
Improving Bounds on Elliptic Curve Hidden
Number Problem for ECDH Key Exchange

Jun Xu1,2, Santanu Sarkar3, Huaxiong Wang4, Lei Hu1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering,Chinese Academy of Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049,
China

3 Indian Institute of Technology, Sardar Patel Road, Chennai 600036, India
4 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University Singapore, Singapore
{xujun,hulei}@iie.ac.cn, santanu@iitm.ac.in, hxwang@ntu.edu.sg

Abstract. Elliptic Curve Hidden Number Problem (EC-HNP) was
first introduced by Boneh, Halevi and Howgrave-Graham at Asiacrypt
2001. To rigorously assess the bit security of the Diffie–Hellman key
exchange with elliptic curves (ECDH), the Diffie–Hellman variant of
EC-HNP, regarded as an elliptic curve analogy of the Hidden Number
Problem (HNP), was presented at PKC 2017. This variant can also be
used for practical cryptanalysis of ECDH key exchange in the situation
of side-channel attacks.

In this paper, we revisit the Coppersmith method for solving the involved
modular multivariate polynomials in the Diffie–Hellman variant of EC-
HNP and demonstrate that, for any given positive integer d, a given
sufficiently large prime p, and a fixed elliptic curve over the prime field Fp,
if there is an oracle that outputs about 1

d+1
of the most (least) significant

bits of the x-coordinate of the ECDH key, then one can give a heuristic
algorithm to compute all the bits within polynomial time in log2 p. When
d > 1, the heuristic result 1

d+1
significantly outperforms both the rigorous

bound 5
6
and heuristic bound 1

2
. Due to the heuristics involved in the

Coppersmith method, we do not get the ECDH bit security on a fixed
curve. However, we experimentally verify the effectiveness of the heuristics
on NIST curves for small dimension lattices.

Keywords. Hidden number problem, Elliptic curve hidden number problem,
Modular inversion hidden number problem, Lattice, Coppersmith method.

1 Introduction

1.1 Background

At CRYPTO 1996, Boneh and Venkatesan [6] first proposed the hidden number
problem (HNP) to prove that computing the most significant bits of the Diffie-
Hellman (DH) key is as hard as computing the entire key in the DH key exchange

for a prime field. It is called the bit security of the DH key exchange. There are
a lot of follow-up works, such as [7,1] and [12, Chapter 21.7.1]. HNP has been
proven to be an extremely useful tool in many cryptographic areas. One example
is its vast use for analysis of DSA and ECDSA in side-channel attacks, such as
[15,27]. At USENIX Security 2021, Merget et al. presented the first practical
HNP-based attack on the DH key exchange [23]. Albrecht and Heninger presented
a new result for solving HNP [2] at Eurocrypt 2021.

The ECDH key exchange is an analog of the DH key exchange, which adopts
the group of points on an elliptic curve to enhance performance and security.
Roughly speaking, for a given elliptic curve E over some finite field and a given
point Q ∈ E , two participants with private keys a, b compute [a]Q, [b]Q separately,
then send the computed value to each other, and finally, the two participants
generate the shared key [ab]Q. Naturally, one may want to assess the difficulty
of computing partial bits of ECDH key exchange. At ANTS 1998, Boneh [3,
Section 5] proposed the open problem: Does a similar result to the bit security of
Diffie-Hellman key exchange [6] hold in the group of points of an elliptic curve?
The issue has been raised for 20 years, but few results have been presented
because of the complexity associated with the addition formula of points of an
elliptic curve. The reason is also presented in the introduction of papers such as
[5,16,28,32].
EC-HNP. In [4, Section 5], Boneh, Halevi and Howgrave-Graham presented the
elliptic curve hidden number problem (EC-HNP) to study the bit security of
ECDH. The authors stated that EC-HNP can be heuristically solved using the
idea from Method II for Modular Inversion Hidden Number Problem (MIHNP).
Furthermore, they mentioned that the heuristic approach can be converted into a
rigorous one in some cases, which corresponds to the following bit security result.
Computing (1− ϵ) of the most significant bits of the x-coordinate of the ECDH
key is as hard as computing the ECDH key itself for a given curve over a prime
field, where ϵ ≈ 0.02. The detailed proofs were not presented.

Shani [28] demonstrated at PKC 2017 that solving EC-HNP x, which can be
viewed as the Diffie-Hellman variant of EC-HNP, is sufficient to demonstrate the
bit security of ECDH. The involved strategy is similar to the idea of HNP [6].

Definition 1 (EC-HNPx [28]). Fix a prime p, a given elliptic curve E over
Fp, a given point R ∈ E and a positive number δ. Let P ∈ E be a hidden point.
Let OP,R be an oracle that on input m outputs the δ most significant bits of the
x-coordinate of P + [m]R. That is, OP,R(m) = MSBδ(xP+[m]R). The goal is to
recover the hidden point P , given query access to the oracle.

Suppose there is an oracle that outputs some partial information of [uv]Q
on input [u]Q and [v]Q. For given points Q, [a]Q and [b]Q in the ECDH key
exchange, an attacker first selects an integer m, computes [m]Q, and then obtains
[a+m]Q from [a]Q+[m]Q = [a+m]Q. Querying the oracle on input [a+m]Q and
[b]Q, the attacker can get partial information of [(a+m)b]Q = [ab]Q+ [m][b]Q =
P + [m]R where P := [ab]Q and R := [b]Q. By repeating this process for several
m’s, the attacker will be able to recover the ECDH key P = [ab]Q if the EC-HNPx

is solved.

2

In [23, Section 8], Merget et al. mentioned that this may result in a small
timing side-channel information that leaks the MSB of the x-coordinate of the
shared point in ECDH. The EC-HNP is related to the HNP and could potentially be
applied here. We contend that the aforementioned attack scenario falls within the
scope of EC-HNPx. This attack scenario specifically considers whether the server
reuses the same ECDH value R = [b]Q across sessions, where b is the server’s
static key in TLS-ECDH or a reusable ephemeral key in TLS-ECDHE. A client
generates secret a and transmits the value [a]Q. Hence, the ECDH key between
the server and the client is P = [ab]Q. An attacker first chooses some integer m
and computes [a+m]Q. Then, session’s ECDH secret is [(a+m)b]Q = P + [m]R.
(The above process is very similar to [23, Figure 1]). As a result, if the MSBs of
the x-coordinate of P + [m]R are leaked by the small timing side-channel attack
for several m, the attacker can obtain the ECDH key P by solving EC-HNPx.
EC-HNPx, like HNP, can play an important role in side-channel attacks.

Hardcore bits. Shani rigorously solved EC-HNPx and then obtained the fol-
lowing bit security result by combining the underlying idea from Method I for
MIHNP [4,21]. For a given curve over a prime field, computing about 5

6 of the
most (least) significant bits of the x-coordinate of the ECDH key is as hard
as computing the entire ECDH key. Besides, Shani also analyzed the case of
extension fields and generalized the result of Jao, Jetchev and Venkatesan [16].

Papers such as [6,28] demonstrated that DH and ECDH have hardcore bits,
which are bits that are difficult to compute as the full shared key.

Heuristic algorithm. In [32], Xu et al. used the Coppersmith method to solve
EC-HNPx, which was inspired by Method II of MIHNP [4,33]. For a fixed curve
over a prime field, if there is an oracle that outputs about 1

2 of the most (least)
significant bits of the x-coordinate of the ECDH key, then there is a heuristic
algorithm to compute all the bits in polynomial time.

The Coppersmith method is used to calculate small solutions of polynomials.
In 1996, Coppersmith proposed rigorous methods for finding the small roots of a
modular univariate polynomial and an integer bivariate polynomial [8,9]. In 2006,
Jochemsz and May [18] presented heuristic strategies for finding the small roots
of modular (and integer) multivariate polynomials. The Coppersmith method is
widely used in the security analysis of cryptosystems, the computational complex-
ity analysis of mathematical problems, and the security proof of cryptosystems;
see the survey [22] and recent papers, such as [30,24,10,34].

Since the Coppersmith method for modular multivariate polynomials is
heuristic, the result in [32] cannot prove that ECDH has hardcore bits. It is
important to note that EC-HNPx is directly related to the actual cryptanalysis of
ECDH key exchange for a fixed curve in the work of side-channel attacks [23]. The
problem of solving EC-HNPx is essentially the problem of finding the desired small
root of modular multivariate polynomials. The advantage of the Coppersmith
method is that it utilizes algebraic structures of polynomials to improve the
ability to find small roots. A natural motivation is that one wants to know the
best result if the Coppersmith method is used to deal with EC-HNPx.

3

Related works. At CRYPTO 2001, Boneh and Shparlinksi [5] showed that if
there is an efficient algorithm to predict the least significant bit (LSB) of the
ECDH secrets on a non-negligible fraction of a family of curves isomorphic to a
curve E0, then the ECDH key for the curve E0 can be computed in polynomial
time. It does not imply that computing a single LSB of the ECDH key is as hard
as computing the entire ECDH key for the same curve E0. At CRYPTO 2008,
Jetchev and Venkatesan [17] utilized isogenies to enlarge the applicability of the
method in [5] based on the generalized Riemann hypothesis. However, neither [5]
nor [17] provides the hardness of bits for ECDH for a fixed curve. In [5, Section 7],
Boneh and Shparlinksi mentioned that they hope their methods will eventually
show that a single LSB of ECDH is the hardcore bit for a fixed curve.

1.2 Our Contribution

In this paper, we revisit the Coppersmith method to solve modular multivariate
polynomials derived from EC-HNPx and obtain a new bound.

Result 1. Let d be any given positive integer. Given a sufficiently large prime

p = 2ω(d(2+c)d), and a positive n = d3+c for any constant c > 0. For 2n + 1
given calls to the oracle in EC-HNPx, under Assumption 1 (see Page 8), one
can recover the hidden point for EC-HNPx when the number δ of known MSBs
(LSBs) satisfies

δ

log2 p
>

1

d+ 1
+ ε, (1)

where ε > 0 and ε = o(1
d+1). The total time complexity is polynomial in log2 p

for any constant d.

Corresponding to the ECDH case, we have the following result.

Result 2. Define d, p as in Result 1. Under Assumption 1, one can compute all
the bits in polynomial time for a given elliptic curve E over the prime field Fp if
there is an oracle that outputs about 1

d+1 of the most (least) significant bits of
the x-coordinate of the ECDH key.

The bound (1) tends to δ/log2 p > 0 as d grows large. It means that the ratio
of known MSBs or LSBs number can be infinitesimal. When d becomes large, the

modulus p = 2ω(d(2+c)d), the involved lattice dimension w = O(nd+1), and the
running time of the algorithm become enormous, with the time complexities of
the LLL algorithm and the Gröbner basis computation increasing as dO(d) and
dO(n), respectively.

The heuristic bound (1) for d > 1 is better than the rigorous bound δ/log2 p >
5
6 [28] and the heuristic result δ/log2 p > 1

2 [32]. Due to the heuristics of the
Coppersmith method, the results in this paper and [32] are not rigorous. It should
be noted that the 1

2 bound on δ/log2 p in [32] is asymptotic. That is, the 1
2 bound

can only be reached when the involved lattice dimension and modulus p tend to
infinity (see the analysis of Section 1.3). In this work, the smallest dimensions of

4

our lattice to achieve the 1
2 bound is 2879 for a sufficiently large p = 2ω(d(2+c)d),

where d = 2. The LLL algorithm terminates within O(w4+γb1+γ) bit operations
for any γ > 0 [25], where w is the involved dimension and b is the maximal bit
size in the input basis matrix. For our case, w = 2879, w4 ≈ 246 and b is bounded
by 3d log2 p. Therefore, the LLL algorithm needs a considerable time to get the
desired vector. Thus, we do not experimentally show that the 1

2 barrier is broken.

1.3 Technical overview

As mentioned before, we revisit the Coppersmith method to find the desired root
(e0, ẽ1, · · · , ẽn) in n given polynomials

Fj(x0, yj) := Aj +Bjx0 + Cjx
2
0 +Djyj + Ejx0yj + x2

0yj

derived from EC-HNPx, satisfying Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n, where
the value X is the upper bound of |e0|, |ẽ1|, · · · , |ẽn|, i.e., |e0| < X, |ẽ1| <
X, · · · , |ẽn| < X. Since X = p/2δ for EC-HNPx, where p is the modulus and δ is
the number of known MSBs (LSBs), we can see that for a fixed p, X and δ are
inversely related. To make δ as small as possible, X must be as large as possible.

For any given positive integer d, we construct w multivariate polynomi-
als G1(x0, y1, · · · , yn), · · · , Gw(x0, y1, · · · , yn) satisfying Gj(e0, ẽ1, · · · , ẽn) = 0
mod pd for all 1 ≤ j ≤ w. Let L be a Coppersmith lattice, which is spanned by
the coefficient vectors of Gj(x0X, y1X, · · · , ynX) for all 1 ≤ j ≤ w, where w and
det(L) are the dimension and determinant of the lattice L, respectively. The
basis matrix of L can be arranged into a triangular matrix.

After the lattice basis reduction, we expect to get n+1 multivariate polynomi-
als Q1(x0, y1, · · · , yn), · · · , Qn+1(x0, y1, · · · , yn) such that Qj(e0, ẽ1, · · · , ẽn) = 0
over the integers for all 1 ≤ j ≤ n. Under Assumption 1, we can efficiently recover
the desired root (e0, ẽ1, · · · , ẽn).

In the Coppersmith method, for a sufficiently large modulus p, the condition
for finding the target root (e0, ẽ1, · · · , ẽn) can be briefly written as

(det(L)) 1
w < pd. (2)

As shown in [28,32], the strategy of solving MIHNP can help to solve EC-HNPx.
Inspired by the approach for MIHNP [34], we expect to add enough helpful
vectors into the lattice of [32].

In [32], a lattice L′ with triangular basis matrix was constructed. For any given
positive integer d, take n = d3. Then we can write dim(L′) = (2d+1)

(
n
d

)
(1+o(1)),

and det(L′) = Xαpβ , where α = 2d(2d + 1)
(
n
d

)
(1 + o(1)) and β = 2d

(
n
d

)
(1 +

o(1)). For a sufficiently large p = 2ω(2n), the Coppersmith condition (2) states:

|det(L′)|
1

dim(L′) < pd, which reduces to X < p
1
2−

1
2d−ε, where ε > 0 and ε = o(1d).

Plugging X = p/2δ into the above relation, we get δ/ log2 p > 1
2 + 1

2d + ε, which
becomes δ/ log2 p > 1

2 when d tends to infinity. It means that, in order to achieve
1/2 bound, the involved lattice dimension dim(L′) and the size of modulus p
tend to infinity.

5

In this paper, we first consider
(

n
d+1

)
of helpful polynomials. To be specific, we

randomly choose d+ 1 different integers from the set {1, · · · , n}. Without loss of
generality, let d+ 1 integers be j1, · · · , jd+1, where 1 ≤ j1 < · · · < jd+1 ≤ n. For
any fixed tuple (j1, · · · , jd+1), we choose a linear combination (with the leading
term yj1 · · · yjd+1

) of the following polynomials:

d+1∑
u=1

1∑
v=0

Ku,v · xv
0Fj1 · · · Fju−1yjuFju+1 · · · Fjd+1

for some Ku,v ∈ Z. (3)

We then consider the algebraic structure of linear combinations (3) and design a
lattice. We construct more compact linear combinations compared to (3) so that
all monomials related to x2d

0 and x2d+1
0 are removed. That is, the monomials

xi0
0 yi11 · · · yinn for all (i0, i1, · · · , in) ∈ I3 are deleted from new linear combinations,

where I3 := ({(i0, i1, · · · , in) | 2d ≤ i0 ≤ 2d + 1, 0 ≤ i1, · · · , in ≤ 1, 0 ≤
i1+ · · ·+ in ≤ d}. Then we get a lattice with triangular basis matrix. In this case,

we can deduce that the upper bound X < p1−
1

d+1−ε, where ε > 0 and ε = o(1
d+1).

Based on X = p/2δ, we obtain δ/ log2 p > 1
d+1 + ε, which becomes δ/ log2 p > 0

when d tends to infinity.
The polynomial construction for the lattice in this work looks similar to that in

[32]. However, this does not mean that our lattice construction is ordinary. When
it comes to the Coppersmith method, small differences in parameter selection
can lead to significant differences in efficiency. While dealing with multivariate
Coppersmith method, the core point and technical difficulty is constructing as
many helpful polynomials as possible. The rest is a conventional technique.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we review some
results on lattice, the Coppersmith method, elliptic curves, the transformation
from EC-HNPx to a class of modular polynomials, and orders of monomials. The
existing method is revisited in Section 3. In Section 4, we use algebraic structure
of polynomials to design a lattice. In Section 5, we prove that the involved basis
matrix is triangular. In Section 6, we compare our result with the existing work.
We present our experimental results in Section 7.

2 Preliminaries

Throughout the paper, p is a prime where p > 3.

2.1 Lattice

A lattice L is a discrete subgroup of Rm. An alternative equivalent definition of an
integer lattice can be given using a basis. Let b1, · · · ,bw be linear independent

6

row vectors in Rm, a lattice L spanned by them is

L =

{ w∑
i=1

kibi

∣∣ ki ∈ Z
}
.

The set {b1, · · · ,bw} is called a basis of L and the matrix B = [b1
T , · · · ,bw

T]T

is the corresponding basis matrix. The dimension and determinant of L are
respectively

dim(L) = w,det(L) =
√
det(BBT).

When m = w, lattice is called full rank. In this paper, the involved lattices are
full-rank integer lattices.

The well-known LLL lattice reduction algorithm [20] can produce a reduced
basis that has the following property.

Lemma 1 (LLL). Let L be a w-dimensional integer lattice. Within polynomial
time, the LLL algorithm outputs reduced basis vectors v1, . . . ,vw that satisfy

∥vi∥ ≤ 2
w(w−1)

4(w+1−i) (det(L))
1

w+1−i , 1 ≤ i ≤ w.

2.2 The Coppersmith method

We briefly review how to use the Coppersmith method to solve multivariate
modular polynomials.

Problem definition. Let f1(x0, x1, · · · , xn), · · · , fm(x0, x1, · · · , xn) be original
polynomials, which are irreducible multivariate polynomials defined over Z, with
a common root (x̃0, x̃1, · · · , x̃n) modulo a known integer p such that |x̃0| < X0,
· · · , |x̃n| < Xn. The goal is to recover the desired root (x̃0, · · · , x̃n) in polynomial
time. To ensure recovery of the desired root, the size of values X0, · · · , Xn must
be bound.

Polynomials collection. One chooses polynomials,

g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn)

such that (x̃0, x̃1, · · · , x̃n) is a common root modulo a power of p. Generally,
multiples of lifting polynomials are selected, where a lifting polynomial is defined
as the product of some powers of original polynomials and variables. For example,

gj(x0, x1, · · · , xn) := pd−(βj
1+···+βj

m)x
αj

0
0 x

αj
1

1 · · ·xαj
n

n f
βj
1

1 · · · fβj
m

m ,

where j ∈ {1, · · · , w}, d ∈ Z+, and αj
0, α

j
1, · · · , αj

n, β
j
1, · · · , βj

m ∈ Z+∪{0} satisfy-

ing 0 ≤ βj
1+ · · ·+βj

m ≤ d. It is not hard to see that gj(x̃0, x̃1, · · · , x̃n) ≡ 0 mod pd

for every j ∈ {1, · · · , w}. For the Coppersmith method, the most complex step
is the selection of polynomials g1, · · · , gw when dealing with multiple original
polynomials. The difference between this paper’s polynomial selection and the
above strategy is that linear combinations of lifting polynomials are considered.

7

Lattice construction. Let the vector bj (1 ≤ j ≤ w) be the coefficient vector
of the polynomial gj(x0X0, x1X1, . . . , xnXn) with variables x0, x1, . . . , xn. Then

one constructs the lattice L =

{∑w
j=1 kjbj

∣∣ kj ∈ Z
}
.

Reduced basis. One runs the LLL algorithm and obtains the w reduced
basis vectors v1, . . . ,vw, where vj is the coefficient vector of the polyno-
mial hj(x0X0, x1X1, . . . , xnXn) for j ∈ {1, · · · , w}. Note that the LLL al-
gorithm performs linear operations. Hence, vj is a linear combination of
the vectors b1, · · · ,bw. That is, hj(x0, x1, . . . , xn) is a linear combination of
g1(x0, x1, . . . , xn), · · · , gw(x0, x1, . . . , xn). Then, hj(x̃0, x̃1, · · · , x̃n) = 0 (mod pd)
for every j ∈ [1, · · · , w]. In order to get hj(x̃0, x̃1, · · · , x̃n) = 0 over Z for some
j ∈ {1, · · · , w}, we need the following lemma in this process.

Lemma 2 ([14]). Let h(x0, x1, . . . , xn) be an integer polynomial that consists
of at most w monomials. Let d be a positive integer and the integers Xi be
the upper bound of |x̃i| for i = 0, 1, · · · , n. Let ∥h(x0X0, x1X1, . . . , xnXn)∥ be
the Euclidean length of the coefficient vector of h(x0X0, x1X1, . . . , xnXn) with
variables x0, x1, . . . , xn. Suppose that

1. h(x̃0, x̃1, · · · , x̃n) = 0 (mod pd),

2. ∥h(x0X0, x1X1, . . . , xnXn)∥ < pd

√
w
,

then h(x̃0, x̃1, · · · , x̃n) = 0 holds over Z.

To make hj(x̃0, x̃1, · · · , x̃n) = 0 for all 1 ≤ j ≤ n + 1 hold, from Lemma 1
and Lemma 2, we need the Euclidean lengths of the n+ 1 reduced basis vectors
v1, . . . ,vn+1 satisfy the condition

2
w(w−1)
4(w−n) ·

(
det(L)

) 1
w−n <

pd√
w
, w = dim(L). (4)

Based on Condition (4), one can determine the size of bounds X0, · · · , Xn.

Desired root recovery. We have no assurance that the n+ 1 obtained poly-
nomials h1, · · · , hn+1 are algebraically independent. Under Assumption 1, the
corresponding equations can be solved using elimination techniques such as the
Gröbner basis computation, and then the desired root (x̃0, x̃1, · · · , x̃n) is recov-
ered. In this paper, we use computer experiments to show that our heuristic
approach works.

Assumption 1 ([19]). Let h1, · · · , hn+1 ∈ Z[x0, x1, · · · , xn] be the polynomials
that are found by the Coppersmith method. Then the ideal generated by the
polynomial equations h1(x0, x1, · · · , xn) = 0, · · · , hn+1(x0, x1, · · · , xn) = 0 has
dimension zero.

8

The involved Assumption 1 is called the zero-dimensional ideal assumption,
which is a relaxation of algebraically independent assumption, first appeared
in [19]. We consider a zero-dimensional ideal, namely, an ideal I such that the
number of common zeros of the polynomials in I is finite in the algebraic closure
of the field of coefficients [11]. It seems very difficult to verify whether there are
finite number of common zeros or not.

Helpful polynomials. An important strategy of choosing the above polynomials
g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn) is to choose as many helpful polynomi-
als as possible.

Definition 2 ([22,29]). Define d and L as above. A vector in the triangular
basis matrix, which is the coefficient vector of g(x0X,x1X, · · · , xnX), is called a
helpful vector if the absolute value of its diagonal component5 is greater than 0
and less than pd. That is, g(x0, x1, · · · , xn) is called a helpful polynomial6. Else,
g(x0, x1, · · · , xn) is called a non-helpful polynomial.

Next, we show why helpful polynomials can work. We obtain the simplified
condition (det(L)) 1

w < pd by ignoring low-order terms in Condition (4). For a
triangular basis matrix, the left side of the simplified condition is regarded as
the geometric mean of all diagonals of the basis matrix. A helpful polynomial
contributes to the determinant with a factor greater than 0 and less than pd.
The more helpful polynomials in the lattice, the easier the condition for solving
modular equations is to be satisfied. It implies that the Coppersmith method
becomes more and more effective, and the above bounds Xi become larger and
larger. Therefore, one should choose as many helpful polynomials as possible.

2.3 Elliptic curves

For a prime field Fp, consider an elliptic curve E over Fp, given in a Weierstrass
form E : y2 = x3 + ax + b over Fp with a, b ∈ Fp and 4a3 + 27b2 ̸= 0. Let
P = (xP , yP) ∈ F2

p be a point on the curve E , where xP (resp. yP) is called the
x-coordinate (resp. y-coordinate) of point P . The set of points on E , together
with the point at infinity O, forms an additive abelian group. Hasse’s theorem
shows that the number of points #E on the curve E(Fp) satisfies the relation:
|#E − p − 1| ≤ 2

√
p. The additive inverse of point P is −P = (xP ,−yP). For

an integer m, [m]P denotes successive m-time addition of the point P , and
[−m]P = m[−P]. Given two points P = (xP , yP) and Q = (xQ, yQ) on E , where

5 The diagonal component of the coefficient vector of g(x0X,x1X, · · · , xnX) corre-
sponds to the leading term of g(x0, x1, · · · , xn). Specifically, the diagonal component
is equal to the leading coefficient of g(x0X,x1X, · · · , xnX).

6 There is a one-to-one correspondence between helpful polynomials and helpful vectors.
The coefficient vector of g(x0X,x1X, · · · , xnX) is a helpful vector if and only if
g(x0, x1, · · · , xn) is a helpful polynomial.

9

P ̸= ±Q, consider the addition P +Q = (xP+Q, yP+Q). Let sP+Q =
yP−yQ

xP−xQ
. The

x-coordinate and y-coordinate of P +Q are respectively

xP+Q = s2P+Q − xP − xQ, yP+Q = sP+Q(xP − xP+Q)− yP . (5)

2.4 From EC-HNPx to modular polynomials

We present the transformation in [28] from the problem of recovering xP in
EC-HNPx (see Definition 1), the x-coordinate of the hidden point P = (xP , yP),
to the problem of finding small solutions of modular polynomials. In brief, our
target is to find the desired small root (e0, ẽi) of the following modular polynomial

Fi(x0, yi) := Ai +Bix0 + Cix
2
0 +Diyi + Eix0yi + x2

0yi = 0 (mod p), 1 ≤ i ≤ n.
(6)

Here coefficients Ai, Bi, Ci, Di, Ei are known, and unknown integers e0, ẽ1, · · · , ẽn
are all bounded by the value X := p/2δ. The specific analysis is as follows.
Eliminating yP . For a given point R in an elliptic curve E over Fp, we produce
Q = [m]R = (xQ, yQ) and −Q = [−m]R = (xQ,−yQ), where m is a positive
integer. According to y2P = x3

P + axP + b, y2Q = x3
Q + axQ + b and (5), we obtain

xP+Q + xP−Q = (s2P+Q − xP − xQ) + (s2P−Q − xP − xQ)

=

(
yP−yQ

xP−xQ

)2

+

(
yP+yQ

xP−xQ

)2

− 2xP − 2xQ

= 2

(
y2
P+y2

Q

(xP−xQ)2 − xP − xQ

)
= 2

(
xQx2

P+(a+x2
Q)xP+axQ+2b

(xP−xQ)2

)
.

(7)

Constructing modular polynomials. Query the oracle OP,R in EC-HNPx

on 2n+ 1 different inputs 0 and ±mi for i = 1, · · · , n. Then we obtain OP,R(0)
and OP,R(±mi). We write hi = OP,R(mi) = MSBδ(xP+Qi

) = xP+Qi
− ei and

h′
i = OP,R(−mi) = MSBδ(xP−Qi) = xP−Qi − e′i, where |ei| < p/2δ+1 and

|e′i| < p/2δ+1 for all 1 ≤ i ≤ n. Let h̃i = hi + h′
i and ẽi = ei + e′i, we have

h̃i + ẽi = xP+Qi
+ xP−Qi

, where |ẽi| < p/2δ for i = 1, · · · , n. According to (7),
we get

h̃i + ẽi = 2

(
xQi

x2
P+(a+x2

Qi
)xP+axQi

+2b

(xP−xQi
)2

)
, 1 ≤ i ≤ n. (8)

Moreover, we write h0 = OP,R(0) = MSBδ(xP) = xP − e0, where |e0| < p/2δ+1.

Hence, h̃i + ẽi = 2(
xQi

(h0+e0)
2+(a+x2

Qi
)(h0+e0)+axQi

+2b

(h0+e0−xQi
)2). After multiplying by

(h0 + e0 − xQi
)2, we get Ai + Bie0 + Cie

2
0 + Diẽi + Eie0ẽi + e20ẽi = 0 mod p,

1 ≤ i ≤ n, where known coefficients Ai, Bi, Ci, Di, Ei satisfy (in the field Fp)

Ai =
(
h̃i(h0 − xQi

)2 − 2h2
0xQi

− 2(a+ x2
Qi
)h0 − 2axQi

− 4b
)
,

Bi = 2(h̃i(h0 − xQi
)− 2h0xQi

− a− x2
Qi
), Ci = (h̃i − 2xQi

),

Di = (h0 − xQi)
2, Ei = 2(h0 − xQi).

(9)

10

Therefore, (e0, ẽi) is a small root of the polynomial

Fi(x0, yi) = Ai +Bix0 + Cix
2
0 +Diyi + Eix0yi + x2

0yi = 0 (mod p),

where 1 ≤ i ≤ n and e0, ẽ1, · · · , ẽn are all bounded byX := p/2δ. Once the desired
vector (e0, ẽ1, · · · , ẽn) is obtained, xP can be recovered based on xP = e0 + h0.
After xP is recovered, yP will be extracted due to y2P = x3

P + axP + b mod p.

2.5 Order of monomials

We first recall reverse lexicographic order and graded lexicographic reverse order
respectively. For more details, please refer to [31, Section 21.2]. Let i0, i1, · · · ,
in, i

′
0, i

′
1, · · · , i′n be nonnegative integers.

Reverse lexicographic order: (i′1, · · · , i′n) ≺revlex (i1, · · · , in) ⇔ the rightmost
nonzero entry in (i′1 − i1, · · · , i′n − in) is negative.
Graded reverse lexicographic order: (i′1, · · · , i′n) ≺grevlex (i1, · · · , in) ⇔
n∑

m=1
i′m <

n∑
m=1

im or
(n∑
m=1

i′m =
n∑

m=1
im and (i′1, · · · , i′n) ≺revlex (i1, · · · , in)

)
.

In this paper, we utilize the following order of monomials, which is also used
in [34].

x
i′0
0 y

i′1
1 · · · yi

′
n
n ≺ xi0

0 yi11 · · · yinn ⇔
(i′1, · · · , i′n) ≺grevlex (i1, · · · , in) or

(
(i′1, · · · , i′n) = (i1, · · · , in) and i′0 < i0

)
.

(10)

It is noteworthy that i0 and i′0 are treated differently than i1, · · · , in and i′1, · · · , i′n
respectively. According to (10), we can determine the leading term of a multivari-
ate polynomial. For example, for Fj = Aj +Bjx0+Cjx

2
0+Djyj +Ejx0yj +x2

0yj
for 1 ≤ j ≤ n in (6), we have

1 ≺ x0 ≺ x2
0 ≺ yj ≺ x0yj ≺ x2

0yj . (11)

Hence, the leading monomial of Fj is x2
0yj . Further, the leading coefficient of Fj

is 1, and the leading term of Fj is x2
0yj .

3 Existing Lattice

In this section, we review the lattice in [32] for solving (6). Here we provide a
different description of the lattice, closer to the lattice we introduce later. First,
we recall the index set

I[XHS20](n, d) = {(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d,
0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d}, (12)

where integers n, d satisfying 1 ≤ d ≤ n, and l := i1+ · · ·+ in satisfying 0 ≤ l ≤ d.

11

3.1 Lattice L[XHS20](n, d)

For any fixed tuple (i0, i1, · · · , in) ∈ I[XHS20](n, d), we construct polynomial
fi0,i1,...,in(x0, y1, · · · , yn) as follows.

Case a: When l = 0 and 0 ≤ i0 ≤ 2d, define

fi0,i1,··· ,in(x0, y1, · · · , yn) := xi0
0 .

Case b: When l = 1 and 0 ≤ i0 ≤ 1, define

fi0,i1,··· ,in(x0, y1, · · · , yn) := xi0
0 yi11 · · · yinn .

Case c: When 1 ≤ l ≤ d and 2l ≤ i0 ≤ 2d, define

fi0,i1,··· ,in(x0, y1, · · · , yn) := xi0−2l
0 F i1

1 · · · F in
n .

Case d: When 2 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1, define

fi0,i1,··· ,in(x0, y1, · · · , yn) :=
l∑

u=1

1∑
v=0

wi0+1,u+lv · xv
0Fj1 · · · Fju−1

yjuFju+1
· · · Fjl ,

(13)
where Fi(x0, yi) = Ai + Bix0 + Cix

2
0 + Diyi + Eix0yi + x2

0yi = 0 (mod p) for
1 ≤ i ≤ n defined in (6), integers j1, · · · , jl are defined in Lemma 3, and wi0+1,u+lv

is element of the (i0+1)-th row and the (u+lv)-th column of the matrix Wj1,··· ,jl ,
which is also defined in Lemma 3.

Lemma 3 ([32]). Let i1, · · · , in be integers satisfying 0 ≤ i1, · · · , in ≤ 1. Denote
l = i1 + · · ·+ in, where 2 ≤ l ≤ n. Let j1, · · · , jl be integers satisfying 1 ≤ j1 <
· · · < jl ≤ n and yj1 · · · yjl = yi11 · · · yinn . Let a 2l × 2l integer matrix Mj1,··· ,jl be
the following coefficient matrix:

∏
u̸=1

(x2
0 + Ejux0 +Dju)

...∏
u̸=l

(x2
0 + Ejux0 +Dju)

x0

∏
u̸=1

(x2
0 + Ejux0 +Dju)

. . .

x0

∏
u̸=l

(x2
0 + Ejux0 +Dju)


= Mj1,··· ,jl



1
...

xl−1
0

xl
0

...

x2l−1
0


mod pl−1, (14)

where integers Dju and Eju are the coefficients in the polynomial Fju = Aju +
Bjux0 + Cjux

2
0 + Djuyju + Ejux0yju + x2

0yju for 1 ≤ u ≤ l. Then the matrix
Mj1,··· ,jl is invertible over Zpl−1 . Denote Wj1,··· ,jl as its inverse matrix. Hence,

Wj1,··· ,jl ·Mj1,··· ,jl = I2l mod pl−1, (15)

where I2l is the 2l × 2l identity matrix.

12

Next, we give an example to understand Case d. Consider n = d = 2, then
we get that l = 2, 0 ≤ i0 ≤ 3 and i1 = i2 = 1. Based on 1 ≤ j1 < j2 ≤ 2 and
yj1yj2 = yi11 yi22 , we have j1 = 1, j2 = 2. Hence, the corresponding polynomials
are F1 = Fj1 ,F2 = Fj2 . We first focus on the following relations:

y1F2

y2F1

x0y1F2

x0y2F1

 =


A2y1 +B2x0y1 + C2x

2
0y1

A1y2 +B1x0y2 + C1x
2
0y2

A2x0y1 +B2x
2
0y1 + C2x

3
0y1

A1x0y2 +B1x
2
0y2 + C1x

3
0y2

+


D2 E2 1 0
D1 E1 1 0
0 D2 E2 1
0 D1 E1 1




y1y2
x0y1y2
x2
0y1y2

x3
0y1y2

mod p,

where

Mj1,j2 = M12 =


D2 E2 1 0
D1 E1 1 0
0 D2 E2 1
0 D1 E1 1

 .

We compute the determinant of M12 and get det(M12) = (E2 − E1)(D2E1 −
D1E2)− (D2 −D1)

2 ≡ −(xQ2 − xQ1)
4 mod p, where xQ1 , xQ2 are respectively

the x-coordinates of points Q1, Q2 in the curve E . According to Section 2.4,
xQ1

̸= xQ2
modulo p. Thus, M12 is invertible over Fp. Note that W12 is the

inverse matrix. After left multiplying matrix W12 on both sides of the above
formula, we have

W12


y1F2

y2F1

x0y1F2

x0y2F1

 = W12


A2y1 +B2x0y1 + C2x

2
0y1

A1y2 +B1x0y2 + C1x
2
0y2

A2x0y1 +B2x
2
0y1 + C2x

3
0y1

A1x0y2 +B1x
2
0y2 + C1x

3
0y2

+


y1y2

x0y1y2
x2
0y1y2

x3
0y1y2

mod p.

Let (wi0+1,1, wi0+1,2, wi0+1,3, wi0+1,4) be the (i0+1)-th row vector of W12, where
0 ≤ i0 ≤ 3. We get that

wi0+1,1y1F2 + wi0+1,2y2F1 + wi0+1,3x0y1F2 + wi0+1,4x0y2F1

= xi0
0 y1y2 + wi0+1,1H1,0 + wi0+1,2H2,0 + wi0+1,3H1,1 + wi0+1,4H2,1

(16)

in the sense of modulo p, where
H1,0

H2,0

H1,1

H2,1

 =


A2y1 +B2x0y1 + C2x

2
0y1

A1y2 +B1x0y2 + C1x
2
0y2

A2x0y1 +B2x
2
0y1 + C2x

3
0y1

A1x0y2 +B1x
2
0y2 + C1x

3
0y2

 .

Note that y1, x0y1, x
2
0y1, x

3
0y1, y2, x0y2, x

2
0y2, x

3
0y2, x

i0
0 y1y2 are monomials of the

polynomial in (16). According to the order (10), we have

y1 ≺ x0y1 ≺ x2
0y1 ≺ x3

0y1 ≺ y2 ≺ x0y2 ≺ x2
0y2 ≺ x3

0y2 ≺ xi0
0 y1y2.

According to (13), we obtain that

fi0,1,1(x0, y1, y2) = wi0+1,1y1F2+wi0+1,2y2F1+wi0+1,3x0y1F2+wi0+1,4x0y2F1.

Hence, xi0
0 y1y2 is the leading term of fi0,1,1(x0, y1, y2) from (16).

13

Lemma 4 ([32]). Based on the order (10), the monomial xi0
0 yi11 · · · yinn is the

leading term of the polynomial fi0,i1,··· ,in(x0, y1, · · · , yn) for (i0, i1, · · · , in) ∈
I[XHS20](n, d). Let

Fi0,i1,··· ,in(x0, y1, · · · , yn) :=
{
pd+1−lfi0,i1,··· ,in for 1 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,
pd−lfi0,i1,··· ,in for 0 ≤ l ≤ d, 2l ≤ i0 ≤ 2d.

(17)

Let L[XHS20](n, d) be the lattice which is spanned by the coefficient vectors of
polynomials

Fi0,i1,··· ,in(x0X, y1X, · · · , ynX) for all (i0, i1, · · · , in) ∈ I[XHS20](n, d),

where the value X is the upper bound of |e0|, |ẽ1|, · · · , |ẽn|. The diagonal elements
in triangular basis matrix of lattice L[XHS20](n, d) are as follows:{

pd+1−lXi0+l for 1 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l ≤ d, 2l ≤ i0 ≤ 2d.

According to Lemma 4, the dimension and determinant of L[XHS20](n, d) are
respectively

dim(L[XHS20](n, d)) = (2d+ 1)
d∑

l=0

(
n
l

)
and det(L[XHS20](n, d)) = Xαpβ ,

where

α = d(2d+ 1)
d∑

l=0

(
n
l

)
+ (2d+ 1)

d∑
l=0

l
(
n
l

)
, β = d(2d+ 1)

d∑
l=0

(
n
l

)
− (2d− 1)

d∑
l=0

l
(
n
l

)
.

For a sufficiently large modulus p, one can use the simplified Coppersmith
condition (2), which does not affect the asymptotic bound. Based on (2), we

get the condition
(
det(L[XHS20](n, d))

) 1
w < pd, where w = dim(L[XHS20](n, d)),

which is equivalent to

X < p
dw−β

α . (18)

We omit the tedious calculation and give the following results directly. For any

1 ≤ d ≤ n, dw−β
α < 1

2 . For any given positive integer d, take n = d3. Then we have

w = (2d+ 1)
(
n
d

)
(1 + o(1)), α = 2d(2d+ 1)

(
n
d

)
(1 + o(1)) and β = 2d

(
n
d

)
(1 + o(1)).

For a sufficiently large p = 2ω(2n), the condition (18) becomes X < p
1
2−

1
2d−ε,

where ε > 0 and ε = o(1d). Plugging X = p/2δ for EC-HNPx into the above
inequality, we have δ/ log2 p > 1

2 +
1
2d +ε. When d tends to infinity, this condition

reduces to
δ

log2 p
>

1

2
. (19)

4 New lattice

In this section, we design a new lattice by mining the algebraic structure. We
present an example in Appendix B to help understand lattice L(n, d, t).

14

4.1 Lattice L(n, d, t)

Let I(n, d, t) be an index set which is equal to I(n, d, t) = I1 ∪ I2, where

I1 := {(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d− 1, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d},
I2 := {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, l = d+ 1}.

Here, 1 ≤ d < n, 0 ≤ t ≤ 2d− 1 and l = i1 + · · ·+ in satisfying 0 ≤ l ≤ d+ 1.

Remark 1. According to (12), we get that the index set I[XHS20](n, d) equals

{(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d}.

It is obvious that I1 is a subset of I[XHS20](n, d), whereas I2 is not.

Based on Fi0,i1,··· ,in(x0, y1, · · · , yn) in Lemma 4, we construct the polynomial
Gi0,i1,··· ,in(x0, y1, · · · , yn) as follows.

Case A: For any given (i0, i1, · · · , in) ∈ I1, we define

Gi0,i1,··· ,in(x0, y1, · · · , yn) = Fi0,i1,··· ,in(x0, y1, · · · , yn).

Since Fi0,i1,··· ,in(e0, ẽ1, · · · , ẽn) = 0 mod pd, we have Gi0,i1,··· ,in(e0, ẽ1, · · · , ẽn) =
0 mod pd.

Case B: For any given (i0, i1, · · · , in) ∈ I2, we define

Gi0,i1,··· ,in(x0, y1, · · · , yn) =
(
Hi0,i1,··· ,in + Ji0,i1,··· ,in +Ki0,i1,··· ,in

)
mod pd,

which is considered to be the corresponding polynomial over Z. Without loss of
generality, we let j1, · · · , jd+1 be integers satisfying 1 ≤ j1 ≤ · · · ≤ jd+1 ≤ n and
yj1yj2 · · · yjd+1

= yi11 yi22 · · · yinn , and

Hi0,i1,··· ,in =
d+1∑
u=1

1∑
v=0

wi0+1,u+v(d+1) · xv
0Fj1 · · · Fju−1

yjuFju+1
· · · Fjd+1

,

Ji0,i1,··· ,in =
d+1∑
u=1

1∑
v=0

wi0+1,u+v(d+1) · xv
0Fj1 · · · Fju−1

CjuFju+1
· · · Fjd+1

,

Ki0,i1,··· ,in =
d+1∑
u=1

wi0+1,u+(d+1) · Fj1 · · · Fju−1
(Bju − CjuEju)Fju+1

· · · Fjd+1
,

where the integers Bju , Cju and Eju are the coefficients in the polynomial
Fju = Aju +Bjux0 +Cjux

2
0 +Djuyju +Ejux0yju + x2

0yju for 1 ≤ u ≤ d+ 1, and
the integer wi0+1,m(1 ≤ m ≤ 2d+ 2) is the m-th component of the (i0 + 1)-th
row vector in the inverse matrix Wj1,··· ,jd+1

, which is defined in Lemma 3.

For Case B, the desired vector (e0, ẽ1, · · · , ẽn) is common root of Hi0,i1,··· ,in ,
Ji0,i1,··· ,in and Ki0,i1,··· ,in modulo pd. Hence, Gi0,i1,··· ,in(e0, ẽ1, · · · , ẽn) =
0 mod pd.

15

Lemma 5. Define Gi0,i1,··· ,in(x0, y1, · · · , yn) and I(n, d, t) as above.
Let L(n, d, t) be a lattice spanned by the coefficient vectors of
Gi0,i1,··· ,in(x0X, y1X, · · · , ynX) for all (i0, i1, · · · , in) ∈ I(n, d, t), where
the value X is the upper bound of |e0|, |ẽ1|, · · · , |ẽn|. Then the basis matrix
is triangular if the coefficient vectors of Gi0,i1,··· ,in(x0X, y1X, · · · , ynX) are
arranged based on the order of the corresponding xi0

0 yi11 · · · yinn from low to high.
The diagonal elements in the triangular basis matrix of L(n, d, t) are as follows:p

d+1−lXi0+l for 0 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l < d, 2l ≤ i0 ≤ 2d− 1,
Xi0+d+1 for l = d+ 1, 0 ≤ i0 ≤ t.

(20)

The dimension of L(n, d, t) is equal to the number of I(n, d, t). Namely,

dim(L(n, d, t)) = (t+ 1)

(
n

d+ 1

)
+ 2d

d∑
l=0

(
n

l

)
. (21)

The determinant of L(n, d, t) is equal to

det(L(n, d, t)) =: Xαpβ , (22)

where

α = (2d+t+2)(t+1)
2

(
n

d+1

)
+ d

d∑
l=0

(2d− 1 + 2l)
(
n
l

)
,

β = 2d2
d∑

l=0

(
n
l

)
− (2d− 2)

d∑
l=0

l
(
n
l

)
.

4.2 Improved Bound

According to the steps in the Coppersmith method in Section 2.2, the Coppersmith
condition (4) must be satisfied for the polynomials hi(x0, y1, . . . , yn) for all
1 ≤ i ≤ n + 1, corresponding to the first n + 1 LLL reduced basis vectors, to
contain the desired root (e0, ẽ1, . . . , ẽn) over integers. That is,

2
w(w−1)
4(w−n) det(L(n, d, t))

1
w−n <

pd√
w
, (23)

where w = dim(L(n, d, t)). Once we get the above n+ 1 polynomials hi’s, under
Assumption 1, we can compute the wanted root (e0, ẽ1, . . . , ẽn) using the Gröbner
basis.

Plugging (21) and (22) into (23), we obtain

X <
(
2−

w(w−1)
4α · w−w−n

2α

)
· pS(n,d,t), (24)

where

16

S(n, d, t) := d(w−n)−β
α =

d(t+1)(n
d+1)+(2d−2)

d∑
l=0

l(nl)−dn

(2d+t+2)(t+1)
2 (n

d+1)+d
d∑

l=0

(2d−1+2l)(nl)
.

For a given sufficiently large p = 2ω(d(2+c)d) for any positive integer d and any
constant c > 0, the condition (24) can be simplified as

X < pS(n,d,t).

By taking integers t = 0 and n = d3+c, the condition becomes

X < p1−
1

d+1−ε. (25)

Here, ε = o(1
d+1) =

d2(2d−1)
d∑

l=0
(nl)+2

d∑
l=0

l(nl)+d(d+1)n

(d+1)2(n
d+1)+d(d+1)(2d−1)

d∑
l=0

(nl)+2d(d+1)
d∑

l=0

l(nl)
> 0. The de-

tailed analysis is presented in Appendix C.
The running time of the LLL algorithm depends on the dimension and the

maximal bit size of the input triangular basis matrix. For t = 0 and n = d3+c, the
dimension of L(n, d, t) is equal to

(
n

d+1

)
+ 2d

∑d
l=0

(
n
l

)
= O(nd+1) = O(d(3+c)d),

and the bit size of the entries in the triangular basis matrix is bounded by
3d log2 p from (20). Based on [25], the time complexity of the LLL algorithm is

poly
(
3d log2 p,O(d(3+c)d)) = O((log2 p)

O(1)
dO(d)) (26)

which is polynomial in log2 p for any constant d.
The running time of the Gröbner basis computation relies on the degrees and

number of variables of input polynomials as well as the size of input polynomials.
Based on [13], the time complexity of the Gröbner basis computation for a
zero-dimensional system is polynomial in max{S,DN} < Nh(eD)N , where N
is the number of variables, and S is the size of the input polynomials in dense
representation, h is the maximal size of the coefficients of the input polynomials,
D is arithmetic mean value of the degrees of input polynomials and e is Euler
constant. For our lattice L(n, d, t), when t = 0 and n = d3+c, the number of
variables is n+ 1, the degree of input polynomials hi’s (1 ≤ i ≤ n+ 1) is 3d− 1
according to (39), and the maximal size h is less than d log2 p based on Lemma
2. That is, N = n+ 1, D = N(3d− 1)/N = 3d− 1, and h < d log2 p. Hence, the
time complexity of the Gröbner basis computation is bounded by

poly(Nh(eD)N) = O((log2 p)
O(1)

dO(n)) (27)

which is polynomial in log2 p for any constant d. From (26) and (27), the overall
complexity is polynomial in log2 p for any constant d.

Finally, if any vector (x0, ỹ1, · · · , ỹn) ∈ Zn+1 such that Fj(x0, ỹj) = 0 mod p
for all 1 ≤ j ≤ n in (6), where the upper bound of |x0|, |ỹ1|, · · · , |ỹn| satisfies

17

(25), then (x0, ỹ1, · · · , ỹn) is also a common root over Z of the input polynomials
h1, · · · , hn+1 of Gröbner basis computation. The following result shows that the
number of these roots is not only limited, but also only one with an overwhelming
probability.

Lemma 6. For a given sufficiently large prime p = 2ω(d(2+c)d) for any positive
integer d and any constant c > 0, given n = d3+c polynomials Fj(x0, yj) satisfying
Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n in (6), the probability that there is an integer
vector (e′0, ẽ

′
1, · · · , ẽ′n) ̸= (e0, ẽ1, · · · , ẽn), such that Fi(e

′
0, ẽ

′
i) = 0 (mod p) for all

1 ≤ i ≤ n, where the upper bound of |e′0|, |ẽ′1|, · · · , |ẽ′n| satisfies (25), does not
exceed O(1p).

We present the detailed proof in Appendix D, which is inspired by the idea
of [21,28].

According to the above analysis, we get the following result.

Theorem 1. For a given sufficiently large prime p = 2ω(d(2+c)d) for any positive
integer d and any constant c > 0, given n = d3+c polynomials Fj(x0, yj) satisfying
Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n in (6), under Assumption 1, one can compute
the desired root (e0, ẽ1, · · · , ẽn), if the bound X of |e0|, |ẽ1|, · · · , |ẽn| satisfies

X < p1−
1

d+1−ε,

where ε = o(1
d+1) > 0. The overall time complexity is polynomial in log2 p for

any constant d.

Since X = p/2δ for the case of EC-HNPx, we get a new bound for EC-HNPx

from Theorem 1.

Theorem 2. Define d, n, p, ε as in Theorem 1. For 2n + 1 given calls to the
oracle OP,R(m) in EC-HNPx, under Assumption 1, one can recover the hidden
point P when the number δ of known MSBs satisfies

δ

log2 p
>

1

d+ 1
+ ε.

For the least significant bits (LSBs) case, the problem of solving the corre-
sponding EC-HNPx can be converted into finding the desired root (e0, ẽ1, · · · , ẽn)
of the involved polynomials based on [28, Section 6.1]. Note that the forms of
these polynomials as well as the size of the desired root are the same as those in
(6). Therefore, we obtain the same bound as in the MSBs case.

For the case of ECDH, we get the following result from Theorem 2.

Theorem 3. Define d, p as in Theorem 1. For a given elliptic curve E over the
prime field Fp, if there is an oracle that outputs about 1

d+1 of the most (least)
significant bits of the x-coordinate of the ECDH key, under Assumption 1, one
can compute all the bits in polynomial time.

18

5 Proof of triangular basis matrix

First, we present the following relation, which can be utilized to construct
triangular basis matrix.

Lemma 7. Define the matrices Mj1,··· ,jd+1
and Wj1,··· ,jd+1

as in Lemma 3,
where 1 ≤ j1 < · · · < jd+1 ≤ n. Let wi0+1,m be the entry of the (i0 + 1)-th row
and the m-th column of Wj1,··· ,jd+1

, where 0 ≤ i0 ≤ 2d + 1, 1 ≤ m ≤ 2d + 2.
Then we have

d+1∑
u=1

wi0+1,d+1+u = 0 mod pd, for 0 ≤ i0 ≤ 2d,

d+1∑
u=1

(
wi0+1,u + wi0+1,d+1+u

∑
m ̸=u

Ejm

)
= 0 mod pd, for 0 ≤ i0 ≤ 2d− 1,

(28)

where Ejm is the coefficient of the polynomial Fjm = Ajm + Bjmx0 + Cjmx2
0 +

Djmyjm + Ejmx0yjm + x2
0yjm for 1 ≤ m ≤ d+ 1.

Proof. According to (14), we get that the (2d+ 2)× (2d+ 2) matrix Mj1,··· ,jd+1

is the following coefficient matrix:

∏
u̸=1

(x2
0 + Ejux0 +Dju)

...∏
u̸=d+1

(x2
0 + Ejux0 +Dju)

x0

∏
u̸=1

(x2
0 + Ejux0 +Dju)

. . .

x0

∏
u ̸=d+1

(x2
0 + Ejux0 +Dju)


= Mj1,··· ,jd+1



1
...

xd
0

xd+1
0

...

x2d+1
0


mod pd. (29)

For the sake of discussion, let F̃jm =
∏

u̸=m(x2
0 + Ejux0 +Dju) for all 1 ≤ m ≤

d+ 1. The last column of Mj1,··· ,jd+1
corresponds to the vector whose elements

are respectively the coefficients of x2d+1
0 in the following polynomials

F̃j1 , · · · , F̃jd+1
, x0 · F̃j1 , · · · , x0 · F̃jd+1

.

Note that the coefficient of x2d+1
0 in the polynomial F̃jm is 0 for all 1 ≤ m ≤ d+1,

and the coefficient of x2d+1
0 in the polynomial x0F̃jm is 1 for all 1 ≤ m ≤ d+ 1.

That is, the last column of Mj1,··· ,jd+1
is (0, · · · , 0, 1, · · · , 1)T , where the number

of components 1 is d+ 1. Since (wi0+1,1, · · · , wi0+1,2d+2) is the (i0 + 1)-th row of
the inverse matrix Wj1,··· ,jd+1

modulo pd, for 0 ≤ i0 ≤ 2d, we get that

(wi0+1,1, · · · , wi0+1,2d+2) · (0, · · · , 0, 1, · · · , 1)T = 0 mod pd,

i.e.
d+1∑
u=1

wi0+1,d+1+u = 0 mod pd.

19

The penultimate column of Mj1,··· ,jd+1
corresponds to the vector whose

elements are respectively the coefficients of x2d
0 in the following polynomials

F̃j1 , · · · , F̃jd+1
, x0 · F̃j1 , · · · , x0 · F̃jd+1

.

Note that the coefficient of x2d
0 in F̃jm is 1 for all 1 ≤ m ≤ d + 1, and the

coefficient of x2d
0 in x0F̃jm is Ej1 + · · · + Ejm−1 + Ejm+1 + · · · + Ejd+1

for
1 ≤ m ≤ d + 1. It implies that the penultimate column of Mj1,··· ,jd+1

is
(1, · · · , 1,

∑
m̸=1 Ejm , · · · ,

∑
m ̸=d+1 Ejm)T , where the number of components 1 is

d + 1. Based on (wi0+1,1, · · · , wi0+1,2d+2) is the (i0 + 1)-th row of Wj1,··· ,jd+1

modulo pd, for 0 ≤ i0 ≤ 2d− 1, we obtain that

(wi0+1,1, · · · , wi0+1,2d+2) · (1, · · · , 1,
∑
m ̸=1

Ejm , · · · ,
∑

m̸=d+1

Ejm)T = 0 mod pd.

That is,
∑d+1

u=1

(
wi0+1,u + wi0+1,d+1+u

∑
m̸=u Ejm

)
= 0 mod pd.

The above lemma is now used to show the form of Gi0,i1,··· ,in(x0, y1, · · · , yn)
for (i0, i1, · · · , in) ∈ I2.

Lemma 8. Define Gi0,i1,··· ,in(x0, y1, · · · , yn) and I1, I2 as in Section 4. If the
tuple (i0, i1, · · · , in) ∈ I2, then we have

Gi0,i1,··· ,in = xi0
0 yi11 · · · yinn +

∑
(i′0,i

′
1,··· ,i′n)∈I1

ai′0,i′1,··· ,i′nx
i′0
0 y

i′1
1 · · · yi

′
n
n ,

where ai′0,i′1,··· ,i′n ∈ Z.

Proof. First, we present that the leading term of Gi0,i1,··· ,in(x0, y1, · · · , yn) is
xi0
0 yi11 · · · yinn for (i0, i1, · · · , in) ∈ I2. In this case,

Gi0,i1,··· ,in = Hi0,i1,··· ,in + Ji0,i1,··· ,in +Ki0,i1,··· ,in

in the sense of modulo pd. Here,

Hi0,i1,··· ,in =
d+1∑
u=1

1∑
v=0

wi0+1,u+v(d+1) · xv
0Fj1 · · · Fju−1yjuFju+1 · · · Fjd+1

,

Ji0,i1,··· ,in =
d+1∑
u=1

1∑
v=0

wi0+1,u+v(d+1) · xv
0Fj1 · · · Fju−1

CjuFju+1
· · · Fjd+1

,

Ki0,i1,··· ,in =
d+1∑
u=1

wi0+1,u · Fj1 · · · Fju−1
(Bju − CjuEju)Fju+1

· · · Fjd+1
,

where integers 1 ≤ j1 < · · · < jd+1 ≤ n satisfy yj1 · · · yjd+1
= yi11 · · · yinn .

20

In order to show the case of Hi0,i1,··· ,in(x0, y1, · · · , yn), we first consider the
following equations:

yj1 · Fj2 · · · Fjd+1

. . .

Fj1 · · · Fjdyjd+1

x0 · yj1Fj2 · · · Fjd+1

. . .

x0 · Fj1 · · · Fjdyjd+1


=



H1,0

...
Hd+1,0

H1,1

...
Hd+1,1


+Mj1,··· ,jd+1


yj1 · yj2 · · · yjd+1

x0 · yj1yj2 · · · yjd+1

...

x2d+1
0 · yj1yj2 · · · yjd+1

 mod pd.

(30)

Here, the matrix Mj1,··· ,jd+1
is defined in (29), and the polynomial Hu,v (1 ≤ u ≤

d+ 1, 0 ≤ v ≤ 1) is composed of the terms in xv
0Fj1 · · · Fju−1yjuFju+1 · · · Fjd+1

except the terms of monomials

yj1 · · · yjd+1
, x0yj1 · · · yjd+1

, · · · , x2d+1
0 yj1 · · · yjd+1

.

It implies that the leading monomial in Hu,v is x
i′0
0 yk1

· · · ykm
, where 0 ≤ i′0 ≤

2d+ 1 and {k1, · · · , km} ⫋ {j1, · · · , jd+1}. Hence, m < d+ 1. According to the
order (10), we get

x
i′0
0 yk1

· · · ykm
≺ yj1 · · · yjd+1

≺ x0yj1 · · · yjd+1
≺ · · · ≺ x2d+1

0 yj1 · · · yjd+1
. (31)

Note that Wj1,··· ,jd+1
is the inverse matrix of Mj1,··· ,jd+1

modulo pd. Multiplying
the two sides of Equation (30) by Wj1,··· ,jd+1

to the left, we get

Wj1,··· ,jd+1



yj1
· Fj2

· · · Fjd+1

. . .

Fj1
· · · Fjd

yjd+1

x0 · yj1
Fj2

· · · Fjd+1

. . .

x0 · Fj1 · · · Fjd
yjd+1


= Wj1,··· ,jd+1



H1,0

.

.

.
Hd+1,0

H1,1

.

.

.
Hd+1,1


+


yj1

· yj2
· · · yjd+1

x0 · yj1
yj2

· · · yjd+1

.

.

.

x2d+1
0 · yj1

yj2
· · · yjd+1



(32)

(in the sense of modulo pd). Since (wi0+1,1, · · · , wi0+1,2d+2 is the (i0 + 1)-th row
of Wj1,··· ,jd+1

, where 0 ≤ i0 ≤ t, from (32), we have

Hi0,i1,··· ,in =
d+1∑
u=1

1∑
v=0

wi0+1,u+(d+1)v · xv
0Fj1 · · · Fju−1

yjuFju+1
· · · Fjd+1

= xi0
0 yj1yj2 · · · yjd+1

+
d+1∑
u=1

1∑
v=0

wi0+1,u+(d+1)vHu,v mod pd.

(33)

Based on xi0
0 yj1yj2 · · · yjd+1

= xi0
0 yi11 · · · yinn and (31), we obtain that xi0

0 yi11 · · · yinn
is the leading term of Hi0,i1,··· ,in . Moreover, all monomials except xi0

0 yi11 · · · yinn
in Hi0,i1,··· ,in belong to the set

{xi′0
0 y

i′1
1 · · · yi

′
n
n | 0 ≤ i′0 ≤ 2d+ 1, 0 ≤ i′1, · · · , i′n ≤ 1, 0 ≤ i′1 + · · ·+ i′n ≤ d}. (34)

For the case of Ji0,i1,··· ,in , let xr0
0 ys1 · · · ysm be the leading monomial of

Ji0,i1,··· ,in , where 0 ≤ r0 ≤ 2d + 1 and {s1, · · · , sm} ⫋ {j1, · · · , jd+1}. Thus,

21

m < d+1. Based on the order (10), we get xr0
0 ys1 · · · ysm ≺ xi0

0 yj1 · · · yjd+1
. That

is, xr0
0 ys1 · · · ysm ≺ xi0

0 yi11 · · · yinn .
Similarly, we can also prove that the order of the leading monomial of

Ki0,i1,··· ,in is less than the order of xi0
0 yi11 · · · yinn .

To sum up, we get that xi0
0 yi11 · · · yinn is the leading term of

Gi0,i1,··· ,in(x0, y1, · · · , yn). In addition, all monomials except the leading mono-
mial xi0

0 yi11 · · · yinn in Gi0,i1,··· ,in lie in the set (34).
Then, we prove that Gi0,i1,··· ,in(x0, y1, · · · , yn) does not contain any term

related to x2d+1
0 and x2d

0 . It means that all monomials except xi0
0 yi11 · · · yinn in

Gi0,i1,··· ,in lie in {xi′0
0 y

i′1
1 · · · yi

′
n
n | (i′1, · · · , i′n) ∈ I1}. That is, we can rewrite

Gi0,i1,··· ,in as

xi0
0 yi11 · · · yinn +

∑
(i′0,i

′
1,··· ,i′n)∈I1

ai′0,i′1,··· ,i′nx
i′0
0 y

i′1
1 · · · yi

′
n
n ,

where ai′0,i′1,··· ,i′n ∈ Z, and I1 = {(i′0, i′1, · · · , i′n) | 0 ≤ i′0 ≤ 2d−1, 0 ≤ i′1, · · · , i′n ≤
1, 0 ≤ i′1 + · · ·+ i′n ≤ d}.

For the convenience of subsequent analysis, we rewrite Fju = Aju +Bjux0 +
Cjux

2
0 +Djuyju + Ejux0yju + x2

0yju as

x2
0(yju + Cju) + x0(Ejuyju +Bju) + (Djuyju +Aju), 1 ≤ u ≤ d+ 1.

We rewrite Gi0,i1,··· ,in for (i0, i1, · · · , in) ∈ I2 as

Gi0,i1,··· ,in = T1 + T2 + T3

in the sense of modulo pd, where

T1 :=
d+1∑
u=1

wi0+1,u+(d+1) · x0Fj1 · · · Fju−1(yju + Cju)Fju+1 · · · Fjd+1

T2 :=
d+1∑
u=1

wi0+1,u · Fj1 · · · Fju−1
(yju + Cju)Fju+1

· · · Fjd+1

T3 :=
d+1∑
u=1

wi0+1,u+(d+1) · Fj1 · · · Fju−1
(Bju − CjuEju)Fju+1

· · · Fjd+1
.

Since deg(x0) = 2 in Fju for 1 ≤ u ≤ d+ 1, we have that deg(x0) ≤ 2d+ 1 for
T1, and deg(x0) ≤ 2d for T2 and T3.

We can deduce that the x2d+1
0 -related term in Gi0,i1,··· ,in only appears in T1.

Specifically, the x2d+1
0 -related term is

d+1∑
u=1

wi0+1,u+(d+1) · x2d+1
0 (yj1 + Cj1) · · · (yjd+1

+ Cjd+1
)

in sense of modulo pd. According to (28), we have
d+1∑
u=1

wi0+1,u+d+1 = 0 mod pd,

where 0 ≤ i0 ≤ 2d− 1. Therefore, Gi0,i1,··· ,in does not have any term related to
x2d+1
0 .

22

We can deduce that the x2d
0 -related term in Gi0,i1,··· ,in appears in T1, T2 and

T3.
For the case of T1 =

∑d+1
u=1 wi0+1,u+(d+1) · x0Fj1 · · · Fju−1(yju +

Cju)Fju+1 · · · Fjd+1
, based on Fju = x2

0(yju +Cju) + x0(Eju(yju +Cju) + (Bju −
CjuEju)) + (Aju +Djuyju) for 1 ≤ u ≤ d+ 1, the x2d

0 -related term of T1 is

d+1∑
u=1

wi0+1,u+(d+1)(
∑

m ̸=u

Ejm) · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1)

+
d+1∑
u=1

(
∑

m ̸=u

wi0+1,m+(d+1)) · x2d
0 (Bju − CjuEju)

∏
m ̸=u

(yjm + Cjm).

(35)

For the case of T2 =
∑d+1

u=1 wi0+1,u · Fj1 · · · Fju−1(yju + Cju)Fju+1 · · · Fjd+1 , the x2d
0 -

related term of T2 is

d+1∑
u=1

wi0+1,u · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1). (36)

For the case of T3 =
∑d+1

u=1 wi0+1,u+(d+1) · Fj1 · · · Fju−1(Bju − CjuEju)Fju+1 · · · Fjd+1 ,

the x2d
0 -related term of T3 is

d+1∑
u=1

wi0+1,u+(d+1) · x2d
0 (Bju − CjuEju)

∏
m ̸=u

(yjm + Cjm). (37)

According to (35), (36) and (37), we get that the x2d
0 -related term in Gi0,i1,··· ,in is

equal to

d+1∑
u=1

(
d+1∑
u=1

wi0+1,d+1+u) · x2d
0 (Bju − CjuEju)

∏
m ̸=u

(yjm + Cjm)

+
d+1∑
u=1

(wi0+1,u + wi0+1,d+1+u

∑
m ̸=u

Ejm) · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1)

(38)

in sense of modulo pd. According to (28), we have that
∑d+1

u=1 wi0+1,d+1+u =

0 (mod pd) and
∑d+1

u=1

(
wi0+1,u + wi0+1,d+1+u

∑
m ̸=u Ejm

)
= 0 (mod pd) for

0 ≤ i0 ≤ 2d− 1. Hence, Gi0,i1,··· ,indoes not have any term related to x2d
0 , where

(i0, i1, · · · , in) ∈ I2.

Finally, we show that the involved basis matrix of L(n, d, t) is triangular.
That is, we provide proof for Lemma 5.

Proof. First, we present that the leading term of Gi0,i1,··· ,in(x0, y1, · · · , yn) is
xi0
0 yi11 · · · yinn for (i0, i1, · · · , in) ∈ I(n, d, t). We respectively consider Case A

and Case B.
For Case A, the corresponding (i0, i1, · · · , in) ∈ I1. We define

Gi0,i1,··· ,in(x0, y1, · · · , yn) = Fi0,i1,··· ,in(x0, y1, · · · , yn)

From Lemma 4, and I1 ⊂ I[XHS20](n, d), we obtain that the leading term of
Gi0,i1,··· ,in(x0, y1, · · · , yn) is as follows:{

pd+1−lxi0
0 yi11 · · · yinn for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,

pd−lxi0
0 yi11 · · · yinn for 0 ≤ l < d and 2l ≤ i0 ≤ 2d− 1.

23

For Case B, the corresponding (i0, i1, · · · , in) ∈ I2. From Lemma 8, we
get that the leading term of Gi0,i1,··· ,in(x0, y1, · · · , yn) is xi0

0 yi11 · · · yinn , where
l = i1 + · · ·+ in = d+ 1 and 0 ≤ i0 ≤ t.

To sum up, the leading term of Gi0,i1,··· ,in(x0, y1, · · · , yn) is equal to
pd+1−lxi0

0 yi11 · · · yinn for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,

pd−lxi0
0 yi11 · · · yinn for 0 ≤ l < d and 2l ≤ i0 ≤ 2d− 1,

xi0
0 yi11 · · · yinn for l = d+ 1 and 0 ≤ i0 ≤ t.

(39)

Next, we prove that the basis matrix of L(n, d, t) can be arranged
into a triangular matrix. Since the basis matrix of L(n, d, t) is made up
of the coefficient vectors of polynomials Gi0,i1,··· ,in(x0X, y1X, · · · , ynX) for
all (i0, i1, · · · , in) ∈ I(n, d, t), and there is a one-to-one correspondence be-
tween the polynomial Gi0,i1,··· ,in(x0, y1, · · · , yn) and the corresponding poly-
nomial Gi0,i1,··· ,in(x0X, y1X, · · · , ynX), our goal translates to show that
Gi0,i1,··· ,in(x0, y1, · · · , yn) for all (i0, i1, · · · , in) ∈ I(n, d, t) form a triangular
matrix.

For the level l = 0, the corresponding polynomial Gi0,i1,··· ,in(x0, y1, · · · , yn)
is equal to pdxi0

0 for i0 = 0, 1, · · · , 2d − 1. From the order (10), we have
pd ≺ pdx0 ≺ · · · ≺ pdx2d−1

0 . It implies that all Gi0,i1,··· ,in(x0, y1, · · · , yn)
for l = 0 generate a triangular matrix. The remaining proof is inductive.
For any fixed tuple (i0, i1, · · · , in) ∈ I(n, d, t), suppose that all polynomials

Gi′0,i
′
1,··· ,i′n(x0, y1, · · · , yn), satisfying x

i′0
0 y

i′1
1 · · · yi

′
n
n ≺ xi0

0 yi11 · · · yinn , have produced
a triangular matrix as stated in Lemma 5. Then we prove that all polynomials
added after the polynomial Gi0,i1,··· ,in(x0, y1, · · · , yn) still form a triangular ma-
trix. Based on the above analysis, xi0

0 yi11 · · · yinn is the leading monomial of the
polynomial Gi0,i1,··· ,in(x0, y1, · · · , yn). Let xk0

0 yk1
1 · · · ykn

n be any given monomial
of Gi0,i1,··· ,in(x0, y1, · · · , yn) other than the leading monomial xi0

0 yi11 · · · yinn . Ob-

viously, we have xk0
0 yk1

1 · · · ykn
n ≺ xi0

0 yi11 · · · yinn . Since xk0
0 yk1

1 · · · ykn
n is the leading

monomial of polynomial Gk0,k1,··· ,kn
(x0, y1, · · · , yn), we get that all monomials

except xi0
0 yi11 · · · yinn already appeared in the diagonals of a triangular matrix.

Thus, all polynomials after Gi0,i1,··· ,in(x0, y1, · · · , yn) is added still produce a
triangular matrix. To summarize, the basis matrix of L(n, d, t) is triangular
according to the order of xi0

0 yi11 · · · yinn for all (i0, i1, · · · , in) ∈ I(n, d, t) from low
to high.

The diagonal elements in the triangular basis matrix of L(n, d, t) are all from
the leading coefficients of Gi0,i1,··· ,in(x0X, y1X, · · · , ynX) for (i0, i1, · · · , in) ∈
I(n, d, t). Based on (39), the diagonal elements of triangular basis matrix are as
follows: p

d+1−lXi0+l for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l < d and 2l ≤ i0 ≤ 2d− 1,
Xi0+d+1 for l = d+ 1 and 0 ≤ i0 ≤ t.

24

6 Comparison with the existing work

5 10 15 20 25 30 35 40
log2(Dimension)

0.2

0.3

0.4

0.5

0.6

0.7

 U
pp

er
 b

ou
nd

 o
f r

oo
t

Our Lattice
[XSH20]

Fig. 1. Comparison of the theoretical upper bound of the root for different dimensions.

Figure 1 compares the theoretical upper bound X for the lattice in Section
4.1 and that in [32]. We can see that our lattice is significantly better than that
in [32]. In Figure 1, we take the smallest lattice dimension among different n, d, t
for the fixed upper bound. For example, to cross the bound 0.45, the minimum
lattice is 940 (n = 13, d = 2, t = 1) whereas the minimum dimension in [32] is
239.06 (n = 40, d = 13).

In Table 1, we present a theoretical comparison of the smallest lattice dimen-

sion on the fixed percentage δ/ log2 p for a sufficiently large p = 2ω(d(2+c)d). The
symbol “− ” means that even with a huge lattice dimension, the corresponding
δ/ log2 p ≤ 0.50 can not be obtained.

From the second row of Table 1, we can see that in order to reach the 0.60
bound of δ/ log2 p, the smallest dimension of [32] is 394995 (n = 16, d = 7), and
the smallest dimensions of our lattice is 326 (n = 24, d = 1, t = 0). Therefore, our
lattice is practical, while the lattice in [32] is not practical.

Based on the fourth row of Table 1, the smallest lattice dimension is 2879
(n = 23, d = 2, t = 0) to obtain the 0.50 bound of δ/ log2 p. The LLL algorithm
terminates within O(w4+γb1+γ) bit operations for any γ > 0 [25], where w is the
lattice dimension, and b is the maximal bit-size in the input basis matrix. For
w = 2879, w4 ≈ 246. The bit-size b for our lattice is bounded by 3d log2 p (see
(20) in Lemma 5). Hence, for a sufficiently large p, it takes a considerable amount
of time for the LLL algorithm to output the desired short vector.

25

Table 1. Comparison of the smallest dimensions for known bit percentages.

δ/log2 p Our [32]
Lattice in Section 4.1 Lattice
(n, d, t) Dimension (n, d) Dimension

0.65 (15,1,0) 137 (10,4) 3474

0.60 (24,1,0) 326 (16,7) 394995

0.55 (13,2,1) 940 (40,13) 239.06

0.50 (23,2,0) 2879 - -

0.45 (37,2,0) 10586 - -

0.40 (71,2,0) 67383 - -

7 Experiments

We have implemented our experiments in SAGE 9.3 using Linux Ubuntu with
Intel® Core™ i7-7920HQ CPU 3.67 GHz. We have used the L2 algorithm [26]
for lattice reduction. We tested the algorithm up to lattice dimension 298. In our
experiments, the zero-dimensional ideal assumption, i.e. Assumption 1 is always
valid. Our experimental results are shown in Table 2. We run 100 experiments
for each parameter.

We always get more than w
2 polynomials that satisfy the desired root over

Z after lattice reduction, where w is the dimension of the lattice. Intermediate
coefficient swell is a well-known difficulty for computing Gröbner bases over
integers. To overcome this problem, we compute Gröbner basis over small prime
fields GF(q) such that the product of these primes is larger than the size of
unknown values. Then we use the Chinese Remainder Theorem to find the desired
root. Using this method, we can find the root after lattice reduction in a few
seconds for all parameters. If X is the upper bound of root, we need to consider
primes up to N such that

∏
prime q≤N q > X. Since

∏
prime q≤N q = eθ(N), we

need eθ(N) > X, where θ(N) =
∑

prime q≤N log q is the first Chebyshev function.

Since θ(N) asymptotically approaches to N for large values of N , considering
first loge X many prime fields will be sufficient for large N for our attack.

After Gröbner basis computation, we get polynomials of the form x0−e0, y1−
ẽ1, y2−ẽ2, . . . , yn−ẽn in GF(q). Let T =

∏
q≤N q. Hence using Chinese Remainder

Theorem we get êi ≡ ei mod T for i ∈ [0, n]. Thus ei = êi or ei = êi − T . Hence
we can easily collect secrets. We always collect the root for our theoretical values.
In fact, experimentally we are able to cross these bounds. In these situations also,
success rate is close to 100 percent in all cases.

One can see from Table 2 that it is possible to find the hidden point P by
querying the oracle 2n+ 1 = 2 · 21 + 1 = 43 times for the case of NIST-521 and
(n, d, t) = (21, 1, 0). Theoretically, knowing 318 MSBs/LSBs of the x-coordinate of
P +[m]R in each query should be sufficient for our attack, where the x-coordinate
has 521 bits in total. In practice, we are getting better results. Experimentally,
knowledge of 301 bits is sufficient to find the hidden point.

26

Table 2. Experimental results of Section 4.1 on NIST curves. From Equation (24), the
required bounds is X < pS(n,d,t) for the lattice L(n, d, t). Thus the number of known
bits should be lower bounded by (1− S(n, d, t)) log2 p. The column of Theo. represents
this value. The column of Exp. gives corresponding experimental values.

Curve n d t Dim. Theo. Exp. Given Known MSBs Known LSBs
Suc. LLL (sec.) GB (sec.) Suc. LLL (sec.) GB (sec.)

NIST-192 143 132 69% 94% 0.51 0.04 96% 0.53 0.04
NIST-224 167 154 69% 99% 0.51 0.04 95% 0.64 0.05
NIST-256 6 1 1 44 191 176 69% 100% 0.57 0.05 100% 0.65 0.05
NIST-384 286 263 68% 100% 0.74 0.07 100% 0.99 0.07
NIST-521 388 357 69% 100% 1.06 0.08 100% 1.23 0.11
NIST-192 137 125 65% 100% 2.26 0.11 100% 2.41 0.11
NIST-224 160 145 65% 100% 2.44 0.15 100% 2.92 0.12
NIST-256 10 1 0 67 182 165 64% 100% 2.79 0.13 100% 3.13 0.13
NIST-384 272 245 64% 100% 4.06 0.17 100% 4.97 0.19
NIST-521 371 330 63% 100% 6.49 0.23 100% 6.60 0.23
NIST-192 135 129 67% 100% 10.64 0.17 100% 10.08 0.18
NIST-224 157 150 67% 100% 13.86 0.18 100% 13.54 0.21
NIST-256 5 2 1 84 180 172 67% 100% 18.78 0.21 100% 18.92 0.23
NIST-384 269 256 67% 100% 32.69 0.28 100% 31.92 0.36
NIST-521 365 347 67% 100% 38.43 0.34 100% 38.67 0.37
NIST-192 129 120 63% 100% 14.44 0.40 100% 11.90 0.33
NIST-224 150 139 62% 100% 17.17 0.49 100% 14.12 0.39
NIST-256 13 1 0 106 172 159 62% 100% 18.17 0.56 100% 17.09 0.43
NIST-384 257 235 61% 100% 26.69 0.76 100% 27.20 0.58
NIST-521 349 320 61% 100% 41.83 0.92 100% 42.51 0.78
NIST-192 135 130 68% 100% 19.12 0.34 100% 22.64 0.36
NIST-224 158 152 68% 100% 25.70 0.42 100% 26.76 0.41
NIST-256 6 2 0 108 180 174 68% 100% 29.42 0.48 100% 31.77 0.45
NIST-384 270 263 68% 100% 49.65 0.65 100% 52.67 0.59
NIST-521 366 360 69% 100% 78.84 0.82 100% 80.13 0.73
NIST-192 123 116 60% 99% 47.61 1.27 98% 48.77 1.00
NIST-224 144 135 60% 100% 54.27 1.39 100% 55.35 1.12
NIST-256 16 1 0 154 164 155 61% 100% 66.70 1.45 100% 67.10 1.21
NIST-384 246 230 60% 100% 119.05 2.13 100% 118.08 1.79
NIST-521 334 310 60% 100% 164.07 2.73 100% 166.56 2.03
NIST-192 130 126 66% 99% 111.52 1.27 99% 114.83 0.98
NIST-224 152 148 66% 100% 133.61 1.29 100% 138.78 1.17
NIST-256 7 2 0 151 174 168 66% 100% 145.50 1.52 100% 147.39 1.25
NIST-384 260 253 66% 100% 264.65 1.97 100% 262.15 1.65
NIST-521 353 340 65% 100% 357.88 2.53 100% 363.22 2.07
NIST-192 135 128 67% 100% 59.41 0.27 100% 64.74 0.22
NIST-224 158 150 67% 100% 64.67 0.29 100% 67.65 0.24
NIST-256 5 3 0 161 180 170 66% 100% 73.62 0.33 100% 71.92 0.27
NIST-384 270 255 66% 100% 120.58 0.43 100% 124.39 0.37
NIST-521 367 345 66% 100% 175.77 0.51 100% 176.14 0.46
NIST-192 134 125 65% 100% 82.25 0.21 100% 84.92 0.20
NIST-224 156 145 65% 100% 88.77 0.27 100% 89.34 0.23
NIST-256 5 3 1 166 178 166 65% 100% 100.87 0.29 100% 104.57 0.25
NIST-384 267 250 65% 100% 144.94 0.41 100% 140.31 0.34
NIST-521 361 339 65% 100% 211.27 0.51 100% 214.37 0.41
NIST-192 132 124 65% 100% 94.37 0.21 99% 98.16 0.20
NIST-224 154 144 64% 95% 106.45 0.22 95% 107.29 0.22
NIST-256 5 3 2 171 176 165 64% 100% 106.31 0.25 100% 103.60 0.24
NIST-384 264 247 64% 100% 175.18 0.34 100% 170.94 0.34
NIST-521 358 335 64% 100% 260.96 0.42 100% 263.96 0.42
NIST-192 118 114 59% 97% 320.58 4.30 95% 313.52 4.19
NIST-224 137 132 59% 94% 444.92 4.78 94% 452.65 4.79
NIST-256 21 1 0 254 157 152 59% 100% 524.03 5.21 100% 544.92 5.22
NIST-384 235 225 59% 100% 864.33 7.11 100% 880.24 6.82
NIST-521 318 301 58% 100% 1272.32 9.37 100% 1280.23 9.50

27

Xu et al. [32] used a dimension 294 lattice to recover the hidden point when
the number of exposed bits is 333 (see the last row of [32, Table 1], where
333 ≈ 0.64 · 521). Here using a 254-dimension lattice, we can recover the hidden
point when the number of exposed bits is 301.

Acknowledgments: The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. Jun Xu and Lei Hu was supported the
National Natural Science Foundation of China (Grants 61732021, 62272454).
Huaxiong Wang was supported by the National Research Foundation, Singapore
under its Strategic Capability Research Centres Funding Initiative and Singapore
Ministry of Education under Research Grant MOE2019-T2-2-083.

References

1. Adi Akavia. Solving hidden number problem with one bit oracle and advice. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings,
volume 5677 of Lecture Notes in Computer Science, pages 337–354. Springer, 2009.

2. Martin R. Albrecht and Nadia Heninger. On bounded distance decoding with
predicate: Breaking the “lattice barrier” for the hidden number problem. In
Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, pages 528–558, Cham, 2021. Springer International Publishing.

3. Dan Boneh. The decision Diffie-Hellman problem. In Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings, pages 48–63, 1998.

4. Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modular in-
version hidden number problem. In ASIACRYPT 2001, pages 36–51.
https://www.iacr.org/archive/asiacrypt2001/22480036.pdf. Springer, 2001.

5. Dan Boneh and Igor E. Shparlinski. On the unpredictability of bits of the elliptic
curve Diffie–Hellman scheme. In Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, pages 201–212, 2001.

6. Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In CRYPTO
1996, pages 129–142. Springer, 1996.

7. Dan Boneh and Ramarathnam Venkatesan. Rounding in lattices and its crypto-
graphic applications. In Michael E. Saks, editor, Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, 5-7 January 1997, New Orleans,
Louisiana, USA, pages 675–681. ACM/SIAM, 1997.

8. Don Coppersmith. Finding a small root of a bivariate integer equation; factoring
with high bits known. In EUROCRYPT 1996, pages 178–189. Springer, 1996.

9. Don Coppersmith. Finding a small root of a univariate modular equation. In
EUROCRYPT 1996, pages 155–165. Springer, 1996.

10. Jean-Sébastien Coron and Rina Zeitoun. Improved factorization of n=prqs. In
Nigel P. Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018,
Proceedings, volume 10808 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018.

28

11. Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient
computation of zero-dimensional Gröbner Bases by change of ordering. J. Symb.
Comput., 16(4):329–344, 1993.

12. Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge Univer-
sity Press, 2012.

13. Amir Hashemi and Daniel Lazard. Sharper complexity bounds for zero-dimensional
Gröbner bases and polynomial system solving. Int. J. Algebra Comput., 21(5):703–
713, 2011.

14. Nicholas Howgrave-Graham. Finding small roots of univariate modular equations
revisited. In Crytography and Coding, pages 131–142. Springer, 1997.

15. Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sýs. Minerva: The curse of
ECDSA nonces systematic analysis of lattice attacks on noisy leakage of bit-length
of ECDSA nonces. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):281–308,
2020.

16. David Jao, Dimitar Jetchev, and Ramarathnam Venkatesan. On the bits of elliptic
curve Diffie-Hellman keys. In Progress in Cryptology - INDOCRYPT 2007, 8th
International Conference on Cryptology in India, Chennai, India, December 9-13,
2007, Proceedings, pages 33–47, 2007.

17. Dimitar Jetchev and Ramarathnam Venkatesan. Bits security of the elliptic curve
Diffie-Hellman secret keys. In Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings, pages 75–92, 2008.

18. Ellen Jochemsz and Alexander May. A strategy for finding roots of multivariate
polynomials with new applications in attacking RSA variants. In ASIACRYPT
2006, pages 267–282. Springer, 2006.

19. Ellen Jochemsz and Alexander May. A polynomial time attack on RSA with
private CRT-exponents smaller than N0.073. In Alfred Menezes, editor, Advances
in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture
Notes in Computer Science, pages 395–411. Springer, 2007.

20. Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982.

21. San Ling, Igor E Shparlinski, Ron Steinfeld, and Huaxiong Wang. On the modular
inversion hidden number problem. Journal of Symbolic Computation, 47(4):358–367,
2012.

22. Alexander May. Using LLL-reduction for solving RSA and factorization problems.
In The LLL algorithm, pages 315–348. Springer, 2010.

23. Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes
Mittmann, and Jörg Schwenk. Raccoon attack: Finding and exploiting most-
significant-bit-oracles in TLS-DH(E). In 30th USENIX Security Symposium
(USENIX Security 21), Vancouver, B.C., August 2021. USENIX Association.

24. Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas. The
return of Coppersmith’s attack: Practical factorization of widely used RSA moduli.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 1631–1648, 2017.

25. Arnold Neumaier and Damien Stehlé. Faster LLL-type reduction of lattice bases.
In Sergei A. Abramov, Eugene V. Zima, and Xiao-Shan Gao, editors, Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016, pages 373–380. ACM, 2016.

29

26. Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity.
SIAM J. Comput., 39(3):874–903, 2009.

27. Keegan Ryan. Return of the hidden number problem. A widespread and novel key
extraction attack on ECDSA and DSA. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):146–168, 2019.

28. Barak Shani. On the bit security of elliptic curve Diffie-Hellman. In Public-Key
Cryptography - PKC 2017 - 20th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I, pages 361–387, 2017.

29. Atsushi Takayasu and Noboru Kunihiro. Better lattice constructions for solving
multivariate linear equations modulo unknown divisors. In Information Security
and Privacy - 18th Australasian Conference, ACISP 2013, Brisbane, Australia, July
1-3, 2013. Proceedings, pages 118–135, 2013.

30. Atsushi Takayasu, Yao Lu, and Liqiang Peng. Small CRT-exponent RSA revisited.
In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, pages 130–159, 2017.

31. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.).
Cambridge University Press, 2013.

32. Jun Xu, Lei Hu, and Santanu Sarkar. Cryptanalysis of elliptic curve hidden number
problem from PKC 2017. Des. Codes Cryptogr., 88(2):341–361, 2020.

33. Jun Xu, Santanu Sarkar, Lei Hu, Zhangjie Huang, and Liqiang Peng. Solving
a class of modular polynomial equations and its relation to modular inversion
hidden number problem and inversive congruential generator. Des. Codes Cryptogr.,
86(9):1997–2033, 2018.

34. Jun Xu, Santanu Sarkar, Lei Hu, Huaxiong Wang, and Yanbin Pan. New results on
modular inversion hidden number problem and inversive congruential generator. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I,
pages 297–321, 2019.

30

Supplementary Material

A Proof of Lemma 3

Proof. Since p is a prime, our goal is to show that Mj1,··· ,jl is invertible over

prime field Fp. Denote F̃jm =
∏l

u=1,u̸=m(x2
0 + Ejux0 +Dju) for all 1 ≤ m ≤ l.

According to (14), the rows of 2l× 2l matrix Mj1,··· ,jl respectively correspond to
the coefficient vectors of the following 2l polynomials on a basis (1, x0, · · · , x2l−1

0)
over Zpl−1 :

F̃j1 , · · · , F̃jl , x0 · F̃j1 , · · · , x0 · F̃jl .

Note that Eju := 2(h0 − xQju
) mod p and Dju := (h0 − xQju

)2 mod p, where
xQju

is the x-coordinate of the point Qju . Hence, x
2
0 +Ejux0 +Dju = (x0 +h0 −

xQju
)2 mod p for 1 ≤ u ≤ l. For the sake of discussion, let γju := h0 − xQju

.

Hence, F̃jm =
∏l

u=1,u ̸=m(x0 + γju)
2 mod pl−1 for all 1 ≤ m ≤ l.

The matrix Mj1,··· ,jl is invertible over Fp if and only if F̃j1 , · · · , F̃jl , x0 ·
F̃j1 , · · · , x0 · F̃jl are linearly independent polynomials over Fp. Suppose that there

exist r1, · · · , rl, s1, · · · , sl ∈ Fp such that r1F̃j1+· · ·+rlF̃jl+s1x0 ·F̃j1+slx0 ·F̃j1 =

0, i.e., (r1 + x0s1) · F̃j1 + · · ·+ (rl + x0sl) · F̃jl = 0. Taking modulo (x0 + γju)
2

on both sides of the above relation, we get

(ru + x0su) · F̃ 2
ju = 0 mod (x0 + γju)

2 for all u = 1, · · · , l. (40)

Note that γj1 = h0 − xQj1
, · · · , γjl = h0 − xQjl

are different in Fp. We have that

x0+γj1 , · · · , x0+γjl are pairwise coprime over Fp, further, gcd(F̃ju , x0+γju) = 1
for all 1 ≤ u ≤ l. Thus, we obtain ru + x0su = 0 mod (x0 + γju)

2 for u ∈
[1, · · · , l] from (40). Since deg((x0 + γju)

2) = 2 and deg(ru + x0su) ≤ 1, we get
ru + x0su = 0 for all 1 ≤ u ≤ l, i.e., r1 = s1 = · · · = rl = sl = 0. It implies that
r1F̃j1 + · · ·+ rlF̃jl + s1x0 · F̃j1 + slx0 · F̃jl = 0 ⇐⇒ r1 = s1 = · · · = rl = sl = 0.

Hence, F̃j1 , · · · , F̃jl , x0 · F̃j1 , · · · , x0 · F̃jl are linearly independent over Fp, that
is, Mj1,··· ,jl is invertible over Fp.

B An example of L(2, 1, t)

We present a toy example to understand lattice L(n, d, t). Take n = 2, d = 1 and
0 ≤ t ≤ 1 (the optimal t is determined later). The index set I(2, 1, t) = I1 ∪ I2,
where

I1 = {(i0, i1, i2) | 0 ≤ i0 ≤ 1, 0 ≤ i1, i2 ≤ 1, 0 ≤ i1 + i2 ≤ 1},
I2 = {(i0, i1, i2) | 0 ≤ i0 ≤ t, 0 ≤ i1, i2 ≤ 1, i1 + i2 = 2}.

where 0 ≤ l = i1 + i2 ≤ 2. From the order (10), the monomials xi0
0 yi11 yi22 for

(i0, i1, i2) ∈ I(2, 1, t) are arranged as follows:

1 ≺ x0 ≺ y1 ≺ x0y1 ≺ y2 ≺ x0y2 ≺ y1y2 ≺ · · · ≺ xt
0y1y2. (41)

31

For given polynomials Fj satisfying Fj(e0, ẽj) = 0 (mod p) for j = 1, 2, we
generate polynomials Gi0,i1,i2(x0, y1, y2) as follows.

Case A: The tuples (i0, i1, i2)’s are respectively equal to

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1).

We define Gi0,i1,i2 = Fi0,i1,i2 . Based on Section 3.1, we have G0,0,0 = p,G1,0,0 =
px0, G0,1,0 = py1, G1,1,0 = px0y1, G0,0,1 = py2, G1,0,1 = px0y2.

Case B: The tuples (i0, i1, i2) = (i0, 1, 1), where i0 = 0, · · · , t and 0 ≤ t ≤ 1
Then, j1 = 1, j2 = 2 based on yj1yj2 = yi11 yi22 . We define

Gi0,1,1 = Hi0,1,1 + Ji0,1,1 +Ki0,1,1

in sense of modulo p, which is considered to be the corresponding polynomial
over Z. Here,

Hi0,1,1 := wi0+1,1y1F2 + wi0+1,2y2F1 + wi0+1,3x0y1F2 + wi0+1,4x0y2F1,
Ji0,1,1 = wi0+1,1C1F2 + wi0+1,2C2F1 + wi0+1,3x0C1F2 + wi0+1,4x0C2F1,
Ki0,1,1 = wi0+1,3(B1 − C1E1)F2 + wi0+1,4(B2 − C2E2)F1,

where the vector (wi0+1,1, wi0+1,2, wi0+1,3, wi0+1,4) is the (i0 + 1)-th row in the
matrix W12, which is the inverse (modulo p) of the following matrix

M12 =


D2 E2 1 0
D1 E1 1 0
0 D2 E2 1
0 D1 E1 1


which is defined in Section 3.1, and Bj , Cj , Dj , Ej are the coefficients of Fj =
Aj +Bjx0 + Cjx

2
0 +Djyj + Ejx0yj + x2

0yj for 1 ≤ j ≤ 2.
According to W12 ·M12 = I4 mod p, where I4 is the 4× 4 identity matrix.

Note that 0 ≤ i0 ≤ 1, we have

(wi0+1,1, wi0+1,2, wi0+1,3, wi0+1,4) · (0, 0, 1, 1)T = 0 mod p,
(wi0+1,1, wi0+1,2, wi0+1,3, wi0+1,4) · (1, 1, E2, E1)

T = 0 mod p.

That is,

wi0+1,3 + wi0+1,4 = 0 mod p,
wi0+1,1 + wi0+1,2 + E2wi0+1,3 + E1wi0+1,4 = 0 mod p.

(42)

Next, we will present that Gi0,1,1 (i0 = 0, 1) can be written as

Gi0,1,1 = ∆i0,1 +∆i0,2x0 +∆i0,3y1 +∆i0,4x0y1 +∆i0,5y2 +∆i0,6x0y2 + xi0
0 y1y2,

where the coefficients ∆i0,j ’s are known integers for 0 ≤ i0 ≤ 1 and 1 ≤ j ≤ 6. It
means that the leading term of Gi0,1,1 is xi0

0 y1y2. Moreover, the monomials except
xi0
0 y1y2 in Gi0,1,1 lie in {1, x0, y1, x0y1, y2, x0y2}. That is, Gi0,1,1 does not contain

32

monomials x3
0, x

3
0y1, x

3
0y2, x

2
0, x

2
0y1, x

2
0y2. Now, we give the detailed analysis as

follows.
Note that Gi0,1,1 = Hi0,1,1 + Ji0,1,1 +Ki0,1,1, and

Hi0,1,1 = wi0+1,1y1F2 + wi0+1,2y2F1 + wi0+1,3x0y1F2 + wi0+1,4x0y2F1

Ji0,1,1 = wi0+1,1C1F2 + wi0+1,2C2F1 + wi0+1,3x0C1F2 + wi0+1,4x0C2F1.
Ki0,1,1 = wi0+1,3(B1 − C1E1)F2 + wi0+1,4(B2 − C2E2)F1.

According to (16) in Section 3.1, we get that all monomials in the polyno-
mial Hi0,1,1 lie in {y1, x0y1, x

2
0y1, x

3
0y1, y2, x0y2, x

2
0y2, x

3
0y2, x

i0
0 y1y2}. Moreover,

xi0
0 y1y2 is the leading term of Hi0,1,1 based on the order (10).
Note that polynomials Ji0,1,1 and Ki0,1,1 can be regarded as some linear

combinations of F1,F2, x0F1, x0F2. It means that monomials in these two poly-
nomials belong to {1, x0, x

2
0, x

3
0, y1, x0y1, x

2
0y1, x

3
0y1, y2, x0y2, x

2
0y2, x

3
0y2}. To sum

up, all monomials in Gi0,1,1 lie in

{1, x0, x
2
0, x

3
0, y1, x0y1, x

2
0y1, x

3
0y1, y2, x0y2, x

2
0y2, x

3
0y2, x

i0
0 y1y2}.

Based on the order (10), we have 1 ≺ x0 ≺ x2
0 ≺ x3

0 ≺ y1 ≺ x0y1 ≺ x2
0y1 ≺

x3
0y1 ≺ y2 ≺ x0y2 ≺ x2

0y2 ≺ x3
0y2 ≺ xi0

0 y1y2. Hence, xi0
0 y1y2 is the leading term

of the polynomial Gi0,1,1.
Next, we show that Gi0,1,1 does not contain monomials

x3
0, x

3
0y1, x

3
0y2, x

2
0, x

2
0y1, x

2
0y2. For the convenience of subsequent analysis,

we rewrite Fj as

x2
0(yj + Cj) + x0(Ejyj +Bj) + (Djyj +Aj), 1 ≤ j ≤ 2.

Moreover, we rewrite Gi0,1,1 as

wi0+1,1(y1 + C1)F2 + wi0+1,2(y2 + C2)F1

+wi0+1,3(B1 − C1E1)F2 + wi0+1,4(B2 − C2E2)F1

+wi0+1,3(y1 + C1)x0F2 + wi0+1,4(y2 + C2)x0F1

in the sense of modulo p.
First, let us focus on the x3

0-term in Gi0,1,1, which only appears in

wi0+1,3(y1 + C1)x0F2 + wi0+1,4(y2 + C2)x0F1.

Hence, the x3
0-term is equal to (wi0+1,3 + wi0+1,4)x

3
0(y1 + C1)(y2 + C2) mod p.

From (42), we have (wi0+1,3+wi0+1,4) mod p = 0. Hence, Gi0,1,1 does not contain
monomials x3

0, x
3
0y1, x

3
0y2.

Next, let us focus on the x2
0-term in Gi0,1,1. The x2

0-term in wi0+1,1(y1 +
C1)F2 + wi0+1,2(y2 + C2)F1 is

(wi0+1,1 + wi0+1,2)x
2
0(y1 + C1)(y2 + C2). (43)

The x2
0-term in wi0+1,3(B1 − C1E1)F2 + wi0+1,4(B2 − C2E2)F1 is

wi0+1,3(B1 − E1C1)x
2
0(y2 + C2) + wi0+1,4(B2 − E2C2)x

2
0(y1 + C1). (44)

33

The x2
0-term in wi0+1,3(y1 + C1)x0F2 + wi0+1,4(y2 + C2)x0F1 is

wi0+1,3x
2
0(y1 + C1)(E2y2 +B2) + wi0+1,4x

2
0(y2 + C2)(E1y1 +B1)

= wi0+1,3E2x
2
0(y1 + C1)(y2 + C2) + wi0+1,4E1x

2
0(y1 + C1)(y2 + C2)

+wi0+1,3(B2 − E2C2)x
2
0(y1 + C1) + wi0+1,4(B1 − E1C1)x

2
0(y2 + C2).

(45)

Based on (43), (44) and (45), we deduce that the x2
0-term in Gi0,1,1 is

(wi0+1,3 + wi0+1,4)(B2 − E2C2)x
2
0(y1 + C1)

+(wi0+1,3 + wi0+1,4)(B1 − E1C1)x
2
0(y2 + C2)

+(wi0+1,1 + wi0+1,2 + wi0+1,3E2 + wi0+1,4E1)x
2
0(y1 + C1)(y2 + C2)

in the sense of modulo p. According to (42), we get (wi0+1,3+wi0+1,4) mod p = 0
and (wi0+1,1 + wi0+1,2 + wi0+1,3E2 + wi0+1,4E1) mod p = 0. Hence, Gi0,1,1 does
not contain monomials x2

0, x
2
0y1, x

2
0y2.

In Table 3, we present the triangular basis matrix of lattice L(2, 1, t). The
dimension and determinant of L(2, 1, t) are respectively equal to

dim(L(2, 1, t)) = 7 + t, det(L(2, 1, t)) = X
(t+1)(t+4)

2 +7p6,

where 0 ≤ t ≤ 1. From the simplified Coppersmith condition (2), we deduce

(det(L(2, 1, t)))
1

7+t < p, which is equivalent to

X < p
2t+2

t2+5t+18 .

For t = 0, 1, the bound becomes X < p
1
9 , and X < p

1
6 respectively. When t = 1,

the bound X < p
1
6 is optimal.

Table 3. The triangular basis matrix of lattice L(2, 1, t).

Poly 1 x0 y1 x0y1 y2 x0y2 y1y2 · · · xt
0y1y2

G0,0,0 p

G1,0,0 pX

G0,1,0 pX

G1,1,0 pX2

G0,0,1 pX

G1,0,1 pX2

G0,1,1 – – – – – – X2

· · · – – – – – – –
. . .

Gt,1,1 – – – – – – Xt+2

Off-diagonal entries are denoted by the symbol “− ” and their values have no effect on
the determinant of lattice.

34

Remark 2. For (n, d, t) = (2, 1, 1), the leading terms of polynomials G0,1,1

and G1,1,1 are y1y2, x0y1y2 respectively. Hence, the leading coefficients of
G0,1,1(x0X, y1X, y2X) and G1,1,1(x0X, y1X, y2X) are X2 and X3 respectively,
which are diagonal elements in the triangular basis matrix of lattice L(2, 1, 1). Ac-
cording to the bound 0 < X < p

1
6 , we get 0 < X3 < pd, where d = 1. Therefore,

G0,1,1 and G1,1,1 are all helpful polynomials.

C Proof of improved bounds

Our target is to obtain a lower bound of
(
2−

w(w−1)
4α w−w−n

2α

)
pS(n,d,t) in the right-

hand side of Equation (24).

First, we consider the term 2−
w(w−1)

4α w−w−n
2α . From w = (t + 1)

(
n

d+1

)
+

2d
∑d

l=0

(
n
l

)
,

α= (2d+t+2)(t+1)
2

(
n

d+1

)
+ d

∑d
l=0(2d− 1 + 2l)

(
n
l

)
, we obtain

α

dw
=

(2d+t+2)(t+1)
2

(
n

d+1

)
+ d

d∑
l=0

(2d− 1 + 2l)
(
n
l

)
d(t+ 1)

(
n

d+1

)
+ 2d2

d∑
l=0

(
n
l

) > 1.

Based on the relation, we get that 2−
w(w−1)

4α > 2−
w
4d and w−w−n

2α > w− 1
2d . It

implies that(
2−

w(w−1)
4α w−w−n

2α

)
pS(n,d,t) > (2−

w
4dw− 1

2d)pS(n,d,t) = pS(n,d,t)−w+2 log2 w
4d log2 p .

For a sufficiently large p, w+2 logw
4d is negligible compared to log2 p (the size of

p will be explicitly given in subsequent analysis). Hence, the right-hand side of
condition (24) is simplified as pS(n,d,t) for a sufficiently large p.

Next, we focus on S(n, d, t), and write S(n, d, t) = 2d
2d+2+t (1−ϵ(n, d, t)), where

ϵ(n, d, t) :=

2(2d− 1)d2
d∑

l=0

(
n
l

)
+ 2(2 + t− dt)

d∑
l=0

l
(
n
l

)
+ nd(2d+ t+ 2)

(t+ 1)d(2d+ t+ 2)
(

n
d+1

)
+ 2(2d− 1)d2

d∑
l=0

(
n
l

)
+ 4d2

d∑
l=0

l
(
n
l

) .

Here, ϵ(n, d, t) > 0 which is because that 2(2d− 1)d2
d∑

l=0

(
n
l

)
− 2dt

d∑
l=0

l
(
n
l

)
> 0 for

all 0 ≤ t ≤ 2d− 1. Furthermore, we have

0 < ϵ(n, d, t) <

2(2d− 1)d2
d∑

l=0

(
n
l

)
+ 2(t+ 2)d

d∑
l=0

(
n
l

)
+ nd(2d+ 2 + t)

d(2d+ 2 + t)(t+ 1)
(

n
d+1

) .

35

From 1 ≤ d ≤ n− 1 and 0 ≤ t ≤ 2d− 1, we can get that

2(2d− 1)d2
d∑

l=0

(
n
l

)
+ 2(t+ 2)d

d∑
l=0

(
n
l

)
d(2d+ 2 + t)(t+ 1)

(
n

d+1

) +
nd(2d+ 2 + t)

d(2d+ 2 + t)(t+ 1)
(

n
d+1

) < 2d

d∑
l=0

(
n
l

)
(

n
d+1

) +

(
n
1

)(
n

d+1

) .

It means that 0 < ϵ(n, d, t) < 2d

d∑
l=0

(nl)

(n
d+1)

+
(n1)
(n
d+1)

. From
(nl)
(n
d+1)

= (d+1)!(n−d−1)!
l!(n−l)! =

d+1
n−d · d

n−d+1 · · ·
l+1
n−l ≤ (d+1

n−d)
d−l+1 for all 0 ≤ l ≤ d, we get 0 < ϵ(n, d, t) <

2d
d∑

l=0

(d+1
n−d)

d−l+1 + (d+1
n−d)

d. According to the summation formula of geometric

series, we have
d∑

l=0

(d+1
n−d)

d−l+1 = d+1
n−2d−1 (1−(d+1

n−d)
d+1). Hence, the above relation

is equivalent to

0 < ϵ(n, d, t) <
(d+ 1)2d

n− 2d− 1

(
1− (

d+ 1

n− d
)d+1

)
+ (

d+ 1

n− d
)d.

By taking n = d3+c for any constant c > 0, we get that limd→∞(ϵ(n, d, t)/(1/d)) =
0. That is, ϵ(n, d, t) = o(1d). From S(n, d, t) = 2d

2d+2+t (1 − ϵ(n, d, t)), we obtain

S(n, d, t) > 2d
2d+2+t (1−

(d+1)2d
n−2d−1

(
1− (d+1

n−d)
d+1

)
− (d+1

n−d)
d). When t = 0, the term

2d
2d+2+t becomes the maximum of d

d+1 . For t = 0, the boundX < pS(n,d,t) becomes

X < p1−
1

d+1−ε. Here

ε := d
d+1 · ϵ(n, d, 0) =

d2(2d−1)
d∑

l=0
(nl)+2

d∑
l=0

l(nl)+d(d+1)n

(d+1)2(n
d+1)+d(d+1)(2d−1)

d∑
l=0

(nl)+2d(d+1)
d∑

l=0

l(nl)
> 0, (46)

where ε = o(1
d+1) by taking n = d3+c for any constant c > 0.

Finally, we explicitly present the size of p such that w+2 logw
4d log2 p is negligible,

i.e. w+2 logw
4d log2 p = o(1

d+1). According to w =
(

n
d+1

)
(1 + o(1)) = nd+1

(d+1)! (1 + o(1)) and

Stirling’s approximation (d + 1)! ≈
√
2π(d+ 1)(d+1

e)d+1, we have w+2 logw
4d log2 p ≈

ed+1·(n
d+1)

d+1

4d
√

2π(d+1) log2 p
= d(2+c)d(1+o(1))

log2 p by taking n = d3+c. Hence, in order to make

w+2 logw
4d log2 p = o(1

d+1) satisfied, i.e.
w+2 logw
4d2 log2 p = o(1), we need p = 2ω(d(2+c)d).

D Proof of Lemma 6

Proof. Suppose that there exists a vector (e′0, ẽ
′
1, · · · , ẽ′n) such that Fi(e

′
0, ẽ

′
i) =

0 (mod p) for all 1 ≤ i ≤ n. From (6), we have Fi(e0, ẽi) = 0 (mod p). If e′0 ̸= e0,
then (e′0, ẽ

′
1, · · · , ẽ′n) ̸= (e0, ẽ1, · · · , ẽn). On the other hand, if e′0 = e0, then we

deduce ẽ′i − ẽi = 0 mod p for all 1 ≤ i ≤ n, based on Fi(e
′
0, ẽ

′
i) = 0 (mod p) and

Fi(e0, ẽi) = 0 (mod p). Note that |ẽ′i − ẽi| < 2 · p1−
1

d+1−ε < p as p = 2ω(d(2+c)d).

36

We get ẽ′i = ẽi for all 1 ≤ i ≤ n. Therefore, (e′0, ẽ
′
1, · · · , ẽ′n) ̸= (e0, ẽ1, · · · , ẽn) if

and only if e′0 ̸= e0.
Let (d0, d0,0, di, d0,i, d00,i) := (e0−e′0, e

2
0−e′20 , ẽi− ẽ′i, e0ẽi−e′0ẽ

′
i, e

2
0ẽi−e′20 ẽ

′
i).

We can rewrite Fi(e0, ẽi)−Fi(e
′
0, ẽ

′
i) = 0 (mod p) as Bid0+Cid0,0+Didi+Eid0,i+

d00,i = 0 (mod p). Plugging the expressions for Bi, Ci, Di, Ei in (9) into the above

relation, we obtain 2(h̃i(h0−xQi
)−2h0xQi

−a−x2
Qi

)d0+(h̃i−2xQi
)d0,0+(h0−

xQi
)2di + (2(h0 − xQi

))d0,i + d00,i = 0 (mod p). Then plugging the expression of

h̃i in (8) into the above equation, we get the univariate polynomial in xQi :

Uix
4
Qi

+ Vix
3
Qi

+Wix
2
Qi

+ YixQi
+ Zi = 0 (mod p), 1 ≤ i ≤ n, (47)

where 
Ui

Vi

Wi

Yi

Zi

 = Mi


d0
d0,0
di
d0,i
d00,i

 mod p, (48)

i.e., the coefficient vector (Ui, Vi,Wi, Yi, Zi) is obtained by a linear transformation
of the vector (d0, d0,0, di, d0,i, d00,i). Here, the matrixMi (in the field Fp) is defined
as

Mi =
[
C0, C1, C2, C3, C4

]
,

where column vectors

C0 =


−2

−4xP + 4e0 + 2ẽi
6x2

P − 12e0xP − 6ẽixP + 2e0ẽi − 6a
6ẽix

2
P − 4e0ẽixP + 4axP − 4ae0 − 8b

−2ẽix
3
P + 2e0ẽix

2
P + 2ax2

P − 4ae0xP + 8bxP − 8be0

 ,

C1 =


1

−4xP + 2e0
6x2

P − 6e0xP + e20
−4x3

P + 6e0x
2
P − 2e20xP

x4
P − 2e0x

3
P + e20x

2
P

 , C2 =


0
−2

6xP − ẽi
2ẽixP + 2a

−ẽix
2
P + 2axP + 4b

 ,

C3 =


0
−2

6xP − 2e0
−6x2

P + 4e0xP

2x3
P − 2e0x

2
P

 , C4 =


0
0
1

−2xp

x2
P

 .

After tedious calculation of determinants of Mi, we get det(Mi) = −64(x6
P +

2ax4
P + 2bx3

P + a2x2
P + 2abxP + b2) mod p, which is independent of the value i.

37

Based on y2P = x3
P + axP + b mod p, det(Mi) = −64y4P mod p for all 1 ≤ i ≤ n.

Since p is an odd prime, Mi is invertible over Fp if and only if yP ̸= 0 mod p.

Note that d0 = e0−e′0. In order to compute the probability that (e′0, ẽ
′
1, · · · , ẽ′n)

̸= (e0, ẽ1, · · · , ẽn), we define the following two events:

(E1) : yP = 0 mod p; (E2) : yP ̸= 0 mod p and d0 ̸= 0.

If (E1) holds,then yP = 0 mod p. According to y2P = x3
P + axP + b mod p,

we have x3
P + axP + b = 0 mod p, which has at most 3 values for xP ∈ Fp. Note

that the hidden point P ∈ E is chosen uniformly and randomly. Therefore, the
probability that the event (E1) holds is no more than 3

#E ≤ 3
p+1−2

√
p , where #E

is the number of points on the curve E satisfying p+1−2
√
p ≤ #E ≤ p+1+2

√
p

by Hasse’s theorem.

If (E2) holds, then yP ̸= 0 mod p. Hence, the matrices Mi are invertible
for all 1 ≤ i ≤ n. For any fixed d0 ̸= 0, we get that (d0, d0,0, di, d0,i, d00,i) are
nonzero vectors for all 1 ≤ i ≤ n. According to (48), all polynomials in (47) are
non-constant zero polynomials, where the degree of xQi is at most 4. In order to
compute the probability that the event (E2) happens, we consider the number
of n-tuples (xQ1

, · · · , xQn
) ∈ (Ex \ {xP })n such that (47) holds for all the cases

of d0 ̸= 0, where Ex := {z ∈ Fp | ∃Q ∈ E , xQ = z}. It is worth noting that
#E − 1 ≤ 2|Ex|, and xQ1

, · · · , xQn
are different in Fp according to Section 2.4.

From d0 = e0 − e′0 ̸= 0, where e0 is a fixed integer, we consider the following
situations for e′0.

1). If Di+Eie
′
0+e′20 ̸= 0 mod p for all 1 ≤ i ≤ n, then we get ẽ′i = −(Ai+Bie

′
0+

Cie
′2
0)(Di + Eie

′
0 + e′20)

−1 mod p based on Fi(e
′
0, ẽ

′
i) = 0 (mod p). It implies

that the n-tuple (ẽ′1, · · · , ẽ′n) is uniquely determined by e′0. In other words, the
vectors (d0, d0,0, di, d0,i, d00,i) for all 1 ≤ i ≤ n are uniquely determined by d0.

For the convenience of discussion, let Y := p1−
1

d+1−ε. Since d0 = e0 − e′0 ̸= 0
and −Y < e0, e

′
0 < Y , we have −2Y < d0 < 2Y . Thus d0 can take at most

4Y − 1 values. In this situation, there are no more than (4Y − 1) · 4n tuples
(xQ1

, · · · , xQn
) such that the event (E2) happens. Thus the probability that the

event (E2) holds does not exceed

(4Y−1)·4n
|Ex\{xP }|·(|Ex\{xP }|−1)···(|Ex\{xP }|−n+1) <

22n+2Y
(#E−1

2 −n)n
≤ 23n+2·p1− 1

d+1
−o(1

d
)

(p−2
√
p−2n)n .

2). If Di + Eie
′
0 + e′20 = 0 mod p for some 1 ≤ i ≤ n, then we deduce Ai +

Bie
′
0 + Cie

′2
0 = 0 (mod p) according to Fi(e

′
0, ẽ

′
i) = 0 (mod p). After plugging

the expressions of Ai, Bi, Ci, Di, Ei in (9) into Di + Eie
′
0 + e′20 = 0 mod p and

Ai + Bie
′
0 + Cie

′2
0 = 0 (mod p), we omit the involved calculation process and

directly present the following relations:

xQi = h0 + e′0 mod p and x3
Qi

+ axQi + b = 0 mod p.

Rewriting them as an equation in e′0, we get (h0+e′0)
3+a(h0+e′0)+b = 0 mod p.

This equation has at most 3 values for e′0. According to xQi = h0 + e′0 mod p,

38

there are no more than 3 values for xQi . Note that xQ1 , · · · , xQn are different in
Fp. Hence, xQj

̸= xQi
= h0 + e′0 mod p for all j ̸= i. Further, we deduce that

Dj +Eje
′
0 + e′20 = (h0 − xQj

+ e′0)
2 ̸= 0 mod p for j = 1, · · · , i− 1, i+ 1, · · · , n.

Then ẽ′j = −(Aj + Bje
′
0 + Cje

′2
0)(Dj + Eje

′
0 + e′20)

−1 mod p from Fj(e
′
0, ẽ

′
j) =

0 (mod p). Therefore, the (n − 1)-tuple (ẽ′1, · · · , ẽ′i−1, ẽ
′
i+1, · · · , ẽ′n) is uniquely

determined by e′0. In other words, the vectors (d0, d0,0, dj , d0,j , d00,j) for all
j ̸= i are uniquely determined by d0. Since d0 = e0 − e′0 and e′0 can take at
most 3 values, we get that d0 takes no more than 3 values. Thus, there are no
more than 3 values for xQi

, and at most 3 · 4n−1 values for the (n − 1)-tuple
(xQ1 , · · · , xQi−1 , xQi+1 , xQn) such that the event (E2) happens. In other words,
the probability that the event (E2) holds is at most

3·(3·4n−1)
|Ex\{xP }|·(|Ex\{xP }|−1)···(|Ex\{xP }|−n+1) <

324n−1

(#E−1
2 −n)n

≤ 3223n−2

(p−2
√
p−2n)n .

So the probability that (e′0, ẽ
′
1, · · · , ẽ′n) ̸= (e0, ẽ1, · · · , ẽn) does not exceed 3

p−2
√
p

+ 23n+2·p1− 1
d+1

−ε

(p−2
√
p−2n)n + 3223n−2

(p−2
√
p−2n)n . It becomes O(1p) for a sufficiently large p =

2ω(d(2+c)d) and n = d3+c for any constant c > 0.

39

	Improving Bounds on Elliptic Curve Hidden Number Problem for ECDH Key Exchange

