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Abstract

Over the last few years, deep learning is becoming the most trending
topic for the classical cryptanalysis of block ciphers. Differential crypt-
analysis is one of the primary and potent attacks on block ciphers.
Here we apply deep learning techniques to model differential crypt-
analysis more easily. In this paper, we report a generic tool using
deep neural classifier that assists to find differential distinguishers for
block ciphers with reduced round. We apply this approach for the
differential cryptanalysis of ARX-based encryption schemes HIGHT,
LEA, and SPARX. The result shows that our deep learning based dis-
tinguishers work with high accuracy for 14-round HIGHT, 13-Round
LEA and 11-round SPARX. We also achieve an improvement of the
lower bound of data complexity for these three ARX based ciphers.

Keywords: HIGHT, LEA, SPARX, Neural Distinguisher, Deep Learning,
Differential Cryptanalysis
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1 Introduction

Deep neural networks are known as non-linear classification tools, are famous
for solving a more comprehensive set of data-driven tasks like image process-
ing, speech recognization, etc. Earlier in the field of cryptanalysis, machine
learning is mainly restricted to side channel analysis and not explored much
in classical cryptanalysis. The direction of research finally gets noticed when a
work on cipher SPECK by Aron Gohr is published in CRYPTO’19[1], where
the main idea is to perform a key recovery attack on round-reduced SPECK
using ML. The ML model mainly applies the differential distinguisher prop-
erties of differential cryptanalysis. Differential cryptanalysis actually finds an
input and output difference pair that occurs with some higher probability than
the random case. The researchers apply the probability distribution model-
ing for differential distinguisher by incorporating machine learning algorithms.
Rather than the old modeling technique with branch number or MILP, the
attacker can explore any other strategy to distinguish the cipher from the
random case by collecting the output differences corresponding to the chosen
input differences. The attackers can also use machine learning based models
to reduce the search complexity and hence the attack time also reduce than
the estimation of the existing methods. In 1993, Ronald L. Rivest first shows
the relationships between the two fields of cryptography and machine learning
and explains how each area contributes ideas and techniques to the other. At
CRYPTO’19, Aron Gohr proposes a new direction in the cryptanalysis field
based on utilizing machine learning algorithms. He built a deep neural network
based distinguisher that surprisingly surpassed state-of-the-art cryptanalysis
efforts on one of the versions of the NSA block cipher SPECK [2]. In DATE
2021, A Baksi et al. [3] given neural differential distinguishers for 10-round
Knot-256 permutation, 12-round Knot-512 permutation, four-round Chaskey-
Permutation, eight-round Gimli-Hash/Cipher/permutation, and three-round
Ascon permutation. In LATINCRYPT 2021, Yadav et al[4] applied the tech-
nique to find neural based classifier for 12-round SPECK-32 [2], eight-round
GIFT-64 [5] and 12-round SIMON-32 [2].

In this paper, we introduce a generic deep learning based automated dif-
ferential distinguisher. Using the tool we analyze the differential behaviour of
three ARX based cipher, HIGHT [6], LEA [7] and SPARX [8]. We found an 14-
round neural differential distinguisher for HIGHT, an 13-round distinguisher
for LEA and an nine-round distinguisher for SPARX. We achieve a new lower
bound of data complexity for reduced rounds of HIGHT, LEA and SPARX.

The rest of the paper is organized as follows. Section 2 describes the basic
notations we use in our paper and the brief specifications of HIGHT, LEA,
and SPARX cipher. In Section 3, we present our generic tool for constructing
the deep neural classifier. Section 4 represents the implementation results. In
Section 5, we conclude the paper.
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2 Preliminaries

2.1 Basic Notations

All the basic notations we use throughout this paper are being stated below,

• Plaintext is of 64 bits and it is denoted as the concatenation of 8 bytes. Let
P is the given plaintext, it is denoted by P = P7P6P5P4P3P2P1P0.

• Ciphertext is of 64 bits and it is regarded as the concatenation of 8 bytes.
Let C is the given plaintext, it is denoted by C = C7C6C5C4C3C2C1C0.

• We repressent the 64-bit temporary state values as , Ti = Ti,7 . . . Ti,1Ti,0, i ∈
0, . . . , 32.

• The master key is of 128 bit and it is regarded as the concatetaion of 16
bytes. Considering master key as M, it is denoted by
M = M15M14 . . . M1M0.

• Wi, i ∈ 0, . . . , 7 is the eight bytes of whitening key.
• RKi, i ∈ 0, . . . , 127 is the 127 bytes of round key.
• δi and δo represents input and output difference for a differential character-
istics.

• CD signifies the set of ciphertext differences from a neural classifier.
• d is a random state difference.
• ⊞ and ⊟ means addition and subtraction in mod 28.
• ⊕ means EXOR
• A≪s means s-bit left rotation of a 8-bit value A

2.2 Brief Description of HIGHT, LEA and SPARX

ARX(Addition, Rotation, and XOR) construct forms a special type of sym-
metric key architecture that uses modular addition, bitwise rotation, and
exclusive xor. In this type, the primary source of non-linearity comes from
modular addition. HIGHT, SPARX and LEA are ARX-based block ciphers.

HIGHT HIGHT is an ARX-based block cipher proposed by Hong et al. [6]
at CHESS 2006. It is a lightweight cipher, and it performs fast. As it is an
ARX cipher, hence it adopts the feistel structure. The round function consists
of simple operations like circular left rotation, bit-wise xor, and addition in
modulo 28. The size of plaintext and ciphertext, both is 64 bits, and the
master key is 128 bit. In the key Scheduling part, eight bytes whitening key
and 128 bytes subkey is being generated.

The encryption procedure of HIGHT mainly consists of four modules,

• Key Sch The key schedule function Key Sch has two main components; the
first is the computation of whitening keys, which finds eight key whitening
bytes, and another is responsible for generating 128 round-key bytes.

• Initial Trans It takes the plaintext P and four whitening keys
W0,W1,W2,W3 and converts the plaintext suitable for the input of the
Round Fun using the following operations.
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T0,0 ← P0 ⊞W0, T0,1 ← P1, T0,2 ← P2 ⊕W1, T0,3 ← P3,
T0,4 ← P4 ⊞W2, X0,5 ← P5, T0,6 ← P6 ⊕W3, T0,7 ← P7

• Round Fun Round Function Round Fun generates Ti = Ti,7 . . . Ti,0 into
Ti+1 = Ti+1,7 . . . Ti+1,0 described as follows, Ti+1,1 → Ti,0, Ti+1,3 → Ti,2,
Ti+1,5 → Ti,4, Ti+1,7 → Ti,6, Ti+1,0 = Ti,7 ⊕ (F0(Ti,6) ⊞ RK4i+3), Ti+1,2 =
Ti,1 ⊞ (F1(Ti,0) ⊕ RK4i+2), Ti+1,4 = Ti,3 ⊕ (F0(Ti,2 ⊞ RK4i+1), Ti+1,6 =
Ti,5 ⊞ (F1(Ti,4)⊕RK4i). Round Fun consists of two functions F0 and F1 as
follows,
F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7, F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6

• Final Trans Final transformation generates the ciphertexts using the tem-
porary plaintext P and four whitening keys W4,W5,W6,W7.
C0 ← T32,1 ⊞W4, C1 ← T32,2, C2 ← T32,3 ⊕W5, C3 ← T32,4

C4 ← T32,5 ⊞W6, C5 ← T32,6, C6 ← T32,7 ⊕W7, C7 ← X32,0

Rounds Input Difference Output Difference Probability
5[6] 8201000000000000 009095CA01000000 2−12

5[6] 0000000082010000 01000000009095CA 2−12

6[6] 4282010000000000 009095CA01000000 2−17

6[6] 0000000042820100 01000000009095CA 2−17

8[6]
(Mini-HIGHT)

D000ED86 00848201 2−28

04DC20E2 00848201 2−28

11[6] 118925E2C8010000 4502010000912995 2−58

11[6] C8010000118925E2) 0091299545020100 2−58

12[9] 00008227213AEA01 00B6F801009002E8 2−53

13[9] 80008AC28A01A0BB 007B2A80009002A7 2−61

Table 1 Classical distinguishers of round reduced HIGHT

In the decryption process of HIGHT, the key schedule function produces
the 128 round keys in reverse order. The round function uses ⊟ operation in
place of ⊞. Also, the byte-swap operation of the encryption process operates
in the opposite direction.

LEA LEA is an ARX-based block cipher proposed by Hong et al. [7]. The
block size of LEA is 128 bits. Mainly, LEA consists of three versions, 128-bit
key size with 24 rounds, 192 bits of key with 28 rounds, and last one is with 256

Algorithm 1 HIGHT Encryption

Inputs: Plaintext P and Master key M
Outputs: Ciphertext C

1: Call Key Sch
2: Call Initial Trans
3: for i= 0 to 31 do
4: Call Round Fun
5: end for
6: Call Final Trans
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bits key size for 32 rounds. A round operation of LEA we can describe as fol-
lows, Ti+1,0 = RL<<9((Ti,0⊕RKi,0)⊞(Ti,1⊕RKi,1)), Ti+1,1 = RR<<5((Ti,1⊕
RKi,2) ⊞ (Ti,2 ⊕ RKi,3)), Ti+1,1 = RR<<3((Ti,2 ⊕ RKi,4) ⊞ (Ti,3 ⊕ RKi,5)),
Ti+1,3 = Ti,0. Here, RKi,0, RKi,1, RKi,2, RKi,3, RKi,4, RKi,5 are the round
keys generated by applying key schedule.

SPARX Dinu et al. introduce SPARX [8] at ASIACRYPT’16, which is
the first ARX-based family of block ciphers that provide provable bounds
on Linear Trails and the maximum length of differential cryptanalysis. The
SPARX-n/k family of ciphers includes the SPARX 64/128, SPARX 128/128,
and SPARX 128/256, where n indicates the block size bits and k represents
the key block size bits. Our paper focuses on SPARX 64/128. The SPARX
64/128 is based on a Feistel network with two state words consisting of eight
Feistel steps. Each step consists of three rounds of an ARX-based round func-
tion (SPECKEY). The plaintext and ciphertext comprise w = 2 words of 32
bit each. The key is four words long of the same size as plaintext/ciphertext.

2.3 Differential cryptanalysis

Differential cryptanalysis[10] is a chosen-plaintext attack that finds a proba-
bilistic relation between the penultimate round plaintext difference and the
ciphertext differences by guessing a key.

Definition 1(Differential Cryptanalysis Attack [11]) Let (X,X ′) be the
plaintext pair and after ith round the corresponding ciphertext pair (Yi, Y

′
i ).

Then the differential probability of an i-round differential δ → γ is defined
by the conditional probability P (∆Yi = γ|∆X = δ), where ∆X = X ⊕ X ′

and ∆Yi = Yi ⊕ Y ′
i and the sub-keys K1, . . . ,Ki are independent and uni-

formly random. For mounting an attack, the attacker finds the differential
probabilities corresponding to each round. So, for an n-round differential
(δ, γ1, γ2, . . . , γn),

P (∆Y = γ1,∆Y = γ2, . . . ,∆Y = γn|∆X = δ)

≈ P (∆Y = γ1,∆Y = γ2, . . . ,∆Y = γn|∆X = δ,

K(1) = k1,K
(2) = k2, . . . ,K

(n−1) = kn−1)

for almost all sub-key values k1, k2, . . . , kn−1.

2.3.1 Lower bound complexity analysis of differential
cryptanalysis

The favorable outcome of differential cryptanalysis for a cipher with n-rounds
totally depends on the propagation of non-zero differentials up to (n-1) rounds
with high probability. Using these probabilities, one can compute the lower
bound of data complexity for the attack. Considering definition 1 is correct,
one can mount differential cryptanalysis attack on a cipher with n rounds,
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Table 2 Classical distinguishers of 13-round HIGHT[12]

Rounds Difference log2p
0 80008AC28A01A0BB 0
1 0000C2080128BB80 -6
2 000008E528E98000 -10
3 0000E5A8E9800000 -1
4 0000A82C80000000 -8
5 00002C8000000000 -2
6 0000800000000000 -3
7 0080000000000000 0
8 80000000000000C3 -3
9 000000000072C380 -4
10 0000000C72E98000 -9
11 00A70CF2E9800000 -4
12 A700F22A80000002 -6
13 007B2A80009002A7 -5

block length m and independent subkeys iff the cipher consists of weak round
keys and an (n-1) round differential characteristics δ → γ is available so that
P (∆Yn−1 = γ|∆X = δ) > 2−m.

2.3.2 Theorem 1

(Lower bound complexity of differential cryptanalysis attack [11]) Let En is the
number of encryptions for the differential cryptanalysis attack on a n-round
cipher. We can write

En ≥ 2/(Pmax − 1/(2m − 1)), where Pmax = max
γ

max
δ

(∆Yn−1 = γ|∆X = δ)

2.4 Differential cryptanalysis and markov cipher

According to Lai et al. [11] an iterated cipher is a markov cipher if the sub-
keys in the cipher path are independent and each of the (r-1) round non-zero
output differences are the part of a markov chain.

Definition 2 ( Markov chain [11]) In a cipher the ciphertext differences
∆Y0,∆Y1, . . . ,∆Yn generates markov chain. A sequence of discrete random
variables u0, u1, . . . , un forms a markov chain if

P (ui+1 = γi+1|ui = γi, ui−1 = γi−1, . . . , u0 = γ0) = P (ui+1 = γi+1|ui = γi)

A Markov chain is called homogeneous if P (ui+1 = γ|ui = δ) is indepen-
dent of i for all δ and γ and the plaintext X is independent of the subkeys
K1,K2, . . . ,Kn.

Definition 3 ( Markov Cipher [11]) Let Y = f(X,K) be a weak round func-
tion of an iterated cipher. The cipher is Markov if for every pair (X,X ′) and
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Table 3 Classical distinguishers of 11-round LEA[12]

Rounds Difference log2p
0 80000234 α0402214 β0401205 γ0400281 -22
1 80400080 8a000080 82000210 80000234 -14
2 80000014 80400014 80400004 80400080 -9
3 80000000 80000000 80000010 80000014 -3
4 00000000 80000000 80000000 80000000 0
5 00000100 00000000 00000000 00000000 1
6 00020000 00000000 00000000 00000100 -2
7 04000000 00000000 00000020 00020000 -4
8 00000008 00000001 00004004 04000000 -8
9 00001200 28000200 80800800 00000008 -12
10 00200050 05440050 10100101 00001200 -23
11 η800000a 88aaa00a 220202ζ0 00200050

(Y, Y ′) we define the differences by a group operation ⊗ with ∆X = X ⊗X ′

and ∆Y = Y ⊗ Y ′ in such a way that

P (∆Y = γ|∆X = δ,X = x), where γ ̸= 0 and δ ̸= 0

is independent of x when subkey K is uniformly random.

Theorem 2 [11] If an n-round iterated cipher is a Markov cipher and the
n round keys are independent and uniformly random, then the sequence of
differences ∆Y0,∆Y1, . . . ,∆Yn is a homogeneous Markov chain. Moreover, this
Markov chain is stationary if ∆X is uniformly distributed over the non-neutral
elements of the group.

Here our generic deep neural differential classifier tool works under markov
assumption for reduced rounds of HIGHT, LEA and SPARX cipher.

2.5 Classical Differential Distinguishers of HIGHT, LEA
and SPARX

The designers of HIGHT [6] proposed a reduced round classical differential
distinguisher up to 11-rounds. They find two eight-round distinguisher α→ β
of Mini-HIGHT, each of which of probability 2−28. An 11-round character-
istics α → β also given with probability 2−58. Jun Yin et al. [9] proposed
a MILP-based model for finding differential characteristics of 11-round with
probability 2−45, 12-round with probability 2−53, and the 13-round with prob-
ability 2−61. For the 13-round differential distinguisher, we mention the input
and output differences from round one to round 13 in Table 2, where p means
the probability of the differential trail. A summary of all these distinguishers
are provided in Table 1.

The best differential distinguisher available for LEA [7] is of 11-rounds with
probability at most 2−98, provided by the designers of the cipher. The input
difference is (80000234 α0402214 β0401205 γ0400281), where α ∈ {4, c}, β ∈
{4, c}, and γ = β ⊕ 1, and output difference is (η800000a 88aaa00a 220202ζ0
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Algorithm 2 DatasetCreationProcess

Inputs: Input differences(δo) corresponding to a classical differential distin-
guisher
Outputs: Training/Validation Dataset DS

1: procedure DatasetCreationProcess(δi, roundNo, iterations )
2: DS ←Empty Set
3: for i = 1 to iterations do
4: Key ←RandomKey()
5: P1 ←RandomPlaintext()
6: if i mod 2 = 0 then
7: P2 ←RandomPlaintext()
8: C1 ← RANDOM ORACLE(P1,Key, roundNo) ▷ Encryption

engine for the given cipher
9: C2 ← RANDOM ORACLE(P2,Key, roundNo)

10: DS ← DS ∪ (C1, C2, C1 ⊕ C2, 0)
11: else
12: P2 = P1 ⊕ δs
13: C1 ← RANDOM ORACLE(P1,Key, roundNo)
14: C2 ← RANDOM ORACLE(P2,Key, roundNo)
15: DS ← DS ∪ (C1, C2, C1 ⊕ C2, 1)
16: end if
17: end for
18: Return DS
19: end procedure

00200050), where η ∈ {4, c} and ζ ∈ {2, 6}. The 11-round differential distin-
guisher, along with each of the input differences and output differences from
round one to round-11 is shown in Table 3.

Ralph et al. [13] propose an optimal six-round differential trail of
SPARX32/64, where they uses the input difference as (00000000 02110A04),
and the six-round output difference is (AF1ABF30 850A9520). The probabil-
ity of the trial is 2−13. A nine-round trail is also proposed with probability
2−32.87, where the input difference is (28000010, 28000010) and output dif-
ference is (80818283, 80008002). Ralph et al. [13] presents all the input and
output differences for optimal differential trials up to ten rounds.

3 Modeling Differential Cryptanalysis using
Deep Learning

Aron Gohr [1] first proposes the concept of the deep neural distinguisher,
corresponding to a classical differential distinguisher for cipher SPECK and
SIMON [2]. Gohr chooses an input plaintext difference δi and two plaintexts
P1 and P2 such that P1⊕P2 = δi. We call (P1, P2) as real pairs. Here the main
purpose is to classify differently the real pairs with a random plaintext pair
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Algorithm 3 TrainingProcess

Inputs: Training Data DSTrain

Outputs: Training accuracy ACRTrain

1: procedure TrainingProcess(DSTrain)
2: Create the ML model MLδi .
3: Train MLδi with with train data DSTrain and let ACRTrain be the

train accuracy.
4: if ACRTrain > 0.5 then
5: Create new dataset
6: Call V alidationProcess(MLδi , DSV alid)
7: else
8: Return ”No distinguisher found”
9: end if

10: Return ACRTrain

11: end procedure

Algorithm 4 ValidationProcess

Inputs: New Validation Data DSV alid and trained model MLD
Outputs: Validation Accuracy ACRV alid

1: procedure ValidationProcess(MLδi , DSV alid)
2: Load model MLδi .
3: Validate MLδi with with validation data DSV alid and let ACRvalid be

the validation accuracy.
4: if ACRV alid > 0.5 then
5: Distinguisher found for the corresponding cipher
6: else
7: Return ”No distinguisher found”
8: end if
9: Return ACRV alid

10: end procedure

(P ′
1, P

′
2) such that P ′

1 ⊕ P ′
2 = δr, where δr is a random difference. Applying

this approach, he trained a DNN, which performs well in classifying the real
and random ciphertext pairs. He replicates a new difference distribution table
(DDT) corresponding to the DDT of the classical differential distinguisher dur-
ing the training phase of the neural classifier and uses the new DDT to validate
data. Gohr also gives a detailed description, comparing the performance of the
classical differential distinguisher with the corresponding neural differential
distinguisher. He proves neural distinguishers work more efficiently. Here, we
propose a method that finds a generic deep neural distinguisher. Algorithm 2
generates the training and validation dataset. It takes input a plaintext dif-
ference δi, the number of rounds for the cipher roundNo, and the number of
rows in the dataset iterations. Mainly, We run the encryption function of a
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cipher up to roundNo rounds and terations times and store the ciphertexts.
For each iteration, we use a new random key. Assume P1 is a random plain-
text. If the current iteration number is divisible by 2 then we take another
random plaintext P2 and encrypt (P1, P2) to get a ciphertext pair (C1, C2).
Append (C1, C2, C1 ⊕ C2, 0) to dataset DS, where 0 is the label for two ran-
dom ciphertext pair (C1, C2). But if the iteration number is not divisible by
zero then calculate P2 = P1⊕δi. Use encryption oracle to encrypt (P1, P2) and
get ciphertext pair (C1, C2). In this case, add (C1, C2, C1 ⊕ C2, 1) to dataset
DS, where 1 is the label for two known ciphertext pair (C1, C2), generated
by using the plaintext difference δi. Finally, we return the merged dataset DS
containing 50% known ciphertexts, and the rest are random.

We use Algorithmm 3 for creating a new ML model MLδi and train the
model with dataset DSTrain. If we achieve greater than 50% training accu-
racy, then call Algorithm 4 for validation of the dataset DSV alid. If validation
accuracy ACRV alid is more than 50%, then we can claim a valid distinguisher
found for the cipher.

3.1 Generic differential distinguisher

Here we automate the searching of neural distinguishers of n rounds, where
n ≤ r, r is the maximum round number of a cipher. We propose a generic neu-
ral differential classifier that automatically finds a deep neural distinguisher for
any cipher for a given round. Take one classical differential distinguisher with
differential characteristics δi → δo of m rounds with probability 2−p, where
(m+n) ≤ r. Now apply δi to a neural distinguisher of one round and check the
accuracy. In case of good validation accuracy, take the ciphertext differences
as δi for the next iteration with one round increase. For each iteration, update
and store the round number and the maximum accuracy. Continue this way
until a round is found with accuracy less than 50%. We described the proce-
dure in Algorithm 5. Consider CDOld is the set of ciphertext differences from
an earlier distinguisher, and PDNew is a set of plaintext differences. In our
algorithm we take input either CDOld or PDNew. We check if PDNew is empty
else initialize it by CDOld. For a neural distinguisher, assume the number of
rounds is roundNo, which is initialized to a given number N with N less than
or equal to the maximum number of rounds for the given cipher. Now choose
any difference δi from the set PDNew and assign it as a real plaintext differ-
ence for the current neural distinguisher to be constructed. Next create a new
ML distinguisher MLD. Generate the training data-set by calling the method
DatasetCreationProcess with providing inputs δi, roundNo and iteration. Save
the training dataset in DSTrain. Apply DSTrain to train MLD, which output
accuracy ACRTrain. Calling the procedure DatasetCreationProcess generate
the validation datasetDSV alid. Run the method ValidationProcess by applying
the DSV alid on the trained model MLD and save the accuracy in ACRV alid.
For each δi from PDNew, execute the dataset creation, training, and valida-
tion process in a loop. In each iteration collect each of the ACRV alid in a
set ACRSet. Now find the maximum accuracy ACRMAX from ACRSet and
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Algorithm 5 GenericDifferentialNeuralClassifier

Inputs: CDOld are the set of ciphertext differences from last model or PDNew

are the set of plaintext differences if available.
Output: Maximum accuracy ACRMax and best difference MAXδi upto r
rounds.

1: procedure GenericDifferentialNeuralClassi-
fier(PDNew/CDOld, N)

2: if PDNew is empty then
3: PDNew ← CDOld

4: end if
5: roundNo ← N
6: accSet ← empty
7: for each δi in PDNew do
8: Set the real plaintext difference as δi.
9: iteration ← 100000

10: Create a new ML model, let MLD.
11: DSTrain ← DatasetCreationProcess(δi, roundNo, iterations)
12: ACRTrain ← TrainingProcess(MLD,DSTrain)
13: DSV alid ← DatasetCreationProcess(δi, roundNo, iterations)
14: ACRV alid ← ValidationProcess(MLD,DSV alid)
15: ACRSet ← ACRSet ∪ACRV alid

16: end for
17: ACRMax ← MAX(ACRSet)
18: PDBest ← GetPD(ACRMax)
19: CDBest ← GetCD(PDnew, ACRMax) ▷ Returns the plaintext

difference corresponding to an accuracy
20: MLDPDBest

←MLD
21: truePositiveCDSet ← GetCDFromTruePosSet(ACRMax)
22: PDNew ← GetCDSetMinHammingWeight(truePositiveCDSet) ▷

Returns the minimum hamming weights
23: roundNo ← roundNo + R
24: repeat steps 6 to 22.
25: Return (MLDPDBest

, ACCMax, PDBest, roundNo, iteration)
26: end procedure

the best plaintext difference CDBest corresponding to the ACRMax. Save
MLD to MLDCDBest

. We also need the new ciphertext differences corre-
sponding to the best accuracy. With taking input as ACRMax apply method
GetCDFromTruePosSet to get the plaintext differences and store these to true-
PositiveCDSet. We choose only those new ciphertext differences which have
a minimum hamming difference. The reason is, the possibility of generating
active bits after applying a cipher is less, with ciphertext differences having
less number of active bits. Update the plaintext difference set PDnew with the
new ciphertext differences, which is the return value of the method GetCD-
SetMinHammingWeight. Now increase the round number by R, 0 ≤ R ≤ r
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Fig. 1 HIGHT Validation Acc Vs Train Accuracy
(CNN)

Fig. 2 HIGHT Validation loss Vs Train Loss (CNN)

and iteration numbers(if required) and rerun the above procedure using the
new set of plaintext differences PDnew. Repeat the above process until we
get an accuracy value less than 50% from the methods TrainingProcess or
ValidationProcess. Finally return the best ML distinguisher MLDPDBest

with
MAXacc, PDMax, roundNo and iteration.

3.2 Estimation of lower bound of data complexity

Choose one classical differential distinguisher with differential characteristics
δi → δo of m rounds with probability 2−p, where m ≤ r. Following Theorem 1,
the lower bound of data complexity of the classical distinguisher is bounded by
2/(2−p−1/2m − 1). Next, form a deep neural distinguisher by taking δo as the
input plaintext difference. Suppose the neural distinguisher gives a high accu-
racy up to n rounds. Then we conclude the lower bound of the data complexity
for the corresponding distinguisher with (m+ n) rounds is approximately 2p.
The new lower bound of data complexity estimation for HIGHT, LEA and
SPARX is provided in Table 6.

4 Experimental Results

In this section, we describe the outcome of the generic neural distinguisher after
application on HIGHT, LEA and SPARX. We use google colab with installed
Keras-GPU for all our ML-related experiments, including data generation. We
run three different models, convolutional neural network(CNN), Light Gra-
dient Boosting Machine (LGBM), and Long short-term memory (LSTM) for
training and validation of datasets. In general, we use total 105 data samples of
which 50% is applied for training and rest of those for validation. For CNN and
LSTM, we varied number of layers, number of neurons per layer and number
of blocks per layer. Also we applied different types of activation functions.

4.1 HIGHT

In [6] δi = 0x0800000000000000 is used as a classical distinguisher for the
output difference of sixth round. For the autometic generic neural distin-
guisher, we take the input difference of a classical distinguisher with δi =
0x0800000000000000 as the input plaintext difference for seventh round. Here,
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Table 4 Accuracy, true positive rate (TPR) and true negative rate (TNR) for HIGHT

Model Round
Train

Accuracy
Validation
Accuracy

TPR TNR

CNN

5 99.99 99.98 1.0 0.9998
6 100.00 99.99 1.0 0.999
7 98.82 97.023 0.995 0.9449
8 98.98 98.71 0.998 0.9753
9 67.892 50.48 0.5052 0.4942
10 75.90 50.30 0.5221 0.4653

LGBM

5 100.00 99.94 0.9999 0.9988
6 100.00 99.99 1.0 0.9997
7 80.05 78.89 0.985 0.5944
8 99.19 98.56 0.9893 0.981
9 65.31 50.26 0.5656 0.4394
10 66.17 50.01 0.5019 0.5054

LSTM
5 94.76 94.814 0.97343 0.92261
6 82.61 82.16 0.93443 0.7098
7 60.28 60.09 0.5663 0.635
8 66.91 66.36 0.6434 0.684

Fig. 3 HIGHT Validation Acc Vs Train Accuracy
(LSTM) Fig. 4 HIGHT Validation loss Vs Train Loss (LSTM)

we construct a six-round neural distinguisher which gives a high accuracy, and
this one works as a 13-round distinguisher. Here the total data complexity of
this distinguisher is at least 230.

The LGBM and LSTM model can classify the corresponding real and ran-
dom ciphertext differences up to 11 rounds, whereas the CNN model performs
better and allows up to 14 rounds. For all the three models we describe the
result using training accuracy, validation accuracy, true positive rate, and
true negative rate. Table 4 depicts the performance of the CNN and LGBM
model. Figure 1,and 3 explains the relation between number of epochs and
training/validation accuracy for CNN and LSTM model. The relation between
training/validation loss with increasing epochs is depicted in Figure 2, and 4
for CNN and LSTM model.
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Fig. 5 LEA Validation Acc Vs Train Accuracy (CNN)Fig. 6 LEA Validation loss Vs Train Loss (LSTM)

Table 5 Accuracy, true positive rate (TPR) and true negative rate (TNR) for LEA cipher

Model Round
Train

Accuracy
Validation
Accuracy

TPR TNR

CNN

5 99.87 98.45 0.990 0.978
6 99.39 95.04 0.956 0.944
7 96.08 96.08 0.886 0.812
8 75.60 51.37 0.536 0.491
9 60.58 50.45 0.500 0.505

LGBM

6 92.54 91.83 0.897 0.939
7 87.84 87.62 0.845 0.906
8 66.19 62.51 0.499 0.749
9 65.05 50.18 0.499 0.508

LSTM

5 96.36 96.23 0.960 0.964
6 84.77 84.53 0.846 0.844
7 52.46 52.31 0.649 0.396
8 60.05 59.81 0.570 0.625

Table 6 Reduced Lower bound of Data Complexity

Cipher Rounds
Best known

Data Complexity

Lower Bound of
Data Complexity
(Our Approach)

HIGHT [12] 13 261 230

LEA [7] 11 298 248

SPARX [13] 9 237 225

Fig. 7 LEA Validation Acc Vs Train Accuracy
(LSTM)

Fig. 8 LEA Validation loss Vs Train Loss (LSTM)
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Fig. 9 Training/Validation Loss vs Epoch for
SPARX(CNN)

Fig. 10 Training/Validation Accuracy vs Epoch for
SPARX(CNN)

4.2 LEA

For LEA, we use δi = (0x00000000, 0x80000000, 0x80000000, 0x80000000) as
the plaintext difference given by Hong et al. [7] at Table 10. We take the fourth-
round output difference from the eleven-round differential characteristics and
apply our generic distinguisher described Algorithm 5. The CNN and LGBM
model provides acceptable results for up to 13 rounds. The LSTM model can
classify the cipher upto 12 rounds. We summarize the results from the CNN,
LSTM and LGBM model in Table 5. Figure 5, and 7 describes the relation
between training accuracy and the number of epochs for CNN and LSTM
model. We get high accuracy up to 80% after applying the five round output
(0x00000100, 0x00000000, 0x00000000, 0x00000000) from Table 3 to generic
neural distinguisher as δi. The variation of training and validation loss by
increasing epoch number is depicted in Figure 6, and 8 for CNN and LSTM
model. In this case also our generic distinguisher can classify LEA upto 13
rounds. Here we can redefine the lower bound of data complexity of 11-round
LEA to 249.

4.3 SPARX

Ralph et al. [13] found the five round output difference δi =
0x00400040/0x00000000 to describe the six round differential trail. We use
the same difference δi = 0x00400040/0x00000000 as input difference and
found a neural distinguisher up to five rounds with good accuracy. Adding
up, we found a neural distinguisher for SPARX32/64 up to 11 rounds. Here
we use three neural models. The training and validation accuracy of the
CNN, LGBM and LSTM models with true positive and negative rates is
shown in Table 7. The models also provide good accuracy for input differ-
ence δi = 0x00408000/0x00000000 and δi = 0x28000010, 0x28000010 up to six
rounds.

Figure 10 and 12 describes the relation between training accuracy and the
number of epochs for the CNN and LSTM model. The variation of training
and validation loss by increasing epoch number is depicted in Figure 9, and 11
for the CNN and LSTM model. We found the lower bound of data complexity
of 9-round as 225.
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Table 7 Accuracy, true positive rate (TPR) and true negative rate (TNR) for SPARX

Model Round No
Training
Accuracy

Validation
Accuracy

TPR TNR

CNN

3 99.41 93.27 0.918 0.948
4 97.43 76.61 0.751 0.781
5 66.41 50.38 0.478 0.528
3 90.32 89.90 0.866 0.932

LGBM
4 69.00 67.00 0.616 0.728
5 65.54 50.64 0.520 0.493

LSTM

3 84.17 83.57 0.782 0.889
4 63.35 62.93 0.681 0.578
5 50.94 50.45 0.289 0.717

Fig. 11 Training/Validation Loss vs Epoch for
SPARX (LSTM)

Fig. 12 Training/Validation Accuracy vs Epoch for
SPARX(LSTM)

5 Conclusion

In this paper, we introduce a novel technique of finding neural differential
distinguisher. Using the tool we report neural classifier for the cipher HIGHT
up to 14-rounds, LEA up to 13-rounds, and up to nine rounds for SPARX,
which are the first neural distinguisher for the cipher. A general approach for
finding the lower bound of data complexity is also provided. We want to cover
more ciphers applying our tool for finding new differential distinguishers.
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