
A preliminary version of this paper appears in the proceedings of the 27th European Symposium on Research in
Computer Security (ESORICS 2022), DOI: 10.1007/978-3-031-17146-8_18. This is the full version.

Continuous Authentication in Secure Messaging

Benjamin Dowling1, Felix Günther2, and Alexandre Poirrier3

1 University of Sheffield, London, UK
b.dowling@sheffield.ac.uk

2 ETH Zürich, Zürich, Switzerland
mail@felixguenther.info

3 École polytechnique & Direction Générale de l’Armement, Paris, France
alexandre.poirrier@polytechnique.org

September 13, 2022

Abstract. Secure messaging schemes such as the Signal protocol rely on out-of-band channels to
verify the authenticity of long-running communication. Such out-of-band checks however are only rarely
actually performed by users in practice.
In this paper, we propose a new method for performing continuous authentication during a secure mes-
saging session, without the need for an out-of-band channel. Leveraging the users’ long-term secrets,
our Authentication Steps extension guarantees authenticity as long as long-term secrets are not com-
promised, strengthening Signal’s post-compromise security. Our mechanism further allows to detect a
potential compromise of long-term secrets after the fact via an out-of-band channel.
Our protocol comes with a novel, formal security definition capturing continuous authentication, a
general construction for Signal-like protocols, and a security proof for the proposed instantiation. We
further provide a prototype implementation which seamlessly integrates on top of the official Signal
Java library, together with bandwidth and storage overhead benchmarks.
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1 Introduction

The Signal end-to-end encrypted messaging protocol [20] is used by billions of people [28], in the Signal app
itself and other messengers such as Facebook Messenger [11] and WhatsApp [26]. The security of encryption
keys used in the Signal protocol relies on two composed cryptographic protocols. First, a Diffie–Hellman-
style key exchange protocol involving long-term asymmetric keys (whose public part is distributed via a
central Signal server) is used to derive a shared secret. This initial shared secret is then used by parties in
Signal’s Double Ratchet protocol [17] to derive symmetric keys, used to encrypt messages between the two
communicating parties.

Signal’s Security. There have been numerous analyses of the security of the Signal protocol, as has been
recapitulated in [22], which show that security properties for messaging protocols come in a variety of flavours
with different adversary powers and strengths.

For these analyses, models separate different types of secrets: session secrets (like ephemeral randomness
or state), which are used throughout the Double Ratchet protocol, and long-term secrets, used only in the
initial key agreement. Some [7,6] study the security of the Signal protocol in its entirety, including the
X3DH key exchange. Others [1,2,18,13,10,15] focus exclusively on the ratcheting part of the protocol, thus
considering only session secrets. Among other security properties, [6] and [1] confirm that against strong
adversaries who control the network and can adaptively compromise session and long-term secrets, Signal
offers forward secrecy (meaning that the secrecy of messages sent before a secret leakage are still secure)
as well as post-compromise security [7] (meaning that after users exchange unmodified messages, security is
restored or “healed”).
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As pointed out by [9], the definition of post-compromise security is quite restrictive in the sense that the
adversary needs to remain completely passive for security to be restored. Indeed, if the adversary remains
active after a state leakage and continuously injects forged messages, authenticity is never restored. [9] instead
proposes a protocol relying on an out-of-band channel (like email, SMS, or an in-person meeting) to detect
such active adversaries, leveraging additional fingerprints computed by the protocol and compared over the
out-of-band channel. However, while detection clearly is a good step towards mitigating attacks, it does not
prevent the actual attack from continuing.

Locking Out Active Adversaries. The question we are interested in for this work goes one step further:

Can we, post-compromise, lock out even an active adversary from a messaging communication?

Clearly, the answer in general is: No. An active network adversary that fully compromises a user’s device,
including all session and long-term secrets can, by design, fully impersonate that user subsequently. Our
angle to approach the above question is to distinguish (and thus better leverage), the difference between the
use of session and long-term secrets in the Signal protocol.

More specifically, what if we can leverage that user long-term secrets are harder to compromise, e.g., due
to stronger randomness sources or better protection in hardware? Indeed, messaging services like WhatsApp
or Signal are now deployed [27] on devices which have access to secure hardware such as Trusted Platform
Modules (TPM) in which long-term secrets can be stored more safely. Phones on the other hand can use
smart-cards to store their long-term keys. A typical attack scenario are border searches, where a travelling
user would need to give away their phone or laptop for analysis, risking the leak of their session secrets. An
adversary could then remain an active Man-in-the-Middle (MitM), possibly on nation-controlled networks,
yet long-term keys in smart cards or a TPM might not have been leaked. Such a breach of authenticity can
have a high impact in the case of Signal as sessions are typically months or years long.

We can then ask:

Can we, post-compromise, lock out even an active adversary from a messaging communication
that compromised session, but not long-term secrets?

Notably, the answer for Signal is still: No. We will show how to, generically, turn this into a Yes.

1.1 Contributions

The main contributions of this paper are

1. a formal, game-based definition of continuous authentication, a post-compromise security property lock-
ing out active adversaries who have not compromised long-term secrets;

2. a demonstration that protocols similar to Signal do not meet the security requirement;
3. a generic extension for messaging protocols to provide them with provably-secure continuous authenti-

cation;
4. a prototype implementation of our extension for Signal and an analysis and benchmark of the overhead

it introduces;
5. exposing a discrepancy between the post-compromise security by Signal’s official library and what is

claimed in the literature.

Continuous Authentication. We begin in Section 2 by capturing what locking out an active adversary
from a messaging communication formally means. The basis for this is a formal syntax, following [1], that
captures generic messaging schemes that operate on an unreliable channel, derive an initial shared session
secret using long-term keys and then derive further session secrets from previous state, new randomness and
possibly long-term keys. This in particular encompasses the Signal Double Ratchet protocol.

We then put forward a game-based security definition for continuous authentication, which guarantees
two core properties, the first one:
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1. An active MitM adversary that compromised a user’s communication state gets locked out of the com-
munication unless it has also compromised the user’s long-term secrets.

2. Users can correctly decide whether long-term secrets have been compromised in an active attack, via an
out-of-band channel.

The first property captures the desired strengthening of messaging protocols. Let us first understand what
prevents Signal’s post-compromise security approach from achieving it. In the Double Ratchet protocol [17],
which we recap in more detail in Section 3, all secrets are derived from prior established secret state (the so-
called root and chain keys) and new randomness generated by the users (the Diffie–Hellman ratchet keys).
The former is revealed in a full state compromise and the latter are unauthenticated and can hence be
impersonated by the adversary. This issue is not specific to Signal: we show in Section 3.1 that this issue
generalizes to messaging protocols which, like Signal, derive further session secrets from current state and
new randomness.

The second property improves on a related issue: If long-term secrets are compromised, then security is
not restored if users only close their current session and reopen a new one, but users will instead need to
generate and distribute new long-term keys. This procedure however is cumbersome and typically involves
manual effort, so ideally one would like to better know when it is indeed necessary. Continuous authentication
offers such a checking mechanism, enabling users to only change their long-term secrets if they have indeed
been leaked.

Introducing: Authentication Steps. In Section 4, we propose a generic extension to messaging protocols
to achieve continuous authentication, which we call the Authentication Steps (sub-)protocol. It uses users’
long-term keys to regularly perform authentication steps between them, locking out active adversaries post-
compromise. In these authentication steps, users compare their hashed and signed ciphertext transcripts,
taking unreliable transmission and message losses into account, to check for active attacks.

More concretely, an authentication step is performed in three steps to make both users learn each other
views of the communication. (Recall that we consider protocols operating on an unreliable channel and some
messages might not be received, so users need to rely on message numbering to determine missed messages.)
In the first step, the initiator of the authentication step (Alice) sends a list of the indices of the messages
she should have but did not receive. Her peer (Bob) deduces from this which ciphertexts they both have
received, hashes and sends back the list of messages he missed along with a signature on the computed hash.
Alice finally deduces the same list, computes the hash and checks the signature, and sends a signature of her
own.

If the signatures verify, each side is ensured that no messages can have been tampered with by an
adversary that did not compromise a long-term secret. Moreover, users can compare the hash computed in
the last authentication step through an out-of-band channel. If the hashes differ, they have proof that an
adversary managed to forge an authentication step and hence must know (one of) their long-term secrets,
thus they must replace them as well.

Security Analysis and Benchmark. We accompany our Authentication Steps extension with a proof
of security in Section 5, showing that it achieves continuous authentication, assuming the employed hash
function is collision resistant and the signature scheme unforgeable. Both assumptions were already required
for the core Signal protocol.

We implemented a prototype of our Authentication Steps protocol which integrates seamlessly on top of
the official Signal Java library. We benchmark the overhead it introduces in terms of bandwidth and storage
in Section 6, using simulations based on a corpus of exchanged SMS messages [5] with different conversation
and channel reliability pattern. At the example of a 95%-reliable channel, our results show a mean increase
of 43 bytes (+ 39%) in ciphertext size and 2.6 KB (+ 411%) in session state size compared to the unmodified
Signal protocol. Overheads increase with longer communication epoch lengths and lower channel reliability.

When analysing the Signal Java library for our implementation, we also observed that a hard-coded
delay in deleting previous (and outdated) state allows a state-compromising adversary to inject messages
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after post-compromise security—as per the cryptographic literature—should have “healed” the connection.
We implemented a proof of concept to illustrate this gap between the (slightly delayed) guarantees of the
official Signal Java library and the (slightly stronger) post-compromise security claimed in the literature. In
our opinion, this issue is not security-critical from a very practical point of view, but we communicated our
findings and a proposed fix to the Signal developers.

We conclude with Section 8.

1.2 Further Related Work

The security of real secure messaging implementations is evaluated in [8], with a focus on (de)synchronization.
Somewhat similar to our setting, their analysis involves an adversary trying to break post-compromise
security by impersonating a compromised user and finding discrepancies between the implementations and
the formal specifications.

Similarly to our approach, [13] proposes a construction for secure messaging by signing message tran-
scripts, focusing though on healing communication under passive attacks while we are interested to detect
and prevent active attacks.

2 Continuous Authentication

This section presents what locking out an active adversary from a messaging communication formally means.
The basis for this is a formal syntax, following [1], that captures generic messaging schemes that operate on an
unreliable channel, derive an initial shared session secret using long-term keys and then derive further session
secrets from previous state, new randomness and possibly long-term keys. This in particular encompasses
the Signal Double Ratchet protocol.

We then put forward a game-based security definition for continuous authentication, which guarantees
two core properties:

1. An active MitM adversary that compromised a user’s communication state gets locked out of the com-
munication unless it has also compromised the user’s long-term secrets.

2. Users can correctly decide whether long-term secrets have been compromised in an active attack, via an
out-of-band channel.

The first property captures the desired strengthening of messaging protocols. In the Double Ratchet
protocol [17], all secrets are derived from prior established secret state (the so-called root and chain keys)
and new randomness generated by the users (the Diffie–Hellman ratchet keys). The former is revealed in a
full state compromise and the latter are unauthenticated and can hence be impersonated by the adversary.
Therefore, an adversary can conserve its Man-in-the-Middle position indefinitely without being detected
in-band.

The second property improves on a related issue: If long-term secrets are compromised, then security is
not restored if users only close their current session and reopen a new one, but users will instead need to
generate and distribute new long-term keys. This procedure however is cumbersome and typically involves
manual effort, so ideally one would like to better know when it is indeed necessary. Continuous authentication
offers such a checking mechanism, enabling users to only change their long-term secrets if they have indeed
been leaked.

2.1 Messaging Schemes

A messaging scheme consists of several algorithms: The core algorithms, following [1], are used to create users
(Register), initiate sessions between them (InitState) and let them send and receive messages (Send and
Recv). Our definition supports an arbitrary number of users, but only two-party sessions (i.e., no group
chats).
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In addition to the four core messaging algorithms, our formalization introduces StartAuth, a procedure
which can be used to initiate an in-band authentication step4 and DetectOOB, a procedure that compares
the states of two session participants out-of-band and decides whether an adversary has used a long-term
secret to avoid in-band detection.

Definition 1 (Messaging scheme). A messaging scheme MS = (Register, InitState, Send, Recv,
StartAuth, DetectOOB) consists of six probabilistic algorithms:

– Register creates a user U outputting long- and medium-term information and secrets: (LTI U , LTSU ,
MTI U , MTSU ) $←− Register().

– InitState takes as input the long- and medium-term secret of a user U , the long-term information of a
user V , and optionally some public information, and creates an initial session state for U to communicate
with V : πU

$←− InitState(LTSU , MTSU , LTI V , PI ).

– Send takes as input the state πU and long-term secrets LTSU of the sender as well as a message m and
outputs a new state, a ciphertext and a message index (π′

U , c, idx) $←− Send(πU , LTSU , m).

– Recv takes as input the state πU and long-term secrets LTSU of the receiver as well as a ciphertext c
and outputs a new state, a plaintext and an index (π′

U , m, idx) $←− Recv(πU , LTSU , c).
Recv may return an error (⊥) instead of the plaintext which signals the ciphertext has not been accepted.
Moreover, it may raise a Close exception which signifies the user closes the connection.

– StartAuth takes as input a state πU and outputs a new state π′
U

$←− StartAuth(πU ).

– DetectOOB takes as input two states πU and πV and outputs a bit d $←− DetectOOB(πU , πV ).

The session state contains an auth flag which is initially set to None. StartAuth is a special procedure
which may set this flag to a non None value in the state of the party to indicate they are performing an
authentication step. An authentication step is passed once the auth flags of both parties are back to None.

In a session between two parties, we define an epoch as a flow of messages, sent by one party without
receiving a reply by their peer. Epochs are numbered: even epochs correspond to messages sent by the
initiator of the conversation and odd epochs to messages sent by the responder. Within an epoch, messages
are again numbered consecutively.

Before defining correctness for messaging schemes, the following definition introduces the notion of match-
ing states. On a high-level, states are considered to be matching if either state would decrypt correctly a
ciphertext sent by their matching partner.

Definition 2 (Matching states). Let MS be a messaging scheme and A, B two users created with (LTI U ,
LTSU , MTI U , MTSU ) $←− Register() for U ∈ {A, B}. Let πA (resp. πB) be a state of A (resp. B) during a
protocol execution.

πA and πB are matching states if, for all message m, ciphertext c and index idx, (π′
A, c, idx) $←− Send(πA,

LTSA, m) implies that B would output (π′
B , m′, idx ′) $←− Recv(πB , LTSB , c) with m′ = m and idx ′ = idx.

This enables us to define correct messaging schemes.

Definition 3 (Correct messaging scheme). Let MS be a messaging scheme. Let also A and B be two
users created with the Register algorithm. MS is correct if it follows the following properties:

1. The index of a message created by Send corresponds to its epoch and number within the epoch.
2. The index idx returned by Recv is efficiently computable from the ciphertext.
3. Recv returns plaintext ⊥ if the ciphertext corresponds to an index which has already been decrypted.
4. If Recv returns plaintext ⊥, then the state remains unchanged.
4 This procedure can leave the state unchanged if the messaging scheme, like the original Signal protocol, does not

support in-band authentication.
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1 procedure createState-A(PI ):
2 assert(¬πA)
3 πA

$←− InitState(LTSA, MTSA, LTI B , PI )

1 procedure corruptLTS-A():
2 compromised ← True
3 return LTSA

1 procedure transmit-A(m):
2 assert(πA)
3 (πA, c, idx) $←− Send(πA, LTSA, m)
4 if c ∈ injB ∪ authinj ∪ passinj :
5 injB ← injB \ {c}
6 authinj ← authinj \ {c}
7 passinj ← passinj \ {c}
8 transB .append(c)
9 return c

1 procedure deliver-B(c):
2 assert(πB)
3 try:
4 (π′

B , m, idx) $←− Recv(πB , LTSB , c)
5 if m ̸= ⊥ ∧ idx > lastrecvB:
6 lastrecvB ← idx
7 if ¬πB .auth ∧ π′

B .auth :
8 authinj ← authinj ∪{c ∈ injB |c.idx ≤ authidx}

9 CheckAuthStepPassed()
10 πB ← π′

B

11 if c /∈ transB ∧m ̸= ⊥ :
12 injB [idx]← c
13 return m

14 except Close:
15 closed ← True

1 procedure corruptState-A():
2 if πA:
3 return πA

4 return MTSA

1 procedure auth-A():
2 assert(lastrecvA > 0∧¬πA.auth∧¬πB .auth)
3 πA

$←− StartAuth(πA)
4 authinj, authidx ← injA, lastrecvA

1 procedure CheckAuthStepPassed():
2 if authinj ̸= ∅ ∧ ¬πA.auth ∧ ¬πB .auth:
3 passinj ← passinj ∪ authinj
4 injA ← injA \ authinj
5 injB ← injB \ authinj
6 authinj ← ∅

Fig. 1: Oracles available to the adversary in the continuous authentication security game (cf. Definition 4).
The MS. prefixes for functions of the messaging scheme are omitted. The CheckAuthStepPassed function
checks if the adversary succeeded in injecting a message which passed an authentication step. Each oracle
has a counterpart whose implementation is similar by swapping A and B in the implementation.

5. If states πA and πB are matching, A uses Send to create (π′
A, c, idx) ← Send(πA, LTSA, m) from

a plaintext m, and B inputs this ciphertext to create (π′
B , m, idx) ← Recv(πB , LTSB , c) (the output

message and index are equal because of the matching property), then π′
A and π′

B are still matching.
6. Given two matching states, if one of them has π.auth ̸= None, then there exists a finite number of calls

to Send and Recv such that both states get back to π.auth = None.

Property 1 ensures numbering corresponds to the notion of epochs. Property 2 makes immediate de-
cryption [1] possible. Moreover, property 3 makes sure messages decrypted correspond to different indexes
and ciphertexts cannot be replayed. Property 4 ensures bad ciphertexts do not break the scheme. Property
5 ensures the soundness property propagates to all messages in the communication. Note that this does
not fully capture immediate decryption. The reader may refer to [1] to get a more precise definition of the
soundness property for the Signal protocol which is compatible with the remainder of the paper. Property 6
rules out schemes where an authentication step can never end.

2.2 Security Game

We now present the formal security game capturing continuous authentication, represented in Definition 4.
The security game creates two users, Alice (A) and Bob (B), and lets the adversary interact with them

using oracles to simulate a communication. As the final objective is to detect long-term secret compromise,
long-term secrets are distributed honestly to parties. In contrast, medium-term secrets are generated by
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1 game Detection-Game(A, MS):
2 (LTI A, LTSA, MTI A, MTSA) $←−

MS.Register()
3 (LTI B , LTSB , MTI B , MTSB) $←−

MS.Register()
4 πA, πB ← None, None
5 win ← False, closed ←

False, compromised ← False
6 transA, transB ← ∅, ∅
7 injA, injB , authinj, passinj ← ∅, ∅, ∅, ∅
8 AoraclesMS (LTI A, LTI B , MTI A, MTI B)
9 detectTrial()

10 return win ∧ ¬closed

1 procedure detectTrial():
2 assert(πA ∧ πB ∧ ¬πA.auth ∧

¬πB .auth)
3 d ← DetectOOB(πA, πB)
4 if d ∧ ¬compromised:
5 win ← True
6 elif ¬d ∧ passinj ̸= ∅:
7 win ← True

Fig. 2: Security game capturing continuous authentication.

parties, but delivered on the communication channel, allowing the adversary to tamper with them. The
adversary is active on the network and can corrupt devices, leaking their current state. The adversary
can also compromise long-term secrets, which sets a flag compromised in the game, maintaining adversary
knowledge within the game. When the adversary terminates, an out-of-band detection step (detectTrial,
see Algorithm 2) is triggered.

The adversary breaks continuous authentication (we say the adversary “wins”) by (1) fooling the out-of-
band detection DetectOOB to think it compromised the long-term keys when it actually did not, or (2)
injecting a message and successfully passing an authentication step (passinj ̸= ∅), without being detected.

Note that our model conservatively grants the adversary more power than may seem reasonable in
practice. In particular, the adversary can choose when in-band and out-of-band detection steps happen (by
calling StartAuth and terminating). In practice, in-band detection steps may follow a predefined schedule,
and out-of-band detection steps are performed at the discretion of users.

Oracles and Security Game. The adversary has access to the following oracles, formalized in Figure 1
and made explicit for user Alice; with corresponding counterpart oracles for Bob:

– createState-A creates the initial state of Alice given some public information of Bob provided by the
adversary.

– transmit-A takes a plaintext as input and simulates Alice sending it.
– deliver-A takes a ciphertext as input and simulates Alice receiving it.
– corruptState-A returns the current state of Alice.
– auth-A makes Alice request authentication.
– corruptLTS-A leaks Alice’s long-term secret to the adversary.

The security game itself and resulting security notions are defined as follows.

Definition 4 (Continuous authentication). Let A be a probabilistic polynomial-time adversary against
a messaging scheme MS. It has access to oracles defined above, abbreviated as oraclesMS. The security game
is given in Figure 2.

The advantage of adversary A against the messaging scheme MS in the detection game is:

Adv(A) = Pr [Detection-Game(A, MS) = 1)] .

The messaging scheme MS is said to provide continuous authentication if for all efficient adversaries A,
Adv(A) is small.
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The game defines internal variables to keep track of the communication and of the adversary’s actions:

– (LTI U , LTSU ) is the long-term information and secret of user U and πU its state.
– win is a flag representing if the adversary has met the winning conditions.
– closed is a flag representing the state of the connection (if it is closed or not).
– compromised records if the adversary has compromised either of the parties’ long-term secrets.
– transU is a set holding ciphertexts created by a legitimate user U .
– injU is a set containing messages injected to user U (which user U accepted) that are yet to be authenti-

cated. authinj is a set used during authentication steps which holds all injected messages currently being
authenticated. passinj is a set containing all injected messages that successfully passed authentication.

Oracle Details. The transmit-A/B oracles are a wrapper around Send, which records ciphertexts created
legitimately by users. Similarly, the deliver-A/B oracles are a wrapper around Recv which add injected
ciphertexts to the inj sets.

When Alice starts an authentication step (which happens when she receives an authentication message or
when auth-A is called), authinj is filled with all messages that were injected to her. Authenticated messages
will be those she has received in the last epoch and before.

Whenever the adversary calls deliver-A/B, a function is called to check if the adversary has successfully
injected a message and passed an authentication step. In that case, it adds the injected messages that were
successfully authenticated in passinj and removes them from authinj and inj sets.

The win flag can only be set to True in the detectTrial function. This happens either if parties output
True in the out-of-band detection step but the long-term secret was not compromised (users produced a false
positive) or if they output False but communication was successfully tampered with and the authentication
step passed (the attacker was successful at avoiding detection).

3 The Signal Protocol

Signal [20,17] is an asynchronous messaging protocol using an unreliable channel which aims to provide end-
to-end encryption with additional security properties such as forward secrecy and post-compromise security.

On a high-level, the protocol consists of three phases:

1. A registration phase happening when users join the platform. Users then generate key material and
upload their public key material.

2. A session establishment happening when one user wants to contact another. This phase uses long-term
key material to establish a shared session secret.

3. The data exchange phase is the remainder of the communication. We emphasize that in this phase
long-term secrets are not used.

Signal involves several cryptographic components:

– an elliptic curve group to perform Diffie–Hellman key exchange operations,
– a key derivation function (KDF) do derive new key material from established secrets,
– a signature scheme for signing uploaded key material, and
– an authenticated encryption (AEAD) scheme for message encryption.

Registration Upon registration, a user U creates a long-term key pair (ikU , ipkU ). It then generates a
pre-key pair (prekU , prepkU ) as well as several ephemeral key pairs ((ekU

i , epkU
i ))i. The public keys are all

uploaded to the Signal server. This matches the Register procedure from Definition 1, with the long-
term keypair corresponding to long-term information and secrets (LTSU , LTI U ) and the other keys to the
medium-term information and secrets (MTSU , MTI U ).
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Session establishment In order for a user Alice (A) to initiate a session with another user Bob (B), Alice
retrieves Bob’s public information from the server. She then uses Signal’s Diffie–Hellman-based initial key
agreement protocol X3DH to establish an initial shared secret, the so-called root key sk0, by combining her
private long-term key and an ephemeral private key with Bob’s public keys. This can be modelled in terms
of Definition 1 as πA ← InitState(LTSA, MTSA, LTI B , MTI B).

Alice will transmit to Bob in the associated data AD of her first message the ephemeral public keys she
has used in X3DH. Thus, upon receiving this initial message, Bob will also be able to derive the exact same
shared secret, which can be modelled as πB ← InitState(LTSB , MTSB , LTI A, AD).

Data exchange Recall that an epoch i is a sequence of messages sent by a user without having received
any reply from their peer. When a user (for instance Alice) wants to send the first message in an epoch, she
first chooses a new ratchet key pair (rkA

i , rpkA
i ). Using her new ratchet key-pair and Bob’s last ratchet key

pair5, she derives a shared secret as the Diffie–Hellman secret DHi = DH(rkA
i , rpkB

i−1). From this she can
derive a new sending chain key: (ski+1, cki,0)← KDF(ski, DHi).

For all messages in the epoch, Alice creates message keys using the KDF with the chain key and a
constant input: (cki,j+1, mki,j) = KDF(cki,j , 1). Those message keys are used to encrypt messages using the
AEAD scheme. The public ratchet key for this epoch is included in the associated data of all messages, so
Bob can derive the same message keys to decrypt messages. Because messages may be lost or reordered,
the message epoch and index are included in the associated data, so Bob can reconstruct the correct key to
decrypt the message.

All those operations can be encapsulated in the Send procedure, with root key, chain keys and message
keys being held in the local state. Keys are deleted from the local state once they are no longer needed.

When Bob receives one message from Alice, knowing the root key ski shared with Alice and receiving
in the associated data her new ratchet key, he can derive the same initial chain key cki,0, and from it the
message keys to decrypt messages. Receiving is modelled through the Recv algorithm.

This shows succinctly that Signal fits the definition of a messaging scheme given in Section 2. We will
see next that it does not achieve continuous authentication.

3.1 Signal Does Not Provide Continuous Authentication

For the original Signal protocol, StartAuth is a procedure that does nothing as no authentication steps
are implemented. We will now show that no choice for implementing the DetectOOB algorithm would
yield a protocol which ensures continuous authentication. Formally, the following adversary against Signal
succeeds in the security game for continuous authentication from Definition 4 with probability 1, no matter
how DetectOOB is defined.

Proposition 1. Let A be the adversary in Algorithm 1. If the messaging scheme MS of Definition 4 is the
Signal protocol, then adversary A wins the game with probability 1.

Proof. The proof is quite straightforward. First the adversary opens a legitimate session between both users
and uses transmit-A and deliver-B to send a message from Alice to Bob. Then, using transmit-B, the adversary
makes Bob create message 0 of epoch 1 for plaintext m1.

However, instead of delivering the created ciphertext, the adversary drops it and forges her own cipher-
text instead. To do so, she corrupts the local state of Alice using corruptState-A and performs the same
computations as what Bob would have done to transmit m′

1 instead of m1. We refer the reader to the Signal
specification [17] to see that Line 12 leads to a correct ciphertext for m′

1. c1 and c′
1 correspond to different

plaintexts thus c1 ̸= c′
1, which means (c′

1, AD1) /∈ transA.
When the adversary calls auth-A, as (c′

1, AD1) has been successfully injected, (c′
1, AD1) ∈ injA ⊂

authinj. Then the adversary transmits one message from Alice to Bob. When Bob receives the message,
5 For the very first epoch of the conversation, Alice uses Bob’s pre-key pair as his last ratchet key-pair.
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1 adversary A(LTI A, LTI B , MTI A, MTI B):
2 m0, m1 ̸= m′

1, m2 ∈R {0, 1}∗

3 createState-A(MTI B)
4 c0

$←− transmit-A(m0)
5 createState-B(c0.AD)
6 deliver-B(c0)
7 c1

$←− transmit-B(m1)
8 (c1, AD1)← c1
9 πA ← corruptState-A()

10 (_, ck )← KDF(πA.sk , DH(AD1.rpkB , πA.rkA))
11 (_, mk )← KDF(ck , 1)
12 c′

1
$←− Enc(mk , m′

1, AD1)
13 deliver-A((c′

1, AD1))
14 auth-A()
15 c2

$←− transmit-A(m2)
16 deliver-B(c2)

Algorithm 1: A description of a successful continuous authentication adversary against the Signal pro-
tocol.

CheckAuthStepPassed is called. As StartAuth does not change the state, both conditions authinj ̸= ∅ and
¬πA.auth ∧ ¬πB .auth are satisfied, and therefore (c′

1, AD1) ∈ passinj.
When detectTrial is called, the adversary wins whatever the implementation of DetectOOB is.

Indeed, if DetectOOB outputs d = 1, as A never compromised a long-term secret, compromised is False
and therefore the adversary wins. If d = 0, as passinj is not empty the adversary also wins the game.

Thus, the adversary wins with probability 1.

The above proof solely uses the fact that the adversary can forge valid messages by only knowing the
session secrets of a party. The attack hence extends to any messaging scheme that, like Signal, only relies on
session secrets and randomness to create new session secrets.

4 Introducing Authentication Steps

This section presents our proposed Authentication Steps protocol that generically extends messaging schemes
to achieve continuous authentication.

Our extension introduces authentication steps that may happen regularly at defined epochs in a session
or could be user-triggered. These authentication steps leverage long-term secrets. In Signal, the long-term
secret of a user consists of their private identity key, a Diffie–Hellman exponent. The Authentication Steps
protocol introduces a new type of long-term secret, which is a signing key sigkU .6

The objectives of an authentication step are twofold:

1. to convince parties that they are communicating with the holder of their peer’s private key, and
2. to detect tampering with messages since the last authentication step.

To that end, each party sends on the in-band channel their own view of the communication since the
last authentication step. These messages are included alongside regular messages exchanged between users;
as we will see, this allows the authentication steps to seamlessly be integrated on top of the existing Signal
protocol.
6 In practice, Signal already re-uses the identity key to sign a user’s medium-term public key using the XEdDSA [16]

signature scheme; we therefore emphasize that an implementation may similarly reuse that identity key as the
signing long-term key for our authentication steps extension. In practice, this means only maintaining a single
long-term secret for both Signal and our Authentication Steps protocol.
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In order to maintain forward secrecy, the additional information is derived from the (public) ciphertexts
sent. To save space, intermediate computations compress those ciphertexts as they are sent or received.
Those intermediate computations and an authentication step are illustrated in Figure 3.

Alice Bob

HA
0,0 ← H

(
cA

0,0
)

HB
0,0 ← H

(
cB

0,0
)

HA
0,1 ← H

(
cA

0,1
)

HA
0,2 ← H

(
cA

0,2
) HB

0,2 ← H
(
cB

0,2
)

SKIPB = {(0, 1)}

HA
1,0 ← H

(
cA

1,0
)

HB
1,0 ← H

(
cB

1,0
)

HA
2,0 ← H

(
cA

2,0
)

HA
1,1 ← H

(
cA

1,1
)

HB
1,1 ← H

(
cB

1,1
)

HB
1,2 ← H

(
cB

1,2
)

HA
2,1 ← H

(
cA

2,1
) HB

2,1 ← H
(
cB

2,1
)

SKIPB = {(0, 1), (2, 0)}

HA
3,0 ← H

(
cA

3,0
)

SKIPA = {(1, 2)} HB
3,0 ← H

(
cB

3,0
)

last message: (3, 0) VfysigpkA (., .)

[Computation A]
VfysigpkB (., .) [Computation B]

VfysigpkA (., .)

c0,0

c0,1

c0,2

c1,0

c2,0

c1,1

c1,2

c2,1

c3,0

c4,0

(3, 0), {(1, 2)},
SIGsigkA ((3, 0), {(1, 2)})

c5,0

{(0, 1), (2, 0)},
SIGsigkB (H (0)

B , {(0, 1), (2, 0)})

c6,0

SIGsigkA (H (0)
A )

Fig. 3: An example execution of an authentication step. The actual authentication step is performed during
epochs 4 to 6, with authenticated messages from epoch 0 (epoch numbers in boldface). Additional data
sent for those messages is included below arrows. For epochs 4 to 6, Hi,j hashes are still computed by both
parties, but they are omitted in this figure as they concern the next authentication step. [Computation U]
for U ∈ {A, B} corresponds to the computation H

(0)
U ← 0||H

(
ε||HU

0,0||HU
0,2||HU

1,0||HU
1,1||HU

2,1||HU
3,0

)
.

4.1 Recording Ciphertexts

In order to perform authentication steps, parties need to store the transcript of ciphertexts sent and received.
The order in which messages are received is not relevant as reordering may be caused by the unreliable
channel.
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Instead of storing ciphertexts as sent, each party computes digests of those ciphertexts using a hash
function and stores those in a dictionary. Concretely, for every sent or received message, each user U computes
and stores HU

i,j = H
(
cU

i,j

)
, where H is a cryptographic hash function and cU

i,j is the ciphertext corresponding
to message j sent or received in epoch i by user U .

4.2 Authentication Steps

The stored (and hashed) ciphertexts are then used in the actual authentication step. An authentication
step is a 3-pass message exchange and therefore requires three epochs to complete. In the following, an
authentication step is described wlog. with Alice sending the first authentication message. Figure 3 illustrates
an authentication step, performed in epochs 4 to 6.

The authentication step information is included in every message of the epoch. That way, the peer receives
the authentication information at least once, as if they do not receive it, the epoch number will not increase. If
authentication information is missing from a message where it should have been included, then the receiving
party should dismiss the message.

In the first epoch, Alice sends the following additional authentication information (encrypted along with
actual plaintext):

– the indexes of messages that she should have received from Bob, but did not, denoted SKIPA,
– the index of the most recent message she has received from Bob, denoted authidx, and
– a signature SIGsigkA(authidx, SKIPA) over both values.

This allows Bob to know which messages Alice wants to authenticate. When Bob receives this message,
he first verifies the signature using Alice’s signing public key. In case of success, Bob computes the following
hash:

H (nB)
B = nB ||H

(
H (nB−1)

B || ||(i,j)∈I(nB )
B

HB
i,j

)
,

where nB is the number of authentication steps Bob has completed and H (nB−1)
B the hash computed in the

previous authentication step (with the convention H (−1)
B = ε the empty string). The concatenation happens

in lexicographic order over I (nB)
B , the set of all messages sent and received by Bob since last authentication

step and until message authidx, and excluding messages with an index contained in SKIPA.
In the second epoch (with Bob sending messages), Bob sends the following information (along with the

regular message plaintexts):
– the indexes of messages that he should have received from Alice, denoted SKIPB , and
– a signature SIGsigkB (H (nB)

B , SKIPB) over the hash computed and the indexes of missed messages.

When Alice receives Bob’s message, she extracts the list SKIPB and computes the following hash:

H (nA)
A = nA||H

(
H (nA−1)

A || ||(i,j)∈I(nA)
A

HA
i,j

)
,

where, like for Bob, nA is her number of completed authentication steps and H (nA−1)
A is the previous hash

(or H (−1)
A = ε). Alice then checks the signature received from Bob, using Bob’s public signing key, on data

(H (nA)
A , SKIPB).
In the third epoch, Alice sends a signature SIGsigkA(H (nA)

A ) over her hashed collection of seen messages.
When Bob receives it, he verifies the signature’s validity on H (nB)

B using Alice’s signing public key.
If at some point a signature verification fails, the verifier closes the connection. Otherwise, Alice and Bob

have passed the authentication step.

Deniable Signing. We emphasize that any unforgeable signature scheme can be used in the authentication
step. In particular, to maintain Signal’s deniability of the initial key agreement (cf. [25]), signatures can be
generated using designated-verifier or 2-user ring signatures [14,19], similarly to their deployment in recent
proposals for Signal-like deniable key exchanges [23,24,12,3].
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4.3 Detecting Compromised Long-term Secrets

In this setting, we assume that Alice and Bob have passed at least one authentication step. At each authen-
tication step, parties derive a hash H (nA)

A or H (nB)
B . Authentication steps succeed if the signatures over those

hashes match.
On a high-level, users execute the following protocol: Using the out-of-band channel, parties compare the

last hash they have computed (which they store in their state until the next authentication step) as well as
the number of authentication steps performed. If the hash values and authentication steps counters match,
the users output False, indicating that they do not detect long-term key compromise, otherwise they output
True.

If no adversary tampers with the communication, then exchanged hashes would match. Conversely, hashes
not matching means that an adversary is present. Moreover, as at least one authentication step has been
successful, the adversary must have been able to forge a signature to avoid in-band detection, which indicates
they know at least one long-term secret. We will formally prove these two properties of the Authentication
Steps protocol in Section 5.

4.4 Handling Out-of-Order Messages

Recall that we consider messaging schemes operating on an unreliable channel. Therefore, messages may be
dropped or arrive out-of-order.

The above construction does not yet deal with late messages. A late message is a skipped message such
that an authentication step passed between the moment it was sent and the moment it is received. We now
discuss two potential solutions for dealing with such messages.

The first solution, which is easier, is to simply discard keys for late messages when an authentication step
happens. In that case, such messages will never be decrypted even if they do arrive later on. This diminishes
the immediate decryption property of the original protocol, as it is less resilient to delayed messages, thus
less palatable to real-world implementation.

The second solution makes the protocol more complex. Alice and Bob need to maintain another dictionary,
composed of messages that were skipped in a previous authentication step, but arrived since then. They would
hash the corresponding ciphertexts and add them in the final hash computation. Both Alice and Bob would
send this dictionary to the other party, next to SKIP messages. The implementation we provide in Section 6
matches this behaviour.

4.5 Protocol Soundness

The described Authentication Steps protocol is correct, i.e., it matches Definition 3, as shown by the following
proposition.

Proposition 2 (Protocol soundness). If no adversary tampers with the communication, i.e., modifies or
injects a ciphertext, then parties pass authentication steps.

The idea of the proof is to show that in the absence of an adversary, users always receive authentication
information when performing authentication steps. This leads them to compute the same sets I (nA)

A = I (nB)
B

and therefore they agree on the hash computations. The full proof can be found in Appendix A.

5 Security of the Authentication Steps Protocol

We now formally establish the continuous authentication security (as per Definition 4) of our Authentication
Steps protocol extension given in Section 4.
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Theorem 1. Assuming a collision resistant hash function H and an existentially unforgeable signature
scheme S, the Authentication Steps protocol presented in Section 4 provides continuous authentication as
per Definition 4.

Formally, the advantage of any adversary A in the detection game against the Authentication Steps
protocol is bounded as follows:

Adv(A) ≤ Advcoll
B1

(H) + 2 · AdvEUF-CMA
B2

(S),

for reduction adversaries B1 and B2 given in the proof.

The proof is separated into two cases:

1. users decide one of their long-term secrets is compromised when that is not the case; and
2. the adversary manages to inject a message and remain undetected.

We defer the detailed proof to Appendix B, and only give a proof sketch here.
In Case 1, the adversary never corrupts the long-term secret, yet the parties decide that their long-term

secret is compromised. Thus, the hashes that Alice and Bob exchanged at the end of the game must be
different, but both Alice and Bob verified signatures hashes in the last authentication step. It follows then
that either Alice or Bob received a signature that was not produced by their peer, and that the adversary
must have successfully forged a message under one of their (non-compromised) signing key. This would
violate EUF-CMA security of the signature scheme, leading to the 2 · AdvEUF-CMA

B2
(S) term in the theorem

bound.
In Case 2, the adversary must have injected a message between Alice and Bob, but when Alice and Bob

exchanged their hashes at the end of the game, the hash outputs matched. It follows that between Alice’s
or Bob’s computations there must be a hash collision, leading to the Advcoll

B1
(H) term in the theorem bound.

6 Implementation and Benchmarks

We implemented a prototype of our Authentication Steps protocol which integrates seamlessly on top of the
official Signal Java library. Our full implementation can be found on GitHub7, along with build instructions
and our benchmarking tests.

Space and Computation Overhead. Authentication steps require additional data to be computed and
stored, such as the ciphertexts hashes between authentication steps.

The storage and bandwidth overhead is a function of the channel reliability and the average number
of messages per authentication step, the latter being the more influential parameter. Indeed, the sender
cannot know in advance which messages the peer has received, thus there is no alternative but storing every
ciphertext hash individually.

As for computational overhead, computing the ciphertext hashes involves one hash invocation; addition-
ally, at most one signature and one verification operation is performed per epoch. The signature scheme
employed by Signal is XEdDSA [16]. Signing and verifying data typically requires the same amount of
computation as the Diffie-Hellman key computation happening in asymmetric ratchet steps. Thus, the com-
putational overhead is at most the same magnitude as the original computations in Signal.

Benchmarking the space overhead In order to give an estimate on the space overhead induced by
authentication steps, we performed simulations of communications to compare the ciphertext sizes as well
as the states sizes. The message inputs for our simulations are taken from an SMS dataset [5] composed of
English text messages published by Singaporean students [4]. This dataset only provides message samples but
not entire conversations with relations between messages. Conversation communications have been simulated
7 https://github.com/apoirrier/libsignal-java-authsteps
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Fig. 4: Overhead introduced by the authentication steps depending on the channel reliability and average
epoch length. For this experiment, 10,000 messages were exchanged.

by randomly choosing the number of messages in each epoch following a Poisson distribution. The reliability
of the channel and the average number of messages per epoch are a parameter of the experiment and their
impact is studied in the following.

For the benchmarking, we used SHA-512 as the hash function (as in the original Signal implementation)
and led authentication steps happen regularly every 7 epochs. For every experiment 10,000 messages are
sent, deriving randomness from a random, but then fixed seed.8

Figure 4 studies the impact of the channel reliability and the length of epochs on the size of the state and
ciphertexts. As stated above, while the average epoch length does not impact the session size in the original
protocol, it does increase linearly for the authentication steps, as every ciphertext hash needs to be stored.
However, this does not impact the ciphertext sizes (we hence omit a graph for those here).

The less reliable the channel, the more state the parties need to store in order to keep immediate decryp-
tion. This explains the monotony of both curves in the channel reliability graph. Moreover, while the channel
reliability does not impact the ciphertext sizes in the original protocol, having a more unreliable channel
makes the ciphertexts bigger in the authentication steps messages. Indeed, indexes of skipped messages need
to be sent to the other party during authentication steps, which makes ciphertexts bigger on average.

6.1 Compressing the Storage Overhead

As we have seen in Section 6, storing the transcript hashes to be authenticated comes with a notable storage
overhead. One may consider various ways for optimizing that storage.

Complete compression into a single hash value (e.g., through iterative hashing) may seem like an imme-
diate optimization. However, as messages may arrive out-of-order, such compression is unreliable and would
fail entirely when, e.g., the first message in an epoch does not arrive.

An alternative would be to use trees (for instance Merkle trees) to store hashes, and compress them if
consecutive sequences of messages are received. This optimization would be interesting to implement and
benchmark, at the same time it would make the underlying analysis and notions more complex. Furthermore,
8 To verify the seed is not biased, 95% confidence intervals have been computed to assess the mean ciphertexts and

sessions sizes. They are not displayed in the figure as they are too small (around 20 bytes for session sizes and
5 bytes for ciphertext sizes). Those confidence intervals assume that each seed leads to independent experiments,
where the ciphertexts and sessions sizes means are distributed according to a normal law of unknowns mean and
deviation.
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this optimization can only be performed on the receiver’s side, as the sender has no way to know which
sent messages will eventually be received. Thus, the compression can only happen on at most half of the
conversation, and the space optimization is bound by a factor 2.

7 Observations on the Official Implementation

While implementing the proposed protocol, we found that the state deletion strategy in Signal’s official Java
implementation [21] is different from the strategy described in the formal analyses in the literature, such as
[1] or [6], even if the latter claim to be based on the implementation. The official Signal specification [17]
itself is unclear, and the strategy used in the implementation is implied but not made explicit.

In [1] or [6], post-compromise security kicks in after two epochs, which means that after two epochs of
untampered communication after a state compromise, security is restored. This happens by the deletion of
no longer necessary state once an epoch ends. However, the Signal implementation deletes this state only 5
epochs later, which is a hardcoded value9.

Based on this, we observe that the following attack is possible which demonstrates that the official Signal
implementation achieves only slightly weaker post-compromise security than claimed in the literature. In
the middle of a communication between Alice and Bob, an adversary leaks the state of Alice. Assume that
during this epoch i, Alice sent ni messages to Bob. The adversary can, by using the leaked state, create a
valid ciphertext for message (i, ni + 1) (and even more messages).

Given the literature definition of post-compromise security, as the adversary remained passive security
should be restored at epoch i + 3. However, with the Signal implementation, as Bob’s state for epoch i is
not yet deleted at epoch i + 3, the adversary can successfully inject messages (for epoch i) to Bob.

Note however that security is restored 5 epochs after compromise, therefore the implementation still
guarantees a weaker post-compromise security property.

An Explanation of this Weaker Property, and Fixing it. The Signal implementation disregards the
total number of messages sent in the previous epoch, which is included alongside messages, and instead keeps
the chain key without computing in advance message keys for missed messages. This saves computation time
and space as the keys are not computed if those messages never arrive while the immediate decryption
property is still valid as the chain key is kept and message keys can be derived if needed.

To fix this, when a new receiving epoch begins, the value of the total number of messages can be used to
derive all message keys for this epoch and then delete the chain key from the state. This recovers the strong
post-compromise security as claimed in the literature.

8 Conclusion

Messaging protocols such as Signal that only use their long-term secrets for session initiation allow for
state-compromising adversaries to permanently take over a connection as a Man-in-the-Middle. This paper
offers a strengthened security notion, continuous authentication, which locks out an active adversary post-
compromise who has not compromised long-term keys, and enables detection of long-term secret compromises
using an out-of-band channel. Our Authentication Steps protocol extension generically enables this security
in a provably-secure way, adding regular authentication steps in the protocol that leverages long-term keys
to authenticate users and ensure no tampering has occurred. Moreover, an out-of-band protocol can be used
on top of that to detect adversaries having used long-term secrets to avoid in-band detection.

We analysed the overhead introduced by authentication steps, benchmarking our prototype implementa-
tion which seamlessly integrates on top of the official Signal library. While implementing those benchmarks,
we remarked that the official implementation has a weaker post-compromise security property than claimed
in the literature.
9 Cf. line 210 in https://github.com/signalapp/libsignal-protocol-java/blob/fde96d22004f32a391554e4991e4e1f0a14c2d50/

java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L210.
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While this paper focuses mainly on the Signal protocol, the concept of continuous authentication as well
as the Authentication Steps protocol is generic. We envision that it can be adapted to other messaging
protocols or protocols with long-lived connections, like TLS 1.3 resumption sessions, to provide stronger
authenticity guarantees.

The Authentication Steps protocol strongly authenticates the entire transcript, even if the underlying
channel is unreliable. Another interesting direction for future work is a conceivable reduced-overhead variant
that only authenticates the key material (e.g., the ratchet keys in Signal) in every epoch. Such variant would
still strengthen post-compromise security, yet in a weaker sense as it would not necessarily allow to detect
the injection of messages at the end of compromised epochs, a property the Authentication Steps protocol
provides.
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A Soundness of the Authentication Steps Protocol

This section shows the correctness of the Authentication Steps protocol presented in Section 4, i.e., the
protocol matches Definition 3. It proves Proposition 2.

Properties 1 to 4 of the correctness definition are easy to prove and come directly from the properties of
the underlying protocol.

To prove the remaining properties, we first demonstrate that parties always receive authentication in-
formation if they continue to communicate. Then we prove that they agree on the same set of messages to
authenticate (I (nA)

A = I (nB)
B with the notations of Section 4). We finally conclude by showing the hashes

computed are the same and each signature verification succeeds.

Lemma 1. If no adversary tampers with the communication, then parties either stay in the same epoch or
receive the authentication information from their peer.

Proof. The authentication information is sent along all messages in an epoch. However, to advance to the next
epoch, a party needs to receive at least one message from their peer’s epoch, which includes the authentication
information. As ciphertexts are not modified or injected in this context, the information received has been
honestly generated by their communicating partner.

Lemma 2. If no adversary tampers with the communication, then computed sets I (nA)
A and I (nB)

B by each
party are equal: i.e., I (nA)

A = I (nB)
B .

Proof. We begin the proof by proving by induction that for every authentication step, Alice and Bob agree
on the lower and upper bounds on the chosen set of messages, which we denote the period of messages.

For the first authentication step, Alice and Bob must agree on the lower bound as it is message (0, 0).
Then the initiator (for instance Alice) chooses the last message she wants to authenticate (one of Bob’s
messages, since the authentication step starts at the beginning of an epoch) and sends this index to Bob.
Bob receives this index correctly thanks to Lemma 1. So for the first authentication step, Alice and Bob
agree on the period of messages to authenticate.

18

https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://signal.org/docs/
https://github.com/signalapp/libsignal-protocol-java
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://www.whatsapp.com/security/
https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/
https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/
https://www.whatsapp.com/security/advisories


Let’s assume Alice and Bob agreed on the period of messages to authenticate for the last authentication
step. Let’s call (i, j) the index of the last message authenticated. As authentication steps last for three
epochs, epoch i is finished for both users. They thus know which message follows (i, j) (either (i, j + 1) or
(i + 1, 0)), and they agree on this message as the first one to authenticate.

Once again, the initiator chooses the last message to authenticate and transmits this choice to the peer,
so both agree on the upper bound.

By induction, for every authentication step, Alice and Bob agree on the same period of messages to
authenticate.

Then for a given authentication step, I (nU )
U is the set of message indexes that U has sent or received in

this period, except for messages that their peer did not receive (whose indices are sent in SKIPV ).
In both cases, I (nA)

A and I (nB)
B are the union of the set of messages received by Alice and the set of

messages received by Bob. This proves that I (nA)
A = I (nB)

B .

With those lemmas, we can now prove the soundness of the Authentication Steps protocol.

Proof (Proof of Proposition 2). By definition, authentication steps pass if the connection does not close.
Given the implementation, Close exceptions occur only when a signature verification fails.

As no adversary actively injects or modifies messages, the first signature verification performed by Bob
always succeeds as the signed data is sent alongside the signature. Similarly, if no active adversary is present,
then ciphertexts received will be the same as ciphertexts sent: ∀(i, j) ∈ R, cA

i,j = cB
i,j where R is the set of

indices of received messages.
The hash function is deterministic, therefore:

∀(i, j) ∈ R, HA
i,j = H

(
cA

i,j

)
= H

(
cB

i,j

)
= HB

i,j .

Let’s assume that at the beginning of an authentication step, nA = nB and H (nA)
A = H (nB)

A . Recall the
next I (nU +1)

U for user U is computed as: I (nU +1)
U ← (nU +1)|| H

(
I (nU )
U || ||(i,j)∈I(nU +1)

U

HU
i,j

)
. Following Lemma

2, Alice and Bob agree on sets I (nA+1)
A = I (nB+1)

B = I ⊂ R. Moreover, ciphertexts are ordered correctly as
the identification information is included in the ciphertext and was stored accordingly. We have seen above
that for all (i, j) ∈ I, HA

i,j = HB
i,j . Therefore, after the authentication step, we still have I (nA+1)

A = I (nA+1)
A .

As at the beginning of the communication, nA = nB = 0 and I (−1)
A = I (−1)

B = ε, by induction we conclude
that for every authentication step, I (nA)

A = I (nB)
B .

In the second epoch, Bob signs (I (nB)
B , SKIPB) and transmits SKIPB . Because we have shown I (nA)

A =
I (nB)
B , Alice succeeds in verifying the signature on the data (I (nA)

A , SKIPB) she computes. In the third
epoch, considering I (nA)

A = I (nB)
B , Bob also succeeds in verifying the signature. As all signature verifications

succeed, Alice and Bob pass the authentication step.

B Security of the Authentication Steps Protocol

This section proves Theorem 1, which states that the Authentication Steps protocol is secure given the
assumption that the underlying cryptographic primitives are secure, namely the hash function and the
signature scheme. We denote Advcoll

A (H) the advantage of an adversary trying to find a collision for a hash
function H and AdvEUF-CMA

A (S) the advantage of an adversary in the EUF-CMA (Existential UnForgeability
in the Chosen Message Attack setting) game against a signature scheme S.

False Positives and False Negatives. Before proving security of the Authentication Steps protocol from
Section 4, we introduce several useful definitions.

Recall that from the specification, no authentication steps can overlap. Therefore, users will reject mes-
sages that start a new authentication step if they are currently performing one. We can thus number au-
thentication steps from a user U ’s point of view from 1 to nU .
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For the actual theorem proof, we split the winning condition into two events, which we denote the false
positive case and the false negative case, and use results from Propositions 3 and 4 to give an upper bound
on their probability.

Definition 5. Given an adversary A playing the security game of Definition 4, we define the following
events:

– W is the event that the A wins the game,
– FP is the event that at the end of the game, ¬closed ∧ ¬compromise ∧ d is true,
– FN is the event that at the end of the game, ¬closed ∧ passinj ̸= ∅ ∧ ¬d is true.

FP and FN respectively stand for false positive and false negative.

Proof (Proof of Theorem 1). LetA be an adversary in the game of Definition 4. Because of the implementation
of the detectTrial function and because the win flag is only set in this function, it is immediate that
W = FP ⊔ FN which are the events defined in Definition 5.

Therefore:
Adv(A) = Pr [W] = Pr [FP] + Pr [FN] .

Moreover, Proposition 4 states that Pr [FP] ≤ 2 ·AdvEUF-CMA
B2

(S) and Proposition 3 states that Pr [FN] ≤
Advcoll

B1
(H), which proves the inequality.

B.1 Upper Bound for False Negatives

This section gives an upper bound on the probability Pr [FN] that an adversary produces a false negative in
the game. We first introduce Lemma 3 which is used to prove Proposition 4.

Lemma 3. Let A be an adversary playing the security game of Definition 4 against the Authentication Steps
protocol from Section 4.

If passinj ̸= ∅ at the end of the game, it means that there exists some user U ∈ {A, B}, an authentication
step j for U and a message index i ∈ I (j)

U such that cA
i ̸= cB

i (where one of the ciphertext could be ⊥ if the
corresponding user has sent no ciphertext for index i).

Proof. In the following we consider an execution of the game which leads to passinj ̸= ∅ at the end of the
game.

Let i be the index of a ciphertext in passinj. passinj is filled only in the CheckAuthStepPassed function
(see Figure 1) if authinj is not empty.

authinj is filled only at two places: at Line 4 of the auth-A/B oracle, or at Line 8 of deliver-A/B (see Figure
1). For both cases, this happens when a user U enters an authentication step (wlog. we choose authentication
step j), and message i comes from injU .

Message i has already been received because it is in injU when added to authinj, i.e., when the authen-
tication step begins, so it is not a skipped message. Moreover, i ≤ auth.authidx given the implementation of
StartAuth.

πU .lastauth contains the index of the last message authenticated. As authinj is cleared at the end of
every authentication step, having the ciphertext corresponding to index i in authinj means that it has
not been authenticated in a previous authentication step. Moreover, messages coming before the previous
authentication step are not decrypted, which means that necessarily i > πU .lastauth.

This proves that for this authentication step j, i ∈ [πU .lastauth, authinfo.authidx] and not in U ’s skipped
dictionary, which means i ∈ I (j)

U .
Because i ∈ injU , it means U received and accepted ciphertext cU

i (when it was added to injU ). If V is
the peer of U , then cV

i (if it exists) cannot be equal to cU
i because otherwise it would have been generated

honestly by V and therefore removed from injected sets in lines 5 to 7 of transmit-A/B in Figure 1, or never
added to injU because in transU (see Line 8 of transmit-A and Line 11 of deliver-B in Figure 1). Therefore,
cA

i ̸= cB
i .
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The following proposition gives an upper bound on the probability that the adversary produces a false
negative.

Note that in the construction given in Section 4, hashes are used to save space for ciphertexts. However,
if no hashes were used and transcripts of actual ciphertexts were stored instead, false negatives could never
happen.

Proposition 3 (False negatives). Let A be an adversary in the detection game of Definition 4 playing
against the Authentication Steps protocol presented in Section 4.

Then Pr [FN] ≤ Advcoll
B1

(H), for a reduction adversary B1 constructed in the proof.

Proof. Let A be an adversary producing event FN. Recall from Definition 5 that FN = ¬closed ∧ passinj ̸=
∅ ∧ ¬d.

In particular, passinj is not empty at the end of the game. According to Lemma 3, this implies the
existence of an authentication step j0 for user V ∈ {A, B} and some index i such that i ∈ I (j0)

V and cA
i ̸= cB

i .
However, d is False. Given the computation of d in the DetectOOB procedure this means that

πA.H (nA)
A = πB .H (nB)

B .
Recall that for any user U , H (nU )

U = nU ||H (nU −1)
U . In particular nA = nB and Alice and Bob have seen

the same number of authentication steps.
Hashes H (j)

U are computed as follows: H (j)
U ← H

(
H (j−1)

U || ||
k∈sorted(I(j)

U
)πU .HU

k

)
for any j ≥ 0 and with

H (−1)
U = ε.

For any j ≥ 0, if H (j)
A = H (j)

B , then there are only two possibilities:

1. either H (j−1)
A || ||

k∈sorted(I(j)
A

)πA.HA
k ̸= H (j−1)

B || ||
k∈sorted(I(j)

B
)πB .HB

k ;
2. either they are equal.

For the first case, because H (j)
A = H (j)

B but the two inputs to the hash function are different, we have a
hash collision.

The second case would induce a propagation property and yield H (j−1)
A = H (j−1)

B .
As the equality H (j)

A = H (j)
B is true for the last authentication step, by induction we can deduce that

either there is a hash collision or for all authentication step j:

||
k∈sorted(I(j)

A
)πA.HA

k = ||
k∈sorted(I(j)

B
)πB .HB

k .

This is true in particular for j = j0. Recall that elements of πU .HU are hashes of ciphertexts computed
on sending and receiving.

As the hash function produces outputs of the same length, it means that there are exactly the same
number of hashes in each concatenation. Moreover, i ∈ I

(j0)
V so one hash corresponds to the ciphertext with

index i. Let’s denote HV = H(cV
i ) and HW = H(cW ) the corresponding hashes (where HW is at the same

position in the concatenation that HV but for the other user).
Because the concatenations are equal, HV = HW . However, cW ̸= cV

i . Indeed, if we had cW = cV
i , then

both would correspond to the same index i, but cW is the version of ciphertext i sent by W and cV
i is the

version received by V . However, by definition of i, we necessarily have cA
i ̸= cB

i and therefore the equality is
impossible. As HV = HW but cW ̸= cV

i , we have a hash collision.
Therefore, any case leading the adversary to a false negative shows that the adversary could produce an

explicit hash collision, and therefore the reduction B1 from the detection game to the hash collision game is
immediate.

This shows that Pr [FN] ≤ Advcoll
B1

(H).
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B.2 Upper Bound for False Positives

This section gives an upper bound on the probability Pr [FP] that the adversary produces a false positive in
the game.

Proposition 4 (False positives). Let A be an adversary in the detection game of Definition 4 playing
against the Authentication Steps protocol of Section 4.

Then Pr [FP] ≤ 2 · AdvEUF−CMA
B2

(S), for a reduction adversary B2 constructed in the proof.

Proof. Let A be an adversary producing event FP. Having ¬compromise means that A never calls the
corruptLTS-A/B oracles. Moreover, ¬closed means the communication never closes, which means that signa-
ture verifications always succeed. We will build an adversary B2 for the EUF-CMA game against signature
scheme S as a wrapper around A, which acts as a challenger in the detection game for A.
B2 creates two users Alice and Bob, but will embed a public key provided by the EUF-CMA challenger

into one party’s signing key-pair and use the signing oracle to generate signatures.
As user U1 is entirely generated by B2, the adversary can simulate the oracles concerning U1, and therefore

they are similar to the oracles defined in Figure 1.
B2 keeps track of signature forgeries. Every time B2 signs a message using the oracle provided by his

challenger, B2 stores it. Moreover, every time a signature on the signing public key pk given by the EUF-
CMA game is verified, B2 checks if the signature was produced by the signing oracle. If that is not the case,
but the verification is successful, B2 stops and outputs the corresponding pair m∗, σ∗.

To simulate user U0 whose private key is unknown, B2 can also use the original oracles, except for
transmit−U0 which is the only oracle using U0’s private signing key in the Send procedure. Recall that the
corruptLTS-A/B oracles are not called by adversary A and therefore B2 does not need to simulate those
oracles when the event FP happens. In order to create the signature, B2 can query their own challenger with
message πU0 .auth to get the signature using U0’s private key. Therefore, B2 is correctly defined and can act
as a challenger for A.

Let’s now prove that if A triggers the event FP, then B2 wins the EUF-CMA game with probability at
least 1

2 .
During his last authentication step n, U1 verified successfully a signature σ on πU1 .auth by using U0’s

public signing key sigpkU0 . πU1 .auth contains in particular nU = n and H = H1 computed by U1. Because
U0 and U1 can number their authentication steps, they will produce at most one signature on an auth set
having nU = n. At the end of the game, parties output d = True. From the implementation of DetectOOB,
this means that πA.H (nA)

A ̸= πB .H (nB)
B . Given the definition of πU .H (nU )

U this means that during the last
authentication step of each party:

πA.nA||πA.auth.H ̸= πB .nB ||πB .auth.H .

There are two disjoint possibilities:
1. either πA.nA = πB .nB but πA.auth.H ̸= πB .auth.H ;
2. either πA.nA ̸= πB .nB ;

In Case 1, πA.nA = πB .nB = n and πA.auth.H ̸= πB .auth.H . Yet U1’s verification of σ succeeded on the
data πU1 .auth which contains nU = n and H = H1. However, as stated above U0 can produce and sign at
most one set auth with nU = n, and this set has H = πU0 .auth.H ̸= πU1 .auth.H = H1. Therefore, πU1 .auth
was not submitted to the signing oracle, and yet σ verifies over πU1 .auth, so B2 can output this forgery.

In Case 2, πA.nA ̸= πB .nB . Recall that U0 and U1 are chosen uniformly at random at the beginning
of the game. Because the signing key-pair and signatures are sampled and created in the same way in the
detection game and in the reduction when using the signing oracle, A cannot distinguish which key-pair is
used in the signing game. Therefore, with probability 1

2 , πU0 .nU0 < πU1 .nU1 .
In that case, U0 cannot have signed a set πU0 .auth with nU0 = πU1 .nU1 as it has not yet reached the

correct number of authentication steps. This once again yields a valid signature forgery.
Therefore, with probability at least 1

2 , if A triggers FP then B2 wins the EUF-CMA game. This leads to
the upper bound Pr [FP] ≤ 2 · AdvEUF-CMA

B2
(S).
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