thus,

δ(h, β) =
1

2
=

∣∣∣∣ |R(h, β)|
q

− 1

2

∣∣∣∣ .
– If |R(h, β)| > 0.
• If µ ∈ R(h, β), then Pr[(h([s]), s) = (β, µ) | Hu = h] = 1

q due to the
random choice of s and Pr[(b,PerfectOnebitReSmp(h, b)) = (β, µ) | Hu =
h] = 1

2|R(h,β)| due to the random choice of b together with the randomness
in algorithm PerfectOnebitReSmp.

• Otherwise if µ /∈ R(h, β), then Pr[(h([s]), s) = (β, µ) | Hu = h] = 0 and
Pr[(b,PerfectOnebitReSmp(h, b)) = (β, µ) | Hu = h] = 0.

Then
δ(h, β) = |R(h, β)| ·

∣∣∣∣1q − 1

2|R(h, β)|

∣∣∣∣ = ∣∣∣∣ |R(h, β)|
q

− 1

2

∣∣∣∣ .
Thus,

∆′1 =
∑
h∈Hu

Pr[Hu = h] · 1
2

∑
β∈{0,1}

∣∣∣∣ |R(h, β)|
q

− 1

2

∣∣∣∣
= ∆((Hu,Hu([s])), (Hu, b)),
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where the last equality holds because of Equation (15). According to the leftover
hash lemma (c.f., Lemma 6), we have that ∆′1 = ∆((Hu,Hu([s])), (Hu, b)) ≤ 1√

2q
.

Putting everything together, we have that

∆l ≤ l ·∆1

≤ l · (∆′1 +∆p)

≤ l · (∆′1 + p⊥)

≤ l ·
(

1√
2q

+
1

2λ
+

λ√
2q

)
=

l

2λ
+

l(λ+ 1)√
2q

.

Thus, the above claim follows. □

This completes the proof of Theorem 4. ■

C.7 Proof of Theorem 5

Proof of Theorem 5. First of all, for any m̃par := (G, d, k,Dd+k,d), any p̃ar =

[A], any s̃k = s ∈ S̃K and any p̃k = [p] =

[
A⊤

A⊤

]
s ∈ P̃K and any τ ∈ T , if

x = [x] = [Aw] ∈ L with witness w = w, then

P̃ub(p̃k, x, w, τ ) =
[
p⊤

]( w
τw

)
=

[
s⊤

(
A

A

)(
w
τw

)]
=

[
s⊤

(
x
τx

)]
and it equals to P̃riv(s̃k, x, τ). Thus, the instantiation H̃PS in Section 6.3 is a
valid tag-based hash proof system with perfect correctness.

Next, we show that if algorithm H̃Openk does not output ⊥, then the out-
putted key s̃k

′
is correct. More precisely, we prove the following claim.

Claim. For any m̃par ←$ M̃Par(1λ), any (p̃ar, t̃d) ←$ P̃ar(m̃par), any secret key
s̃k ∈ S̃K with its public key p̃k := α̃(s̃k), any instances (xγ)γ∈[k] ∈ X k with their
sampling randomnesses (rxγ )γ∈[k] ∈ (RX )

k, any hash values (π̃γ)γ∈[k] ∈ Π̃k

with their sampling randomnesses (rπ̃γ
)γ∈[k] ∈ (RΠ̃)k, any tags (τγ)γ∈[k] ∈ T k

and any opened secret key s̃k
′
←$ H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ

, π̃γ , rπ̃γ
, τγ)γ∈[k]), if

s̃k
′
̸= ⊥, then it holds that

p̃k = α̃
(
s̃k
′)

and π̃γ = Λ̃
s̃k

′(xγ , τγ) for all γ ∈ [k].

Proof of Claim. For any m̃par = (G, d, k,Dd+k,d), any p̃ar = [A], any t̃d = A, any

s̃k = s =

(
s1
s2

)
, any p̃k = [p] =

[
A⊤

A⊤

]
s = [s⊤1 A, s⊤2 A]⊤, any xγ = [xγ ] from

X with sampling randomness rxγ = xγ , any π̃γ = [rπ̃γ
] ∈ Π̃ with randomness
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rπ̃γ
∈ RΠ̃ , any tag τγ ∈ T for γ ∈ [k] and any s̃k

′
←$ H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ

,

π̃γ , rπ̃γ
, τγ)γ∈[k]), if s̃k

′
̸= ⊥, then s̃k

′
= s′ is a solution to the linear equation

system (4). So it holds that

s′⊤
(
A x1 · · · xk

A τ1x1 · · · τkxk

)
= (s⊤1 A, s⊤2 A︸ ︷︷ ︸

p⊤

, rπ̃1
, · · · , rπ̃k

).

We have p̃k = α̃
(
s̃k
′)

and π̃γ = Λ̃
s̃k

′(xγ , τγ) for all γ ∈ [k].
Thus, the claim follows and the instantiation H̃PS is a valid tag-based key-

openable hash proof system. □

Next, we show that H̃PS is universalk+1 by proving the following claim.

Claim. For any (unbounded) adversary A, ϵunivk+1

H̃PS,A
(λ) ≤ k + 1

q
.

Proof of Claim. In game Exp
univk+1

H̃PS,A
(λ), k instances are uniformly selected from

X , i.e., xγ = [xγ ]←$ Gd+k for γ ∈ [k]. We use E to denote the event that matrix
(A | x1 | · · · | xk) is invertible. Then, we have that

Pr[Exp
univk+1

H̃PS,A
(λ) = 1]

= Pr[Exp
univk+1

H̃PS,A
(λ) = 1 ∧ E] + Pr[Exp

univk+1

H̃PS,A
(λ) = 1 ∧ ¬E]

≤ Pr[Exp
univk+1

H̃PS,A
(λ) = 1 | E] + Pr[¬E]

≤ Pr[Exp
univk+1

H̃PS,A
(λ) = 1 | E] + k

q
(16)

The proof of Pr[¬E] ≤ k
q is exactly the same as the proof in Theorem 4.

Next, we will prove that

Pr[Exp
univk+1

H̃PS,A
(λ) = 1 | E] = 1

q
. (17)

We prove that Λ̃s̃k(x, τ) is uniformly distributed over Π̃ from the point view of
A. First, A knows nothing about the uniform secret key s̃k = s except for the
information of the public key p̃k and the k hash values (π̃γ)γ∈[k] where

(p̃k, π̃1, · · · , π̃k) = s⊤
[
A x1 · · · xk

A τ1x1 · · · τkxk

]
.

The hash value that adversary A wants to predict is Λ̃s̃k(x, τ) = s⊤
[
x
τx

]
. So if

we can prove that matrix(
A x1 · · · xk x

A τ1x1 · · · τkxk τx

)
(18)
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has full column rank, then the hash value Λ̃s̃k(x, τ) is uniformly distributed from
the view of A. Suppose that there exists r1, r2 ∈ Zd

q , s1, · · · , sk, s ∈ Zq such that

(
A x1 · · · xk x

A τ1x1 · · · τkxk τx

)


r1
r2
s1
...
sk
s


= 0 and



r1
r2
s1
...
sk
s


̸= 0.

Then we have that

Ar1 + s1x1 + · · ·+ skxk + sx = 0 (19)
Ar2 + s1τ1x1 + · · ·+ skτkxk + sτx = 0 (20)

Combining the above two equations, we get

A(τr1 − r2) + s1(τ − τ1)x1 + · · ·+ sk(τ − τk)xk = 0

Under the condition that matrix (A | x1 | · · · | xk) is invertible, we know that
sγ(τ − τγ) = 0 for all γ ∈ [k]. Since τ /∈ {τγ}γ∈[k], we must have sγ = 0 for all
γ ∈ [k]. Combining equation (19) and (20), we get that

Ar1 + sx = 0

Ar2 + sτx = 0

We know s ̸= 0 otherwise r1 = r2 = 0 (since A has full column rank) and con-
tradicts the assumption that (r⊤1 , r

⊤
2 , s1, · · · , sk, s) ̸= 0⊤. Then we have that

x = s−1Ar1 ∈ span(A) and it contradicts to the event that x /∈ L since
Exp

univk+1

H̃PS,A
(λ) = 1.

Thus, matrix (18) has full column rank and equation (17) holds.
The claim follows combining inequality (16) and equation (17). □

Next, we prove the following claim which shows that H̃PS is openablek.

Claim. For any (unbounded) adversary A, ϵopenk

H̃PS,A
(λ) ≤ k

q
.

Proof of Claim. We prove the claim by showing that (m̃par, p̃ar, t̃d, p̃k, (xγ , rxγ
,

π̃
(0)
γ )γ∈[k], s̃k

(0)
) distributes identically to (m̃par, p̃ar, t̃d, p̃k, (xγ , rxγ , π̃

(1)
γ )γ∈[k], s̃k

(1)
)

in Exp
openk

H̃PS,A
(λ).

For m̃par = (G, d, k,Dd+k,d), p̃ar = [A], t̃d = A, p̃k = [p], xγ = [xγ ] and
rxγ = xγ for γ ∈ [k], two subcases are possible
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– Matrix (A | x1 | · · · | xk) is invertible. In this case, the secret key s̃k
(0)

= s

follows a uniform distribution conditioned on p =

(
A⊤

A⊤

)
s. Further-

more, π̃(0)
γ = [rπ̃γ

] equals the hash value
[
s⊤

(
xγ

τγxγ

)]
for all γ ∈ [k]. We see

that the following equation holds.

s⊤
(
A x1 · · · xk

A τ1x1 · · · τkxk

)
= (p⊤, rπ̃1

, · · · , rπ̃k
). (21)

Since we have matrix (A | x1 | · · · | xk) is invertible, then matrix(
A x1 · · · xk

A τ1x1 · · · τkxk

)
has full column rank. Thus, (rπ̃1

, · · · , rπ̃k
) follows a uniform distribution over

Zk
q due to the conditional uniform distribution of s.

Moreover, the condition distribution of (s, [rπ̃1
], · · · , [rπ̃k

]) can be generated
by selecting uniform rπ̃γ

← $ Zq for all γ ∈ [k], treating s as a unknown
variable and randomly select a solution to the linear system in Equation
(21). And this calculation is exactly what the algorithm H̃Openk does when
matrix (A | x1 | · · · | xk) is invertible. Thus, the conditional distribution of
((π̃

(0)
γ )γ∈[k], s̃k

(0)
) is identical to the conditional distribution of ((π̃(1)

γ )γ∈[k],

s̃k
(1)

) in this subcase.
– Matrix (A | x1 | · · · | xk) is not invertible. This subcase happens with

probability at most k
q in game Exp

openk

H̃PS,A
(λ) and the proof is exactly the

same with the one in Appendix C.6.

The above claim follows after combining the two subcases. □

This completes the proof of Theorem 5. ■

C.8 Proof of Lemma 5

Proof of Lemma 5. For any PPT adversary A, we first construct a PPT k-fold
Ud+k,d-MDDH adversary B′ and prove that

Adv
(n,k)-mddh
Ud+k,d,GGen,A(λ) ≤ Advk-mddh

Ud+k,d,GGen,B′(λ) +
k

q
. (22)

On getting a k-fold Ud+k,d-MDDH challeng (G, [A], [X]) where G ←$ GGen(1λ),
A ← $ Ud+k,d and X ∈ Z(d+k)×k

q , B′ selects uniform Ri ← $ Z(d+k)×(d+k)
q and

uniform Wi ← $ Zd×k
q for all i ∈ {1, · · · , n}. Then B′ sets [Ai] := Ri[A] and

[Xi] := Ri[X] + [Ai]Wi. Finally, B′ invokes A(G, ([Ai], [Xi])
n
i=1) and outputs

whatever A outputs.
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We analyse the input distribution of A as follows. First, if we denote R
(L)
i ∈

Z(d+k)×d
q as the left d columns of matrix Ri and denote R

(R)
i ∈ Z(d+k)×k

q as
the right k columns of matrix Ri, then Ri = (R

(L)
i | R(R)

i ) and Ai = RiA =

R
(L)
i A +R

(R)
i A where A is the upper d rows of A and A is the lower k rows

of A. Since A is chosen from a uniform matrix distribution, we know that A is
a full rank square matrix. Due to the random choice of R(L)

i , we know that Ai

distributes uniformly over Z(d+k)×d
q . Next, we analyse the distribution of Xi.

– If X are k random vectors in the column span of A, then there exists W ∈
Zd×k
q such that X = AW. Then

Xi = RiX+AiWi = RiAW +AiWi = Ai(W +Wi).

That means Xi are k independent and uniform vectors in the span of Ai

due to the random choice of Wi.
– If X are k random vectors from Zd+k

q , then we have that matrix (A | X) is
an invertible square matrix except with probability at most k

q . In this way,
Ri(A |X) = (RiA |RiX) is uniformly distributed due to the random choice
of Ri. Thus, RiX distributes uniformly over Z(d+k)×k

q and is independent of
Ai = RiA. This implies that Xi = RiX + AiWi is uniformly distributed
and independent of Ai.

In this way, B′ perfectly simulates the input of A except with probability at
most k

q . So we have that Advk-mddh
Ud+k,d,GGen,B′(λ) ≥ Adv

(n,k)-mddh
Ud+k,d,GGen,A(λ) −

k
q and

equation (22) holds.
Finally, for uniform matrix distribution, the k-fold Ud+k,d-MDDH assumption

can be tightly reduced to the Ud+k,d-MDDH assumption due to the random self-
reducibility of Ud+k,d-MDDH [GHKW16, Lemma 3]. Thus, we can build a PPT
adversary B such that

Advk-mddh
Ud+k,d,GGen,B′(λ) ≤ Advmddh

Ud+k,d,GGen,B(λ) +
1

q − 1
. (23)

Combining equation (22) and (23), we have

Adv
(n,k)-mddh
Ud+k,d,GGen,A(λ) ≤ Advmddh

Ud+k,d,GGen,B(λ) +
k + 1

q − 1
.

Thus, Lemma 5 follows. ■
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