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Abstract. Trifork is a family of pseudo-random number generators de-
scribed in 2010 by Orue et al. It is based on Lagged Fibonacci Generators
and has been claimed as cryptographically secure. In 2017 was presented
a new family of lightweight pseudo-random number generators: Arrow.
These generators are based on the same techniques as Trifork and de-
signed to be light, fast and secure, so they can allow private commu-
nication between resource-constrained devices. The authors based their
choices of parameters on NIST standards on lightweight cryptography
and claimed these pseudo-random number generators were of crypto-
graphic strength.
We present practical implemented algorithms that reconstruct the in-
ternal states of the Arrow generators for different parameters given in
the original article. These algorithms enable us to predict all the fol-
lowing outputs and recover the seed. These attacks are all based on a
simple guess-and-determine approach which is efficient enough against
these generators.
We also present an implemented attack on Trifork, this time using lattice-
based techniques. We show it cannot have more than 64 bits of security,
hence it is not cryptographically secure.

Keywords: Pseudo-random number generators, Guess-and-determine, Crypt-
analysis, Lattices.

1 Introduction

Randomness is a fundamental tool in cryptography. All key generation algo-
rithms use randomness to generate the keys and it is used in several well-known
cryptographic protocols such as DSA, ECDSA, Schnorr signature scheme, etc.
A pseudo-random number generator (PRNG) is an efficient deterministic algo-
rithm that stretches a small random seed into a longer pseudo-random sequence
of numbers. It is an efficient way to create pseudo-randomness to be used in cryp-
tography protocols. A PRNG used in a cryptographic protocol needs to produce
a sequence of bits indistinguishable from “truly” random bits by efficient adver-
saries or the whole protocol might become insecure. PRNGs of cryptographic
strength exist, some of them have been approved by NIST [7].



Because of the miniaturization of components and the emergence of the Inter-
net of Things, we face a new cryptographic challenge in which highly-constrained
devices must wirelessly and securely communicate with one another. The stan-
dardized available PRNGs do not fit into these constrained devices, this is the
reason why we are looking for lighter PRNGs. In [9], NIST presented several
generally-desired properties that they would use to evaluate the design of future
lightweight cryptographic protocols. They strongly underline the fact that the
security should be of at least 112 bits.

The lagged Fibonacci generators (LFG) are a class of linear generators. A
LFG is defined by four parameters: (r, s,N,m) and an initial internal state com-
posed of r words of size N : (x−r, . . . , x−1). At step n, the internal state of
the generator is (xn−r, . . . , xn−1). The generator computes xn as xn ≡ xn−r +
xn−s mod m, outputs xn and update its internal state to (xn−r+1, . . . , xn). These
generators are light and fast, as needed for lightweight cryptography, but highly
insecure. They have poor statistical properties, which make them easily distin-
guishable from the uniform distribution, and they are easily predictable (as we
can obtain the full internal state by clocking the generator enough times).

The goal of Arrow, presented by Lopez et al. [11] was to use two of these LFGs
to keep their lightweight properties by combining them in a way that would make
the resulting PRNG more secure. To improve the security of these new PRNGs,
the authors used two LFGs of different lengths and combined them using both
modular arithmetic over Z/mZ and modular arithmetic over Z/2Z, as combining
two moduli tends to break the linearity of the operations. The sequences gen-
erated by Arrow pass successfully all the Marsaglia’s Diehard randomness tests
suite and the randomness tests of NIST. The statistical randomness distribution
of the outputs of Arrow has been studied further in [5], by Blanco et al. in 2019.

The idea behind Arrow derives from an older family of PRNGs: Trifork.
Trifork has been presented in 2010 by Orue et al. [12]. The generators in Trifork
combine three Lagged Fibonacci Generators together, again mixing modular
arithmetic over Z/mZ and over Z/2Z. They also use a Linear Congruential
Generator to initialise their large internal states. These large internal states are
the main reason Trifork is not suited for lightweight cryptography. These PRNGs
have a key of 192 bits and a claimed security of 192 bits.

The Linear Congruential Generators (LCG) are an other class of linear gen-
erators. A LCG is defined by three (often) public parameters a, c,m and a secret
seed x0. At step i > 0 the generator outputs xi = axi−1 + c mod m. These
generators are well studied and generally not cryptographically secure.

Contribution. We show that Arrow, even if it has good statistical properties,
is insecure. We present several practical algorithms to attack different versions
of Arrow presented in the original paper, using the same choice of parameters
they made for their tests. These algorithms reconstruct the full internal state of
the PRNG. This allows to predict the pseudo-random stream deterministically
and clock the generator backwards. For those attacks we choose a “guess-and-
determine” approach: some bits of the internal state are guessed; assuming the
guesses are correct, some other information is computed; a consistency check
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discards bad guesses early on; then candidate internal states are computed and
fully tested. Unfortunately, our attack is not general and the choice of bits to
guess depends on the parameters of the underlying FLGs. This is why we need a
different algorithm for each version of Arrow we want to attack. We will attack
three different versions of Arrow.

words size key length claimed security attack complexity
Arrow-I 8 bits 96(128) bits 96(128) bits 38 bits
Arrow-II 16 bits 96(128) bits 96(128) bits 48 bits
Arrow-III N bits 32N bits 32N bits ?

For Arrow-I and Arrow-II, the key length is 128 bits but can be shortened to 96
bits using an IV. For Arrow-III, the complexity of the attack is unclear, but the
attack is practical on a laptop for N = 8.

We also present an attack against Trifork. The generators in Trifork have
keys of length 192 bits but we show they cannot have more than 64 bits of
security. Even if the two families of generators are close, the strategies to attack
them greatly differ. As the internal state of Trifork is composed of several words
of size 64 bits, we cannot use a “guess-and-determine” approach. As this internal
state is large, it cannot be directly initialized with the key. This is why a Linear
Congruential Generator is used. The LCG will be the breach we will use to
attack Trifork. We will guess a third of the key (64 bits) and use lattice-based
techniques to recover the rest of the seed.

Related work. Linear Congruential Generators (LCGs) have been largely studied
through the years. The main attack against them was presented by Frieze et al.
in 1984 [8]. In this attack, a Euclidean lattice related to the public parameters
is built. Then outputs of the LCG are used to create a vector T1, not in the
lattice but close to a vector T2 such that T2 is in the lattice and contains the
seed of the generator. The lattice is reduced thanks to the LLL-algorithm -a
polynomial-time reduction algorithm presented by Lenstra, Lenstra, and Lovász
in 1982- and its new basis is used to solve integer linear equations to retrieve
the seed of the generator. In 1985, Knuth [10] studied a variant of the LCG: the
secret LCG, where the usually public parameters are now secret. This variant
was attacked by Stern in 1987 [14].

Guess-and-determine (GD) techniques are mainly used to attack stream ci-
phers. The stream cipher SOBER was presented by Rose in 1998 [13]. In 1999,
Bleichenbacher et al presented a first GD attack against SOBER-II [6] and in
2003 Baggage et al presented another GD attack against SOBER-t32 [3]. Several
generators from the NESSIE competition [1] (including SOBER-t32) have been
attacked with a “guess-and-determine” approach. It is also the case for the cipher
stream algorithms candidate in eSTREAM [2]. You can find a quick summary
of other GD uses in this survey [4], paragraph 3.10.
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xn−r1 xn−s1← ← xn−1

yn−r2 yn−s2← ← yn−1

≪ d1 ≫ d3

≪ d2 ≫ d4

+

+

wn

xn

yn

Fig. 1. Description of Arrow

2 Description of Arrow

The lagged Fibonacci generators (LFG) are a class of linear generators. A LFG
is defined by four parameters: (r, s,N,m) and an initial internal state composed
of r words of size N : (x−r, . . . , x−1). At step n, the internal state of the generator
is (xn−r, . . . , xn−1). Then it computes xn as xn ≡ xn−r + xn−s mod m, outputs
xn and update its internal state to (xn−r+1, . . . , xn).

Arrow is a more elaborated architecture, its structure is described in Fig. 1. It
is composed of two LFGs of respective parameters (r1,s1,N ,m) and (r2, s2, N,m).
The internal states of the first LFG are denoted (xi), the internal states of the
second one (yi) and the outputs (wi). The values (xi)−r1≤i≤−1 and (yi)−r2≤i≤−1

are the seed of this generator. The parameters r1, r2, s1, s2, N,m are public.
Instead of having xn = xn−s1+xn−r1 mod m and yn = yn−s−2+yn−r2 mod m

we scramble the two generators to obtain at step n ≥ 0:

xn = ((xn−r1 ⊕ (yn−s2 ≪ d1)) + (xn−s1 ⊕ (yn−r2 ≫ d3))) mod m (1)
yn = ((yn−r2 ⊕ (xn−s1 ≪ d2)) + (yn−s2 ⊕ (xn−r1 ≫ d4))) mod m (2)

where d1, d2, d3 and d4 are four public constant satisfying 0 < di < N ; ⊕ is the
bitwise exclusive-or; ≫ and ≪ are the right-shift and left-shift operators (as
defined in C, not as rotations). The output at step n is:

wn = xn ⊕ yn.

The security of Arrow is based on the secrecy of the internal states. If we
clock r2 times the generator, then for all i ∈ {0, . . . , r2 − 1}, we know the value
xi ⊕ yi (which is equal to wi). This is the main weakness we are going to exploit
in the following attacks.
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3 Attacks on Arrow

3.1 Simple Guess-and-Determine attack on Arrow-II

We present a first hardware version of Arrow (denoted Arrow-II in the intro-
duction) with words of size N = 16 presented in the original paper. The set of
parameters used is

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
16 512 5 2 3 1 4

and the claimed security is 128 bits (96 bits if a public IV is used).
If we decide to split all the relevant words of size 16 into four sub-words of 4

bits, we can represent the internal state of this variant of Arrow as follows:

an bn cn dn en fn gn hn x
(4)
n x

(3)
n x

(2)
n x

(1)
n

in jn kn ℓn mnnn on pn y
(4)
n y

(3)
n y

(2)
n y

(1)
n

We also split the outputs wn of size 16 into four sub outputs of 4 bits: w(1)
n ,

w
(2)
n , w(3)

n and w
(4)
n with w

(1)
n being the least significant bits of wn and w

(4)
n the

most significant bits.
The equations (1) and (2) become:

x(1)
n = dn + (hn ⊕ kn) mod 16 (3)
c(1)x = (dn + (hn ⊕ kn)) div 16 (4)

x(2)
n = (cn ⊕ pn) + (gn ⊕ jn) + c(1)x mod 16 (5)
c(2)x = ((cn ⊕ pn) + (gn ⊕ jn) + c(1)x ) div 16 (6)
x(3)
n = (bn ⊕ on) + (fn ⊕ in) + c(2)x mod 16 (7)
c(3)x = (bn ⊕ on) + (fn ⊕ in) + c(2)x div 16 (8)

x(4)
n = ((an ⊕ nn) + en + c(3)x ) mod 16 (9)
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y(1)n = ℓn + (cn ⊕ pn) mod 16 (10)
c(1)y = (ℓn + (cn ⊕ pn)) div 16 (11)

y(2)n = (hn ⊕ kn) + (bn ⊕ on) + c(1)y mod 16 (12)
c(2)y = ((hn ⊕ kn) + (bn ⊕ on) + c(1)y ) div 16 (13)
y(3)n = (gn ⊕ jn) + (an ⊕ nn) + c(2)y mod 16 (14)
c(3)y = (gn ⊕ jn) + (an ⊕ nn) + c(2)y div 16 (15)

y(4)n = ((fn ⊕ in) +mn + c(3)y ) mod 16 (16)

x(1)
n ⊕ y(1)n = w(1)

n (17)
x(2)
n ⊕ y(2)n = w(2)

n (18)
x(3)
n ⊕ y(3)n = w(3)

n (19)
x(4)
n ⊕ y(4)n = w(4)

n (20)

were “div” denotes the integer division. The c
(i)
x and c

(i)
y are the carries we

must work with. Their value is either 0 or 1. The (wi) are known as they are the
outputs.

Our attack will be based on a classical “guess-and-determine” approach. The
guessed bits will appear in red, the derived bits at the first step in blue, and the
derived bits at the second step in olive. In this case, the attack is very simple:
we start by clocking 3 times our generator.

Step 1 We guess a3, b3, c3, d3, e3, f3, g3, h3, i3, j3, k3, ℓ3 (hence 48 bits). With d3,
h3 and k3 we compute x

(1)
3 and c

(1)
x (eq. 3 and 4). Then we compute y

(1)
3 with

x
(1)
3 and w

(1)
3 (eq. 17) and retrieve p3 as we know ℓ3 and c3 (eq. 10). The

knowledge of c3 allows us to compute x
(2)
3 (eq. 5), recover y

(2)
3 (eq. 18) and

then o3 (eq. 12). With o3 we can compute x
(3)
3 (eq. 7), recover y

(3)
3 (eq. 19)

and then n3 (eq. 14). And finally, with n3 we can compute x
(4)
3 (eq. 9) and

recover y
(4)
3 (eq. 20) as well as m3 (eq. 16). As we know w0, w1, w2, we can

fill up the internal states above i3, j3, k3, ℓ3 and m3, n3, o3, p3 and under
e3, f3, g3, h3 (eq 17, 18, 19 and 20).

Step 2 We clock the generator twice. As explained above, we have derived a5, b5,
c5, d5 from i3, j3, k3, ℓ3 and w0. The values e5, f5, g5, h5 are x

(4)
3 , x(3)

3 , x(2)
3 ,

x
(1)
3 and i5, j5, k5, ℓ5 are m3, n3, o3, p3. We remark that we are in a similar

situation as step 1, hence we use the same equations to derive m5, n5, o5,
p5 as well as x

(1)
5 , x(2)

5 , x(3)
5 , x(4)

5 , y(1)5 , y(2)5 , y(3)5 and y
(4)
5 .

The values above m5, n5, o5, p5 can be computed thanks to w4.
At this point, we know the full internal state of the generator.
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a3 b3 c3 d3 e3 f3 g3 h3

∗ ∗ ∗ ∗

x
(4)
3 x

(3)
3 x

(2)
3 x

(1)
3

i3 j3 k3 ℓ3

∗ ∗ ∗ ∗

m3n3 o3 p3

∗ ∗ ∗ ∗

y
(4)
3 y

(3)
3 y

(2)
3 y

(1)
3

a5 b5 c5 d5 e3 f3 g3 h3 e5 f5 g5 h5

∗ ∗ ∗ ∗

x
(4)
5 x

(3)
5 x

(2)
5 x

(1)
5

i5 j5 k5 ℓ5

∗ ∗ ∗ ∗

m5n5 o5 p5

∗ ∗ ∗ ∗

y
(4)
5 y

(3)
5 y

(2)
5 y

(1)
5

Step 3 We compute the five following outputs using the internal states we have and
we compare them with the true outputs given by the generator. If they are
equal it means we have recovered the full internal state of the generator with
overwhelming probability. We notice that the generator is easily invertible,
hence we can recover the seed.

This particular version of Arrow was supposed to have between 96 and 128
bits of security (depending on whether or not an IV was used) and with this
attack, we show it cannot have more than 48 bits of security which is far from
the 112 bits of security recommended by NIST for lightweight cryptography.
This attack had been implemented in C but is not practical on a standard
laptop: a Dell Latitude 7400, running on Ubuntu 18.04 (the same laptop will be
used for the rest of this paper). If we only test a hundred sets of guesses, the
algorithm runs in 0.000144s. To retrieve the full internal state of the generator,
the algorithm should run for approximately 12 years.

3.2 Longer Guess-and-Determine attack on Arrow-I

Arrow-I is another hardware version of Arrow presented in the original paper,
this time with words of size N = 8. The set of parameters used is

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
8 256 9 4 7 3 4

and the claimed security is 128 bits (96 bits if a public IV is used).
If we decide to split all the relevant words of 8 bits into four sub-words of 4

bits, we can represent the internal state of this variant of Arrow as follows:
We also split the outputs wn of 8 bits in two sub words of 4 bits: w(1)

n and
w

(2)
n , with w

(1)
n being the least significant bits of wn and w

(2)
n the most significant

bits.
The equations (1) and (2) become:
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an bn cn dn x
(2)
n x

(1)
n

en fn gn hn y
(2)
n y

(1)
n

x(1)
n = bn + (en ⊕ dn) mod 2N/2 (21)
cx = (bn + (en ⊕ dn)) div 2

N/2 (22)
y(1)n = fn + (an ⊕ hn) mod 2N/2 (23)
cy = (fn + (an ⊕ hn)) div 2

N/2 (24)
x(2)
n = (cn + (an ⊕ hn) + cx) mod 2N/2 (25)
y(2)n = (gn + (en ⊕ dn) + cy) mod 2N/2 (26)

We start the attack by clocking the generator seven times. Then, for every
n ≥ 7, en, fn = y

(2)
n−7, y

(1)
n−7, cn, dn = x

(2)
n−4, x

(1)
n−4 and gn, hn = y

(2)
n−3, y

(1)
n−3. If we

denote ēi, f̄i the values above ei, fi, we see that we can easily derive them from
ei, fi and wi−7. We also denote ḡi, h̄i the values above gi, hi and c̄i, d̄i the values
under ci, di

Step 0: guess b7, g7, (e7 ⊕ d7), (a7 ⊕ h7)

determine → (x
(1)
7 , y

(1)
7 , f7, y

(2)
7 , x

(2)
7 , c7)

Step 1: b9 = f̄7
guess g9, (e9 ⊕ d9), (a9 ⊕ h9)

determine → (x
(1)
9 , y

(1)
9 , f9, y

(2)
9 , x

(2)
9 , c9)

Step 2: b11 = f̄9, c11 = x
(2)
7 , d11 = x

(1)
7 , e11 = g7

guess f11
determine → (x

(1)
11 , y

(1)
11 , x

(2)
11 , y

(2)
11 , g11)

Step 3: a12 = c7, c12 = ¯g11, e12 = c̄9, g12 = y
(2)
9 , h12 = y

(1)
9

guess b12, cx, cy

determine → (x
(2)
12 , y

(2)
12 , d12, x

(1)
12 , y

(1)
12 , f12)

Step 4: a15 = ḡ9, c15 = x
(2)
11 , d15 = x

(1)
11 , e15 = g11, g15 = y

(2)
12 , h12 = y

(1)
12

determine → (y
(1)
15 , x

(1)
15 , b15, x

(2)
15 , y

(2)
15 )

Step 5: a16 = x
(2)
7 , b16 = x

(1)
7 , c16 = x

(2)
12 , d16 = x

(1)
12 , e16 = y

(2)
9 , f16 = y

(1)
9

determine → (x
(1)
16 , y

(1)
16 , h16, x

(2)
16 , y

(2)
16 , g16)

Step 6: a18 = x
(2)
9 , b18 = x

(1)
9 , e18 = y

(2)
11 , f18 = y

(1)
11 , g18 = y

(2)
15 ;h18 = y

(1)
15

determine → (y
(1)
18 , x

(1)
18 , d18, y

(2)
18 , x

(2)
18 , c18)

Step 7: a20 = x
(2)
11 , b20 = x

(1)
11 , c20 = x

(2)
16 , d20 = x

(1)
16 , e20 = g16, f20 = h16

determine → (x
(1)
20 , y

(1)
20 , h20, x

(2)
20 , y

(2)
20 , g20)
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Step 8: a21 = x
(2)
12 , b21 = x

(1)
12 , c21 = ¯g20, d21 = h̄20, e21 = y

(2)
12 , f21 = y

(1)
12 , g21 =

y
(2)
18 , h21 = y

(1)
18

determine → (x
(1)
21 , y

(1)
21 , x

(2)
21 , y

(2)
21 )

Step 9: a22 = ¯g16, b22 = h̄16, c22 = x
(2)
18 , d22 = x

(1)
18 , e22 = y

(2)
15 , f22 = y

(1)
15

determine → (x
(1)
22 , y

(1)
22 , h22, x

(2)
22 , y

(2)
22 , g22)

At the end of Step 9, we have derived from our guesses the whole internal
state of the generator. We use these values to compute the five following outputs
and compare them to the five “true” outputs given by the original generator to
know if our guesses were correct or not with overwhelming probability. As we
guess 16 bits in Step 1, 12 bits in Step 2, 4 bits in Step 3, and 6 bits in Step
4, our time complexity will be approximately (238). We recall that the security
of this generator was supposed to be of at least 96 bits. This attack had been
implemented in C and the expected running time is 4 hours on a standard laptop
(without optimization).

3.3 An attack against Arrow-III, the software version of Arrow

The software version of Arrow with words of size N is using the following set of
parameters

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
N 2N 31 3 17 3 N/2

with N = 8 or N = 32.
If we decide to split all the relevant words of N bits into two sub-words of

N/2 bits, we can represent the internal state of this variant of Arrow as follows:

an bn . . . cn dn x
(2)
n x

(1)
n

en fn . . . gn hn y
(2)
n y

(1)
n

We obtain the same equations as in the previous case.
This version of Arrow has two specificities:

– The values ci, di are above gi, hi. Hence if the generator has been clocked
enough times and if we know gi and hi, then we know ci and di.

– The parameters satisfy r1 − r2 = s2 − r2. Then, if we know ei, fi, ci, di we
will know ai+14, bi+14, ei+14, fi+14. The two lagged Fibonacci generator used
in this version of Arrows are more or less synchronized. Which is something
that should have been avoided.

Because of that, in our attack we will only face three cases:
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Case gh We know ai, bi, ei, fi, we guess gi, hi and derive ci, di, xi, yi with the help of
wi−3 and wi. We compare x

(2)
i ⊕ y

(2)
i to w

(2)
i .

Case a We know ei, fi, gi, hi, we guess ai and derive xi, yi with the help of wi. We
compare x

(2)
i ⊕ y

(2)
i to w

(2)
i .

Case 0 We know all the relevant values, we derive xi, yi from them and compare
xi ⊕ yi to the output wi.

We start by clocking the generator 17 times to know all the xor between xi

and yi for i in {0, . . . , 16}.

Step 0: guess a17, e17, f17, g17, h17

determine → (c17, d17, x
(1)
17 , x

(2)
17 , y

(1)
17 , y

(2)
17 )

assert x
(2)
17 ⊕ y

(2)
17 = w

(2)
17

Step 1 (case gh): a31 = ¯e17, b31 = ¯f17, e31 = g17, f31 = h17

guess g31, h31

determine → (c31, d31, x31, y31)

assert x
(2)
31 ⊕ y

(2)
31 = w

(2)
31

Step 2 (case a): c34 = x
(2)
31 , d34 = x

(1)
31 , e34 = y

(2)
17 , f34 = y

(1)
17 , g34 = y

(2)
31 , h34 = y

(1)
31

guess a34
determine → (x34, y34)

assert x
(2)
34 ⊕ y

(2)
34 = w

(2)
34

Step 3 (case gh): a45 = c17, b45 = d17, e45 = g31, f45 = h31

guess g45, h45

determine → (c45, d45, x45, y45)

assert x
(2)
45 ⊕ y

(2)
45 = w

(2)
45

Step 4 (case 0): a48 = x
(2)
17 , b48 = x

(1)
17 , c48 = x

(2)
45 , d48 = x

(1)
45 , e48 = y

(2)
31 , f48 = y

(1)
31 , g48 =

y
(2)
45 , h48 = y

(1)
45

determine → (x48, y48)
assert x48 ⊕ y48 = w48

There are 25N possibilities for the set of values {a17, e17, f17, g17, h17, g31,
h31, a34, g45, h45}. On average, only 22N possibilities pass the fourth step.

Step 5 (case a): c51 = x
(2)
48 , d51 = x

(1)
48 , e51 = y

(2)
34 , f51 = y

(1)
34 , g51 = y

(2)
48 , h51 = y

(1)
48

guess a51
determine → (x51, y51)

assert x
(2)
51 ⊕ y

(2)
51 = w

(2)
51

Step 6 (case gh): a59 = c31, b59 = d31, e59 = g45, f59 = h45

guess g59, h59

determine → (c59, d59, x59, y59)

assert x
(2)
59 ⊕ y

(2)
59 = w

(2)
59

Step 7 (case 0): a62 = x
(2)
31 , b62 = x

(1)
31 , c62 = x

(2)
59 , d62 = x

(1)
59 , e62 = y

(2)
45 , f62 = y

(1)
45 , g62 =

y
(2)
59 , h62 = y

(1)
59

determine → (x62, y62)
assert x62 ⊕ y62 = w62
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Step 8 (case 0): a65 = x
(2)
34 , b65 = x

(1)
34 , c65 = x

(2)
62 , d65 = x

(1)
62 , e65 = y

(2)
48 , f65 = y

(1)
48 , g65 =

y
(2)
62 , h65 = y

(1)
62

determine → (x65, y65)
assert x65 ⊕ y65 = w65

We add {a51, g59, h59} to our set of guessed values (213N/2 possibilities). On
average only 2N/2 pass the eighth step.

Step 9 (case a): c68 = x
(2)
65 , d68 = x

(1)
65 , e68 = y

(2)
51 , f68 = y

(1)
51 , g68 = y

(2)
65 , h68 = y

(1)
65

guess a68
determine → (x68, y68)

assert x
(2)
68 ⊕ y

(2)
68 = w

(2)
68

Step 10 (case gh): a73 = c45, b73 = d45, e73 = g59, f73 = h59

guess g73, h73

determine → (c73, d73, x73, y73)

assert x
(2)
73 ⊕ y

(2)
73 = w

(2)
73

Step 11 (case 0): a76 = x
(2)
45 , b76 = x

(1)
45 , c76 = x

(2)
73 , d76 = x

(1)
73 , e76 = y

(2)
59 , f76 = y

(1)
59 , g76 =

y
(2)
73 , h76 = y

(1)
73

determine → (x76, y76)
assert x76 ⊕ y76 = w76

Step 12 (case 0): a79 = x
(2)
48 , b79 = x

(1)
48 , c79 = x

(2)
76 , d79 = x

(1)
76 , e79 = y

(2)
62 , f79 = y

(1)
62 , g79 =

y
(2)
76 , h79 = y

(1)
76

determine → (x79, y79)
assert x79 ⊕ y79 = w79

Step 13 (case 0): a82 = x
(2)
51 , b82 = x

(1)
41 , c82 = x

(2)
79 , d82 = x

(1)
79 , e82 = y

(2)
65 , f82 = y

(1)
65 , g82 =

y
(2)
79 , h82 = y

(1)
79

determine → (x82, y82)
assert x82 ⊕ y82 = w82

We add {a68, g73, h73} to our set of guessed values (28N possibilities). On average
only 22 pass the thirteenth step.

We keep repeating these three steps until we reach n ≃ 250. It takes another
110 steps to go there. At this point, we will have derived the full internal state
of the generator and only one guess would have passed all the filters with over-
whelming probability. This attack had been fully implemented in C. For N = 8
the attack is practical as it runs in 20 seconds over 8 threads on a standard
laptop: a Dell Latitude 7400, running on Ubuntu 18.04.

4 Description of Trifork

Trifork’s structure is described in Fig. 2.
A Trifork generator is going to use three LFGs of respective parameters

(r1, s1, N,m), (r2, s2, N,m) and (r3, s3, N,m). The internal states of the first
LFG are denoted (Xi), the internal states of the second one (Yi), the ones of the
third (Zi) and the outputs (wi).
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xn−r1 xn−s1← ← xn−1

yn−r2 yn−s2← ← yn−1

zn−r3 zn−s3← ← zn−1

+

+

+

≫ d

≫ d

≫ d

Fig. 2. Description of Trifork

The seed of the generator is (X−r1 , Y−r2 , Z−r3). To fill its internal states, it
will use a Linear Congruential Generator of public parameters a, c,m with a odd
and where m is the same as the one used by the LFGs.

For i ∈ {−r1 + 1, . . . ,−1}, Xi = aXi−1 + c mod m
For i ∈ {−r2 + 1, . . . ,−1}, Yi = aYi−1 + c mod m
For i ∈ {−r3 + 1, . . . ,−1}, Zi = aZi−1 + c mod m

A step i, the generator computes

X ′
i = Xi−r1 +Xi−s1 mod m

Y ′
i = Yi−r2 + Yi−s2 mod m

Z ′
i = Zi−r3 + Zi−s3 mod m

Xi = X ′
i ⊕ (Z ′

i ≫ d) (27)
Yi = Y ′

i ⊕ (X ′
i ≫ d) (28)

Zi = Z ′
i ⊕ (Y ′i ≫ d) (29)

where d is a constant satisfying 0 < d < N ; ⊕ is the bitwise exclusive-or and ≫
is the right-shift operator. The output at step n is:

Wn = Xn ⊕ Zn.

The security of Trifork is based on the secrecy of the internal states. We will
present an algorithm that retrieves X−r1 , Y−r2 and Z−r3 in 264 steps.
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5 Attack on Trifork

The reason this attack will use 264 steps is because we start by guessing a third
of the seed: X−r1 of length 64 bits.

5.1 Recovering Z−r3

We consider a parameter f1 that will be the number of outputs we will use to
recover Z−r3 . We will set this parameter later.

We denote by ⌈X⌉d the d upper bits of a value, ⌊X⌋d its d lower bits and
consider the two following functions :

g : i →
i−1∑
j=0

aj mod m and f : (r, s, i) → g(r − s+ i) + g(i) mod m

The first step is to compute an approximation of the d upper bits of the
values {X0, . . . , Xf1−1}. If i < 0, Xi = a(...a(aX−r1 + c) + c...) + c mod m, that
we conveniently rewrite Xi = ar1+iX−r1 + g(r1 + i) × c mod m. If i ≥ 0, by eq
(27), ⌈Xi⌉d = ⌈Xi−s1 +Xi−r1 mod m⌉d.

– if i < s1, then ⌈Xi⌉d = ⌈ai(1 + ar1−s1)X−r1 + f(r1, s1, i) × c mod m⌉d and
we can compute this value correctly.

– if i ≥ s1, then ⌈Xi⌉d ≃ ⌈Xi−r1⌉d+⌈Xi−s1⌉d = ⌈aiX−r1+g(i)×c mod m⌉d+
⌈Xi−s1⌉d and we can only compute the d− (i− s1) upper bits correctly.

With that we obtain an approximation of the d upper bits of {Z0, . . . , Zf1−1}
knowing that Zi = Wi ⊕Xi. We call these approximations Z̄i.

– if i < s3, then ⌈Zi⌉d = ⌈ai(1 + ar3−s3)Z−r3 + f(r3, s3, i) × c mod m⌉d. We
set ti = Z̄i2

n−d − f(r3, s3, i)× c.
• If i < s1 then Z̄i = ⌈Zi⌉d and ai(1+ar3−s3)Z−r3 − ti mod m = ⌊Zi⌋n−d.

Hence |ai(1 + ar3−s3)Z−r3 − ti| < 2n−d.
• If i ≥ s1, Z̄i and ⌈Zi⌉d are only equal on the d − (i − s1) upper bits.

Hence |ai(1 + ar3−s3)Z−r3 − ti| < 2n−d+i−s1 .
– if i ≥ s3, then ⌈Zi⌉d = ⌈aiZ−r3 + Zi−s3 + g(i) × c mod m⌉d. We set ti =

(Z̄i − ¯Zi−s3)2
n−d − g(i)× c.

• If i < s1 then Z̄i = ⌈Zi⌉d and ¯Zi−s3 = ⌈Zi−s3⌉d, so

aiZ−r3 − ti = aiZ−r3 − (⌈Zi⌉d − ⌈Zi−s3⌉d)2n−d − g(i)× c mod m

= Zi−r3 − (⌈Zi⌉d − ⌈Zi−s3⌉d)2n−d mod m

= (⌈Zi−r3⌉d + ⌈Zi−s3⌉d − ⌈Zi−s3 + Zi−r3⌉d)2n−d

+ ⌊Zi−r3⌋n−d mod m‘

Hence |aiZ−r3 − ti| < 2n−d+1.
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• If i ≥ s1, Z̄i and ⌈Zi⌉d are only equal on the d − (i − s1) upper bits.
Hence |ai(1 + ar3−s3)Z−r3 − ti| < 2n−d+i−s1+1.

Remark 1 As we use few outputs we will not treat the case were i− r3 > 0.
Case 1: If s3 ≥ f1, we construct

T = (Ti)i<f1 ,

which is close to

(1 + ar3−s3)Z−r3 × (1, a, a2, . . . , af1−1) mod m.

We can see T as the outputs of a Truncated Linear Congruential Generator
of seed (1+ar3−s3)Z−r3 and known multiplier a. So we search for the closest
vector to T in the lattice: {X × (1, a, a2, . . . , af1−1) mod m|X ∈ Z}. This
lattice is spanned by the line of the following matrix:

1 a a2 . . . af1−1

0 m 0 . . . 0
0 0 m . . . 0

. . .
0 0 0 . . . m

.


The Closest Vector Problem (CVP) is finding, in a given lattice, the closest
vector to a vector target T. This is usually a hard problem and we could have
used the attack described in [8]. But here the matrix is of small dimension
and we can solve exactly the CVP thanks to a CVP solver/ We use the CVP
solver of the fpylll library [15] for python.
If f1 is large enough the CVP solver returns

(1 + ar3−s3)Z−r3 × (1, a, a2, a3, . . . ) mod m

. We obtain (1 + ar3−s3)Z−r3 but not Z−r3 because (1 + ar3−s3) is not
invertible mod m.

Case 2: If s3 < f1, we set b = a−1 mod m and α3 = (1 + ar3−s3). We construct

T = (ts3 , . . . , tf1−1, t0, . . . , ts3−1)

which is close to

as3Z−r3 × (1, a, a2, . . . , af1−1−s3 , bs3α3 . . . , bα3) mod m.

We search for the closest vector to T in the lattice:

{X × (1, a, a2, . . . , af1−1−s3 , bs3α3 . . . , bα3) mod m|X ∈ Z}

. This lattice is spanned by the line of the following matrix:
1 a . . . af1−1−s3

0 m . . . 0
. . . . . . . . . . . .
0 0 . . . m
0 0 . . . 0
. . . . . . . . . . . .



bs3α3 bs3−1α3 . . . bα3

0 0 0 . . .
. . . . . . . . . . . .
0 0 0 . . .
m 0 0 . . .
. . . . . . . . . . . .

 .
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If f1 is large enough the CVP solver returns

as3Z−r3 × (1, a, a2, . . . , af1−1−s3 , bs3α3 . . . , bα3) mod m

and we compute Z−r3 .

The value f1 is large enough when we have n bits of correct information. If
n/d < s1, then we set f1 = n/d + 1 and the d − 1 upper bits of the n/d + 1
computed approximation of Xi are correct. If n/d ≥ s1 the we set f1 such that
f1 − 1× (d− f1 − s1) ≥ n.

If we set X−r1 , we compute Z−r3 or α3Z−r3 by solving one CVP on a matrix
of size f1 × f1.

5.2 Recovering Y−r2

We consider a parameter f3 that will be the number of outputs we will use to
recover Y−r2 . We will set this parameter as we set f1. If n/d < s3, then we set
f3 = n/d+1 and the d− 1 upper bits of the n/d computed approximation of Zi

are correct. If n/d ≥ s3 the we set f3 such that f3 − 1× (d− f3 − s3) ≥ n.
Firstly we will compute an approximation of the n−d upper bits of the values

{Z0, . . . , Zf3−1}.

– if i < s3, then ⌈Zi⌉d = ⌈ai(1 + ar3−s3)Z−r3 + f(r3, s3, i) × c mod m⌉d and
we can compute this value correctly.

– if i ≥ s3, then ⌈Zi⌉d ≃ ⌈aiZ−r3 + g(i)× c mod m⌉d + ⌈Zi−s3⌉d and only the
d− (i− s3) upper bit are computed correctly.

Remark 2 If we do not know Z−r3 but only (1 + ar3−s3)Z−r3 , it means s3 ≥
f1 ≥ n/d. So f3 = n/d and s3 ≥ f3 and we never need Z−r3 .

Secondly we will compute an approximation of the n − d lower bits of the
values {X0, . . . , Xf3−1}.

– if i < s1, then Xi = (ai(1+ar1−s1)X−r1+f(r1, s1, i)×c mod m)⊕(Zi ≫ d).
– if i ≥ s1, then Xi = (aiX−r1 + g(i)× c+Xi−s1 mod m)⊕ (Zi ≫ d).

With the lower bits of the (Xi) we can compute an approximation of the
n− d lower bits of the values {Z0, . . . , Zf3−1} knowing that Zi = Wi ⊕Xi.

Then we obtain an approximation of the n− d upper bits of {Y0, . . . , Yf3−1}
knowing that Zi = (Zi−r3 +Zi−s3 mod m)⊕ (Yi ≫ d). We call these new values
Ȳi.

Remark 3 When we computed the upper bits of (Zi), we only had the d upper
bits, not the n − d. This lack of information impacts the rest of the calculation
and at the final step, we know there is no information in the n − 2d lower bits
of the (Ȳi).

– if i < s2, then ⌈Yi⌉d = ⌈ai(1+ar2−s2)Y−r2 +f(r2, s2, i)× c mod m⌉d. We set
ti = Ȳi2

d − f(r2, s2, i)× c.
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– if i ≥ s2, then ⌈Yi⌉d = ⌈aiY−r2 + Yi−s2 + g(i) × c mod m⌉d. We set ti =
(Ȳi − ¯Yi−s2)2

d − g(i)× c.

Here the dependences between the different values are harder to make explicit.
For example, in the case where i < min(s1, s2, s3), we can compute the d upper
bits of Zi correctly. Thank to that we can compute the d upper bits of ⌊Xi⌋n−d

correctly.We obtain directly the d upper bits of ⌊Zi⌋n−d with Zi = Wi ⊕ Xi.
The last step is obtaining the d upper bits of Yi ≫ d. At this point there is an
addition so we might loose one bit of precision because of a carry. We obtain
that |ai(1 + ar2−s2)Y−r2 − ti| < 2n−d+1.

Case 1: If s2 ≥ f3, we construct
T = (Ti)i<f3

which is close to (1 + ar2−s2)Y−r2 × (1, a, a2, . . . ) mod m. We search for the
closest vector to T in the lattice:

{X × (1, a, a2, . . . ) mod m|X ∈ Z}

. This lattice is spanned by the lines of the following matrix:
1 a a2 . . .
0 m 0 . . .
0 0 m . . .
. . . . . . . . . . . .

.


The CVP solver returns (1+ ar2−s2)Y−r2 × (1, a, a2, . . . ) mod m. We cannot
compute Y−r2 because (1 + ar2−s2) is not invertible mod m.

Case 2: If s2 < f3, we set b = a−1 mod m and α2 = (1 + ar2−s2). We construct

T = (ts2 , . . . , tf3−1, t0, . . . , ts2−1)

which is close to

as2Y−r2 × (1, a, a2, . . . , af3−1−s2 , bs2α2 . . . , bα2) mod m.

and we search for the closest vector to T in the lattice:

{X × (1, a, a2, . . . , af3−1−s2 , bs2α2 . . . , bα2) mod m|X ∈ Z}

. This lattice is spanned by the lines of the following matrix:
1 a . . . af3−1−s2

0 m . . . 0
. . . . . . . . . . . .
0 0 . . . m
0 0 . . . 0
. . . . . . . . . . . .



bs2α2 bs2−1α2 . . . bα2

0 0 0 . . .
. . . . . . . . . . . .
0 0 0 . . .
m 0 0 . . .
. . . . . . . . . . . .


We CVP solver returns as2Y−r2 × (1, a, a2, . . . , af3−1−s2 , bs2α2 . . . , bα2) mod
m mod m and we can compute Y−r2 .
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Once again, for a set X−r1 we only solve one CVP to compute Y−r2 or α2Y−r2 .

Remark 4 We will not detail here how we recover Z−r3 and/or Y−r2 in the
cases where we only have (1 + ar3−s3)Z−r3 and/or (1 + ar2−s2)Y−r2 because it
does not make appears interesting techniques. It only use modular arithmetic and
does not need other guess or resource-consuming operation.

This attack is fully implemented in sagemath but cannot run on a laptop as
it needs to solve 264 × 2 CVPs.
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