
Privacy-Preserving Authenticated Key Exchange
in the Standard Model?

You Lyu1,2 , Shengli Liu1,2,4(�) , Shuai Han2,3 , and Dawu Gu1

1 Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
4 Westone Cryptologic Research Center, Beijing 100070, China

{vergil,slliu,dalen17,dwgu}@sjtu.edu.cn

Abstract. Privacy-Preserving Authenticated Key Exchange (PPAKE)
provides protection both for the session keys and the identity information
of the involved parties. In this paper, we introduce the concept of robust-
ness into PPAKE. Robustness enables each user to confirm whether itself
is the target recipient of the first round message in the protocol. With
the help of robustness, a PPAKE protocol can successfully avoid the
heavy redundant communications and computations caused by the am-
biguity of communicants in the existing PPAKE, especially in broadcast
channels.
We propose a generic construction of robust PPAKE from key encapsu-

lation mechanism (KEM), digital signature (SIG), message authentication
code (MAC), pseudo-random generator (PRG) and symmetric encryp-
tion (SE). By instantiating KEM,MAC,PRG from the DDH assumption
and SIG from the CDH assumption, we obtain a specific robust PPAKE
scheme in the standard model, which enjoys forward security for ses-
sion keys, explicit authentication and forward privacy for user identities.
Thanks to the robustness of our PPAKE, the number of broadcast mes-
sages per run and the computational complexity per user are constant,
and in particular, independent of the number of users in the system.

Keywords: Authenticated key exchange · Privacy · Robustness.

1 Introduction

Authenticated Key Exchange (AKE) enables two parties to authenticate each
other and compute a shared session key. It has been widely deployed over Inter-
net, like IPsec IKE (Internet Key Exchange), TLS, Tor, Google’s QUIC proto-
col, etc. Generally, AKE focuses on the protection of session keys between two
parties against adversaries implementing both passive and active attacks. As
?© IACR 2022. A preliminary version of this paper appears in ASIACRYPT 2022. This
is the full version.

https://orcid.org/0000-0002-8148-3643
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0002-0504-9538

2

a well-studied topic, a variety of AKE schemes have been proposed, but little
attention was paid to privacy of user identities in AKE. The research on Privacy-
Preserving AKE (PPAKE) was ignited by the chasing of privacy protection. For
instance, SKEME [15], TLS 1.3 [3], Tor [9] and private airdrop [13] all take
user privacy as one of important design principles. Recently two proposals for
PPAKE arise [20,19], aiming to provide protection for user identity besides their
session keys. Next we overview the recent two works, namely SSL-PPAKE [20]
and RSW-PPAKE [19].

SSL-PPAKE. In [20], Schäge, Schwenk, and Lauer (SSL) isolated a generic
PPAKE construction from TLS 1.3, QUIC, IPsec IKE, SSH and certain patterns
of NOISE to achieve user identity protection. We name it SSL-PPAKE.

SSL-PPAKE [20] has 4 rounds. In the first two rounds, Pi and Pj run a basic
Diffie-Hellman (DH) handshake to obtain a shared DH key K = gxy. In the
last two rounds, Pi and Pj use the shared DH key K = gxy to protect protocol
messages that contain identity-related data such as identities, public keys or
digital signatures. As pointed out in [20], due to the lack of authenticity in the
first two rounds, the SSL-PPAKE suffers a weakness on preserving the privacy
of initiator’s identity. More precisely, let us consider a broadcast channel with µ
users as an example. First we identify three facts about SSL-PPAKE.

Fact 1. In the 1st round, to protect the identity of its intended target recipient
Pj , initiator Pi has to broadcast gx in the system. As a result, every user is
able to receive gx.

Fact 2. In the 2nd round, every user Pjk has to respond to Pi by broadcasting
gyjk , here jk ∈ [µ] \ {i}, since Pjk is uncertain about the intended recipient.

Fact 3. In the 3rd round, Pi receives all the messages {gyjk }jk∈[µ]\{i}, but it is
not able to identify the right message sent from the intended party Pj and
has to computes all DH keys {Ki,jk = gxyjk }jk∈[µ]\{i}. Consequently, Pi has
to encrypt the message in the third round with each Ki,jk individually to
obtain µ − 1 ciphertext Cjk = SE.Enc(Ki,jk , i|pki|authi) and broadcast the
µ− 1 ciphertexts to all users. Here SE.Enc denotes a symmetric encryption
algorithm, and authi denotes the authentication part of the protocol.

Now let us see how an adversary reveals the identity of the initiator. After
receiving gx from Pi, the adversary can simply select ỹ and send gỹ to Pi.
According to the facts, Pi will broadcast C̃ = SE.Enc(K̃ = gxỹ, i|pki|authi) in
the 3rd round. Then the adversary can compute K̃ = (gx)ỹ and easily decrypt
C̃ with K̃ to obtain the identity information i|pki.

RSW-PPAKE. To deal with the active attacks on the SSL-PPAKE scheme,
Ramacher, Slamanig and Weninger (RSW) [19] proposed three solutions in the
Random Oracle model.5 The first one has 3 rounds and assumes pre-shared
key between every pair of users. It resorts to the pre-shared key to accomplish
authentication. The third one converts an AKE to a PPAKE by encrypting every
5 No security proofs are provided for the three schemes in [19] and its full-version is
still not available.

3

message of AKE with communication peer’s public key. However, it does not
achieve forward privacy for user identities. If any user’s secret key is corrupted,
the adversary can break forward privacy by decrypting the ciphertexts in the
previous runs to reveal the used identities. The second solution has 4 rounds
and does not possess forward privacy when the responder is corrupted. Here we
recall the second scheme and show the weakness on its forward privacy.

– In the first two rounds, similar to SSL-PPAKE, a Diffie-Hellman handshake
is implemented to share key K = gxy between Pi and Pj . Meanwhile, Pi has
to handshake with every Pjk and share Ki,jk = gxyjk with Pjk , jk ∈ [µ]\{i}.

– In the 3rd round, Pi uses Pj ’s public key pkj to encrypt a random string r and
obtains C = PKE.Enc(pkj , r), where PKE.Enc denotes a public-key encryp-
tion algorithm. Then it uses K to encrypt C to obtain a c0 = SE.Enc(K,C).
Pi signs i|j|c0|gx|gy to get the signature σi and encrypts its certificate
certi and σi with a derived key K ′ = H(K, r, gx, gy), resulting in c1 =
SE.Enc(K ′, certi|σi). In the real scenario, Pi cannot identify the right K from
{Ki,jk}jk∈[µ]\{i}, thus has to use each Ki,jk to obtain (c0,jk , c1,jk). Finally,
Pi broadcasts {(c0,jk , c1,jk)}jk∈[µ]\{i} to all users.

– In the 4th round, each user jk decrypts every pair in {(c0,jk , c1,jk)}jk∈[µ]\{i}
with its Diffie-Hellman key Ki,jk = gxyjk , trying to recover certi|σi. Only
the right responder Pj can certify the validity of certi|σi and recover r.
After that, Pj knows its partner is Pi. Then Pj broadcasts the hash value
h := H(r, i|j|gx|gy|c0|c1) to Pi.

– Finally, Pi checks if h = H(r, i|j|gx|gy|c0|c1) holds (to authenticate Pj).

The attack is similar to that on SSL-PPAKE but here on forward privacy of
RSW-PPAKE. After receiving gx from Pi, the adversary A can simply select ỹ
and send gỹ to Pi. ThenA also shares a key K̃ = gxỹ with Pi. In the second phase,
there must exist (c̃0, c̃1) ∈ {(c0,jk , c1,jk)}jk∈[µ]\{i} such that (c̃0, c̃1) is computed
with K̃. SoA can always recover C = SE.Dec(K̃, c̃0). LaterA corrupts Pj and ob-
tains skj . ThenA decrypts C with skj to recover r = PKE.Dec(skj , C). FinallyA
can identify Pi, Pj by finding i, j, c0,j , c1,j such that h = H(r, i|j|gx|gy|c0,j |c1,j).

Our Approach to PPAKE. From the above analysis, we know that the SSL-
PPAKE provides no protection for the initiator’s identity, and the RSW-PPAKE
loses forward privacy for identities of both the initiator and the responder when
the responder is corrupted.

The reason for the attacks lies in the facts that each user replies the initiator
and the initiator cannot identify the message sent from the intended peer in the
2nd round. Thus the initiator has to reply messages to each individual user in
the third round. This leaks too much information, of which the adversary can
take advantage to break privacy of PPAKE, as shown before.

At the same time, these facts also lead to another drawback: the communi-
cation band of the protocol is as large as O(µ) and each user’s computational
complexity is as high as O(µ), since each user has to compute or deal with µ− 1
messages in the 3rd round. Here µ is the number of users in the system.

4

g! , 𝐶 g", 𝜎# 𝑐𝑃!

𝑃"!
𝑃""	 	

𝑃"#

𝑃"!

𝑃"#

𝑃"		𝑃! 𝑃!

𝑃"!

𝑃"#

𝑃"		

g!𝑃!

𝑃"!
𝑃""	 	

𝑃"#

g"!	

𝑃"!

𝑃"#

𝑃"		𝑃!

g"!" 	

g"!# 	

⋮

⋮⋮

⋮

⋮

⋮

⋮

⋮

𝐶%$ %$∈[(]𝑃!

𝑃"!
𝑃""	 	

𝑃"#

⋮
𝐶

𝑃"!

𝑃"#

𝑃"		
⋮

⋮
𝑃!

(1) (2) (3) (4)

(1) (2) (3)

SSL/RSW-PPAKE

Our-PPAKE

Fig. 1: The upper part is the information flows of rounds (1)(2)(3)(4) in SSL-
PPAKE and RSW-PPAKE [20,19]. The lower part is the information flows of
rounds (1)(2)(3) in our robust PPAKE. Here the parties communicate over a
broadcast channel.

In this paper, we study how to avoid the above attacking problems and
improve efficiency of PPAKE. Our idea in a nutshell is to make PPAKE robust.

Robustness of PPAKE. We introduce the concept of robustness. It requires that
only one party Pj is able to ascertain that the message in the 1st round is for
him/her, hence correctly reply a message in the 2nd round.

Our robust PPAKE makes use of a key encapsulation mechanism KEM, a sig-
nature scheme SIG, a message authentication code MAC, a pseudo-random gen-
erator PRG and a symmetric encryption SE. The public/secret key pair (pk, sk)
of KEM and the verification/signing key (vk, ssk) of SIG serve as the long-term
key of a user. Our PPAKE has 3 rounds and is shown below.

Round 1 (Pi ⇒ Pj): Pi broadcasts gx and a ciphertext C to Pj , where (C,N)←
KEM.Encap(pkj) with N the key encapsulated in C.

Round 2 (Pi ⇐ Pj): Pj decrypts C with its secret key skj to recover N , then
it uses N as the MAC key to compute a MAC tag σ1 = MAC(N, gx|C). Pj
broadcasts (gy, σ1). We require that when decrypting C, only Pj succeeds
and all other parties will get a special failure symbol ⊥, which is guaranteed
by the robustness of KEM (see more details later). Consequently, only Pj
responds in this round, and all other parties (except Pi and Pj) will terminate
the protocol in time.

Round 3 (Pi ⇒ Pj): Pi checks the validity of σ1 and computes the Diffie-
Hellman key K = gxy. Furthermore, it derives a session key k and a sym-
metric key k′ from K via (k, k′)← PRG(K). It signs the message gx|C|σ1|gy
to get the signature σ2. Then it uses k′ to encrypt its identity i and σ2 to
obtain c← SE.Enc(k′, i|σ2). Pi broadcasts c.

5

Similarly, Pj can obtain (k, k′) from K and decrypt c to get i|σ2. By
checking the validity of σ2 with Pi’s verification key vki, Pj ascertains its
partner’s identity i and accepts k as the session key.

We refer to Fig. 7 in Section 4 for the details of our PPAKE construction. Below
is a high-level analysis of our PPAKE.

– Robustness. For the robustness of PPAKE, we require that the underlying
KEM is robust in such a sense: if C is generated with pkj , then decrypting
C with any other secret key skjk will result in a decryption failure.

– Explicit mutual authentication. The authenticity of Pj is guaranteed by KEM
and MAC, and the authenticity of Pi is guaranteed by SIG. Hence our PPAKE
has explicit mutual authentication.

– Forward security for session keys. After excluding active attacks by authen-
ticity,K = gxy is pseudo-random by the DDH assumption. Hence, the session
key k, as output of PRG, is pseudo-random as well. Thanks to the ephemeral
randomness of x and y, session keys have forward security.

– Privacy for user identities. The privacy for user identities relies on KEM and
SE. We require that C does not leak information about pkj computationally,
and this is formalized by IK-CCA security. As a function output of C, σ1
does not leak any information either. Meanwhile, gx and gy are randomly
chosen and independent of i and j. Moreover, ciphertext c protects i and
Pi’s signature σ2. Therefore, identity information i, j is well-protected.

– Forward privacy for user identities. The forward privacy holds if the initia-
tor Pi is corrupted by A, since the knowledge of the signing key sski does
not help A to learn user’s identity in previous runs of PPAKE (recall that
the user privacy is guaranteed by KEM and SE). On the other hand, if the
responder Pj is corrupted by A, because of the robustness, the knowledge
of skj can help A to identify j as long as decrypting C in the previous runs
of PPAKE does not result in decryption failure. This suggests that the dis-
closure of responder’s identity j is unavoidable due to the robustness of our
PPAKE in the case of responder corruption. However, the initiator’s iden-
tity i is still well-protected. Therefore, our PPAKE achieves semi-forward
privacy when the responder Pj is corrupted and full forward privacy when
the initiator Pi is corrupted.

– Constant communication and computational complexity. Thanks to the ro-
bustness of our PPAKE, the number of broadcast messages per run and the
computational complexity per user are constant in our PPAKE, while those
in the SSL-PPAKE and RSW-PPAKE schemes are linear to the number µ
of users.

Our contribution. We summarize our contribution in this paper. We intro-
duce the concept of robustness into PPAKE, and present a formalized security
model for robust PPAKE. In the security model, we consider adversary’s passive
attacks, active attacks, corruptions of users’ long-term keys, and revealing of
session keys. Based on the security model, we define user authenticity, forward
security for session keys, and forward privacy for user identities.

6

We propose a generic construction of 3-round robust PPAKE from KEM, SIG,
MAC, PRG and SE. By instantiating KEM, MAC, PRG from the DDH assumption
and SIG from the CDH assumption (together with a one-time pad SE), we obtain
a specific PPAKE scheme in the standard model.

– Our PPAKE scheme enjoys explicit mutual authentication, forward security
for session keys and forward privacy for user identities, and resists those
attacks on SSL-PPAKE and RSW-PPAKE.

– Our PPAKE scheme is efficient in the sense that both the communication
complexity of the protocol and the computational complexity per user is
independent of the number of users, thanks to its robustness.

The comparison of our scheme with other PPAKE schemes is shown in Table 1.

Table 1: Comparison among the PPAKE schemes, where µ refers to the number
of users.Comm denotes the communication complexity of the protocols in terms
of the number of group elements. Comp denotes the computational complexity
per user, where O(µ) means that Comp is linear to µ and O(1) means that
Comp is independent of µ. “#” denotes the number of rounds in the protocol.
Forward Security is for session keys, where “weak” prevents adversary from
modifying the messages sent by the two parties. Privacy denotes the privacy
of user identity in case of no user corruption. Forward Privacy denotes the
forward privacy of user identity. CrpI denotes forward privacy when initiator is
corrupted. CrpR denotes forward privacy when responder is corrupted. I (R)
checks whether the privacy of initiator’s (responder’s) identity is preserved.Mu-
tual Auth denotes whether the PPAKE scheme achieves mutual authentication.
Std denotes whether the security of PPAKE is proved in the standard model.

PPAKE
schemes Comm Comp # Forward

Security
Privacy Forward Privacy

Mutual
Auth StdCrpI CrpR

I R I R I R
IY[14] 6 O(1) 2 weak X × X × X × × X

SKEME[15] 16 O(1) 3 X X X × × × × X ×
SSL[20] 5µ O(µ) 4 X × X × X × X X X
RSW[19] 7µ− 5 O(µ) 4 X X X X X × × X ×
Ours 12 O(1) 3 X X X X X X × X X

On Modeling (Forward) Privacy in PPAKE. Our PPAKE works not only
for broadcast channel, but also for any public channel, as long as the identifiers
like IP or MAC addresses leak no identity information (as considered in [20] and
[19]). In these channels, after receiving a message from an initiator, every user
may give a response when not aware whether itself is the target recipient.

Some of previous works [21,16,1,2] consider the settings of pre-shared sym-
metric long-term keys (or passwords) among each pair of users. In this setting, it

7

is easy to achieve authentication, but the assumption is too strong. Most recent
work [14] considered a special client-server setting, where client has no long-term
key. In this case, the client can be perfectly anonymous but authentication for
client is lost.

Our security model, like the security models of SSL-PPAKE [20] and RSW-
PPAKE [19], considers that many parties communicate over a public channel.
However, We consider a more comprehensive scenario than [20] [19].

Recall that [20] [19] consider the scenario in which the sender and respon-
der in PPAKE are agent servers, and behind each server sits many users. The
adversary implements passive and active attacks over the channel between the
sender (agent server) and receiver (agent server) but has no access to the chan-
nel between the agent server and the end users. The privacy for user identity
in [20] [19] essentially said that the adversary cannot tell which user the agent
server is delegating during the communications. In our paper, we are consider-
ing intact end-to-end user communications rather than limited communications
between agent servers. For the sake of privacy protection, messages must not
contain user identity explicitly, hence have to be broadcasted to all end users.
Each end user may respond the message even if she/he is not the target recipi-
ent. Consequently, the initiator may have to deal with a pile of messages from
different recipients. Covering end-to-end user communications must consider ad-
versary accessing the channel connecting the end users. Hence, our security model
allows adversary’s eavesdropping, message insertion/modification/deletion over
the broadcast channel which connects end-users. Moreover, as pointed out in
[20], their security model only guarantees the privacy of user identities in ac-
cepted sessions. Our model also protects user privacy for incomplete sessions
and failed sessions.

We stress that our model protects the forward privacy of user identities as
much as possible while achieving robustness. To achieve robustness, the first
message must be tied to the responder’s long term secret key. Once the respon-
der is corrupted, the adversary can identify whether the responder has received
messages (but may still do not know the identity of the initiator). Hence, the
forward privacy for responder when itself is corrupted is mutually exclusive with
the robustness of PPAKE. Consequently, the best forward privacy for robust
PPAKE to achieve is semi-forward privacy when the responder is corrupted and
full forward privacy when the initiator is corrupted. As shown in Table 1, our
PPAKE scheme achieves the best forward privacy as a robust PPAKE, and pro-
vides 3 out of 4 kinds of forward privacy, which is the most compared with other
PPAKE schemes.

2 Preliminary

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned
to x, we write x := y. For µ ∈ N, define [µ] := {1, 2, . . . , µ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. Let |X | denote
the number of elements in X . All our algorithms are probabilistic unless states

8

otherwise. We use y ← A(x) to define the random variable y obtained by exe-
cuting algorithm A on input x. We use y ∈ A(x) to indicate that y lies in the
support of A(x). We also use y ← A(x; r) to make explicit the random coins r
used in the probabilistic computation. If X and Y have identical distribution,
we simply denote it by X ≡ Y .

2.1 Key Encapsulation Mechanism

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KEM.Setup,KEM.Gen,Encap,Decap) consists of four algorithms:

– KEM.Setup : The setup algorithm outputs public parameters ppKEM, which
determines an encapsulation key space K, a public key space PK, a secret
key space SK, and a ciphertext space CT .

– KEM.Gen : Taking ppKEM as input, the key generation algorithm outputs a
pair of public key and secret key (pk, sk) ∈ PK × SK.

– Encap(pk) : Taking pk as input, the encapsulation algorithm outputs a pair
of ciphertext C ∈ CT and encapsulated key K ∈ K.

– Decap(sk, C) : Taking as input sk and C, the deterministic decapsulation
algorithm outputs K ∈ K ∪ {⊥}.

The correctness of KEM requires that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈
KEM.Gen(ppKEM), and (C,K) ∈ Encap(pk), it holds that Decap(sk, C) = K.

We recall the IND-CPA and IND-CCA security of KEM.

Definition 2 (IND-CPA/IND-CCA Security for KEM). For a key encap-
sulation mechanism KEM, the advantage functions of an adversary A are defined
by AdvCPAKEM(A) :=

∣∣∣Pr
[
ExpCPA-0

KEM,A ⇒ 1
]
− Pr

[
ExpCPA-1

KEM,A ⇒ 1
]∣∣∣ and AdvCCAKEM(A) :=∣∣∣Pr

[
ExpCCA-0

KEM,A ⇒ 1
]
− Pr

[
ExpCCA-1

KEM,A ⇒ 1
]∣∣∣, where the experiments ExpCPA-b

KEM,A, ExpCCA-b
KEM,A

for b ∈ {0, 1} are defined in Figure 2. The IND-CPA/IND-CCA security for KEM
requires AdvCPAKEM(A)/AdvCCAKEM(A) = negl(λ) for all PPT A.

ExpCPA-b
KEM,A, ExpCCA-b

KEM,A :

ppKEM ← KEM.Setup; (pk, sk)← KEM.Gen(ppKEM)
(C∗,K∗0)← Encap(pk); K∗1 ← K

b′ ← A ODec(·)
(pk, C∗,K∗b)

Return b′

ODec(C):

If C = C∗: Return ⊥
K ← Decap(sk, C)

Return K

Fig. 2: The IND-CPA security experiment ExpCPA-b
KEM,A and the IND-CCA security

experiment ExpCCA-b
KEM,A of KEM, where in the latter the adversary can query the

decapsulation oracle ODec(·).

9

ExpIK-CCA-b
KEM,A :

ppKEM ← KEM.Setup
(pk0, sk0)← KEM.Gen(ppKEM)
(pk1, sk1)← KEM.Gen(ppKEM)
(C∗,K∗)← Encap(pkb)

b∗ ← AOsk0
(·),Osk1

(·)(pk0, pk1, C
∗,K∗)

Return b∗

Osk0(C):
If C = C∗: Return ⊥
K ← Decap(sk0, C)
Return K

Osk1(C):
If C = C∗: Return ⊥
K ← Decap(sk1, C)
Return K

Fig. 3: The IK-CCA security experiment ExpIK-CCA-b
KEM,A .

We recall the security notion indistinguishability of keys under chosen-ciphertext
attack (IK-CCA Security) formalized by Bellare et al. in [5].

Definition 3 (IK-CCA Security for KEM). For a key encapsulation mecha-
nism KEM, the advantage function of an adversary A is defined with AdvIK-CCA

KEM (A) :=∣∣∣Pr
[
ExpIK-CCA-0

KEM,A ⇒ 1
]
− Pr

[
ExpIK-CCA-1

KEM,A ⇒ 1
]∣∣∣, where the experiment ExpIK-CCA-b

KEM,A

for b ∈ {0, 1} is defined in Figure 3. The IK-CCA security for KEM requires that
AdvIK-CCA

KEM (A) = negl(λ) for all PPT A.

Next we introduce the robustness and encapsulated key uniformity of KEM.

Definition 4 (Robustness of KEM). A key encapsulation mechanism KEM
has robustness if for all ppKEM ∈ KEM.Setup(1λ), it holds that

Pr

[
(pk1, sk1)← KEM.Gen(ppKEM);

(pk2, sk2)← KEM.Gen(ppKEM);C1 ← Encap(pk1)
: Decap(sk2, C1) 6= ⊥

]
= negl(λ).

Definition 5 (Encapsulated Key Uniformity of KEM). A key encap-
sulation mechanism KEM has encapsulated key uniformity if for all ppKEM ∈
KEM.Setup(1λ), it holds that
– ∀r ∈ R, it holds that

{K|r′ ←$ R′, (pk, sk)← KEM.Gen(ppKEM; r′), (C,K)← Encap(pk; r)} ≡ {K|K ←$ K},

– ∀(pk, sk) ∈ KEM.Gen(ppKEM), it holds that

{K|r ←$ R, (C,K)← Encap(pk; r)} ≡ {K|K ←$ K},

where R,R′ are the randomness spaces involved in Encap and Gen respectively.

Definition 6 (γ-PK-Diversity of KEM). A key encapsulation mechanism
KEM has γ-pk-diversity if for all ppKEM ∈ Setup(1λ), it holds that

Pr

[
r ←$ R; (pk, sk) ←$ KEM.Gen(ppKEM; r);
r′ ←$ R; (pk′, sk′)←$ KEM.Gen(ppKEM; r′)

: pk = pk′
]

= 2−γ ,

where R is the randomness space involved in KEM.Gen algorithm.

10

ExpsEUF-CMA
SIG :

ppSIG ← SIG.Setup(1λ); (vk, ssk)← SIG.Gen(ppSIG)
List := ∅ //Record messages from signing queries
(m∗, σ∗)← AOSign(·)(ppSIG, vk)
If ((m∗, σ∗) /∈ List) ∧ (Ver(vk,m∗, σ∗) = 1): Return 1
Else: Return 0

OSign(m):
σ ← Sign(ssk,m)
List := List ∪ {(m,σ)}
Return σ

Fig. 4: The sEUF-CMA security experiment ExpsEUF-CMA
SIG for SIG.

2.2 Digital Signature

Definition 7 (SIG). A signature scheme SIG = (SIG.Setup,SIG.Gen,Sign,Ver)
is defined by the following four algorithms.

– SIG.Setup : The setup algorithms outputs a public parameter ppSIG, which
defines a message space M, a signature space Σ, a verification key space
VK and a signing key space SK.

– SIG.Gen(ppSIG) : The key generation algorithm takes as input ppSIG and out-
puts a pair of verification key and signing key (vk, ssk) ∈ VK × SK.

– Sign(ssk,m) : Taking as input a signing key ssk and a message m ∈M, the
signing algorithm outputs a signature σ ∈ Σ.

– Ver(vk,m, σ) : Taking as input a verification key vk, a message m and a
signature σ, the deterministic verification algorithm outputs a bit indicating
whether σ is a valid signature for m w.r.t. vk.

The correctness of SIG requires that for all ppSIG ∈ SIG.Setup and (vk, ssk) ∈
SIG.Gen(ppSIG), it holds that Ver(vk,m, Sign(ssk,m)) = 1.

Below we present the security notion of strongly existential unforgeability
(sEUF-CMA) for SIG.

Definition 8 (sEUF-CMA security for SIG). For a signature scheme SIG,
the advantage function of an adversary A is defined by AdvsEUF-CMA

SIG (A) :=

Pr
[
ExpsEUF-CMA

SIG ⇒ 1
]
, where ExpsEUF-CMA

SIG is defined in Figure 4. The sEUF-

CMA security for SIG requires that AdvsEUF-CMA
SIG (A) = negl(λ) for all PPT A.

2.3 Message Authentication Code

Definition 9 (MAC). A message authentication code (MAC) scheme MAC =
(MAC.Tag,MAC.Ver) is associated with a key sapce K, a message space M and
a tag space Σ. It is defined by the following two algorithms.

– MAC.Tag(k,m) : Taking as input a key k ∈ K and a message m ∈ M, the
tagging algorithm outputs a tag σ ∈ Σ.

11

– MAC.Ver(k,m, σ) : Taking as input a key k ∈ K, a message m and a tag σ,
the deterministic verification algorithm outputs a bit indicating whether σ is
a valid tag for m w.r.t. key k.

The correctness of MAC requires that for all k ∈ K and all m ∈M, it holds that
MAC.Ver(k,m,MAC.Tag(k,m)) = 1.

Below we recall the security notion of strongly existential unforgeability
(sEUF-CMA) for MAC.

Definition 10 (sEUF-CMA security for MAC). For a message authenti-
cation code scheme MAC, the advantage function of an adversary A is defined by
AdvsEUF-CMA

MAC (A) := Pr
[
ExpsEUF-CMA

MAC ⇒ 1
]
, where ExpsEUF-CMA

MAC is defined in Fig-

ure 5. The sEUF-CMA security of MAC requires that AdvsEUF-CMA
MAC (A) = negl(λ)

for all PPT A.

ExpsEUF-CMA
MAC :

k ←$ K
List := ∅ //Record messages from tagging queries
(m∗, σ∗)← AOTag(·),OVrfy(·,·)

If ((m∗, σ∗) /∈ List) ∧ (MAC.Ver(k,m∗, σ∗) = 1): Return 1
Else: Return 0

OTag(m):
σ ← MAC.Tag(k,m)
List := List ∪ {m,σ}
Return σ

OVrfy(m,σ) :

Return MAC.Ver(k,m, σ)

Fig. 5: The sEUF-CMA security experiment ExpsEUF-CMA
MAC for MAC.

2.4 Pseudo-Random Generator

Definition 11 (PRG). Pseudo-Random Generator (PRG) is a polynomially
computable deterministic function PRG : K → K′, where K is seed space and K′
is output space. We require that |K| < |K′|.

Definition 12 (Pseudo-randomness of PRG). For a pseudo-random gen-
erator PRG : K → K′, the advantage function of an adversary A is defined by
AdvpsPRG(A) := |Pr [x ←$ K, y ← PRG(x) : A(y)⇒ 1]− Pr [y ←$ K′ : A(y)⇒ 1]|.
The pseudo-randomness of PRG requires AdvpsPRG(A) = negl(λ) for all PPT A.

From the pseudo-randomness of PRG, we have the following corollary.

Corollary 1. For PRG : K → K1 × K2 and an adversary A, we have that
Pr
[
y′ ← A;x ←$ K; (y1, y2)← PRG(x) : y2 = y′

]
≤ AdvpsPRG(A) + 1

|K2| .

12

2.5 Symmetric Encryption

Definition 13 (SE). A symmetric encryption (SE) scheme SE = (SEnc,SDec)
is associated with a key space K, a plaintext space M and a ciphertext space C.
It is defined by the following two algorithms.

– SEnc(k,m) : Taking as input a symmetric key k ∈ K and a plaintext m ∈M,
the encryption algorithm outputs a ciphertext c ∈ C.

– SDec(k, c) : Taking as input a symmetric key k ∈ K and a ciphertext c ∈ C,
the decryption algorithm outputs a plaintext m ∈M.

The correctness of SE requires that for all k ∈ K and all m ∈ M, it holds that
SDec(k, SEnc(k,m)) = m.

Below we define Ciphertext Diversity and Semantic Security for SE.

Definition 14 (Ciphertext Diversity of SE). A symmetric encryption SE
has ciphertext diversity if for all k ∈ K and all ciphertexts c1 6= c2 ∈ C, it holds
that SDec(k, c1) 6= SDec(k, c2).

Definition 15 (Semantic Security for SE). A symmetric encryption scheme
SE is semantically secure if for all m0,m1 ∈ M and all PPT A, the advan-
tage function of A satisfies AdvSemSE (A) := |Pr [A(c0)⇒ 1]− Pr [A(c1)⇒ 1]| ≤
negl(λ), where k ←$ K, c0 ← SEnc(k,m0) and c1 ← SEnc(k,m1).

3 Privacy-Preserving Authenticated Key Exchange

3.1 Definition of Privacy-Preserving Authenticated Key Exchange

Definition 16 (PPAKE). A privacy-preserving authenticated key exchange
(PPAKE) scheme PPAKE = (PPAKE.Setup,PPAKE.Gen,PPAKE.Protocol) con-
sists of two probabilistic algorithms and an interactive protocol.

– PPAKE.Setup(1λ): The setup algorithm takes as input the security parameter
1λ, and outputs the public parameter ppPPAKE.

– PPAKE.Gen(ppPPAKE, i): The generation algorithm takes as input ppPPAKE

and a party identity i, and outputs a key pair (pki, ski).
– PPAKE.Protocol(Pi(resi)
 Pj(resj)): The protocol involves two parties Pi
and Pj, who have access to their own resources, resi := (ski, ppPPAKE, {pku}u∈[µ])
and resj := (skj , ppPPAKE, {pku}u∈[µ]), respectively. Here µ is the total num-
ber of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject},
and a session key ki (ki might be empty string ∅), and Pj outputs (Ψj , kj)
similarly.

13

Correctness of PPAKE. For all ppPPAKE ∈ PPAKE.Setup(1λ), for any distinct
and honest parties Pi and Pj with (pki, ski) ← PPAKE.Gen(ppPPAKE, i) and
(pkj , skj)← PPAKE.Gen(ppPPAKE, j), after the execution of PPAKE.Protocol(Pi(resi)

 Pj(resj)), it holds that Ψi = Ψj = accept and ki = kj 6= ∅.

Definition 17 (Robustness of PPAKE). A PPAKE scheme is robust if for
any party Pi who initializes the protocol, then with overwhelming probability,
only Pi’s intended peer Pj is able to determine the validity of the first message
sent by Pi when following the protocol specifications.

Remark 1. The correctness and robustness of PPAKE implies the following: in
the scenario of honest setting (i.e., all users are honest in the system), if Pi
broadcasts the first message and its intended peer is Pj , then only Pj is able to
ascertain that the message is for him/her and hence responds to this message.

3.2 Security Model and Security Definitions for PPAKE

We will adapt the security model formalized by [12,4,17], which in turn followed
the model proposed by Bellare and Rogaway [6]. We also include replay attacks
[18]. In addition, we extend the security model so that the (forward) privacy for
user identity is taken into account.

Our security notions for PPAKE include user authenticity, forward secu-
rity for session key, and forward-privacy for user identity. These are charac-
terized by three security experiments named ExpAUTH

PPAKE,µ,`,A, ExpIND
PPAKE,µ,`,A and

ExpPrivacy
PPAKE,µ,`,A. In those experiments, we will formalize oracles for adversary A.

The passive and active attacks by adversary A is formalize by its querying to
oracles and obtaining answers from oracles. Note that the adversary can copy,
delay, erase, replay, and interpolate the messages transmitted over the public
channels, obtains some session keys from the PPAKE protocol instances, corrupt
some users by obtaining their long-term secret keys, etc.

3.2.1 Oracles
Firstly, we define oracles and their static variables to formalize the behaviour

of users and the attacks by the adversary. Suppose there are at most µ users
P1, P2, . . . , Pµ, and each user will involve at most ` instances. Pi is formalized
by a series of oracles, π1

i , π
2
i ,...,π`i .

Oracle πsi . Oracle πsi will take a message as input and output a new message,
simulating user Pi’s execution of s-th PPAKE protocol instance. Each oracle
πsi has access to Pi’s resource resi := (ski, ppPPAKE,PKList := {pku}u∈[µ]).
πsi also has its own variables varsi := (stsi ,Pidsi , k

s
i , Ψ

s
i).

– stsi : State information that has to be stored for πsi ’s next round in the
execution of the protocol.

– Pidsi : The intended communication peer’s identity.
– ksi ∈ K : The session key computed by πsi . Here K is the session key

space. We assume that ∅ ∈ K.

14

– Ψsi ∈ {∅,accept, reject} : Ψsi indicates whether πsi has completed the
protocol execution and accepted ksi .

At the beginning, (stsi ,Pidsi , k
s
i , Ψ

s
i) are initialized to (∅, ∅, ∅, ∅). We declare

that ksi 6= ∅ if and only if Ψsi = accept.

Next, we formalize the oracles that dealing with A’s queries as follows.

Oracle Send(i, s, j,MsgList). For the query (i, s, j,MsgList), it means that A in-
vokes πsi with MsgList, making πsi to play the role of initiator with j being
the intended communication peer. Oracle πsi will deal with each message in
MsgList to generate new messages MsgList′ according to the protocol spec-
ification and update its own variables varsi = (stsi ,Pidsi , k

s
i , Ψ

s
i). The output

messages MsgList′ is returned to A. If MsgList = ∅, A asks oracle πsi to send
the first round message to j (via broadcast channel).
If Send(i, s, j,MsgList) is the τ -th query asked by A and πsi changes Ψsi to
accept after that, then we say that πsi is τ -accepted.

Oracle Respond(OList,MsgList). For the query (OList,MsgList), it means that
A chooses an oracle set OList = {πtj} to respond messages in MsgList. For
∀πtj ∈ OList, πtj executes the PPAKE protocol with messages in MsgList as a
potential recipient, and its variables vartj = (sttj ,Pidtj , k

t
j , Ψ

t
j) are updated ac-

cordingly. Those responding messages generated by OList constitute message
set MsgList′. The output message set MsgList′ is returned to A.

Oracle Corrupt(i). Upon A’s query i, the oracle reveals to A the long-term se-
cret key ski of party Pi. After this corruption, π1

i , . . . , π
`
i will stop answering

any query fromA. If Corrupt(i) is the τ -th query asked byA, we say that Pi is
τ -corrupted. If A has never asked Corrupt(i), we say that Pi is∞-corrupted.

Oracle RegisterCorrupt(i, pk). A’s query (i, pk) suggests that A registers a new
party Pi(i > µ). The oracle distributes (i, pki := pk) to all users. In this
case, we say that Pi is 0-corrupted.

Oracle SessionKeyReveal(i, s). The query (i, s) means that A asks the oracle to
reveal πsi ’s session key. If Ψsi 6= accept, the oracle returns ⊥. Otherwise,
the oracle returns the session key ksi of πsi . If SessionKeyReveal(i, s) is the
τ -th query asked by A, we say that πsi is τ -revealed. If A has never asked
SessionKeyReveal(i, s), we say that πsi is ∞-revealed.

Oracle TestKey(i, s). The query (i, s) means that A chooses the session key of
πsi for challenge (test). If Ψsi 6= accept, the oracle returns ⊥. Otherwise, the
oracle sets k0 = ksi , samples k1 ←$ K. The oracle returns kb to A, where b is
the random bit chosen by the challenger.

Oracle TestPrivacy(i0, j0, i1, j1). A’s query is the privacy challenge and it con-
sists of two pairs of identities (i0, j0) and (i1, j1). The oracle builds µ new
oracles {π0

u}u∈[µ]. Let π0
ib

initialize the PPAKE protocol with π0
jb

being the
intended peer. After the initialization by π0

ib
, the adversary is allowed to

interfere the protocol execution. The transcript of the protocol execution is
returned to A, where b is the random bit chosen by the challenger.

15

ExpPPAKE,µ,`,A

ppPPAKE ← PPAKE.Setup
For i ∈ [µ]:

(pki, ski)← PPAKE.Gen(ppPPAKE, i)
crpi := false //Corruption variable

PKList := {pki}i∈[µ];b ←$ {0, 1}
For (i, s) ∈ [µ]× [`] :

varsi := (Pidsi , k
s
i , Ψ

s
i , st

s
i) := (∅, ∅, ∅, ∅)

Aflagsi := false //Whether Pidsi is corrupted when πsi accepts
T si := false; kRevsi = false // Test Key Reveal variables

Tkey := false; Tid := false //TestKey, TestPrivacy Oracle variables
TUsers := ∅ //Record users queried in TestID Oracle

AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,RegisterCorrupt
WinAuth := false SessionKeyReveal,TestKey or TestPrivacy
WinAuth := true, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept
(2) Aflagsi = false
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∩ Partner(πsi ← πt
′
j′)

(3.3) ∃t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.
Partner(πsi ← πtj) ∩ Partner(πs

′

i′ ← πtj)
Return WinAuth

If Tkey = true ∧ Tid = true: Return(⊥)
// Query on TestKey and TestPrivacy are mutually exclusive

b∗ ← AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,TestKey
WinInd := false SessionKeyReveal RegisterCorrupt
If b∗ = b ∧ Tkey = true:

WinInd := true
Return WinInd

b∗ ← AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,TestPrivacy
WinPrivacy := false SessionKeyReveal RegisterCorrupt
WinPrivacy := true, If
(1) b∗ = b ∧ Tid = true:
(2) Let TUsers := (i0, j0, i1, j1),
(crpj0 = false ∧ crpj1 = false)∨j0 = j1 //avoid TA5
Return WinPrivacy

π(i, s, j,MsgList) :

If Ψsi = reject ∨ Ψsi = accept: Return ⊥
MsgList′ := ∅
If MsgList = ∅:

πsi generates the first message msg′ for user Pj
update (stsi ,Pidsi , Ψ

s
i ,ksi)

Return {msg′}
For each msg ∈ MsgList:

If πsi accepts msg:
πsi generates the next message msg′ of PPAKE
MsgList′ := MsgList′ ∪ {msg′}
update (stsi ,Pidsi , Ψ

s
i ,ksi)

Return MsgList′

Tran(i, j) : //Return the transcript
Build µ new oracles π0

t , t ∈ [µ]
MsgList := ∅; Transcript := ∅; TfirstMsg := ∅
While (Ψ0

i = ∅ ∧ Ψ0
j = ∅) do:

If MsgList = ∅: //The adversary can not insert messages in the first round
msg′ ← π(i, 0, j, ∅)
MsgList′ := {msg′}; TfirstMsg := msg′

If MsgList 6= ∅: //The adversary can insert messages in the non-first round
MsgList′ := ∅;
For msg ∈ MsgList

msg′ ← π(i, 0, j,msg)
MsgList′ := MsgList′ ∪ {msg′}

InsertList← A(MsgList,MsgList′)
MsgList′ := MsgList′ ∪ InsertList

Transcript := Transcript ∪MsgList′

MsgList := MsgList′; MsgList′ := ∅
For each j′ ∈ [µ] and each msg ∈ MsgList

msg′ ← π(j′, 0, ∅,msg)
MsgList′ := MsgList′ ∪ {msg′}

If ¬(Ψ0
i = ∅ ∧ Ψ0

j = ∅):Return Transcript

InsertList← A(MsgList,MsgList′)
MsgList′ := MsgList′ ∪ InsertList
Transcript := Transcript ∪MsgList′

MsgList := MsgList′

Return Transcript

Partner(πsi ← πtj) : //Checking whether Partner(πsi ← πtj)

If Ψsi 6= accept: Return 0;
If Ψsi 6= j: Return 0;
check wheter the outputs of πsi are the inputs of πtj
upon the acceptance of πsi , and vice verse.
If the transcirpts are consistent: Return 1;
Return 0;

OPPAKE(query) :

If query = RegisterCorrupt(u, pku):
If u ∈ [µ] : Return ⊥
PKList := PKList ∪ {pku}
crpu := true
Return PKList

If query = Send(i, s, j,MsgList) :
If i /∈ [µ] ∨ s /∈ [`] ∨ j /∈ [µ]: Return ⊥
If Pidsi = ∅: Pidsi = j
If Pidsi 6= j : Return ⊥
MsgList′ := ∅
If MsgList = ∅:

msg′ ← π(i, s, j,msg)
Return MsgList′ = {msg′}

For msg ∈ MsgList
msg′ ← π(i, s, j,msg)
MsgList′ := MsgList′ ∪ {msg′}

Return MsgList′

If query = Respond(OList,MsgList):
If Tid = true ∧ ((j0, ∗) ∈ OList ∨ (j1, ∗) ∈ OList)
∧TfirstMsg ∩MsgList 6= ∅:

Return ⊥ //avoid TA6
If ∃(j, t) ∈ OList ∧ (j, t) /∈ [µ]× [`]: Return ⊥
MsgList′ := ∅
If crpj = false:

For each (j, t) ∈ OList, and each msg ∈ MsgList:
msg′ ← π(j, t′, ∅,msg)
MsgList′ := MsgList′ ∪ {msg′}

Return MsgList′

If query = Corrupt(i) :
If i /∈ [µ] : Return ⊥
crpi := true
Return ski

If query = SessionKeyReveal(i, s) :
If i /∈ [µ] ∨ s /∈ [`]: Return ⊥
If Ψsi 6= accept : Return ⊥
If T si = true : Return ⊥ //avoid TA2
Let j := Pidsi
If ∃t ∈ [l] s.t. Partner(πsi ↔ πtj) :

If T tj = true : Return ⊥ //avoid TA3
kRevsi := true;
Return ksi

If query = TestKey(i, s) :
//This oracle can be only queried once

Tkey := true
If Ψsi 6= accept:

Return ⊥
If Aflagsi = true ∨ kRevsi = true

Return ⊥ //avoid TA1,TA2
T si = true;k0 := ksi ; k1 ←$ K;
Return kb

If query = TestPrivacy(i0, j0, i1, j1) :
//This oracle can be only queried once

Tid := true
If crpi0 ∨ crpj0 ∨ crpi1 ∨ crpj1 :

Return ⊥ //avoid TA4
TUsers = (i0, j0, i1, j1)
If b = 0: Return Tran(i0, j0)
Else: Return Tran(i1, j1)

Fig. 6: The security experiments ExpAUTH
PPAKE,µ,`,A(with plain text and text),

ExpIND
PPAKE,µ,`,A(with plain text and text), ExpPrivacy

PPAKE,µ,`,A(with plain text and text).

The list of trivial attacks is given in Table 2.

16

3.2.2 Security Experiments of PPAKE
Now we are ready to describe the PPAKE experiments serving for authenti-

cation, forward security for session key, and forward privacy for user identity.
Recall that µ is the number of users and ` is maximum number of pro-

tocol executions per user. The security experiment ExpX
PPAKE,µ,`,A, where X ∈

{AUTH, IND,Privacy}, is played between challenger C and adversary A.

1. C runs PPAKE.Setup to get PPAKE public parameter ppPPAKE.
2. For each party Pi, C runs PPAKE.Gen(ppPPAKE, i) to get the long-term key

pair (pki, ski). Next it chooses a random bit b←$ {0, 1} and provides A with
the public parameter ppPPAKE and the list of public keys PKList := {pki}i∈[µ].

3. A has access to oracles Send,Respond,Corrupt,RegisterCorrupt,SessionKeyReveal,
TestKey,TestPrivacy by issuing queries in an adaptive way. Note that A can
issue only one query either to TestKey or to TestPrivacy, but not both. The
oracles will reply the corresponding answers to A as long as the queries lead
no trivial attacks.

4. At the end of the experiment, A terminates with an output b∗.
5. If b∗ = b, the experiment returns 1; otherwise the experiment returns 0.

ExpIND
PPAKE,µ,`,A: IfA ever queried oracle TestKey (only once), then ExpX

PPAKE,µ,`,A =

ExpIND
PPAKE,µ,`,A, which is the experiment for forward security of session key.

Through TestKey, adversary A obtains a real session key ksi of target oracle
πsi or a random key. The forward security of session key requires that it is
hard for any PPT A to distinguish the two cases.

ExpPrivacy
PPAKE,µ,`,A: IfA ever queried oracle TestPrivacy (only once), then ExpX

PPAKE,µ,`,A =

ExpPrivacy
PPAKE,µ,`,A, which is the experiment for forward privacy of user identity.

Through TestPrivacy, A obtains a protocol transcript, which is either the
interaction of π0

i0
and π0

j0
or the interaction of π0

i1
and π0

j1
. The forward

privacy requires that it is hard for any PPT A to distinguish the two cases.
ExpAUTH

PPAKE,µ,`,A: If C checks whether event WinAuth happens (WinAuth is defined in
Def. 19) at the end of the experiment (either ExpIND

PPAKE,µ,`,A or ExpPrivacy
PPAKE,µ,`,A),

this experiment is also regarded as ExpAUTH
PPAKE,µ,`,A, which is the experiment

for authenticity. Roughly speaking, the authenticity of PPAKE requires that
if an oracle πsi accepts a session key, then there must exist a unique oracle
πtj such that the two oracles have essentially established partnership. Mean-
while, the authenticity makes sure that replay attacks are prevented in the
sense that no oracle can make two distinct oracles accepts.

Details of the three experiments are given in Figure 6.
To precisely describe the security notions for PPAKE, we have to forbid some

trivial attacks by A. To clearly describe trivial attacks, we first define partner.

Definition 18 (Partner). We say that an oracle πsi is partnered to πtj, denoted
as Partner(πsi ← πtj), if the following requirements hold:

– πsi accepts with Ψsi = accept and Pidsi = j.

17

– Upon the time πsi accepts, the transcript of πsi is consistent with that of πtj,
i.e., the outputs of πsi are the inputs of πtj, and vice verse.

We write Partner(πsi ↔ πtj) if Partner(πsi ← πtj) and Partner(πtj ← πsi).

We will keep track of the following variables for each party Pi and oracle πsi :

– crpi: whether user i is corrupted.
– Aflagsi : whether the intended partner is corrupted when πsi accepts.
– kRevsi : whether the session key ksi was revealed.
– T si : whether πsi was tested.
– Tid : whether oracle TestPrivacy is queried.
– Tkey : whether oracle TestKey is queried.

For forward security for session key, we identify three trivial attacks.

TA1 Suppose that when user i (formalize by πsi) accepts a session key ksi , its
partner j (formalize by πtj) has already been corrupted by A, then it is quite
possible that A impersonated j to obtain the shared session key ksi . In this
case ksi cannot be tested by TestKey(i, s), otherwise, it will be a trivial attack.

TA2 If a session key ksi is accepted by user i (formalized by πsi) and is also
revealed to A, then ksi cannot be tested, otherwise, it will be a trivial attack.

TA3 If two users (formalize by oracles πsi and πtj) are partnered with each other
and session key ksi of πsi is revealed to A, then session key ktj of πtj cannot
be tested due to ksi = ktj . Otherwise, it will be a trivial attack.

For the forward privacy for user identity, we identify three trivial attacks.

TA4 If user i is corrupted, then the adversary is able to impersonate the user
in a PPAKE protocol after the corruption. After the protocol execution, the
adversary will know the identity of its communicant peer. Hence, this is a
trivial attack on privacy of PPAKE when testing i with TestPrivacy.

TA5 The robustness of a PPAKE makes sure that only one target recipient j is
able to use its secret key skj to correctly respond the first round message. If
the secret key skj of the target recipient is corrupted by A, no privacy on j
is guaranteed. This is a trivial attack on forward privacy of robust PPAKE.

TA6 If the adversary can observe the response of each user after the user receives
the first message, then the identity of the responding user is clear to the
adversary. Hence, this is also a trivial attack on the privacy of robust PPAKE.
This trivial attack can be extended to any core part of the first message. To
exclude this trivial attack, if the adversary sees the first round message, it
is not allowed to feed a message containing the core part of the first round
message to other users and observe their responses.

In Table 2, we list the above trivial attacks TA1-TA3 in ExpIND
PPAKE,µ,`,A and

trivial attacks TA4-TA6 in ExpPrivacy
PPAKE,µ,`,A.

18

Types Trivial attacks Explanation

TA1 T si = true ∧ Aflagsi = true πsi is tested but πsi ’s partner is corrupted
when πsi accepts session key ksi

TA2 T si = true ∧ kRevsi = true πsi is tested and its session key ksi is revealed

TA3 T si = true ∧ Partner(πsi ↔ πtj) ∧ kRevtj = true
πsi is tested, πsi and πtj are partnered to each other,

and πtj ’s session key ktj is revealed

TA4 Tid = true ∧ (crpi0 = true ∨ crpj0 = true
∨crpi1 = true ∨ crpj1 = true)

When TestPrivacy(i0, j0, i1, j1) is queried,
one of i0, j0, i1, j1 has been corrupted

TA5 Tid = true ∧ b∗ = b ∧
(crpj0 = true ∨ crpj1 = true) ∧ j0 6= j1

TestPrivacy(i0, j0, i1, j1) has been queried, and
either j0 or j1 has been corrupted when checking b∗ = b

TA6 Tid = true ∧ A queried Respond(OList,MsgList)
s.t. ((j0, ∗) ∈ OList ∨ (j1, ∗) ∈ OList) ∧ TfirstMsg ∩MsgList 6= ∅

TestPrivacy(i0, j0, i1, j1) is queried,
TfirstMsg is the first message in transcript,
A sees the output πtj0(MsgList) or πtj1(MsgList)

for some t ∈ [`] via querying Respond with messages MsgList
containing essential information of TfirstMsg

Table 2: Trivial attacks TA1-TA3 for security experiment ExpIND
PPAKE,µ,`,A.

TA4-TA6 for security experiment ExpPrivacy
PPAKE,µ,`,A. Note that Aflagsi = false is

implicitly contained in TA2,TA3 because of TA1.

3.2.3 Security Notions for PPAKE

Definition 19 (Authentication of PPAKE). Let WinAuth denote the event
that A breaks authentication in the security experiment ExpAUTH

PPAKE,µ,`,A (see Fig-
ure 6). WinAuth happens iff ∃(i, s) ∈ [µ]× [`], s.t.

(1) πsi is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens. Let j := Pidsi .
(3.1) There is no oracle πtj that πsi is partnered to.
(3.2) There exist two distinct oracles πtj and πt

′

j′ , to which πsi is partnered.
(3.3) There exist two oracles πs

′

i′ and π
t
j with (i′, s′) 6= (i, s), such that both πsi

and πs
′

i′ are partnered to πtj.

The advantage of an adversary A in ExpAUTH
PPAKE,µ,`,A is defined as

AdvAUTHPPAKE,µ,`,A := Pr
[
ExpAUTH

PPAKE,µ,`,A ⇒ 1
]

= Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))].

Remark 2. Given (1)∧(2), (3.1) indicates a successful impersonation of Pi, (3.2)
suggests one instance of Pi has multiple partners, and (3.3) corresponds to a
successful replay attack. Def.19 captures mutual explicit authentication since πsi
is either an initiator or a responder.

Definition 20 (Forward Security for Session Key of PPAKE). In ExpIND
PPAKE,µ,`,A

(see Figure 6), Let b∗ be A’s output. Then ExpIND
PPAKE,µ,`,A ⇒ 1 iff b∗ = b. The

advantage of A in ExpIND
PPAKE,µ,`,A is defined as

AdvINDPPAKE,µ,`,A :=
∣∣∣Pr
[
ExpIND

PPAKE,µ,`,A ⇒ 1
]
− 1/2

∣∣∣.
Forward security for session key asks AdvINDPPAKE,µ,`,A ≤ negl(λ) for all PPT A.

19

Definition 21 (Forward Privacy for User Identity of PPAKE). Suppose
that A queries TestPrivacy(i0, j0, i1, j1) and b∗ is A’s output in ExpPrivacy

PPAKE,µ,`,A
(see Figure 6). Define event WinPrivacy as b∗ = b and neither j0 nor j1 are cor-
rupted unless j0 = j1 (i.e. (crpj0 = false ∧ crpj1 = false) ∨ j0 6= j1). Then
ExpPrivacy

PPAKE,µ,`,A ⇒ 1 iff WinPrivacy happens. Forward privacy for user identity re-
quires that for all PPT A, its advantage function AdvPrivacyPPAKE,µ,`,A satisfies

AdvPrivacyPPAKE,µ,`,A :=
∣∣∣Pr
[
ExpPrivacy

PPAKE,µ,`,A ⇒ 1
]
− 1/2

∣∣∣ ≤ negl(λ).

Remark 3 (Difference with security models in [20,19]). In the security models in
[20,19], the initiator only deals with one responding message with accept or reject
and does not take into account other users’ responses. This feature excludes the
application of their PPAKE schemes in broadcast channels or similar scenarios.
In our security model, the initiator receives and processes all messages from other
users. This is especially important in the scenario where every user may give a
response when not aware whether itself is the target recipient. More precisely, in
our security model, the adversarial behaviors are reflected by the formalization
that A designates a list of messages for πsi to deal with by Send or Respond
queries. In comparison, the security models in [20,19] only consider the case that
πsi deals with a single message and after that πsi will stop responding to other
messages (from other users).

Remark 4 (The best forward privacy for robust PPAKE). The best forward pri-
vacy for a robust PPAKE scheme is full forward privacy for initiator and semi-
forward privacy for responder. The reason is as follows. If the responder Pj is
corrupted, the robustness of PPAKE enables the adversary to use the respon-
der’s secret key to test the first round messages in previous sessions so as to
determine whether Pj is the intended recipient. Therefore, this is the optimal
forward privacy for robust PPAKE to achieve: full forward privacy for initiator
(no matter initiator or responder is corrupted) and forward privacy for responder
when initiator is corrupted.

4 Generic Construction of PPAKE and Its Security Proof

We propose a generic construction of PPAKE = (PPAKE.Setup,PPAKE.Gen,
PPAKE.Protocol) with session key space K1 from the following building blocks.

– A signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Ver).
– A key encapsulation mechanism scheme KEM = (KEM.Setup,Encap,Decap)

with encapsulation key space K.
– A one-time key encapsulation mechanism scheme otKEM = (otKEM.Setup,

otEncap, otDecap) with the encapsulation key space K′.
– A message authentication code scheme MAC = (MAC.Tag,MAC.Ver) with
key space K.

– A symmetric encryption scheme SE = (SEnc,SDec) with key space K2.

20

PPAKE.Setup:
ppSIG ← SIG.Setup
ppKEM ← KEM.Setup
ppotKEM ← otKEM.Setup
Return ppPPAKE := (ppSIG, ppKEM, ppotKEM)

PPAKE.Gen(ppPPAKE, i):
(vki, sski)← SIG.Gen(ppSIG)
(pki, ski)← KEM.Gen(ppKEM)
Return ((vki, pki), (sski, ski))

PPAKE.Protocol(Pi
 Pj):
Pi(resi)

resi := (sski, ski, ppPPAKE,
{ppu}u∈[µ] := {(vku, pku)})

Pj(resj)
resj := (sskj , skj , ppPPAKE,
{ppu}u∈[µ] := {(vku, pku)})

Ψi := ∅, ki := ∅, sti := ∅
(C1, N)← Encap(pkj)
(pkotKEM, skotKEM)← otKEM.Gen(ppotKEM)
sti := {pkotKEM, skotKEM, N,C1}ysti
If Ψi 6= ∅: Return ⊥
If MAC.Ver(N, pkotKEM|C1|C2, σ1) 6= 1:

Ψi := reject
Return ⊥

Else:
K ← otDecap(skotKEM, C2)
k̄|ki ← PRG(K)
m := pkotKEM|C1|C2|σ1

σ2 ← SIG.Sign(sski,m)
c← SEnc(k̄, i|σ2)
Ψi := accept
Return (Ψi, ki)

pkotKEM, C1−−−−−−−−−−−−−−→

C2, σ1←−−−−−−−−−−−

c−−−−−−−→

Ψj := ∅, kj := ∅, stj := ∅
If Decap(skj , C1) = ⊥: abort
N ← Decap(skj , C1)
(C2,K)← otEncap(pkotKEM)
σ1 ← MAC.Tag(N, pkotKEM|C1|C2)
stj := {pkotKEM, C1, C2, N,K, σ1}ystj
k̄|kj ← PRG(K)
(i, σ2)← SDec(k̄, c)
m := pkotKEM|C1|C2|σ1

If SIG.Ver(vki,m, σ2) 6= 1:
Ψj := reject
Return ⊥

Else:
Ψj := accept
Return (Ψj , kj)

Fig. 7: Generic construction of PPAKE

– A pseudo-random generator PRG : K′ → K1 ×K2.

Our generic construction is given in Figure 7.

PPAKE.Setup: The setup algorithm generates the public parameter ppPPAKE :=
(ppSIG, ppKEM, ppotKEM) by running SIG.Setup,KEM.Setup and otKEM.Setup.

PPAKE.Gen: The key generation algorithm takes as input ppPPAKE and a user
identity i, and generates a key pair (vki, sski) for SIG and a key pair (pki, ski)
for KEM. The public key of user i is (pki, vki) and the secret key is (sski, ski).

PPAKE.Protocol(Pi
 Pj): The protocol between two parties Pi and Pj is as fol-
lows. Each party has access to their own resources resi = (sski, ski, ppPPAKE, {ppu}u∈[µ])
and resj = (sskj , skj , ppPPAKE, {ppu}u∈[µ]) which contain the corresponding
secret key, the public parameter and a list PKList consisting of the public
keys of all users. Each party initializes its local variables Ψi, ki and sti with
the empty string. The protocol consists of three rounds of communications.
The First Round: When party Pi initiates a session with party Pj in

PPAKE, Pi computes (C1, N)← Encap(pkj) and generates an ephemeral
key pair (pkotKEM, skotKEM)← otKEM.Gen(ppotKEM). It then sends (pkotKEM, C1)
to Pj and stores (pkotKEM, skotKEM, N,C1) as its state sti.

The Second Round: After receiving message (pkotKEM, C1), Pj computes
N ← Decap(skj , C1). If N = ⊥, then Pj aborts, indicating that it

21

is not the intended recipient of this message. Otherwise, Pj invokes
(C2,K) ← otEncap(pkotKEM). It uses N as the MAC key to compute
a tag σ1 ← MAC(N, pkotKEM|C1|C2). Then it sends (C2, σ1) to Pi and
stores (pkotKEM, C1, C2, σ1, N,K) as its state stj .

The Third Round: After receiving message (C2, σ1), Pi retrieves its state
sti = (pkotKEM, skotKEM, N,C1). It verifies the validity of σ1 by check-
ing whether MAC.Tag(N, pkotKEM|C1|C2, σ1) = 1 with the help of N . If
invalid, it rejects this message. Otherwise, it continues the protocol by
computing K ← Decap(skotKEM, C2). It then generates k̄|ki ← PRG(K),
where k̄ is used as the secret key for SE and ki as its session key. Pi uses
its signing key sski to sign pkotKEM|C1|C2|σ1 and obtain the signature
σ2 ← SIG.Sign(sski, pkotKEM|C1|C2|σ1). Then it encrypts the identity i
and the signature σ2 with k̄ and obtains c← SEnc(k̄, i|σ2). It broadcasts
the ciphertext c, and sets Ψi = accept and outputs (Ψi, ki), indicating
its acceptance of ki as its session key.
After receiving c, Pj retrieves its state stj = (pkotKEM, C1, C2, σ1, N,K)
and generates (k̄, kj) ← PRG(K). It then uses k̄ to decrypt the cipher-
text c and obtains (i, σ2) ← SDec(k̄, c). Next it checks that the validity
of (i, σ2) by checking SIG.Ver(vki, pkotKEM|C1|C2|σ1, σ2) = 1. Pj rejects
in case of invalid. Otherwise, it sets Ψj = accept and outputs (Ψj , kj),
indicating its acceptance of kj as its session key with Pi.

Correctness. Correctness of PPAKE follows directly from the correctness of
SIG,KEM, otKEM,MAC and SE.

Robustness. Robustness of PPAKE follows directly from the robustness of KEM,
which guarantees that only Pj has Decap(skj , C1) 6= ⊥.

Theorem 1. For the PPAKE construction in Figure 7, suppose that the under-
lying SIG is sEUF-CMA secure, MAC is sEUF-CMA secure, KEM is IND-CCA
secure and IK-CCA secure, otKEM is IND-CPA secure and has the properties
of key uniformity and public key diversity, and PRG is a pseudo-random genera-
tor, and SE is semantic secure and has the property of ciphertext diversity, then
the PPAKE construction has explicit mutual authenticity, forward security and
forward privacy.

Before the proof, we will first define two sets Sentsi and Recvsi for oracle πsi .
Set Sentsi will store outgoing messages of the oracle and Recvsi will store valid
incoming messages, respectively. We stress that valid messages in Recvsi are those
incoming messages that pass the verification of MAC or SIG.

We know that Partner(πsi ← πtj) holds if the following conditions are satisfied.

– Pidsi = j and Ψsi = accept.
– If πsi is the initiator, i.e., πsi has sent the first message, then Sentsi = Recvtj =

{(pkotKEM, C1)} and Recvsi = Senttj = {(C2, σ1)}.
– If πsi is the responder, i.e., πsi has received the first message, then Sentsi =

Recvtj = {(C2, σ1)}, and Recvsi = Senttj = {(pkotKEM, C1), c}.

22

G0, G1 G2 G3

ppSIG ← SIG.Setup
ppKEM ← KEM.Setup
ppotKEM ← otKEM.Setup
ppPPAKE = (ppSIG, ppKEM, ppotKEM)
For i ∈ [µ]:

(pki, ski)← KEM.Gen(ppKEM)
(vki, sski)← SIG.Gen(ppSIG)

PKList := {(pki, vki)}i∈[µ];
b ←$ {0, 1}
(i∗, s∗) ←$ [µ]× [`]
S := ∅
For (i, s) ∈ [µ]× [`] :

varsi := (Pidsi , k
s
i , Ψ

s
i , st

s
i) := (∅, ∅, ∅, ∅);

Aflagsi := false
(Sentsi ,Recvsi) := (∅, ∅)
T si := false; kRevsi = false

AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,RegisterCorrupt
WinAuth := false //SessionKeyReveal,TestKey or TestPrivacy
For each (i, s) ∈ [µ]× [`]:

If (i, s) s.t.
(1) Ψsi = accept
(2) Aflagsi = false
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∩ Partner(πsi ← πt
′

j′)
(3.3) ∃t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∩ Partner(πs
′

i′ ← πtj)
then S := S ∪ {(i, s)}

If S 6= ∅: WinAuth := true

If (i∗, s∗) /∈ S: Return ⊥
Return WinAuth

Partner(πsi ← πtj) : //Checking whether Partner(πsi ← πtj)

If Ψsi 6= accept ∨ Pidsi 6= j: Return 0;
If πsi sent the first message:

If Sentsi = Recvtj = {(pkotKEM, C1)} ∧ Recvsi = Senttj = {(C2, σ1)}:
Return 1

If πsi sent the first message:
If Sentsi = Recvtj = {(C2, σ1)} ∧ Recvsi = Senttj = {(pkotKEM, C1), c}:

Return 1
Return 0

πsi (j,MsgList) :

If Ψsi = reject ∨ Ψsi = accept: Return ⊥
If MsgList = ∅: //Generate the first message

(C1, N)← Encap(pkj)

If (i, s) = (i∗, s∗) : N ←$ K

(pkotKEM, skotKEM)← otKEM.Gen(ppotKEM)
stsi = {pkotKEM, skotKEM, N,C1}
Pidsi := j
Sentsi := {pkotKEM, C1}
Return {pkotKEM, C1}

If MsgList = {(pkotKEM, C1)}:
//Receive the first message and generate the second message

If stsi 6= ∅: Return ⊥
N ← KEM.Decap(ski, C1)

If Sents
∗
i∗ 6= ∅ ∧ Pids

∗
i∗ = i:

Find C∗1 ∈ Sents
∗
i∗ and N∗ ∈ sts

∗
i∗

If C1 = C∗1 : N := N∗

If N = ⊥: Return ⊥; //This message is not sent to user i
Else:

Recvsi := {pkotKEM, C1}
(C2,K)← otEncap(pkotKEM)
σ1 ← MAC.Tag(N, pkotKEM|C1|C2)
stsi := {pkotKEM, C1, C2, N,K, σ1}
Sentsi := Sentsi ∪ {C2, σ1}
Return {C2, σ1}

For each {(C2, σ1)} ∈ MsgList:
//Receive the second message and generate the third message

If stsi is not the form of {pkotKEM, skotKEM, N,C1}:
Return ⊥

parse stsi = {pkotKEM, skotKEM, N,C1}
If MAC.Ver(N, pkotKEM|C1|C2, σ1) 6= 1:

Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {C2, σ1}
K ← otDecap(pkotKEM, C2)
k̄|ksi ← PRG(K)
m := pkotKEM|C1|C2|σ1

σ2 ← SIG.Sign(sski,m)
c← SEnc(k̄, i|σ2)
Ψi := accept
If crpPidsi = true: Aflag := true
Sentsi := Sentsi ∪ {c}
Return {c}

For each {c} ∈ MsgList: //Receive the last message
If stsi is not the form of {pkotKEM, C1, C2, N,K, σ1}:

Return ⊥
parse stsi = {pkotKEM, C1, C2, N,K, σ1}
k̄|ksi ← PRG(K)
(j, σ2)← SDec(k̄, c)
m := pkotKEM|C1|C2|σ1

If SIG.Ver(vkj ,m, σ2) 6= 1:
Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {c}
Ψsi = accept; Pidsi = j
If crpj = true: Aflagsi = true
Return ∅

Fig. 8: Games G0-G3 for authenticity of PPAKE. Queries to OPPAKE ∈
{Send,Respond,Corrupt,RegisterCorrupt, SessionKeyReveal,TestPrivacy,TestKey}
are defined as in the original game in Figure 6 and omitted here.

Besides, we define a set S recording all the pairs (i, s) such that WinAuth = true.

Proof of explicit mutual authenticity. To prove authenticity for PPAKE, we
now describe a sequence of games G0-G3 and show that the advantage of A in
adjacent games. The full codes of G0-G3 are also given in Figure 8. Define Wini
as the event of WinAuth = true in Gi ∧ (i∗, s∗) ∈ S, where (i∗, s∗)←$ [µ]× [`].

Game G0: G0 is the original experiment ExpAUTH
PPAKE,µ,`,A. In addition, challenger C

uses Sentsi and Recvsi recording valid incoming valid messages and outgoing mes-
sages for πsi . This is only a conceptual change. Clearly, Pr [(i∗, s∗) ∈ S | WinAuth = true]
= Pr [Win0]/Pr [WinAuth = true] ≥ 1

µ` . Then

Pr [WinAuth = true] ≤ µ` · Pr [Win0]. (1)

23

Game G1: In G1, challenger C first chooses (i∗, s∗)←$ [µ] × [`]. At the end of
G1, if (i∗, s∗) /∈ S, G1 aborts by returning ⊥. Then for the specific pair (i∗, s∗),

Pr [Win1] = Pr [Win0] = Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3)]. (2)

Game G2: In G2, if πs
∗

i∗ is a responder, G2 is the same as G1. If πs
∗

i∗ is an initiator
and Pids

∗

i∗ = j∗, Sents
∗

i∗ 6= ∅, C changes the behavior of πtj∗ for t ∈ [`].
Note Sents

∗

i∗ 6= ∅ implies that ∃(pk∗otKEM, C∗1) ∈ Sents
∗

i∗ , where (pk∗otKEM, sk
∗
otKEM)←

otKEM.Gen(ppotKEM) and (C∗1 , N
∗) ← Encap(pkj∗). Meanwhile, πs

∗

i∗ also has
state sts

∗

i∗ = {pk∗otKEM, sk∗otKEM, N∗, C∗1}. Then for ∀t ∈ [`], if (pkotKEM, C1) ∈
Recvtj∗ , oracle πtj∗(pkotKEM, C1) will compute N ′ by N ← Decap(skj∗ , C1) in G1.
But in G2, πtj∗(pkotKEM, C1) computes N ′ in the following way.

– C1 = C∗1 : πtj∗ borrows N∗ from sts
∗

i∗ and sets N := N∗.
– C1 6= C∗1 : πtj∗ computes N ← Decap(skj∗ , C1) (as in G1).

Due to the correctness of KEM, we have

Pr [Win2] = Pr [Win1]. (3)

Game G3: In G3, if πs
∗

i∗ is a responder, G2 is the same as G1. If πs
∗

i∗ is an initiator,
then the encapsulation key N∗ is randomly chosen with N∗ ←$ K, instead of
N∗ ← Encap(pkj∗) as in G2.

Lemma 1. |Pr [Win2]− Pr [Win3]| ≤ µ · AdvCCAKEM(BKEM).

The formal proof of Lemma 1 is given in Appendix B.1. Here we sketch the
proof. We construct adversary BKEM against IND-CCA security of KEM scheme.
BKEM will simulates G2/G3 for A. BKEM gets its challenge (C∗,K∗) w.r.t. pk∗,
it sets pkj∗ := pk∗ with j∗ ←$ [µ], and embeds C∗ into πs

∗

i∗ ’s output message
(pk∗otKEM, C

∗
1 := C∗) and embedsK∗ into its state sts

∗

i∗ := (pk∗otKEM, sk
∗
otKEM, N

∗ =
K∗, C∗1 = C∗). BKEM also asks its own DECAP oracle ODecap to simulate decap-
sulation of C1 6= C∗ for oracle πtj∗(pkotKEM, C1). Finally, BKEM outputs 1 iff Win

occurs and j∗ = Pids
∗

i∗ . If K∗ is an encapsulated key for C∗, BKEM simulates G2;
if K∗ is random, BKEM simulates G3. Since j∗ = Pids

∗

i∗ with probability 1/µ, we
have |Pr [Win2]− Pr [Win3]| ≤ µ · AdvCCAKEM(BKEM).

Next, we analyze (1), (2), (3.1), (3.2), (3.3) in G3 so as to determine Pr [WinAuth].
We define the event NoPartner(i, s) as (1) ∧ (2) ∧ (3.1) happens for (i, s).

Equivalently, πsi accepts, the intended partner j := Pidsi is uncorrupted when πsi
accepts, and there does not exist t ∈ [`] such that Partner(πsi ← πtj).

Lemma 2. In G3, we have

Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3.1)] = Pr [NoPartner(i∗, s∗)] ≤ AdvsEUF-CMA
MAC (BMAC)+µ·AdvsEUF-CMA

SIG (BSIG).

24

This proof of Lemma 2 relies on the sEUF-CMA security of SIG and MAC.
We consider the probability of event NoPartner(i∗, s∗) in two cases: πs

∗

i∗ is
an initiator and πs

∗

i∗ is a responder. In the first case, πs
∗

i∗ must have received
a message (C∗2 , σ

∗
1) such that σ∗1 is a valid MAC tag for some non-consistent

message pk∗otKEM|C∗1 |C∗2 , yielding a fresh and valid forgery for MAC. In the sec-
ond case, πs

∗

i∗ must have received non-consistent messages (pk∗otKEM, C
∗
1) and c∗

whose decryption results in (j∗, σ∗2), and σ∗2 must be a valid signature for mes-
sage pk∗otKEM|C∗1 |C∗2 |σ∗1 . Due to the ciphertext diversity of SE, c 6= c∗ implies that
(j∗, σ∗2) 6= (j′, σ∗2). If NoPartner(i∗, s∗) happens, we know that (pk∗otKEM|C∗1 |C∗2 |σ∗1 , σ∗2)
must be a fresh and valid message-signature pair, yielding a successful forgery
for SIG. The formal proof is given in Appendix B.2.

Furthermore, considering the random selection of (i∗, s∗), in G3 we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ µ` · (AdvsEUF-CMA
MAC (BMAC) + µ · AdvsEUF-CMA

SIG (BSIG)). (4)

By Lemma 1 and Eq. (1)(2)(3) and (4), we have the following corollary.

Corollary 2. In ExpAUTH
PPAKE,µ,`,A, it holds that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ (µ`) ·
(
µ · AdvCCAKEM(BKEM) + AdvsEUF-CMA

MAC (BMAC) + µ · AdvsEUF-CMA
SIG (BSIG)

)
.

Lemma 3. In G3, we have

Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)2 · (AdvpsPRG(BPRG) +
1

|K2|
).

If (1)∧ (2)∧ (3.2) happens for (i∗, s∗) in G3, then πs
∗

i∗ will accept with session
key ks

∗

i∗ and there exist two oracles πtj and πt
′

j′ subject to Partner(πs
∗

i∗ ← πtj)

and Partner(πs
∗

i∗ ← πt
′

j′). Then πs
∗

i∗ must share the same session key with both
πtj and πt

′

j′ , which happens with negligible probability, due to the independent
randomness in πs

∗

i∗ , πtj and πt
′

j′ , the key uniformity of otKEM, and the pseudo-
randomness of PRG. The formal proof is shown in Appendix B.3.

By Lemma 3 and Eq. (1)(2)(3), we have the following corollary.

Corollary 3. In ExpAUTH
PPAKE,µ,`,A,we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)3 ·
(
AdvpsPRG(BPRG) +

1

|K2|
)

+ (µ2`) ·AdvCCAKEM(BKEM).

Lemma 4. In ExpAUTH
PPAKE,µ,`,A, we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)] ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + (µ`)2 · 2−γ .

Proof. If ∃(i∗, s∗) satisfies (1)∧ (2)∧ (3.3), then Ψs
∗

i∗ = accept, Aflags
∗

i∗ = false,
Partner(πs

∗

i∗ ← πtj) and Partner(πs
′

i′ ← πtj). We consider the following two cases.

25

– Initiator πs
∗

i∗ . According to the definition, we know that Partner(πs
∗

i∗ ← πtj)

and Partner(πs
′

i′ ← πtj) implies (pk∗otKEM, C
∗
1) ∈ Sents

∗

i∗ = Recvtj , (pk′otKEM, C
′
1) ∈

Sents
′

i′ = Recvtj , (C∗2 , σ
∗
1) ∈ Recvs

∗

i∗ = Senttj , (C ′2, σ
′
1) ∈ Recvs

′

i′ = Senttj . Then
it holds that (pk∗otKEM, C

∗
1 , C

∗
2) = (pk′otKEM, C

′
1, C

′
2). According to the γ -pk-

diversity of otKEM, we know that Pr [pk′otKEM = pkotKEM] = 2−γ . Therefore,
(1)∧ (2)∧ (3.3) happens for (i∗, s∗) and (i′, s′) with probability at most 2−γ .
As there are at most (µ`)2 choices of (i∗, s∗) and (i′, s′), we can upper bound
the probability of event (1) ∧ (2) ∧ (3.3) by (µ`)2 · 2−γ in this case.

– Responder πs
∗

i∗ . In this case, Partner(πs
∗

i∗ ← πtj) implies Partner(πtj ←
πs
∗

i∗) and Partner(πs
′

i′ ← πtj) implies Partner(πtj ← πs
′

i′). This further implies
that (1) ∧ (2) ∧ (3.2) happens for (j, t). Therefore, we can upper bound the
probability of event (1) ∧ (2) ∧ (3.3) by (1) ∧ (2) ∧ (3.2) in this case.

Combining the above two cases yields Lemma 4. �
Finally, the authenticity of PPAKE follows from Corollary 2,3 and Lemma 4 and

Pr [WinAuth] ≤3µ2` · AdvCCAKEM(BKEM) + µ` · AdvsEUF-CMA
MAC (BMAC) + µ2` · AdvsEUF-CMA

SIG (BSIG)

+ 2(µ`)3 ·
(
AdvpsPRG(BPRG) +

1

|K2|
)

+ (µ`)2 · 2−γ .

(5)
Proof of forward security for session key.We now consider another sequence
of games G0-G5 and analyze A’s advantages in these games. Let Wini denote
the event that Gi outputs 1, i.e. A’s output bit satisfies b∗ = b in Gi. Let
advi := |Pr [Wini]− 1/2|. Then |advi − advi+1| ≤ |Pr [Wini]− Pr [Wini+1]|. The
full codes of G0 −G4 are presented in Figure 9.
Game G0: G0 is the original experiment ExpIND

PPAKE,µ,`,A. We add the sets Sentsi
and Recvsi which is only a conceptual change. So,

AdvINDPPAKE,µ,`,A := |Pr [Win0]− 1/2| = adv0. (6)

Game G1: Challenger C will check whether event WinAuth occurs in G1. If
WinAuth occurs, C will abort the game by returning 0. Otherwise, G1 is the same
as G0. Then |Pr [Win0]− Pr [Win1]| ≤ Pr [WinAuth]. By (5), we have

|adv0 − adv1| ≤ 3µ2` · AdvCCA
KEM(BKEM) + µ` · AdvsEUF-CMA

MAC (BMAC) + µ2` · AdvsEUF-CMA
SIG (BSIG)

+2(µ`)3 ·
(
Advps

PRG(BPRG) + 1
|K2|

)
+ (µ`)2 · 2−γ . (7)

Game G2: In G2, if event Hit does not occur, C will return a random bit
θ ←$ {0, 1}. Otherwise, G2 is the same as G1. Event Hit is defined as follows.
Randomly choose (i∗, s∗, j∗, t∗)←$ ([µ] × [`])2. If A queried TestKey(i, s) and
TestKey(i, s) did not reply ⊥, then πsi must accept and Aflagsi = false. Ac-
cordingly, πsi must have a unique partner πtj such that Partner(πsi ← πtj). So
TestKey(i, s) uniquely determines a tuple (i, s, j, t). Event Hit occurs iff (i∗, s∗, j∗, t∗) =
(i′, s′, j′, t′). Obviously, Pr [Hit] = 1/(µ`)2. We have Pr [Win2] = Pr [Hit]·Pr [Win1]+
Pr
[
Hit
]
· 12 = Pr [Hit] · (1

2 ± adv1) + Pr
[
Hit
]
· 12 = 1

2 ±
1

(µ`)2 · adv1. Hence,

adv1 = (µ`)2 · adv2. (8)

26

G0 G1, G2 G3 G4

ppSIG ← SIG.Setup
ppKEM ← KEM.Setup
ppotKEM ← otKEM.Setup
ppPPAKE = (ppSIG, ppKEM, ppotKEM)

(i∗, s∗, j∗, t∗) ←$ ([µ]× [`])2

For i ∈ [µ]:
(pki, ski)← KEM.Gen(ppKEM)
(vki, sski)← SIG.Gen(ppSIG)

PKList := {(pki, vki)}i∈[µ];
b ←$ {0, 1}
For (i, s) ∈ [µ]× [`] :

varsi := (Pidsi , k
s
i , Ψ

s
i , st

s
i) := (∅, ∅, ∅, ∅);

Aflagsi := false
(Sentsi ,Recvsi) := (∅, ∅)
T si := false; kRevsi = false

b∗ ← AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,TestKey
WinInd := false //SessionKeyReveal RegisterCorrupt
If b∗ = b :

WinInd := true

WinAuth = true, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept
(2) Aflagsi = false
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∩ Partner(πsi ← πt
′

j′)
(3.3) ∃t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∩ Partner(πs
′

i′ ← πtj)

If WinAuth = true: Return 0

Hit := false
If T s

∗
i∗ = false ∧ Partner(πs

∗
i∗ ← πt

∗
j∗):

Hit := true
If Hit = false:

θ ← {0, 1}
Return θ

Return WinInd

Partner(πsi ← πtj) : //Checking whether Partner(πsi ← πtj)

If Ψsi 6= accept ∨ Pidsi 6= j: Return 0;
If πsi sent the first message:

If Sentsi = Recvtj = {(pkotKEM, C1)} ∧ Recvsi = Senttj = {(C2, σ1)}:
Return 1

If πsi sent the first message:
If Sentsi = Recvtj = {(C2, σ1)} ∧ Recvsi = Senttj = {(pkotKEM, C1), c}:

Return 1
Return 0

πsi (j,MsgList) :

If Ψsi = reject ∨ Ψsi = accept: Return ⊥
If MsgList = ∅: //Generate the first message

(C1, N)← Encap(pkj)
(pkotKEM, skotKEM)← otKEM.Gen(ppotKEM)
stsi = {pkotKEM, skotKEM, N,C1}
Pidsi := j
Sentsi := {pkotKEM, C1}
Return {pkotKEM, C1}

If MsgList = {(pkotKEM, C1)}: //Receive the first message and
If stsi 6= ∅: Return ⊥ generate the second message
N ← KEM.Decap(ski, C1)
If N = ⊥: Return ⊥; //This message is not sent to user i

Else:
Recvsi := {pkotKEM, C1}
(C2,K)← otEncap(pkotKEM)

If (i, s) = (i∗, s∗) : K ←$ K
If (i, s) = (j∗, t∗) : K ←$ K
σ1 ← MAC.Tag(N, pkotKEM|C1|C2)
stsi := {pkotKEM, C1, C2, N,K, σ1}
Sentsi := Sentsi ∪ {C2, σ1}
Return {C2, σ1}

For each {(C2, σ1)} ∈ MsgList:
//Receive the second message and generate the third message

If stsi is not the form of {pkotKEM, skotKEM, N,C1}:
Return ⊥

parse stsi = {pkotKEM, skotKEM, N,C1}
If MAC.Ver(N, pkotKEM|C1|C2, σ1) 6= 1:

Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {C2, σ1}
K ← otDecap(pkotKEM, C2)

If (i, s) = (i∗, s∗):
Find K∗ in stt

∗
j∗ = {pk∗otKEM, C∗1 , C∗2 , N∗,K∗, σ∗1}

K := K∗

Else if (i, s) = (j∗, t∗):
Find K∗ in sts

∗
i∗ = {pk∗otKEM, C∗1 , C∗2 , N∗,K∗, σ∗1}

K := K∗

Else: K ← otDecap(pkotKEM, C2)

k̄|ksi ← PRG(K)

If (i, s) = (i∗, s∗) ∨ (i, s) = (j∗, t∗):
(k̄, ksi) ←$ K ×K

Else:
k̄|ksi ← PRG(K)

m := pkotKEM|C1|C2|σ1

σ2 ← SIG.Sign(sski,m)
c← SEnc(k̄, i|σ2)
Ψi := accept
If crpPidsi = true: Aflag := true
Sentsi := Sentsi ∪ {c}
Return {c}

For each {c} ∈ MsgList: //Receive the last message
If stsi is not the form of {pkotKEM, C1, C2, N,K, σ1}:

Return ⊥
parse stsi = {pkotKEM, C1, C2, N,K, σ1}
k̄|ksi ← PRG(K)

If (i, s) = (i∗, s∗):
(k̄, ksi) is the same with (k̄, kt

∗
j∗) used in πt

∗
j∗

Else if (i, s) = (j∗, t∗):
(k̄, ksi) is the same with (k̄, ks

∗
i∗) used in πs

∗
i∗

Else:
k̄|ksi ← PRG(K)

(j, σ2)← SDec(k̄, c)
m := pkotKEM|C1|C2|σ1

If SIG.Ver(vkj ,m, σ2) 6= 1:
Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {c}
Ψsi = accept; Pidsi = j
If crpj = true: Aflagsi = true
Return ∅

OPPAKE(query) :

If query = TestKey(i, s) : //This oracle can be only queried once
If Ψsi 6= accept:

Return ⊥
If Aflagsi = true ∨ kRevsi = true

Return ⊥ //avoid TA1,TA2
T si = true;
k0 := ksi ; k1 ←$ K;
Return kb

Fig. 9: Games G0-G4 for forward security of PPAKE. Queries to OPPAKE where query
∈ {Send,Respond,Corrupt,RegisterCorrupt,SessionKeyReveal} are defined as in the orig-
inal game in Figure 6.

Game G3: In G3, the encapsulation key K shared πs
∗

i∗ and πt
∗

j∗ is generated by
K ←$ K. Recall that inG2, πs

∗

i∗ and πt
∗

j∗ computeK with (C,K)← otEncap(pkotKEM)
and K ← otDecap(skotKEM, C).

Lemma 5. |adv2 − adv3| ≤ |Pr [Win2]− Pr [Win3]| ≤ AdvCPAKEM(BotKEM).

Recall that in G2, if πs
∗

i∗ accepts session key ks
∗

i∗ and Aflags
∗

i∗ = false, then there
must exist πt

∗

j∗ such that Partner(πs
∗

i∗ ← πt
∗

j∗). To prove this lemma, we construct
an adversary BotKEM against the CPA security of otKEM. Given the challenge
(C∗,K∗) w.r.t pk∗, BotKEM embeds C∗ as C∗2 and pk∗ as pk∗otKEM in the transcript
between πs

∗

i∗ and πt
∗

j∗ and sets K∗ in the state sts
∗

i∗ or stt
∗

j∗ . Finally, A outputs a
guessing bit b∗. If b∗ = b, BotKEM outputs 1; otherwise, BotKEM outputs 0.

If K∗ is the encapsulated key for C∗, then BotKEM perfectly simulates G2 for
A; it K∗ is random, then BotKEM perfectly simulates G3 for A. Then, we have
|adv2 − adv3| ≤ |Pr [Win2]− Pr [Win3]| ≤ AdvCPAKEM(BotKEM).

The detailed proof is shown in Appendix B.4.
Game G4: In G4, the symmetric key and session key of πs

∗

i∗ and πt
∗

j∗ are uni-
formly sampled by (k̄, ks

∗

i∗ = kt
∗

j∗) ←$ K1 ×K2. Recall that in G3, they are gen-
erated by k̄|ks∗i∗ ← PRG(K). Due to the pseudo-randomness of PRG, we have

|adv3 − adv4| ≤ |Pr [Win3]− Pr [Win4]| ≤ AdvpsPRG(BPRG). (9)

Now that the session key of πs
∗

i∗ is randomly chosen with ks
∗

i∗ ←$ K, we have

adv4 = |Pr [Win4]− 1/2| = 0. (10)

Finally, the forward security of PPAKE follows from Lemma 5 and Eq. (6)-(10).

Proof of forward privacy for user identity. To this end, we now consider
another sequence of games G′0-G

′
7. Let Wini denote the event that WinPrivacy =

true in G′i. Let advi := |Pr [Wini] − 1/2|. Then |advi − advi+1| := |Pr [Wini] −
Pr [Wini+1]|. The full codes of G′0-G

′
7 are presented in Figure 10.

Game G′0: G
′
0 is the original experiment ExpPrivacy

PPAKE,µ,`,A. We also add the sets
Sentsi and Recvsi which is only a conceptual change. So,

AdvPrivacyPPAKE,µ,`,A := |Pr [WinPrivacy]− 1/2| = adv0 (11)

Game G′1: At the end of G′1, challenger C will check whether event WinAuth

occurs. If WinAuth occurs, C will abort the game by returning 0. Otherwise, G′1
is the same as G′0. Due to the difference lemma and (5), we have

|adv0 − adv1| ≤ 3µ2` · AdvCCA
KEM(BKEM) + µ` · AdvsEUF-CMA

MAC (BMAC) + (µ`)22−γ(12)
+µ2` · AdvsEUF-CMA

SIG (BSIG) + 2(µ`)3 ·
(
Advps

PRG(BPRG) + 1
|K2|

)
.

Game G′2: InG
′
2, uponA’s query to oracle Tran(i, j), π0

i and π0
j will not respond

to any message in InsertList sent by A. Note that each oracle responds to only
one valid message. If this valid message is not sent by A, then G′2 is the same as
G′1. If this valid message is sent by A (the message can only be inserted in the
second round or third round of our protocol), then this will lead to occurrence
of event NoPartner(i, 0), which is impossible. Hence, G′2 is identical to G′1, and

adv1 = adv2. (13)

28

Now we define an event named Hit. When A queries TestPrivacy(i, j, i′, j′),
a unique tuple (i, j, i′, j′) is determined. Even Hit happens iff (i∗0, j

∗
0 , i
∗
1, j
∗
1) =

(i, j, i′, j′), where (i∗0, j
∗
0 , i
∗
1, j
∗
1)←$ [µ]4 is sample at the beginning the game.

Note that (i∗0, j
∗
0 , i
∗
1, j
∗
1) follows a uniform distribution, so we have Pr [Hit] = 1

µ4 .
Game G′3: At the end of G′3, if event Hit does not occur, C will return a random
bit θ ←$ {0, 1} instead of detecting event Win. Otherwise, G′3 is the same as G′2.
We have Pr [Win3] = Pr [Hit] · Pr [Win2] + Pr

[
Hit
]
· 12 = Pr [Hit] · (1

2 ± adv2) +

Pr
[
Hit
]
· 12 = 1

2 ±
1
µ4 · adv2. As a result,

adv2 = µ4 · adv3. (14)

Game G′4: In G′4, the encapsulation key K shared by π0
i∗b

and π0
j∗b

is generated
by K ←$ K, instead of (C,K) ← otEncap(pk) and K ← otDecap(C) as in G′3.
Similar to the proof of Lemma 5, we have

|adv3 − adv4| ≤ AdvCPAKEM(BotKEM). (15)

Game G′5: InG
′
5, the symmetric key and session key of π0

i∗b
and π0

j∗b
are generated

by (k̄, k0i∗b
) = (k̄, k0j∗b

)←$ K1 ×K2 instead of PRG(K) as in G′4. Hence,

|adv4 − adv5| ≤ AdvpsPRG(BPRG). (16)

Game G′6: InG
′
6, If j0 = j1, thenG′6 is the same asG′5. Otherwise, π0

i∗b
generates

C∗1 by (C∗1 , N) ← Encap(pkj∗1), instead of (C∗1 , N) ← Encap(pkj∗b) as in G′5. By
IK-CCA security of KEM, we know that (C∗1 , N) w.r.t pkj∗0 is indistinguishable
to that w.r.t pkj∗1 . So we have Lemma 6 with proof shown in Appendix B.5.

Lemma 6. |adv5 − adv6| ≤ |Pr[Win5]− Pr[Win6]| ≤ AdvIK-CCA
KEM (BKEM).

Game G′7: G
′
7 is almost the same as G′6, except for the answer generation

of oracle TestPrivacy(i, j, i′, j′) (which is TestPrivacy(i∗0, j
∗
0 , i
∗
1, j
∗
1)). In G′7, c∗ is

an encryption of (i∗1, σ
∗
2) where σ∗2 is computed using the signing key sski∗1 .

However, in G′6, c∗ is an encryption of (i∗b , σ
∗
2) with σ∗2 a signature generated by

the signing key sski∗b . The semantic security of SE makes sure that this change
is indistinguishable, as shown in Lemma 7.

Lemma 7. |adv6 − adv7| ≤ |Pr[Win6]− Pr[Win7]| ≤ AdvSemSE (BSE).

The formal proof is given in Appendix B.6.
Finally, in G′7, all the messages in Transcript = {(pk∗otKEM, C∗1), (C∗2 , σ

∗
1), c∗}

are independent of b, so we have

adv7 = |Pr [Win7]− 1/2| = 0. (17)

Finally, the forward privacy of PPAKE follows from Lemma 6,7 and (11)-(17).

29

G′0, G′1, G′2, G′3, G
′
4, G′5 G′6 G′7

ppSIG ← SIG.Setup
ppKEM ← KEM.Setup
ppotKEM ← otKEM.Setup
ppPPAKE = (ppSIG, ppKEM, ppotKEM)

(i∗0, j
∗
0 , i
∗
1, j
∗
1) ←$ [µ]4

For i ∈ [µ]:
(pki, ski)← KEM.Gen(ppKEM)
(vki, sski)← SIG.Gen(ppSIG)

PKList := {(pki, vki)}i∈[µ];
b ←$ {0, 1}
For (i, s) ∈ [µ]× [`] :

varsi := (Pidsi , k
s
i , Ψ

s
i , st

s
i) := (∅, ∅, ∅, ∅);

Aflagsi := false
(Sentsi ,Recvsi) := (∅, ∅)
T si := false; kRevsi = false

b∗ ← AOPPAKE(·)(ppPPAKE,PKList) //OPPAKE = Send,Respond,Corrupt,TestPrivacy
WinPrivacy := false //SessionKeyReveal RegisterCorrupt
WinPrivacy := true, If
(1) b∗ = b
(2) Let TUsers = (i0, j0, i1, j1),
crpj0 = false ∧ crpj1 = false

WinAuth = true, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept
(2) Aflagsi = false
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∩ Partner(πsi ← πt
′

j′)
(3.3) ∃t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∩ Partner(πs
′

i′ ← πtj)

If WinAuth = true: Return 0

If (i∗0, j
∗
0 , i
∗
1, j
∗
1) = (i0, j0, i1, j1) : Hit := true

Else: Hit := false
If Hit = false :

θ ← {0, 1}; Return θ

Return WinPrivacy

Partner(πsi ← πtj) : //Checking whether Partner(πsi ← πtj)

If Ψsi 6= accept ∨ Pidsi 6= j: Return 0;
If πsi sent the first message:

If Sentsi = Recvtj = {(pkotKEM, C1)} ∧ Recvsi = Senttj = {(C2, σ1)}:
Return 1

If πsi sent the first message:
If Sentsi = Recvtj = {(C2, σ1)} ∧ Recvsi = Senttj = {(pkotKEM, C1), c}:

Return 1
Return 0

Tran(i, j) : //Return the transcript
Build µ new oracles π0

t , t ∈ [µ]
MsgList := ∅
Transcript := ∅
While (Ψ0

i 6= accept ∨ Ψ0
j 6= accept) do:

RecvList← Send(i, 0, j,MsgList \ InsertList)
If MsgList 6= ∅: //The adversary can not insert messages in the first round

InsertList← A(RecvList)

InsertList := ∅
RecvList := RecvList ∪ InsertList
Transcript := Transcript ∪ RecvList
If (Ψ0

i = accept ∧ Ψ0
j = accept):

Return Transcript
MsgList← Respond({π0

t }t∈[µ],RecvList)
InsertList← A(RecvList)

InsertList := ∅
MsgList := MsgList ∪ InsertList
Transcript := Transcript ∪MsgList

Return Transcript

πsi (j,MsgList) :

If Ψsi = reject ∨ Ψsi = accept: Return ⊥

If MsgList = ∅: //Generate the first message
(C1, N)← Encap(pkj)

If (i, s) = (i∗b , 0):
(C1, N)← Encap(pkj∗1)

(pkotKEM, skotKEM)← otKEM.Gen(ppotKEM)
stsi = {pkotKEM, skotKEM, N,C1}
Pidsi := j
Sentsi := {pkotKEM, C1}
Return {pkotKEM, C1}

If MsgList = {(pkotKEM, C1)}: //Receive the first message and
If stsi 6= ∅: Return ⊥ generate the second message
N ← KEM.Decap(ski, C1)

If (i, s) = (j∗b , 0):
Find N∗ ∈ st0i∗

b
= {pk∗otKEM, sk∗otKEM, N∗, C∗1}

N := N∗

If N = ⊥: Return ⊥; //This message is not sent to user i
Else:

Recvsi := {pkotKEM, C1}
(C2,K)← otEncap(pkotKEM)

If (i, s) = (j∗b , 0) : K ←$ K

σ1 ← MAC.Tag(N, pkotKEM|C1|C2)
stsi := {pkotKEM, C1, C2, N,K, σ1}
Sentsi := Sentsi ∪ {C2, σ1}
Return {C2, σ1}

For each {(C2, σ1)} ∈ MsgList:
//Receive the second message and generate the third message

If stsi is not the form of {pkotKEM, skotKEM, N,C1}:
Return ⊥

parse stsi = {pkotKEM, skotKEM, N,C1}
If MAC.Ver(N, pkotKEM|C1|C2, σ1) 6= 1:

Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {C2, σ1}
K ← otDecap(pkotKEM, C2)

If (i, s) = (i∗b , 0) :

Find K∗ in st0j∗
b

= {pk∗otKEM, C∗1 , C∗2 , N∗,K∗}

K := K∗

k̄|ksi ← PRG(K)

If (i, s) = (i∗b , 0):
(k̄, ksi) ←$ K ×K

m := pkotKEM|C1|C2|σ1

σ2 ← SIG.Sign(sski,m)
c← SEnc(k̄, i|σ2)

If (i, s) = (i∗b , 0):
σ2 ← SIG.Sign(sski∗1 ,m)

c← SEnc(k̄, i∗1|σ2)

Ψi := accept
If crpPidsi = true: Aflag := true
Sentsi := Sentsi ∪ {c}
Return {c}

For each {c} ∈ MsgList: //Receive the last message
If stsi is not the form of {pkotKEM, C1, C2, N,K, σ1}:

Return ⊥
parse stsi = {pkotKEM, C1, C2, N,K, σ1}
k̄|ksi ← PRG(K)

If (i, s) = (j∗b , 0):
(k̄, ksi) is the same with (k̄, k0

i∗
b
) used in π0

i∗
b

(j, σ2)← SDec(k̄, c); m := pkotKEM|C1|C2|σ1

If SIG.Ver(vkj ,m, σ2) 6= 1:
Ψsi := reject
Return ⊥

Recvsi := Recvsi ∪ {c}
Ψsi = accept; Pidsi = j
If crpj = true: Aflagsi = true
Return ∅

OPPAKE(query) :

If query = TestPrivacy(i0, j0, i1, j1) : //This oracle can be only queried once
If crpi0 ∨ crpj0 ∨ crpi1 ∨ crpj1 :

Return ⊥
TUsers = (i0, j0, i1, j1)
If b = 0:

Return Tran(i0, j0)
Else:

Return Tran(i1, j1)

Fig. 10: Games G′0-G′7 for forward privacy of PPAKE. Queries to OPPAKE where query
∈ {Send,Respond,Corrupt,RegisterCorrupt,SessionKeyReveal} are defined as in the orig-
inal game in Figure 6.

30

5 Instantiations of PPAKE

In this section, we present concrete instantiations for the building blocks of our
PPAKE including KEM, otKEM, SIG, MAC, PRG and SE. This yields a specific
PPAKE scheme based on the DDH assumption over a cyclic group G and the
CDH assumption over a bilinear group in the standard model. The details are
shown in Appendix A and C.

KEM. We employ the Cramer-Shoup KEM (CS-KEM) scheme over a cyclic
group G of order q. It is well known that CS-KEM is IND-CCA secure.
Its public parameter is (G, q, g1, g2). Now we show its robustness. Given a
ciphertext C = (u1, u2, v) ∈ G3 under public key pk = (c = gx1

1 gx2
2 , d =

gy11 g
y2
2 , h = gz11 g

z2
2) ∈ G3, we know that u1 = gr, u2 = gr and v = crdαr =

ux1+αy1
1 ux2+αy2

2 , where α is the hash value of (u1, u2). When decrypting C
with another independent and random secret key (x′1, x

′
2, y
′
1, y
′
2, z
′
1, z
′
2), we

have that Pr
[
v = u

x′1+αy
′
1

1 u
x′2+αy

′
2

2

]
with probability 2/q. Therefore, C will

be rejected except with probability 2/q. The details of the KEM scheme is
reviewed in Figure 11.

otKEM. We employ the Elgamal-KEM scheme over a cyclic groupG of order q. It
is well known that Elgamal-KEM is IND-CPA secure. The public key is given
by pk = gx ∈ G and the ciphertext is C = gy ∈ G and the encapsulated
key is K = gxy. The encapsulated key K = gxy is uniformly distributed,
when either the secret key sk = x or the randomness y used in otKEM.Encap
is independently and randomly chosen over Zq. Hence, ElGamal-KEM has
encapsulated key uniformity. Meanwhile, when x, x′ ←$ Zq, two public keys
pk = gx = gx

′
= pk′ collide, i.e., pk = gx = gx

′
= pk′ with probability 1/q.

Hence it has log q-pk-diversity. The details of the otKEM scheme is reviewed
in Figure 12.

SIG. We employ the BSW signature scheme [7] over a bilinear group with bilin-
ear map e : G′ × G′ → G1. Its sEUF-CMA security is based on the CDH
assumption over G′. Its signature space is Σ = G′2 × Zq. The details of the
SIG scheme is reviewed in Figure 13.

MAC. We use the MAC scheme [10] over a cyclic group G of order q. Its sEUF-
CMA security is based on the DDH assumption over G. The MAC key is
(ω, x, x′) ∈ Z3

q and the tag for message m is given by σ = (u, v1, v2) ∈ G3,
where u is uniformly chosen, v1 = uω and v2 = ux`+x

′
with ` the hash value

of (u, v1,m). Its tag space is G3. The details of the MAC scheme is reviewed
in Figure 14.

PRG. We use the PRG scheme [11], where PRG : Zq → Z5
q. The PRG scheme is

based on the DDH assumption over a cyclic group of order q. The details of
the PRG scheme is reviewed in Figure 15.

SE. We can use one time pad over Zq as our SE scheme, which has information-
theoretical semantic security. The secret key space, the plain text space and
the cipher text space is K =M = C = Zq with q a prime.

31

Assembling the above schemes according to our generic construction, we have
a specific PPAKE scheme, with communication complexity (G+3G)+(G+3G)+
(2G′ + 2Zq) = 8G + 2G′ + 2Zq. The security of the PPAKE scheme is based on
the DDH assumption over G and the CDH assumption over the bilinear group
G′. The detail of the scheme is shown in Fig. 16.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments. Shengli Liu and You Lyu were partially supported by National
Natural Science Foundation of China (NSFC No. 61925207) and Guangdong Ma-
jor Project of Basic and Applied Basic Research (2019B030302008). Shuai Han
was partially supported by National Natural Science Foundation of China (Grant
No. 62002223), Shanghai Sailing Program (20YF1421100), and Young Elite Sci-
entists Sponsorship Program by China Association for Science and Technology
(YESS20200185).

References

1. Abdalla, M., Izabachène, M., Pointcheval, D.: Anonymous and transparent
gateway-based password-authenticated key exchange. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) Cryptology and Network Security, 7th International
Conference, CANS 2008, Hong-Kong, China, December 2-4, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 5339, pp. 133–148. Springer (2008).
https://doi.org/10.1007/978-3-540-89641-8_10

2. Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous authentication
with shared secrets. In: Aranha, D.F., Menezes, A. (eds.) Progress in Cryptology
- LATINCRYPT 2014 - Third International Conference on Cryptology and Infor-
mation Security in Latin America, Florianópolis, Brazil, September 17-19, 2014,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8895, pp. 219–
236. Springer (2014). https://doi.org/10.1007/978-3-319-16295-9_12

3. Arfaoui, G., Bultel, X., Fouque, P., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. Proc. Priv. Enhancing Technol. 2019(4), 190–210 (2019). https:
//doi.org/10.2478/popets-2019-0065

4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9014, pp. 629–
658. Springer (2015). https://doi.org/10.1007/978-3-662-46494-6_26

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) Advances in Cryptology - ASIACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Gold Coast, Australia, December 9-13, 2001, Proceedings.
Lecture Notes in Computer Science, vol. 2248, pp. 566–582. Springer (2001).
https://doi.org/10.1007/3-540-45682-1_33

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Pro-
ceedings. Lecture Notes in Computer Science, vol. 773, pp. 232–249. Springer
(1993). https://doi.org/10.1007/3-540-48329-2_21

https://doi.org/10.1007/978-3-540-89641-8_10
https://doi.org/10.1007/978-3-540-89641-8_10
https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21

32

7. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3958, pp. 229–240. Springer
(2006). https://doi.org/10.1007/11745853_15

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). https://doi.org/10.1137/S0097539702403773

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation
onion router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Secu-
rity Symposium, August 9-13, 2004, San Diego, CA, USA. pp. 303–320.
USENIX (2004), http://www.usenix.org/publications/library/proceedings/
sec04/tech/dingledine.html

10. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7237, pp. 355–374. Springer (2012).
https://doi.org/10.1007/978-3-642-29011-4_22

11. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom gener-
ators based on the DDH assumption. In: Okamoto, T., Wang, X. (eds.) Public
Key Cryptography - PKC 2007, 10th International Conference on Practice and
Theory in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceed-
ings. Lecture Notes in Computer Science, vol. 4450, pp. 426–441. Springer (2007).
https://doi.org/10.1007/978-3-540-71677-8_28

12. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 10992, pp. 95–125. Springer (2018). https:
//doi.org/10.1007/978-3-319-96881-0_4

13. Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: Privatedrop: Prac-
tical privacy-preserving authentication for apple airdrop. In: Bailey, M., Green-
stadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021. pp. 3577–3594. USENIX Association (2021), https://www.usenix.
org/conference/usenixsecurity21/presentation/heinrich

14. Ishibashi, R., Yoneyama, K.: Post-quantum anonymous one-sided authenticated
key exchange without random oracles. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) Public-Key Cryptography - PKC 2022 - 25th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11,
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13178, pp.
35–65. Springer (2022). https://doi.org/10.1007/978-3-030-97131-1_2

15. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: Ellis, J.T., Neuman, B.C., Balenson, D.M. (eds.) 1996 Symposium on Network
and Distributed System Security, (S)NDSS ’96, San Diego, CA, USA, February
22-23, 1996. pp. 114–127. IEEE Computer Society (1996). https://doi.org/10.
1109/NDSS.1996.492418

https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/11745853_15
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-540-71677-8_28
https://doi.org/10.1007/978-3-540-71677-8_28
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://doi.org/10.1007/978-3-030-97131-1_2
https://doi.org/10.1007/978-3-030-97131-1_2
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418

33

16. Lee, M., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec. 13(6), 513–
527 (2014). https://doi.org/10.1007/s10207-014-0231-3

17. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: Defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B., Evans,
D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 1343–1360. ACM (2017). https://doi.org/10.1145/
3133956.3134006

18. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) Ad-
vances in Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12492, pp. 785–814. Springer (2020). https://doi.org/10.
1007/978-3-030-64834-3_27

19. Ramacher, S., Slamanig, D., Weninger, A.: Privacy-preserving authenticated key
exchange: Stronger privacy and generic constructions. In: Bertino, E., Shulman, H.,
Waidner, M. (eds.) Computer Security - ESORICS 2021 - 26th European Sympo-
sium on Research in Computer Security, Darmstadt, Germany, October 4-8, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12973, pp. 676–696.
Springer (2021). https://doi.org/10.1007/978-3-030-88428-4_33

20. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of ikev2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on
Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp. 567–596.
Springer (2020). https://doi.org/10.1007/978-3-030-45388-6_20

21. Yang, X., Jiang, H., Hou, M., Zheng, Z., Xu, Q., Choo, K.R.: A provably-
secure two-factor authenticated key exchange protocol with stronger anonymity.
In: Au, M.H., Yiu, S., Li, J., Luo, X., Wang, C., Castiglione, A., Kluczniak, K.
(eds.) Network and System Security - 12th International Conference, NSS 2018,
Hong Kong, China, August 27-29, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11058, pp. 111–124. Springer (2018). https://doi.org/10.1007/
978-3-030-02744-5_8

https://doi.org/10.1007/s10207-014-0231-3
https://doi.org/10.1007/s10207-014-0231-3
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8

34

Appendix

A Assumptions: DDH and CDH

Let GGen denote a group generation algorithm which outputs (G, q, g) with G a
group of order q and generator g.

Definition 22 (DDH Assumption over G). Given (G, q, g) ← GGen(1λ),
the advantage function of an adversary A is defined by

AdvDDH
G,A (λ) :=

∣∣Pr
[
a←$ Zq; b ←$ Zq : A(ga, gb, gab)⇒ 1

]
− Pr

[
a←$ Zq; b←$ Zq; r ←$ Zq : A(ga, gb, gr)⇒ 1

]∣∣.
The DDH assumption holds on G if AdvDDH

G,A (λ) = negl(λ) for all PPT algorithm
A.

Let PGGen be a pairing group generation algorithm that returns a description
PG := (G′,G1, q, g, e) where G′,G1 are cyclic groups of order q, g is a generator
of G′ and e : G′×G′ → G1 is an efficient computable (non-degenerated) bilinear
map.

Definition 23 (CDHAssumption over G′). Given (G′,G1, q, g, e)← PGGen(1λ),
the advantage function of an adversary A is defined by

AdvCDH
G′,A(λ) := Pr

[
a←$ Zq; b←$ Zq : x← A(g, ga, gb) : x = gab

]
The CDH assumption holds on G′ requires AdvCDH

G′,A(λ) = negl(λ) for all PPT
algorithm A.

B The Omitted Proofs

B.1 The proof of Lemma 1

Let CKEM be the challenger of ExpCCA-b
KEM,A. BKEM gets a public key pk∗, an en-

capsulation key pair (C∗,K∗) from CKEM, where K∗ is either generated by
(C∗,K∗)← Encap(pk∗) or random chosen byK∗ ←$ K. Besides, BKEM can query
an oracle ODecap(·). If BKEM queries ODecap(C) with C 6= C∗, ODecap(C) will com-
pute K ← Decap(sk∗, C) and return K to BKEM.

Next BKEM simulates G2 or G3 for A just like challenger C does except for
the followings. BKEM randomly chooses (i∗, s∗, j∗)←$ [µ] × [`] × [µ] and sets
pkj∗ := pk∗. If BKEM needs to call πs

∗

i∗ to generate the first message to Pj∗ ,
BKEM will simulate πs

∗

i∗ as follows: BKEM first generates (pk∗otKEM, sk
∗
otKEM) ←

otKEM.Gen(ppotKEM), then sets C∗1 := C∗, N∗ := K∗, and sts
∗

i∗ := (pk∗otKEM, sk
∗
otKEM, N

∗ =

K∗, C∗1 = C∗). Finally, return (pk∗otKEM, C
∗). If Pids

∗

i∗ 6= j∗, BKEM aborts the
game and outputs 0. Otherwise, BKEM simulates πtj∗(pkotKEM, C1) to generate N ′
as follows:

35

– C1 = C∗: BKEM sets N ′ := K∗ .
– C1 6= C∗: BKEM queries ODecap(C1) to get K and set N ′ := K.

Finally, if WinAuth = true in Gi ∧ (i∗, s∗) ∈ S ∧ Pids
∗

i∗ = j∗, BKEM outputs 1.
Otherwise it outputs 0.

If Pids
∗

i∗ = j∗ and N∗(= K∗) is generated by (C∗,K∗) ← Encap(pk∗), then
BKEM perfectly simulates G2. Otherwise, If Pids

∗

i∗ = j∗ and N∗(= K∗) is gener-
ated by K∗ ←$ K, then BKEM perfectly simulates G3. Hence,∣∣∣Pr

[
Win2 ∧ Pids

∗

i∗ = j∗
]
− Pr

[
Win3 ∧ Pids

∗

i∗ = j∗
]∣∣∣ ≤ AdvCCAKEM(BKEM).

Since j∗ is uniformly chosen and A learns no information about it, we know
Pr
[
Win2 ∧ Pids

∗

i∗ = j∗
]

= Pr [Win2] · Pr
[
Pids

∗

i∗ = j∗
]

= 1
µ · Pr [Win2]. Similarly,

Pr
[
Win3 ∧ Pids

∗

i∗ = j∗
]

= 1
µ · Pr [Win3]. Hence, |Pr [Win2]− Pr [Win3]| ≤ µ ·

AdvCCAKEM(BKEM).

B.2 Proof of Lemma 2

Proof. We consider the probability of event NoPartner(i∗, s∗) in two cases.
Case 1: πs

∗

i∗ is an initiator. In this case, if NoPartner(i∗, s∗) happens, we will
use A to construct an adversary BMAC against sEUF-CMA security of BMAC.

Let CMAC be the challenger of ExpsEUF-CMA
MAC . BMAC can query two oracles

OTag(·) andOVrfy(·, ·), whereOTag(m),OTag(m) will compute σ ← MAC.Tag(KMAC,m)
and return σ to BMAC, and OVrfy(m,σ) will compute b← MAC.Ver(KMAC,m, σ)
and return b to BMAC.
BMAC generates ppPPAKE and {pku, sku}u∈[µ] by PPAKE.Setup and PPAKE.Gen

algorithms. To simulate πs
∗

i∗ with input msg = (C∗2 , σ
∗
1), BMAC first finds (pk∗otKEM, C

∗
1)

in sts
∗

i∗ , then queries OVrfy(pk∗otKEM|C∗1 |C∗2 , σ∗1) to verify σ∗1 . If σ∗1 is valid, BMAC

generates the next message as πs
∗

i∗ does in G3. Otherwise, BMAC returns ⊥ as the
output of πs

∗

i∗ . Let j∗ := Pids
∗

i∗ .
For ∀t ∈ [`], when BMAC needs to simulate πtj∗ with input msg = (pk∗otKEM, C

∗
1),

BMAC will do as follows:

– C∗1 ∈ Sents
∗

i∗ : In this case, BMAC computes (C∗2 ,K
∗)← Encap(pk∗otKEM), and

queries OTag(pk∗otKEM|C∗1 |C∗2) to get σ∗1 . Finally, BMAC returns (C∗2 , σ
∗
1) as

the output message of πtj∗ .
– C∗1 /∈ Sents

∗

i∗ : In this case, BMAC generates the next message just like πtj∗
does in G3.

BMAC simulates other algorithms in the same way as G3. If NoPartner(i∗, s∗)
happens, then BMAC submits (pk∗otKEM|C∗1 |C∗2 , σ∗1) to CMAC as its MAC forgery.

Note that BMAC implicitly sets N∗ := KMAC and perfectly simulates G3 for
A. If NoPartner(i∗, s∗) happens, since πs

∗

i∗ accepts, we can find (C∗2 , σ
∗
1) ∈ Recvs

∗

i∗

and (pk∗otKEM, C
∗
1), subject to OVrfy(pk∗otKEM|C∗1 |C∗2 , σ∗1) = 1. In addition, due to

NoPartner(i∗, s∗), for ∀t ∈ [`], BMAC either never queries OTag(pk∗otKEM|C∗1 |C∗2)

36

or the answer σ1 from OTag(pk∗otKEM|C∗1 |C∗2) is different from σ∗1 . Hence, the new
pair (pk∗otKEM|C∗1 |C∗2 , σ∗1) is successful forgery. Consequently, we have

Pr [NoPartner(i∗, s∗)] ≤ AdvsEUF-CMA
MAC (BMAC).

Case 2: πs
∗

i∗ is a responder. In this case, if NoPartner(i∗, s∗) happens, we will
use A to construct an adversary BSIG against sEUF-CMA security of BSIG.

Let CSIG be the challenger of ExpsEUF-CMA
SIG . BSIG gets a verification key vk∗

and an oracle OSign(·). If BSIG queries OSign(m), OSign(m) will compute σ ←
SIG.Sign(sk∗,m) and return σ to BSIG.

Now BSIG will simulate G3 for A. BSIG randomly chooses j∗ ←$ [µ] and sets
vkj∗ := vk∗. For ∀t ∈ [`], when BSIG needs to simulate πtj∗ with input msg =
(C2, σ1), BSIG will do as follows: BSIG first find (N, pkotKEM, C1) in sttj∗ = {pkotKEM, skotKEM, N,C1},
then verify σ1 by MAC.Ver(N, pkotKEM|C1|C2, σ1). If σ1 is invalid, BSIG makes
πtj∗ return ⊥. Otherwise, BSIG computes K ← Decap(skotKEM, C2) and k̄|ktj∗ ←
PRG(K). Then BSIG queries OSign(pkotKEM|C1|C2|σ1) to get σ2. Finally, BSIG
computes c← SEnc(k̄, j∗|σ2) and returns c as the output of πtj∗ . BSIG simulates
other algorithms in the same way as G3. It is easy to see that BSIG perfectly
simulates G3 for A.

During the simulation, BSIG checks the event NoPartner(i∗, s∗). If NoPartner(i∗, s∗)

happens, then πs
∗

i∗ accepts with non-empty set Recvs
∗

i∗ and sts
∗

i∗ . Suppose Recvs
∗

i∗ =
{(pk∗otKEM, C∗1), c∗} and sts∗i∗ = (pk∗otKEM, C

∗
1 , C

∗
2 , N

′∗,K∗, σ∗1). BSIG invokes (k̄′, ks
∗

i∗)←
PRG(K∗) and (j′, σ∗2) ← SDec(k̄′, c∗). If j′ 6= j∗, BSIG aborts the game. Other-
wise, it checks the validity of σ∗2 by testing whether SIG.Ver(vkj∗ , pk

∗
otKEM|C∗1 |C∗2 |σ∗1 , σ∗2) =

1 holds. If σ∗2 is valid, then BSIG returns (pk∗otKEM|C∗1 |C∗2 |σ∗1 , σ∗2) to its own chal-
lenger as forgery.

We know NoPartner(i∗, s∗) implies that either {(C∗2 , σ∗1)} = Sents
∗

i∗ 6= Recvtj∗ =

{(C2, σ1)} or {(pk∗otKEM, C∗1), c∗} = Recvs
∗

i∗ 6= Senttj∗ = {(pkotKEM, C1), c} for all
t ∈ [`]. In other words, (pk∗otKEM, C

∗
1 , C

∗
2 , σ
∗
1 , c
∗) 6= (pkotKEM, C1, C2, σ1, c) for all

t ∈ [`].
To analyze the winning probability of BSIG, we consider two subcases under

the condition that NoPartner(i∗, s∗) happens and j′ = j∗.

– ∀t ∈ [`], (pkotKEM, C1, C2, σ1) 6= (pk∗otKEM, C
∗
1 , C

∗
2 , σ
∗
1). In this case, σ′2 is

valid signature for a fresh message pk∗otKEM|C∗1 |C∗2 |σ∗1 , hence BSIG succeeds in
forgery.

– ∃t ∈ [`], (pkotKEM, C1, C2, σ1) = (pk∗otKEM, C
∗
1 , C

∗
2 , σ
∗
1) but c 6= c∗. In this case,

πs
∗

i∗ and πtj∗ have shared the same encapsulated K∗ and hence the symmetric
key k̄′ due to the correctness of otKEM scheme and PRG (recall K∗ ←
Decap(sk∗otKEM, C

∗
2) and (k̄′, ks

∗

i∗) ← PRG(K∗)). Furthermore, c is computed
with c ← SEnc(k̄′, (j∗, σ2)) by πtj∗ . By the correctness of SE, we know that
SDec(k̄′, c) = (j∗, σ2). Due to the ciphertext diversity of SE scheme, c 6=
c∗ implies that (j∗, σ∗2) 6= (j′, σ∗2). Considering the condition j′ = j∗, it
holds that σ∗2 6= σ2. In this case, (pk∗otKEM|C∗1 |C∗2 |σ∗1 , σ∗2) is a fresh and valid
message-signature pair, hence BSIG succeeds in forgery. In either subcase,

37

BSIG succeeds in forgergy, hence we have

Pr [NoPartner(i∗, s∗) ∧ (j∗ = j′)] ≤ AdvsEUF-CMA
SIG (BSIG).

Since j∗ is uniformly chosen and A learns no information about it, we know
Pr [NoPartner(i∗, s∗) ∧ (j∗ = j′)] = Pr [NoPartner(i∗, s∗)] · Pr [j∗ = j′] = 1

µ ·
Pr [NoPartner(i∗, s∗)]. Consequently, that

Pr [NoPartner(i∗, s∗)] ≤ µ · AdvsEUF-CMA
SIG (BSIG).

Taking the two cases into account, we have Pr [NoPartner(i∗, s∗)] ≤ AdvsEUF-CMA
MAC (BMAC)+

µ · AdvsEUF-CMA
SIG (BSIG).

�

B.3 Proof of Lemma 3

Proof. If event (1) ∧ (2) ∧ (3.2) happens for (i∗, s∗), then πs
∗

i∗ will accept with
session key ks

∗

i∗ and there exist two oracles πtj and πt
′

j′ subject to Partner(πs
∗

i∗ ←
πtj) and Partner(πs

∗

i∗ ← πt
′

j′). Suppose that K1,K2 are the encapsulated key
serving for the seed of PRG and are generated by the randomness of πs

∗

i∗ , π
t
j and

πs
∗

i∗ , π
t′

j′ , respectively. Let k1 and k2 denote the shared session key generated by
πs
∗

i∗ , π
t
j and πs

∗

i∗ , π
t′

j′ , respectively. Then k
s∗

i∗ = k1 = k2. So we have

Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3.2)] ≤ Pr [k1 = k2].

We consider the probability of event k1 = k2 in the following two cases.

– Initiator πs
∗

i∗ . Let r1, r2 be the internal randomness of πtj and πt
′

j′ . The
PRG seeds K1,K2 are derived from (C1,K1) ← otKEM.Encap(pkotKEM; r1)
and (C2,K2) ← otKEM.Encap(pkotKEM; r2), where pkotKEM is generated by
the internal randomness of πs

∗

i∗ . Due to the key uniform property of otKEM,
K1 and K2 are two independent uniformly random keys. We have k̄|k1 ←
PRG(K1) and k̄′|k2 ← PRG(K2). According to corollary 1, we have k1 = k2
with probability at most AdvpsPRG(BPRG) + 1

|K2| .

– Responder πs
∗

i∗ . Let pk1otKEM and pk2otKEM be the public keys determined by
the internal randomness of πtj and πt

′

j′ , respectively. Due to the key uniform
property of otKEM, K1 and K2 are two independent uniformly random keys.
Similarly, we have k1 = k2 which will happen with probability at most
AdvpsPRG(BPRG) + 1

|K2| .

As there are at most (µ`)2 choices for (j, t) and (j′, t′), we can upper bound the
probability with Pr [k1 = k2] ≤ (µ`)2 · (AdvpsPRG(BPRG) + 1

|K2|). �

38

B.4 Proof Lemma 5

We construct adversary BotKEM against IND-CPA security of otKEM scheme.
Let CotKEM be the challenger of ExpCPA-b

KEM,BotKEM
. BotKEM gets a public key pk∗,

an encapsulation key pair (C∗,K∗) from CotKEM, where K∗ generated by either
(C∗,K∗)← otEncap(pk∗) or K∗ ←$ K.
BotKEM will simulate πs

∗

i∗ and πt
∗

j∗ in the following way and simulate other
algorithms just like G2.

– Initiator πs
∗

i∗ . When BotKEM simulates πs
∗

i∗ to generate the first message,
BotKEM sets pk∗otKEM := pk∗ and generates C∗1 in the same way as in G3.
Finally, BotKEM returns msg = (pk∗otKEM, C

∗
1) as the output message of πs

∗

i∗ .
If A does not query Respond({(j∗, t∗)} ∈ OList, {pk∗otKEM, C∗1}), then BotKEM
will abort and return b′ ←$ {0, 1}.
Otherwise, BotKEM simulates πt

∗

j∗ to generate the second message. BotKEM sets
C∗2 := C∗ and computes σ∗1 in the same way as G3. Finally, BotKEM returns
msg = (C∗2 , σ

∗
1) as the output message of πt

∗

j∗ . Meanwhile, BotKEM embeds
K∗ in stt

∗

j∗ = (pk∗otKEM, C
∗
1 , C

∗
2 , N

′∗,K∗, σ∗1).
– Responder πs

∗

i∗ . When BotKEM simulates πt
∗

j∗ to generate the first message,
BotKEM sets pk∗otKEM := pk∗ and generates C∗1 in the same way as G3. Finally,
BotKEM returns msg = (pk∗otKEM, C

∗
1) as the output message of πt

∗

j∗ .
If A does not query Respond({(i∗, s∗)} ∈ OList, {pk∗otKEM, C∗1}), then BotKEM
will abort and return b′ ←$ {0, 1}.
Otherwise, BotKEM simulates πs

∗

i∗ to generate the second message. BotKEM sets
C∗2 := C∗ and computes σ∗1 in the same way as G3. Finally, BotKEM returns
msg = (C∗2 , σ

∗
1) as the output message of πs

∗

i∗ . Meanwhile, BotKEM embeds
K∗ in sts

∗

i∗ = (pk∗otKEM, C
∗
1 , C

∗
2 , N

′∗,K∗, σ∗1).

Finally, A outputs a guessing bit b∗. If b∗ = b, BotKEM outputs 1; otherwise,
BotKEM outputs 0. If K∗ is generated using otEncap algorithm, then BotKEM per-
fectly simulates G2. Otherwise, if K∗ is generated by K∗ ←$ K, then BotKEM
perfectly simulates G3. Hence,

|adv2 − adv3| ≤ |Pr [Win2]− Pr [Win3]| ≤ AdvCPAKEM(BotKEM).

B.5 Proof of Lemma 6

We construct adversary BKEM against IK-CCA security of KEM scheme.
Let CKEM be the challenger of ExpIK-CCA-b

KEM,A . BKEM gets two public keys pk∗0 and
pk∗1 , an encapsulation key pair (C̃∗, K̃∗) from CKEM, where (C̃∗, K̃∗) generated
either by (C̃∗, K̃∗)← Encap(pk∗0) or by (C̃∗, K̃∗) ←$ Encap(pk∗1). Besides, BKEM
can query two oracles Osk0(·) and Osk1(·). If BKEM queries Oskz (C) with z ∈
{0, 1}, as long as C 6= C̃∗, Oskz (C) will compute K̃ ← Decap(sk∗z , C) and return
K̃ to BKEM.
BKEM will simulateG′5 orG

′
6 forA. BKEM first randomly samples (i∗0, j

∗
0 , i
∗
1, j
∗
1)←$ [µ]4

and sets pkj∗0 := pk∗0 and pkj∗1 := pk∗1 . Then BKEM randomly samples b ←$ {0, 1}.
If b = 1, BKEM simulates G′5 exactly like the challenger does. If b = 0, BKEM will
do the followings.

39

– Upon A’s query to TestPrivacy(i, j, i′, j′), BKEM checks event Hit by testing
whether (i, j, i′, j′) = (i∗0, j

∗
0 , i
∗
1, j
∗
1). If Hit does not happen, BKEM aborts

the game and outputs a random bit as the answer to its own challenger.
Otherwise, BKEM simulates TestPrivacy(i, j, i′, j′) = TestPrivacy(i∗0, j

∗
0 , i
∗
1, j
∗
1)

as follows.
• When BKEM needs to simulate π0

i∗b
to generate the first message (for π0

j∗b
)

of the protocol, BKEM invokes (pk∗otKEM, sk
∗
otKEM)← otKEM.Gen(ppotKEM)

and returns (pk∗otKEM, C
∗
1 := C̃∗) as the output message of π0

i∗b
. Mean-

while, it sets st0i∗b := (pk∗otKEM, sk
∗
otKEM, N

∗ = K̃∗, C∗1 := C∗) as the state
of π0

i∗b
.

• When BKEM needs to simulate π0
j∗b

(pk∗otKEM, C
∗
1 = C∗) to generate the

second message (for π0
i∗b
) of the protocol, BKEM invokes (C∗2 ,K

∗) ←
otKEM.Encap(pkotKEM), and setsN ′ := K̃∗. BKEM invokes σ∗1 ← MAC.Tag(N ′ =
K̃∗, pk∗otKEM|C∗1 |C∗2) and returns (C∗2 , σ

∗
1) as the output message of π0

i∗b
.

Meanwhile, it sets st0j∗b := (pk∗otKEM, C
∗
1 , C

∗
2 , σ
∗
1 , N

′ = K̃∗,K∗, σ∗1) as the
state of π0

j∗b
.

• When BKEM needs to simulate π0
i∗b

to generate the third message of the
protocol, BKEM invokes k̄|k ← PRG(K∗), σ∗2 ← SIG.Sign(sski∗b , pk

∗
otKEM|C∗1 |C∗2 |σ∗1),

c∗ ← SEnc(k̄, i∗b |σ∗2) and returns c∗ as the output message of π0
i∗b
. Mean-

while, it sets Ψi∗b = Ψj∗b := accept and k0i∗b = k0j∗b
:= k.

– Upon A’s query to oracle πtj∗z (pkotKEM, C1) with z ∈ {0, 1}, t ∈ [`], BKEM
does not have skj∗0 or skj∗1 for decryption of C1, but it can resort to its own
oracle Osk0(·) or Osk1(·) to get the correct answers. Recall that A’s query
(pkotKEM, C1) must satisfy that C1 6= C̃∗. First, BKEM invokes (C2,K) ←
otKEM.Encap(pkotKEM). Then BKEM queries Oskz (C1) and obtains the answer
K̃. It set N ′ := K̃, then invokes σ1 ← MAC.Tag(N ′ = K̃, pkotKEM|C1|C2)
and returns (C2, σ1) as the output message of πtj∗z . Meanwhile, it sets sttj∗z :=

(pkotKEM, C1, C2, σ1, N
′ = K̃,K, σ1) as the state of πtj∗z .

BKEM simulates other algorithms just like G′5. Finally, A outputs a guessing bit
b∗. If b∗ = b (i.e. A wins), BKEM returns 1 to its own challenger, otherwise, it
returns 0.

If (C̃∗, K̃∗) is generated by (C̃∗, K̃∗) ← Encap(pkj∗0), then BKEM perfectly
simulates G′5. Otherwise, if (C̃∗, K̃∗) is generated by (C̃∗, K̃∗) ← Encap(pkj∗1),
then BKEM perfectly simulates G′6. Hence,

|adv5 − adv6| ≤ |Pr[Win5]− Pr[Win6]| ≤ AdvIK-CCA
KEM (BKEM).

B.6 Proof of Lemma 7

We construct adversary BSE against semantic security of SE scheme to show the
indistinguishability of two games. BSE can submit two plaintexts (msg0,msg1) to
its own challenger CSE and obtain a ciphertext c∗ = SEnc(k̄∗,msgβ) from CSE. BSE

40

aims to guess a bit β∗ and wins the semantic security if β∗ = β. To this end, BSE
will simulate G′6 or G′7 for A. BSE first randomly samples (i∗0, j

∗
0 , i
∗
1, j
∗
1)←$ [µ]4

and b ←$ {0, 1}. If b = 1, BSE simulates G′6 exactly like the challenger does. If
b = 0, BKEM will do the followings.

– Upon A’s query to TestPrivacy(i, j, i′, j′), BSE checks event Hit by testing
whether (i, j, i′, j′) = (i∗0, j

∗
0 , i
∗
1, j
∗
1). If Hit does not happen, BSE aborts the

game and outputs a random bit as the answer to its own challenger. Other-
wise, BSE simulates TestPrivacy(i, j, i′, j′) = TestPrivacy(i∗0, j

∗
0 , i
∗
1, j
∗
1) as fol-

lows.
• To simulate π0

i∗b
to generate the first message (for π0

j∗b
) of the protocol,

BSE generates and returns (pk∗otKEM, C
∗
1 := C̃∗) as the output message of

π0
i∗b
. Meanwhile, it sets st0i∗b := (pk∗otKEM, sk

∗
otKEM, N

∗ = K̃∗, C∗1 := C∗) as
the state of π0

i∗b
. This is done exactly like G6.

• To simulate π0
j∗b

(pk∗otKEM, C
∗
1 = C∗) to generate the second message (for

π0
i∗b
) of the protocol, BSE computes and returns (C∗2 , σ

∗
1) as the output

message of π0
i∗b
. Meanwhile, it sets st0j∗b := (pk∗otKEM, C

∗
1 , C

∗
2 , σ
∗
1 , N

′ =

K̃∗,K∗, σ∗1) as the state of π0
j∗b
.This is also done exactly like G6.

• To simulate π0
i∗b
to generate the third message of the protocol, BSE first in-

vokes k̄|k ← PRG(K∗), then computes two signature σ(0)
2 , σ

(1)
2 by σ(0)

2 ←
Sign(sski∗0 , pk

∗
otKEM|C∗1 |C∗2 |σ∗1) and σ(1)

2 ← Sign(sski∗1 , pk
∗
otKEM|C∗1 |C∗2 |σ∗1).

Let msg0 := i∗0|σ
(0)
2 and msg1 := i∗1|σ

(1)
2 . BSE submits (msg0,msg1) to CSE

and gets a challenge ciphertext c∗, where c∗ is an encryption of either
msg0 or msg1. Then BSE returns c∗ as the output message of π0

i∗b
. Mean-

while, it sets Ψi∗b = Ψj∗b := accept and k0i∗b = k0j∗b
:= k.

BSE simulates other algorithms just like G′6. Finally, A outputs a guessing bit
b∗. If b∗ = b (i.e. A wins), BSE returns 1 to its own challenger, and returns 0
otherwise.

If c∗ is an encryption of msg0, BSE perfectly simulates G′6. Otherwise, if c∗
is an encryption of msg1, BSE perfectly simulates G′7. Hence,

|adv6 − adv7| ≤ |Pr[Win6]− Pr[Win7]| ≤ AdvSemSE (BSE).

C Instantiations of the Building Blocks for PPAKE

In this section, we give concrete instantiations of building blocks for our generic
PPAKE construction. Then we assemble the building block instantiations to-
gether to obtain a specific PPAKEddh scheme.

Suppose p = 2q + 1 with p, q both primes. We can instantiate G as the
quadratic residue group in Z∗p. A nice property about this group G is: there is a
bijective function enum : G→ Zq [11] defined as

enum(x) =

{
x If 1 ≤ x ≤ q − 1

p− x If q ≤ x < p− 1
.

41

With enum, we can readily transform a group element in G to an integer in
Zq.

B.1 Instantiations of KEM

We recall the Cramer-Shoup KEM (CS-KEM) scheme [8]. Let (G, q, g)← GGen.
In the KEM scheme, the pubic key space is PK = G5, the secret key space is
SK = Z6

q, the encapsulation key space is K = G, and the ciphertext space is
CT = G3. The KEM scheme is given in Figure 11.

KEM.Setup(1λ):
(G, q, g)← GGen(1λ)
g1, g2 ←$ G s.t. g1 6= 1 and g2 6= 1
H ←$ H; H : {0, 1}∗ → Zq
Return ppKEM := (G, q, g1, g2,H)

KEM.Gen(ppKEM):
x1, x2, y1, y2, z1, z2 ←$ Zq
c := gx11 gx22 ; d := gy11 gy22

h := gz11 gz22 ;
pk := (c, d, h); sk := (x1, x2, y1, y2, z1, z2)
Return (pk, sk)

Encap(pk):
Parse pk = (c, d, h)

r ←$ Zq
u1 := gr1 ;u2 := gr2
α← H(u1, u2); v := crdαr

C := (u1, u2, v);K := hr

Return (C,K)

Decap(sk, C):
Parse sk = (x1, x2, y1, y2, z1, z2)
Parse C = (u1, u2, v)
α← H(u1, u2)

v′ := ux1+αy1
1 ux2+αy2

2

If v′ 6= v: Return ⊥
K := uz11 u

z2
2

Return K

Fig. 11: KEM instantiated from the CS-KEM scheme [8].

The IND-CCA security and the IK-CCA security of CS-KEM have already
be proved in [8] and [5] respectively.

Theorem 2. [8] The CS-KEM scheme is IND-CCA secure if the DDH assump-
tion holds over G and H is a collision resistant hash function.

Theorem 3. [5] The CS-KE scheme is IK-CCA secure if the DDH assumption
holds G and H is a collision resistant hash function..

Now we prove its robustness.

Lemma 8. The CS-KEM scheme has robustness.

42

Proof. Suppose that g1 = ga1 and g2 = ga2 in the public parameter. Then a1 6= 0
and a2 6= 0. Now we consider the following probability for robustness.

Pr

[
(pk1, sk1)← KEM.Gen(ppKEM); (pk2, sk2)← KEM.Gen(ppKEM)

c1 ← Encap(pk1) : Decap(sk2, c1) 6= ⊥

]

= Pr

(x1, x2, y1, y2, z1, z2)← Z6

q; c = gx1
1 gx2

2 ; d = gy11 g
y2
2 ;h = gz11 g

z2
2 ;

(x′1, x
′
2, y
′
1, y
′
2, z
′
1, z
′
2)← Z6

q; c = g
x′1
1 g

x′2
2 ; d = g

y′1
1 g

y′2
2 ;h = g

z′1
1 g

z′2
2 ;

r ←$ Zq;u1 := gr1;u2 := gr2;α← H(u1, u2); v := crdαr

: u
x′1+αy

′
1

1 u
x′2+αy

′
2

2 = v

= Pr

[
(x1, y1, x2, y2, x

′
1, y
′
1, x
′
2, y
′
2, r)←$ Z9

q :

g
r(x1+αy1)
1 g

r(x2+αy2)
2 = g

r(x′1+αy
′
1)

1 g
r(x′2+αy

′
2)

2

]

= Pr

[
(x1, y1, x2, y2, x

′
1, y
′
1, x
′
2, y
′
2, r) ←$ Z9

q :
a1r(x1 + αy1) + a2r(x2 + αy2) ≡ a1r(x′1 + αy′1) + a2r(x

′
2 + αy′2) (mod q)

]
= Pr

[
(x1, y1, x2, y2, x

′
1, y
′
1, x
′
2, y
′
2, r)←$ Z9

q :
r = 0 ∨ a1(x1 + αy1) + a2(x2 + αy2) ≡ a1(x′1 + αy′1) + a2(x′2 + αy′2) (mod q)

]
≤ 1

q
+

1

q
=

2

q
= negl(λ).

In the last line, the first 1/q is the probability that r = 0 and the second 1/q is
the probability that a1(x1 + αy1) + a2(x2 + αy2) ≡ a1(x′1 + αy′1) + a2(x′2 + αy′2)
mod q holds. And 1/q = negl(λ) holds since q has at least λ bits.

�

C.1 Instantiations of otKEM

We use ElGamal-KEM scheme as our otKEM. Let (G, p, q, g) ← GGen. In the
KEM scheme, the pubic key space is PK = G, the secret key space is SK = Z∗q ,
the encapsulation key space is K = G\{1}, and the ciphertext space is CT = G.
The otKEM scheme is given in Figure 12.

otKEM.Setup(1λ):
(G, p, q, g)← GGen(1λ)
Return ppotKEM := (G, q, g)

otKEM.Gen(ppotKEM):
x ←$ Z∗q ;h := gx

pk := h; sk := x
Return (pk, sk)

otEncap(pk):
Parse pk = h
y ←$ Z∗q
c := gy; k := hy

Return (c, k)

otDecap(sk, c):
Parse sk = x
k := cx

Return k

Fig. 12: otKEM instantiated from the ElGamal-KEM scheme.

43

Theorem 4. The otKEM scheme is IND-CPA secure if the DDH assumption
holds over G.

Theorem 5. The otKEM scheme has encapsulated key uniformity.

Proof. Recall that (G, p, q, g) ∈ otKEM.Setup, where G is a cyclic groups of order
q for a prime q and g is a generator of G. It is easy to see that for all y ∈ Z∗q ,
if x←$ Z∗q , then gxy is uniformly distributed over K = G \ {1}. Similarly, for all
x ∈ Z∗q , if y ←$ Z∗q , then gxy is uniformly distributed over K = G \ {1}. �

Theorem 6. The otKEM scheme has γ-pk-diversity with γ = log(q − 1).

Proof. It is easy to see that

Pr

 r ←$ R; r′ ←$ R
(pk, sk)←$ otKEM.Gen(ppKEM; r); (pk′, sk′)←$ otKEM.Gen(ppKEM; r′) :

pk = pk′

= Pr

[
x←$ Z∗q ;x′ ←$ Z∗q :

gx = gx
′

]
= Pr

[
x ←$ Z∗q ;x′ ←$ Z∗q : x = x′

]
=

1

q − 1
= negl(λ).

�

C.2 Instantiations of SIG

We recall the BSW signature scheme from [7], where the verification key space
is VK = Gn+3, where n is output length of H, the secret key space is SK = G,
and the signature space is Σ = G2 ×Zq. The SIG scheme is shown in Figure 13.

SIG.Setup(1λ):
(G′,G1, q, g, e)← PGGen(1λ)
H ←$ H; H : {0, 1}∗ → {0, 1}n
Return ppotKEM := (G′,G1, q, g, e,H, n)

SIG.Gen(ppSIG):
α ←$ Zq; g1 := gα

g2, h, u
′, u1, . . . , un ←$ G′

vk := (g1, g2, h, u
′, u1, . . . , un)

sk := gα2
Return (vk, sk)

SIG.Sign(sk,m):
r, s ←$ Zq;σ2 := gr

t← H(m|σ2) ∈ {0, 1}n
M ← H(gths)
Parse M = m1|m2| . . . |mn ∈ {0, 1}n
σ1 := sk · (u′

∏n
i=1 u

mi
i)r

σ := (σ1, σ2, s)
Return σ

SIG.Ver(vk,m, σ):
Parse vk = (g1, g2, h, u

′, u1, . . . , un)
Parse σ = (σ1, σ2, s)
t← H(m|σ2);M ← H(gths)
Parse M = m1|m2| . . . |mn ∈ {0, 1}n
If e(σ1, g) = e(σ2, u

′∏n
i=1 u

mi
i) · e(g1, g2):

Return 1
Else: Return 0

Fig. 13: SIG instantiated from the BSW signature scheme [7].

Theorem 7 (From [7]). The BSW signature scheme is sEUF-CMA secure if
the CDH assumption holds over G′.

44

C.3 Instantiations of MAC

We instantiate our MAC with the BKPW-MAC scheme in [10], where the secret
key space is K = Z3

q and the tag space is Σ = G3. The the BKPW-MAC scheme
is shown in Figure 14.

MAC.Tag(sk,m):
Parse sk = (ω, x, x′) ∈ Z3

q

u ←$ G; v1 := uω;
`← H(u, v1,m)

v2 := ux`+x
′

σ := (u, v1, v2)
Return σ

MAC.Ver(sk,m, σ):
Parse sk = (ω, x, x′) ∈ Z3

q

Parse σ = (u, v1, v2)
If uω 6= v1: Return 0
`← H(u, v1,m)

If ux`+x
′
6= v2: Return 0

Return 1

Fig. 14: MAC instantiated from the BKPW-MAC scheme [10].

Theorem 8. [10] The BKPW-MAC scheme is sEUF-CMA 6 secure if the DDH
assumption holds over G.

C.4 Instantiation of PRG

We instantiate our PRG with the FSS-PRG scheme [11], where PRG : Zq → Z5
q.

The FSS-PRG scheme is described in Figure 15.

PRG.Setup(1λ):
(G, q, g)← GGen(1λ)
x, y ←$ G
Return pp := (G, q, g, x, y)

Eval(pp, seed ∈ Zq):
For i = 1 to 5 do:

zi ← enum(yseed)

seed← enum(xseed)
Return z1| . . . |z5

Fig. 15: PRG instantiated from the FSS-PRG scheme [11].

Theorem 9. [11] The FSS-PRG scheme is pseudo-random if the DDH assump-
tion holds over G.

C.5 Instantiations of Symmetric Encryption

Note that in our generic construction, each secret key is used only once. So we
can use one time pad as our SE scheme, where the secret key space K, the plain
text spaceM and the cipher text space C are the same: K =M = C = Zq.
6 [10] proved the scheme in EUF-CMA model. In fact, their proof implies the scheme
can be sEUF-CMA secure.

45

– SEnc(k,m) : return ciphertext c := m+ k mod q.
– SDec(k, c) : return plaintext m := c− k mod q.

Theorem 10. The SE scheme is semantic secure.

Proof. For all m0,m1 ∈M = Zq, the ciphertext cb = mb + k is uniform over Zq
for b ∈ {0, 1}, as long as k ←$ Zq. As a result c0 ≡ c1 for all m0,m1 ∈ Zq. �

Theorem 11. The SE scheme has ciphertext diversity.

Proof. For all c0 6= c1 ∈ C = Zq, for all k ∈ K = Zq, we have

SDec(k, c0) = c0 − k 6= c1 − k = SDec(k, c1).

�

C.6 Instantiation of PPAKE

Following the generic construction of PPAKE in Figure 7 to assemble the instan-
tiations of the building blocks shown in previous subsections, we immediately
obtain a specific 3-round PPAKE scheme based on the DDH and CDH assump-
tions in the standard model. See Figure 16 for more details.

Note that we take advantage of bijection enum to map group elements G to
elements in Zq.

We analyze the communication complexity of the PPAKE scheme in Fig.
16 as follows. The first round-message of the protocol consists of (pkotKEM, C1),
where pkotKEM is one group element in G and the ciphertext C1 from KEM con-
tains 3 group elements in G. The second round-message of the protocol consists
of (C2, σ1), where the ciphertext C2 from otKEM contains 1 group element in G,
and the tag contains 3 group elements in G. The third round of the protocol is
c, which is the ciphertext of SE encrypting (i, σ2). i ∈ Zq is user identity and the
signature σ2 from SIG contains 2 group elements from G′ and one element from
Zq. Hence the third round-message is an encryption of two G′ elements and two
Zq elements. In total, there are 8G + 2G′ + 2Zq elements.

We stress that our PPAKE is robust, the total communication complexity is
independent of the users number in the system. The above analyze shows that
there are only 12 elements in total.

Finally, by Theorem 1, we have the following corollary.

Corollary 4. Our PPAKE scheme in Fig. 16 has explicit authentication, for-
ward security for session key and forward privacy for user identity in the stan-
dard model if the DDH assumption holds over G and the CDH assumption holds
over G′.

46

PPAKE.Setup(1λ):
(G, q, g)← GGen(1λ)
g1, g2 ←$ G
(Ĝ, q̂, ĝ, e)← PGGen(1λ)
H ←$ H; H : {0, 1}∗ → Zq
H′ ←$ H′; H′ : {0, 1}∗ → {0, 1}n
X,Y ←$ G
ppPPAKE := (G, q, g, g1, g2, Ĝ, q̂, ĝ, e,H,H′, X, Y, n)
Return ppPPAKE

PPAKE.Gen(ppPPAKE, Pi) :

x1, x2, y1, y2, z1, z2 ←$ Zq
c := gx11 gx22 ; d := gy11 gy22 ; o := gz11 gz22

pki := (c, d, o); ski := (x1, x2, y1, y2, z1, z2)
α ←$ Zq̂; ĝ1 := ĝα

ĝ2, ĥ, û′, û1, . . . , ûn ←$ Ĝ
vki := (ĝ1, ĝ2, ĥ, û′, û1, . . . , ûn)
sski := ĝ2

α

Return ((pki, vki), (ski, sski))

PRG(seed):
seed := enum(seed)
For i = 1 to 5 do:

zi ← enum(Y seed)

seed := enum(Xseed)
Return z1| . . . |z5

PPAKE.Protocol(Pi
 Pj) :

//Pi generates the first message to Pj
Ψi := ∅;ki := ∅;sti := ∅
Parse pkj := (c, d, o)
r ← Zq
u1 := gr1 ;u2 := gr2
α← H(u1, u2); v := crdαr

C1 := (u1, u2, v);N := or

x ←$ Z∗q ;w := gx

pkotKEM := w; skotKEM := x
sti := {pkotKEM, skotKEM, N,C1}
Send(pkotKEM, C1)

PPAKE.Protocol(Pi
 Pj) :

//Pj receives the first message and generates the second message
Ψj := ∅;kj := ∅;stj := ∅
Parse C1 = (u1, u2, v)
Parse skj = (x1, x2, y1, y2, z1, z2)
α := H(u1, u2)

If ux1+αy1
1 ux2+αy2

2 6= v:
abort

N ′ := uz11 u
z2
2

y ←$ Z∗q
C2 := gy;K := pkyotKEM
m := pkotKEM|C1|C2

ω|x̄1|x̄2|Zq|Zq ← PRG(N ′)
u← G; v1 := uω

`← H(u, v1,m)

v2 := ux̄1`+x̄2

σ1 := (u, v1, v2)
stj := {pkotKEM, C1, C2, N

′,K, σ1}
Send(C2, σ1)

PPAKE.Protocol(Pi
 Pj) :

//Pi receives the second message and generates the third message
Parse sti := {pkotKEM, skotKEM, N,C1}
ω|x̄1|x̄2|Zq|Zq ← PRG(N)
Parse σ1 = (u, v1, v2)
If uω 6= v1:

Ψi := reject
Return ⊥

`← H(u, v1,m)

If ux̄1`+x̄2 6= v2:
Ψi := reject
Return ⊥

m := pkotKEM|C1|C2|σ1

Parse vki := ĝ1, ĝ2, ĥ, û′, û1, . . . , ûn
r, s ←$ Zq̂; s2 := ĝr

t← H′(m|s2) ∈ {0, 1}n

M ← H′(ĝtĥs)
Parse M = m1|m2| . . . |mn ∈ {0, 1}n

s1 := sski · (û′
∏n
i=1 ûi

mi)r

σ2 := (s1, s2, s)

K′ := C
skotKEM
2

k̄1|k̄2|k̄3|k̄4|ki ← PRG(K′)
k̄ := k̄1|k̄2|k̄3|k̄4

c := (k̄1 + i)|(k̄2 + s1)|(k̄3 + s2)|(k̄4 + s)
Send(c)
Ψi := accept
Return (Ψi, ki)

PPAKE.Protocol(Pi
 Pj) :

//Pj receives the third message
Parse stj := {pkotKEM, C1, C2, N

′,K, σ1}
Parse c := c1|c2|c3|c4
k̄1|k̄2|k̄3|k̄4|kj ← PRG(K)
k̄′ := k̄1|k̄2|k̄3|k̄4

i′|s1|s2|s := (c1 − k̄1)|(c2 − k̄2)|(c3 − k̄3)|(c4 − k̄4)
m := pkotKEM|C1|C2|σ1

Parse vki′ = (ĝ1, ĝ2, ĥ, û′, û1, . . . , ûn)
t← H′(m|s2) ∈ {0, 1}n

M ← H′(ĝtĥs)
Parse M = m1|m2| . . . |mn ∈ {0, 1}n

If e(s1, ĝ) 6= e(s2, û′
∏n
i=1 ûi

mi) · e(ĝ1, ĝ2) :
Ψj := reject
Return ⊥

Ψj := accept
Return (Ψj , kj)

Fig. 16: The specific PPAKE scheme from DDH and CDH.

	 Privacy-Preserving Authenticated Key Exchange in the Standard Model
	Introduction
	Preliminary
	Key Encapsulation Mechanism
	Digital Signature
	Message Authentication Code
	Pseudo-Random Generator
	Symmetric Encryption

	Privacy-Preserving Authenticated Key Exchange
	Definition of Privacy-Preserving Authenticated Key Exchange
	Security Model and Security Definitions for PPAKE

	Generic Construction of PPAKE and Its Security Proof
	Instantiations of PPAKE
	Assumptions: DDH and CDH
	The Omitted Proofs
	The proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Instantiations of the Building Blocks for PPAKE
	Instantiations of otKEM
	Instantiations of SIG
	Instantiations of MAC
	Instantiation of PRG
	Instantiations of Symmetric Encryption
	Instantiation of PPAKE

