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Abstract. An isomorphism problem asks whether two combinatorial
or algebraic structures are essentially the same. Based on the assumed
hardness of an isomorphism problem, there is a well-known digital sig-
nature design based on the Goldreich–Micali–Widgerson (GMW) zero-
knowledge protocol for graph isomorphism and the Fiat–Shamir (FS)
transformation. Recently, there is a revival of activities on this design,
as witnessed by the schemes SeaSign (Eurocrypt 2019), CSI-FiSh (Asi-
acrypt 2019), LESS (Africacrypt 2020), ATFE (Eurocrypt 2022), and
MEDS (Africacrypt 2023).

The contributions of this paper are two-folds: the first is about the
GMW-FS design in general, and the second is on the ATFE-GMW-FS
scheme.

First, we study the QROM security and ring signatures of the GMW-
FS design in the group action framework. We distil properties of the
underlying isomorphism problem for the GMW-FS design to be secure
in the quantum random oracle model (QROM). We also show that this
design supports a linkable ring signature construction following the work
of Beullens, Katsumata and Pintore (Asiacrypt 2020).

Second, we apply the above results to prove the security of the ATFE-
GMW-FS scheme in the QROM model. We then describe a linkable ring
signature scheme based on it, and provide an implementation of the
ring signature scheme. Preliminary experiments suggest that our scheme
is competitive among existing post-quantum ring signatures. We also



discuss the parameter choices of the ATFE-GMW-FS scheme based on the
recent attack by Beullens (Cryptology ePrint Archive, Paper 2022/1528),
and the MPC-in-the-head construction for general group actions by Joux
(Cryptology ePrint Archive, Paper 2023/664).

1 Introduction

1.1 Background: group actions in cryptography and the GMW-FS
digital signature design

Group actions in (post-quantum) cryptography. The use of group actions in
cryptography has a long tradition. Indeed, the discrete logarithm problem can
be interpreted as a problem about cyclic group actions [29]. As far as we know,
the first treatment of abstract group actions in cryptography goes back to Bras-
sard and Yung [22], who proposed the notion of one-way group actions. When
the groups are abelian (commutative), this was further developed by Couveignes
[29]. Recently, two independent works [49] and [2] enriched this framework fur-
ther by introducing the notion of (weakly) pseudorandom group actions, which
generalises the celebrated Decisional Diffie–Hellman assumptions [15].

Besides setting up frameworks, many cryptographic primitives can be re-
alised, such as claw-free one-way functions and bit commitment [22], quantum-
secure pseudorandom functions [49], and zero-knowledge identification protocols
[29,49]. When the groups are abelian (commutative), more functions are possible,
such as key exchange [29], smooth projective hasing, and dual-mode public-key
encryption [2].

Since discrete logarithm can be solved efficiently on quantum computers [67],
it is desirable to explore group actions suitable for post-quantum cryptography.
As in the lattice case [64], the research into hidden subgroup problems is of
particular relevance here, especially the hidden shift problems [26] and symmetric
or general linear groups [45]. We will discuss this further below.

The GMW-FS digital signature design. A major cryptographic application of
group actions is the following design of digital signature. In [41], Goldreich,
Micali and Wigderson described a zero-knowledge proof protocol for graph iso-
morphism (GI). The Fiat-Shamir transformation FS [40] can be applied to it to
yield a digital signature scheme. This construction has been observed by several
researchers since the 1990’s. However, this scheme based on graph isomorphism
is not secure, because GI can be solved effectively in practice [57,58], not to
mention Babai’s quasipolynomial-time algorithm [3].

Fortunately, the Goldreich-Micali-Wigderson (GMW) zero-knowledge proof
protocol applies to any isomorphism problem. This gives the hope that, by
choosing an appropriate isomorphism problem, such a construction could be se-
cure. This was already carried out to two areas in the context of post-quantum
cryptography, that is multivariate cryptography and isogeny-based cryptogra-
phy. In multivariate cryptography, Patarin proposed using polynomial isomor-
phism problems to replace graph isomorphism [60]. In isogeny-based cryptogra-
phy, Stolbunov applied this construction to the class group actions on elliptic
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curves [29,68]. However, these efforts met some issues. For example, the param-
eters proposed by Patarin were too optimistic [21], and computational costs and
uniform sampling for class group actions are tricky issues [25].

The recent revival of the GMW-FS design. Recently, there is a revival of the
study of the GMW-FS design, which is attributed to two research directions.

The first direction is the study of elliptic curve isogeny, following Couveignes
and Stolbunov. As mentioned above, the issues here are mostly due to the compu-
tational aspects of group actions. To remedy this, the commutative group action
CSIDH based on supersingular curves over prime fields was introduced in [25].
This led to the schemes SeaSign [39] and CSI-FiSh [13], which greatly improve
the situation by introducing either computational or protocol optimisations; see
also the recent nice survey on this and more [11].

The second direction may be viewed as a continuation of the polynomial iso-
morphism direction by Patarin. Three schemes are proposed and implemented,
including LESS [14] based on linear code monomial equivalence, ATFE [70] based
on alternating trilinear form equivalence, and MEDS [27] based on matrix code
equivalence6. Recent progress in complexity theory [43] shows that (1) linear code
monomial equivalence reduces to matrix code equivalence in polynomial time
[42,30], and (2) alternating trilinear form equivalence, isomorphism of quadratic
polynomials with two secrets, cubic form equivalence, and matrix code equiv-
alence are polynomial-time equivalent [43,44] (see also [65] for some of these
equivalences).

The studies above are of particular interest in post-quantum cryptography.
For the class group actions in the isogeny setting, even though the group action
underlying CSIDH is commutative, the best quantum algorithms are still subex-
ponential [61,17]. For the group actions underlying LESS, ATFE and MEDS, the
groups are symmetric or general linear groups, so the previous negative evidence
for standard techniques (such as coset sampling) in hidden subgroup problem
for graph isomorphism [45] applies.

1.2 Our Contributions

Our contributions in this paper can be classified into two sets.
The first set of results is for the GMW-FS design based on abstract group

actions. Briefly speaking, we first distil properties for group actions to be secure
in the quantum random oracle model (QROM) based on the works [52,55,33].
We then present the linkable ring signature construction of Beullens, Katsumata
and Pintore [12] with abstract group actions.

The second set of results is for the ATFE-GMW-FS scheme in [70]. We first
discuss the parameter choices of this scheme in light of the recent beautiful
attacks by Beullens [9], and demonstrate an improvement to the implementation
from [70]. We also show that the MPC-in-the-head paradigm for group actions
[50] help to reduce the signature sizes for the ATFE-GMW-FS scheme. We then

6 Matrix code equivalence is also known as 3-tensor isomorphism in [43].
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apply the results from the first set to the ATFE-GMW-FS scheme to demonstrate
its QROM security. We then implement the ring signature scheme above for
ATFE-GMW-FS, and our preliminary experiments suggest that this scheme is
competitive among existing post-quantum ring signatures.

We now explain these in more detail.

Results for the GMW-FS design. In the following, we always let G denote a
group, S a set, and α : G× S → S a group action.

Security in the quantum random oracle model. The quantum random oracle
model (QROM) was proposed by Boneh et al. [16] in 2011 and has received
considerable attention since then. There are certain inherent difficulties to prove
security in the QROM model, such as the adaptive programmability and rewind-
ing [16]. Indeed, the QROM security of the Fiat-Shamir transformation was only
recently shown after a series of works [74,52,55,33].

In this paper we make progress on the QROM security of the GMW-FS design
based on the works [74,52,55,33]. Our results on this line can be informally
summarised as follows.

Recall that α : G × S → S is a group action. In the GMW-FS design, the
protocol starts with some (chosen or randomly sampled) set element s ∈ S. For
s ∈ S, the stabilizer group Stab(s) := {g ∈ G | α(g, s) = s}.

1. The GMW-FS scheme is secure in the QROM model, if Stab(s) is trivial, i.e.
|Stab(s)| = 1.

2. The GMW-FS scheme is secure in the QROM model, if the group action
under ATFE satisfies the pseudorandom property as defined in [49,2] (see
Definition 6), and the non-trivial automorphism hardness property (see Def-
inition 8). In particular, in this setting the security proof is tight.

The GMW-FS-BKP ring signature design. Ring signature, introduced by Rivest,
Shamir and Tauman [66], is a special type of digital signature, in which a signer
can sign on behalf of a group chosen by him-or-herself, while retaining anony-
mous within the group. In particular, ring signatures are formed without a com-
plex setup procedure or the requirement for a group manager. They simply
require users to be part of an existing public key infrastructure.

A linkable ring signature [54] is a variant of ring signatures in which any
signatures produced by the same signer can be publicly linked. Linkable ring
signatures are suitable in many different practical applications, such as privacy-
preserving digital currency [69] and e-voting [71].

Beullens, Katsumata and Pintore [12] proposed an elegant way to construct
efficient linkable ring signatures from group actions. Their focus was on com-
mutative group actions, with instantiations in both isogeny and lattice settings.
The advantage of their schemes are the scalability of signature sizes with the ring
size, even compared to other logarithmic-size post-quantum ring signatures.

While [12] focussed on commutative group actions, their ring signature con-
struction is readily applicable to general group actions. In fact, for our group
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action framework, the scheme becomes a bit simpler because [12] needs to work
with rejection sampling. We call this ring signature design the GMW-FS-BKP
design, and describe its construction in Section 5. The linkability property de-
serves some more discussions there as it calls for some interesting property of
pairs of group actions.

Comparisons with some previous works. QROM securities and ring signature
schemes have been shown for concrete schemes based on group actions. For
example, the QROM security of CSI-FiSh based on the perfect unique response
was observed in [13], and the tight QROM security based on a lossy version of
CSI-FiSh was shown in [35]. The ring signature scheme in [12] has been shown
for the group actions underlying CSI-FiSh [12], LESS [5], and MEDS [27].

Therefore, we view our results above as mostly conceptual, and we aim to
make these results convenient for future uses. That is, we distil properties of
group actions (pairs) that are key to the QROM security (Definition 8) or for
linkable ring signatures (Definition 10). We hope that these will not only help
with existing schemes, but also facilitate future schemes based on the GMW-FS
design. Furthermore, to the best of our knowledge, the connection of the lossy
approach for QROM security [52] with the pseudorandom group action assump-
tion [49,2] and the non-trivial automorphism hardness assumption (Definition 8)
was not stated explicitly before. Such results should benefit the LESS and MEDS
schemes, which either only briefly touched the QROM security issue [14], or did
not address it [27].

Results for the ATFE-GMW-FS scheme. After working with the general
GMW-FS design, we focus on the ATFE-GMW-FS scheme from [70].

Updated parameters, improved implementation, and the MPC-in-the-head paradigm.
Recently, Beullens [9] presented new algorithms for ATFE which broke some of
the parameters proposed in [70] and reduced the security levels for other param-
eters. We carefully analyse Beullens’ methods and propose new parameter sets
based on this study.

We then improve the implementation from [70] by incorporating the standard
unbalanced challenge technique, together with speeding the group action com-
putation by a factor of 1.75. As a result, our implementation can even achieve
smaller public key + signature size for some case than [70], while maintaining
the signing and verification quite fast (see Table 2).

Another recent contribution to the GMW-FS design is by Joux [50], who
showed that the multiparty-computation (MPC) in the head paradigm can be
applied to a generic group action. This paradigm allows for shorter signature
sizes at the cost of longer computation time, and the ATFE-GMW-FS scheme
is a nice example to which such a tradeoff can bring benefits. Our calculation
suggests that this has the effect of reducing the signature size by about one third
(comparing Table 2 and Table 3).
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The QROM security of the ATFE-GMW-FS scheme. The QROM security of the
ATFE-GMW-FS scheme was briefly discussed in [70] but was left as an open prob-
lem. Based on the results from the first part, there are two approaches to show
its QROM security: the first is based on the automorphism group order statis-
tics, and the second is based on the pseudorandom group action assumption.
The sEUF-CMA security in QROM of ATFE-GMW-FS scheme can be achieved
by both two approaches.

For the first approach, we provide experimental results to support that, for
certain parameters proposed in [70], a random alternating trilinear form has the
trivial automorphism group. This requires us to implement an algorithm for the
automorphism group order computation.

For the second approach, the group action under ATFE is pseudorandom or
not is an open problem. In [70], some arguments were provided to support that
it is. In particular, we do not need to modify the original ATFE-GMW-FS scheme
in [70] to attain the security in QROM, i.e., as opposed to the lossy CSI-FiSh
scheme [35]. We will discuss more about this in Section 1.3.

An implementation of the ATFE-GMW-FS-BKP ring signature scheme. We im-
plement the ring signature protocol from [12] for ATFE-GMW-FS. Preliminary
experiment results suggest that it’s more balanced than Calamari and Falafl in
terms of signature size and signing time. We refer the reader to Section 6.5 and
Table 1 for the details. Here we give a brief summary and comparison with some
previous ring signature schemes.

Since we use the construction in [12], the signature size of our schemes only
depends on logR, where R denotes the ring size. We see that our signature
size can be estimated as 0.8 logR + 8KB, while the signature sizes of Calamari
and Falafl in [12] are estimated to be logR + 2.5KB and 0.5 logR + 28.5KB
respectively. For ring size R = 8, our signing time is 96ms which is very close
to Falafl’s 90ms and much smaller than Calamari’s 79s. Meanwhile, our ring
signature size is 10.5KB, while Falafl and Calamari have the signature size of
30KB and 5.4KB respectively. RAPTOR [56], and DualRing-LB [76] have shorter
signature sizes than ours when the ring size is small. However, their sizes are
linearly dependent on the number of ring users; therefore, the size significantly
increases when the number of participants rises. Regarding MRr-DSS [8], while
it performs well for low to medium users (<= 27), our protocol can outperform it
in this range. Recently, Barenghi et al. [6] adapted the same idea but instantiated
the group action via the code equivalence problem. Our protocol still outperform
it in the regime of Table 1. Finally, Fig 1 reports the signing time of our protocol.
Note that the signing time is measured on 2.4 GHz Quad-Core Intel Core i5.

1.3 Discussions

Discussions on QROM security. The QROM security for the GMW-FS design
was shown based on perfect unique responses and lossy schemes. There is one
further approach which could avoid analysing automorphism groups mathemat-
ically. In [55,33], a property called quantum unique response in [33] or collapsing
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Fig. 1. Signature generation time Fig. 2. Signature size

R Hardness Secuirty
21 23 26 212 221 assumption level

MatRiCT [36] / 18 19 59 / MSIS, MLWE NIST 1

RAPTOR [56] 2.5 10 81 5161 / NTRU 100 bits

Calamari [12] 3.5 5.4 8.2 14 23 CSIDH-512 *

Falafl [12] 29 30 32 35 39 MSIS, MLWE NIST 1

Falafl for 2 [12] 49 50 52 55 59 MSIS, MLWE NIST 2

DualRing-LB [76] / 4.6 6 106.6 / MSIS, MLWE NIST 1

MRr-DSS [8] / 27 36 422 / MinRank NIST 1

LESS [6] / 10.8 13.7 19.7 28.6 Code Equiv. NIST 1

Ours 8.9 10.5 12.9 17.7 24.9 ATFE NIST 1
Table 1. Comparison of the signature size between our schemes and others

sigma protocol in [55] is introduced, generalising the collapsingness which in-
troduced by Unruh [73] to the quantum setting. The definition of this property
relies on a certain protocol and basically asks to distinguish between measur-
ing or not measuring during the execution of the protocol. It is an interesting
problem to study isomorphism problems from the point of this property, which
would lead to another security proof under QROM.

Comparisons with results from isogeny based cryptography. First, the group ac-
tion underlying our lossy identification scheme is the same action as the original
ATFE-GMW-FS scheme, while the group action underlying the lossy CSI-FiSh
[35] is the diagonal action of the class group on two elliptic curves following
[68]. One reason is that for the pseudorandom group action assumption [49] (cf.
Section 2.4) to be useful, it is necessary that the underlying group action is
intransitive, but the class group action on the classes of elliptic curves is transi-
tive, which is why two copies are needed there. This results in doubling of the
public-key size in lossy CSI-FiSh compared to the original CSI-FiSh, as opposed
to our case where the public key size remains the same.
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Second, we compare the GMW-FS-BKP design applied to ATFE here with that
of the class group action [12]. The class group action leads to smaller signature
sizes, but it suffers the problems of efficiently computing the group action and
random sampling. The group action underlying ATFE allows for fast group action
and random sampling, though the signature sizes are larger.

Concurrent Work. Recently, D’Alconzo and Gangemi [31] obtained a ring
signature from ATFE by also following the construction in [12]. The comparison is
summarized as follows. First of all, D’Alconzo and Gangemi used the fixed weight
challenges, specially, they encoded the challenge space. For the challenge space
CM,K , they enumerate the strings inside and encode them into integers to record
the position in this order to send instead of sending a string. In this way the cost
for challenge is log2

(
M
K

)
. Our work considers the positions where the challenge

is 0 for a string randomly sampled from the challenge space. Thus the cost is
K log2(M) for the challenge space CM,K . However, we consider the different
challenge space, that is, to divide M into K parts, and there exists one cha = 0
in each part. In this case, we have the cost K log2(

M
K ). Secondly, D’Alconzo and

Gangemi defined tag associated to a group action β(g, s) = α(g−1, s) while our
associated group action is β(g, s) = α(g−t, s). Last but not least, D’Alconzo and
Gangemi do not provide implementations while in our work, we implemented
the (linkable) ring signature and compared with other protocols.

2 Preliminaries

2.1 Notations

We collect some basic notation in this subsection. We use Fq to denote the finite
field with q elements. The general linear group of degree n over Fq is denoted
as GL(n, q). The base of logarithm is 2 unless otherwise specified. For a finite
set S, we use s ∈R S to denote that s is uniformly randomly sampled from S.
Given a positive integer k ≥ 1, we denote by [k] the set {1, . . . , k}.

2.2 Σ-protocol and digital signatures

Let R ⊆ X × W be a binary relation, where X ,W,R are recognizable finite
sets. In other words, there is a polynomial time algorithm can decide whether
(x,w) ∈ R for x ∈ X and w ∈ W. Given an instance generator Gen of a
relation R, the relation R is hard if for any poly-time quantum algorithm A,
the probability Pr[(x,w′) ∈ R | (x,w)← Gen(1λ), w′ ← A(x)] is negligible.

Given a hard relation R, the Σ-protocol for R is 3-move interactive protocol
between a prover P and a verifier V in which the prover P who has the witness
w for the statement x tries to convince the verifier V that he possesses a valid
witness w without revealing anything more than the fact that he knows w.
Formally, Σ-protocol is defined as follows.
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Definition 1. Let R be a hard binary relation. Let ComSet,ChSet,ResSet be
the commitment space, challenge space and response space respectively. The Σ-
protocol Σ for a relation R consists of three PPT algorithms (P = (P1,P2),V),
where V is deterministic and we assume that P1 and P2 share the same state,
working as the following:

– The prover P first computes a commitment a← P1(x,w) and sends a to the
verifier V.

– On input a commitment a, the V samples a random challenge c from the
challenge space ChSet and sends to P.

– P computes a response r ← P2(x,w, a, c) and sends to the V who will run
V(x, a, c, r) and outputs 1 if the transcript (a, c, r) is valid and 0 otherwise.

We assume the readers are familiar with the following properties of Σ-
protocols: identification fromΣ-protocol, completeness, post-quantum 2-soundness,
honest verifier zero knowledge (HVZK), α-bit min-entropy, perfect and compu-
tational unique response, and commitment recoverable. For readers’ convenience
we collect them in Appendix A.1.

Definition 2. A digital signature consists of the following polynomial-time (pos-
sibly probabilistic) algorithms.

– Gen(1λ): On input a security parameter λ, generates a pair (sk, pk) of secret
key sk and verification key pk.

– Sign(sk,M): On input a message M and the secret key sk, it generates a
signature σ.

– Ver(pk,M, σ): On input the verification key pk, a messageM and a signature
σ, it returns 1 or 0.

For correctness, it is required that for all message M and σ ← Sign(sk,M), we
always have that Ver(pk,M, σ) = 1.

Definition 3 (Security of Signature Scheme). The signature scheme is said
to be unforgeable (i.e., EUF-CMA secure) if for any poly-time quantum adver-
saries A, who has queried a number of signatures of messages of his choices, the
probability that A can sign a message that he has not seen its signatures is negli-
gible, i.e., Pr[Verify(pk,m, σ) = 1∧m /∈ Σ|(pk, sk)← Gen(1n), σ ← A(pk,m)] ≤
negl(λ), where Σ is the list of all messages that A has queried before.

A stronger notion is strongly unforgeable (sEUF-CMA) that allows an ad-
versary A to output a different signature of a message which has been queried
before. The schemes presented in this paper satisfy this stronger notion of un-
forgeability.

Definition 4 (Stronger Security). The signature scheme is said to be strongly
unforgeable (i.e., sEUF-CMA secure) if for any poly-time quantum adversaries A,
who has queried a number of signatures of messages of his choices, the proba-
bility that A can sign a message that the corresponding message-signature pair
hasn’t been seen is negligible, i.e., Pr[Verify(pk,m, σ) = 1∧(m,σ) /∈ Σ|(pk, sk)←
Gen(1n), σ ← A(pk,m)] ≤ negl(λ), where Σ is the list of all message-signature
pairs that A has queried before.
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Fiat-Shamir transformation. The Fiat-Shamir transformation [40] FS turns an
identification protocol ID = (ID.Gen,P = (P1,P2),V) into a signature scheme
FS[ID] as follows.

– ID.Gen(1λ): On input a security parameter λ, run (ID.sk, ID.pk)← ID.Gen(1λ)
and define the secret key sk := ID.sk and verification key pk := ID.pk.

– Sign(sk,M) : On input the secret key sk and a message M , do the following:
• Run a← P1(sk, pk).
• Compute c := H(M∥a) where H : {0, 1}∗ → ChSet is a secure hash
function.

• Run r ← P2(sk, pk, a, c).
• Return a signature σ := (a, r).

– Ver(pk,M, σ) : On input a message M and a signature σ, do the following:
• Compute c := H(M∥a).
• Return V(pk, a, c, r).

Theorem 1 ([62]). If an identification protocol is HVZK and satisfies special
soundness, then FS[ID] has EUF-CMA security in the ROM model.

2.3 Ring signatures

Definition 5 (Ring signature). A ring signature scheme ΠRS consists of three
PPT algorithms (RS.KeyGen,RS.Sign,RS.Verify) where,

– RS.SetUp(1λ): Given a security parameter λ, this algorithm outputs the cor-
responding public parameters pp.

– RS.KeyGen(pp): This algorithm generates, for a user i, a pair (vki, ski) of
the secret key ski and public key (verification key) vki.

– RS.Sign(ski,R,M): Given the secret key ski, a list of public keys R = {vk1, . . . , vkN}
and a message M, it outputs a signature σ.

– RS.Verify(R,M, σ): Given a list of public key R = {vk1, . . . , vkN}, a message
M and a signature σ, this algorithm output 1 if this signature is valid or 0
otherwise.

A ring signature needs to satisfy three properties: correctness, anonymity
and unforgeability.

Correctness: A ring signature ΠRS is said to be correct if for any security
parameter λ, polynomial N = poly(λ), any message M, pp ← RS.SetUp(1λ),
(vk1, sk1), . . . , (vkN , skN ) ← RS.KeyGen(pp), σ ← RS.Sign(ski,R,M) with R :=
{vk1, . . . , vkN}, it always holds that RS.Verify(R,M, σ) = 1.
Anonymity: A ring signature ΠRS is said to be anonymous if for every security
parameter λ and polynomial N = poly(λ), any PPT adversary A has at most
negligible advantage in the following game:

(1) The challenger runs pp← RS.SetUp(1λ) and generates key pairs (vki, ski)←
RS.KeyGen(pp) for all i ∈ [N ] and samples b ←R {0, 1}. Then it sends pp
and the secret keys {ski}i∈[N ] to A.
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(2) A computes a challenge (R,M, i0, i1), where R contains vki0 and vki1 , and
sends it to the challenger.

(3) The challenger runs RS.Sign(skib ,R,M)→ σ and sends σ to A.
(4) A outputs b′. If b = b′, then we say that A wins this game.

The advantage of A is

AdvAnonRS (A) = |Pr[A wins]− 1/2| .

Unforgeability: A ring signature ΠRS is said to be unforgeable if for every
security parameter λ and polynomial N = poly(λ), any PPT adversary A has
at most negligible probability to win the following game:

(1) The challenger runs pp← RS.SetUp(1λ) and generates key pairs (vki, ski)←
RS.KeyGen(pp) for all i ∈ [N ]. It sends the list of public keys VK = {vki}i∈[N ]

to A and prepares two empty list SL and CL.
(2) A can make polynomial times of signing queries and corrupting queries:

• (sign, i,R,M): The challenger outputs the signature σ ← RS.Sign(ski,R,M)
to A and adds (i,R,M) to SL.

• (corrupt, i) The challenger sends the random bits ri to A and adds vki to
CL.

(3) We say A wins this game if A outputs (R′,M′, σ′) such that R′ ⊆ VK \ CL,
(·,R′,M′) /∈ SL, and RS.Verify(R′,M′, σ′) = 1.

2.4 Abstract group actions in cryptography

Let G be a group and S be a set. A group action is a function α : G × S → S
satisfying certain natural axioms. There are several frameworks of group actions
in cryptography [22,29,49,2], which are mostly the same but can be different in
some details. In this paper, we use the following model.

Some notation. Let α : G × S → S be a group action. For s ∈ S, its orbit
under α is O(s) := {t ∈ S | ∃g ∈ G,α(g, s) = t}, and its stabilizer group
under α is Stab(s) = {g ∈ G | α(g, s) = s}. An element in Stab(s) is called an
automorphism of s. By the orbit-stabilizer theorem, |O(s)| · |Stab(s)| = |G|.

Computational assumptions. We first make the following computational assump-
tions for using a group action in algorithms.

1. We work with group families G = {Gk}k∈N and set families S = {Sk}k∈N.
2. For a fixed k, Gk and Sk are finite, where |Gk| = Nk and |Sk| = Mk, and

logNk and logMk are upper bounded by some polynomial in k.

3. The following tasks can be done in time polynomial in k: computing group
product and inverse, deciding the equivalence of group elements, computing
the group action function, and uniformly sampling group and set elements.

11



In the following, when k is clear from the context, we may just write G and
S, and set |G| = N and |S| =M .

We note that it is not necessary for a group action to satisfy all the above to
be useful in cryptography. For example, the group action underlying CSIDH [25]
cannot be efficiently computed for all group elements, though it can be modelled
as a “restricted effective group action” as in [2].

Cryptographic assumptions. We now list the following assumptions for a group
action to be useful in cryptography. Let α : G×S → S be a group action. Given
s ∈ S, we shall often use the fact that we can sample from O(s) uniformly. This
is because we can uniformly sample g ∈ G and return α(g, s).

1. One-way assumption: for s←R S and t← O(s), there is no probabilistic or
quantum polynomial-time algorithm that returns g′ such that α(g′, s) = t.

2. Pseudorandom assumption: there is no probabilistic or quantum polynomial-
time algorithm that can distinguish the following two distributions with non-
negligible probability:
(a) The random distribution: (s, t) ∈ S × S where s, t←R S.
(b) The pseudorandom distribution: (s, t) ∈ S×S where s←R S, t←R O(s).

The above assumptions can be generalised to the following K-instance ver-
sion.

Definition 6. Let α : G× S → S be a group action.

1. We say that α satisfies the C-one-way assumption, if for s0 ←R S, given s0
and s1, . . . , sC−1 ←R O(s0), there is no probabilistic or quantum polynomial-
time algorithm that returns g′, i, j ∈ {0, 1, . . . , C − 1}, i ̸= j, such that
α(g′, si) = sj, with non-negligible probability.

2. We say that α satisfies the C-pseudorandom assumption, if there is no prob-
abilistic or quantum polynomial-time algorithm that can distinguish the fol-
lowing two distributions with non-negligible probability:
(a) The random distribution: (s0, . . . , sC−1) ∈ SC where si ←R S.
(b) The pseudorandom distribution: (s0, . . . , sC−1) ∈ SC where s0 ←R S,

and s1, . . . , sC−1 ←R O(s0).

Remark 1. These assumptions can also be restricted to the versions that work
with a fixed s0 rather than a random one. That is, in the above, replace s0 ←R

S with a fixed choice s0 ∈ S. We shall call these C-one-way-O(s0) and C-
pseudorandom-O(s0) assumptions, respectively.

The GMW-FS digital signature design. Let α : G×S → S be a group action. As
mentioned in Section 1, we can obtain a digital signature by applying the Fiat-
Shamir (FS) transformation to the Goldreich-Micali-Wigderson (GMW) zero-
knowledge protocol instantiated with the group action α, assuming that the
group action satisfies the C-one-way assumption. We call this digital signature
the α(G,S)-GMW-FS scheme.

12



For our purposes in this paper, the key is the GMW protocol instantiated
with α with the C-one-way assumption. This protocol is easily interpreted as
an identification protocol, and we shall refer it as the α(G,S)-GMW protocol.
Therefore, we describe the α(G,S)-GMW protocol in detail.

In the α(G,S)-GMW protocol, the public key consists of set elements s0, . . . , sC−1
such that s0 ←R S, and s1, . . . , sC−1 ←R O(s0). The private keys consists of
g0 = id, g1, . . . , gC−1 such that α(gi, s0) = si. In this protocol, the goal of the
prover is to convince the verifier that, for every i ̸= j, the prover knows some h
such that α(h, si) = sj .

Define the relation R := {x = {s0, . . . , sC−1} , w = {g1, . . . , gC−1} | x ⊆
S,w ⊆ G,α(gi, s1) = si,∀i ∈ {1, . . . , C − 1}}. The protocol is described in
Figure 3; it needs to be repeated several times to attain the required security
level.

P(s0, . . . , sC−1, g0 = id, g1, . . . , gC−1) V(s0, . . . , sC−1)

h ∈R G

t = α(h, s0) t

c c←R {0, . . . , C − 1}

Set f := h ∗ g−1
c

f Check if α(f, sc) = t?

Fig. 3. The α(G,S)-GMW protocol.

It is known that α(G,S)-GMW protocol in Figure 3 has the following prop-
erties (see e.g. [70]): completeness, post-quantum 2-soundness, HVZK, min-
entropy, and commitment recoverable. We provide some proof sketches for com-
pleteness in Appendix A.2.

The α(G,S)-GMW-FS-O(s) scheme. In Section 3, we will need a variant of the
α(G,S)-GMW-FS-O(s) scheme, following Remark 1. Briefly speaking, this variant
restricts to an orbit of some specific s ∈ S instead of working in the orbit of a
random s←R S. We call such a scheme the α(G,S)-GMW-FS-O(s) scheme.

2.5 Some candidates of group actions for the GMW-FS design

The group action in [70]. Let Fq be the finite field of order q. A trilinear form
ϕ : Fn

q ×Fn
q ×Fn

q → Fq is alternating, if ϕ evaluates to 0 whenever two arguments
are the same. We use ATF(n, q) to denote the set of all alternating trilinear
forms defined over Fn

q .

13



Let A be an invertible matrix of size n×n over Fq. Then A sends ϕ to another
alternating trilinear form ϕ◦A, defined as (ϕ◦A)(u, v, w) := ϕ(At(u), At(v), At(w)).
This yields a group action of GL(n, q) on ATF(n, q) used in [70].

The group action underlying LESS. For 1 ≤ d ≤ n, let M(d×n,Fq) be the linear
space of d× n matrices over Fq. Let Mon(n, q) be the group of n× n monomial
matrices over Fq. The group G = GL(n, q)×Mon(n, q), the set S = M(d×n,Fq),
and the action is defined as (A,C) ∈ GL(n, q)×Mon(n, q) sendingB ∈ M(d×n, q)
to ABCt.

The group action underlying MEDS. Let n1, n2, n3 ∈ N. The set S is Fn1
q ⊗Fn2

q ⊗
Fn3
q . The group G = GL(n1, q)×GL(n2, q)×GL(n3, q). The action is defined as

(A1, A2, A3) ∈ G sending u1 ⊗ u2 ⊗ u3 to A1(u1) ⊗ A2(u2) ⊗ A3(u3), and then
linearly extending this to the whole Fn1

q ⊗ Fn2
q ⊗ Fn3

q .

The class group action such as CSIDH (for SeaSign and CSI-FiSh). Let E be an
elliptic curve over Fp, and let O := EndFp

(E). The ideal class group Cl(O) acts
on the set of Fp-isomorphism classes of elliptic curves with Fp-rational endomor-
phism ring O via a natural action. For details we refer the reader to [39,13,11].
Note that this action does not satisfy all the properties in Section 2.4; see [2].

Further group actions in cryptography. We note that more isomorphism prob-
lems and group actions have been proposed for cryptographic uses, such as lattice
isomorphism [34] and knot equivalence [37]. While these are interesting, we did
not discuss these here, because they have not been used with the GMW-FS design
which is the focus on this paper.

3 QROM security via perfect unique responses

In this section, we show that the α(G,S)-GMW-FS scheme is secure in the quan-
tum random oracle model (QROM) subject to a certain condition on the auto-
morphism group of the alternating trilinear form in use.

This section is organised as follows. In Section 3.1, we review some basics of
the quantum random oracle model. In Section 3.2, we translate perfect and com-
putational unique response properties of the α(G,S)-GMW protocol to certain
properties about stabilizer groups. In Section 3.3, we formally state Theorem 2
QROM security of the α(G,S)-GMW-FS-O(s0) scheme, with proof sketches in
Appendices C and D.

3.1 Preliminaries on QROM

The random oracle model (ROM) was first proposed in 1993 by Bellare and
Rogaway in [7] as a heuristic to provide security proofs in cryptography. Briefly
speaking, in the ROM model, the hash function is modeled as by a random
oracle. However, ROM is insufficient when considering quantum adversaries,
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which leads to the proposal of the quantum ROM (QROM) [16]. One main reason
comes from that quantum adversaries can make queries at a superposition. For
example, let H : X → Y be a hash function, a quantum adversary will make
superposition queries to evaluate this function, that is, for input

∑
x βx|x⟩ return∑

x βx|x⟩|H(x)⟩. Security proof migration from ROM to QROM is not an easy
task, due to several obstacles from some properties in the quantum setting, such
as whether the query is a superposition, quantum no cloning, and quantum
measurement causes collapse, etc. Indeed, there exist that protocols that are
secure in ROM but not in QROM [16,75] .

Recently, thanks to a pair of breakthrough papers [33,55], the QROM se-
curity of the Fiat-Shamir transform is now much better understood. Based on
these papers, we study the relation between the α(G,S)-GMW scheme and the
perfect unique response property introduced by Unruh [72]. With this important
property and some additional properties stated in Appendix A.2, we can prove
the security of the α(G,S)-GMW protocol under quantum ROM.

3.2 Perfect and computationally unique responses of the
α(G, S)-GMW protocol

We require some extra properties such that the α(G,S)-GMW or α(G,S)-GMW-
O(s0) protocols in Appendix A.2 meet the perfect unique response and compu-
tationally unique response properties.

Lemma 1 (Perfect Unique Response). The α(G,S)-GMW-O(s0) protocol
supports perfect unique response iff Stab(s0) is trivial.

Proof. To prove the completeness, assume that Stab(s0) is trivial. If there are
two valid transcripts (t, c, g1) and (t, c, g2) for the protocol in Figure 3. Then we
have α(g1, t) = α(g2, t). It implies that g2 ∗ g−11 ∈ Stab(s0) and thus g1 = g2.

For the soundness, assume that the α(G,S)-GMW-O(s0) protocol satisfies
the perfect unique response property. If Stab(s0) is non-trivial, i.e., there ex-
ists a group element h ̸= id such that α(h, s0) = s0. Therefore, all the ele-
ments in {s0, . . . , sC−1} satisfy α(h, si) = si. It follows that for the statement
{s0, . . . , sC−1}, any commitments t ∈ S, and any challenge c ∈ {0, 1, . . . , C−1},
there are two different responses g ∈ G and h ∗ g ∈ G such that (t, c, g) and
(t, c, h ∗ g) are valid transcripts, which is a contradiction.

Remark 2. For the α(G,S)-GMW, since s0 is not fixed, in general we can only say
that the stabilizer group of a random s0 ←R S is trivial with high probability.
This is called the statistical unique response property. However, it is not known
if statistical unique response is enough to prove the quantum proof of knowledge.

To illustrate the relation between the computationally unique response and
group actions, we define the following algorithm problem.

Definition 7. The α(G,S)-stabilizer problem is the following.

Input: An element s ∈R S.

15



Output: Some g ∈ G, g ̸= id such that s = α(g, s).

The α(G,S)-stabilizer problem is also known as the automorphism group
problem in the literature (see e.g. the graph automorphism problem [53]).

Lemma 2 (Computationally Unique Response). The α(G,S)-GMW proto-
col in Figure 3 supports computationally unique response iff no poly-time quan-
tum algorithm can solve the α(G,S)-stabilizer problem in Definition 7 with a
non-negligible probability.

Proof. Assume that the Σ-protocol supports computationally unique response.
If there is a poly-time quantum adversary A such that for any statement x =
{s0, . . . , sC−1} ⊆ S, it can compute two valid transcripts (t, c, g1) and (t, c, g2),
where g1 ̸= g2, with a non-negligible probability. Then there is an algorithm A1

using A as subroutine such that for any c ∈ {0, 1, . . . , C − 1}, it can produce an
h = g2 ∗ g−11 such that α(h, sc) = sc with a non-negligible probability.

Assume that no poly-time quantum algorithm can solve the α(G,S)-stabilizer
problem with a non-negligible probability. If there is a poly-time quantum algo-
rithm A1 such that, for any s ∈ S, it produces a stabilizer element h such that
α(h, sc) = sc with a non-negligible probability. By the HVZK property, there ex-
ists a simulator S such that, for any x = {s0, . . . , sC−1} ⊆ S, it produces a valid
transcript (s, c, g). Then there is an adversary A using A1 and S as subroutines
such that it firstly computes a valid transcript (s, c, g) by S, and then computes
h such that α(h, sc) = sc by A1. Thus, for any statement {s0, . . . , sC−1}, A
computes two transcripts (s, c, g) and (s, c, h ∗ g) with a non-negligible probabil-
ity.

Remark 3. For a fixed s0 ∈ S, we can define the α(G,S)-stabilizer-O(s0) problem
by restricting the input to s ∈R O(s0). Then the above proof can be applied to
show the same result for α(G,S)-GMW-O(s0).

Based on the above, we define the following properties of group actions.

Definition 8. Let α : G× S → S be a group action.

1. We say that α satisfies the (statistical) trivial stabiliser assumption, if for a
random s ∈ S, Stab(s) is trivial.

2. We say that α satisfies the non-trivial automorphism hardness assumption, if
no probabilistic or quantum polynomial-time algorithm can solve the α(G,S)-
stabilizer problem with non-negligible probability.

3.3 QROM security via perfect unique response

Lemma 1 interprets the perfect unique response property as a property of group
actions. Based on this, it is easy to adapt the results in [55] to give a security proof
in QROM for α(G,S)-GMW-FS-O(s0) signature scheme assuming the stabilizer
group being trivial.
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Theorem 2. Suppose s0 ∈ S satisfies that Stab(s0) is trivial. The α(G,S)-
GMW-FS-O(s0) signature based on the t repetitions of α(G,S)-GMW-O(s0) pro-
tocol has existential unforgeability under chosen-message attack (EUF-CMA) se-
curity. More specifically, for any polynomial-time quantum adversary A querying
the quantum random oracle QH times against EUF-CMA security of α(G,S)-
GMW-FS-O(s0) signature, there is a quantum adversary B for C-one-way-O(s0)
problem such that,

Adv
α(G,S)−EUF-CMA
A ≤ O

(
QH

9 ·
(
Adv

C−one−way−O(s0)
B

) 1
3

)
.

For readers’ convenience, we present a proof of Theorem 2 in Appendix C.
Another proof with different parameters based on [33] is in Appendix D.

Remark 4. The EUF-CMA security in QROM here can be strengthened to the
sEUF-CMA security by assuming the computationally unique response property[52,
Theorem 3.2]. Since we assume that the stabilizer group is trivial (perfect unique
response) which implies the computationally unique response, α(G,S)-GMW-FS-
O(s0) signature here is sEUF-CMA secure.

4 QROM security via lossy schemes

4.1 Definitions and previous results

In this section, we recall the definition of lossy identification protocol [1,35] and
a security result of its associated Fiat-Shamir signature in QROM from [52].

Definition 9. An identification protocol ID is called lossy, denoted by IDls, if it
has one additional PPT algorithm LossyGen, called lossy key generatation that
on input the security parameter outputs a lossy verification key pk. To be more
precise, LossyGen(1λ) generates xls ← LossyGen(1λ) such that there are no w ∈
W satisfying (xls, w) ∈ R.

A lossy identification protocol is required to satisfy the following additional
properties.

Indistinguishability of lossy statements. It is requires that the lossy statements
generated by LossyGen(1λ) is indistinguishable with ones generated by Gen(1λ),
i.e., . for any PPT (or quantum PT) adversary A, the advantage of A against
the indistinguishability of lossy statements

AdvlsA(λ) := |Pr[A(xls = 1)|xls ← LossyGen(1λ)]

− Pr[A(x) = 1|(x,w)← Gen(1λ)]

is negligible.

Statistical lossy soundness. Consider following experiment ExplsID,A(λ) between
an adversary A and a challenger.
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– The challenger runs xls ← LossyGen(1λ) and provides xls to the adversary A.
– On input xls, the adversary A selects a commitment a and sends it to the

challenger who responds with a random challenge c.
– On input (a, c), the adversary A outputs a response r.
– Return 1 if (a, c, r) is a valid transcript for xls, and 0 otherwise.

We say that the lossy identification protocol IDls is ϵls-lossy sound if for any
unbounded (possibly quantum) adversary A, the probability of winning the ex-
periment ExplsID,A(λ) is less than ϵls, i.e.,

Pr[ExplsID,A(λ) = 1] ≤ ϵls.

Fiat-Shamir transformation applied to a lossy identification protocol yields
a tightly secure signature in QROM [52,55,33].

Theorem 3 ([52, Theorem 3.1]). Assume that the identification protocol ID is
lossy, perfect HVZK, has α bits of min-entropy, and it is ϵls-lossily sound. Then
the signature scheme FS[ID] obtained from applying the Fiat-Shamir transfor-
mation to ID is such that for any quantum adversary A against the sEUF-CMA
security that issues at most QH queries to the quantum random oracle, there ex-
ist a quantum adversaries B against the lossiness and C against the computation
unique response such that

AdvsEUF-CMA
A (λ) ≤ AdvlsB(λ) + 8(Qh + 1)2 · ϵls + 2−α+1 + AdvCURC (λ),

and Time(B) = Time(C) = Time(D) = Time(A) +QH
∼= Time(A).

In the classical setting, we can replace 8(Qh + 1)2 by (Qh + 1).

4.2 Lossy identification protocol from abstract group actions

In this section, we define a lossy identification protocol based on theK-pseudorandom
assumption in Definition 6. The underlying sigma protocol is the α(G,S)-GMW
protocol in Figure 3. Here, we consider a relation R consisting of statement-
witness pairs (x,w) with x = {s0, s1, . . . , sC−1} ⊆ S and w = {g1, . . . , gC−1} ⊆
G, where α(g−1i , s0) = si for each i ∈ [C − 1].

The lossy identification scheme for the relation R defined as above with chal-
lenge space {0, 1, · · · , C−1} consists of five algorithms (IGen, LossyGen,P1,P2,V)
as follows. Note that the new addition is the LossyGen algorithm.

• Algorithm IGen randomly samples an element s0 ∈ S and group elements
g1, · · · , gC−1 ∈R G. It outputs a statement x = (s0, s1, · · · , sC−1) with si =
α(g−1i , s0) for i = 1, · · · , C − 1, and a witness w = (g1, · · · , gC−1).
• Algorithm LossyGen randomly samples set elements s0, s1, · · · , sK−1 ∈ S and
outputs a lossy statement xls = (s0, s1, · · · , sC−1).
• On input a statement-witness pair (x,w), P1 samples a random group ele-
ment h ∈R G and outputs the commitment t = α(h, s0).
• On input (x,w, t, c) where c ∈ {0, 1, · · · , C − 1} is a challenge, P2 outputs a
response f = h ∗ gc.
• On input (x, t, c, f), the verification algorithm V check whether t = α(f, sc).
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Security analysis. Since the underlying protocol is the same as in Figure 3, it
is clear that our lossy identification protocol is complete, has α-bit min-entropy
with α ≈ log2 |O|, satisfies HVZK property and commitment recoverability. It
remains to show that our protocol has indistinguishablity of lossy statements
and statistical lossy soundness.

Lemma 3. Suppose α : G × S → S satisfies the C-pseudorandom assumption
as in Definition 6. Then the lossy identification protocol satisfies lossy statement
indistinguishability.

Proof. The lossy generator of our protocol just random samples C elements
s0, s1, · · · , sC−1 ∈R S. By the hardness assumption of the C-pseudorandom
problem, lossy statements and real statements are indistinguishable.

Lemma 4. The lossy identification protocol satisfies statistical ϵls-lossy sound-

ness for ϵls =
1
C

∏C−1
i=1

A−iB
A +

(
1−

∏C−1
i=1

A−iB
A

)
, where B = |G|, A = |S|.

Proof. This proof is similar to the proof of [35, Lemma 3.3]. Let X be the set of
the statements such that given a commitment t ∈R S, there is only one challenge
c resulting in a valid transcript. Consider other commitment t with two valid
transcripts (t, c0, g0) and (t, c1, g1) where these two transcripts satisfy following
equations:

α(g0, sc0) = t

α(g1, sc1) = t

It implies that α(g0 ∗ g−11 , sc0) = sc1 , i.e., sc0 and sc1 are in the same orbit.
Therefore, if any two elements in the statement are not in the same orbit, the
statement can’t have two valid transcripts with different challenges.

The number of different statements in X is A
∏C−1

i=1 (A−i|Oi|) ≥ A
∏C−1

i=1 (A−
iB), where |Oi| is the size of Oi and |Oi| ≤ B. The number of all statements is
AC . Then we can have the probability that a statement is in X : Pr[x ∈ X | x←
LossyGen] ≥

∏C−1
i=1

A−iB
A . We can obtain the probability that an adversary wins

as follows:

Pr[A wins] = Pr[A wins | x ∈ X ] Pr[x ∈ X ] + Pr[A wins | x /∈ X ] Pr[x /∈ X ]

≤ Pr[A wins | x ∈ X ]
C−1∏
i=1

A− iB
A

+

(
1−

C−1∏
i=1

A− iB
A

)

=
1

K

C−1∏
i=1

A− iB
A

+

(
1−

C−1∏
i=1

A− iB
A

)
.

This completes the proof.

Lemma 4 implies the following for a t parallel repetition of the lossy identi-
fication protocol.

Corollary 1. The lossy identification protocol in Figure 3, that is run t parallel
rounds with the same statement-witness pair, satisfies statistical ϵls-lossy sound-

ness for ϵls =
1
Ct

∏C−1
i=1

A−iB
A +

(
1−

∏C−1
i=1

A−iB
A

)
, where B = |G|, A = |S|.
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4.3 Tightly secure signature scheme in QROM from abstract group
actions

A digital signature scheme can be obtained by applying the Fiat-Shamir trans-
formation to the lossy identification protocol in Section 4.2. We call this the
α(G,S)-GMW-FS-lossy scheme. Note that this result is essentially the same scheme
as the α(G,S)-GMW-FS scheme, as the additional LossyGen algorithm used for
lossy key generation is only used for security analysis.

We now prove the QROM security of α(G,S)-GMW-FS-lossy based on the C-
pseudorandom assumption and the computational unique response assumption
as in Lemma 2.

Theorem 4. For any quantum adversary A against the sEUF-CMA security of
α(G,S)-GMW-FS-lossy that issues at most QH queries to the quantum random
oracle, there exists a quantum adversary B against the C-pseudorandomness
(Definition 6), a quantum adversary C against the α(G,S)-stabilizer problem
(Definition 7) such that

Adv
α(G,S)-GMW-FS-lossy−sEUF-CMA(λ)
A

≤ AdvC−pseudorandomB (λ) +
2

|O|

+ 8(QH + 1)2 ·

(
1

Ct

C−1∏
i=1

A− iB
A

+

(
1−

C−1∏
i=1

A− iB
A

))
+ Adv

α(G,S)-Stab
C (λ)

and Time(B) = Time(A)+QH
∼= Time(A). Here |O| is the size of the orbit where

elements of the statement x = (s0, s1, · · · , sK−1) are in.
In the classical setting, we can replace 8(QH + 1)2 with QH + 1.

Proof. The proof initializes with Lemma 2 and Section 4.2 that the underlying
sigma protocol has computational unique response, lossiness, lossy-soundness,
perfect HVZK and at least λ bits of min-entropy. The result now follows from
Theorem 3.

5 Linkable ring signatures from abstract group actions

In this section, we describe the construction of linkable ring signatures from
abstract group actions. It follows the framework of Beullens, Katsumata and
Pintore [12], so we call it the GMW-FS-BKP design. While [12] focussed on
commutative group actions, their ring signature construction is readily applicable
to general group actions. In fact, for our group action framework, the scheme
becomes a bit simpler because [12] needs to work with rejection sampling. This
has been observed and applied to LESS [6] and MEDS [27]. Therefore, here we
will only briefly describe the main ideas, with a focus on presenting another
assumption on group actions to achieve linkability.
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The Beullens-Katsumata-Pintore design. Briefly speaking, the GMW-FS-BKP
ring signature is obtained by applying the Fiat-Shamir transformation to an
OR-Sigma protocol. Here, we describe the base OR-Sigma protocol for an ab-
stract group action. Some optimisation and the security proof are reproduced in
Appendix E for the readers’ convenience.

Let g1, g2, . . . , gN ←R G be the secret keys, and s1 = α(g1, s0), . . . , sN =
α(gN , s0) be the public keys, Com be a commitment scheme. The base OR-
Sigma protocol with statement {s0, . . . , sN ∈ S} and witness {gI ∈ G, I ∈ [N ]
such that α(gI , s0) = sI}, works as follows.

1. First, the prover random sample a group element h ∈ G, and apply it
to s1, . . . , sN respectively. Specifically, t1 = α(h, s1), . . . , tN = α(h, sN ).
Then the prover samples bitsi ←R {0, 1}λ and commits to ti with Ci =
Com(ti, bitsi). The prover further builds a Merkle tree7 with the (C1, . . . ,CN )
as its leaves. The prover computes the root root of the Merkle tree and sends
it to the verifier as the commitment.

2. When the verifier receives the commitment, it will randomly sample a chal-
lenge c←R {0, 1} and response it to the prover.

3. If c = 0, then the prover computes f = h ∗ gI and the authenticated path
for CI . The prover sends back a response rsp = (f, path, bitsI). The verifier
applies f to s0 to get t̃ and computes C̃ = Com(t̃, bitsI). The verifier then get
a root r̃oot by path and C̃. Finally the verifier checks whether r̃oot = root.

4. If c = 1, then the prover sends (h, bits1, . . . , bitsN ) to the verifier. This infor-
mation allows verifier to rebuild a Merkle tree as in step 1, and then check
that the roots are consistent.

A more formal description can be found as Figure 4 in Section E.

The linkable property. Linkable ring signatures were first introduced by Liu and
Wong [54] that allow public checking whether two ring signatures are ‘linked’,
i.e., generated by one user. A typical approach to construct a linkable ring sig-
nature is to add a tag, which uniquely define the real signer, to a signature. The
approach in [12] is to first construct a linkable OR sigma protocol and then apply
Fiat-Shamir transformation to obtain a linkable ring signature. We describe this
construction for general group actions in Appendix F.

Here we only briefly indicate how to construct a linkable OR sigma protocol.
For this, we add a tag r0 ∈ S associated with a group action β : G×S → S into
the relation. The group action β is defined as β(g, s) = α(g−t, s) where t is an
involution of G. This tag r0 is used to track if some secret key is signed more
than once. In addition, we restrict the initial public key s0 is sampled from an
orbit O(s0) with a trivial automorphism group. By the discussions in Section 6.4,
a randomly sampled form s0 has a high probability to be in an orbit with the
trivial automorphism group if we choose a proper parameter n and q, adding this
restriction is reasonable. After adding the tag into the base OR sigma protocol,

7 Note that the Merkle tree used here is slightly modified. It is index-hiding Merkle
tree, please see [12, Section 2.6]
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we can get a linkable OR sigma protocol shown in the Figure 6. Then we apply
the same optimization methods in Section E.1 to this protocol.

A linkable digital signature needs to satisfy linkability, linkable anonymity,
and non-frameability (see Appendix F.1). These properties can be translated to
properties about group actions as done in [12, Definition 4.2] and also [6,27] (see
Definition 14). For example, the linkable anonymity is captured by the following
property about group action pairs.

Definition 10. Let α, β : G × S → S be two group actions. We say that the
(α, β) pair satisfies the pseudorandom assumption at (s0, r0) ∈ S × S, if no
probabilistic or quantum polynomial-time algorithms can distinguish the following
two distributions with non-negligible probability:

1. The random distribution: (s1, r1) ∈ S × S, where s1, r1 ←R S.
2. The pseudorandom distribution: (s1, r1) ∈ S × S, where g ←R G, and s1 =

α(g, s0) and r1 = β(g, r0).

Furthermore, if the group actions α and β also satisfy the trivial stabiliser
assumption (Definition 8), then the linkability and non-frameability also follow.
These together suffice to prove the security of the linkable GMW-FS-BKP design
based on the action pair (α, β), as proved in Theorem 13. We note that the
above strategy was already used in MEDS [27] for the action underlying the
matrix code equivalence problem.

Instantiations of pseudorandom group action pairs. Let α : G×S → S be a group
action. There are some generic recipes in the literature about finding another
action β : G × S → S so that (α, β) is pseudorandom. In [12], β is constructed
as β(g, s) = α(g2, s). In [14,27], β is constructed as β(g, s) = α(g−1, s). Note
that here β is actually a right action (if α is a left action). It follows that the
responses need to involve both gh and hg where h is a random group element
and g is the secret.

We note that it is possible to do slightly better than the above, if we have
an involution t of G, i.e. an anti-automorphism of order 2. This means that
t is an automorphism, gt = g, and (g ∗ h)t = ht ∗ gt. We can then define
β(g, s) = α(g−t, s). In the case of G = GL(n, q) as of interest in ATFE (and
MEDS), this t can be simply taken as the transpose of matrices. This gives
a concrete linkable ring signature scheme based on ATFE-GMW-FS-BKP. Of
course, further research is required to verify whether this instantiation does give
a pseudorandom group action pair.

6 Results for the ATFE-GMW-FS scheme

6.1 New criteria of n and q in light of Beullens’ algorithms

In [9], Beullens presented several algorithms for ATFE. We briefly outline some
of them here, because they are both crucial and beautiful.
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Suppose we want to test equivalence of alternating trilinear forms ϕ, ψ :
Fn
q × Fn

q × Fn
q → Fq. Beullens’ results are based on rank statistics of alternat-

ing trilinear forms and guided by the some graphs associated with alternating
trilinear forms.

Rank statistics. Let P(Fn
q ) be the projective space associated with Fn

q , consisting
of lines in Fn

q . That is, for v ∈ Fn
q , v ̸= 0, we let v̂ := {u ∈ Fn

q | u = α ·v, α ∈ Fq}.
For v̂ ∈ P(Fn

q ), let rkϕ(v̂) be the rank of the bilinear form ϕv̂ := ϕ(v, ·, ·). When
it is clear from the context, we may just write as rk(v̂).

Let ϕ : Fn
q × Fn

q × Fn
q → Fq be a random alternating trilinear form. That is,

each of the
(
n
3

)
coefficients is uniformly randomly sampled from Fq. For given

n, q, and r ∈ N, we are interested in the average number of v̂ such that ϕv̂ is of
rank r. Experimental data of such distributions for small n and q were shown in
[70], and [9, Theorem 1] gave formulas for such distributions.

Theorem 5 ([9, Theorem 1]). Let ϕ ∈ ATF(n, q) be an alternating trilinear
form. Let d, d1, d2 ∈ [n] such that n − d, n − d1, n − d2 are even numbers. Let
G(ϕ, d) := {v̂ ∈ P(Fn

q ) | rkϕ(v̂) = n − d}, and G(ϕ, d1, d2) := {(v̂1, v̂2) | v2 ∈
ker(ϕv̂), rkϕ(v̂1) = n− d1, rkϕ(v̂) = n− d2}.

As q →∞, the average size of |G(ϕ, d)| over a uniformly randomly sampled

alternating trilinear form ϕ tends to qn−2+(−d2+3d)/2, and the average size of
|G(ϕ, d1, d2)| over a uniformly randomly sampled alternating trilinear form ϕ

tends to qn−6+(−d2
1−d

2
2+5(d1+d2))/2.

We discovered a part of this theorem independently, so we include a proof in
Appendix B.

The low-rank collision approach. Beullens’ main algorithm approach may be
called the low-rank collision approach. Let ϕ : Fn

q × Fn
q × Fn

q → Fq. Suppose by

Theorem 5, it is expected that there are roughly qk many v̂ ∈ P(Fn
q ), such that

rkϕ(v̂) = r.

To test isomorphism from ϕ to ψ, we can first sample qk/2 rank-r (projective)
points each from ϕ and ψ, and then find a collision, i.e. (û, v̂) such that the
isomorphism A(û) = v̂, via the Gröbner basis with partial information method8.

the cost of the low-rank collision attack is of the following form:

O(qk/2 · samp-cost+ qk · col-cost).

The collision cost col-cost can be estimated as O(n6) by [20]. The sampling cost
samp-cost refers to the cost of sampling a rank-r (projective) point.

8 As in [9], the Gröbner basis with partial information method needs to be strength-
ened as follows. Suppose v ∈ Fn

q satisfies that the rank of the bilinear form
ϕv̂ : Fn

q × Fn
q → Fq is r < n. Then it is sufficient to guess the image of v under

the matrix X up to a scalar, as the kernel of ϕv̂ can be incorporated to provide
further information.
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The straightforward way to sample a rank-r point is to formulate it as a min-
rank problem, but this involves matrices with structures so it is not straightfor-
ward to estimate the costs based on current literature of min-rank such as [4].
Beullens’ main novel contribution lies in the sampling step, which he called the
graph walking method. We note that such graph-theoretic algorithms have been
proposed for other similar problems [21].

The graph associated with an alternating trilinear form. Let ϕ : Fn
q ×Fn

q ×Fn
q →

Fq be an alternating trilinear form. The graph associated with ϕ is G(ϕ) = (V,E)
where V = P(Fn

q ), and for u, v ∈ P(Fn
q ), {u, v} ∈ E if and only if ϕ(u, v, x) = 0

for all x ∈ Fn
q . Note that {u, v} ∈ E if and only if the linear form obtained by

instantiating the first two arguments of ϕ to u and v is the zero linear form. Such
graphs have been used in algorithms for other related isomorphism problems [21].

We can then assign labels to the vertices of G(ϕ) as follows. It is clear that
rk(v̂) is an isomorphism invariant, that is, if ϕ and ψ are equivalent, then any
isomorphism sends v̂ of rk(v̂) = r to some û of the same label.

Sampling based on graph walking. To sample a rank-r point v̂, Beullens uses
the graph walk method. That is, suppose we start with v̂ of a large rank (i.e.
rk(v̂) = n− 1 if n is odd, and rk(v̂) = n− 2 if n is even). It is easy to compute
the neighbours of v̂ on G(ϕ) by computing the kernel of the matrix ϕ(v, ·, ·).
Then the question of whether the kernel contains a low-rank vector û can be
modelled as a min-rank problem with only n − r matrices. Beullens uses the
estimate of min-rank by Bardet et al [4]. Combining with the rank distributions,
the probability of the neighbours in v̂ having a small-rank one can be computed.
This leads to a sampling procedure of low-rank vectors.

The final algorithm running times. Based on the graph walking method, the
sampling cost samp-cost for odd n and r = n−5 can be estimated as O(q2 ·n11),
and for even n and r = n − 4 can be estimated as O(n3). Combining with the
O(n6)-time algorithm for the Gröbner basis with partial information method
[20,70], this leads to an algorithm in time O(q(n−3)/2 ·n11 + qn−7 ·n6) for odd n
and r = n− 5, and O(q(n−4)/2 · n3 + qn−4 · n6) even n and r = n− 4. These will
be used as our criteria for choosing n and q.

Other algorithms by Beullens. For n = 9, Beullens discovered a beautiful struc-
ture of the graph G(ϕ) restricted to rank-4 points, and devised an algorithm
that works in time O(q). This attack completely destroys the choice of n = 9.

Based on Theorem 5, Beullens noted that for some n, there are weak keys [9].
Take n = 10 as an example. The highest rank in this setting is 8. By Theorem 5,
with probability ∼ 1/q, there is a unique v̂ of rank 4. This can then be combined
with the Gröbner basis with partial information method, to give a fast algorithm,
as the problem completely boils down to find this unique v̂.

A new direct Göbner basis attack. Recently, a new formulation of polynomial
systems for solving ATFE was proposed in [63], leading to another direct Gröbner
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basis attack. While this is interesting and timely, it can be verified that all rank-
1 matrices and some rank-2 matrices are in the solution space of this system.
Furthermore, the semi-regularity assumption seems not hold due to the existence
of some syzygies. It is an interesting problem to understand the aftermaths of
this nice method better.

6.2 Improvements to the previous implementation

The unbalanced challenge technique. The unbalanced challenge technique is a
classical technique which can be traced back to Fiat and Shamir’s original paper
[40]. The idea is to observe that, in the case of challenge 0, the response would
be a random group element which can be expanded from a short seed, so sending
the seed reduces the communication. As a result, the number of rounds needs to
be increased.

Corollary 2. The lossy identification protocol based on ATFE with the unbal-
anced challenge, satisfies statistical ϵls-lossy soundness for

ϵls =
1

(
(
M
K

)
(C − 1)K)

C−1∏
i=1

A− iB
A

+

(
1−

C−1∏
i=1

A− iB
A

)
,

where A = |ATF(n, q)|, B = |GL(n, q)|.

Proof. Since the size of unbalanced challenge space is
(
M
K

)
(C − 1)K), we have

that Pr[A wins | x ∈ X ] ≤ 1

((MK)(C−1)K)
. The result follows the proof for Lemma

4.

Let M be the round number and K be the number of non-zero challenges.
To achieve λ-bit security, we should choose the proper M and K such that(
M
K

)
· (C−1)K ≥ 2λ. Our new public key, private key and signature size in terms

of bits are as follows.

Public Key Size = C ·
(
n

3

)
· ⌈log2 q⌉+ λ,

Private Key Size = C · n2 · ⌈log2 q⌉,
Signature Size = (M −K + 2) · λ+K · n2 · ⌈log2 q⌉.

Speeding up the group action computation. We improve the implementation of
group actions in [70]. The new idea is as follows: when generating a random in-
vertible matrix, we represent it as the product of n invertible column matrices. A
column matrix is equal to the identity matrix for each coefficient but one column.
While not all invertible matrices can be decomposed in such product (without
the use of a permutation matrix), the number of matrices not decomposable
directly in such product of column matrices is negligible.
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An equivalent trick was already used in [70] to generate invertible matrices
without having to compute a costly determinant. In [70] the authors were gen-
erating two invertible LU matrices (a lower triangular and an upper one) before
multiplying the two matrices to obtain the invertible matrix A.

Once in the form of the product of n columns matrices, a matrix can be
applied to an alternating trilinear form in simpler and faster way: each column
matrix, one after the other, can be applied directly to the alternating trilinear
without passing by a costly tensor form. Consequently, we reduce the number of
field multiplications from 7/4 ·n4 to 1/2 ·n4 of required. This gain applies only to
the matrices generated from a random seed, however in the case of unbalanced
techniques it represents the vast majority.

New parameters. We consider the 128-bit security level and present the data in
Table 2.

Parameters Size in Bytes Time in µs

n q C M K Public key Signature Set-Up Sign Verify

10 262139(∼ 218)
43 50 16 11626 4176 953.0 1436.2 967.4
19 50 20 5146 5012 451.2 1499.9 948.2

11 131217689(∼ 227)
43 50 16 23961 7110 1460.3 2245.4 1483.2
19 50 20 10596 8679 1631.2 2520.0 1631.2

Table 2. Parameters of 128-bit security

Comparison with the previous implementation. Our improved implementation is
more balanced in terms of efficiency and signature size than previous implemen-
tations proposed by Tang et al [70]. Due to Beullens’ algorithms for ATFE [9], the
parameter q needs to be increased. For example, when n = 10, we need to take
q = 262139 instead of q = 131071. While the unbalanced challenge technique
increases the number of rounds, we reduce the time of group actions in each
round. The result is that our implementation can even achieve smaller public
key + signature size for n = 10 compared to [70, Table 5], while maintaining the
signing and verification quite fast. Since the signing time of the protocol is very
fast, we can properly sacrifice the speed to ensure a smaller signature length as
we showed in Table 2.

6.3 Signature size reduction by the MPC in the head paradigm

The multiparty computation (MPC) in the head paradigm was initially intro-
duced in [48] as a means to enhance the theoretical and asymptotic constructions
of zero-knowledge (ZK) protocols. More recently, Joux [50] proposed the applica-
tion of MPC-in-the-head for creating signatures from isomorphism problems and
group actions. By applying MPC-in-the-head, the identification scheme based on
group action and additional primitive named puncturable pseudo-random func-
tions (puncturable PRFs) are as follows.
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Puncturable pseudo-random functions A puncturable PRF family F defined on
[N ] refers to a PRF family that is indexed by a key K and has a domain of [N ].
This family satifies the following properties:

– For any given key K and index i, there exists a punctured key K∗i along
with an efficient algorithm A such that:

∀j ∈ [N ]\{i} : A(K∗i , j) = FK(j).

– Given the puncturable key K∗i , the value of FK at i should be computation-
ally indistinguishable from a randomly chosen value.

Group action based identification scheme using MPC-in-the-head Given an ex-
pander Expand and a puncturable PRF family F , where Expand sends the output
of F into a group element. Note here we consider there are two set elements
s0, s1 ∈ S such that α(g, s0) = s1 as the public keys. We have the identification
scheme as follows.

– The prover randomly chooses a puncturable keyK and lets g(i) = Expand(FK(i))
such that s(i) = α(g(i), s(i−1)) for i ∈ [N ]. Note there s(0) = s0. Then the
prover sends the hash value h = H(s(1)||s(2)|| · · · ||s(N)) as the commitment.

– The verifier randomly chooses an index i∗ ∈ [N ] and sends back to the
prover.

– The prover responses the puncturable key K∗i and the offset map g∆ such
that g∆ ∗ g(N) ∗ g(N−1) ∗ · · · ∗ g(1) = g.

– The verifier can efficiently generate g(j) for j ∈ [N ]\i∗. Then the verifier
computes all s(i) by forward computation from s(0) up to s(i

∗−1) and by
a backward computation from s(N) down to s(i

∗). Finally he checks the
commitment h.

This protocol has a soundness of 1
2N . If we enlarge the public key size to C set

elements then we have a soundness of 1
N(C−1) .

Reducing the signature size As mentioned above, the new identification scheme
have a soundness of 1

N(C−1) if the public key consists of C set elements. Thus

we need λ = M · log2(N(C − 1)) instead of λ = M · log2 C to achieve λ bit
security. The new signature consists of a puncturable key and round number of
offset map along with the challenge. The size (in terms of bit) of the signature
evaluate as follows:

3λ+M · λ · log2N +M · [the bitsize of group elements].

Of course it’s possible to extend the N(C − 1) to N(C − 1) + 1 options. The
extra option is actually of revealing the unpuncturable key without revealing
the offse map. Thus in this case, unbalanced challenge space is applied. We need
λ = log2(

(
M
K

)
(N(C−1))K) to achieve λ bit security. By applying the unbalanced

challenge, the size (in terms of bit) of the signature evaluate as follows:

3λ+ λ · (M −K) +K · [the bitsize of group elements].
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Parameters Size in Bytes

n q C M K pubkey size sig size

10 262139(∼ 218)
43 50 19 11626 3019
19 54 12 5146 3404

11 131217689(∼ 227)
43 50 19 23961 5036
19 54 12 10596 5604

Table 3. Parameters of 128-bit security with the MPC-in-the-head paradigm for N =
10.

New parameter set based on MPC-in-the-head For the optimization by MPC-
in-the-head, we consider the security level 128-bit as shown in Table 3. Here we
set the N to be 10. Compared with the data in Table 2, we can see that the
signature sizes in Table 3 are between 64% to 72% of the sizes in Table 2.

6.4 The QROM security of the ATFE-GMW-FS scheme

Based on the results in Sections 3, there are two approaches to show the QROM
security of the ATFE-GMW-FS scheme.

QROM security via perfect unique response. Let ϕ : Fn
q×Fn

q×Fn
q → Fq be

an alternating trilinear form. Recall that Stab(ϕ) := {A ∈ GL(n, q) | ϕ◦A = ϕ}.
By Lemma 1, the ATFE-GMW-FS-O(ϕ) is secure in the quantum model,

if Stab(ϕ) is trivial. To decide whether Stab(ϕ) is trivial or not is a difficult
algorithmic problem; see [70, Section 3.2] for a discussion. Still, we make progress
by running experiments for those n of interest in our context.

Basic facts about Stab(ϕ). First, note that if 3|q − 1, then Stab(ϕ) cannot be
trivial. This is because 3|q−1 implies the existence of λ ∈ Fq, λ ̸= 1, and λ3 = 1.
Therefore λIn ∈ Aut(ϕ). Second, for (a) n = 7 and (b) n = 8 and char(Fq) ̸= 3,
there exist no alternating trilinear forms with trivial automorphism groups, by
classifications of alternating trilinear forms in these cases [28,59,46]. Third, for
n = 9 and q = 2, by the classification of alternating trilinear forms [47], there
exists a unique orbit of alternating trilinear forms with trivial automorphism
groups.

In general, because of the difference between the dimension of GL(n, q) (which
is n2) and the difference between the dimension of ATF(n, q) (which is

(
n
3

)
), it

is expected that for n ≥ 10 and 3 ∤ q− 1, most alternating trilinear forms would
have the trivial automorphism group.

A Magma program to compute the stabilizer group order. We implemented a
program in Magma [18] for computing automorphism group orders of alternating
trilinear forms as follows.

1. Enumerate every v ∈ Fn
q and compute the rank of ϕ(v, ·, ·) as an alternating

bilinear form. Let S ⊆ Fn
q be the set of non-zero vectors such that ϕ(v, ·, ·)

is of lowest rank.
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2. Fix u ∈ S. Let X and Y be two n × n variable matrices. For every v ∈ S,
set up a system of polynomial equations expressing the following:
(a) ϕ ◦X = ϕ, and ϕ = ϕ ◦ Y .
(b) For any a, b, c ∈ Fn, ϕ(X(a), X(b), c) = ϕ(a, b, Y (c)), and ϕ(X(a), b, c) =

ϕ(a, Y (b), Y (c)).
(c) XY = In, and Y X = In.
(d) X(u) = v, and Y (v) = u.
The use the Gröbner basis algorithm implemented in Magma to compute
the number of solutions to this system of polynomial equations. Let it be sv.

3. Sum over sv over v ∈ S as the order of Stab(ϕ).

This algorithm runs in time qn · poly(n, log q). The use of Gröbner computations
follows the practices of works in multivariate cryptography for solving polyno-
mial isomorphism [38,19,20,21]. The reason for Step 1 is to limit the number of
Gröbner basis computations, which are more costly compared to computing the
ranks. This idea could be found, for example, in [23]. The way we set up the
equations is from [70].

Report on the results. Our experiment results are as follows.

– For q = 2 and n = 9, out of 100 samples there are three ones with trivial
stabilizer groups. This is consistent with the fact that there exists exactly
one orbit of alternating trilinear forms [47], so the probability of sampling
one from this orbit is |GL(2, 9)|/284 ≈ 3.6169%.

– For q = 2 and n = 10, 11, all 100 samples return trivial stabilizer groups.
– For q = 3 and n = 10, 11, all 10 samples return trivial stabilizer groups.

These suggest that for n = 10 and q satisfying 3 ∤ q − 1, a random alternating
trilinear form has the trivial automorphism group with good probability. To the
best of our knowledge, to give an estimation of this probability (depending on q
and n) is open.

QROM security via lossy schemes. In the above, we presented evidence
for the ATFE-GMW-FS scheme to satisfy the perfect unique response property
for n ≥ 10, supporting its QROM security by the results in Section 3. However,
the reduction in this approach is not tight. Instead, the QROM security via the
lossy scheme approach gives a tight reduction.

To apply the results in Section 4 to the ATFE-GMW-FS scheme, we need to
examine whether the group action underlying ATFE is pseudorandom. In [70,
Conjecture 1], the authors conjectured that this is indeed the case, and provided
some supporting evidences, some of which traced back to [49]. Here we briefly
explain that, a key argument in [70] is that there seem no easy-to-compute
isomorphism invariants for ATFE, as such isomorphism invariants can be used
to distinguish non-equivalent alternating trilinear forms.

If the above holds, then M = qn
2

and N = q(
n
3), N ≫ M as the security

parameter λ is large enough. Therefore, the lossy soundness ϵls ≈ 1
Kt ≈ 1

2λ
.

29



6.5 An implementation of the ATFE-GMW-FS-BKP ring signature
scheme

We implement the GMW-FS-BKP ring signature design based on ATFE. Here, we
report the formulas for calculating the parameters, and preliminary experiment
results. Some comparisons with known ring signature schemes were presented in
Section 1.2.

Some formulas for parameters. To achieve the λ-bits security, we should choose
the proper M and K such that (MK )K ≥ 2λ. We use R denotes the size of ring.
Here we use a trick that evenly dividingM rounds into K sections with length of
⌈MK ⌉. For each section, we can construct a seed tree of which the internal seeds

is of the size at most λ · ⌈log2(MK )⌉.

1. The public key, private key and signature size of (non-linkable) ring signature
in terms of bits are as follows.

Public Key Size = (R+ 1) ·
(
n

3

)
⌈log2 q⌉,

Private Key Size =

(
n

3

)
⌈log2 q⌉+R · n2⌈log2 q⌉,

Signature Size = K(λ · ⌈log2
(
M

K

)
⌉+ n2⌈log2 q⌉+ 2λ · ⌈log2R⌉+ λ) + 3λ.

2. The public key, private key and signature size of linkable ring signature in
terms of bits are as follows.

Public Key Size = (R+ 1) ·
(
n

3

)
⌈log2 q⌉,

Private Key Size =

(
n

3

)
⌈log2 q⌉+R · n2⌈log2 q⌉,

Signature Size = K(λ · ⌈log2
(
M

K

)
⌉+ n2⌈log2 q⌉+ 2λ · ⌈log2R⌉+ λ)

+ 3λ+

(
n

3

)
⌈log2 q⌉.

Concrete parameters and reports on the performance. We provide the perfor-
mance evaluation of our schemes in terms of signature size, as shown in Tables 4.
Furthermore, Table 5 illustrates the signature generation time for our schemes.
Our constructions are implemented and measured on a 2.4 GHz Quad-Core Intel
Core i5.

Acknowledgement. We would like to thank Ward Beullens, Monika Trimoska,
and Lars Ran for their help with understanding their algorithms for ATFE.
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Parameters Size in Bytes

n q M K
R

21 23 26 212 221

10 262139(∼ 218) 850 25 8873 10473 12873 17673 24873

11 131217689(∼ 227) 850 25 13457 15057 17457 22257 29457

Table 4. The signature size (Bytes) of the ring signature. The security meets the NIST
level 1.

Parameters Time in µs

n q M K
R

21 22 23 24 25 26 27

10 262139(∼ 218) 850 25 35526.9 55714.4 96379.3 174050.1 369691.1 686969 1421279

11 131217689(∼ 227) 850 25 54949.1 86427.9 146263.1 246734.5 475435.7 901354.7 1814951

Table 5. The signing time (µs) of the ring signature. The security meets the NIST
level 1.
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A Σ-protocols based on abstract group actions

A.1 Properties of Σ-protocols

Identification from Σ-protocol. A Σ-protocol (P,V) with a key generation algo-
rithm ID.Gen gives an identification scheme (ID.Gen,P,V).
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Completeness. A Σ-protocol is said to be complete if for all pair (x,w) ∈ R,
an honest prover P with (pk, sk), where pk := x and sk := w, can always con-
vince an honest verifier, i.e. Pr[V(pk, a, c, r) = 1 | a ← P(sk), c ∈R ChSet, r ←
P2(pk, sk, a, c)] = 1.

Post-Quantum 2-Soundness. We say aΣ-protocol has post-quantum 2-soundness,
if for any λ and any poly-time quantum adversary A, the following probability
is negligible, taken over the randomness of (x,w)← Gen(1λ): Pr[V(pk, a, c, r) =
1 ∧ V(pk, a, c′, r′) = 1 ∧ c ̸= c′ | (a, c, r, c′, r′)← A(pk)] ≤ negl(λ).

Honest Verifier Zero Knowledge. A Σ-protocol has honest verifier zero knowl-
edge (HVZK) if for all pairs (x,w) ∈ R, there is a simulator S with only the
statement x, can always compute a valid transcript (a, c, r), i.e. Pr[V(pk, a, c, r) =
1 | (a, c, r)← S(pk)] = 1. Moreover, the output distribution of S on input (x, c)
is equal to the distribution of those outputs generated via an honest execution
conditioned on the verifier using c as the challenge.

Min-entropy. A Σ-protocol has α-bit min-entropy, if

Pr
(x,w)∈RR

[min-entropy(a|a← P1(x,w)) ≥ α] ≥ 1− 2−α.

Perfect Unique Response. A Σ-protocol has perfect unique response if for all
pairs (x,w) ∈ R, there is no two valid transcripts (a, c, r) and (a, c, r′) of
the same commitment a and challenge c but different responses r ̸= r′, i.e.
Pr[V(x, a, c, r) = 1 ∧ V(x, a, c, r′) = 1 ∧ r ̸= r′] = 0.

Computationally Unique Response. A Σ-protocol has computationally unique
response, if for any λ and any poly-time quantum adversary A, the following
probability is negligible, taken over the randomness of (x,w)← Gen(1λ):

Pr[V(x, a, c, r) = 1 ∧ V(x, a, c, r′) = 1 ∧ r ̸= r′ | (a, c, r, r′)← A(pk)] ≤ negl(λ).

Commitment Recoverability. A Σ-protocol is commitment recoverable if given
c and r, there is a unique a such that (a, c, r) is a valid transcript. Such a
commitment may be publicly computed with the input (x, c, r). In particular,
our identification scheme support this property.

A.2 Properties of the Σ-protocol based on abstract group actions

Completeness. It is clear that the honest prover with statement and witness
(x,w) following the α(G,S)-GMW protocol showed in Figure 3 can always con-
vince the honest verifiers.

Post-Quantum 2-Soundness. If there is a poly-time quantum adversary A
with statement x = {s0, . . . , sC−1} who can compute two valid transcripts
(t, c, h) and (t, c′, h′) where c ̸= c′. Since α(h, sc) = t and α(h′, sc′) = t, the
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adversary A can get f = h−1 ∗ h′ such that sc = α(f, sc′), which is contradicted
to the group action one-way assumption.

HVZK. Given a statement x = {s0, . . . , sC−1}, there is a simulator S first sam-
pling c ∈R {0, . . . , C−1} and h ∈R G and then computing t = α(h, sc). It follows
that (t, c, h) is a valid transcript. Then the distributions of h and c are uniform,
and t = α(h, sc) is uniformly from the orbit where statement x is in. The dis-
tribution of (t, c, h)← S(x) is equal to the distribution of real transcripts since
the both are uniform distribution on commitments, challenges, and responses.

Min-Entropy. Since commitment t is uniformly taken from the orbit O which
elements of the statement x = {s0, . . . , sC−1} belong to, the α(G,S)-GMW pro-
tocol has α-bit min-entropy with α = log2(|O|) and |O| is the size of orbit O.

Remark 5. By the orbit-stabiliser theorem, for an alternating trilinear form ϕ
over Fn

q , we have |O(ϕ)| = |GL(n, q)|/|Aut(ϕ)|. In Section 6.4, some results on
the automorphism group orders, and therefore orbit sizes, of random alternating
trilinear forms will be presented.

Commitment Recoverable. The α(G,S)-GMW protocol is commitment recov-
erable. In fact, given a challenge c and a response h, there is only one commitment
t computed by t = α(h, sc).

B On the rank statistics of random alternating trilinear
forms

Contractions of alternating trilinear forms. Let V be a vector space of dimension
n. Let b1, . . . , bn be a basis of V ∗ An alternating trilinear form t : V 3 → V can
be represented as ∑

1≤i<j<k≤n

ti,j,kbi ∧ bj ∧ bk.

Assume that the underlying field F is finite and that the ti,j,k are drawn uni-

formly at random. Let v ∈ V be nonzero. Assume that b1(v) ̸= 0. Let b̂1 =

1/b1(v) · b1. By setting b̂i := bi − αib1 for some suitable αi ∈ F , we can assume

that b̂i(v) = 0. The new coefficients t̂i,j,k in the basis b̂1, b̂2, . . . , b̂n are again
uniformly random. Now

t̂(v, ., .) =
∑

1≤i<j<k≤n

t̂i,j,k b̂i(v) ∧ b̂j ∧ b̂k

=
∑

2≤j<k≤n

t̂1,j,k b̂j ∧ b̂k

Thus t̂(v, ., .) is a random alternating bilinear form, or equivalently, a random
alternating matrix.
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Proposition 1. The probability that t(v, ., .) has rank 2r equals the probability
that a random alternating (n− 1)× (n− 1)-matrix has rank 2r.

The number of alternating matrices of given rank. Let S(m, 2r) be the number
of alternating m×m-matrices of rank 2r.

Theorem 6 (Carlitz [24]).

S(m, 2r) = qr(r−1)

2r−1∏
i=0

(qm−i − 1)

r∏
i=1

(q2i − 1)

Putting it together. For an alternating trilinear form t : V 3 → V and v ∈ V ,
let tv : V 2 → V be the alternating bilinear form t(v, ., .). Let Rt,ρ = {u ∈ V |
rk(tu) = ρ}.

The total number of alternating m ×m-matrices is q(
m
2 ). The total number

of alternating trilinear forms on V is q(
n
3).

The number of pairs (u, t) with u ∈ V \ {0} and t being an alternating
trilinear form such that u ∈ Rt,2r is

(qn − 1)︸ ︷︷ ︸
number of u

· q(
n
3)︸︷︷︸

number of t

· S(n− 1, 2r)

q(
n−1
2 )︸ ︷︷ ︸

prob for rank 2r

.

Thus the expected size is

Et(|Rt,2r|) = (qn − 1)
S(n− 1, 2r)

q(
n−1
2 )

.

In particular, if r is small compared to n and both values are fixed, then the
quantity goes to zero when q grows. For ρ = 2r = 4, it is about q6.5n−15−0.5n

2

.

Comparison. We compare with [70, Table 3], only the cases when 100 simulations
were done and the characteristic was odd.

The following data in Table 6 are from [70, Table 3].

n q 2 4 6 8

7 5 5.76 16218.24 61900 —
9 3 0 30 7064.24 12587.76
10 3 0 0.96 2451.74 56595.3

Table 6.

Our formula yields (rounded) the following data in Table 7, which match the
data in Table 6 closely.
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n q 2 4 6 8

7 5 5.21 16139.4 61979.4 —
9 3 0.0015 30.56 7073.83 12577.6
10 3 0.000006 1.13 2448.59 56598.3

Table 7.

C Proof of Theorem 2

To prove Theorem 2 we first need some preparations.

Post-Quantum ID soundness of α(G,S)-GMW-O(s0) Σ-protocol. When a Σ-
protocol is for identification, we need a definition of ID soundness to protect
against the adversaries with eavesdropping attack.

Definition 11. A Σ-protocol has post-quantum ID soundness if for any (x,w) ∈
R, every adversary AOP,V =

(
AOP,V

0 ,AOP,V
1

)
with only the pk and polynomial

times of queries to the valid transcripts generated with an honest prover P with
pk and sk and an honest verifier V with pk can convince an honest verifier V
with a negligible probability, i.e., the probability

Pr
[
V.Ver(pk, a, c, r) = 1 | a← AOP,V

0 (pk) ∧ c←R {0, 1}λ ∧ r ← A
OP,V
1 (pk, a, c)

]
.

is negligible.

Liu and Zhandry show that post-quantum identification soundness can be
satisfied if a Σ-protocol has the weakly collapsing property and some extra prop-
erties [55, Theorem 1]. Since the perfect unique response is a stronger property
than weakly collapsing property, we can state the result in [55] as follows.

Theorem 7 ([55]). If a Σ-protocol with an exponentially large challenge space
has completeness, post-quantum 2-soundness, HVZK, and perfect unique re-
sponse, it is a Σ-protocol with post-quantum ID soundness that for any polynomial-
time quantum adversary A against post-quantum ID soundness, there is a quan-
tum adversary B for 2-soundness such that,

AdvID-sound
A ≤ O

((
Adv2-soundB

) 1
3

)
.

Corollary 3. Let α : G × S → S be a group action. Suppose we have some
s0 ∈ S such that Stab(s0) is trivial. The t repetitions of α(G,S)-GMW-O(s0)
Σ-protocol in Figure 3 is a Σ-protocol with post-quantum ID soundness that for
any polynomial-time quantum adversary A against post-quantum ID soundness,
there is a quantum adversary B for C-one-way-O(s0) problem such that,

Adv
α(G,S)−ID
A ≤ O

((
Adv

C−one−way−O(s0)
B

) 1
3

)
.
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Proof. As Stab(s0) is trivial, by Lemma 1, the Σ-protocol in Figure 3 has perfect
unique response. It also satisfies completeness, 2-soundness, and HVZK in the
Appendix A.2. Since the t repetitions of Σ-protocol in Figure 3 has an exponen-
tially large challenge space, we can conclude the proof by Theorem 7.

Security of α(G,S)-GMW-FS-O(s0) signature. Liu and Zhandry [55, Theorem 11]
showed that the signature security can be reduced to the underlying Σ-protocol
with post-quantum ID soundness through a variant of Zhandry’s compressed
oracle model [77]. Since min-entropy α = Ω(λ) implies that the Σ-protocol has
unpredictable commitment, we can substitute unpredictable commitment with
Ω(n) bits min-entropy to have the following theorem.

Theorem 8 ([55], Theorem 1). If a Σ-protocol has post-quantum ID sound-
ness and Ω(n) bits min-entropy, the Fiat-Shamir transformation can produce a
signature scheme with EUF-CMA security that for any polynomial-time quantum
adversary A querying the quantum random oracle QH times against EUF-CMA
security, there is a quantum adversary B against ID-soundness of the underlying
protocol such that,

AdvEUF-CMA
A ≤ O

(
Q9

H · Adv
ID-sound
B

)
.

Corollary 4. If the t repetitions of α(G,S)-GMW-O(s0) protocol showed in Fig-
ure 3 has post-quantum ID soundness, then the corresponding Fiat-Shamir sig-
nature has EUF-CMA security that for any polynomial-time quantum adversary
A querying the quantum random oracle QH times against EUF-CMA security of
α(G,S)-GMW-FS-O(s0) signature, there are quantum adversary B against ID-
soundness of α(G,S)-GMW-O(s0) protocol such that,

Adv
α(G,S)−EUF-CMA
A ≤ O

(
Q9

H · Adv
α(G,S)−ID
B

)
.

Proof. Assume the t repetitions of Σ-protocol showed in Figure 3 has post-
quantum ID soundness. We proved that it has log2(|O(s0)|) bits min-entropy in
Appendix A.2, and |O(s0)| = 2Ω(λ). Now we complete the proof utilizing the
result of Theorem 8.

We are now ready to prove Theorem 2.

Proof of Theorem 2. By Corollary 3, we have a Σ-protocol with post-quantum
ID soundness. Then the EUF-CMA security can be achieved by Corollary 4.

D An alternative QROM security proof based on perfect
unique response

Theorem 9. Suppose s0 ∈ S satisfies that Stab(s0) is trivial. The α(G,S)-
GMW-FS-O(s0) signature based on the t repetitions of α(G,S)-GMW-O(s0) pro-
tocol in Figure 3 has sEUF-CMA security that for any polynomial-time quantum
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adversary A querying the quantum random oracle QH times against sEUF-CMA
security of α(G,S)-GMW-FS-O(s0) signature, there is a quantum adversary B
for C-one-way-O(s0) problem such that,

Adv
α(G,S)−sEUF-CMA
A ≤ O

(
QH

2 ·
(
Adv

C−one−way−O(s0)
B

) 1
3

)
.

Proof. By Corollary 5, we have a Σ-protocol with post-quantum weakly ID
soundness. Then the sEUF-CMA security can be achieved by Corollary 6.

Post-Quantum weak ID soundness of α(G, S)-GMW-O(s0) Σ-protocol
When a Σ-protocol is for identification, we need a definition of ID soundness
to protect against the adversaries. Here we consider the weak ID soundness
property only against adversaries without eavesdropping attack. The definition
of this property is as follows:

Definition 12. A Σ-protocol has post-quantum weak ID soundness if for any
(x,w) ∈ R, every adversary A = (A0,A1) with only the x can convince an honest
verifier V with a negligible probability, i.e.

AdvwIDA (λ) = Pr [V(x, a, c, r) = 1 | a← A0(x) ∧ c←R ChSet ∧ r ← A1(x, a, c)] ≤ negl(λ).

For convenience, we write the advantage AdvwIDA (λ) as Pr [v = 1 | v ← ⟨A(x),V(x)⟩].

Liu and Zhandry show that post-quantum identification soundness can be
satisfied if sigma protocol has weakly collapsing property and extra properties
[55, Theorem 1]. We relax the ID soundness to the weak ID soundness, so the
HVZK property isn’t required here. Moreover, since the perfect unique response
is a stronger property than weakly collapsing property, we can modify the result
in [55].

Theorem 10 ([55], Theorem 1). If a Σ-protocol with an exponentially large
challenge space has completeness, post-quantum 2-soundness and perfect unique
response, it is a Σ-protocol with post-quantum ID soundness that for any polynomial-
time quantum adversary A against post-quantum weak ID soundness, there is a
quantum adversary B for 2-soundness such that,

AdvwIDA ≤ O
((

Adv2-soundB

) 1
3

)
.

Corollary 5. Suppose the stabilizer Stabs0 is trivial. The t repetitions of α(G,S)-
GMW-O(s0) protocol in Figure 3 is a Σ-protocol with post-quantum weak ID
soundness that for any polynomial-time quantum adversary A against post-quantum
ID soundness of α(G,S)-GMW-O(s0) Σ-protocol, there is a quantum adversary
B for C-one-way-O(s0) problem such that,

Adv
α(G,S)−wID
A ≤ O

((
Adv

C−one−way−O(s0)
B

) 1
3

)
.
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Proof. By Lemma 1, the Σ-protocol in Figure 3 has perfect unique response. We
also proved that it has completeness and post-quantum 2-soundness in Appendix
A.2. Since t repetitions of Σ-protocol in Figure 3 has an exponentially large
challenge space, we complete the proof using the result of Theorem 10.

Security of α(G, S)-GMW-FS-O(s0) signature Don et al. showed that the
security of signature can be reduced to the security of underlying protocol
through their measure-and-reprogram strategy [33]. We use their main technol-
ogy [33, Theorem 8] to preserve the weak ID soundness from underlying protocol
to Fiat-Shamir signature.

Theorem 11. If a Σ-protocol with a superpolynomially challenge space has
weakly post-quantum ID soundness, the Fiat-Shamir transformation can produce
a secure signature that for any polynomial-time quantum adversary A query-
ing the quantum random oracle QH times against EUF-NMA security, there is
a static quantum adversary B against post-quantum weakly ID-soundness of the
underlying protocol such that,

AdvEUF-NMA
A ≤ O

(
QH

2
)
· AdvwIDB .

proof (sketch). The idea is similar to the proof of the Lemma 12, Corollary 13
and Theorem 21 in [33]. Assume for any static adversary B such that,

AdvwIDB (λ) = Pr [v = 1 | v ← ⟨B(x),V(x)⟩] ,

for any x ∈ X . Then there is a polynomial-time quantum adversary A querying
the quantum random oracle H QH times against EUF-NMA security such that,

AdvEUF-NMA
A (λ) = Pr[Ver(pk,m, σ) = 1 | (pk, sk)← Gen(1λ) ∧ (m,σ)← AH(pk)]

=
∑

(x′,w′)←Gen

Pr[Ver(x,m, σ) = 1 | (m,σ)← AH(x)] Pr[x = x′]

≤
∑

(x′,w′)←Gen

O(QH
2) Pr

[
v = 1 | v ←

〈
SA(x),V(x)

〉]
Pr[x = x′]

+ negl(λ).

At this inequality, we use the Theorem 8 in [33] to reduce the adversary against
the weak ID soundness to the adversary against Fiat-Shamir signature. Thus,
we can obtain that,

AdvEUF-NMA
A (λ) ≤ O

(
QH

2
)
· AdvwIDB .

The proof completes.

This security is not enough if we consider the chosen-message attack. [52]
contains the proof of reduction from chosen-message attack to no-message attack.
Although their final result are based on lossy property, this reduction is for
general case. We can still use the Theorem 3.3 in [52].
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Theorem 12. Assume that the scheme is HVZK, has α bits of min-entropy,
and has computationally unique response. Then for any quantum adversary A
against the sEUF-CMA security that issues at most q queries to the classical
signing oracle, there exist quantum adversaries B,D such that

AdvsEUF-CMA
A ≤ AdvEUF-NMA

B + q · 2−α+1 + AdvCURD .

Corollary 6. Suppose Stab(s0) is trivial. If the t repetitions of α(G,S)-GMW-
O(s0) protocol showed in Figure 3 has post-quantum weakly ID soundness, then
the corresponding Fiat-Shamir signature has sEUF-CMA security that for any
polynomial-time quantum adversary A querying the quantum random oracle QH

times against sEUF-CMA security of α(G,S)-GMW-FS-O(s0) signature, there are
quantum adversary B against post-quantum weak ID-soundness of α(G,S)-GMW-
O(s0) protocol such that,

Adv
α(G,S)−sEUF-CMA
A ≤ O

(
QH

2
)
· Advα(G,S)−wIDB .

Proof. Assume the t repetitions of Σ-protocol showed in Figure 3 has post-
quantum weak ID soundness. The α(G,S)-GMW-FS-O(s0) signature based on it
has EUF-NMA security using Theorem 11.

We proved that it has α = log2(|O(s0)|) bits min-entropy in Appendix A.2,
and |O(s0)| = 2Ω(λ), and thereby 2−α+1 is negligible. Since the α(G,S)-GMW-
O(s0) protocol has perfect unique response, the advantage of adversaries against
computationally unique response is 0. Now we complete the proof utilizing the
result of Theorem 12

E More on the GMW-FS-BKP ring signature design

E.1 Optimization

Following some optimization techniques used in [12], we can have a more efficient
OR-Sigma protocol. We just briefly describe the following three techniques, for
more details please see [12, Section 3.4].

1. The challenge space of original challenge space is binary. One can observe
that the response with challenge cha = 0 is more costly than that challenge
cha = 1. Instead of choosing the challenge bit uniformly in each round, we
execute OR sigma protocol M > λ rounds and fix exactly K rounds with
challenge cha = 0. To satisfy the λ bits of security, we can choose proper
parameters M,K such that

(
M
K

)
≥ 2λ. Denote CM,K as the set of strings in

{0, 1}M with K-bits of 0.
2. With the unbalanced challenge space technique, we do M executions of OR

sigma protocol and M −K executions respond with random seeds. Instead
of randomly sampleM independent seeds, we can utilize seed tree to generate
these seeds. Then prover can responsd with seedsinternal ← ReleaseSeeds(seedroot, c)
instead of M −K seeds, where c is randomly sampled from CM,K . The ver-
ifier can use seedsinternal and c to recover M − K seeds. Note that here we
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P1(s1, . . . , sN )

1 : seed←R {0, 1}λ

2 : (h, bits1, . . . , bitsN )← PRG(seed)

3 : for i from 1 to N do

4 : ti ← α(h, si)

5 : Ci ← Com(ti, bitsi)

6 : (root, tree)← MerkleTree(C1, . . . ,CN )

7 : com← root

8 : The prover P sends the commitment com to the verifier V

V1(com)

1 : c←R {0, 1}
2 : cha← c

3 : The verifier V sends the challenge cha to the prover P

P2(gI , I, cha)

1 : c← cha

2 : if c = 0 then

3 : f ← h ∗ gI
4 : path← getMerklePath(tree, I)

5 : rsp← (f, path, bitsI)

6 : else

7 : rsp← seed

8 : The prover P sends the response rsp to the verifier V

V2(com, cha, rsp, s0, s1, . . . , sN )

1 : (root, c)← (com, cha)

2 : if c = 0 then

3 : (f, path, bits)← rsp

4 : t̃← α(f, s0)

5 : C̃← Com(t̃, bits)

6 : r̃oot← ReconstructRoot(C̃, path)

7 : The verifier V outputs accept if r̃oot = root, else outputs reject

8 : else

9 : seed← rsp

10 : r̃oot← P1((s1, . . . , sN ), seed)

11 : The verifier V outputs accept if r̃oot = root, else outputs reject

Fig. 4. OR-Sigma protocol.
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divide M leaves into K parts, and put a leaf corresponding to ci,i∈[M ] = 0 in

each part, which leads to a smaller upper bound K · log2(MK ) for the internal
seeds.

3. Adding salt is a well-known technique that allows us to have tighter security
proofs for zero-knowledge. Also it avoids multi-target attacks, as in [32],
without affecting too much efficiency.

After applying the above methods, we obtain the optimized base OR sigma
protocol shown in Figure 5 where we simplify internal seeds seedsinternal as seedsint,
the SeedTree function as Sd, the ReleaseSeeds function as Rls, the RecoverLeaves
function as Rcv, the seed expander and the commitment scheme O(salt||·) with
salt as Os and the seed expander and the commitment scheme O(salt|||i||·) with
salt and the ith instance as Osi.

P ′
1(s1, . . . , sN )

1 : seedroot ←R {0, 1}λ

2 : salt←R {0, 1}2λ

3 : (seed1, . . . , seedM )← SdOs(seedroot,M)

4 : for i from 1 to M do

5 : comi ← POsi
1 ((s1, . . . , sN ), seedi)

6 : com← (salt, com1, . . . , comM )

7 : P sends com to V

V ′
1(com)

1 : c←R CM,K

2 : cha← c

3 : V sends cha P

P ′
2(gI , I, cha)

1 : c = (c1, . . . , cM )← cha

2 : for i s.t. ci = 0 do

3 : rspi ← P2(gI , I, ci, seedi)

4 : seedsint ← RlsOs(seedroot, c)

5 : rsp← (seedsint, {rspi}i s.t. ci=0)

6 : P sends rsp to V

V ′
2(com, cha, rsp, s0, s1, . . . , sN )

1 : (salt, com1, . . . , comM )← com

2 : c = (c1, . . . , cM )← cha

3 : (seedsint, {rspi}i s.t. ci=0)← rsp

4 : {rspi}i s.t. ci=1 ← RcvOs(seedsint, c)

5 : for i from 1 to M do

6 : if VOsi
2 (comi, ci, rspi) = reject then

7 : V outputs reject

8 : V outputs accept

Fig. 5. Optimized OR sigma protocol.

Note that the group action α with one-way assumption satisfies the definition
of admissible group action in [12]. Then we prove the security of the optimized
base OR-Sigma protocol showed in Figure 5 as follows.
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Corollary 7. Define the following relation

R =

{
((s0, s1, . . . , sN ), (g, I))

∣∣∣∣∣ g ∈ G, si ∈ S
I ∈ [N ], sI = α(g, s0)

}
,

and the relaxed relation

R =

((s0, s1, . . . , sN ), w)

∣∣∣∣∣∣∣∣∣
w = (g, I) :

w = (x, x′) :

g ∈ G, si ∈ S
I ∈ [N ], sI = α(g, s0)

or x ̸= x′,HColl(x) = HColl(x
′)

or Com(x) = Com(x′)

 ,

Then the optimized base OR sigma protocol shown in Figure 5 has correctness,
relaxed special soundness and honest-verifier zero-knowledge for the relation R.

Proof. Based on the group action one-way assumption, it’s straightforward to
see that our optimized base OR sigma protocol satisfies the properties in [12,
Definition 3.1]. By the Theorem 3.5 and Theorem 3.6 in [12], the optimized base
OR sigma protocol satisfies correctness, relaxed special soundness and honest-
verifier zero-knowledge.

E.2 From OR-Sigma protocol to ring signatures

In this section, we obtain a ring signature by applying the Fiat-Shamir’s trans-
formation to the OR-Sigma protocol. The key generation, signature generation
and verification of the ring signature scheme are described in Algorithms 1, 2,
3, and 4 respectively.

Algorithm 1: Set Up

Input: The security
parameter λ.

Output: Public paramater:
variable number
n ∈ N, a prime
power q and an
element s0 ∈ S.

1 Choose n ∈ N and a prime
power q corresponding to
the security parameter λ.

2 Randomly sample an element
s0 from S.

3 return Public parameter:
n, q, s0.

Algorithm 2: Key generation

Input: public parameter
n, q, s0, the user i.

Output: Public key for the user
i: an element si ∈ S.

Private key for the user i: A
group element gi such that
si = α(gi, s0).

1 Randomly sample a group
element gi from G.

2 Compute si ← α(gi, s0).
3 return Public key: si. Private

key: gi.
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Algorithm 3: Signing proce-
dure
Input: The public key

s0, . . . , sN , the private
key gI of a user I ∈ [N ],
a message msg, a
commitment scheme
Com : {0, 1}∗ → {0, 1}λ,
a hash function
H : {0, 1}∗ → {0, 1}λ.

Output: A signature Sig on
msg.

1 com = (salt, (comi)i∈[M ])←
P ′1(s1, . . . , sN )

2 cha← H(msg||s1|| · · · ||sN ||com)
3 rsp← P ′2(gI , I, cha)
4 return Sig = (salt, cha, rsp)

Algorithm 4: Verification pro-
cedure
Input: The public key

s0, . . . , sN ∈ S. The
signature
Sig = (salt, cha, rsp). The
message msg. A hash
function
H : {0, 1}∗ → {0, 1}λ.

Output: ”Yes” if Sig is a valid
signature for msg.
”No” otherwise.

1 com←
RecoverCom(s0, . . . , sN , salt, cha, rsp)

2 if accept = V ′2(com, cha, rsp) ∧
cha = H(msg||s|| · · · ||sN ||com)
then

3 return Yes

4 else
5 return No

Remark 6. Since the optimized base OR sigma protocol is proved to satisfy all
properties in Corollary 7, and by Appendix A.1 in [12], the ring signature in
Algorithm 1, 2, 3 and 4 has correctness, anonymity and unforgeability.

F Linkable ring signature from abstract group actions

F.1 Linkable ring signatures

We first review some basic notions related to linkable ring signatures.
Linkable ring signature is a variant of ring signature in which the linkability

can detect if a secret key is used more than once. The definition and properties
of linkable ring signature, following [12], are provided as follows.

Definition 13 (Linkable ring signature). A linkable ring signature scheme
ΠLRS consists of three PPT algorithms in the ring signature in addition with a
PPT algorithm such that:

– LRS.Link(σ0, σ1): It checks if two signatures σ0, σ1 are produced with a same
secret key, and outputs 1 if it is the case and 0 otherwise.

Correctness: A linkable ring signature ΠLRS is said to have correctness if for any
security parameter λ, polynomial N = poly(λ), two messages M0,M1, two sets
D0, D1 ⊆ [N ] such that j ∈ D0∩D1, pp← LRS.SetUp(1λ), {(vk1, sk1), . . . , (vkN , skN )} ←
RS.KeyGen(pp), a random bit b← {0, 1}, σb ← LRS.Sign(skj ,Rb,Mb) with Rb :=
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{vki}i∈Db
, it always holds that LRS.Verify(R,M, σb) = 1 and LRS.Link(σ0, σ1) =

1.

Linkability: A ring signature ΠLRS is said to be unforgeable if for every security
parameter λ and polynomial N = poly(λ), any PPT adversary A has at most
negligible probability to win the following game:

(1) The challenger runs pp← LRS.SetUp(1λ) and send pp to A.
(2) A generates public keys and secret keys ({vki, ski})← LRS.KeyGen(pp)) for

i ∈ [N ], and then produces a set (σi,Mi,Ri)i∈[N+1].

(3) We say A wins this game if all the following conditions are satisfied:
• ∀i ∈ [N + 1], have Ri ⊆ VK;
• ∀i ∈ [N + 1], have LRS.Verify(Ri,Mi, σi) = 1;
• ∀i, j ∈ [N + 1], where i ̸= j, have LRS.Link(σi, σj) = 0.

Linkable Anonymity: A ring signature ΠLRS is said to be linkable anonymous if
for every security parameter λ and polynomial N = poly(λ), any PPT adversary
A has at most negligible advantage in the following game:

(1) The challenger runs pp ← LRS.SetUp(1λ) generates public keys and secret
keys ({vki, ski})← RS.KeyGen(pp) for i ∈ [N ] and it also samples a ramdom
bit b ∈ {0, 1}. Then it sends the public keys VK = {vk0, . . . , vkN} to A.

(2) A sends two public keys vk′0, vk
′
1 to the challenger, and we let sk′0, sk

′
1 be the

corresponding secret keys.
(3) The challenger outputs ri of the corresponding vki ⊆ VK \ {vk′0, vk

′
1}.

(4) A chooses a public key vk ∈ {vk′0, vk
′
1} and provides a message M and a ring

R that {vk′0, vk
′
1} ⊆ R to query the challenger:

• If vk = vk′0, the challenger outputs the signature LRS.Sign(skb,R,M) →
σ.

• If vk = vk′1, the challenger outputs the signature LRS.Sign(sk1−b,R,M)→
σ.

(5) A check if LRS.Verify(R,M, σ) = 1, and if so outputs b′. If b = b′, we say A
wins this game.

The advantage of A is AdvAnonLRS (A) = |Pr[A wins]− 1/2|.

Non-frameability: A ring signature ΠLRS is said to be non-frameable if for
every security parameter λ and polynomial N = poly(λ), any PPT adversary A
has at most negligible probability to win the following game:

(1) The challenger runs pp ← LRS.SetUp(1λ) generates public keys and secret
keys ({vki, ski})← RS.KeyGen(pp) for i ∈ [N ]. It sends the list of public keys
VK = {vki}i∈[N ] to A and prepares two empty list SL and CL.

(2) A can make polynomial times of signing queries and corrupting queries:
• (sign, i,R,M): The challenger outputs the signature LRS.Sign(ski,R,M)→
σ to A and adds (i,R,M) to SL.

• (corrupt, i): The challenger sends the random bits ri to A and adds vki
to CL.
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(3) We say A wins this game if A outputs (R′,M′, σ′) such that (·,M′,R′) /∈ SL,
LRS.Verify(R′,M′, σ′) = 1, and for some query (i,R,M) ∈ SL where the
identity i satisfies vki ∈ VK \ CL, the challenger outputs a signature σ that
LRS.Link(σ′, σ) = 1 holds.

Unforgeability: The definition of unforgeability remains the same as that of
the normal ring signature. The unforgeability can be easily derived from the
linkable anonymity and the non-frameability.

F.2 Security proof for linkable OR sigma protocol

To derive the security proof for linkable OR sigma protocol, the following prop-
erties of the pair of group actions are needed; see [12, Definition 4.2], and also
[6,27].

Definition 14. Given two group actions α : G × S → S and β : G × S → S.
We define the following properties:

1. Efficiency: One can efficiently compute α(g, s) and β(g, s) for any g ∈ G
and s ∈ S, uniformly sample from G and S, and represent elements in G
and S uniquely.

2. Linkability: Given (s0, r0) ∈ S × S, it’s hard to produce g, g′ ∈ G such that
α(g, s0) = α(g′, s0) and β(g, r0) ̸= β(g′, r0)

3. Linkable Anonymity: Given (s0, r0) ∈ S×S, the pair (s1, r1) = (α(g, s0), β(g, r0))
is computationally indistinguishable from (s2, r2) where g ∈R G and s2, r2 ∈R
S.

4. Non-Frameability: Given (s0, r0) ∈ S × S, s1 = α(g, s0) and r1 = α(g, r0),
it’s hard to find a group element g′ such that r1 = α(g′, r0)

We introduce an algorithm problem here and assume this problem is hard to
demonstrate the linkable anonymity.

Definition 15 (Pair-pseudorandom). The pseudorandom pairs equivalence
under group action problem with 2 pairs of elements asks to distinguish the fol-
lowing two distributions given (s0, r0) ∈ S × S:

The random distribution: A pair of element (s1, r1) where (s1, r1) ∈R S×S.
The pseudorandom distribution: A pair of elements (s1, r1) where s1 :=

α(g, s0) and r1 := β(g, r0) for g ∈R G.

Note that a similar proposal in the context of code equivalence was proposed
in [5].

Then we define the following relation

R =

((s0, s1, . . . , sN , r0, r), (g, I))

∣∣∣∣∣∣∣
g ∈ G, si ∈ S

I ∈ [N ], sI = α(g, s0)

r ∈ S, r = β(gI , r0)

 ,
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and the relaxed relation

R̃ =


((s0, s1, . . . , sN , r0, r), w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
w = (g, I) :

w = (x, x′) :

g ∈ G, si ∈ S
I ∈ [N ], sI = α(g, s0)

r ∈ S, r = β(gI , r0)

or x ̸= x′,

HColl(x) = HColl(x
′)

or Com(x) = Com(x′)


for the relaxed special soundness.

P1(s1, . . . , sN , r)

1 : seed←R {0, 1}λ

2 : (h, bits1, . . . , bitsN )← PRG(seed)

3 : r′ ← β(h, r)

4 : for i from 1 to N do

5 : ti ← α(h, si)

6 : Ci ← Com(ti, bitsi)

7 : (root, tree)← MerkleTree(C1, . . . ,CN )

8 : h← HColl(r
′, root)

9 : com← h

10 : P sends com to V

V1(com)

1 : c←R {0, 1}
2 : cha← c

3 : V sends cha to P

P2(AI , I, cha)

1 : c← cha

2 : if c = 0 then

3 : f ← h ∗ gI
4 : path← getMerklePath(tree, I)

5 : rsp← (f, path, bitsI)

6 : else

7 : rsp← seed

8 : P sends rsp to V

V2(com, cha, rsp, s0, s1, . . . , sN , r0, r)

1 : (h, c)← (com, cha)

2 : if c = 0 then

3 : (f, path, bits)← rsp

4 : t̃← α(f, s0)

5 : C̃← Com(t̃, bits)

6 : r̃′ ← β(f, r0)

7 : r̃oot← ReconstructRoot(C̃, path)

8 : if h = HColl(r̃′, r̃oot) then

9 : V outputs accept

10 : else

11 : V outputs reject

12 : else

13 : seed← rsp

14 : r̃oot← P1((s1, . . . , sN ), seed)

15 : if h = HColl(r̃′, r̃oot) then

16 : V outputs accept

17 : else

18 : V outputs reject

Fig. 6. Linkable OR sigma protocol.
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Theorem 13. Assume the stabilizers Stab(s0) and Stab(r0) are trivial and the
pair-pseudorandom problem defined in Definition 15 is hard. The linkable OR
sigma protocol shown in the Figure 6 after the optimization satisfies the proper-
ties defined in Definition 14.

Proof. For the linkability, we derive this property by restricting the orbit O(s0)
has a trivial stabilizer. Then by the pair-pseudorandom assumption, it’s straight-
forward to see that our protocol has the linkable anonymity. For the non-frameability,
we restrict the stabilizer Stab(r0) to be trivial as well, and then the group ele-
ment g satisfying s1 = α(g, s0) and r1 = α(g, r0) is unique. It follows that if one
can break non-frameability, the pair-pseudorandom assumption can be broken
as well.

Corollary 8. The linkable OR sigma protocol shown in the Figure 6 after the
optimization satisfies correctness, high min-entropy, special zero-knowledge and
relaxed special soundness.

Proof. By Theorem 13 and [12, Theorem 4.5,Theorem 4.6], our OR sigma pro-
tocol satisfies correctness, relaxed special soundness and honest-verifier zero-
knowledge.

F.3 Linkable ring signature

After applying the Fiat-Shamir transformation to the linkable OR sigma proto-
col, we obtain a linkable ring signature shown in Algorithms 5, 6, 7, 8 and 9.
The linkable ring signature is similar to the normal ring signature in addition
with a link algorithm.

Algorithm 5: Set Up

Input: The security
parameter λ.

Output: Public paramater:
variable number
n ∈ N, a prime
power q and
elements s0, r0 ∈ S.

1 Choose n ∈ N and a prime
power q corresponding to
the security parameter λ.

2 Randomly sample elements
s0, r0 from S.

3 return Public parameter:
n, q, s0, r0.

Algorithm 6: Linkable key
generation

Input: Public parameter
n, q, s0, r0 and the
user i.

Output: Public key for the
user i: an element
si ∈ S.

Private key for the user i: A
group element gi such that
si = α(gi, s0).

1 Randomly sample a group
element gi from G.

2 Compute si ← α(gi, s0).
3 return Public key: si.

Private key: gi.
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Algorithm 7: Link proce-
dure
Input: Two signature

Sig = (salt, r, cha, rsp)
and Sig′ =
(salt′, r′, cha′, rsp′).

Output: ”Yes” if two
signatures are
produced by a
same secret key.
”No” otherwise.

1 if r = r′ then
2 return Yes

3 else
4 return No

Algorithm 8: Linkable
signing procedure

Input: The public key:
s0, . . . , sN . The
private key: gI . The
security parameter λ.
The message msg.
The commitment
scheme Com :
{0, 1}∗ → {0, 1}λ. A
hash function
H : {0, 1}∗ → {0, 1}λ.

Output: The signature Sig
on msg.

1 r ← β(gI , r0)
2 com = (salt, (comi)i∈[M ])←
P ′1(s0, s1, . . . , sN , r)

3 cha←
H(msg||s1|| · · · ||sN ||r||com)

4 rsp← P ′2(gI , I, cha)
5 return Sig = (salt, r, cha, rsp)

Algorithm 9: Linkable verification procedure

Input: The public key s0, . . . , sN ∈ S. The signature Sig = (salt, r, cha, rsp).
The message msg. A hash function H : {0, 1}∗ → {0, 1}λ.

Output: ”Yes” if Sig is a valid signature for msg. ”No” otherwise.
1 com← RecoverCom(s0, . . . , sN , r, salt, cha, rsp)
2 if accept = V ′

2(com, cha, rsp) ∧ cha = H(msg||s|| · · · ||sN ||r||com) then
3 return Yes

4 else
5 return No

Remark 7. Since the linkable OR sigma protocol is proved to satisfy all condi-
tions in Corollary 8, and by the Theorem 4.7 in [12], the linkable ring signature
in Algorithm 6, 7, 8 and 9 has correctness, linkability, linkable anonymity and
non-frameability.

Remark 8. The above security proof is derived from the rewinding technique, but
its security reduction is non-tight due to the loss of forking lemma[40]. Beullens
et.al. proposed a new property called online extractability [10], which is used to
obtain a almost tight security reduction of ring signature.Further they use some
techniques including the Katz-Wang technique [51] to obtain the tight security.
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Since our ring signature is following their construction, if append above property
and techniques to our ring signature, we can get a tight security reduction as
well.

G Column matrix decomposition and action on trilinear
forms

G.1 LUP-decomposition

Fact 1 (LUP decomposition). For every invertible matrix A ∈ Fn×n, there is a
lower triangular matrix L with ones on the main diagonal, an upper triangular
matrix U , and a permutation matrix P such that

A = LUP.

An easy proof goes like this: Write A = LU and think of each of the matrices
as a block matrix with a 1×1-block in the upper left corner and an (n−1)×(n−1)-
block in the lower right corner, that is,

(
a1,1 b
c A′

)
=

(
1 0
ℓ L′

)(
u1,1 v
0 U ′

)
=

(
u1,1 v
ℓu1,1 ℓv + L′U ′

)

If a1,1 ̸= 0, then u1,1 = a1,1, v = b, and ℓ = c/u1,1. We then can recurse on
L′U ′ = A − ℓv. If a1,1 = 0, then we there is a permutation matrix Q such the
(1, 1)-entry of AQ equals one and we work with this matrix. At the end, we can
bring the final permutations matrix to the righthand side and obtain the LUP
decomposition.

We can also use Gaussian elimination (with pivoting) to bring A into upper
triangular form, this gives a decomposition LAP = U . Since L−1 is again lower
diagonal with ones on the main diagonal, we get the desired decomposition.

We can write L as a product L = L1 · · ·Ln−1 with

Li =



1 . . . 0 0 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 ℓi+1,i 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 ℓn,i 0 . . . 1


.
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Each Li can be further decomposes as Li = Li,i+1, · · ·Li,n with

Li,j =



1 . . . 0 0 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0

0 . . . 0
. . . 1 . . . 0

...
... ℓi,j

...
. . .

...
0 . . . 0 . . . 0 . . . 1


.

Each Li,j is an elementary matrix with at most one nonzero entry ℓi,j except
the ones on the main diagonal. For each i, Li,i+1, . . . , Li,n mutually commute.

The matrix Û := U · diag(u1,1, . . . , un,n), where ui,i are the diagonal entries
of U , is upper triangular and has ones on the main diagonal. Like L, is can be
written as the product of n − 1 matrices, but with nonzero entries above the
main diagonal.

Definition 16. A matrix C ∈ Fn×n is a column matrix, if it is of the form

C =



1 . . . 0 c1 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 ci−1 0 . . . 0
0 . . . 0 ci 0 . . . 0
0 . . . 0 ci+1 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 cn 0 . . . 1


for some i.

Corollary 9. For every invertible matrix A, there is a permutation matrix P
such that such that AP is the product of 2(n− 1) column matrices.

Note that the diagonal matrix in the definition of Û can be merged with the
matrices of the factoriztion of Û into column matrices.

G.2 Multiplication of alternating trilinear forms with column
matrices

Let C be a column matrix with entries c1, . . . , cn in column i. The matrix C
maps an unit vector eh to

Ceh =


eh if h ̸= i,
n∑

j=1

cjej otherwise.
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Let T be an alternating trilinear form, that is,

T =
∑

1≤r<s<t≤n

tr,s,t · er ∧ es ∧ et.

We have

C∧3T =
∑

1≤r<s<t≤n

tr,s,t · C(er) ∧ C(es) ∧ C(et).

C only changes ei. ei appears in
(
n−1
2

)
of the summands. Consider each summand

separately. Assume w.l.o.g. that ei appears in the first position,

ti,r,s · ei ∧ er ∧ es.

C∧3 maps this summand to

ti,r,s ·

(
n∑

i=1

cjej

)
∧ er ∧ es =

n∑
j=1

cj · ti,r,s︸ ︷︷ ︸
1 mult.

·ej ∧ er ∧ es.

Thus, we have to compute n multiplications and n− 1 additions (updates of the
entries ej ∧ er ∧ es with j ̸= i). Therefore, the total costs are

(
n−1
2

)
· n ≤ n3/2

multiplications and
(
n−1
2

)
· (n− 1) ≤ n3/2 additions.

If the matrix C has only k nonzero entries in column i, then the bounds reduce
to
(
n−1
2

)
· j ≤ n2 · j/2 multiplications and

(
n−1
2

)
· (j − 1) ≤ n2 · j/2 additions.

The LUP decomposition yields a decomposition of any invertible matrix A into
2(n− 1) column matrix with a total of ≈ n2 nonzero entries. Therefore, we can
implement the action of A∧3 with n4/2 multiplications and n4/2 additions.

In the actual implementation, we have to do a modular reduction after each
application of a column matrix. Therefore, we try to minimize the number of
column matrices in a decomposition of A. (Obviously, it cannot be lower than
n.)

G.3 Optimal decomposition into column matrices

Let

A =



1 . . . 0 a1 ∗ . . . ∗
...
. . .

...
...

...
...

0 . . . 1 ai−1 ∗ . . . ∗
0 . . . 0 ai ∗ . . . ∗
0 . . . 0 ai+1 ∗ . . . ∗
...

...
...

...
. . .

...
0 . . . 0 an ∗ . . . ∗


.
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If ai ̸= 0, then let B be the column matrix

B =



1 . . . 0 −a1/ai 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 −ai−1/ai 0 . . . 0
0 . . . 0 1/ai 0 . . . 0
0 . . . 0 −ai+1/ai 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 −an/ai 0 . . . 1


.

Then

BA =



1 . . . 0 0 ∗ . . . ∗
...
. . .

...
...
...

...
0 . . . 1 0 ∗ . . . ∗
0 . . . 0 1 ∗ . . . ∗
0 . . . 0 0 ∗ . . . ∗
...

...
...
...
. . .

...
0 . . . 0 0 ∗ . . . ∗


.

By using induction, we can find column matrices B1, . . . , Bn with Bi having
column i such that

BnBn−1 · · ·B1A = I.

The inverse of B is

B−1 =



1 . . . 0 a1 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 ai−1 0 . . . 0
0 . . . 0 ai 0 . . . 0
0 . . . 0 ai+1 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 an 0 . . . 1


.

We can write
A = B−11 B−12 · · ·B−1n .

By counting dimension, it is obvious that there cannot be a shorter decomposi-
tion of A into column matrices.
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