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Abstract. Bit commitment (BC) is one of the most important funda-
mental protocols in secure multi-party computation. However, it is gen-
erally believed that unconditionally secure bit commitment is impossible
even with quantum resources. In this paper, we design a secure non-
interactive bit commitment protocol by exploiting the no-communication
theorem of the quantum entangled states, whose security relies on the
indistinguishability of whether the Bell states are measured or not. The
proposed quantum bit commitment (QBC) is secure against classical
adversaries with unlimited computing power, and the probability of a
successful attack by quantum adversaries decreases exponentially as n
(the number of qubits in a group) increases.
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1 Introduction

The concept of bit commitment, first introduced by Blum [4] in 1982, is an
important primitive in cryptography that can be used to construct protocols
such as zero-knowledge proofs, verifiable secret sharing, and coin tossing. Bit
commitment and obvious transfer protocols together form the basis of secure
multi-party computation. Numerous complex secure multi-party computation
schemes, as well as practical application protocols, can be constructed based on
them.

A simple version of the bit commitment is: In the first phase, Alice chooses a
bit x = 0 (or 1), and sends the corresponding information y to Bob. In the second
phase, Alice provides the evidence π, and Bob verifies Alice’s choice x according
to y and π. The key to the problem is that, on the one hand, Alice cannot modify
the value of x once she has chosen the bit, or Alice cannot successfully cheat to
make Bob pass the verification if she changes the value of x. On the other hand,
Bob cannot get any information about x based on y. The point, therefore, is to



lock Alice’s choice and make sure that Bob cannot get any information about
Alice’s choice based on publicly available information.

Classical bit commitment schemes [4,10] are based on certain complexity-
theoretic assumptions and thus invariably make restrictive assumptions on the
computational power of the committer (prover) or verifier. No classical bit com-
mitment protocol can achieve unconditional security in terms of both hiding and
binding. Fortunately, the development of quantum information technology has
provided new ideas and approaches to cryptography, using properties unique
to quantum, such as quantum superposition, quantum entanglement, quantum
uncertainty principle, quantum no-cloning theorem, etc., which make it pos-
sible for us to design unconditionally secure cryptographic protocols, such as
BB84. A cryptosystem is unconditionally secure (often used interchangeably
with information-theoretically secure) if it cannot be broken by an adversary
with unlimited computational power, and its security is solely based on informa-
tion theory. Rather than being based on computational complexity theory, such
security proofs must be based on information theory (e.g., probability theory) or
physical laws. A bit commitment protocol is said to be unconditionally secure if
it meets both hiding and binding requirements and does not make any restrictive
assumptions about the attacker’s computing power.

Unfortunately, Mayers [15], Lo and Chau [13,14] successfully demonstrated
that all the previously proposed quantum bit commitment (QBC) protocols
are not unconditionally secure, because the sender, Alice, can almost always
successfully cheat by delaying her measurement until she opens her commit-
ment using an Einstein–Podolsky–Rosen (EPR) type of attack. It resulted in a
widespread acceptance of the non-existence of unconditionally secure quantum
bit commitment [19]. The Mayers–Lo–Chau (MLC) no-go theorem (based on
the Hughston–Jozsa–Wootters (HJW) theorem [11,12]) proves that any finite
set compatible with a given density operator can be obtained from a fixed initial
state by operations on space-like separation systems. The theorem holds true
for two systems α ⊗ β with exactly the same density matrix and tensor into
the same subspace. The MLC no-go theorem show that the two basic security
requirements (hiding and binding) of quantum bit commitment are inconsistent.

In this paper, we design a secure non-interactive bit commitment protocol.
The protocol is secure against classical adversaries with unlimited computational
power, and the probability of a successful attack by quantum adversaries (us-
ing the MLC-based attack strategy) decreases exponentially as n (the number
of quantum bits in a set) increases. Rather than using the quantum entangle-
ment property directly, we generalize the no-communication theorem for the
entangled states to the Bell states. The hiding of the protocol relies on the no-
communication theorem of the quantum entangled states (also the impossibility
of faster-than-light (FTL) communication) and the quantum no-cloning theorem.
Moreover, the binding of the protocol relies on the non-local effect of entangled
systems and the principle of quantum superposition. In fact, we consider the
following case: Alice is required to choose either a non-entangled state (x = 0)
or an entangled state (x = 1) as evidence in the first stage. When Alice sends
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a non-entangled state to Bob in the first stage, she will not be able to convince
Bob that the state of evidence is a subsystem of an entangled state. Meanwhile,
when Alice sends an entangled state to Bob in the first stage, she will not be
able to convince Bob that these are pure states encoding certain information.
Moreover, we make it possible to bind the commitment bit without leaking the
value by a subtle connection of binary addition.

To this end, the structure of the paper is as follows: Section 2 will intro-
duce the basic tools used to design the new scheme, and we will extend the
no-communication theorem for the entangled states to the Bell states. Section
3 will design a new quantum bit commitment based on the quantum no-cloning
theorem, the no-communication theorem, and the quantum entanglement prop-
erties. Section 4 will prove and analyze the hiding and binding properties of the
new protocol respectively. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we will introduce quantum entanglement, no-communication the-
orem, and quantum conjugate coding as the basic tools that will be used in the
proposed protocol.

2.1 Quantum Entanglement

In 1935, Schrödinger explicitly mentioned the concept of entanglement in his fa-
mous paper on “Schrödinger’s cat” [18]. The definition of the quantum entangled
state of the two subsystems is: for the quantum system composed of two subsys-
tems p and q, if the state vector of the whole system |ψ(p, q)⟩ cannot be written
into the direct product form of the state vector of the subsystem |ψ(p)⟩⊗ |ψ(q)⟩,
the state |ψ(p, q)⟩ is called entangled state, and the two subsystems p and q
are called entangled. The two-bit logic gate for quantum computing is usually
referred to as the controlled-NOT gate (CNOT).

According to the theory of quantum mechanics, the pair of Bell qubits as a
quantum system can be in the following quantum states (called Bell states or
EPR pairs): |ϕpq⟩ = 1√

2
(|↑⟩p |↑⟩q + |↓⟩p |↓⟩q). Wherein |↑⟩p and |↓⟩p represent

the spin-up and spin-down eigenstates of qubit p respectively, while |↑⟩q, |↓⟩q
represent the spin-up and spin-down eigenstates of qubit q respectively. This is
actually a quantum entangled state. For the system of states |ϕpq⟩, it is predicted
that the probability of a qubit p (or q) being measured spin up (or down) alone is
1/2, but once the spin of qubit p is measured spin up (or down), the spin of qubit
q must be spin up (or down). That is, the measurement outcomes are correlated.
No matter how far apart the two qubits are, they are in this interconnected state,
which is the non-local effect (or called the EPR effect) of quantum mechanics.
The measurement correlations in the Bell state are stronger than could ever exist
between classical systems. Quantum entanglement has wonderful non-classical
properties and is an extremely important resource for information processing.

3



2.2 No-communication Theorem

The Bell states |βxy⟩ ≜ 1√
2
(|(0, y)⟩ + (−1)x|1, y⟩) where y is the negation of y

and x, y ∈ {0, 1}, are specific quantum states of two qubits that represent the
simplest (and maximal) examples of quantum entanglement. Although quan-
tum entanglement shows incredible effects, certain events that are far apart
can somehow be correlated, which strongly implies that communication between
entangled quantums may be faster than the speed of light, thus making faster-
than-light communication possible. However, the no-communication theorem (or
no-signaling principle) gives conditions under which FTL communication be-
tween two observers is not possible using entanglement. These results can be
used to understand so-called paradoxes in quantum mechanics, such as the EPR
paradox, or violations of local realism obtained in the tests of Bell’s theorem.
The no-communication theorem shows that the failure of local realism does not
lead to the so-called “spooky communication at a distance”. Further, we have
the following no-communication Theorem, the proof of which can be referred to
[6,9,17].

Theorem 1 (No-communication Theorem). During measurement of an en-
tangled quantum state, it is not possible for one observer, by making a measure-
ment of a subsystem of the total state, to communicate information to another
observer.

The fundamental assumption underlying the theorem is that a quantum-
mechanical system is prepared in an initial state that can be described as a mixed
or pure state in a Hilbert space H. The system then evolves over time in such a
way that two spatially distinct parts, a and b, are sent to two distinct observers,
Alice and Bob, who are free to perform quantum mechanical measurements on
their respective portions of the total system (viz, a and b). The question is
whether Alice can perform any action on a that would be detectable by Bob
observing b. The theorem responds, ‘no’.

The proof proceeds by defining how the total Hilbert spaceH can be split into
two parts, Ha and Hb, describing the subspaces accessible to Alice and Bob. The
total state of the system is assumed to be described by a density matrix σ [17].
This appears to be a reasonable assumption, as a density matrix is sufficient to
describe both pure and mixed states in quantum mechanics. Another important
part of the theorem is that measurement is performed by applying a generalized
projection operator P to the state σ. After a measurement by Alice, the state
of the total system is said to have collapsed to a state P (σ).

The goal of the theorem is to show that Bob cannot distinguish between the
pre-measurement state σ and the post-measurement state P (σ). This is accom-
plished mathematically by comparing the traces of σ and P (σ), with the trace
being taken over the subspace Ha. Because the trace only spans a subspace, it
is technically referred to as a partial trace. The assumption that the (partial)
trace adequately summarizes the system from Bob’s perspective is critical to
this step. That is, a partial trace over Ha of the system σ completely describes
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everything that Bob has access to, or could ever have access to, measure, or de-
tect. The fact that this trace never changes as Alice performs her measurements
is the conclusion of the proof of the no-communication theorem. Simply put, the
theorem states that given some initial state, prepared and shared in some way,
Bob cannot detect which actions Alice takes.

To facilitate the application of the no-communication theorem, we generalize
it to the Bell states. According to the no-communication theorem, we have the
following fact: Suppose Alice and Bob each get a qubit from a Bell state, and
without further information exchange, neither can tell afterwards whether the
other has measured the qubit at hand.

Theorem 2. Let (p, q) denote a Bell state, where p denotes one qubit of the
Bell state and q denotes the other one. Given the qubit p, there is no way to
determine afterwards whether q has been measured or not.

It is clear that Theorem 2 can be seen as a specific instance of Theorem
1, since the qubits owned by Alice and Bob respectively are subsystems of the
whole entangled state. In fact, considered from another perspective, if Theorem
2 does not hold, it will immediately lead to FTL communication. Moreover, we
have the following corollary.

Corollary 1. Alice and Bob share n Bell states, i.e., they each take one qubit
from each Bell state. Then Alice has two choices, Alice either measures all n
qubits in her hand or does not measure any qubit and keep the entangled states.
If there is no further information exchange between them, then there is no way
for Bob to determine Alice’s choice.

Again, since the qubits owned by Alice and Bob are subsystems of the whole
system, it is not possible to determine whether the other has measured the
qubits in hand or not, which would otherwise lead to the conclusion that they
can communicate by measuring the subsystems, which is contrary to Theorem 1.
Furthermore, according to Theorem 2, we have the following indistinguishability
theorem. That is, given an unknown state, it is impossible to determine whether
it is a subsystem of an entangled state or a non-entangled state.

Theorem 3 (Indistinguishability Theorem). Let (p, q) denote a Bell state,
where p denotes one qubit of the Bell state and q denotes the other one. Let
{|0⟩, |1⟩} denote the computational basis and {|+⟩, |−⟩} denote the Hadamard ba-
sis. Given an unknown quantum state w ∈ {p, q, |0⟩, |1⟩, |+⟩, |−⟩}, it is impossible
to determine whether it belongs to the set {p, q} or to the set {|0⟩, |1⟩, |+⟩, |−⟩}.

Obviously, the disproof of Theorem 3 will lead to the disproof of Theorem 2.
Furthermore, according to Theorem 3, we have the following corollary.

Corollary 2. Let (ai, bi) ≜ |00⟩+|11⟩√
2

(1 ≤ i ≤ n) denotes n Bell states, where

ai denotes one qubit of the ith Bell state and bi denotes the other one. Let a ≜
[a1, a2, ..., an] and b ≜ [b1, b2, ..., bn]. That is, the n Bell states are divided into
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two sets of qubit sequences a and b. Let c ≜ [c1, c2, ..., cn] denote a qubit sequence,
where each ci is a randomly selected qubit from the set {|0⟩, |1⟩, |+⟩, |−⟩}. Given
an unknown qubit sequence d ∈ {a, c}, it is impossible to determine whether
d = a or d = c.

The bit commitment protocol proposed in this paper essentially relies on
Theorem 3 and Corollary 2.

2.3 Quantum Conjugate Coding

Quantum conjugate coding as a cryptographic tool was introduced by Wiesner
[20] in the late 1960s, along with two applications: making money that is in prin-
ciple impossible to counterfeit, and multiplexing two or three messages in such
a way that only one can be read. The initial concept of quantum cryptography
developed by Bennett and Brassard [2] was also based on this concept.

In order to encode a bit m1 ∈ {0, 1} into a qubit that can be read or copied
reliably only with the help of a key bit k1 ∈ {0, 1}, we generate a qubit with a
selected one of the four polarization directions 0, 45, 90 and 135 degrees.

Definition 1 (Quantum Conjugate Encoding [3]). The quantum encoding
Qk(m) of a message m by a key k of equal length is the train of qubits obtained
by applying the above procedure bitwise to m and k.

Suppose an eavesdropper intercepts and attempts to read a quantum trans-
mission Qk(m) without being detected. Consider first the case in which the
message m and key k are both random, where m, k ∈ {0, 1}n. Not knowing k,
the eavesdropper makes the wrong measurement on half the qubits, and thus
obtains a message m′ differing from m in 1/4 of its bit positions (of course the
eavesdropper does not know which ones). Even if ki is correctly picked and the
correct mi is returned, without knowing m in advance, a random message with
random errors still looks random.

3 New Quantum Bit Commitment

Bit commitment was first proposed by Blum [4] in 1982. Bit commitment is a
cryptographic task that requires two parties, Alice and Bob, who do not trust
each other and do not communicate face-to-face, to make a one-bit (x = 0 or
1) commitment from Alice to Bob and reach a consensus between them without
the help of a third party. Furthermore, a bit commitment scheme generally has
the following properties:

Correctness: If both Alice and Bob execute the protocol honestly, then Bob
will receive the committed bit x correctly in the opening phase.

Hiding : Bob should not be able to identify the bit x that Alice committed
until she reveals it. If Bob has probability 1/2+ϵ of being able to obtain the
correct committed bit x before the opening phase, then ϵ can be made arbitrarily
(or exponentially) small by increasing the input size n of the protocol.
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Binding : Alice should not be able to alter the value of the bit x once she has
committed. The probability of Alice’s successful cheating is bounded by ϵ, where
ϵ can be made arbitrarily (or exponentially) small by increasing the input size
n of the protocol.

We refer to a bit commitment protocol as unconditionally secure if it can
satisfy both hiding and binding without limitations on the computing power of
the adversary. Previous classical protocols to tackle this problem were based on
unproven assumptions in computational complexity theory, which made them
vulnerable to breakthroughs in algorithm design and quantum computers. For
quantum bit commitments, based on the MLC attack strategy, Alice prepares
suitable entangled quantum states during the commit phase and is always able
to change the commitment through the subsystem she accesses during the open
phase.

Here, we consider designing a non-interactive quantum bit commitment pro-
tocol. The protocol is able to resist classical adversaries with unlimited comput-
ing power, and the probability that quantum adversaries can cheat successfully
using the MLC attack strategy decreases exponentially as n increases. The basic

idea is as follows: Alice generates n Bell states denoted as (ai, bi) = |00⟩+|11⟩√
2

with 1 ≤ i ≤ n, where ai denotes one qubit of the ith Bell state and bi denotes
the other one. Alice has two choices, one (e.g., x = 0) is to measure all ai’s of
the Bell states, and the other (x = 1) is not to measure and keep the entangled
states. Alice then keeps all bi’s and sends all ai’s to Bob with 1 ≤ i ≤ n. This
process is equivalent to: Alice and Bob share n Bell states, i.e., they each take
one qubit from each Bell state, and then Alice has two choices, Alice either mea-
sures all qubits in her hand or does not measure and keep the entangled states.
Therefore, if there is no further information exchange between Alice and Bob,
then according to the no-communication theorem, there is no way for Bob to
determine Alice’s choice.

Furthermore, if Alice chooses x = 0, to prevent Alice from denying her choice
later, Alice needs to encode certain information into qubits as evidence and send
it to Bob. We will show that Alice cannot change the value of x after she has
chosen x = 0 or 1. Bob cannot obtain any information about x based on the
qubits he received. Moreover, he can verify the value of x based on the proofs
provided by Alice.

Let |0⟩ , |+⟩ , |1⟩ , |−⟩ be the four states of light polarization of an-
gles 0°, 45°, 90°, 135°. For simplicity, we denote these four states as
|0, 0⟩ , |1, 0⟩ , |0, 1⟩ , |1, 1⟩ . If the key bit is 0, then the qubit is polarized com-
putationally at 0 or 90 degrees according to whether the message bit is 0 or 1.
If the key bit is 1, then the qubit is polarized Hadamardly at 45 or 135 degrees
according to the message bit. The framework of the proposed non-interactive
quantum bit commitment protocol is shown in Fig. 1. For the sake of simplicity,
we suppose that the quantum operations and communications are error-free in
the proposed protocol. In more detail, we describe the protocol as follows.

Commit Phase
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               Alice                                                                                                              Bob

Commit Phase

Opening Phase

2. Measure sequence :
    .

(a, c)
(a, c) → ( , , , )r′

1 r′
3 r′

4 r′
5

3. Open commitment and 
    send evidence

1. Choose , prepare and
    send 

x

(a, c)

x = 0, ( , , , , )r1 r2 r3 C1n C2n

or x = 1, (b,d)

(a, c)

:x = 0 Check  
with ; 

( , , , , )r1 r2 r3 C1n C2n

( , , , )r′
1 r′

3 r′
4 r′

5

Check  
with . 

(b,d)
( , , , )r′

1 r′
3 r′

4 r′
5

4. Verify  with the evidence: x

:x = 1

Fig. 1. The Framework of the New Bit Commitment Protocol

Alice has two choices: commit to x = 0 or commit to x = 1. We refer to
these two commitments as Non-Entanglement Commitment (e.g., x = 0) and
Entanglement Commitment (x = 1), respectively. Alice needs to complete dif-
ferent procedures under the two different commitments. We describe the steps
for each of these two commitments, respectively, as follows.

Non-Entanglement Commitment (x = 0):

1) Alice generates three n-bit (n > 1, e.g. n = 1000) random numbers:
r1 ≜ r11r12...r1n, r2 ≜ r21r22...r2n and r3 ≜ r31r32...r3n. Let r4 ≜ r41r42...r4n =
r2+r3+C1n and r5 ≜ r51r52...r5n = r1+r2+C2n, i,e., r1+r4+C2n = r3+r5+C1n,
where + denotes the full adder (with respect to +, assume r21 is the highest bit
and r2n is the lowest bit), and C1n (also C2n) can be either 0 or 1 with an equal
probability of 1/2. As shown in the Fig. 2.

      Carried digits 
                
 +             
 +                                    
------------------------------------------
               

. . . .C20C21C22 C2(n−1)

  . . . . . . . .r11 r12 r1n r1

  . . . . . . . .r41 r42 r4n r4

C2n C2n

    . . . . . . . .r21 r22 r2n r2

           
         
         
 ------------------------------- 
               

. . . . . . . .C21C22 C2n C2

⊕   . . . . . . . .  r11 r12 r1n r1

⊕   . . . . . . . .  r41 r42 r4n r4

  . . . . . . . .  r21 r22 r2n r2

Likewise
Full Adder

      Carried digits 
                
 +             
 +                                    
------------------------------------------
               

. . . .C10C11C12 C1(n−1)

  . . . . . . . .r31 r32 r3n r3

  . . . . . . . .r51 r52 r5n r5

C1n C1n

    . . . . . . . .r21 r22 r2n r2

           
         
         
 ------------------------------- 
               

. . . . . . . .C11C12 C1n C1

⊕   . . . . . . . .  r31 r32 r3n r3

⊕   . . . . . . . .  r51 r52 r5n r5

  . . . . . . . .  r21 r22 r2n r2

Likewise
Full Adder

Fig. 2. Derived Form with Carry Digits
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2)
n

DO
i=1

Alice picks the bit r4i and makes a qubit ai with polarization |r1i, r4i⟩ .

3)
n

DO
i=1

Alice picks the bit r5i and makes a qubit ci with polarization |r3i, r5i⟩ .

4) Let (a, c) ≜ [a1, a2, ..., an, c1, c2, ..., cn]. Alice sends (a, c) as the commit-
ment information to Bob via the quantum channel.

Entanglement Commitment (x = 1):

1) Alice generates n Bell states denoted as (ai, bi) ≜
|00⟩+|11⟩√

2
with 1 ≤ i ≤ n,

where ai denotes one qubit of the ith Bell state and bi denotes the other one. Let
a ≜ [a1, a2, ..., an] and b ≜ [b1, b2, ..., bn]. Generates another n Bell states denoted

as (ci, di) ≜
|00⟩+|11⟩√

2
with 1 ≤ i ≤ n. Let c ≜ [c1, c2, ..., cn] and d ≜ [d1, d2, ..., dn].

2) Let (a, c) ≜ [a1, a2, ..., an, c1, c2, ..., cn]. Alice sends (a, c) as the commit-
ment information to Bob via the quantum channel.

Subsequently, once Bob receives the qubit sequence of (a, c), he randomly
selects the computational basis or the Hadamard basis for each received qubit
to perform the measurement and records the measurement results. The specific
steps are as follows.

1) Bob generates two n-bit random numbers r′1 ≜ r′11r
′
12...r

′
1n and r′3 ≜

r′31r
′
32...r

′
3n.

2)
n

DO
i=1

Bob measures ai with the computational basis if r′1i = 0, otherwise

Bob measures ai with the Hadamard basis. Record r′4i = 0 if the measurement
result belongs to {|0⟩, |+⟩}, and record r′4i = 1 if the measurement result belongs
to {|1⟩, |−⟩}.

3)
n

DO
i=1

Bob measures ci with the computational basis if r′3i = 0, otherwise

Bob measures ci with the Hadamard basis. Record r′5i = 0 if the measurement
result belongs to {|0⟩, |+⟩}, and record r′5i = 1 if the measurement result belongs
to {|1⟩, |−⟩}.

4) Let r′2 ≜ r′41r
′
42...r

′
4n and r′5 ≜ r′51r

′
52...r

′
5n. Therefore, Bob gets the quadru-

ple (r′1, r
′
3, r

′
4, r

′
5).

This is the end of the commit phase. Concerning the polarization bases cho-
sen independently by Alice and Bob, the protocol requires that they follow the
randomization principle.

Opening Phase

According to Alice’s Non-Entanglement Commitment (x = 0) and Entan-
glement Commitment (x = 1), correspondingly, we will describe two different
cases in the opening phase: Non-Entanglement Check and Entanglement Check,
respectively. The specific steps are as follows.

Non-Entanglement Check (x = 0):

1) Alice opens her commitment x = 0 to Bob by sending him the quadruple
(r1, r2, r3, C1n, C2n).

2) Bob computes r4 ≜ r41r42...r4n = r2 + r3 + C1n and r5 ≜ r51r52...r5n =
r1 + r2 + C2n. Bob will accept the choice x = 0 only if the two quadruples
(r1, r3, r4, r5) and (r′1, r

′
3, r

′
4, r

′
5) meet both of the following two requirements:
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2.1) For all i, r′4i = r4i if r
′
1i = r1i;

2.2) For all i, r′5i = r5i if r
′
3i = r3i.

Entanglement Check (x = 1):

1) Alice opens her commitment x = 1 by sending qubit sequence (b, d) ≜
[b1, b2, ...bn, d1, d2, ..., dn] to Bob.

2)
n

DO
i=1

Bob measures bi with the computational basis if r′1i = 0, otherwise

Bob measures bi with the Hadamard basis. Record r′′4i = 0 if the measurement
result belongs to {|0⟩, |+⟩}, and record r′′4i = 1 if the measurement result belongs
to {|1⟩, |−⟩}.

3)
n

DO
i=1

Bob measures di with the computational basis if r′3i = 0, otherwise

Bob measures di with the Hadamard basis. Record r′′5i = 0 if the measurement
result belongs to {|0⟩, |+⟩}, and record r′′5i = 1 if the measurement result belongs
to {|1⟩, |−⟩}.

4) Let r′′4 ≜ r′′41r
′′
42...r

′′
4n and r′′5 ≜ r′′51r

′′
52...r

′′
5n. Bob will accept the choice

x = 1 only if the quadruple (r′4, r
′′
4 , r

′
5, r

′′
5 ) meets both of the following two

requirements:
4.1) For all i, r′′4i = r′4i;
4.2) For all i, r′′5i = r′5i.

This is the end of the opening phase, and also the end of the whole bit
commitment protocol. We will show that Bob can not obtain anything about x
before the opening phase. One key point is that, with the help of C1n (also C2n),
each bit of C1 (also C2) can be either 0 or 1 with the same probability of 1/2, so
C1 (also C2) is a totally random number for Bob. Hence, the mutual information
of r4 and r5 is 0. Moreover, Alice can not tamper with x, once the commit phase is
finished. In particular, we will analyze the new protocol from three perspectives:
Correctness, Hiding and Binding, respectively.

As mentioned above, if Alice chooses x = 0, to prevent Alice from denying her
choice later, she needs to encode certain information into qubits as evidence and
send it to Bob. The main ideas of the protocol: Let’s suppose that the protocol is
directly disclosed r2 = F (r1, r4) (disguised r2 is disclosed in the choice of x = 1),
such that the protocol is binding, but not sufficiently hiding. To achieve the goal
that r2 is committed by Alice and is unknown to Bob, we adopt the strategy
of encoding certain information r2 = F (r3, r5) into the auxiliary sequence c.
Based on the quantum no-cloning theorem, Bob knows nothing about C2 where
C2i = f(r1(i+1), r4(i+1), r2(i+1)) = r1i ⊕ r4i ⊕ r2i. That is, Bob is not sure about
the connection between bi and bi+1 (also ci and ci+1). Given this, Bob could
analyze only for each quantum pair [bi, ci].

Correctness: If Alice and Bob behave as described in this protocol, Bob will
always receive the correct commitment bit in the opening phase. For different
commitment bits, Alice needs to provide different validation information in the
opening phase. When Alice commits x = 0, she needs to provide a 3n + 2-bit
string to Bob for the Non-Entanglement Check. But while committing x = 1,
she needs to provide a 2n-qubit state to Bob for the Entanglement Check.
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On the one hand, Alice can provide proof to convince Bob x = 0 if she
had previously chosen x = 0. In this QBC protocol, when Alice chooses x = 0,
then the requirement r4 = r2 + r3 + C1n, r5 = r1 + r2 + C2n needs to be met.
As Bob receives the qubit ai (or ci), he decides, randomly for each qubit and
independently of Alice, whether to measure the qubit with computational basis
or Hadamard basis. In general, Bob obtains the same measurement result from
half the qubits he detects, those for which he guessed the correct polarization
basis. Therefore, Alice can always convince Bob that x = 1 if she publishes the
proof (r1, r2, r3, C1n, C2n) honestly.

On the other hand, Alice can provide proof to convince Bob x = 1 if she
had previously chosen x = 1. Let (p, q) denote a Bell state, where p denotes one
qubit of the Bell state and q denotes the other one. On the theory of quantum
mechanics, the Bell state as a quantum system can be in the following quantum
state: (p, q) ≜ 1√

2
(|0⟩p |0⟩q + |1⟩p |1⟩q) = 1√

2
(|+⟩p |+⟩q + |−⟩p |−⟩q). Once the

measurement result of qubit q belongs to |0⟩ (or |−⟩), then the measurement
result of qubit p must belong to |0⟩ (or |−⟩), and vice versa. Two qubits are in
this interconnected state no matter how far apart they are, and this is the EPR
effect of quantum mechanics as explained in the Section 2.1.

4 Security Analysis and Discussion

4.1 Hiding

If Alice behaves as described in this protocol, her bit is not disclosed to Bob what-
ever he does. In the QBC protocols, there are two quantum states for evidence:
one for x = 0 and another for x = 1. In order to hide x, the density operator of
the evidence state should be almost the same. The reason for this fact is that
quantum ensembles (systems with various possibilities) are characterized by a
density matrix. When two systems are characterized by the same density matrix,
no measurement whatsoever can tell them apart.

Let’s first analyze the density matrices. As previously mentioned in Section
2.4, with respect to r4 = r2 + r3 + C1n, r5 = r1 + r2 + C2n, in terms of a single
bit (full adder), it can be written as the following form S = A⊕B⊕Cin, Cout =
A · B + Cin · (A ⊕ B), i.e., r1i ⊕ r4i ⊕ C2i = r3i ⊕ r5i ⊕ C1i, where C2i =
f(r1(i+1), r4(i+1), r2(i+1)), C1i = f(r3(i+1), r5(i+1), r2(i+1)). Therefore, quantum
pairs [ai, ci] and [ai+1, ci+1] are not independent of each other in the choice of
x = 0.

However, when the choice x = 1 is made, since r1 and r3 follows the ran-
domization principle, each qubit of (a, c) can be regarded as a system consisting
of |0⟩ , |+⟩ , |1⟩ , |−⟩ mixed with an equal probability of 1/4, which has a density
matrix ρmix = 1

2 (|0⟩ ⟨0| + |1⟩ ⟨1|). Let ρBx be the density matrix corresponding
to the mixture (a, c) sent by Alice when classical bit x is committed. Since each
qubit of sequence (a, c) is independent of each other in the choice of x = 1, we
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get ∑
r1i,r4i,r3i,r5i,C1n,C2n

1

N
|ψ⟩ac ⟨ψ|ac = ρB0 ̸= ρB1 =

2n⊗
i=1

ρmin,

where:
N is the normalization constant;
|ψ⟩ac = |r1, r4⟩a ⊗ |r3, r5⟩c ;
|r1, r4⟩a = |r11, r41⟩ ⊗ |r12, r42⟩ ⊗ ...⊗ |r1n, r4n⟩ ;
|r3, r5⟩c = |r31, r51⟩ ⊗ |r32, r52⟩ ⊗ ...⊗ |r3n, r5n⟩ ;∑

is sum up for all r1, r4, r3, r5, C1n, C2n that satisfy the equation r1 + r4 +
C2n = r3 + r5 + C1n.

Here, although ρB0 ̸= ρB1 , the protocol remains in hiding because Bob does
not hold multiple copies of system (a, c). The specific analysis is given below:
In the commit phase, Bob receives the evidence of commitment from Alice in
the form of [a1, a2, ..., an, c1, c2, ..., cn], containing sequence a and sequence c. It
has been shown that the quantum sequence (a, c) is a non-entangled state (each
qubit belongs to the set {|0⟩, |1⟩, |+⟩, |−⟩}) when the choice x = 0, and that the
quantum sequence is a subsystem of the entangled system (each qubit belongs to
the set {p, q}) when the choice x = 1. Assuming that Bob can determine whether
the evidence state is a subsystem of the entangled system, it means that Bob
can tell Alice’s choice. However, as explained in Corollary 2, this is not possible
for Bob.

Given that the above difference in the two commitments fails to be distin-
guished, we will focus on the choice x = 0. In this choice, the quantum sequence
(a, c) is not an arbitrary non-entangled state. The proposed protocol requires
that the polarization bases r1 and r3 and the encoded binary strings r4 and r5
need to meet r1+ r4+C2n = r3+ r5+C1n (adding C1n and C2n to complement
the carry digit for the lowest bit). In general, the key to Bob’s cheating suc-
cessfully lies in determining whether sequence a correlates with sequence c. If a
correlation exists, it indicates that Alice has chosen x = 0; otherwise, it is clas-
sified as having chosen x = 1. Furthermore, we will specifically analyze whether
Bob has a strategy to determine whether the two sequences are associated.

Considering Bob’s possible cheating behaviour, he holds valid information
about the commitment x in the commit phase as (a, c), beyond which there
is no other valid information. As we have learned the commitment x = 0, it
needs to satisfy r1 + r4 + C2n = r3 + r5 + C1n, where C2i = r1(i+1)r4(i+1) +
r1(i+1)r2(i+1) + r2(i+1)r4(i+1). Based on the no-cloning theorem, Bob, who holds
only (r′1, r

′
3, r

′
4, r

′
5), cannot identify any C2i of the bit string C2. Similarly, he

cannot identify any C1i for the reason that C1i = f(r3(i+1), r5(i+1), r2(i+1)).
Therefore, Bob has no strategy to analyze whether quantum pairs [bi, ci] and
[bi+1, ci+1] are associated. Let ρ′x be the density matrix corresponding to the
mixture [bi, ci] sent by Alice when classical bit x is committed. The following
discussion will focus on whether ρ′0 equals ρ′1. With respect to the input param-
eter C2 ≜ C21C22...C2n, it is trivial to get the following theorem according to
the truth table of full adder.
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Theorem 4. A one-bit full-adder adds three one-bit numbers, written as A +
B + Cin, where A and B are the operands, and Cin is a bit carried in from
the previous less-significant stage. Given that the probability of all three one-bit
numbers being 0 or 1 is 1/2, it follows that the probability of the output carry
Cout being 0 or 1 is also 1/2.

For i = n, the probability of r1n, r4n and C2n being 0 or 1 is 1/2, it follows
that the probability of the output carry C2(n−1) being 0 or 1 is also 1/2 based
on Theorem 4. In this case, for i = n − 1, it follows that the probability of the
output carry C2(n−2) being 0 or 1 is also 1/2. And so on, each bit of C2 can
be either 0 or 1 with exactly the same probability of 1/2. In summary, there is
the formula r2 = r1 ⊕ r4 ⊕C2 that holds, where C2 is a totally random number
for Bob. Similarly, there is the formula r2 = r3 ⊕ r5 ⊕ C1 that holds, where
C1 is a totally random number for Bob. In summary, the scheme picks the key
C2 ≜ C21C22...C2n, we get the mutual information of r1i ⊕ r4i and r2i, i.e.,
I0 (r1i ⊕ r4i; r2i) = 0. Additionally, I0 (r3i ⊕ r5i; r2i) = 0, I0 (r4i; r5i) = 0.

In conclusion, there is ρ′0 = ρ′1. As mentioned above, when two systems are
characterized by the same density matrix, no measurement whatsoever can tell
them apart, and the protocol meets hiding.

4.2 Binding

If Bob behaves as described in this protocol, then no matter what Alice does,
she cannot tamper with the commitment in the opening phase. In the proposed
scheme, the preparation of the sequence c forces Alice to make a choice. Specif-
ically, whenever Alice is trying to prepare a sequence c capable of passing the
Non-Entanglement Check, then the sequence a sent with it must not be a mixed
state. The protocol requires that at each round, if r′1i = r1i, r

′
4i must be a re-

sult that Alice can ascertain. In entanglement, one constituent cannot be fully
described without considering the other. If ai is part of an entangled system, in
which case the description of qubit ai is a mixed state, hence it can only commit
to entanglement at this point.

1) On the one hand, if Alice commits to x = 0 honestly in the first
phase, then no matter what Alice does, she cannot tamper with the
commitment to x = 1 in the opening phase.

To begin with, since in the first phase, Alice only prepared sequence (a, c)
and no sequence (b, d), yet pretending to commit x = 1 requires sending se-
quence (b, d) to Bob. In the choice of x = 1, Bob’s main purpose is to verify
the EPR effect of the Bell state, i.e., verify that each qubit of the pair [ai, bi]
(or [ci, di]) belongs to the same state. Therefore, she will copy sequence a based
on the identified data (r1, r4) and the copied sequence a is called the sequence
b. Similarly copying the sequence c as the sequence d. It is easy to see that the
situation would be worse if Alice had submitted not sequence b and sequence
d in the second phase, but a completely new sequence b′ or a new sequence d′.
This is because the match between the sequence (b′, d′) and the sequence (a, c)
is not as good as the match between the sequence (b, d).
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In this case of cheating, Bob will inevitably measure the computational po-
larization of a Hadamard polarization qubit or vice versa. These measurements
(r′4i and r′′4i) are incompatible if r′1i ̸= r1i. Moreover, Alice hopes that these
incompatible measurements will be lucky enough to completely match to pass
the Entanglement Check. This she cannot do reliably because these incompat-
ible measurements are the result of probabilistic behaviour based on quantum
superposition principle. Therefore, this cheating venture required Alice to be not
only lucky but brave, as in the majority of cases, the gamble would have failed
and been detected as cheating. Assuming that the probability of Alice and Bob
choosing the same polarization bases r1i and r′1i is 1/2, then for each bi, the
probability of her getting a lucky victory is

Pr(r′′4i = r′4i) = Pr(r′1i = r1i)× Pr(r′′4i = r′4i|r′1i = r1i)

+Pr(r′1i ̸= r1i)× Pr(r′′4i = r′4i|r′1i ̸= r1i) =
1

2
+

1

2
× 1

2
=

3

4
.

Similarly, for each di, the probability of her getting a lucky win is

Pr(r′′5i = r′5i) = Pr(r′3i = r3i)× Pr(r′′5i = r′5i|r′3i = r3i)

+Pr(r′3i = r3i)× Pr(r′′5i = r′5i|r′3i = r3i) =
3

4
.

To sum up, for all bi and di with i ∈ {1, 2, ..., n}, the probability that she will
get a lucky win is

Pr(Successfully cheating entanglement from non-entanglement) = (
3

4
)2n.

2) On the other hand, if Alice commits to x = 1 honestly in the
first phase, then no matter what Alice does, she cannot tamper with
the commitment to x = 0 in the opening phase.

To begin with, Alice has prepared only sequence (a, b, c, d) when the value
x = 1 is chosen by her, but now needs to send the proof (r1, r2, r3, C1n, C2n) to
convince Bob that x = 0 was her initial choice. In the choice of x = 0, Bob’s main
purpose is to verify whether sequence (a, c) satisfies r1+r4+C2n = r3+r5+C1n.
As mentioned above, the Non-Entanglement Check consists of two steps. In order

to pass the first step of the check, Alice only needs to
n

DO
i=1

pick a bit r1i and

measures bi with computational basis if r1i = 0 and Hadamard basis otherwise.
Record r′′4i = 0 if {|0⟩, |+⟩} as result and r′′4i = 1 if {|1⟩, |−⟩} as result. Once
she has honestly announced outcomes (r1, r

′′
4 ), then the first step of the check

always passes. Therefore the same conclusion can be drawn: once she has honestly
announced outcomes (r3, r

′′
5 ), then the second step of the check always passes.

Further to the above conclusions, it is necessary to describe the Einstein-
Podolsky-Rosen effect [7,1] to show why Alice can always pass the sequence
check. The EPR effect involves the fact that two qubits are always found to have
the same polarization, regardless of the basis used to observe them, provided that
both are on the same basis. In this case, it was not until the opening phase that
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Alice made measurements of the sequence b and sequence d to get the probability
result r′′4 , r

′′
5 . In the opening phase, Bob focuses only on qubits measured on the

same basis, when the polarisations of these qubit pairs happen to always be the
same.

As showed above, we know that Alice will always be able to match Bob’s
quadruple (r′1, r

′
3, r

′
4, r

′
5) as long as she announces (r1, r3, r

′′
4 , r

′′
5 ) honestly. How-

ever, tampering with the choice x = 0, these data also required r1 + r4 +C2n =
r3 + r5 + C1n, which is always not fulfilled. The variables on the left-hand side
of the equation are parameters concerning sequence a, and the variables on the
right-hand side of the equation are parameters concerning sequence c. In this
case of cheating, Alice has a goal to guess which qubit (r1i ̸= r′1i or r3i ̸= r′3i)
Bob does not verify because the qubit’s number at these positions can be stated
by Alice at will without being questioned. This can’t be achieved, therefore
she must consider all the qubits. In order to fulfill the formula above, Alice
would have to provide the proof (r1, r2, ret3, C1n, C2n) → (r1, ret3, r

′′
4 , r

′′
5 ) or

(r1, r2, r3, C1n, C2n) → (r1, r3, r
′′
4 , ret5) that fulfill the requirement instead of

r3 or r′′5 , and each different bit substitution would be rejected probability. In
the above strategy, for example, it ensures that the first requirement is met,
as honestly announced (r1, r

′′
4 ). For example, the calculated quadruple (e.g.

(r1, ret3, r
′′
4 , r

′′
5 )) will meet the requirement of 2.1):

2.1) For all i, r′4i = r′′4i if r
′
1i = r1i;

2.2) For all i, r′5i = r′′5i if r
′
3i = ret3i.

Considering to announce ret5 = r1 + r′′4 − r3 + C2n − C1n, Alice would
provide the proof (r1, r2, r3, C1n, C2n) to pass the verification. The major source
of uncertainty r′′4 is the method used to calculate ret5. Therefore, the values of
the binary strings r′′5 and ret5 are independent of each other, and theoretically
Pr(r′′5i = ret5i) = Pr(r′′5i ̸= ret5i) =

1
2 . A major problem with the experimental

method is that the qubit ci can only pass the check if r′′5i = ret5i. Each difference
in bits (r′′5i ̸= ret5i) has a probability of 1/2 not being detected, and the gamble
will fail and be detected as cheating, i.e.,

Pr(Successful cheat if announce ret5)

= (Pr(r′′5i = ret5i) + Pr(r′′5i ̸= ret5i)× Pr(r3i = r′3i))
n = (

3

4
)n.

Furthermore, considering to announce ret3 = r1+ r
′′
4 − r′′5 +C2n−C1n, Alice

would provide the proof (r1, r2, ret3, C1n, C2n). The major source of uncertainty
r′′4 and r′′5 is the method used to calculate ret3. Theoretically Pr(r3i = ret3i) =
Pr(r3i ̸= ret3i) =

1
2 . Based on the quantum uncertainty principle [16,8], and the

fact that Bob only cares about measurements on the same polarization basis,
there is a higher probability of getting a lucky win. More specifically, purely in
terms of a qubit, it has a probability of 1/2 to pass the check because it is not
cared for by Bob, and on the other hand, it has a probability of 1/2 to collapse
to the desired state. Therefore, for each bit of difference (r3i ̸= ret3i), she has
a higher probability of 3/4 not being detected. A comparison of the two results
reveals that the probability of a lucky win by announcing (r1, r2, ret3, C1n, C2n)
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is higher, i.e.,

Pr(Successful cheat if announce ret3)

= (Pr(r3i = ret3i) + Pr(r3i ̸= ret3i)×
3

4
)n = (

7

8
)n.

The probability can be made arbitrarily small by increasing the security param-
eters n in the protocol.

3) Alice’s cheating based on the MLC attack strategy.
In fact, in addition to preparing the initial state honestly as in the above

method, based on the powerful MLC attack strategy [13,14,15], Alice can also
prepare the appropriate entanglement state by herself to implement the delayed
measurement attack, as follows.

In the commit phase:
Alice prepares the following quantum states:

|ψ⟩abcde =
1

N

∑
r1i,r4i,r3i,r5i,C1n,C2n

|r1, r4⟩a |r1, r4⟩b |r3, r5⟩c |r3, r5⟩d |εr1i,r4i,r3i,r5i,C1n,C2n
⟩e,

where:
N is the normalization constant;∑

is sum up for all r1, r4, r3, r5, C1n, C2n that satisfy the equation r1 + r4 +
C2n = r3 + r5 + C1n;

|r1, r4⟩ = |r11, r41⟩ ⊗ |r12, r42⟩ ⊗ ...⊗ |r1n, r4n⟩ ;
|r3, r5⟩ = |r31, r51⟩ ⊗ |r32, r52⟩ ⊗ ... ⊗ |r3n, r5n⟩ , where |rij , rkl⟩ denotes the

qubit that encodes rkl with rij as the basis. That is, denote |0⟩ , |+⟩ , |1⟩ , |−⟩ as
|0, 0⟩ , |1, 0⟩ , |0, 1⟩ , |1, 1⟩;

{|εr1i,r4i,r3i,r5i,C1n,C2n⟩e} (r1, r4, r3, r5, C1n, C2n taking all possible values) is
a set of orthogonal bases for system e.
Then, Alice sends systems (a, c) to Bob and keeps systems (b, d, e) for herself.

In the opening phase:
If Alice intends to claim that x = 0, it is clear that she only needs to measure

the system e on the basis of {|εr1i,r4i,r3i,r5i,C1n,C2n
⟩e} to know what kind of

r1, r4, r3, r5, C1n, C2n to publish based on the measurement results to successfully
pass Bob’s check.

If Alice intends to claim x = 1, as long as the proposed protocol meets
the hiding condition, i.e., it is impossible to distinguish whether Alice com-
mits x = 0 or x = 1 from the reduced density matrix of systems (a, c) alone,
then, based on the HJW theorem [12], there exists a set of orthogonal bases
{
∣∣ε′r1i,r4i,r3i,r5i,C1n,C2n

〉
e
} with respect to system e such that |ψ⟩abcde can be

rewritten as:

|ψ⟩abcde =
1

N

∑
r1i,r4i,r3i,r5i,C1n,C2n

Ur1i,r4i,r3i,r5i,C1n,C2n

(∣∣Φ+
〉
ab

∣∣Φ+
〉
cd

) ∣∣ε′r1i,r4i,r3i,r5i,C1n,C2n

〉
e
,
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where:
Ur1i,r4i,r3i,r5i,C1n,C2n is the unitary transformation acting only on the system

(b, d);

∣∣Φ+
〉
ab

=
|00⟩a1b1

+ |11⟩a1b1√
2

⊗
|00⟩a2b2

+ |11⟩a2b2√
2

⊗ ...⊗
|00⟩anbn

+ |11⟩anbn√
2

;∣∣Φ+
〉
cd

=
|00⟩c1d1

+ |11⟩c1d1√
2

⊗
|00⟩c2d2

+ |11⟩c2d2√
2

⊗ ...⊗
|00⟩cndn

+ |11⟩cndn√
2

.

Therefore, Alice measures the system e with the basis of
{
∣∣ε′r1i,r4i,r3i,r5i,C1n,C2n

〉
e
}, so that the results of the measurement can be

used to determine what unitary transformation U+
r1i,r4i,r3i,r5i,C1n,C2n

should be
applied to the systems (b, d), i.e., the systems (a, b, c, d) can be transformed into
the form |Φ+⟩ab |Φ+⟩cd. This successfully passes Bob’s check.

The Problem of Preparing the Initial State
In order to prepare the initial state |ψ⟩abcde, first, we make system

{|εr1i,r4i,r3i,r5i,C1n,C2n
⟩e} by Deutsch-Jozsa algorithm. Then, the system e is

further used as control-qubits to complete the preparation of the initial state
|ψ⟩abcde.

The superposition state |φ⟩ is achieved by the Deutsch-Jozsa algorithm tak-
ing all r1, r4, r3, r5, C1n, C2n that satisfy r1 + r4 + C2n = r3 + r5 + C1n:

|φ⟩ = 1√
2k

∑
x∈{0,1}k

|x⟩ |f (x)⟩,

where:
k = 4n+ 2, x = r1||r4||r3||r5||C1n||C2n;
f(x) = y1 ∨ y2 ∨ ... ∨ yn, with ∨ is a logical disjunction operation. Assume

g(x) = r1 + r4 + C2n − r3 − r5 − C1n ≜ y1y2...yn, with y1y2...yn is the binary
expression of the output of the function g(x).
When the measurement of |f(x)⟩ is |0⟩, the superposition state
{|εr1i,r4i,r3i,r5i,C1n,C2n

⟩e} of all solutions satisfying r1+ r4+C2n = r3+ r5+C1n

is obtained from {|x⟩}.
However, the probability of getting |0⟩ by measuring |f(x)⟩ is 1/2n. It is

clear that as n increases, the probability of successfully obtaining the system
{|εr1i,r4i,r3i,r5i,C1n,C2n

⟩e} (and hence the initial state |ψ⟩abcde) by Deutsch-Jozsa
algorithm decreases exponentially with n, i.e., the probability of Alice’s cheating
success decreases exponentially with n.

This illustrates that the MLC attack strategy is not applicable to the pro-
posed protocol. Note that MLC attacks on previous QBC protocols, such as
BCJL [5], do not suffer from similar difficulties in preparing the initial state
since solutions that satisfy the condition account for a non-negligible proportion
of the total in the BCJL protocol.

Finally, we should mention that the new protocol is perfect with respect to
noiseless quantum channels. Indeed, in quantum cryptography, the noise is of
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central importance in revealing the activity of the adversary. In the presence of
noise (noise in quantum communication channels, and of course errors generated
by operations), the protocol has to be able to assess whether the error is gener-
ated by noise or by the attacker’s cheating behavior. It is clear that provided the
error rate of the quantum channels and operations is lower than a certain thresh-
old, we can reduce the probability of success of Alice’s cheating to an arbitrarily
small value by increasing n in the proposed protocol. From Bob’s point of view,
the density matrices of the quantum pairs sent to him for commitment x = 0
and x = 1 are arbitrarily close to each other. On the other hand, if the error
rate of the quantum channels and operations exceeds a certain threshold, then
neither party can tell whether the error is caused by the channels and operations
or by the other party’s attempt to cheat. As with the BB84 protocol, a secure
protocol cannot be executed under a poor noisy quantum channel.

5 Conclusion

In summary, we proposed a secure non-interactive bit commitment protocol
where the binding of the protocol relies on the nonlocality effect of Bell states
and the principle of quantum superposition states, and the hiding of the protocol
relies on the no-communication theorem of the quantum entangled states and the
quantum no-cloning theorem. Because QBC is a primitive of quantum cryptogra-
phy, the proposed QBC protocol can be applied to construct more sophisticated
secure quantum cryptography protocols, such as coin tossing, oblivious transfer,
and two-party quantum computations, which are the foundation of quantum
cryptographic protocols.
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