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Abstract

Secure software leasing is a quantum cryptographic primitive that enables us to lease software to
a user by encoding it into a quantum state. Secure software leasing has a mechanism that verifies
whether a returned software is valid or not. The security notion guarantees that once a user returns a
software in a valid form, the user no longer uses the software.

In this work, we introduce the notion of secret-key functional encryption (SKFE) with secure key
leasing, where a decryption key can be securely leased in the sense of secure software leasing. We
also instantiate it with standard cryptographic assumptions. More specifically, our contribution is as
follows.

• We define the syntax and security definitions for SKFE with secure key leasing.
• We achieve a transformation from standard SKFE into SKFE with secure key leasing without
using additional assumptions. Especially, we obtain bounded collusion-resistant SKFE for
P/poly with secure key leasing based on post-quantum one-way functions since we can
instantiate bounded collusion-resistant SKFE for P/poly with the assumption.

Some previous secure software leasing schemes capture only pirate software that runs on an honest
evaluation algorithm (on a legitimate platform). However, our secure key leasing notion captures
arbitrary attack strategies and does not have such a limitation.

As an additional contribution, we introduce the notion of single-decryptor FE (SDFE), where
each functional decryption key is copy-protected. Since copy-protection is a stronger primitive than
secure software leasing, this notion can be seen as a stronger cryptographic primitive than FE with
secure key leasing. More specifically, our additional contribution is as follows.

• We define the syntax and security definitions for SDFE.
• We achieve collusion-resistant single-decryptor PKFE for P/poly from post-quantum indistin-
guishability obfuscation and quantum hardness of the learning with errors problem.
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1 Introduction

1.1 Background

Functional encryption (FE) [BSW11] is an advanced encryption system that enables us to compute on
encrypted data. In FE, an authority generates a master secret key and an encryption key. An encryptor
uses the encryption key to generate a ciphertext ctx of a plaintext x. The authority generates a functional
decryption key fsk from a function f and the master secret key. When a decryptor receives fsk and ctx, it
can compute f (x) and obtains nothing beyond f (x). In secret-key FE (SKFE), the encryption key is the
same as the master secret key, while the encryption key is public in public-key FE (PKFE).

FE offers flexible accessibility to encrypted data since multiple users can obtain various processed
data via functional decryption keys. Public-key encryption (PKE) and attribute-based encryption
(ABE) [SW05] do not have this property since they recover an entire plaintext if decryption succeeds.
This flexible feature is suitable for analyzing sensitive data and computing new data from personal data
without compromising data privacy. For example, we can compute medical statistics from patients’ data
without directly accessing individual data. Some works present practical applications of FE (for limited
functionalities): non-interactive protocol for hidden-weight coin flips [CS19], biometric authentication,
nearest-neighbor search on encrypted data [KLM+18], private inference on encrypted data [RPB+19].

One issue is that once a user obtains fsk, it can compute f (x) from a ciphertext of x forever. An
authority may not want to provide users with the permanent right to compute on encrypted data. A
motivative example is as follows. A research group member receives a functional decryption key fsk to
compute some statistics from many encrypted data for their research. When the member leaves the group,
an authority wants to prevent the member from doing the same computation on another encrypted data
due to terms and conditions. However, the member might keep a copy of their functional decryption
key and penetrate the database of the group to do the same computation. Another motivation is that the
subscription business model is common for many services such as cloud storage services (ex. OneDrive,
Dropbox), video on demand (ex. Netflix, Hulu), software applications (ex. Office 365, Adobe Photoshop).
If we can keep a copy of functional decryption keys, we cannot use FE in the subscription business model
(for example, FE can be used as broadcast encryption in a video on demand). We can also consider the
following subscription service. A company provides encrypted data sets for machine learning and a
functional decryption key. A researcher can perform some tasks using the encrypted data set and the key.

Achieving a revocation mechanism [NP01] is an option to solve the issue above. Some works propose
revocation mechanisms for advanced encryption such as ABE [SSW12] and FE [NWZ16]. However,
revocation is not a perfect solution since we need to update ciphertexts to embed information about
revoked users. We want to avoid updating ciphertexts for several reasons. One is a practical reason. We
possibly handle a vast amount of data, and updating ciphertexts incurs significant overhead. Another
one is more fundamental. Even if we update ciphertexts, there is no guarantee that all old ciphertexts
are appropriately deleted. If some user keeps copies of old ciphertexts, and a data breach happens after
revocation, another functional decryption key holder whose key was revoked still can decrypt the old
ciphertexts.

This problem is rooted in classical computation since we cannot prevent copying digital data. Ananth
and La Placa introduce the notion of secure software leasing [AL21] to solve the copy problem by using
the power of quantum computation. Secure software leasing enables us to encode software into a leased
version. The leased version has the same functionality as the original one and must be a quantum state
to prevent copying. After a lessor verifies that the returned software from a lessee is valid (or that the
lessee deleted the software), the lessee cannot execute the software anymore. Several works present
secure software leasing for simple functionalities such as a sub-class of evasive functions (subEVS), PKE,
signatures, pseudorandom functions (PRFs) [AL21, ALL+21, KNY21, BJL+21, CMP20]. If we can
securely implement leasing and returning mechanisms for functional decryption keys, we can solve the
problem above. Such mechanisms help us to use FE in real-world applications.
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Thus, the main question in this work is as follows.

Can we achieve secure a leasing mechanism for functional decryption keys of FE?

We can also consider copy-protection, which is stronger security than secure leasing. Aaronson [Aar09]
introduces the notion of quantum copy-protection. Copy-protection prevents users from creating a pirate
copy. It does not have a returning process, and prevents copying software. If a user returns the original
software, no copy is left behind on the user, and it cannot run the software. Coladangelo, Liu, Liu, and
Zhandry [CLLZ21] achieve copy-protected PRFs and single-decryptor encryption (SDE)1. Our second
question in this work is as follows.

Can we achieve copy-protection for functional decryption keys of FE?

We affirmatively answer those questions in this work.

1.2 Our Result

Secure key leasing. Our main contributions are introducing the notion of SKFE with secure key leasing
and instantiating it with standard cryptographic assumptions. More specifically,

• We define the syntax and security definitions for SKFE with secure key leasing.

• We achieve a transformation from standard SKFE into SKFE with secure key leasing without using
additional assumptions.

In SKFE with secure key leasing, a functional decryption key is a quantum state. More specifically, the
key generation algorithm takes as input a master secret key, a function f , and an availability bound n (in
terms of the number of ciphertexts), and outputs a quantum decryption key fsk tied to f . We can generate
a certificate for deleting the decryption key fsk . If the user of this decryption key deletes fsk within the
declared availability bound n and the generated certificate is valid, the user cannot compute f (x) from a
ciphertext of x anymore. We provide a high-level overview of the security definition in Section 1.3.

We can obtain bounded collusion-resistant SKFE for P/poly with secure key leasing from OWFs
since we can instantiate bounded collusion-resistant SKFE for P/poly with OWFs.2 Note that all
building blocks in this work are post-quantum secure since we use quantum computation and we omit
“post-quantum”.

Our secure key leasing notion is similar to but different from secure software leasing [AL21] for
FE because adversaries in secure software leasing (for FE) must run their pirate software by an honest
evaluation algorithm (on a legitimate platform). This is a severe limitation. In our FE with secure key
leasing setting, adversaries do not necessarily run their pirate software (for functional decryption) by an
honest evaluation algorithm and can take arbitrary attack strategies.

We develop a transformation from standard SKFE into SKFE with secure key leasing by using
quantum power. In particular, we use (reusable) secret-key encryption (SKE) with certified deletion [BI20,
HMNY21], where we can securely delete ciphertexts, as a building block. We also develop a technique
based on the security bound amplification for FE [AJL+19, JKMS20] to amplify the availability
bound, that is, the number of encryption queries before ct∗ is given. This technique deviates from
known multi-party-computation-based techniques for achieving bounded many-ciphertext security for
SKFE [GVW12, AV19].3 The security bound amplification-based technique is of independent interest

1SDE is PKE whose decryption keys are copy-protected.
2If we start with fully collusion-resistant SKFE, we can obtain fully collusion-resistant SKFE with secure key leasing.
3These techniques [GVW12, AV19] work as transformations from single-key FE into bounded collusion-resistant FE.

However, they also work as transformations from single-ciphertext SKFE into bounded many-ciphertext SKFE. See Section 1.4
for the detail. Many-ciphertext means that SKFE is secure even if adversaries can send unbounded polynomially many queries to
an encryption oracle.
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since the security bound amplification is not directly related to the amplification of the number of queries.
These are the main technical contributions of this work. See Section 1.3 and main sections for more
details.

Copy-protected functional decryption keys. The other contributions are copy-protected functional
decryption keys. We introduce the notion of single-decryptor FE (SDFE), where each functional decryption
key is copy-protected. This notion can be seen as a stronger cryptographic primitive than FE with secure
key leasing, as we argued in Section 1.1.

• We define the syntax and security definitions for SDFE.

• We achieve collusion-resistant public key SDFE for P/poly from sub-exponentially secure indistin-
guishability obfuscation (IO) and the sub-exponential hardness of the learning with errors problem
(QLWE assumption).

First, we transform single-key PKFE for P/poly into single-key SDFE for P/poly by using SDE.
Then, we transform single-key SDFE P/poly into collusion-resistant SDFE for P/poly by using an
IO-based key bundling technique [KNT21, BNPW20]. We can instantiate SDE with IO and the QLWE
assumption [CLLZ21, CV21] and single-key PKFE for P/poly with PKE [SS10, GVW12].

1.3 Technical Overview

We provide a high-level overview of our techniques. Below, standard math font stands for classical
algorithms and classical variables, and calligraphic font stands for quantum algorithms and quantum
states.

Syntax of SKFE with secure key leasing. We first recall a standard SKFE scheme. It consists of four
algorithms (Setup, KG, Enc, Dec). Setup is given a security parameter 1λ and a collusion bound 1q and
generates a master secret key msk. Enc is given msk and a plaintext x and outputs a ciphertext ct. KG
is given msk and a function f and outputs a decryption key fsk tied to f . Dec is given fsk and ct and
outputs f (x). Then, the indistinguishability-security of SKFE roughly states that any QPT adversary
cannot distinguish encryptions of x0 and x1 under the existence of the encryption oracle and the key
generation oracle. Here, the adversary can access the key generation oracle at most q times and can query
only a function f such that f (x0) = f (x1).

AnSKFE schemewith secure key leasing (SKFE-SKL) is a tuple of six algorithms (Setup, KG , Enc, Dec,
Cert , Vrfy), where the first four algorithms form a standard SKFE scheme except the following difference
on KG . In addition to a function f , KG is given an availability bound 1n in terms of the number of
ciphertexts. Also, given those inputs, KG outputs a verification key vk together with a decryption key fsk
tied to f encoded in a quantum state, as (fsk , vk)← KG(msk, f , 1n). By using Cert , we can generate a
(classical) certificate that a quantum decryption key fsk is deleted, as cert← Cert(fsk ). We check the
validity of certificates by using vk and Vrfy, as >/⊥ ← Vrfy(vk, cert). In addition to the decryption
correctness, an SKFE-SKL scheme is required to satisfy the verification correctness that states that a
correctly generated certificate is accepted, that is, > = Vrfy(vk, cert) for (fsk , vk) ← KG(msk, f , 1n)
and cert← Cert(fsk ).

Security of SKFE-SKL. The security notion of SKFE-SKLwe call lessor security intuitively guarantees
that if an adversary given fsk deletes it and the generated certificate is accepted within the declared
availability bound, the adversary cannot use fsk any more. The following indistinguishability experiment
formalizes this security notion. For simplicity, we focus on a selective setting where the challenge plaintext
pair (x∗0 , x∗1) and the collusion bound q are fixed outside of the security experiment in this overview.
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1. Throughout the experiment, A can get access to the following oracles, where LKG is a list that is
initially empty.

OEnc(x): This is the standard encryption oracle that returns Enc(msk, x) given x.
OKG ( f , 1n): This oracle takes as input a function f and an availability bound 1n, generate

(fsk , vk) ← KG(msk, f , 1n), returns fsk to A , and adds ( f , 1n, vk,⊥) to LKG . Differently
from the standard SKFE, A can query a function f such that f (x∗0) 6= f (x∗1). A can get
access to the key generation oracle at most q times.

OVrfy( f , cert): Also, A can get access to the verification oracle. Intuitively, this oracle checks that
A deletes leased decryption keys correctly within the declared availability bounds. Given
( f , cert), it finds an entry ( f , 1n, vk, M) from LKG . (If there is no such entry, it returns ⊥.) If
> = Vrfy(vk, cert) and the number of queries to OEnc at this point is less than n, it returns
> and updates the entry into ( f , 1n, vk,>). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if A has correctly deleted all leased
decryption keys for functions f such that f (x∗0) 6= f (x∗1). If so, the challenger gives the challenge
ciphertext ct∗ ← Enc(msk, x∗coin) for random bit coin← {0, 1} to A , and otherwise the challenger
output 0. Hereafter, A is not allowed to send a function f such that f (x∗0) 6= f (x∗1) to OKG .

3. A outputs a guess coin′ of coin.

We say that the SKFE-SKL scheme is lessor secure if no QPT adversary can guess coin significantly
better than random guessing. We see that if A can use a decryption key after once A deletes and the
deletion certificate is accepted, A can detect coin with high probability since A can obtain a decryption
key for f such that f (x∗0) 6= f (x∗1). Thus, this security notion captures the above intuition. We see that
lessor security implies standard indistinguishability-security for SKFE.

We basically work with the above indistinguishability based selective security for simplicity. In
Appendix B, we also provide the definitions of adaptive security and simulation based security notions
and general transformations to achieve those security notions from indistinguishability based selective
security.

Dynamic availability bound vs. static availability bound. In SKFE-SKL, we can set the availability
bound for each decryption key differently. We can also consider a weaker variant where we statically set
the single availability bound applied to each decryption key at the setup algorithm. We call this variant
SKFE with static bound secure key leasing (SKFE-sbSKL). In fact, by using a technique developed
in the context of dynamic bounded collusion FE [AMVY21, GGLW21], we can generically transform
SKFE-sbSKL into SKFE-SKL if the underlying SKFE-sbSKL satisfies some additional security property
and efficiency requirement. For the overview of this transformation, see Section 3.2. Therefore, we below
focus on how to achieve SKFE-sbSKL. For simplicity, we ignore those additional properties required for
the transformation to SKFE-SKL.

SKFE-sbSKL with the availability bound 0 from certified deletion. We start with a simple construc-
tion of an SKFE-sbSKL scheme secure for the availability bound 0 based on an SKE scheme with certified
deletion [BI20, HMNY21]. The availability bound is 0 means that it is secure if an adversary deletes
decryption keys without seeing any ciphertext.

SKE with certified deletion consists of five algorithms (KG, Enc, Dec, Del , Vrfy). The first three
algorithms form a standard SKE scheme except that Enc output a verification key vk together with a
ciphertext encoded in a quantum state ct . By using Del , we can generate a (classical) certificate that
ct is deleted. The certificate is verified using vk and Vrfy. In addition to the decryption correctness, it
satisfies the verification correctness that guarantees that a correctly generated certificate is accepted. The

4



security notion roughly states that once an adversary deletes a ciphertext ct and the generated certificate is
accepted, the adversary cannot obtain any plaintext information encrypted inside ct , even if the adversary
is given the secret key after the deletion.

We now construct an SKFE-sbSKL scheme zSKFE-sbSKL that is secure for the availability bound 0,
based on a standard SKFE scheme SKFE = (Setup, KG, Enc, Dec) and an SKE scheme with certified
deletion CDSKE = (CD.KG, CD.Enc, CD.Dec, CD.Del , CD.Vrfy). In the setup of zSKFE-sbSKL, we
generate msk ← Setup(1λ, 1q) and cd.sk ← CD.KG(1λ), and the master secret key of zSKFE-sbSKL
is set to zmsk = (msk, cd.sk). To generate a decryption key for f , we generate a decryption key for
f by SKFE as fsk ← KG(msk, f ) and encrypt it by CDSKE as (cd.ct , vk) ← CD.Enc(cd.sk, fsk). The
resulting decryption key is zfsk := cd.ct and the corresponding verification key is vk. To encrypt a
plaintext x, we just encrypt it by SKFE as ct ← Enc(msk, x) and append cd.sk contained in zmsk, as
zct := (ct, cd.sk). To decrypt zct with zfsk , we first retrieve fsk from cd.ct and cd.sk, and compute
f (x)← Dec(fsk, ct). The certificate generation and verification are simply defined as those of CDSKE
since zfsk is a ciphertext of CDSKE.

The security of zSKFE-sbSKL is easily analyzed. Let (x∗0 , x∗1) be the challenge plaintext pair.
When an adversary A queries f to OKG , A is given zfsk := cd.ct , where fsk ← KG(msk, f ) and
(cd.ct , vk) ← CD.Enc(cd.sk, fsk). If f (x∗0) 6= f (x∗1), A is required to delete zfsk without seeing any
ciphertext. This means that A cannot obtain cd.sk before zfsk is deleted. Then, from the security of
CDSKE, A cannot obtain any information of fsk. This implies that A can obtain a decryption key of SKFE
only for a function f such that f (x∗0) = f (x∗1), and thus the lessor security of zSKFE-sbSKL follows
form the security of SKFE.

How to amplify the availability bound? We now explain how to amplify the availability bound
from 0 to any polynomial n. One possible solution is to rely on the techniques for bounded collusion
FE [GVW12, AV19]. Although the bounded collusion techniques can be used to amplify “1-bounded
security” to “poly-bounded security”, it is not clear how to use it starting from “0-bounded security”. For
more detailed discussion on this point, see Remark 3.7. Therefore, we use a different technique from
the existing bounded collusion FE. At a high level, we reduce the task of amplifying the availability
bound to the task of amplifying the security bound, which has been studied in the context of standard
FE [AJL+19, JKMS20].

We observe that we can obtain an SKFE-sbSKL scheme with availability bound n for any n that is
secure with only inverse polynomial probability by just using many instances of zSKFE-sbSKL in parallel.
Concretely, suppose we use N = αn instances of zSKFE-sbSKL to achieve a scheme with availability
bound n, where α ∈N. To generate a decryption key for f , we generate (zfsk j, vkj)← zKG(zmskj, f )
for every j ∈ [N], and set the resulting decryption key as (zfsk j)j∈[N] and the corresponding verification
key as (vkj)j∈[N]. To encrypt x, we randomly choose j ← [N], generate zctj ← zEnc(zmskj, x), and
set the resulting ciphertext as (j, zctj). To decrypt this ciphertext with (zfsk j)j∈[N], we just compute
f (x) ← zDec(zfsk j, zctj). The certification generation and verification are done by performing them
under all N instances. The security of this construction is analyzed as follows. The probability that the j∗

chosen when generating the challenge ciphertext collides with some of n indices j1, · · · , jn used by the
first n calls of the encryption oracle, is at most n/N = 1/α. If such a collision does not happen, we can
use the security of j∗-th instance of zSKFE-sbSKL to prove the security of this construction. Therefore,
this construction is secure with probability roughly 1− 1/α (denoted by 1/α-secure scheme).

Thus, all we have to do is to convert an SKFE-sbSKL scheme with inverse polynomial security
into one with negligible security. As stated above, such security amplification has been studied for
standard FE. In this work, we adopt the amplification technique using homomorphic secret sharing
(HSS) [AJL+19, JKMS20].
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Amplification using HSS. In this overview, we describe our construction using HSS that requires the
LWE assumption with super-polynomial modulus to give a high-level intuition. However, our actual
construction uses a primitive called set homomorphic secret sharing (SetHSS) [JKMS20], which is a
weak form of HSS and can be based on OWFs. 4 See Section 5 for our construction based on OWFs.

An HSS scheme consists of three algorithms (InpEncode, FuncEncode, Decode). InpEncode is given
a security parameter 1λ, a number 1m, and an input x, and outputs m input shares (si)i∈[m]. FuncEncode
is given a security parameter 1λ, a number 1m, and a function f , and outputs m function shares ( fi)i∈[m].
Decode takes a set of evaluations of function shares on their respective input shares ( fi(si))i∈[m], and
outputs a value f (x). Then, the security property of an HSS scheme roughly guarantees that for any
(i∗, x∗0 , x∗1), given a set of input shares (si)i∈[m]\{i∗} for some i∗, an adversary cannot detect from which
of the challenge inputs they are generated, under the existence of function encode oracle that is given f
such that f (x∗0) = f (x∗1) and returns ( fi(si))i∈[m].

We describe SKFE-sbSKL scheme SKFE-sbSKL with the availability bound n ≥ 1 of our choice
using a HSS scheme HSS = (InpEncode, FuncEncode, Decode). In the setup of SKFE-sbSKL, we first
set up 1/2-secure SKFE-sbSKL scheme SKFE-sbSKL′ with the availability bound n. This is done by
parallelizing 2n instances of zSKFE-sbSKL as explained before. We generate m master secret keys
msk1, · · · , mskm of SKFE-sbSKL′. Then, to generate a decryption key for f by SKFE-sbSKL, we first
generate ( fi)i∈[m] ← FuncEncode(1λ, 1m, f ), and generate a decryption key fsk i tied to fi under mski

for each i ∈ [m]. To encrypt x by SKFE-sbSKL, we first generate (si)i∈[m] ← InpEncode(1λ, 1m, x) and
generate a ciphertext cti of si under mski for each i ∈ [m]. The certification generation and verification
are done by performing those of SKFE-SKL′ for all of the m instances. When decrypting the ciphertext
(cti)i∈[m] by (fsk i)i∈[m], we can obtain fi(si) by decrypting cti with fsk i for every i ∈ [m]. By combining
( fi(si))i∈[m] using Decode, we can obtain f (x).

The lessor security of SKFE-sbSKL can be proved as follows. Each of m instances of SKFE-sbSKL′ is
secure independently with probability 1/2. Thus, there is at least one secure instance without probability
1/2m, which is negligible by setting m = ω(log λ). Suppose i∗-th instance is a secure instance. Let
(x∗0 , x∗1) be the challenge plaintext pair, and let (s∗i )i∈[m] ← InpEncode(1λ, 1m, x∗coin) for coin← {0, 1}.
In the security experiment, from the security of SKFE-sbSKL′ under mski∗ , an adversary cannot obtain
the information of si∗ except for its evaluation on function shares for a function f queried to OKG that
satisfies that f (x∗0) = f (x∗1). Especially, from the security of SKFE-sbSKL′ under mski∗ , the adversary
cannot obtain an evaluation of si∗ on function shares for a function f such that f (x∗0) 6= f (x∗1), though A
can query such a function to OKG . Then, we see that the lessor security of SKFE-sbSKL can be reduced
to the security of HSS. 5

In the actual construction, we use SetHSS instead of HSS, as stated before. Also, in the main body, we
abstract the parallelized zSKFE-sbSKL as index-based SKFE-sbSKL. This makes the security proof of our
construction using SetHSS simple. Moreover, in the actual construction of an index-based SKFE-sbSKL,
we bundle the parallelized instances of zSKFE-sbSKL using a PRF. This modification is necessary to
achieve the efficiency required for the above transformation into SKFE-SKL.

Goyal et al. [CGO21] use a similar technique using HSS in a different setting (private simultaneous
message protocols). However, their technique relies on the LWE assumption unlike ours.

Single decryptor PKFE. In this work, we also define the notion of single decryptor PKFE, which is
PKFE whose functional decryption key is copy-protected. The definition is a natural extension of SDE
(PKE with copy-protected decryption keys). An adversary A tries to copy a target functional decryption
key sk f ∗ . More specifically, A is given sk f ∗ and outputs two possibly entangled quantum distinguishers

4The definition of HSS provided below is not standard. We modify the definition to be close to SetHSS. Note that HSS defined
below can be constructed from multi-key fully homomorphic encryption with simulatable partial decryption property [MW16].

5Actual construction and security proof needs to use a technique called the trojan method [ABSV15]. We ignore the issue
here for simplicity.
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D1 and D2 and two plaintexts (x0, x1) such that f ∗(x0) 6= f ∗(x1). If D1 or D2 cannot distinguish a given
ciphertext is encryption of x0 or x1, sk f ∗ is copy-protected.6 If both D1 and D2 have sk f ∗ , they can
trivially distinguish the challenge ciphertext. Thus, the definition guarantees copy-protection security.
We provide a collusion-resistant single-decryptor PKFE scheme, where adversaries obtain polynomially
many functional decryption keys, based on IO.

We first show that a single-key single-decryptor PKFE can be constructed from a single-key standard
PKFE scheme and SDE scheme. The construction is simple nested encryption. Namely, when encrypting
a plaintext x, we first encrypt it by the standard PKFE scheme and then encrypt the ciphertext by the SDE
scheme. The secret key of the SDE scheme is included in the functional decryption key of the resulting
single-decryptor PKFE scheme. Although a PKFE functional decryption key can be copied, the SDE
decryption key cannot be copied and adversaries cannot break the security of PKFE. This is because we
need to run the SDE decryption algorithm before we run the PKFE decryption algorithm.

The security notion for SDE by Coladangelo et al. [CLLZ21] is not sufficient for our purpose since
SDE plaintexts are ciphertexts of the standard PKFE in the construction. We need to extend the security
notion for SDE to prove the security of this construction because we need to handle randomized messages
(the PKFE encryption is a randomized algorithm). Roughly speaking, this new security notion guarantees
that the security of SDE holds for plaintexts of the form g(x; r), where g and x respectively are a
function and an input chosen by an adversary and r is a random coin chosen by the experiment. We can
observe that the SDE scheme proposed by Coladangelo et al. [CLLZ21] based on IO satisfies this security
notion. Then, by setting g as the encryption circuit of the standard PKFE, the security of the single-key
single-decryptor PKFE scheme above can be immediately reduced to the security of the SDE scheme. We
also extend adversarial quantum decryptors, which try to output an entire plaintext, to adversarial quantum
distinguishers, which try to guess a 1-bit coin used to generate a ciphertext. We need this extension to use
SDE as a building block. It is easy to observe the SDE scheme by Coladangelo et al. [CLLZ21] is secure
even against quantum distinguishers.

Once we obtain a single-key single-decryptor PKFE scheme, we can transform it into a collusion-
resistant single-decryptor PKFE scheme by again using IO. This transformation is based on one from a
single-key standard PKFE scheme into a collusion-resistant standard PKFE scheme [BNPW20, KNT21].
The idea is as follows. We need to generate a fresh instance of the single-key scheme above for each
random tag and bundle (unbounded) polynomially many instances to achieve collusion-resistance. We
use IO to bundle multiple instances of single-key SDFE. More specifically, a public key is an obfuscated
circuit of the following setup circuit. The setup circuit takes a public tag τ as input, generates a key
pair (pkτ, mskτ) of the single-key SDFE scheme using PRF value FK(τ) as randomness, and outputs
only pkτ. The master secret key is the PRF key K. We can generate a functional decryption key for f
by choosing a random tag τ and generating a functional decryption key sk f ,τ under mskτ. A functional
decryption key of our collusion-resistant scheme consists of (τ, sk f ,τ). A ciphertext is an obfuscated
circuit of the following encryption circuit, where a plaintext x is hardwired. The encryption circuit takes
a public tag τ, generates pkτ by using the public key explained above, and outputs a ciphertext of x under
pkτ. Due to this mechanism, only one functional decryption key sk f ,τ under mskτ is issued for each
τ, but we can generate polynomially many functional decryption keys by using many tags. If we use a
different tag τ′, an independent key pair (pkτ′ , mskτ′) is generated and it is useless for another instance
under (pkτ, mskτ). The IO security guarantees that the information about K (and mskτ) is hidden.7 Thus,
we can reduce the collusion-resistance to the single-key security of the underlying single-decryptor PKFE.
Note that we need to consider super-polynomially many hybrid games to complete the proof since the tag
space size must be super-polynomial to treat unbounded polynomially many tags. This is the reason why

6In the security definition of SDE, quantum decryptors try to recover the entire plaintext [CLLZ21]. We extend the definition
because quantum decryptors are not sufficient for using SDFE as a building block. See Section 7 for detail.

7We use puncturable PRFs and the puncturing technique here as the standard technique for cryptographic primitives based on
IO [SW21].
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we need the sub-exponential security for building blocks.

1.4 More on Related Work

Secure software leasing. Ananth and La Place [AL21] achieve secure software leasing for subEVS
from the QLWE assumption and IO. Kitagawa, Nishimaki, and Yamakawa [KNY21] achieve secure
software leasing for PRFs and subEVS only from the QLWE (that is, without IO). Broadbent, Jeffery,
Lord, Podder, and Sundaram [BJL+21] achieve secure software leasing for subEVS without assumptions.
Coladangelo, Majenz, and Poremba [CMP20] also achieve secure software leasing for subEVS in the
quantum random oracle (QROM) model (without assumptions).

In secure software leasing, we force adversaries to run pirate software by an honest evaluation
algorithm denoted by Run [AL21]. An honest evaluation algorithm verifies the format of software
when software is executed, and adversaries cannot adopt arbitrary strategies for creating pirate software.
Aaronson, Liu, Liu, Zhandry, and Zhang [ALL+21] introduce copy-detection, which is essentially the
same notion as secure software leasing. Although a check algorithm verifies returned software, there is no
honest evaluation algorithm, and adversaries can adopt arbitrary strategies in the copy-detection setting.
Aaronson et al. [ALL+21] achieve copy-detection for PRFs, PKE, and signatures from IO and standard
cryptographic assumptions. Those cryptographic functionalities are much weaker than FE. Moreover, we
need IO to achieve security against adversaries that adopt any strategy to execute pirate software. Secure
software leasing by Coladangelo et al. [CMP20] is also secure against such arbitrary adversaries, but their
construction relies on QROM, and its functionality is severely limited.

Certified deletion. Broadbent and Islam [BI20] present the notion of quantum encryption with certified
deletion. They achieve one-time SKE with certified deletion without assumptions. Hiroka, Morimae,
Nishimaki, and Yamakawa [HMNY21] extend the notion to reusable SKE, PKE, and ABE with certified
deletion, and instantiate them with standard SKE, PKE, and IO and OWFs, respectively. Our FE with
secure key leasing can also be seen as certified deletion for functional decryption keys.

Copy-protection. Aaronson [Aar09] achieves copy-protection for arbitrary unlearnable Boolean func-
tions relative to a quantum oracle, and presents two heuristic copy-protection schemes for point functions.
Aaronson et al. [ALL+21] achieve quantum copy-protection for all unlearnable functions by using
classical oracles. Georgiou and Zhandry [GZ20] present the notion of SDE and instantiate it with
one-shot signatures [AGKZ20] and extractable witness encryption (WE) [GKP+13]. They also introduce
the notion of broadcast encryption with unclonable decryption and splittable ABE, which can be seen
as copy-protected variants of broadcast encryption and ABE, respectively. They instantiate splittable
ABE with the same tools as those for SDE. They instantiate broadcast encryption with unclonable
decryption with tokenized signatures [BS17], extractable WE, and collision-resistant hash functions.
Coladangelo et al. [CLLZ21] achieve quantum copy-protection for PRFs and SDE from IO and OWFs,
the QLWE assumption, and the strong monogamy-of-entanglement conjecture. Later, Culf and Vidick
prove that the strong monogamy-of-entanglement conjecture is true without any assumption [CV21].
Those cryptographic functionalities are weaker than FE, as in the case of secure software leasing. Most of
those works rely on magical oracles or knowledge-type assumptions such as the existence of extractable
WE, which is implausible [GGHW17]. Only the constructions by Coladangelo et al. [CLLZ21, CV21]
do not rely on such strong tools. However, note that there is no provably secure post-quantum IO from
well-founded assumptions so far.8

Ben-David and Sattath [BS17] present the notion of tokenized signatures, where we can generate a
delegated signing token from a signing key. A signing token enables a user to sign one and only one

8There are some candidates [BGMZ18, CHVW19, AP20, DQV+21]. The known IO constructions from well-founded
assumptions [JLS21, JLS22] are vulnerable against quantum adversaries.
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message. They instantiate it with virtual black-box obfuscation [BGI+12]. Amos, Georgiou, Kiayias, and
Zhandry present the notion of one-shot signatures, where adversaries cannot generate two valid signatures
for different two messages even under an adversarially generated verification key. They instantiate it
with classical oracles, which can be seen as an idealized virtual black-box obfuscation. Those are
copy-protected variants of signatures. Relationships between (copy-protected) FE and them are not known
so far.

Functional encryption. FE has been extensively studied since Boneh, Sahai, and Waters [BSW11]
formally defined its notion. Although there are many works on FE, we focus on FE for P/poly that are
closely related to our work in this paper.

Sahai and Seyalioglu [SS10] present the first (selectively secure) single-key PKFE for P/poly
from PKE. Gorbunov, Vaikuntanathan, and Wee [GVW12] present transformations from (adaptively
secure) single-key PKFE for NC1 into (adaptively secure) bounded collusion-resistant PKFE for P/poly
by using pseudorandom generators (PRGs) in NC1. The transformation also converts single-key and
many-ciphertext SKFE for NC1 into bounded collusion-resistant and many-ciphertext SKFE for P/poly.
They also show that we can achieve adaptively secure single-key PKFE (resp. SKFE) for NC1 from
PKE (resp. OWFs). Ananth, Brakerski, Segev, and Vaikuntanathan [ABSV15] observe that we can
invert the roles of the functions and plaintexts in SKFE by using the function-privacy of SKFE [BS18],
and obtain collusion-resistant and bounded many-ciphertext SKFE for P/poly from OWFs by using the
transformations. Later, Ananth and Vaikuntanathan [AV19] improve the assumptions (remove PRGs in
NC1) for the transformation and achieve the optimal ciphertext size (in the asymptotic sense). These
transformations [GVW12, AV19] run N independent copies of a single-key FE scheme and encrypt the
views of some N-party multi-party computation (MPC) protocol. Agrawal and Rosen [AR17] construct
bounded collusion-resistant PKFE for NC1 by using FE for inner-product [ABDP15, ALS16] and the
homomorphic property of some encryption scheme [BV11].9 Their construction supports arithmetic
circuits. Agrawal, Maitra, Vempati, and Yamada [AMVY21] and Garg, Goyal, Lu, andWaters [GGLW21]
concurrently and independently present the notion of dynamic bounded collusion-resistant FE and how
to achieve it from identity-based encryption (IBE). In the dynamic bounded collusion setting, the setup
algorithm of FE does not depend on the number of key queries, and only the encryption algorithm of FE
depends on it.

Security amplification is transforming an ε-secure cryptographic scheme into a ν-secure one, where
ε ∈ (0, 1) is a constant and ν is a negligible function. Ananth, Jain, Lin, Matt, and Sahai [AJL+19]
propose security amplification techniques for standard FE. Their techniques are based on multi-key
homomorphic encryption, which can be instantiated with the LWE assumption. Jain, Korb, Manohar, and
Sahai [JKMS20] also propose how to amplify the security of standard FE by using SetHSS, which can be
instantiated with OWFs.

IO for P/poly is necessary and sufficient for collusion-resistant FE (for NC1) up to sub-exponential
security loss [GGH+16, BV18, AJ15, AJS15, KNT22]. Jain, Lin, and Sahai [JLS21, JLS22] achieve the
first IO (and collusion-resistant FE for P/poly) from well-founded assumptions. However, they are not
post-quantum secure since the constructions heavily rely on cryptographic bilinear maps.

Revocation mechanisms have been extensively studied, especially in the context of broadcast
encryption [NP01, NNL01].10 Nishimaki et al. [NWZ16] introduce revocable FE to achieve a trace-and-
revoke system with flexible identities. They achieve the first revocable FE by using IO and OWFs. We
need to manage a revocation list and update ciphertexts to revoke a user.

9We can upgrade FE for NC1 to FE for P/poly by using randomized encoding [ABSV15].
10We omit references since there are too many previous works on broadcast encryption and trace-and-revoke systems.
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2 Preliminaries

Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms
(e.g., C or Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms
(e.g., Gen) and calligraphic font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ〉).
For strings x and y, x‖y denotes the concatenation of x and y. Let 0 denote a string consisting of an
appropriate number of 0. Let [`] denote the set of integers {1, · · · , `}, λ denote a security parameter,
and y := z denote that y is set, defined, or substituted by z.

In this paper, for a finite set X and a distribution D, x ← X denotes selecting an element from
X uniformly at random, x ← D denotes sampling an element x according to D. Let y ← A(x) and
y← A(x ) denote assigning to y the output of a probabilistic or deterministic algorithm A and a quantum
algorithm A on an input x and x , respectively. When we explicitly show that A uses randomness r, we
write y ← A(x; r). PPT and QPT algorithms stand for probabilistic polynomial-time algorithms and
polynomial-time quantum algorithms, respectively. Let negl denote a negligible function.

2.1 Standard Cryptographic Tools

Definition 2.1 (Pseudorandom Function). Let {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} be a family
of polynomially computable functions, where `1 and `2 are some polynomials of λ. We say that F is a
pseudorandom function (PRF) family if, for any PPT distinguisher A, there exists negl(·) such that it
holds that ∣∣∣Pr

[
AFK(·)(1λ) = 1 | K ← {0, 1}λ

]
− Pr

[
AR(·)(1λ) = 1 | R← U

]∣∣∣ ≤ negl(λ),

where U is the set of all functions from {0, 1}`1 to {0, 1}`2 .

Theorem 2.2 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ)
and m(λ), there exists a PRF that maps n(λ) bits to m(λ) bits.

Definition 2.3 (Secret Key Encryption). An SKE scheme SKE is a two tuple (E, D) of PPT algorithms.

• The encryption algorithm E, given a key K ∈ {0, 1}λ and a plaintext m ∈ M, outputs a ciphertext
ct, whereM is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext ct, outputs a plaintext m̃ ∈ {⊥} ∪M.
This algorithm is deterministic.

Correctness: We require D(K, E(K, m)) = m for every m ∈ M and key K ∈ {0, 1}λ.

CPA Security: We define the following experiment Exptcpa
A ,SKE(1

λ, coin) between a challenger and an
adversary A .

1. The challenger generates K ← {0, 1}λ. Then, the challenger sends 1λ to A .
2. A may make polynomially many encryption queries adaptively. A sends (m0, m1) ∈ M×M

to the challenger. Then, the challenger returns ct← E(K, mcoin).
3. A outputs coin′ ∈ {0, 1}.

We say that SKE is CPA secure if for any QPT adversary A , we have

Advcpa
SKE,A(λ) =

∣∣∣Pr
[
Exptcpa

A ,SKE(1
λ, 0) = 1

]
− Pr

[
Exptcpa

A ,SKE(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Definition 2.4 (Ciphertext Pseudorandomness for SKE). Let {0, 1}` be the ciphertext space of SKE.
We define the following experiment Exppr-ct

A ,SKE(1
λ, coin) between a challenger and an adversary A .
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1. The challenger generates K ← {0, 1}λ. Then, the challenger sends 1λ to A .

2. A may make polynomially many encryption queries adaptively. A sends m ∈ M to the challenger.
Then, the challenger returns ct← E(K, m) if coin = 0, otherwise ct← {0, 1}`.

3. A outputs coin′ ∈ {0, 1}.
We say that SKE is pseudorandom-secure if for any QPT adversary A , we have

Advpr-ct
SKE,A(λ) =

∣∣∣Pr
[
Exppr-ct

A ,SKE(1
λ, 0) = 1

]
− Pr

[
Exppr-ct

A ,SKE(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Theorem 2.5. If OWFs exist, there exists a pseudorandom-secure SKE scheme.

Definition 2.6 (Secret-Key Functional Encryption). An SKFE scheme SKFE is a tuple of four PPT
algorithms (Setup, KG, Enc, Dec). Below, let X , Y , and F be the plaintext, output, and function spaces
SKFE, respectively.

Setup(1λ, 1q)→ msk: The setup algorithm takes a security parameter 1λ and a collusion bound 1q, and
outputs a master secret key msk.

KG(msk, f )→ sk f : The key generation algorithm takes a master secret key msk and a function f ∈ F ,
and outputs a functional decryption key sk f .

Enc(msk, x)→ ct: The encryption algorithm takes a master secret key msk and a plaintext x ∈ X , and
outputs a ciphertext ct.

Dec(sk f , ct)→ y: The decryption algorithm takes a functional decryption key sk f and a ciphertext ct,
and outputs y ∈ {⊥} ∪ Y .

Correctness: We require that for every x ∈ X , f ∈ F , q ∈N, we have that

Pr

Dec(sk f , ct) = f (x)

∣∣∣∣∣∣
msk← Setup(1λ, 1q),
sk f ← KG(msk, f ),
ct← Enc(msk, x)

 = 1− negl(λ).

Definition 2.7 (Selective Indistinguishability-Security). Wesay thatSKFE is a selectively indistinguishability-
secure SKFE scheme for X ,Y , and F , if it satisfies the following requirement, formalized from the
experiment Expsel-ind

A ,SKFE(1
λ, coin) between an adversary A and a challenger:

1. At the beginning, A sends (1q, x∗0 , x∗1) to the challenger. The challenger runs msk← Setup(1λ, 1q).
Also, the challenger generates ct∗ ← Enc(msk, x∗coin) and sends ct∗ to A . Throughout the
experiment, A can access the following oracles.

OEnc(x): Given x, it returns Enc(msk, x).
OKG( f ): Given f , if f (x∗0) 6= f (x∗1), it returns ⊥. Otherwise, it returns KG(msk, f ). A can

access this oracle at most q times.

2. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

We say that SKFE is selectively indistinguishability-secure if, for any QPT A , it holds that

Advsel-ind
SKFE,A(λ) :=

∣∣∣Pr
[
Expsel-ind

SKFE-SKL,A(1
λ, 0) = 1

]
− Pr

[
Expsel-ind

SKFE,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

It is easy to see that we can consider the adaptively indistinguishability-secure variant as in Defini-
tion 7.15.

Theorem 2.8 ([GVW12]). If there exist OWFs, then there exists selectively indistinguishability-secure
SKFE for P/poly.
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2.2 Advanced Tools

We present the definitions for reusable SKE with certified deletion introduced by Hiroka et al. [HMNY21]

Definition 2.9 (Reusable SKE with Certified Deletion (Syntax)). A secret key encryption scheme with
certified deletion is a tuple of quantum algorithms (KG, Enc, Dec, Del , Vrfy) with plaintext spaceM and
key space K.
KG(1λ)→ sk: The key generation algorithm takes as input the security parameter 1λ and outputs a

secret key sk ∈ K.
Enc(sk, m)→ (vk, ct): The encryption algorithm takes as input sk and a plaintext m ∈ M and outputs

a verification key vk and a ciphertext ct .

Dec(sk, ct)→ m′: The decryption algorithm takes as input sk and ct and outputs a plaintext m′ ∈ M
or ⊥.

Del (ct)→ cert: The deletion algorithm takes as input ct and outputs a certification cert.

Vrfy(vk, cert)→ > or ⊥: The verification algorithm takes vk and cert and outputs > or ⊥.
Decryption correctness: There exists a negligible function negl such that for any m ∈ M,

Pr
[

Dec(sk, ct) = m
∣∣∣∣ sk← KG(1λ)
(vk, ct)← Enc(sk, m)

]
= 1− negl(λ).

Verification correctness: There exists a negligible function negl such that for any m ∈ M,

Pr

Vrfy(vk, cert) = >

∣∣∣∣∣∣
sk← KG(1λ)
(vk, ct)← Enc(sk, m)
cert← Del (ct)

 = 1− negl(λ).

Definition 2.10 (IND-CPA-CD Security for Reusable SKE with Certified Deletion). Let Σ =
(KG, Enc, Dec, Del , Vrfy) be a secret key encryption with certified deletion. We consider the following
security experiment Expsk-cert-del

Σ,A (λ, b).

1. The challenger computes sk← KG(1λ).

2. A sends an encryption query m to the challenger. The challenger computes (vk, ct)← Enc(sk, m)
to A and returns (vk, ct) to A . This process can be repeated polynomially many times.

3. A sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (vkb, ct b)← Enc(sk, mb) and sends ct b to A .

5. Again, A can send encryption queries.

6. At some point, A sends cert to the challenger.

7. The challenger computes Vrfy(vkb, cert). If the output is ⊥, the challenger sends ⊥ to A . If the
output is >, the challenger sends sk to A .

8. If the challenger sends ⊥ in the previous item, A can send encryption queries again.

9. A outputs b′ ∈ {0, 1}.

We say that Σ is IND-CPA-CD secure if for any QPT A , it holds that

Advsk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expsk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expsk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).
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We introduce an additional property for certificates.

Definition 2.11 (Unique Certificate). We say that an SKE scheme with certified deletion has the unique
certificate property if there is at most one certification cert for each vk output by Enc such that
> = Vrfy(vk, cert).

Known constructions of SKE (and PKE) with certified deletion based on BB84 states has the unique
certificate property.

Theorem 2.12 ([HMNY21]). If there exist OWFs, there exists an IND-CPA-CD secure SKE scheme that
has the unique certificate property.

We introduce a variant of IND-CPA-CD security where the adversary can send many verification
queries, called indistinguishability against Chosen Verification Attacks (CVA). We use this security notion
to achieve SKFE with secure key leasing in Section 4.

Definition 2.13 (IND-CVA-CD Security for Reusable SKE with Certified Deletion). Let Σ =
(KG, Enc, Dec, Del , Vrfy) be a secret key encryption with certified deletion. We consider the following
security experiment Expsk-cert-vo

Σ,A (λ, b).

1. The challenger computes sk← KG(1λ).

2. A sends an encryption query m to the challenger. The challenger computes (vk, ct)← Enc(sk, m)
to A and returns (vk, ct) to A . This process can be repeated polynomially many times.

3. A sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (vkb, ct b)← Enc(sk, mb) and sends ct b to A .

5. Again, A can send encryption queries. A can also send a verification query cert to the challenger.
The challenger returns sk if > = Vrfy(vkb, cert), ⊥ otherwise. This process can be repeated
polynomially many times.

6. A outputs b′ ∈ {0, 1}.

We say that Σ is IND-CVA-CD secure if for any QPT A , it holds that

Advsk-cert-vo
Σ,A (λ) :=

∣∣∣Pr
[
Expsk-cert-vo

Σ,A (λ, 0) = 1
]
− Pr

[
Expsk-cert-vo

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Known IND-CPA-CD secure SKE schemes satisfy IND-CVA-CD security thanks to the following
theorem since they satisfy Definition 2.11.

Theorem 2.14. If an SKE scheme is IND-CPA-CD secure and has the unique certificate property, then it
also satisfies IND-CVA-CD security.

Proof. We construct an adversary B for IND-CPA-CD by using an adversary A for IND-CVA-CD as
follows.

1. At the beginning, the adversary A is fixed, so the number of the verification query by A is also
fixed. We denote the number by q.

2. When A sends an encryption query m, B sends m to its challenger, receives (vk, ct)← Enc(sk, m),
and passes (vk, ct) to A .

3. When A sends (m0, m1), B sends (m0, m1) to its challenger, receives ct b, passes ct b to A .

4. Then, B guesses an index i∗ ← [q + 1].
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5. When A sends certi as the i-th verification query, if i < i∗, B returns ⊥. When A sends certi∗ as
the i∗-th verification query, if there exits i such that certi = certi∗ , B aborts. Otherwise, B forwards
certi∗ to its challenger. If B receives ⊥, B aborts. If B receives sk, then B passes sk to A . After B
receives sk, if a query certi = certi∗ , B answers sk, otherwise ⊥.

6. B outputs what A outputs.

Since we consider unique certificate SKE with certified deletion, if B receives sk from its challenger, it is
the only one correct certificate under vkb. Hence, B can correctly simulate the IND-CVA-CD game with
probability 1/(q + 1) (Note that i∗ = q + 1 means A did not output a correct certificate). Therefore, we
obtain Advsk-cert-del

Σ,A (λ) = 1
q+1Advsk-cert-vo

Σ,A (λ), and the proof completes.

Definition 2.15 (Set Homomorphic Secret Sharing). A set homomorphic secret sharing scheme SetHSS
consists of three algorithms (InpEncode, FuncEncode, Decode). Below, we let X , Y , and F be the input,
output, and function spaces of SetHSS, respectively.

SetGen(1λ)→ params := (p, `, (Ti)i∈[m]): The set generation algorithm takes as input a security
parameter, and outputs parameters p and `, and a collection of m sets (Ti)i∈[m], where each set
Ti ⊆ [`].

InpEncode(params, x)→ (si)i∈[m]: The input encoding algorithm takes as input params output by
SetGen and an input x ∈ X , and outputs a set of input shares (si)i∈[m].

FuncEncode(params, f )→ ( fi)i∈[m]: The function encoding algorithm takes as input params output by
SetGen and a function f ∈ F , and outputs a set of function shares ( fi)i∈[m].

Decode(( fi(si))i∈[m])→ y: The decoding algorithm takes as input a set of evaluations of function
shares on their respective input shares ( fi(si))i∈[m] and outputs a value y ∈ Y .

Correctness: We require that for every x ∈ X , f ∈ F , we have that

Pr

Decode(( fi(si))i∈[m]) 6= f (x)

∣∣∣∣∣∣
params = (p, `, (Ti)i∈[m])← SetGen(1λ),
(si)i∈[m] ← InpEncode(params, x),
( fi)i∈[m] ← FuncEncode(params, f )

 = negl(λ).

Existence of Unmarked Element: Let params = (p, `, (Ti)i∈[m]) ← SetGen(1λ). Suppose we ran-
domly generate a set S ⊆ [m] so that each i ∈ [m] is independently included in S with probability
at most p. Then, without negligible probability, there exists e ∈ [`] such that e /∈ ⋃i∈S Ti.

Selective Indistinguishability-Security: Consider the following experiment Expsel-ind
A ,SetHSS(1

λ, coin) be-
tween an adversary A and a challenger:

1. The challenger generates params = (p, `, (Ti)i∈[m]) ← SetGen(1λ) and sends params to
A . A sends (e∗, x∗0 , x∗1) to the challenger, where e∗ ∈ [`]. The challenger runs (si)i∈[m] ←
InpEncode(params, xcoin) and sends (si)i∈[m]e∗/∈

to A , where [m]e∗/∈ denotes the subset of [m]
consisting of i such that e∗ /∈ Ti. A can access the following oracle.

OFuncEncode( f ): Given f , if f (x∗0) 6= f (x∗1), it returns ⊥. Otherwise, it generates
( fi)i∈[m] ← FuncEncode(params, f ) and returns ( fi, fi(si))i∈[m].

2. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the
experiment.

We say that SetHSS is selectively indistinguishability-secure if, for any QPT A , it holds that

Advsel-ind
SetHSS,A(λ) :=

∣∣∣Pr
[
Expsel-ind

SetHSS,A(1
λ, 0) = 1

]
− Pr

[
Expsel-ind

SetHSS,A(1
λ, 0) = 1

]∣∣∣ ≤ negl(λ).
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Theorem 2.16 ([JKMS20]). If there exist OWFs, there exists a set homomorphic secret sharing.

The above definition of SetHSS is different from the original one by Jain et al. [JKMS20] in that
the original definition does not have the set generation algorithm and does not require the existence of
unmarked element property. Jain et al. defined SetHSS so that it works for any collection of sets. Then,
Jain et al. separately introduced the set generation algorithm and properties of it, which perfectly match
the security bound amplification for FE. We can obtain Theorem 2.16 from [JKMS20, Theorem 5.3,
Lemma 6.1 and 6.2, in eprint ver.] and the parmeter setting provided in the proof of [JKMS20, Theorem
8.1 in eprint ver.]. In their parameter setting, p = 1/poly(λ), ` = λ, and m = polylog(λ).

3 Definition of SKFE with Secure Key Leasing

We introduce the definition of SKFE with secure key leasing and its variants.

3.1 SKFE with Secure Key Leasing

We first define SKFE with secure key leasing (SKFE-SKL).

Definition 3.1 (SKFE with Secure Key Leasing). An SKFE-SKL scheme SKFE-SKL is a tuple of six
algorithms (Setup, KG , Enc, Dec, Cert , Vrfy). Below, let X , Y , and F be the plaintext, output, and
function spaces of SKFE-SKL, respectively.

Setup(1λ, 1q)→ msk: The setup algorithm takes a security parameter 1λ and a collusion bound 1q, and
outputs a master secret key msk.

KG(msk, f , 1n)→ (fsk , vk): The key generation algorithm takes a master secret key msk, a function
f ∈ F , and an availability bound 1n, and outputs a functional decryption key fsk and a verification
key vk.

Enc(msk, x)→ ct: The encryption algorithm takes a master secret key msk and a plaintext x ∈ X , and
outputs a ciphertext ct.

Dec(fsk , ct)→ x̃: The decryption algorithm takes a functional decryption key fsk and a ciphertext ct,
and outputs a value x̃.

Cert(fsk )→ cert: The certification algorithm takes a function decryption key fsk , and outputs a classical
string cert.

Vrfy(vk, cert)→ >/⊥: The certification-verification algorithm takes a verification key vk and a string
cert, and outputs > or ⊥.

Decryption correctness: For every x ∈ X , f ∈ F , and q, n ∈N, we have

Pr

Dec(fsk , ct) = f (x)

∣∣∣∣∣∣
msk← Setup(1λ, 1q)
(fsk , vk)← KG(msk, f , 1n)
ct← Enc(msk, x)

 = 1− negl(λ).

Verification correctness: For every f ∈ F and q, n ∈N, we have

Pr

Vrfy(vk, cert) = >

∣∣∣∣∣∣
msk← Setup(1λ, 1q)
(fsk , vk)← KG(msk, f , 1n)
cert← Cert(fsk )

 = 1− negl(λ).

Definition 3.2 (Selective Lessor Security). We say that SKFE-SKL is a selectively lessor secure SKFE-
SKL scheme for X ,Y , and F , if it satisfies the following requirement, formalized from the experiment
Expsel-lessor

A ,SKFE-SKL(1
λ, coin) between an adversary A and a challenger:
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1. At the beginning, A sends (1q, x∗0 , x∗1) to the challenger. The challenger runs msk← Setup(1λ, 1q).
Throughout the experiment, A can access the following oracles.

OEnc(x): Given x, it returns Enc(msk, x).
OKG ( f , 1n): Given ( f , 1n), it generates (fsk , vk) ← KG(msk, f , 1n), sends fsk to A , and adds

( f , 1n, vk,⊥) to LKG . A can access this oracle at most q times.
OVrfy( f , cert): Given ( f , cert), it finds an entry ( f , 1n, vk, M) from LKG . (If there is no such entry,

it returns ⊥.) If > = Vrfy(vk, cert) and the number of queries to OEnc at this point is less
than n, it returns > and updates the entry into ( f , 1n, vk,>). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , 1n, vk, M)
in LKG such that f (x∗0) 6= f (x∗1), it holds that M = >. If so, the challenger generates
ct∗ ← Enc(msk, x∗coin) and sends ct∗ to A . Otherwise, the challenger outputs 0. Hereafter, A is
not allowed to sends a function f such that f (x∗0) 6= f (x∗1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advsel-lessor
SKFE-SKL,A(λ) :=

∣∣∣Pr
[
Expsel-lessor

SKFE-SKL,A(1
λ, 0) = 1

]
− Pr

[
Expsel-lessor

SKFE-SKL,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Remark 3.3 (On the adaptive security). We can similarly define adaptive lessor security where we allow A
to adaptively choose the challenge plaintext pair (x∗0 , x∗1). For standard FE, we can generically convert a
selectively secure one into an adaptively secure one without any additional assumption [ABSV15]. We
observe that a similar transformation works for SKFE with secure key leasing. Thus, for simplicity, we
focus on selective lessor security in this work. See Appendix B.1 for the definition and transformation.

Remark 3.4 (On the simulation-based security). We can also define a simulation-based variant of
selective/adaptive lessor security where a simulator simulates a challenge ciphertext without the challenge
plaintext x∗ as the simulation-based security for standard FE [BSW11, GVW12]. We can generically
convert indistinguishability-based lessor secure SKFE with secure key leasing into a simulation-based
lessor secure one without any additional assumptions as standard FE [DIJ+13]. See Appendix B.2 for the
simulation-based definition and the transformation.

3.2 SKFE with Static-Bound Secure Key Leasing

In this section, we define SKFE with static-bound secure key leasing (SKFE-sbSKL). It is a weaker variant
of SKFE-SKL in which a single availability bound n applied to every decryption key is fixed at the setup
time. We design SKFE-sbSKL so that it can be transformed into SKFE-SKL in a generic way. For this
reason, we require an SKFE-sbSKL scheme to satisfy an efficiency requirement called weak optimal
efficiency and slightly stronger variant of the lessor security notion. 11

Below, we first introduce the syntax of SKFE-sbSKL. Then, before introducing the definition of
(selective) lessor security for it, we provide the overview of the transformation to SKFE-SKL since we
think the overview makes it easy to understand the security notion.

Definition 3.5 (SKFE with Static-Bound Secure Key Leasing). An SKFE-sbSKL scheme SKFE-sbSKL
is a tuple of six algorithms (Setup, KG , Enc, Dec, Cert , Vrfy). The only difference from a normal SKFE
scheme with secure key leasing is that KG does not take as input the availability bound n, and instead,
Setup takes it as an input. Moreover, Setup takes it in binary as Setup(1λ, 1q, n), and we require the
following weak optimal efficiency.

11We borrow the term weak optimal efficiency from the paper by Garg, Goyal, Lu, and Waters [GGLW21], which studies
dynamic bounded collusion security for standard FE.
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Weak Optimal Efficiency: We require that the running time of Setup and Enc is bounded by a fixed
polynomial of λ, q, and log n.

Overview of the transformation to SKFE-SKL. As seen above, Setup and Enc of an SKFE-sbSKL
scheme SKFE-sbSKL is required to run in time log n. This is because, in the transformation to SKFE-SKL,
we use λ instances of SKFE-sbSKL where the k-th instance is set up with the availability bound 2k

for every k ∈ [λ]. The weak optimal efficiency ensures that Setup and Enc of all λ instances run in
polynomial time. The details of the transformation are as follows.

We construct an SKFE-SKL scheme SKFE-SKL from an SKFE-sbSKL scheme SKFE-sbSKL =
(Setup, KG , Enc, Dec, Cert , Vrfy). When generating a master secret key skl.msk of SKFE-SKL, we
generate mskk ← Setup(1λ, 1q, 2k) for every k ∈ [λ], and set skl.msk := (mskk)k∈[λ]. To encrypt
x by SKFE-SKL, we encrypt it by all λ instances, that is, generate ctk ← Enc(mskk, x) for every
k ∈ [λ]. The resulting ciphertext is skl.ct := (ctk)k∈[λ]. To generate a decryption key of SKFE-SKL for
a function f and an availability bound n, we first compute k′ ∈ [λ] such that 2k′−1 ≤ n ≤ 2k′ . Then,
we generate (fsk k′ , vkk′)← KG(mskk′ , f ). The resulting decryption key is skl.fsk := (k′, fsk k′) and the
corresponding verification key is vk := vkk′ . Decryption is performed by decrypting ctk′ included in
skl.ct := (ctk)k∈[λ] by fsk k′ . The certification generation and verification of SKFE-SKL are simply those
of SKFE-SKL.

We now consider the security proof of SKFE-SKL. In the experiment Expsel-lessor
A ,SKFE-SKL(1

λ, 0), an
adversary A is given the challenge ciphertext skl.ct∗ := (ct∗k )k∈[λ], where ct∗k ← Enc(mskk, x∗0) for every
k ∈ [λ]. The proof is done if we can switch all of ct∗k into Enc(mskk, x∗1) without being detected by
A . To this end, the underlying SKFE-sbSKL needs to satisfy a stronger variant of lessor security notion
where an adversary is allowed to declare the availability bound such that KG does not run in polynomial
time, if the adversary does not make any query to the key generation oracle. For example, to switch
ct∗λ, the reduction algorithm attacking SKFE-sbSKL needs to declare the availability bound 2λ, under
which KG might not run in polynomial time. Note that Setup and Enc run in polynomial time even for
such an availability bound due to the weak optimal efficiency. Thus, we formalize the security notion of
SKFE-sbSKL as follows.

Definition 3.6 (Selective Strtong Lessor Security). We define selective strong lessor security for SKFE-
sbSKL in the same way as that for SKFE-SKL defined in Definition 3.2 , except the following changes for
the security experiment.

• A outputs n at the beginning, and the challenger generates msk← Setup(1λ, 1q, n). If A makes a
query to OKG or OVrfy, A is required to output n such that KG and Vrfy run in polynomial time.

• OKG does not take 1n as an input.

Remark 3.7 (Insufficiency of existing bounded collusion techniques). In Section 1.3, we stated that it
is not clear how to use the existing bounded collusion techniques [GVW12, AV19] for constructing
SKFE-sbSKL. We provide a more detailed discussion on this point.

The bounded collusion technique essentially enables us to increase the number of decryption keys that
an adversary can obtain. Thus, to try to use the bounded collusion technique in our context, imagine the
following naive construction using standard SKFE SKFE and SKE with certified deletion CDSKE. This
construction is a flipped version of the naive construction provided in Section 1.3. In the construction,
we encrypt a ciphertext of SKFE by CDSKE, and we include the key of CDSKE into the decryption key
of the resulting scheme. The construction can be seen as an SKFE scheme with certified deletion (for
ciphertexts) that is secure if an adversary deletes the challenge ciphertext before seeing any decryption
key. The roles of ciphertexts and decryption keys are almost symmetric in SKFE [BS18]. Thus, if we
can amplify the security of this construction so that it is secure if an adversary sees some decryption
keys before deleting the challenge ciphertext, it would lead to SKFE-sbSKL. The question is whether
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we can perform such an amplification using the existing bounded collusion techniques [GVW12, AV19].
We observe that it is highly non-trivial to adapt the existing bounded collusion technique starting from
“0-bounded” security. Especially, it seems difficult to design such a transformation so that the resulting
SKFE-sbSKL obtained by flipping the roles of ciphertexts and decryption keys satisfies weak optimal
efficiency and security against unbounded number of encryption queries such as Definition 3.6.

We develop a different technique due to the above reason. Namely, we reduce the task of amplifying
the availability bound of SKFE-sbSKL into the task of amplifying the security bound of it. In fact,
our work implicitly shows that security bound amplification for FE can be used to achieve bounded
collusion-resistance. We see that we can construct bounded collusion secure FE from single-key FE by
our parallelizing then security bound amplification technique.

3.3 Index-Based SKFE with Static-Bound Secure Key Leasing

We define index-based SKFE-sbSKL. Similarly to SKFE-sbSKL, it needs to satisfy weak optimal efficiency
and (selective) strong lessor security.

Definition 3.8 (Index-Base SKFE with Static-Bound Secure Key Leasing). An index-base SKFE-
sbSKL scheme iSKFE-sbSKL is a tuple of six algorithms (Setup, KG , iEnc, Dec, Cert , Vrfy). The only
difference from an SKFE-sbSKL scheme is that the encryption algorithm iEnc additionally takes as input
an index j ∈ [n].

Decryption correctness: For every x ∈ X , f ∈ F , q, n ∈N, and j ∈ [n], we have

Pr

Dec(fsk , ct) = f (x)

∣∣∣∣∣∣
msk← Setup(1λ, 1q, n)
(fsk , vk)← KG(msk, f )
ct← Enc(msk, j, x)

 = 1− negl(λ).

Verification correctness: For every f ∈ F and q, n ∈N, we have

Pr

Vrfy(vk, cert) = >

∣∣∣∣∣∣
msk← Setup(1λ, 1q, n)
(fsk , vk)← KG(msk, f )
cert← Cert(fsk )

 = 1− negl(λ).

Weak Optimal Efficiency: We require that the running time of Setup and Enc is bounded by a fixed
polynomial of λ, q, and log n.

Definition 3.9 (Selective Strong Lessor Security).We say that iSKFE-sbSKL is a selectively strong
lessor secure index-based SKFE-sbSKL scheme for X ,Y , and F , if it satisfies the following requirement,
formalized from the experiment Expsel-s-lessor

A ,iSKFE-sbSKL(1
λ, coin) between an adversary A and a challenger:

1. At the beginning, A sends (1q, n, j∗, x∗0 , x∗1) to the challenger. If A makes a query to OKG or OVrfy,
A is required to output n such that KG and Vrfy run in polynomial time. The challenger runs
msk← Setup(1λ, 1q, n). Throughout the experiment, A can access the following oracles.

OEnc(j, x): Given j and x, it returns Enc(msk, j, x).
OKG ( f ): Given f , it generates (fsk , vk) ← KG(msk, f ), sends fsk to A , and adds ( f , vk,⊥) to

LKG . A can access this oracle at most q times.
OVrfy( f , cert): Given ( f , cert), it finds an entry ( f , vk, M) from LKG . (If there is no such entry,

it returns ⊥.) If > = Vrfy(vk, cert), it returns > and updates the entry into ( f , vk,>).
Otherwise, it returns ⊥.
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2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , vk, M) in LKG
such that f (x∗0) 6= f (x∗1), it holds that M = >, and A does not make a query with j∗ to OEnc at
this point. If so, the challenger generates ct∗ ← Enc(msk, j∗, x∗coin) and sends ct∗ to A . Otherwise,
the challenger outputs 0. Hereafter, A is not allowed to sends a function f such that f (x∗0) 6= f (x∗1)
to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advsel-s-lessor
iSKFE-sbSKL,A(λ) :=

∣∣∣Pr
[
Expsel-s-lessor

iSKFE-sbSKL,A(1
λ, 0) = 1

]
− Pr

[
Expsel-s-lessor

iSKFE-sbSKL,A(1
λ, 0) = 1

]∣∣∣ ≤ negl(λ).

4 Index-Base SKFE with Static-Bound Secure Key Leasing

We construct an index-based SKFE-sbSKL scheme iSKFE-sbSKL = (iSetup, iKG , iEnc, iDec, iCert , iVrfy)
using the following tools:

• An SKFE scheme SKFE = (Setup, KG, Enc, Dec).

• An SKE scheme with Certified Deletion CDSKE = (CD.KG, CD.Enc, CD.Dec, CD.Del , CD.Vrfy).

• A PRF F.

The description of iSKFE-sbSKL is as follows.

iSetup(1λ, 1q, n):

• Generate K ← {0, 1}λ.
• Output skl.msk := (q, n, K).

iKG(msk, f ):

• Parse (q, n, K)← skl.msk.
• Compute rj‖wj ← FK(j), mskj ← Setup(1λ, 1q; rj), and cd.skj ← CD.KG(1λ; wj) for every

j ∈ [n].
• Generate fskj ← KG(mskj, f ) for every j ∈ [n].
• Generate (cd.ct j, vkj)← CD.Enc(cd.skj, fskj) for every j ∈ [n].
• Output skl.fsk := (cd.ct j)j∈[n] and vk := (vkj)j∈[n].

iEnc(skl.msk, j, x):

• Parse (q, n, K)← skl.msk.
• Compute rj‖wj ← FK(j), mskj ← Setup(1λ, 1q; rj), and cd.skj ← CD.KG(1λ; wj).
• Generate ctj ← Enc(mskj, x).
• Output skl.ct := (j, ctj, cd.skj).

iDec(skl.fsk , skl.ct):

• Parse (cd.ct j)j∈[n] ← skl.fsk and (j, ctj, cd.skj)← skl.ct.
• Compute fskj ← CD.Dec(cd.skj, skl.fsk j).

• Output y← Dec(fskj, ctj).

iCert(skl.fsk ):
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• Parse (cd.ct j)j∈[n] ← skl.fsk .
• Compute certj ← CD.Del (cd.ctj) for every j ∈ [n].
• Output cert := (certj)j∈[n].

iVrfy(vk, cert):

• Parse (vkj)j∈[n] ← vk and (certj)j∈[n] ← cert.
• Output > if > = CD.Vrfy(vkj, certj) for every j ∈ [n], and otherwise ⊥.

It is clear that iSKFE-sbSKL satisfies correctness and weak optimal efficiency. For security, we have
the following theorem.

Theorem 4.1. If SKFE is selective indistinguishability-secure, CDSKE is IND-CVA-CD secure,12 and F
is a secure PRF, then iSKFE-sbSKL satisfies selective strong lessor security.

Proof of Theorem 4.1. We define a sequence of hybrid games to prove the theorem.

Hyb0: This is the same as Expsel-s-lessor
A ,iSKFE-sbSKL(1

λ, 0).

1. At the beginning, A sends (1q, n, j∗, x∗0 , x∗1) to the challenger. The challenger generates
K ← {0, 1}λ. Below, we let rj‖wj ← FK(j), mskj ← Setup(1λ, 1q; rj), and cd.skj ←
CD.KG(1λ; wj) for every j ∈ [n]. Throughout the experiment, A can access the following
oracles.

OEnc(j, x): Given j and x, it generates ctj ← Enc(mskj, x) and returns skl.ct := (j, ctj, cd.skj).
OKG ( f ): Given f , it does the following.

• Compute fskj ← KG(mskj, f ) for every j ∈ [n].
• Compute (cd.ct j, vkj)← CD.Enc(cd.skj, fskj) for every j ∈ [n].
• Sets skl.fsk := (cd.ct j)j∈[n] and skl.vk := (vkj)j∈[n].

It sends skl.fsk to A and adds ( f , skl.vk,⊥) to LKG . A is allowed to make at most q
queries to this oracle.

OVrfy( f , cert := (certj)j∈[n]): Given ( f , cert := (certj)j∈[n]), it finds an entry ( f , vk, M)
from LKG . (If there is no such entry, it returns ⊥.) If > = Vrfy(vkj, certj) for every
j ∈ [n], it returns > and updates the entry into ( f , vk,>). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , vk, M)
in LKG such that f (x∗0) 6= f (x∗1), it holds that M = >, and A does not make a query with
j∗ to OEnc at this point. If so, the challenger generates ct∗j∗ ← Enc(mskj∗ , x∗0) and sends
skl.ct∗ := (j∗, ct∗j∗ , cd.skj∗) to A . Otherwise, the challenger outputs 0. Hereafter, A is not
allowed to sends a function f such that f (x∗0) 6= f (x∗1) to OKG .

3. A outputs coin′. The challenger outputs coin′ as the final output of the experiment.

Hyb1: This is the same as Hyb0 except that rj‖wj is generated as a uniformly random string for every
j ∈ [n].

We have |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ) from the security of F.

Hyb2: This hybrid is the same as Hyb1 except that when A sends f to OKG , if f (x∗0) 6= f (x∗1), the chal-
lenger generates cd.ct j∗ included in skl.fsk := (cd.ct j)j∈[n] as (cd.ct j∗ , vkj∗)← CD.Enc(cd.skj∗ , 0).

12See Definition 2.13 for the defition of IND-CVA-CD.
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We can show that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) from the security ofCDSKE as follows.
We say A is valid if when A requests the challenge ciphertext, for any entry ( f , vk, M) in LKG such
that f (x∗0) 6= f (x∗1), it holds that M = >, and A does not make a query with j∗ to OEnc at this point.
In the estimation of |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]|, we have to consider the case where A is valid
since if A is not valid, the output of the experiment is 0. In this transition of experiments, we change a
plaintext encrypted under cd.skj∗ . If A is valid, A cannot obtain cd.skj∗ before A is given skl.ct∗, and
A returns all ciphertexts under cd.skj∗ before it gets cd.skj∗ . Although the reduction does not have vkj∗

here, it can simulate OVrfy by using the verification oracle in IND-CVA-CD game. Then, we see that
|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) follows from the security of CDSKE under the key cd.skj∗ .

Hyb3: This hybrid is the same as Hyb2 except that the challenger generates ct∗j∗ included in skl.ct∗ as
ct∗j∗ ← Enc(mskj∗ , x∗1).

By the previous transition, in Hyb2 and Hyb3, A can obtain a decryption key under mskj∗ for a function
f such that f (x∗0) = f (x∗1). Thus, |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ) holds from the security
of SKFE.

Hyb4: This hybrid is the same as Hyb3 except that we undo the changes from Hyb0 to Hyb2. Hyb4 is the
same as Expsel-s-lessor

A ,iSKFE-sbSKL(1
λ, 1).

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ) holds from the security of F and CDSKE.
From the above discussions, iSKFE-sbSKL satisfies selective lessor security.

5 SKFE with Static-Bound Secure Key Leasing

Weconstruct an SKFE-sbSKL schemeSKFE-sbSKL = (sbSKL.Setup, sbSKL.KG , sbSKL.Enc, sbSKL.Dec,
sbSKL.Cert , sbSKL.Vrfy) from the following tools:

• An index-based SKFE-sbSKL scheme iSKFE-sbSKL = (iSetup, iKG , iEnc, iDec, iCert , iVrfy).

• A set homomorphic secret sharing SetHSS = (SetGen, InpEncode, FuncEncode, Decode).

• An SKE scheme SKE = (E, D).

The description of SKFE-sbSKL is as follows.

sbSKL.Setup(1λ, 1q, n):

• Generate params := (p, `, (Ti)i∈[m])← SetGen(1λ).

• Generate mski ← iSetup(1λ, 1q, N) for every i ∈ [m], where N = n/p.
• Generate K ← {0, 1}λ.
• Output sbskl.msk := (params, N, (msk)i∈[m], K).

sbSKL.KG(sbskl.msk, f ):

• Parse (params, N, (msk)i∈[m], K)← sbskl.msk.
• Generate scti ← E(K, 0) for every i ∈ [m].
• Generate ( fi)i∈[m] ← FuncEncode(params, f ).
• Generate (fsk i, vki) ← iKG(mski, F[ fi, scti]) for every i ∈ [m], where the circuit F is
described in Figure 1.

• Output sbskl.fsk := (fsk i)i∈[m] and sbskl.vk := (vki)i∈[m].

sbSKL.Enc(sbskl.msk, x):
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Circuit F[ fi, scti](si, K, b)

Hardwired: A function share fi and an SKE’s ciphertext scti.
Input: an input share si, an SKE’s secret key K, and a bit b.

1. If b = 1, output D(K, scti).
2. Otherwise, output fi(si).

Figure 1: Description of F[ fi, scti](si, K, b).

• Parse (params, N, (msk)i∈[m], K)← sbskl.msk.
• Generate (si)i∈[m] ← InpEncode(params, x).
• Generate ji ← [N] for every i ∈ [m].
• Generate cti ← iEnc(mski, ji, (si, 0, 0)) for every i ∈ [m].
• Output sbskl.ct := (cti)i∈[m].

sbSKL.Dec(sbskl.fsk , sbskl.ct):

• Parse (fsk i)i∈[m] ← sbskl.fsk and (cti)i∈[m] ← sbskl.ct.
• Compute yI ← iDec(fsk i, cti) for every i ∈ [m].
• Output y← Decode((yi)i∈[m]).

sbSKL.Cert(sbskl.fsk ):

• Parse (fsk i)i∈[m] ← sbskl.fsk .
• Compute certi ← iCert(fsk i) for every i ∈ [m].
• Output sbskl.cert := (certi)i∈[m].

sbSKL.Vrfy(sbskl.vk, sbskl.cert):

• Parse (vki)i∈[m] ← sbskl.vk and (certi)i∈[m] ← sbskl.cert.
• Output > if > = iVrfy(vki, certi) for every i ∈ [m], and otherwise ⊥.

We show the correctness of SKFE-sbSKL. Let sbskl.fsk := (fsk i)i∈[m] be a decryption key for
f and let sbskl.ct := (cti)i∈[m] be a ciphertext of x. From the correctness of iSKFE-sbSKL, we
obtain fi(si) by decrypting cti with fsk i for every i ∈ [m], where ( fi)i∈[m] ← FuncEncode(params, f )
and (si)i∈[m] ← InpEncode(params, x). Thus, we obtains f (x) ← Decode(( fi(si))i∈[m]) from the
correctness of SetHSS. It is clear that SKFE-sbSKL also satisfies verification correctness.

Also, the weak optimal efficiency of SKFE-sbSKL easily follows from that of iSKFE-sbSKL since
the running time of algorithms of SetHSS is independent of n. Note that sbSKL.Enc samples indices
from [N] = [n/p], but it can be done in time log n.

For security, we have the following theorems.

Theorem 5.1. If iSKFE-sbSKL is a selectively strong lessor secure index-based SKFE-sbSKL scheme
and SetHSS is a set homomorphic secret sharing scheme, and SKE is a CPA secure SKE scheme, then
SKFE-sbSKL is selectively strong lessor secure.

Proof of Theorem 5.1. We define a sequence of hybrid games to prove the theorem.

Hyb0: This is the same as Expsel-s-lessor
A ,SKFE-sbSKL(1

λ, 0).

22



1. At the beginning, A sends (1q, n, x∗0 , x∗1) to the challenger. The challenger generates
params := (p, `, (Ti)i∈[m]) ← SetGen(1λ), mski ← iSetup(1λ, 1q, N) for every i ∈ [m],
and K ← {0, 1}λ, where N = n/p. Throughout the experiment, A can access the following
oracles.

OEnc(xk): Given the k-th query xk, it returns sbskl.ctk generated as follows.

• Generate (sk
i )i∈[m] ← InpEncode(params, xk).

• Generate jk
i ← [N] for every i ∈ [m].

• Generate ctk
i ← iEnc(msk, i, jk

i , (sk
i , 0, 0)) for every i ∈ [m].

• Set sbskl.ctk := (ctk
i )i∈[m].

OKG ( f ): Given f , it generates sbskl.fsk and sbskl.vk as follows.

• Generate ( fi)i∈[m] ← FuncEncode(params, f ).
• Generate scti ← E(K, 0) for every i ∈ [m].
• Generate (fsk i, vki)← iKG(mski, F[ fi, scti]) for every i ∈ [m].
• Set sbskl.fsk := (fsk i)i∈[m] and sbskl.vk := (vki)i∈[m].

It sends sbskl.fsk to A and adds ( f , sbskl.vk,⊥) to LKG .
OVrfy( f , cert := (certi)i∈[m]): Given ( f , cert := (certi)i∈[m]), it finds an entry ( f , vk, M)

from LKG . (If there is no such entry, it returns ⊥.) If > = Vrfy(vki, certi) for every
i ∈ [m], it returns > and updates the entry into ( f , vk,>). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , vk, M) in
LKG such that f (x∗0) 6= f (x∗1), it holds that M = >, and the number of queries to OEnc at
this point is less than n. If so, the challenger sends sbskl.ct∗ computed as follows to A .

• Generate (s∗i )i∈[m] ← InpEncode(params, x∗0).
• Generate j∗i ← [N] for every i ∈ [m].
• Generate ct∗i ← iEnc(mski, (s∗i , 0, 0)) for every i ∈ [m].
• Set sbskl.ct∗ := (ct∗i )i∈[m].

Otherwise, the challenger outputs 0. Hereafter, A is not allowed to sends a function f such
that f (x∗0) 6= f (x∗1) to OKG .

3. A outputs coin′. The challenger outputs coin′ as the final output of the experiment.

Below, we call i ∈ [m] a secure instance index if j∗i 6= jk
i holds for every k ∈ [n]. We also call

i ∈ [m] an insecure instance index if it is not a secure instance index. Let Ssecure ⊆ [m] be the set of
secure instance indices, and Sinsecure = S \ Ssecure. Since each jk

i is sampled from [N] = [n/p], for
each i ∈ [m], i is independently included in Sinsecure with probability at most n/N = p. Then, from the
existence of unmarked element property of SetHSS, without negligible probability, there exists e ∈ [`]
such that e /∈ ⋃i∈Sinsecure

Ti. Below, for simplicity, we assume that there always exists at least one such
instance index, and we denote it as e∗.

Hyb1: This is the same as Hyb0 except that we generate jk
i for every i ∈ [m] and k ∈ [n] and j∗i for every

i ∈ [m] at the beginning of the experiment. Note that by this change, secure instance indices and i∗

are determined at the beginning of the experiment.

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = 0 holds since the change at this step is only conceptual.

Hyb2: This is the same as Hyb1 except that when A makes a query f to OKG , if f (x∗0) = f (x∗1), it
generates scti as scti ← E(K, fi(s∗i )) for every i ∈ Ssecure.
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|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) holds from the security of SKE.

Hyb3: This is the same as Hyb2 except that the challenger generates ct∗i as ct∗i ← iEnc(mski, j∗i , (0, K, 1))
for every i ∈ Ssecure.

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ) holds from the selective lessor security of iSKFE-sbSKL.
We provide the proof of it in Proposition 5.2.

Hyb4: This is the same asHyb3 except that the challenger generates (s∗i )i∈[m] as (s∗i )i∈[m] ← InpEncode(params, x∗1).

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ) holds from the selective indistinguishability-security of
SetHSS. We provide the proof of it in Proposition 5.3.

Hyb5: This is the same as Hyb4 except that we undo the changes from Hyb0 to Hyb3. This is the same
experiment as Expsel-s-lessor

A ,SKFE-sbSKL(1
λ, 1).

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ) holds from the security of SKE and iSKFE-sbSKL.

Proposition 5.2. |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ) holds if iSKFE-sbSKL is selectively lessor
secure.

Proof of Proposition 5.2. We define intermediate experiments Hyb2,i′ between Hyb2 and Hyb3 for i′ ∈
[m].

Hyb2,i′: This is the same asHyb2 except that the challenger generates ct∗i as ct∗i ← iEnc(mski, j∗i , (0, K, 1))
for every i such that i ∈ Ssecure and i ≤ i′.

Then, we have

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ ∑
i′∈m

∣∣Pr
[
Hyb2,i′−1 = 1∧ i′ ∈ Ssecure

]
− Pr

[
Hyb2,i = 1∧ i′ ∈ Ssecure

]∣∣,
(1)

where we define Hyb2,0 = Hyb2 and Hyb2,m = Hyb3. To estimate each term of Equation (1), we construct
the following adversary B that attacks selective lessor security of iSKFE-sbSKL.

1. B executes A and obtains (1q, n, x∗0 , x∗1). B generates params := (p, `, (Ti)i∈[m])← SetGen(1λ).
B generates jk

i ← [N] for every i ∈ [m] and k ∈ [n] and j∗i ← [N] for every i ∈ [m], and
identifies Ssecure and Sinsecure, where N = n/p. If i′ /∈ Ssecure, B aborts with output 0.
Otherwise, B behaves as follows. Below, we let Ssecure,<i′ = Ssecure ∩ [i′ − 1]. B computes
(s∗i )i∈[m] ← InpEncode(params, x∗0). B also generates K ← {0, 1}λ. B sends (1q, N, j∗i′ ,
(s∗i′ , 0, 0), (0, K, 1)). B also generates mski ← iSetup(1λ, 1q, N) for every i ∈ [m] \ {i′}. B
simulates oracles for A as follows.

OEnc(xk): Given the k-th query xk, B returns sbskl.ctk generated as follows.

• Generate (sk
i )i∈[m] ← InpEncode(params, xk).

• If k ≤ n, use (jk
i )i∈[m] generated at the beginning. Otherwise, Generate jk

i ← [N] for
every i ∈ [m].

• Query (jk
i′ , (s

k
i′ , 0, 0)) to its encryption oracle and obtain ctk

i′ .
• Generate ctk

i ← iEnc(mski, jk
i , (sk

i , 0, 0)) for every i ∈ [m] \ {i′}.
• Set sbskl.ctk := (ctk

i )i∈[m].

OKG ( f ): Given f , B returns sbskl.fsk computed as follows.

• Generate ( fi)i∈[m] ← FuncEncode(params, f ).
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• Generate scti ← E(K, 0) for every i ∈ Sinsecure. Generate also scti ← E(K, fi(s∗i )) for
every i ∈ Ssecure if f (x∗0) = f (x∗1), and otherwise generate scti ← E(K, 0) for every
i ∈ Ssecure.

• Query F[ fi′ , scti′ ] to its key generation oracle and obtain (fsk i′ , vki′).
• Generate (fsk i, vki)← iKG(mski, F[ fi, scti]) for every i ∈ [m] \ {i′}.
• Set sbskl.fsk := (fsk i)i∈[m].

Also, B adds ( f , (vki)i∈[m]\{i′},⊥) to LKG .
OVrfy( f , cert := (certi)i∈[m]): Given ( f , cert := (certi)i∈[m]), it finds an entry ( f , (vki)i∈[m]\{i′},⊥)

from LKG . (If there is no such entry, it returns ⊥.) B sends ( f , certi′) to its verification oracle
and obtains Mi′ . If M = > and > = Vrfy(vki, certi) for every i ∈ [m] \ {i′}, B returns >
and updates the entry into ( f , (vki)i∈[m]\{i′},>). Otherwise, B returns ⊥.

2. When A requests the challenge ciphertext, B checks if for any entry ( f , (vki)i∈[m]\{i′}, M) in
LKG such that f (x∗0) 6= f (x∗1), it holds that M = >. If so, B requests the challenge ciphertext
to its challenger and obtains ct∗i′ . B also generates ct∗i ← iEnc(mski, j∗i , (0, K, 1)) for every
i ∈ Ssecure,<i′ and ct∗i ← iEnc(mski, j∗i , (s∗i , 0, 0)) for every i ∈ [m] \ (Ssecure,<i′ ∪ {i′}). B
sends sbskl.ct := (ct∗i )i∈[m] to A . Hereafter, B rejects A’s query f toOKG such that f (x∗0) 6= f (x∗1).

3. When A outputs coin′, B outputs coin′.

B simulatesHyb2,i′−1 (resp. Hyb2,i′ ) ifB runs inExpsel-s-lessor
B,SKFE-sbSKL(1

λ, 0) (resp. Expsel-s-lessor
B,SKFE-sbSKL(1

λ, 1))
and i′ ∈ Ssecure. This completes the proof.

Proposition 5.3. |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ) holds if SetHSS is a set homomorphic
secret sharing.

Proof of Proposition 5.3. Weconstruct the following adversaryB that attacks the selective indistinguishability-
security of SetHSS.

1. Given params := (p, `, (Ti)i∈[m]), B executes A and obtains (1q, n, x∗0 , x∗1). B generates jk
i ← [N]

for every i ∈ [m] and k ∈ [n] and j∗i ← [N] for every i ∈ [m], and identifies Ssecure, Sinsecure,
and the unmarked element e∗, where N = n/p. B sends (e∗, x∗0 , x∗1) to the challenger and obtains
(s∗i )i∈[m]e∗/∈

, where [m]e∗/∈ denotes the subset of [m] consisting of i such that e∗ /∈ Ti. B also
generates mski ← iSetup(1λ, 1q, N) for every i ∈ [m] and K ← {0, 1}λ. B simulates oracles for
A as follows.

OEnc(xk): Given the k-th query xk, B returns sbskl.ctk generated as follows.

• Generate (sk
i )i∈[m] ← InpEncode(params, xk).

• If k ≤ n, use (jk
i )i∈[m] generated at the beginning. Otherwise, Generate jk

i ← [N] for
every i ∈ [m].

• Generate ctk
i ← iEnc(mski, jk

i , (sk
i , 0, 0)) for every i ∈ [m].

• Set sbskl.ctk := (ctk
i )i∈[m].

OKG ( f ): Given f , B returns sbskl.fsk computed as follows.

• Queries f to its function encode oracle and obtain ( fi, yi := fi(s∗i ))i∈[m]) if f (x∗0) =
f (x∗1). Otherwise, compute ( fi)i∈[m] ← FuncEncode(params, f ).

• Generate scti ← E(K, 0) for every i ∈ Sinsecure. Generate also scti ← E(K, fi(s∗i )) for
every i ∈ Ssecure if f (x∗0) = f (x∗1), and otherwise generate scti ← E(K, 0) for every
i ∈ Ssecure.
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• Generate (fsk i, vki)← iKG(mski, F[ fi, scti]) for every i ∈ [m].
• Set sbskl.fsk := (fsk i)i∈[m].

Also, B adds ( f , (vki)i∈[m],⊥) to LKG .
OVrfy( f , cert := (certi)i∈[m]): Given ( f , cert := (certi)i∈[m]), it finds an entry ( f , (vki)i∈[m],⊥)

from LKG . (If there is no such entry, it returns ⊥.) If > = Vrfy(vki, certi) for every i ∈ [m]
and the number of queries to OEnc at this point is less than n, B returns > and updates the
entry into ( f , (vki)i∈[m],>). Otherwise, B returns ⊥.

2. When A requests the challenge ciphertext, B checks if for any entry ( f , (vki)i∈[m]\{i′}, M) in LKG
such that f (x∗0) 6= f (x∗1), it holds that M = >. If so, B generates ct∗i ← iEnc(mski, j∗i , (0, K, 1))
for every i ∈ Ssecure and ct∗i ← iEnc(mski, j∗i , (s∗i , 0, 0)) for every i ∈ Sinsecure, and B sends
sbskl.ct := (ct∗i )i∈[m] to A . Otherwise, B outputs 0 and terminates. Hereafter, B rejects A’s query
f to OKG such that f (x∗0) 6= f (x∗1).

3. When A outputs coin′, B outputs coin′.

B simulates Hyb3 (resp. Hyb4) if B runs in Expsel-ind
SetHSS,B(1

λ, 0) (resp. Expsel-ind
SetHSS,B(1

λ, 1)). This
completes the proof.

From the above discussions, SKFE-sbSKL satisfies selective strong lessor security.

Remark 5.4 (Difference from FE security amplification). A savvy reader notices that although we use the
technique used in the FE security amplification by Jain et al. [JKMS20], we do not use their probabilistic
replacement theorem [JKMS20, Theorem 7.1 in eprint ver.] and the nested construction [JKMS20,
Section 9 in eprint ver.] in the proofs of Theorem 5.1. We do not need them for our purpose due to the
following reason.

Jain et al. need the nested construction to achieve a secure FE scheme whose adversary’s advantage
is less than 1/6 from one whose adversary’s advantage is any constant ε ∈ (0, 1). We do not need the
nested construction since we can start with a secure construction whose adversary’s advantage is less than
1/6 by setting a large index space in the index-based construction.

Jain et al. need the probabilistic replacement theorem due to the following reason. We do not know
which FE instance is secure at the beginning of the FE security game in the security amplification context,
while the adversary in set homomorphic secret sharing must declare the index of a secure instance at
the beginning. In our case, whether each index-based FE instance is secure or not depends on whether
randomly sampled indices collide or not. In addition, we can sample all indices used in the security game
at the beginning of the game, and a secure FE instance is fixed at the beginning. Thus, we can apply the
security of set homomorphic secret sharing without the probabilistic replacement theorem.

6 SKFE with Secure Key Leasing

We construct an SKFE-SKL scheme SKFE-SKL = (SKL.Setup, SKL.KG , SKL.Enc, SKL.Dec, SKL.Cert ,
SKL.Vrfy) from an SKFE-sbSKL scheme SKFE-sbSKL = (sbSKL.Setup, sbSKL.KG , sbSKL.Enc,
sbSKL.Dec, sbSKL.Cert , sbSKL.Vrfy). The description of SKFE-SKL is as follows.

SKL.Setup(1λ, 1q):

• Generate mskk ← sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ].
• Output skl.msk := (mskk)k∈[λ].

SKL.KG(skl.msk, f , 1n):
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• Parse (mskk)k∈[λ] ← skl.msk.

• Compute k′ such that 2k′−1 ≤ n ≤ 2k′ .
• Generate (fsk k′ , vkk′)← sbSKL.KG(mskk′ , f ).
• Output skl.fsk := (k′, fsk k′) and vkk′ .

SKL.Enc(skl.msk, x):

• Parse (mskk)k∈[λ] ← skl.msk.
• Generate ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ].
• Output skl.ct := (ctk)k∈[λ].

SKL.Dec(skl.sk f , skl.ct):

• Parse (k′, fsk k′)← skl.fsk and (ctk)k∈[λ] ← skl.ct.
• Output y← sbSKL.Dec(fsk k′ , ctk′).

SKL.Cert(skl.sk f ):

• Parse (k′, fsk k′)← skl.sk f .
• Output cert← sbSKL.Cert(fsk k′).

SKL.Vrfy(vk, cert):

• Output >/⊥ ← sbSKL.Vrfy(vk, cert).

The correctness of SKFE-SKL follows from that of SKFE-sbSKL. Also, we can confirm that all
algorithms of SKFE-SKL run in polynomial time since sbSKL.Setup and sbSKL.Enc of SKFE-sbSKL
run in polynomial time even for the availability bound 2λ due to its weak optimal efficiency. For security,
we have the following theorem.

Theorem 6.1. If SKFE-sbSKL satisfies selective strong lessor security, then SKFE-SKL satisfies selective
lessor security.

Proof of Theorem 6.1. We define a sequence of hybrid games to prove the theorem.

Hyb0: This is the same as Expsel-lessor
A ,SKFE-SKL(1

λ, 0).

1. At the beginning, A sends (1q, x∗0 , x∗1) to the challenger. The challenger runs mskk ←
sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ]. Throughout the experiment, A can access the
following oracles.

OEnc(x): Given x, it generates ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ] and returns
skl.ct := (ctk)k∈[λ].

OKG ( f , 1n): Given ( f , 1n), it computes k such that 2k−1 ≤ n ≤ 2k, generates (fsk k, vkk)←
sbSKL.KG(mskk, f ), and sets skl.fsk := (k, fsk k). It returns skl.fsk to A and adds
( f , 1n, vkk,⊥) to LKG . A can access this oracle at most q times.

OVrfy( f , cert): Given ( f , cert), it finds an entry ( f , 1n, vk, M) from LKG . (If there is no such
entry, it returns ⊥.) If > = Vrfy(vk, cert) and the number of queries to OEnc at this
point is less than n, it returns > and updates the entry into ( f , 1n, vk,>). Otherwise, it
returns ⊥.
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2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , 1n, vk, M)
in LKG such that f (x∗0) 6= f (x∗1), it holds that M = >. If so, the challenger generates
ct∗k ← sbSKL.Enc(mskk, x∗0) for every k ∈ [λ] and sends skl.ct∗ := (ct∗k )k∈[λ] to A .
Otherwise, the challenger outputs 0. Hereafter, A is not allowed to sends a function f such
that f (x∗0) 6= f (x∗1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the
experiment.

We define Hybk′ for every k′ ∈ [λ].

Hybk′: This hybrid is the same as Hybk′−1 except that ct∗k′ is generated as ct∗k′ ← Enc(mskk′ , x∗1).

Hybλ is exactly the same experiment as Expsel-lessor
A ,SKFE-SKL(1

λ, 1).
For every k′ ∈ [λ], we let SUCk′ be the event that the output of the experiment Hybk′ is 1. Then, we

have

Advsel-lessor
SKFE-SKL,A(λ) = |Pr[Hyb0 = 1]− Pr[Hybλ = 1]| ≤

λ

∑
k′=1
|Pr[SUCk′−1]− Pr[SUCk′ ]|.

Proposition 6.2. It holds that |Pr[Hybk′−1 = 1]− Pr[Hybk′ = 1]| = negl(λ) for every k′ ∈ [λ] if
SKFE-sbSKL is selectively lessor secure.

Proof of Proposition 6.2. We construct the following adversary B that attacks selective lessor security of
SKFE-sbSKL with respect to mskk′ .

1. B executes A and obtains (1q, x∗0 , x∗1) from A . B sends (1q, x∗0 , x∗1 , 2k′) to the challenger. B
generates mskk ← sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ] \ {k′}. B simulates queries made
by A as follows.

OEnc(x): Given x, B generates ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ] \ {k′}. B also
queries x to its encryption oracle and obtains ctk′ . B returns skl.ct := (ctk)k∈[λ].

OKG ( f , 1n): Given ( f , 1n), B computes k such that 2k−1 ≤ n ≤ 2k. If k 6= k′, B generates
(fsk k, vkk) ← sbSKL.KG(mskk, f ), and otherwise B queries f to its key generation oracle
and obtains fsk k and sets vkk := ⊥. B returns skl.fsk := fsk k. B adds ( f , 1n, vkk,⊥) to LKG .

OVrfy( f , cert): Given ( f , cert), it finds an entry ( f , 1n, vk, M) from LKG . (If there is no such entry,
it returns ⊥.) If vk = ⊥, B sends cert to its verification oracle and obtains M, and otherwise
it computes M = Vrfy(vk, cert). If M = > and the number of queries to OEnc at this point
is less than n, it returns > and updates the entry into ( f , 1n, vk,>). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any entry ( f , 1n, vk, M) in
LKG such that f (x∗0) 6= f (x∗1), it holds that M = >. If so, B requests the challenge ciphertext
to its challenger and obtains ct∗k′ , generates ct∗k ← sbSKL.Enc(mskk, x∗1) for every 1 ≤ k < k′

and ct∗k ← sbSKL.Enc(mskk, x∗0) for every k′ < k ≤ λ, and sends skl.ct∗ := (ct∗k )k∈[λ] to A .
Otherwise, the challenger outputs 0. Hereafter, A is not allowed to sends a function f such that
f (x∗0) 6= f (x∗1) to OKG .

3. When A outputs coin′, B outputs coin′ and terminates.

B simulatesHybk′−1 (resp. Hybk′ ) forA ifB runs inExpsel-lessor
B,SKFE-sbSKL(1

λ, 0) (resp. Expsel-lessor
B,SKFE-sbSKL(1

λ, 1).).
This completes the proof.

From the above discussions, SKFE-SKL satisfies selective lessor security.
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By Theorems 2.2, 2.8, 2.12, 2.16, 4.1, 5.1 and 6.1, we obtain the following theorem.

Theorem 6.3. If there exist OWFs, there exists selectively lessor secure SKFE-SKL for P/poly (in the
sense of Definition 3.2).

Although we describe our results on SKFE-SKL in the bounded collusion-resistant setting, our
transformation from standard SKFE to SKFE-SKL also works in the fully collusion-resistant setting. The
fully collusion-resistance guarantees that the SKFE scheme is secure even if an adversary accesses the
key generation oracle a-priori unbounded times. Namely, if we start with fully collusion-resistant SKFE,
we can obtain fully collusion-resistant SKFE-SKL by our transformations.

7 Single-Decryptor Functional Encryption

This section introduces single-decryptor FE (SDFE), whose functional decryption keys are copy-protected.

7.1 Preliminaries for SDFE

Quantum information. We review some basics of qunatum information in this subsection.
LetH be a finite-dimensional complex Hilbert space. A (pure) quantum state is a vector |ψ〉 ∈ H.

Let S(H) be the space of Hermitian operators onH. A density matrix is a Hermitian operator X ∈ S(H)
with Tr(X ) = 1, which is a probabilistic mixture of pure states. A quantum state over H = C2 is
called qubit, which can be represented by the linear combination of the standard basis {|0〉 , |1〉}. More
generally, a quantum system over (C2)⊗n is called an n-qubit quantum system for n ∈N \ {0}.

A Hilbert space is divided into registersH = HR1 ⊗HR2 ⊗ · · · ⊗HRn . We sometimes write X Ri to
emphasize that the operator X acts on registerHRi .13 When we apply X R1 to registersHR1 andHR2 , X R1

is identified with X R1 ⊗ IR2 .
A unitary operation is represented by a complex matrix U such that UU† = I. The operation

U transforms |ψ〉 and X into U |ψ〉 and UX U†, respectively. A projector P is a Hermitian operator
(P† = P) such that P2 = P.

For a quantum state X over two registersHR1 andHR2 , we denote the state inHR1 as X [R1], where
X [R1] = Tr2[X ] is a partial trace of X (trace out R2).

Definition 7.1 (Quantum Program with Classical Inputs and Outputs [ALL+21]). A quantum pro-
gram with classical inputs is a pair of quantum state q and unitaries {Ux}x∈[N] where [N] is the domain,
such that the state of the program evaluated on input x is equal to UxqU†

x. We measure the first register
of UxqU†

x to obtain an output. We say that {Ux}x∈[N] has a compact classical description U when
applying Ux can be efficiently computed given U and x.

Definition 7.2 (Positive Operator-Valued Measure). Let I be a finite index set. A positive operator
valued measure (POVM)M is a collection {M i}i∈I of Hermitian positive semi-define matrices M i such
that ∑i∈I M i = I. When we apply POVMM to a quantum state X , the measurement outcome is i with
probability pi = Tr(X M i). We denote byM(|ψ〉) the distribution obtained by applyingM to |ψ〉.

Definition 7.3 (QuantumMeasurement). A quantum measurement E is a collection {Ei}i∈I of matrices
Ei such that ∑i∈I E†

i Ei = I. When we apply E to a quantum state X , the measurement outcome is i
with probability pi = Tr(X E†

i Ei). Conditioned on the outcome being i, the post-measurement state is
EiX E†

i /pi.

We can construct a POVMM from any quantum measurement E by setting M i := E†
i Ei. We say

that E is an implementation ofM. The implementation of a POVM may not be unique.

13The superscript parts are gray colored.
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Definition 7.4 (ProjectiveMeasurement/POVM). A quantummeasurement E = {Ei}i∈I is projective if
for all i ∈ I , Ei is a projector. This implies that EiEj = 0 for distinct i, j ∈ I . In particular, two-outcome
projective measurement is called a binary projective measurement, and is written as E = (P, I − P),
where P is associated with the outcome 1, and I − P with the outcome 0. Similarly, a POVMM is
projective if for all i ∈ I , M i is a projector. This also implies that M i M j = 0 for distinct i, j ∈ I .

Definition 7.5 (Projective Implementation). Let:

• D be a finite set of distributions over an index set I .
• P = {Pi}i∈I be a POVM

• E = {ED}D∈D be a projective measurement with index set D.
We consider the following measurement procedure.

1. Measure under the projective measurement E and obtain a distribution D.

2. Output a random sample from the distribution D.

We say E is the projective implementation of P , denoted by ProjImp(P), if the measurement process
above is equivalent to P .

Theorem 7.6 ([Zha20, Lemma 1]). Any binary outcome POVM P = (P, I − P) has a unique projective
implementation ProjImp(P).

Threshold implementation. We review the notion of threshold implementation and related notions
since we need them for single decryptor (functional) encryption. This part is mostly taken from the paper
by Coladangelo et al. [CLLZ21].

Definition 7.7 (Threshold Implementation [Zha20, ALL+21]). Let

• P = (P, I − P) be a binary POVM

• ProjImp(P) and E be a projective implementation of P and the projective measurement in the first
step of ProjImp(P), respectively

• γ > 0.

A threshold implementation of P , denoted by TI γ(P), is the following measurement procedure.
• Apply E to a quantum state and obtain (p, 1− p) as an outcome.

• Output 1 if p ≥ γ, and 0 otherwise.

For any quantum state q , we denote by Tr[TI γ(P)q ] the probability that the threshold implementation
applied to q outputs 1 as Coladangelo et al. did [CLLZ21]. This means that whenever TI γ(P) appears
inside a trace Tr, we treat TI γ(P) as a projection onto the 1 outcome.

Lemma 7.8 ([ALL+21]). Any binary POVM P = (P, I − P) has a threshold implementation TI γ(P)
for any γ.

Definition 7.9 (Mixture of Projetive Measurement [Zha20]). Let D : R → I where R and I are
some sets. Let {(Pi, Qi)}∈I be a collection of binary projective measurement. The mixture of projective
measurements associated toR, I , D, and {(Pi, Qi)}∈I is the binary POVM PD = (PD, QD) defined
as follows

PD = ∑
i∈I

Pr[i← D(R)]Pi QD = ∑
i∈I

Pr[i← D(R)]Qi,

where R is uniformly distributed inR.
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Theorem 7.10 ([Zha20, ALL+21]). Let

• γ > 0

• P be a collection of projective measurements indexed by some sets

• q be an efficiently constructible mixed state

• D0 and D1 be two efficienctly samplable and computationally indistinguishable distributions over
I .

For any inverse polynomial ε, there exists a negligible function δ such that

Tr[TI γ−ε(PD1)q ] ≥ Tr[TI γ(PD0)q ]− δ,

where PDcoin is the mixture of projective measurements associated to P , Dcoin, and coin ∈ {0, 1}.

Cryptographic tools. Before we introduce definitions, we introduce a convention. We say that a
cryptographic scheme is sub-exponentially secure if there exists some constant 0 < α < 1 such that for
every QPT A the advantage of the security game is bounded by O(2−λα

).

Definition 7.11 (Learning with Errors). Let n, m, q ∈N be integer functions of the security parameter
λ. Let χ = χ(λ) be an error distribution over Z. The LWE problem LWEn,m,q,χ is to distinguish the
following two distributions.

D0 := {(A, sᵀA+ e) | A← Zn×m
q , s← Zn

q , e← χm} and D1 := {(A, u) | A← Zn×m
q , u← Zm

q }.

When we say we assume the hardness of the LWE problem or the QLWE assumption holds, we assume
that for any QPT adversary A , it holds that

|Pr[A(D0) = 1]− Pr[A(D1) = 1]| ≤ negl(λ).

Definition 7.12 (Puncturable PRF). A puncturable PRF (PPRF) is a tuple of algorithms PPRF =
(PRF.Gen, F, Puncture) where {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} is a PRF family and satisfies
the following two conditions. Note that `1 and `2 are polynomials of λ.

Punctured correctness: For any polynomial-size set S ⊆ {0, 1}`1 and any x ∈ {0, 1}`1 \ S, it holds
that

Pr
[
FK(x) = FK/∈S(x) | K ← PRF.Gen(1λ), K/∈S ← Puncture(K, S)

]
= 1.

Pseudorandom at punctured point: For any polynomial-size set S ⊆ {0, 1}`1 and any QPT distin-
guisher A , it holds that

|Pr
[
A(FK/∈S , {FK(xi)}xi∈S) = 1

]
− Pr

[
A(FK/∈S , (U`2)

|S|) = 1
]
| ≤ negl(λ),

where K ← PRF.Gen(1λ), K/∈S ← Puncture(K, S) and U`2 denotes the uniform distribution over
{0, 1}`2 .

If S = {x∗} (i.e., puncturing a single point), we simply write F 6=x∗(·) instead of FK/∈S(·) and consider
F 6=x∗ as a keyed function.

It is easy to see that the Goldwasser-Goldreich-Micali tree-based construction of PRFs (GGM
PRF) [GGM86] from one-way function yield puncturable PRFs where the size of the punctured key grows
polynomially with the size of the set S being punctured [BW13, BGI14, KPTZ13]. Thus, we have:
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Theorem 7.13 ([GGM86, BW13, BGI14, KPTZ13]). If OWFs exist, then for any polynomials `1(λ)
and `2(λ), there exists a PPRF that maps `1-bits to `2-bits.

Definition 7.14 (Public-Key Functional Encryption). A PKFE scheme PKFE is a tuple of four PPT
algorithms (Setup, KG, Enc, Dec). Below, let X , Y , and F be the plaintext, output, and function spaces
of PKFE, respectively.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk
and master secret key msk.

KG(msk, f )→ sk f : The key generation algorithm KG takes a master secret key msk and a function
f ∈ F , and outputs a functional decryption key sk f .

Enc(pk, x)→ ct: The encryption algorithm takes a public key pk and a message x ∈ X , and outputs a
ciphertext ct.

Dec(sk f , ct)→ y: The decryption algorithm takes a functional decryption key sk f and a ciphertext ct,
and outputs y ∈ {⊥} ∪ Y .

Correctness: We require we have that

Pr

Dec(sk f , ct) = f (x)

∣∣∣∣∣∣
(pk, msk)← Setup(1λ),
sk f ← KG(msk, f ),
ct← Enc(pk, x)

 = 1− negl(λ).

Note that Setup does not take collusion bound 1q unlike SKFE in Definition 2.6 since we consider
only single-key and collusion-resistant PKFE in this work.

Definition 7.15 (Adaptive Indistinguishability-Security for PKFE). We say that PKFE is an adaptively
indistinguishability-secure SDFE scheme for X ,Y , and F , if it satisfies the following requirement,
formalized from the experiment Expada-ind

A (1λ, coin) between an adversary A and a challenger:

1. The challenger runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends arbitrary key queries. That is, A sends function fi ∈ F to the challenger and the challenger
responds with sk fi ← KG(msk, fi) for the i-th query fi.

3. At some point, A sends (x0, x1) to the challenger. If fi(x0) = fi(x1) for all i, the challenger
generates a ciphertext ct∗ ← Enc(pk, xcoin). The challenger sends ct∗ to A .

4. Again, A can sends function queries fi such that fi(x0) = fi(x1).

5. A outputs a guess coin′ for coin.

6. The experiment outputs coin′.

We say that PKFE is adaptively indistinguishability-secure if, for any QPT A , it holds that

Advada-ind
PKFE,A(λ) :=

∣∣∣Pr
[
Expada-ind

PKFE,A(1
λ, 0) = 1

]
− Pr

[
Expada-ind

PKFE,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

If A can send only one key query during the experiment, we say PKFE is adaptively single-key
indistinguishability-secure.

Theorem 7.16 ([GVW12]). If there exists PKE, there exists adaptively single-key indistinguishability-
secure PKFE for P/poly.

Definition 7.17 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is a secure IO for a
classical circuit class {Cλ}λ∈N if it satisfies the following two conditions.
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Functionality: For any security parameter λ ∈N, circuit C ∈ Cλ, and input x, we have that

Pr
[
C′(x) = C(x) | C′ ← iO(C)

]
= 1 .

Indistinguishability: For any PPT Samp and QPT distinguisher D, the following holds:
If Pr

[
∀x C0(x) = C1(x) ∧ |C0| = |C1| | (C0, C1, aux)← Samp(1λ)

]
> 1− negl(λ), then we

have

Advio
iO,D(λ) :=

∣∣∣Pr
[

D(iO(C0), aux) = 1 | (C0, C1, aux)← Samp(1λ)
]

−Pr
[

D(iO(C1), aux) = 1 | (C0, C1, aux)← Samp(1λ)
]∣∣∣ ≤ negl(λ).

There are a few candidates of secure IO for polynomial-size classical circuits against quantum
adversaries [BGMZ18, CHVW19, AP20, DQV+21].

7.2 Single-Decryptor Encryption

We review the notion of single-decryptor encryption (SDE) [GZ20, CLLZ21] since it is a crucial building
block of our SDFE schemes. We also extend the existing definitions for SDE. Some definitions are taken
from the paper by Coladangelo et al. [CLLZ21].

Definition 7.18 (Single-Decryptor Encryption [CLLZ21]). A single-decryptor encryption scheme SDE
is a tuple of four algorithms (Setup, QKG , Enc, Dec). Below, letM be the message space of SDE.

Setup(1λ)→ (pk, sk): The setup algorithm takes a security parameter 1λ, and outputs a public key pk
and a secret key sk.

QKG(sk)→ sk : The key generation algorithm QKG takes a secret key sk, and outputs a quantum
decryption key sk .

Enc(pk, m)→ ct: The encryption algorithm takes a public key pk and a message m ∈ M, and outputs
a ciphertext ct.

Dec(sk , ct)→ m̃: The decryption algorithm takes a quantum decryption key sk and a ciphertext ct, and
outputs a message m̃ ∈ {⊥} ∪M.

Correctness: We require Dec(sk , ct) = m for every m ∈ M, (sk, pk) ← Setup(1λ), sk ← QKG(sk),
and ct← Enc(pk, m).

Note that Setup and Enc are classical algorithms. Although they could be quantum algorithms,
we select the definition above since the construction by Coladangelo et al. [CLLZ21] satisfies it. This
property is crucial in our schemes.

Definition 7.19 (CPA Security). An SDE scheme satisfies CPA security if for any (stateful) QPT A , it
holds that

2

∣∣∣∣∣∣Pr

A(ctb) = b

∣∣∣∣∣∣
(pk, sk)← Setup(1λ),
(m0, m1)← A(pk), b← {0, 1},
ctb ← Enc(pk, mb)

− 1
2

∣∣∣∣∣∣ ≤ negl(λ).

Definition 7.20 (Quantum Decryptor [CLLZ21]). Let p and U be a quantum state and a general
quantum circuit acting on n + m qubits, where m is the number of qubits of p and n is the length of
ciphertexts. A quantum decryptor for ciphertexts is a pair (p, U).

When we say that we run the quantum decryptor (p, U) on ciphertext ct, we execute the circuit U on
inputs |ct〉 and p.
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Coladangelo et al. [CLLZ21] introduced a few security notions for SDE. We introduce the stronger
security notion among them, γ-anti-piracy security.

Definition 7.21 (Testing a Quantum Decryptor [CLLZ21]). Let γ ∈ [0, 1]. Let pk and (m0, m1) be a
public key and a pair of messages, respectively. A test for a γ-good quantum decryptor with respect to pk
and (m0, m1) is the following procedure.

• The procedure takes as input a quantum decryptor D = (q , U).

• Let P = (P, I − P) be the following mixture of projective measurements acting on some quantum
state q ′:

– Sample a uniformly random coin← {0, 1} and compute ct← Enc(pk, mcoin).
– Run m′ ← D(ct). If m′ = mcoin, output 1, otherwise output 0.

Let TI 1/2+γ(P) be the threshold implementation of P with threshold 1
2 + γ. Apply TI 1/2+γ(P)

to q . If the outcome is 1, we say that the test passed, otherwise the test failed.

Definition 7.22 (Strong Anti-Piracy Security [CLLZ21]). Let γ ∈ [0, 1]. We consider the strong
γ-anti-piracy game Expstrong-anti-piracy

SDE,A (λ, γ(λ)) between the challenger and an adversary A below.

1. The challenger generates (pk, sk)← Setup(1λ).

2. The challenger generates sk ← QKG(sk) and sends (pk, sk ) to A .

3. A outputs (m0, m1) and two (possibly entangled) quantum decryptors D1 = (q [R1], U1) and
D2 = (q [R2], U2), where m0 6= m1, |m0| = |m1|, q is a quantum state over registers R1 and R2,
and U1 and U2 are general quantum circuits.

4. The challenger runs the test for a γ-good decryptor with respect to (m0, m1) on D1 and D2. The
challenger outputs 1 if both tests pass; otherwise outputs 0.

We say that SDE is strong γ-anti-piracy secure if for any QPT adversary A , it satisfies that

Pr
[
Expstrong-anti-piracy

SDE,A (λ, γ(λ)) = 1
]
≤ negl(λ).

Theorem 7.23 ([CLLZ21, CV21]). Assuming the existence of sub-exponentially secure IO for P/poly
and OWFs, the hardness of QLWE, there exists an SDE scheme that satisfies strong γ-anti-piracy security
for any inverse polynomial γ.

Extension of SDE. We define a more liberal security notion for γ-anti-piracy security of SDE to use an
SDE scheme as a building block of some cryptographic primitive.

We define a slightly stronger version of quantum decryptor than that in Definition 7.20.

Definition 7.24 (Testing a Quantum Distinguisher for Randomized Message). Let γ ∈ [0, 1]. Let pk
and (m0, m1) be a public key and a pair of messages, respectively. Let G = {Gλ}λ∈N be a function
family. A test for a γ-good quantum distinguisher with respect to pk and (m0, m1, g ∈ Gλ) is the following
procedure.

• The procedure takes as input a quantum decryptor D = (q , U).

• Let P = (P, I − P) be the following mixture of projective measurements acting on some quantum
state q ′:

– Sample a uniformly random coin← {0, 1} and r ← R, and compute ct← Enc(pk, g(mcoin; r)).
– Run coin′ ← D(ct). If coin′ = coin, output 1, otherwise output 0.
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Let TI 1/2+γ(P) be the threshold implementation of P with threshold 1
2 + γ. Apply TI 1/2+γ(P)

to q . If the outcome is 1, we say that the test passed, otherwise the test failed.

The definition above is different from Definition 7.21. First, we apply a randomized function to mcoin
and encrypt g(mcoin; r). Second, D distinguish whether ct is a ciphertext of g(m0; r) or g(m1; r) rather
than computing g(mcoin; r) (or mcoin). These differences are crucial when using SDE as a building block
of some cryptographic primitive.

We finished preparation for defining a new security notion for SDE. In the security game defined
below, the adversary can send a randomized function applied to challenge messages by the challenger.

Definition 7.25 (Strong Anti-Piracy Security for Randomized Message). Let γ ∈ [0, 1]. We consider
the strongγ-anti-piracywith randomized function familyG = {Gλ}λ∈N gameExpstrong-anti-piracy-rand

SDE,A ,G (λ, γ(λ))
between the challenger and an adversary A below.

1. The challenger generates (pk, sk)← Setup(1λ).

2. The challenger generates sk ← QKG(sk) and sends (pk, sk ) to A .

3. A outputs (m0, m1), g ∈ Gλ, and two (possibly entangled) quantum decryptors D1 = (q [R1], U1)
and D2 = (q [R2], U2), where |m0| = |m1|, q is a quantum state over registers R1 and R2, and U1
and U2 are general quantum circuits.

4. The challenger runs the test for a γ-good distinguisher with respect to pk and (m0, m1, g) on D1
and D2. The challenger outputs 1 if both tests pass; otherwise outputs 0.

We say that SDE is strong γ-anti-piracy secure with randomized function family G if for any QPT
adversary A , it satisfies that

Pr
[
Expstrong-anti-piracy-rand

SDE,A ,G (λ, γ(λ)) = 1
]
≤ negl(λ).

Note that we remove the restriction m0 6= m1, which is in Definition 7.22, since the adversary has no
advantage even if it sets m0 = m1.

We do not know how to prove that an SDE scheme that satisfies strong γ-anti-piracy secure also
satisfies strong γ-anti-piracy secure with randomized function in a black-box way. This is because the
adversary A does not receive a challenge ciphertext, but quantum decryptor D1 and D2 receives it. That is,
a reduction that plays the role of A does not receive the challenge ciphertext. 14

However, it is easy to see that the SDE scheme by Coladangelo et al. [CLLZ21] satisfies strong
γ-anti-piracy secure with randomized function family G. Intuitively, selecting g does not give more power
to adversaries since they can select any (m0, m1) in the original strong anti-piracy security. We can easily
obtain the following theorem.

Theorem 7.26 ([CLLZ21, CV21]). Assuming the existence of sub-exponentially secure IO for P/poly
and OWFs, the hardness of QLWE, and G is a randomized function family, there exists an SDE scheme
that satisfies strong γ-anti-piracy security with randomize function family G for any inverse polynomial γ.

The proof of Theorem 7.26 is almost the same as that of the strong anti-piracy security of the SDE by
Coladangelo et al. [CLLZ21, Theorem 6.13 in the eprint ver.]. We explain only the differences to avoid
replication.

14In the standard PKE setting, it is easy to see that the standard CPA security implies the liberal CPA security variant, where
the adversary select not only (m0, m1) but also g ∈ Gλ.
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On randomized message. To obtain this theorem, we simply replace mb with g(mb; rb) in the proof
by Coladangelo et al. [CLLZ21, Section 6.4 in the ePrint ver.], where rb is randomness chosen by the
challenger. The intuition is as follows. Even if the challenger applies the adversarially chosen randomized
function g to m0 or m1, it does not give more power to the adversary for breaking strong γ-anti-piracy
security. This is because the adversary can send any two messages (m0, m1) as a challenge message pair
in the original strong γ-anti-piracy security game. The proof by Coladangelo et al. [CLLZ21] does not
use any specific property of challenge messages. The one issue is whether g(m0; r0) 6= g(m1; r1) holds
for any r0, r1 ∈ R since the original strong γ-anti-piracy game requires that challenge messages must be
different. However, this restriction is just a convention. If the adversary sets m0 = m1, it just loses how to
distinguish ciphertexts. That is, even if g(m0; r0) = g(m1; r1) happens, it does not give more power to
the adversary, and is not a problem.

On distinguish-based definition. We require a pirate to be a distinguisher rather than a decryptor
(computing entire mcoin). In general, security against distinguisher-based pirates is not implied by
security against decryptor-based pirates since adversaries do not need to compute the entire mcoin in the
distinguisher-based definition (the requirement on adversaries is milder).

In the original proof by Coladangelo et al. [CLLZ21], they show that if pirate decryptors compute
mcoin, the reduction can distinguish whether a ciphertext is a real compute-and-compare obfuscation
or a simulated compute-and-compare obfuscation.15 This breaks the unpredictability of the supported
distribution in compute-and-compare obfuscation. Thus, pirate decryptors cannot compute mcoin.
Here, even if pirate decryptors only distinguish m0 from m1 (that is, the output of D is only one-bit
information) instead of computing entire mcoin, the reduction can distinguish real or simulation for
compute-and-compare obfuscation. This is because the security of compute-and-compare obfuscation is
the decision-type. The reduction in the original proof use only information about coin and does not use
mcoin. Thus, we can prove strong γ-anti-piracy security with any randomized function family G defined
in Definition 7.25.

Other security notions for SDE. Coladangelo et al. introduced a few variants of anti-piracy secu-
rity [CLLZ21]. One is the CPA-style anti-piracy security, and the other is the anti-piracy security with
random challenge plaintexts. Both are weaker than the strong anti-piracy security in the SDE setting.
See Definition A.1 for the CPA-style definition. We omit the anti-piracy security with random challenge
plaintexts since we do not use it in this work.

7.3 Definitions for Single-Decryptor Functional Encryption

We define the notion of single-decryptor functional encryption (SDFE).

Definition 7.27 (Single-Decryptor Functional Encryption). A single-decryptor functional encryption
scheme SDFE is a tuple of five algorithms (Setup, KG, QKG , Enc, Dec). Below, let X , Y , and F be the
plaintext, output, and function spaces of SDFE.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ, and outputs a public key
pk and a master secret key msk.

QKG(msk, f )→ sk f : The key generation algorithm takes a master secret key msk and a function f ∈ F ,
and outputs a quantum functional decryption key sk f .

Enc(pk, x)→ ct: The encryption algorithm takes a public key pk and a plaintext x ∈ X , and outputs a
ciphertext ct.

15The SDE scheme by Coladangelo et al. [CLLZ21] is constructed from IO and compute-and-compare obfuscation [WZ17,
GKW17].
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Dec(sk f , ct)→ y: The decryption algorithm takes a quantum functional decryption key sk f and a
ciphertext ct, and outputs y ∈ {⊥} ∪ Y .

Correctness: For every λ ∈N, x ∈ X , f ∈ F , (pk, msk) in the support of Setup(1λ), we require that

Dec(QKG(msk, f ), Enc(pk, x)) = f (x).

Note that Setup and Enc are classical algorithms as Definition 7.18.

Definition 7.28 (Adaptive Security for SDFE).We say that SDFE is an adaptively secure SDFE
scheme for X ,Y , and F , if it satisfies the following requirement, formalized from the experiment
Expada-ind

SDFE,A(1
λ, coin) between an adversary A and a challenger:

1. The challenger runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends arbitrary key queries. That is, A sends function fi ∈ F to the challenger and the challenger
responds with sk fi

← QKG(msk, fi) for the i-th query fi.

3. At some point, A sends (x0, x1) to the challenger. If fi(x0) = fi(x1) for all i, the challenger
generates a ciphertext ct∗ ← Enc(pk, xcoin). The challenger sends ct∗ to A .

4. Again, A can sends function queries fi such that fi(x0) = fi(x1).

5. A outputs a guess coin′ for coin.

6. The experiment outputs coin′.

We say that SDFE is adaptively secure if, for any QPT A , it holds that

Advada-ind
SDFE,A(λ) :=

∣∣∣Pr
[
Expada-ind

SDFE,A(1
λ, 0) = 1

]
− Pr

[
Expada-ind

SDFE,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

If A can send only one key query during the experiment, we say SDFE is adaptively single-key secure.

Definition 7.29 (Testing a Quantum FE Distinguisher). Let γ ∈ [0, 1]. Let pk, (x0, x1), and f ∗ be a
public key, a pair of plaintexts, and a function respectively such that f ∗(x0) 6= f ∗(x1). A test for a
γ-good quantum FE distinguisher with respect to pk, (x0, x1), and f ∗ is the following procedure.

• The procedure takes as input a quantum FE decryptor D = (q , U).

• Let P = (P, I − P) be the following mixture of projective measurements acting on some quantum
state q ′:

– Sample a uniformly random coin← {0, 1} and compute ct← Enc(pk, xcoin).
– Run coin′ ← D(ct). If coin′ = coin, output 1; otherwise output 0.

Let TI 1/2+γ(P) be the threshold implementation of P with threshold 1
2 + γ. Apply TI 1/2+γ(P)

to q . If the outcome is 1, we say that the test passed, otherwise the test failed.

We follow the spirit of Definition 7.24. That is, we consider a quantum distinguisher rather than a
quantum decryptor that computes f ∗(xcoin).

Definition 7.30 (Strong Anti-Piracy Security for FE). Let γ ∈ [0, 1]. We consider the strong γ-anti-
piracy game Expstrong-anti-piracy

SDFE,A (λ, γ(λ)) between the challenger and an adversary A below.

1. The challenger generates (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends key queries fi to the challenger and receives sk fi
← QKG(msk, fi).

3. At some point A sends a challenge query f ∗ to the challenger and receives sk f ∗ ← QKG(msk, f ∗).
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4. Again, A sends fi to the challenger and receives sk fi
← QKG(msk, fi).

5. A outputs (x0, x1) and two (possibly entangled) quantum decryptors D1 = (q [R1], U1) and
D2 = (q [R2], U2), where ∀i fi(x0) = fi(x1), f ∗(x0) 6= f ∗(x1), q is a quantum state over
registers R1 and R2, and U1 and U2 are general quantum circuits.

6. The challenger runs the test for a γ-good FE distinguisher with respect to pk, (x0, x1), and f ∗ on
D1 and D2. The challenger outputs 1 if both tests pass, otherwise outputs 0.

We say that SDFE is strong γ-anti-piracy secure if for any QPT adversary A , it satisfies that

Advstrong-anti-piracy
SDFE,A (λ, γ(λ)) := Pr

[
Expstrong-anti-piracy

SDFE,A (λ, γ(λ)) = 1
]
≤ negl(λ).

If A can send only the challenge query f ∗ during the experiment, we say that SDFE is challenge-only
strong γ-anti-piracy secure.

If a pirate has sk f ∗ , it can easily compute f ∗(xcoin) and is a good FE distinguisher since f ∗(x0) 6=
f ∗(x1). The definition says either D1 or D2 do not have the power of sk f ∗ .

Other security notions for SDFE. We can define CPA-style anti-piracy security for SDFE as SDE. We
provide the CPA-style anti-piracy security for SDFE in Definition A.3. We can also define anti-piracy
security with random challenge plaintexts for SDFE. However, if we allow adversaries to select a
constant-valued function as f ∗, the security is trivially broken. It might be plausible to define security
with random challenge plaintexts for functions with high min-entropy. It limits supported classes of
functions. However, we focus on FE for all circuits in this work. We omit the definition of anti-piracy
with random challenge plaintexts.

Implication to FE with secure key leasing. Loosely speaking, SDFE implies FE with secure key
leasing. However, there are subtle issues for this implication. Concretely, the implication holds if

• we allow the deletion certificate to be a quantum state, and

• restrict our attention to the setting where an adversary is given single decryption key that can
be used to detect the challenge bit. We consider this setting for SDFE by default as we can see
in Definition 7.30. However, we consider more powerful adversaries who can obtain multiple such
decryption keys for secure key leasing as we can see in Definition 3.2. (Although we consider
PKFE for SDFE and SKFE for secure key leasing in this work, we ignore the difference between
public key and secret key for simplicity.)

Under these conditions, we can see the implication as follows. We require an adversary to send back the
original quantum state encoding the decryption key as the deletion certificate. We can check the validity
of this (quantum) certificate by estimating its success probability using the threshold implementation
defined in Definition 7.7. Then, we see that an adversary who breaks the secure key leasing security of
this construction clearly violates the single-decryptor security of the underlying scheme.

We can remove the second condition above if SDFE is also secure against adversaries who can
obtain multiple decryption keys that can be used to detect the challenge bit. Such scheme is called
collusion-resistant SDFE. Currently, we do not even have a construction of collusion-resistant SDE (that
is, single decryptor PKE).

7.4 Single-Key Secure Single-Decryptor Functional Encryption

We use the following tools:

• A single-decryptor encryption SDE = (SDE.Setup, SDE.QKG , SDE.Enc, SDE.Dec).
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• Anadaptively secure single-keyPKFE schemePKFE = (PKFE.Setup, PKFE.KG, PKFE.Enc, PKFE.Dec).

The description of 1SDFE is as follows.

1SDFE.Setup(1λ):

• Generate (fe.pk, fe.msk)← PKFE.Setup(1λ).
• Generate (sde.pk, sde.dk)← SDE.Setup(1λ).
• Output pk := (fe.pk, sde.pk) and msk := (fe.msk, sde.dk).

1SDFE.QKG(msk, f ):

• Parse msk = (fe.msk, sde.dk).
• Generate fe.sk f ← PKFE.KG(msk, f ).
• Generate sde.dk ← SDE.QKG(sde.dk).
• Output sk f := (fe.sk f , sde.dk ).

1SDFE.Enc(pk, x):

• Parse pk = (fe.pk, sde.pk).
• Generate fe.ctx ← PKFE.Enc(fe.pk, x).
• Generate sde.ct← SDE.Enc(sde.pk, fe.ctx).
• Output ct := sde.ct.

1SDFE.Dec(sk f , ct):

• Parse sk f = (fe.sk f , sde.dk ) and ct = sde.ct.
• Compute fe.ct′x ← SDE.Dec(sde.dk , sde.ct).
• Output y← PKFE.Dec(fe.ct′x).

Theorem 7.31. If PKFE is adaptively single-key indistinguishability-secure, 1SDFE is adaptively single-
key secure.

Proof. Suppose that Advada-ind
1SDFE,A(λ) is non-negligible for a contradiction. We construct a QPT algorithm

B for the adaptive single-key security of PKFE by using the adversary A of the adaptive single-key
security game of 1SDFE as follows.

1. B receives fe.pk from its challenger, generates (sde.pk, sde.dk) ← SDE.Setup(1λ), and sends
pk := (fe.pk, sde.pk) to A .

2. When A sends a key query f , B sends it to its challenger, receives fe.sk f ← PKFE.KG(fe.msk, f ),
computes sde.dk ← SDE.QKG(sde.dk), and passes sk f := (fe.sk f , sde.dk ) to A .

3. When A sends a pair (x0, x1), B passes (x0, x1) to its challenger and receives fe.ct∗ ←
PKFE.Enc(fe.pk, xcoin). B generates sde.ct ← SDE.Enc(sde.pk, fe.ct∗) and passes sde.ct to
A .

4. If f (x0) 6= f (x1), B aborts. Otherwise, go to the next step.

5. B outputs whatever A outputs.

It is easy to see that B perfectly simulates Expada-ind
1SDFE,A(λ) since A must send ( f , x0, x1) such that

f (x0) = f (x1) due to the condition of Expada-ind
1SDFE,A(λ). Thus, B breaks the adaptive single-key security

of PKFE by using the distinguishing power of A . This is a contradiction and we finished the proof.
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Theorem 7.32. If SDE is strong γ/4-anti-piracy secure for randomized function family, 1SDFE is
challenge-only strong γ-anti-piracy secure.

Proof. We recall the original game.

Hyb0: This is the same as Expstrong-anti-piracy
A ,1SDFE (λ, γ(λ)). The detailed description is as follows.

1. Compute (fe.pk, fe.msk)← PKFE.Setup(1λ) and (sde.pk, sde.dk)← SDE.Setup(1λ). Set
pk := (fe.pk, sde.pk) and msk := (fe.msk, sde.dk).

2. Compute fe.sk f ∗ ← PKFE.KG(fe.msk, f ∗) and sde.dk ← SDE.QKG(sde.dk), and send
sk f ∗ := (fe.sk f ∗ , sde.dk ) to A .

3. Receive (x0, x1), D1 = (q [R1], U1), and D2 = (q [R2], U2), where f ∗(x0) 6= f ∗(x1).
4. For i ∈ {1, 2}, let Pi,D be the following mixture of projective measurements acting on some

quantum state q ′:

• Sample a uniform coin ← {0, 1}. Compute fe.ct ← PKFE.Enc(fe.pk, xcoin) and
sde.ct← SDE.Enc(sde.pk, fe.ct) and set ct := sde.ct.

• Run the quantum decryptor (q ′, U i) on input ct. If the outcome is coin, output 1.
Otherwise, output 0.

Let D be the distribution over pairs (coin, ct) defined in the first item above, and let
Ei = {Ei

(coin,ct)}coin,ct be a collection of projective measurements where Ei
(coin,ct) is the

projective measurement described in the second item above. Pi,D is the mixture of projective
measurements associated to D and Ei.

5. Run TI 1
2+γ(Pi,D) for i ∈ {1, 2} on quantum decryptor D1 = (q [R1], U1) and D2 =

(q [R2], U2). Output 1 if both tests pass, otherwise output 0.

We prove the following.

Lemma7.33. IfSDE is strongγ-anti-piracy securewith randomized function family {PKFE.Enc(fe.pk, ·; ·)}λ,
it holds that Advstrong-anti-piracy

SDFE,A (λ, γ(λ)) ≤ negl(λ).

Proof of Lemma 7.33. Suppose that Advstrong-anti-piracy
SDFE,A (λ, γ(λ)) is non-negligible for a contradic-

tion. We construct a QPT algorithm B for the strong γ-anti-piracy game with randomized function
{PKFE.Enc(fe.pk, ·; ·)}λ of SDE by using the adversary A of the strong γ-anti-piracy game of SDFE as
follows.

1. B receives sde.pk and sde.dk from its challenger.

2. B generates (fe.pk, fe.msk)← PKFE.Setup(1λ), sets pk := (fe.pk, sde.pk), and sends it to A .

3. When A sends the challenge query f ∗, B generates fe.sk f ∗ ← PKFE.KG(fe.msk, f ∗), sets
sk f ∗ := (fe.sk f ∗ , sde.dk ), and sends sk f ∗ to A .

4. At some point, B receives (x0, x1) and two (possibly entangled) quantum decryptors D1 =
(q [R1], U1) and D2 = (q [R2], U2), where f ∗(x0) 6= f ∗(x1), from A .

5. B sets quantum decryptors D∗1 and D∗2 as follows. B sets D∗1 := (q [R1], U1) and D∗2 := (q [R2], U2).
B sets a randomized function g(·; ·) := PKFE.Enc(fe.pk, ·; ·) and sends (x0, x1, g)) and D∗1 =
(q [R1], U1) and D∗2 = (q [R2], U2) to its challenger.

Recall that, for testing quantum decryptors D1 and D2 in Advstrong-anti-piracy
SDFE,A (λ, γ(λ)), we use the

following: For i ∈ {1, 2}, let Pi,D be the following mixture of projective measurements acting on some
quantum state q ′:
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• Sample a uniform coin ← {0, 1}. Compute fe.ct ← PKFE.Enc(fe.pk, xcoin) and sde.ct ←
SDE.Enc(sde.pk, fe.ct) and set ct := sde.ct.

• Run the quantum decryptor (q ′, U i) on input ct. If the outcome is coin, output 1. Otherwise, output
0.

The challenger of SDE runs the test by using the following. Let Pi,D′ be the following mixture of
projective measurements acting on some quantum state qSDE:

• Sample a uniformly random coin← {0, 1} and r ← R, and computem′coin := PKFE.Enc(fe.pk, xcoin; r).
Note that B sets g(·, ·) := PKFE.Enc(fe.pk, ·; ·). Then, compute ct← SDE.Enc(sde.pk, m′coin).

• Run coin′ ← D(ct). If coin′ = coin, output 1, otherwise output 0.

The distribution is the same as D, which B simulates.
We assumed that Advstrong-anti-piracy

SDFE,A (λ, γ(λ)) is non-negligible at the beginning of this proof. That
is, applying TI 1

2+γ(Pi,D) on q [Ri] results in two outcomes 1 with non-negligible probability:

Tr
[

TI 1
2+γ(P1,D)⊗ TI 1

2+γ(P2,D)q
]
> negl(λ),

where µ > negl(λ) means µ is non-negligible. This means that q [Ri] is a γ-good distinguisher with
respect to ciphertexts generated according to D. It is easy to see that (D∗1 , D∗2 ) is a γ-good distinguisher
for randomized function PKFE.Enc(fe.pk, ·; ·) since D′ and D are the same distribution. Thus, if
A outputs γ-good distinguisher, B can also outputs γ-good distinguisher for randomized function
PKFE.Enc(fe.pk, ·; ·). This completes the proof of Lemma 7.33.

By Lemma 7.33, we complete the proof of Theorem 7.32.

We obtain the following corollary from Theorems 7.26, 7.31 and 7.32.

Corollary 7.34. Assuming the existence of sub-exponentially secure IO for P/poly and OWFs, and the
hardness of QLWE, there exists an SDFE scheme for P/poly that satisfies adaptive single-key security
and challenge-only strong γ-anti-piracy security for any inverse polynomial γ.

Remark 7.35 (On approximation version of threshold implementation). We do not need to use approximate
version of TI that runs in polynomial time (denoted by ATI by previous works [ALL+21, CLLZ21])
because we do not extract information from pirate decryptors D1 and D2. We use the decision bits output
by them for breaking the security of cryptographic primitives in security reductions. This is the same for
the construction in Section 7.5.

7.5 Collusion-Resistant Single-Decryptor Functional Encryption

Construction 7.36. We use the following tools:

• Asingle-keySDFE1SDFE = (1SDFE.Setup, 1SDFE.KG, 1SDFE.QKG , 1SDFE.Enc, 1SDFE.Dec).

• An IO iO.
• A puncturable PRF PPRF = (PRF.Gen, F, Puncture), where F : {0, 1}λ × {0, 1}` → RSetup
andRSetup is the randomness space of 1SDFE.Setup.

• A puncturable PRF PPRF′ = (PRF.Gen′, F′, Puncture′), where F′ : {0, 1}λ × {0, 1}` → REnc
andREnc is the randomness space of 1SDFE.Enc.

• A (standard) PRF F(1) : {0, 1}λ × C1SDFE → RPRF.Gen′ , C1SDFE is the ciphertext space of 1SDFE
andRPRF.Gen′ is the randomness space of PRF.Gen′.
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Setup Circuit S1fe[K](τ)

Hardwired: puncturable PRF key K.
Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padS := padS(λ, n, s, `), which is determined in analysis.

1. Compute rτ ← FK(τ).
2. Compute (pkτ , mskτ)← 1SDFE.Setup(1λ; rτ) and output pkτ .

Figure 2: Description of S1fe[K].

Encryption Circuit E1fe[p̂k, K′, x](τ)

Hardwired: circuit p̂k, puncturable PRF key K′, and message x.
Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padE := padE(λ, n, s, `), which is determined in analysis.

1. Evaluate the circuit p̂k on input τ, that is pkτ ← p̂k(τ).
2. Compute r′τ ← F′K′ (τ) and output ctτ ← 1SDFE.Enc(pkτ , x; r′τ).

Figure 3: Description of E1fe[p̂k, K′, x].

• A (standard) PRF F(2) : {0, 1}λ × C1SDFE → RiO, C1SDFE is the ciphertext space of 1SDFE and
RiO is the randomness space of iO.

Note that we use F(1) and F(2) only in security proofs.

SDFE.Setup(1λ):

• Generate K← PRF.Gen(1λ) and S1fe[K] defined in Figure 2.
• Return (p̂k, m̂sk) := (iO1(S1fe), K).

SDFE.QKG(m̂sk, f ):

• Parse K = m̂sk and choose τ ← {0, 1}`.
• Compute rτ ← FK(τ) and (mskτ, pkτ)← 1SDFE.Setup(1λ; rτ).
• Generate sk f ,τ ← 1SDFE.QKG(mskτ, f ).

• Output ŝk f ,τ := (τ, sk f ,τ).

SDFE.Enc(p̂k, x):

• Generate K′ ← PRF.Gen′(1λ) and E1fe[p̂k, K′, x] defined in Figure 3.
• Return ĉt← iO2(E1fe[p̂k, K′, x]).

SDFE.Dec(ŝk f , ĉt):

• Parse (τ, sk f ,τ) = ŝk f .
• Evaluate the circuit ĉt on input τ, that is ctτ ← ĉt(τ).
• Return y← 1SDFE.Dec(sk f ,τ, ctτ).
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Theorem 7.37. If 1SDFE is sub-exponentially adaptively single-key secure, iO is a sub-exponentially
secure IO for P/poly, and PPRF is a sub-exponentially secure PPRF, SDFE is adaptively secure.

Proof. We define a sequence of hybrid games. For the hybrid games, we present some definitions. Let q
be the total number of key queries by A . Note that q could be any polynomial. When we start the adaptive
security game, the adversary A is fixed, and q is also fixed. We choose tags τ1, . . . , τq ← {0, 1}` for q
key queries at the beginning of the game. We can interpret ` bit strings as integers and assume that there
is no i, j such that i 6= j and τi = τj without loss of generality.

Hyb0(coin): This is the original adaptive security game.

1. The challenger generates (p̂k, m̂sk) = (iO1(S1fe), K)← SDFE.Setup(1λ) and sends p̂k to
A .

2. A sends key queries fk to the challenger and the challenger generates rτk ← FK(τk) and
(pkτk

, mskτk) ← 1SDFE.Setup(1λ; rτk), and returns ŝk fk
= (τk, sk fk ,τk

) where sk fk ,τk
←

1SDFE.QKG(mskτk , fk).
3. At some point A sends a pair (x0, x1) to the challenger. If fi(x0) = fi(x1), the challenger

generates K′ ← PRF.Gen′(1λ) and E1fe[p̂k, K′, xcoin] defined in Figure 3 and sends ĉt ←
iO2(E1fe[p̂k, K′, xcoin]) to A .

4. Again, A sends fk to the challenger and the challenger returns ŝk fk
← SDFE.QKG(m̂sk, fk)

if fk(x0) = fk(x1).
5. When A outputs coin′, the game outputs coin′.

Let i ∈ [2`]. In the following hybrid games, we gradually change S1fe and E1fe for the i-th tag
τ′i , which is the `-bit string representation of i ∈ [2`]. So, it could happen that τ′i = τj for some
i ∈ [2`] and j ∈ [q]. Let Adv0(coin) and Advi

x be the advantage of A in Hyb0(coin) and Hybi
x,

respectively.

Hybi
1: We generate p̂k as obfuscated S∗1fe described in Figure 4. In this hybrid game, we set

ri ← FK(τ
′
i ), F 6=τ′i

← Puncture(K, τ′i ), (pkτ′i
, mskτ′i

) ← 1SDFE.Setup(1λ; ri), and p̂k ←
iO1(S∗1fe[τ

′
i , F 6=τ′i

, pkτ′i
]).

When i = 1, the behavior of S∗1fe is the same as that of S1fe since the hard-wired pkτ′1
in S∗1fe is the

same as the output of S1fe on the input τ′1. Their size is also the same since we pad circuit S1fe
to have the same size as S∗1fe. Then, we can use the indistinguishability of iO1 and it holds that∣∣∣Adv0(0)− Adv1

1

∣∣∣ ≤ negl(λ).

Hybi
2: The challenge ciphertext is generated by obfuscating E∗1fe described in Figure 5. In this hybrid game,
we set r′i ← F′K′(τ′i ), F′6=τ′i

← Puncture(K′, τ′i ), cti ← 1SDFE.Enc(pkτ′i
, x0; r′i), pkτ′i

← p̂k(τ′i ),
and ĉt← iO2(E1fe[τ

′, p̂k, F′6=τ′ , x0, x1, ctτ′ ]).
When i = 1, the behavior of E∗1fe is the same as that of E1fe since the hard-wired ct1 in E∗1fe is the
same as the output of E1fe on the input 1. Both circuits have the same size by padding padE.
In addition, for i ≥ 2, the behavior of E∗1fe does not change between Hybi

1 and Hybi
2. Thus, it holds

that
∣∣∣Advi

2 − Advi
1

∣∣∣ ≤ negl(λ) for every i ∈ [2`] due to the indistinguishability of iO2.

Hybi
3: We change ri = FK(τ

′
i ) and r′i = F′K′(τ′i ) into uniformly random ri and r′i. Due to the

pseudorandomness at punctured points of puncturable PRF, it holds that
∣∣∣Advi

3 − Advi
2

∣∣∣ ≤ negl(λ)
for every i ∈ [2`].
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Setup Circuit S∗1fe[τ
′, F 6=τ′ , pkτ′ ](τ)

Hardwired: tag τ′, puncturable PRF key F 6=τ′ , and 1SDFE public-key pkτ′ .
Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padS := padS(λ, n, s), which is determined in analysis.

1. If τ′ = τ, output pkτ′ .
2. Else, compute r ← F 6=τ′ (τ).
3. Compute (pkτ , mskτ)← 1SDFE.Setup(1λ; r) and output pkτ .

Figure 4: Description of S∗1fe[τ
′, F 6=τ′ , pkτ′ ].

Encryption Circuit E∗1fe[τ
′, p̂k, F′6=τ′ , x0, x1, ctτ′ ](τ)

Hardwired: tag τ′, public key p̂k (this is an obfuscated circuit), puncturable PRF key F′6=τ′ , plaintexts x0, x1, and
ciphertext ctτ′ .

Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If τ′ = τ, output ctτ′ .
2. Else, compute r′τ ← F′6=τ′ (τ) and the circuit p̂k on input τ, that is, pkτ ← p̂k(τ),

If τ > τ′: Output ctτ ← 1SDFE.Enc(pkτ , x0; r′τ).
If τ < τ′: Output ctτ ← 1SDFE.Enc(pkτ , x1; r′τ).

Figure 5: Description of E∗1fe[τ
′, p̂k, F′6=τ′ , x0, x1, ctτ′ ].

Hybi
4: We change ctτ′i

from 1SDFE.Enc(pkτ′i
, x0) to 1SDFE.Enc(pkτ′i

, x1). In Hybi
3 and Hybi

4, we do
not need randomness to generate pkτ′i

and ctτ′i
. We just hardwire pkτ′i

and ctτ′i
into S∗1fe and E∗1fe,

respectively. Therefore, for every i ∈ [2`],
∣∣∣Advi

4 − Advi
3

∣∣∣ ≤ negl(λ) follows from the adaptive
security of 1SDFE under the master public key pkτ′i

.

Lemma 7.38. It holds that
∣∣∣Advi

4 − Advi
3

∣∣∣ ≤ negl(λ) for all i ∈ [2`] if 1SDFE is adaptively
single-key secure.

Proof of Lemma 7.38. We construct an adversary B in the selective security game of 1SDFE as
follows. To simulate the adaptive security game of SDFE, B runs A attacking 1SDFE. A adaptively
sends key queries f1, · · · , fq. B simulates the game of SDFE as follows.

Setup: B receives a public key pkτ′i
. Then, B chooses τ1, . . . , τq ∈ {0, 1}` and generates

K and K′ by using PRF.Gen(1λ) and PRF.Gen′(1λ), F 6=τ′i
← Puncture(K, τ′i ), F′6=τ′i

←
Puncture(K′, τ′i ), and the public key p̂k := iO1(S∗1fe[τ

′
i , F 6=τ′i

, pkτ′i
]) for SDFE according to

Figure 4 by using the given pkτ′i
. B sends p̂k to A .

Key Generation: When fk (i.e., k-th query) is queried, B checks fk(x0) = fk(x1) and outputs
⊥ if it does not hold. Otherwise, B checks whether τ′i = τk (i.e., i-th tag in [2`] is the
same as the tag for k-th key query). B passes fk to its challenger, receives sk fk

, and
sends (τ′i , sk fk

) to A . If τ′i 6= τk, B generates sk fk
← 1SDFE.QKG(mskτk , fk) by using

(pkτk
, mskτk)← 1SDFE.Setup(1λ; F 6=τ′i

(τk)) and returns it. Note that we do not need mskτ′i
for this simulation since B receives sk fk

from its challenger if τ′i = τk.
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Encryption: When A sends (x0, x1) to B, B passes (x0, x1) to its challenger and receives
ct∗τ′i . Then, B generates the challenge ciphertext ĉt ← iO2(E∗[τ′i , p̂k, F′6=τ′i

, x0, x1, ct∗τ′i ])
(obfuscated E∗1fe Figure 5).

The simulation is completed. If B receives ct∗τ′i = 1SDFE.Enc(pkτ′i
, x0), it perfectly simulates

Hybi
3. If B receives ct∗τ′i = 1SDFE.Enc(pkτ′i

, x1), it perfectly simulates Hybi
4. This completes the

proof of the lemma.

Hybi
5: We change ri and r′i into ri = FK(τ

′
i ) and r′i = F′K′(τ′i ). We can show

∣∣∣Advi
5 − Advi

4

∣∣∣ ≤ negl(λ)
for every i ∈ [2`] by using the pseudorandomness at punctured point of puncturable PRF.

From the definition of S∗1fe, E∗1fe, and Hybi
1, the behaviors of S∗1fe and E∗1fe in Hybi

5 and Hybi+1
1 are the

same. Thus,
∣∣∣Advi+1

1 − Advi
5

∣∣∣ ≤ negl(λ) holds for every i ∈ [2` − 1] due to the indistinguishability of

iO1 and iO2. It also holds that
∣∣∣Adv0(1)− Adv2`

5

∣∣∣ ≤ negl(λ) based on the security guarantee of iO1

and iO2.
There are O(2`) hybrid games. However, if negl(λ) is sub-exponentially small for all transitions,

|Adv0(0)− Adv0(1)| is negligible. Note that it is sufficient to set ` = polylog(λ).

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated S1fe and S∗1fe
defined in Figures 2 and 4, and that of obfuscated E1fe and E∗1fe defined in Figures 3 and 5. Accordingly,
we set padS := max(|S1fe|, |S∗1fe|) and padE := max(|E1fe|, |E∗1fe|).

The circuits S1fe and S∗1fe compute a puncturable PRF over domain {0, 1}` and a key pair of 1FE, and
may have punctured PRF keys and a public key hardwired. The circuits E1fe and E∗1fe run the circuit p̂k
and compute a puncturable PRF over domain {0, 1}` and a ciphertext of 1SDFE, and may have punctured
PRF keys, tags, plaintexts, and a hard-wired ciphertext. Note that ` is a polynomial of λ. Thus, it holds
that

padS ≤ poly(λ, n, s),

padE ≤ poly(λ, n, s,
∣∣∣p̂k
∣∣∣).

Therefore, we complete the proof of Theorem 7.37.

Theorem 7.39. If 1SDFE is challenge-only strong γ/2-anti-piracy secure and sub-exponentially adap-
tively single-key secure, iO is a sub-exponentially secure IO for P/poly, and PPRF and PPRF′ are
sub-exponentially secure puncturable PRFs, then SDFE is strong γ-anti-piracy secure.

Proof of Theorem 7.39. Let A be an adversary attacking the strong γ-anti-piracy of SDFE. We define
a sequence of hybrid games. For the hybrid games, we define the following values. Let q be the total
number of key queries by A except for the challenge query f ∗. Note that q could be any polynomial.
When we start the strong γ-anti-piracy security game, the adversary A is fixed, and q is also fixed. We
choose tags τ1, . . . , τq ← {0, 1}` for q key queries and τ∗ for the challenge query at the beginning of the
game. We can interpret ` bit strings as integers and assume that there is no i, j such that i 6= j and τi = τj
without loss of generality.

Hyb0: The first game is the original strong γ-anti-piracy experiment, that is, Expstrong-anti-piracy
SDFE,A (1λ, γ).

1. The challenger generates (p̂k, m̂sk) = (iO1(S1fe), K)← SDFE.Setup(1λ) and sends p̂k to
A .
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2. A sends key queries fk to the challenger and the challenger returns ŝk fk
= (τk, sk fk ,τk

) ←
SDFE.QKG(m̂sk, fk) where sk fk ,τk

← 1SDFE.QKG(mskτk , fk).
3. At some point A sends a challenge query f ∗ to the challenger and the challenger returns

ŝk = (τ∗, sk f ∗)← SDFE.QKG(m̂sk, f ∗) where sk f ∗ ← 1SDFE.QKG(mskτ∗ , f ∗).

4. Again, A sends fk to the challenger and the challenger returns ŝk fk
← SDFE.QKG(m̂sk, fk).

5. A outputs (x0, x1) and two (possibly entangled) quantum decryptors D1 = (q [R1], U1) and
D2 = (q [R2], U2), where ∀i fi(x0) = fi(x1), f ∗(x0) 6= f ∗(x1), q is a quantum state over
registers R1 and R2, and U1 and U2 are general quantum circuits.

6. For i ∈ {1, 2}, let Pi,D be the following mixture of projective measurements acting on some
quantum state q ′:

• Sample a uniform coin← {0, 1}. Compute ĉt← SDFE.Enc(p̂k, xcoin) and set ct := ĉt.
• Run the quantum decryptor (q ′, U i) on input ct. If the outcome is coin, output 1.
Otherwise, output 0.

Let D be the distribution over pairs (coin, ct) defined in the first item above, and let
Ei = {Ei

(coin,ct)}coin,ct be a collection of projective measurements where Ei
(coin,ct) is the

projective measurement described in the second item above. Pi,D is the mixture of projective
measurements associated to D and Ei.

7. The challenger runs the test for a γ-good FE decryptor with respect to pk, (x0, x1), and f ∗ on
D1 and D2. The challenger outputs 1 if both tests pass, otherwise outputs 0.

In the following hybrid games, we gradually change S1fe and E1fe for the i-th tag τ′i , which is the
`-bit string representation of i ∈ [2`], with the following exception. Let i∗ ∈ [2`] is the integer
representation of τ∗ ∈ {0, 1}`. Instead of going over indices {1, . . . , i∗ − 1, i∗, i∗ + 1, . . . , 2`},
we go over indices Ii∗ := {1, . . . , i∗ − 1, i∗ + 1, . . . , 2`, i∗}. That is, we skip the tag τi∗ and go to
τi∗ after we finish the 2`-th tag τ2` . It could happen that τ′i = τj for some i ∈ [2`] and j ∈ [q]. Let
Advi

x be the advantage of A in Hybi
x.

Hybi
1: This is defined for i ∈ [Ii∗ ] and the same as Hybi−1

5 except that we generate p̂k as obfuscated S∗1fe
described in Figure 6. Note that we define Hyb0

5 = Hyb0. In this hybrid game, we set rτ′i
← FK(τ

′
i ),

F 6=τ′i
← Puncture(K, τ′i ), and (pkτ′i

, mskτ′i
)← 1SDFE.Setup(1λ; rτ′i

).
The behavior of S∗1fe is the same as that of S1fe since the hard-wired pkτ′1

in S∗1fe is the same as the
output of S1fe on the input τ′1. Their size is also the same since we pad circuit S1fe to have the
same size as S∗1fe. Then, we can use the indistinguishability guarantee of iO1 and it holds that
iO1(S1fe[K]) is computationally indistinguishable from iO1(S∗1fe[τ

′
i , F 6=τ′i

, pkτ′i
]). Let D(1,i) be

the distribution over pairs (coin, ct) defined in Hyb0 except that iO1(S∗1fe[τ
′
i , F 6=τ′i

, pkτ′i
]) as p̂k.

Then, D(1,1) is computationally indistinguishable from D.

Hybi
2: This is defined for i ∈ [Ii∗ ] and the same as Hybi

1 except that we change the distribution D(1,i)

over pairs (coin, ct) into D(2,i) as follows.

• Sample a uniform coin← {0, 1}.
• Compute r′τ′i ← F′K′(τ′i ), F′6=τ′i

← Puncture′(K′, τ′i ), ctτ′i
← 1SDFE.Enc(pkτ′i

, xcoin; r′τ′i ),
and ĉt← iO2(E∗1fe[τ

′
i , τ∗, p̂k, F′6=τ′i

, xcoin, x1, ctτ′i
]) where E∗1fe is described in Figure 7. Set

ct := ĉt.

The behavior of E∗1fe is the same as that of E1fe since the hard-wired ctτ′i
in E∗1fe is the same as the

output of E1fe on the input τ′i . Moreover, both circuits have the same size by padding padE. Then, we
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Setup Circuit S∗1fe[τ
′, F 6=τ′ , pkτ′ ](τ)

Hardwired: tag τ′, puncturable PRF key F 6=τ′ , and 1SDFE public-key pkτ′ .
Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padS := padS(λ, n, s), which is determined in analysis.

1. If τ′ = τ, output pkτ′ .
2. Else, compute r ← F 6=τ′ (τ).
3. Compute (pkτ , mskτ)← 1SDFE.Setup(1λ; ri) and output pkτ .

Figure 6: Circuit S∗1fe[τ
′, F 6=τ′ , pkτ′ ].

Encryption Circuit E∗1fe[τ
′, τ∗, p̂k, F′6=τ′ , xcoin, x1, ctτ′ ](τ)

Hardwired: tags τ′, τ∗, public key p̂k (this is an obfuscated circuit), puncturable PRF key F′6=τ′ , plaintexts xcoin, x1,
and ciphertext ctτ′ .

Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If τ′ = τ, output ctτ′ .
2. Else, compute r′τ ← F′6=τ′i

(τ) and the circuit p̂k on input τ, that is, pkτ ← p̂k(τ),

If τ = τ∗: Output ctτ∗ ← 1SDFE.Enc(pkτ∗ , xcoin; r′τ∗ )

If τ > τ′: Output ctτ ← 1SDFE.Enc(pkτ , xcoin; r′τ).
If τ < τ′: Output ctτ ← 1SDFE.Enc(pkτ , x1; r′τ).

Figure 7: Circuit E∗1fe[τ
′, τ∗, p̂k, F′6=τ′ , xcoin, x1, ctτ′ ].

can use the indistinguishability of iO2, and it holds that D(2,i) is computationally indistinguishable
from D(1,i).

Hybi
3: This is defined for i ∈ [Ii∗ ] and the same as Hybi

2 except that we use distribution D(3,i), which
is the same as D(2,i) except that setup randomness rτ∗ ← RSetup and encryption randomness
r′τ∗ ← REnc are uniformly random. By the punctured pseudorandomness of F and F′, D(3,i) is
computationally indistinguishable from D(2,i).

Hybi
4: This is defined for i ∈ [Ii∗ ] \ {i∗} and the same as Hybi

3 except that we use distribution D(4,i),
which is the same as D(3,i) except that the ciphertext ctτ′i

is 1SDFE.Enc(pkτ′i
, x1) instead of

1SDFE.Enc(pkτ′i
, xcoin). In Hybi

3 and Hybi
4, we do not need randomness to generate pkτ′i

and
ctτ′i

. We just hardwire pkτ′i
and ctτ′i

into S∗1fe and E∗1fe, respectively. In addition, it holds
that fk(x0) = fk(x1) for all k ∈ [q] by the requirement of strong γ-anti-piracy security. For
every i ∈ [Ii∗ ] \ {i∗}, by the adaptive security of 1SDFE under the public key pkτ′i

, D(4,i) is
computationally indistinguishable from D(3,i). Note that we do not need to generate a functional
decryption key for i ∈ [Ii∗ ] such that τ′i 6= τk. The detail of this indistinguishability is almost the
same as Lemma 7.38, and we omit it.

Hybi
5: This is defined for i ∈ [Ii∗ ] \ {i∗} and the same as Hybi

4 except that we use distribution D(5,i),
which is the same as D(4,i) except that we use ri = FK(τ

′
i ) and r′i = F′K′(τ′i ). By the punctured

pseudorandomness of F and F′, D(5,i) is computationally indistinguishable from D(4,i).
We finish describing one cycle of our hybrid games. We move from Hybi

5 to Hybi+1
1 . From the

definition of S∗1fe and Hybi
1, the behaviors of S∗1fe in Hybi

5 and Hybi+1
1 are the same. It holds that
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Encryption Circuit E∗∗1fe[τ
∗, p̂k, F′6=τ∗ , x1, ctτ∗ ](τ)

Hardwired: tag τ∗, public key p̂k (this is an obfuscated circuit), puncturable PRF key F′6=τ∗ , plaintext x1, and
ciphertext ctτ∗ .

Input: tag τ ∈ {0, 1}`.
Padding: circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If τ∗ = τ, output ctτ∗ .
2. Else, compute r′τ ← F′6=τ∗ (τ) and the circuit p̂k on input τ, that is, pkτ ← p̂k(τ),
3. Output ctτ ← 1SDFE.Enc(pkτ , x1; r′τ).

Figure 8: Circuit E∗∗1fe[τ
∗, p̂k, F′6=τ∗ , x1, ctτ∗ ].

D(1,i+1) is computationally indistinguishable from D(5,i). So, we can arrive at Hybi∗
3 by iterating

the transitions so far.

Hybi∗
4 : This is the same as Hybi∗

3 except that we change the distribution D(3,i∗) over pairs (coin, ct) into
D(4,i∗) as follows.

• Sample a uniform coin← {0, 1}.
• Sample r′τ∗ ← REnc and compute ctτ∗ ← 1SDFE.Enc(pkτ∗ , xcoin; r′τ∗),K′ ← PRF.Gen′(1λ),

F′6=τ∗ ← Puncture′(K′, τ∗), and ĉt ← iO2(E∗∗1fe[τ
∗, p̂k, F′6=τ∗ , x1, ctτ∗ ]) where E∗∗1fe is de-

scribed in Figure 8. Set ct := ĉt.

From the definitions of E∗1fe, E∗∗1fe, and Hybi∗
3 , the behaviors of E∗1fe in Hybi∗

3 is the same as that
of E∗∗1fe in Hybi∗

4 . Moreover, both circuits have the same size by padding padE. Then, we can use
the indistinguishability of iO2, and it holds that D(4,i∗) is computationally indistinguishable from
D(3,i∗). This change is for erasing information about coin from E∗1fe.

Hyb6: This is the same as Hybi∗
4 except that we choose PRF keys K1, K2 ← {0, 1}λ at the beginning of

the game and change the distribution D(4,i∗) over pairs (coin, ct) into D(6) as follows.

• Sample a uniform coin← {0, 1}.
• Sample r′τ∗ ← REnc, compute ctτ∗ := 1SDFE.Enc(pkτ∗ , xcoin; r′τ∗), r1 ← F(1)

K1
(ctτ∗), r2 ←

F(2)
K2

(ctτ∗), K′ ← PRF′.Gen(1λ; r1), F′6=τ∗ ← Puncture′(K′, τ∗), and ĉt := iO2(E∗∗1fe[τ
∗, p̂k,

F′6=τ∗ , x1, ctτ∗ ]; r2) where E∗∗1fe is described in Figure 8. Set ct := ĉt.

That is, we de-randomize generation of K′ and ĉt. Note that the puncturing algorithm Puncture′ is
deterministic in the GGM construction based puncturable PRF [GGM86, BW13, KPTZ13, BGI14].
By the pseudorandomness of F(1) and F(2), D(6) is computationally indistinguishable from D(4,i∗).
There are O(2`) hybrid games between Hyb0 and Hyb6. However, if all building blocks are
sub-exponentially secure, D(6) and D (the original distribution in Hyb0) are computationally
indistinguishable since we can set ` = polylog(λ). Note that we do not need the sub-exponential
security for the challenge-only strong γ/2-anti-piracy security of 1SDFE since we do not use the
anti-piracy security so far.
Thus, by Theorem 7.10, it holds that

Tr
[
(TI 1

2+γ−ε(P1,D(6))⊗ TI 1
2+γ−ε(P2,D(6)))q

]
≥ Tr

[
(TI 1

2+γ(P1,D)⊗ TI 1
2+γ(P2,D))q

]
− δ,
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where δ is some negligible function. That is, it holds that Adv6 ≥ Adv0 − negl(λ).

We prove the following.

Lemma 7.40. If 1SDFE is challenge-only strong γ/2-anti-piracy secure, it holds that Adv6 ≤ negl(λ).

Proof of Lemma 7.40. Suppose that Adv6 is non-negligible for a contradiction. We construct a QPT
algorithm B for the strong γ/2-anti-piracy game of 1SDFE by using the adversary A of the strong
γ-anti-piracy game of SDFE as follows.

1. B chooses τ1, . . . , τq, τ∗ ← {0, 1}` and K1, K2 ← {0, 1}λ, and generates K← PRF.Gen(1λ).

2. B generates F 6=τ∗ ← Puncture(K, τ∗).

3. B receives pk∗ from its challenger, sets pkτ∗ := pk∗, and constructs S∗1fe[τ
∗, F 6=τ∗ , pkτ∗ ] described

in Figure 6 by choosing τ∗ for the challenge query f ∗. B sets p̂k := iO1(S∗1fe[τ
∗, F 6=τ∗ , pkτ∗ ]) and

sends it to A .

4. When A sends a key query fi, B generates (pkτi
, mskτi)← 1SDFE.Setup(1λ; PRFK 6=τ∗ (τi)) and

sk fi ,τi
← 1SDFE.QKG(mskτi , fi), sets ŝk fi ,τi

:= (τi, sk fi ,τi
), and sends ŝk fi

to A .

5. When A sends the challenge query f ∗, B passes it to its challenger and receives sk f ∗ ←
1SDFE.QKG(msk∗, f ∗), and sends ŝk f ∗ := (τ∗, sk f ∗) to A .

6. Again, B can answer key queries fi from A as the fourth item.

7. At some point, B receives (x0, x1) and two (possibly entangled) quantum decryptors D1 =
(q [R1], U1) and D2 = (q [R2], U2), where f ∗(x0) 6= f ∗(x1), from A . For i ∈ {1, 2}, let Pi,D(6)

be the following mixture of projective measurements acting on some quantum state q ′:

• Sample a uniform coin← {0, 1}.
• Sample r′τ∗ ← REnc, ctτ∗ ← 1SDFE.Enc(pkτ∗ , xcoin; r′τ∗).

• Generate r1 ← F(1)
K1

(ctτ∗), r2 ← F(2)
K2

(ctτ∗), K′ ← PRF.Gen′(1λ; r1), and F′6=τ∗ =

Puncture′(K′, τ∗).
• Generate ĉt← iO2(E∗∗1fe[τ

∗, p̂k, F′6=τ∗ , x1, ctτ∗ ]; r2) where E∗∗1fe is described in Figure 8.

• Run the quantum decryptor (q ′, U i) on input ĉt. If the outcome is coin, output 1. Otherwise,
output 0.

8. B sets quantum decryptors D∗1 and D∗2 as follows.
In this item, we denote pure state |x〉 〈x| by |x〉 for ease of notation. First, B constructs (q∗[Ri], U∗i )
such that

• Set q∗[Ri] := q [Ri] ⊗
∣∣∣0|ĉt|

〉
⊗
∣∣∣τ∗, p̂k, 0`, x1, K1, K2, 0|r1|, 0|r2|, 0`

〉
⊗ |ctτ∗〉. Note that

|ctτ∗〉 is the input for (q∗[Ri], U∗i ).
• Unitary U∗i acts on q∗[Ri] and the result is

q ′[Ri] := q [Ri]⊗ |ĉt〉 ⊗
∣∣∣τ∗, p̂k, F′6=τ∗ , x1, K1, K2, r1, r2, K′

〉
⊗ |ctτ∗〉 ,

where r1 := F(1)
K1

(ctτ∗), r2 := F(2)
K2

(ctτ∗),K′ := PRF.Gen′(1λ; r1),F′6=τ∗ := Puncture′(K′, τ∗),
and ĉt := iO2(E∗∗1fe[τ

∗, p̂k, F′6=τ∗ , x1, ctτ∗ ]; r2). That is,U∗i constructsE∗∗1fe[τ
∗, p̂k, F′6=τ∗ , x1, ctτ∗ ]

described in Figure 8 and generates ĉt := iO2(E∗∗1fe[τ
∗, p̂k, F′6=τ∗ , x1, ctτ∗ ]; r2). Note that B

can construct it since B has τ∗, p̂k, K1, K2, and x1.
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It is easy to see that if we apply (U i ⊗ I) to q ′[Ri], we obtain an output of Di for input ĉt. Thus,
B sets D∗1 := (q∗[R1], (U1 ⊗ I)U∗1) and D∗2 := (q∗[R2], (U2 ⊗ I)U∗2). B sends (x0, x1) and D∗1
and D∗2 to its challenger.

The challenger of 1SDFE runs the test by using the following. Let Pi,D′ be the following mixture of
projective measurements acting on some quantum state q1SDFE:

• Sample a uniformly random coin← {0, 1} and compute ctτ∗ ← 1SDFE.Enc(pkτ∗ , xcoin).

• Run coin′ ← D∗(ct). If coin′ = coin, output 1, otherwise output 0.

By the construction of U∗i , quantum decryptor D∗i takes a ciphertext ctτ∗ under pkτ∗ as input, converts
it into a ciphertext ĉt of SDFE, and apply the quantum decryptor Di from A . The converted ciphertext ĉt
perfectly simulates a ciphertext in Hyb6 if an input to D∗i is a ciphertext under pkτ∗ .

We assumed that Adv6 is non-negligible at the beginning of this proof. That is, applying
TI 1

2+γ−ε(Pi,D(6)) on q∗[Ri] results in two outcomes 1 with non-negligible probability. That is, it
holds that

Tr
[

TI 1
2+γ−ε(P1,D(6))⊗ TI 1

2+γ−ε(P2,D(6))q∗
]
> negl(λ).

This means that for i ∈ {1, 2}, q∗[Ri] is a (γ− ε)-good distinguisher with respect to ciphertexts generated
according to D(6).

Thus, if Di works as a (γ− ε)-good quantum distinguisher for SDFE, D∗i works as a (γ− ε)-good
quantum distinguisher for 1SDFE, where ε = γ

2 . This completes the proof of Lemma 7.40.

By using the relationships among AdvSDFE,A , Advi
x for x ∈ {1, · · · , 5} and i ∈ [Ii∗ ], Advi∗

x for
x ∈ {1, · · · , 4}, and Adv6 that we show above, we obtain Advstrong-anti-piracy

SDFE,A (λ, γ) ≤ negl(λ). We
almost complete the proof of Theorem 7.39. Lastly, we need to set the padding parameters for IO security.

Padding Parameter. The proof of security relies on the indistinguishability of obfuscated S1fe and
S∗1fe defined in Figures 2 and 6, and that of obfuscated E1fe, E∗1fe, and E∗∗1fe defined in Figures 3, 7 and 8.
Accordingly, we set padS := max(|S1fe|, |S∗1fe|) and padE := max(|E1fe|, |E∗1fe|, |E∗∗1fe|).

The circuits S1fe and S∗1fe compute a puncturable PRF over domain {0, 1}` and a key pair of 1FE,
and may have punctured PRF keys and a public key hardwired. The circuits E1fe, E∗1fe, and E∗∗1fe run the
circuit p̂k and compute a puncturable PRF over domain {0, 1}` and a ciphertext of 1SDFE, and may have
punctured PRF keys, tags, plaintexts, and a hard-wired ciphertext. Note that ` is a polynomial of λ. Thus,
it holds that

padS ≤ poly(λ, n, s),

padE ≤ poly(λ, n, s,
∣∣∣p̂k
∣∣∣).

Therefore, we complete the proof of Theorem 7.39.

We obtain the following corollary from Corollary 7.34 and Theorems 7.37 and 7.39.

Corollary 7.41. Assuming the existence of sub-exponentially secure IO for P/poly, and the sub-
exponential hardness of QLWE, there exists an SDFE scheme for P/poly that satisfies adaptive security
(Definition 7.28) and strong γ-anti-piracy security for any inverse polynomial γ.
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A CPA-Style Anti-Piracy Security Notions

We introduce the CPA-style anti-piracy security for SDE.

Definition A.1 (Anti-Piracy Security, CPA-Style [CLLZ21]).We consider the CPA-style anti-piracy
game Expanti-piracy-cpa

SDE,A (λ) between the challenger and an adversary A below.

1. The challenger generates (pk, sk)← Setup(1λ).

2. The challenger generates sk ← QKG(sk) and sends (pk, sk ) to A .

3. A outputs (m0, m1) and two (possibly entangled) quantum decryptors D1 = (q [R1], U1) and
D2 = (q [R2], U2), where m0 6= m1, |m0| = |m1|, q is a quantum state over registers R1 and R2,
and U1 and U2 are general quantum circuits.

4. The challenger chooses coin1, coin2 ← {0, 1}, and generates ct1 ← Enc(pk, mcoin1) and ct2 ←
Enc(pk, mcoin2). The challenger runs m′i ← Di(cti) for i ∈ {1, 2}. If m′i = mcoini for i ∈ {1, 2},
the challenger outputs 1, otherwise outputs 0.

We say that SDE is γ-anti-piracy secure if for any QPT adversary A , it satisfies that

Pr
[
Expanti-piracy-cpa

SDE,A (λ) = 1
]
≤ 1

2
+ γ(λ) + negl(λ).

Theorem A.2 ([CLLZ21]). If an SDE scheme satisfies strong γ-anti-piracy security, it also satisfies
γ-anti-piracry security (in the CPA-style).

We can define a similar security notion for SDFE.

Definition A.3 (Anti-Piracy Security for FE, CPA-Style). We consider the CPA-style anti-piracy game
for FE Expanti-piracy-cpa

SDFE,A (λ) between the challenger and an adversary A below.

1. The challenger generates (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends key queries fi to the challenger and receives sk fi
← QKG(sk fi) where sk fi ← KG(msk, fi).

3. At some point A sends a challenge query f ∗ to the challenger and receives sk f ∗ ← QKG(msk, f ∗).

4. Again, A sends fi to the challenger and receives sk fi
← QKG(sk fi) where sk fi ← KG(msk, fi).

5. A outputs (x0, x1) and two (possibly entangled) quantum decryptors D1 = (q [R1], U1) and
D2 = (q [R2], U2), where ∀i fi(x0) = fi(x1), f ∗(x0) 6= f ∗(x1), q is a quantum state over
registers R1 and R2, and U1 and U2 are general quantum circuits.

6. The challenger chooses coin1, coin2 ← {0, 1}, and generates ct1 ← Enc(pk, xcoin1) and ct2 ←
Enc(pk, xcoin2). The challenger runs coin′k ← Dk(ctk) for k ∈ {1, 2}. If coin′k = coink for
k ∈ {1, 2}, the challenger outputs 1, otherwise outputs 0.

We say that SDFE is γ-anti-piracy secure if for any QPT adversary A , it satisfies that

Pr
[
Expanti-piracy-cpa

SDFE,A (λ) = 1
]
≤ 1

2
+ γ(λ) + negl(λ).

If A can send only the challenge query f ∗ during the experiment, we say that SDFE is challenge-only
γ-anti-piracy secure.
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We can also define the CPA-style anti-piracy for the predictor-based quantum decryptors as Defini-
tion A.1. That is, Di outputs f ∗(xcoini) for i ∈ {1, 2} instead of coini. We omit the variation.

Theorem A.4. If an SDFE scheme satisfies strong γ-anti-piracy security, it also satisfies γ-anti-piracy
security in the CPA-style.

The proof of this theorem is almost the same as that of Theorem A.2, so we omit it to avoid
replication.

B Adaptive and Simulation-based Security for Secure Key Leasing

This section presents how to upgrade FE with secure key leasing security.

B.1 Adaptive Security for Secure Key Leasing

Ananth et al. [ABSV15] present transformations from selectively secure FE into adaptively secure FE.
Almost the same transformation works for FE with secure key leasing. The adaptive lessor security for
SKFE with SKL is almost the same as Definition 3.2 except that A declares (x∗0 , x∗1) when A sends cert
to the challenger and we separate the key oracle into two types. The formal definition is as follows.

Definition B.1 (Adaptive Lessor Security). We say that SKFE-SKL is an adaptively lessor secure SKFE-
SKL scheme for X ,Y , and F , if it satisfies the following requirement, formalized from the experiment
Expada-lessor

A ,SKFE-SKL(1
λ, coin) between an adversary A and a challenger:

1. At the beginning, A sends 1q+q∗ to the challenger. The challenger runs msk← Setup(1λ, 1q+q∗).
Throughout the experiment, A can access the following oracles.

OEnc(x): Given x, it returns Enc(msk, x).
OKG ( f , 1n): Given ( f , 1n), it generates (fsk , vk)← KG(msk, f , 1n), and sends fsk to A . A can

access this oracle at most q times.

2. A can access the following oracles before A declares the challenge plaintexts.

O∗KG ( f ∗, 1n∗): Given ( f ∗, 1n∗), it generates (fsk ∗, vk∗)← KG(msk, f ∗, 1n∗), adds ( f ∗, 1n∗ , vk∗,⊥)
to LKG , and sends fsk ∗ to A . A can access this oracle at most q∗ times.

OVrfy( f ∗, cert∗): Given ( f ∗, cert∗), it finds an entry ( f ∗, 1n∗ , vk∗, M) from LKG . (If there is no
such entry, it returns ⊥.) If > = Vrfy(vk∗, cert∗) and the number of queries to OEnc at this
point is less than n∗, it returns > and updates the entry into ( f ∗, 1n∗ , vk∗,>). Otherwise, it
returns ⊥.

3. When A sends (x∗0 , x∗1) to receive the challenge ciphertext, if there exists ( f ∗, 1n∗ , vk∗,⊥) in LKG ,
or OKG received ( f , 1n) such that f (x∗0) 6= f (x∗1), the challenger outputs 0 as the final output of
this experiment. Otherwise, the challenger generates ct∗ ← Enc(msk, x∗coin) and sends ct∗ to A .
Hereafter, OKG rejects a query ( f , 1n) such that f (x∗0) 6= f (x∗1) and A cannot access O∗KG and
OVrfy.

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advada-lessor
SKFE-SKL,A(λ) :=

∣∣∣Pr
[
Expada-lessor

SKFE-SKL,A(1
λ, 0) = 1

]
− Pr

[
Expada-lessor

SKFE-SKL,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).
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Remark B.2. The definition above considers two key oracles OKG and O∗KG unlike Definition 3.2 to
distinguish a functional decryption key which is deleted from one which is not deleted. The oracle O∗KG

accepts a query ( f ∗, 1n∗) such that f ∗(x∗0) 6= f ∗(x∗1). We need to distinguish these two types of queries
since we need to know whether f (x∗0) = f (x∗1) or not when an adversary sends a query in the security
proof of the construction below. It is not clear whether we can achieve a stronger adaptive security where
adversaries access a single key generation oracle as Definition 3.2. We leave it as an open question.

We construct an adaptively secure SKFE schemewith secure key leasingSKFE-SKL = (Setup, KG , Enc,
Dec, Cert , Vrfy) using the following tools:

• A selectively secure SKFE scheme with secure key leasing Sel.SKFE = Sel.(Setup, KG , Enc, Dec,
Cert , Vrfy).

• An adaptively single-ciphertext secure SKFE scheme 1CT.SKFE = 1CT.(Setup, KG, Enc, Dec).

• A pseudorandom-secure SKE scheme SKE = SKE.(E, D).

• A PRF F.

Let `1 and `2 be the length of SKE ciphertexts and the length of random tags, respectively. The
definition of adaptive lessor security is a natural adaptive variant of Definition 3.2. The description of
SKFE-SKL is as follows.

Setup(1λ):

• Generate sel.msk← Sel.Setup(1λ).
• Output msk := sel.msk.

KG(msk, f , 1n):

• Parse sel.msk← msk.
• Generate ctske ← {0, 1}`1 and choose τ ← {0, 1}`2 .
• Compute (sel.sk G, sel.vk) ← Sel.KG(sel.msk, G[ f , ctske, τ], 1n), where the circuit G is
described in Figure 9.

• Output sk f := sel.sk G and vk := sel.vk.

Enc(msk, x):

• Parse sel.msk← msk.
• Generate 1ct.msk← 1CT.Setup(1λ) and choose K← {0, 1}λ.
• Generate 1ct.ct← 1CT.Enc(1ct.msk, x).
• Generate sel.ct← Sel.Enc(sel.msk, (1ct.msk, K, 0λ, 0)).
• Output ctx := (1ct.ct, sel.ct).

Dec(sk f , ctx):

• Parse sel.sk G ← sk f and (1ct.ct, sel.ct)← ctx.
• Compute 1ct.sk f ← Sel.Dec(sel.sk G, sel.ct).
• Output y← 1CT.Dec(1ct.sk f , 1ct.ct).

Cert(sk f ):

• Parse sel.sk f ← sk f .
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Key Generation Circuit G[ f , ctske, τ](1ct.msk, K, Kske, β)

Hardwired: function f , SKE ciphertext ctske, tag τ.
Input: master secret key 1ct.msk, PRF key K, SKE secret key Kske, bit β.

1. If β = 0, output 1ct.sk f ← 1CT.KG(1ct.msk, f ; FK(τ)).
2. Else, output SKE.D(Kske, ctske).

Figure 9: Description of G[ f , ctske, τ].

• Output cert := sel.cert← Sel.Cert(sel.sk f ).

Vrfy(vk, cert):

• Parse sel.vk = vk and sel.cert = cert.
• Output >/⊥ ← Sel.Vrfy(sel.vk, sel.cert).

We emphasize that 1CT.SKFE is a classical standard SKFE scheme, and 1CT.KG is a classical
algorithm. This does not spoil the lessor security of Sel.SKFE because 1ct.sk f generated by the circuit G
depends on 1ct.msk and K from the encryption algorithm and τ from the key generation algorithm. At
the decryption phase, we can obtain 1ct.sk f under 1ct.msk from Sel.KG(sel.msk, G, 1n) and

(1CT.Enc(1ct.msk, x), Sel.Enc(sel.msk, (1ct.msk, K, 0λ, 0))).

We can keep a copy of 1ct.sk f . However, it does not help us to decrypt another ciphertext

(1CT.Enc(1ct.msk′, x′), Sel.Enc(sel.msk, (1ct.msk′, K′, 0λ, 0))).

Note that 1ct.msk is freshly generated at the encryption phase. That is, a functional decryption key
1ct.sk f is specific to only one pair of sk f and ctx

Thus, after we securely delete sk f by using the deletion algorithm Sel.Cert of Sel.SKFE, we can no
longer decrypt a fresh ciphertext generated after the deletion. Since the deletion power is preserved, we
can upgrade the selective security of Sel.SKFE to adaptive security by leveraging the adaptive security of
1CT.SKFE as the transformation by Ananth et al. [ABSV15].

Theorem B.3. If Sel.SKFE is selectively lessor secure, 1CT.SKFE is adaptively single-ciphertext secure
and collusion-resistant, SKE is pseudorandom-secure, and F is a pseudorandom function, SKFE-SKL
above is adaptively lessor secure.

Since the proof is almost the same as that by Ananth et al. [ABSV15, Theorem 4 in the eprint
ver.], we omit it to avoid the replication. Note that the reduction needs to embed 1ct.sk f ←
1CT.KG(1ct.msk, f ; FK(τ)) into ctske for a key query such that f (x∗0) = f (x∗1), but ctske should
be a junk ciphertext for a key query such that f (x∗0) 6= f (x∗1). The reduction knows which simulation-way
is correct since Definition B.1 distinguishes two types of queries.

B.2 Simulation-based Security for Secure Key Leasing

Although we present indistinguishability-based security definitions for SKFE with secure key leasing
in Section 3, we can also consider simulation-based security definitions for SKFE with secure key leasing.
We present the definition of adaptive lessor simulation-security.

Definition B.4 (Adaptive Lessor Simulation-security). Let SKFE-SKL be an SKFE scheme with secure
key leasing. For a stateful QPT adversary A = (A1, A2, A3) and a stateful QPT Simulator S =
(SEnc, SKG), we consider the two experiments described in Figure 10, where

59



Realad-sim
SKFE-SKL,A(λ) Simad-sim

SKFE-SKL,A ,S (λ)

1. 1q+q∗ ← A1(1λ) 1. 1q+q∗ ← A1(1λ)
2. msk← Setup(1λ, 1q+q∗) 2. msk← Setup(1λ, 1q+q∗)

3. x∗ ← A
Enc(msk,·),KG(msk,·,·),O∗KG (·,·),OVrfy(·,·)
2 3. x∗ ← A

Enc(msk,·),KG(msk,·,·),O∗KG (·,·),OVrfy(·,·)
2

4. Output 0 if there exists ( f ∗, 1n∗ , vk∗,⊥) in
LKG . Otherwise, go to the next step.

4. Output 0 if there exists ( f ∗, 1n∗ , vk∗,⊥) in
LKG . Otherwise, go to the next step.

5. 5. LetQ be the query/answer list for Enc(msk, ·)
6. 6. Let ( fi, 1ni)i∈[q] be the queries for

KG(msk, ·, ·)
7. 7. yi := fi(x∗) for every i ∈ [q]
8. ct∗ ← Enc(msk, x∗) 8. (ct∗, st)← SEnc(msk,Q, ( fi, 1ni , yi)i∈[q])

9. Output b← A3(ct∗)Enc(msk,·),KG(msk,·,·) 9. Output b← A3(ct∗)Enc(msk,·),OSKG (·,·)

Figure 10: Security experiments for adaptively lessor simulation-secure SKFE-SKL

• A is allowed to make total at most q queries to KG(msk, ·, ·) (resp. KG(msk, ·, ·) and OSKG (·, ·))
in Realad-sim

SKFE-SKL,A(λ) (resp. Simad-sim
SKFE-SKL,A ,S (λ)),

• A is allowed to make total at most q∗ queries to O∗KG (·, ·), which is the same as KG(msk, ·, ·) except
that it also adds ( f ∗, 1n∗ , vk∗,⊥) to LKG when it is invoked,

• A is allowed tomake queries toOVrfy(·, ·), which is given ( f ∗, cert∗), it finds an entry ( f ∗, 1n∗ , vk∗, M)
from LKG , and does the following: If there is no such entry, it returns ⊥. If > = Vrfy(vk∗, cert∗)
and the number of queries to OEnc at this point is less than n∗, it returns > and updates the entry
into ( f ∗, 1n∗ , vk∗,>). Otherwise, it returns ⊥,

• OSKG ( f , 1n) = SKG(st, f , 1n, f (x∗)).

We say that SKFE-SKL is adaptively lessor simulation-secure if there exists a QPT simulator S such
that for any QPT adversary A , it satisfies that∣∣∣Pr

[
Realad-sim

SKFE-SKL,A(λ) = 1
]
− Pr

[
Simad-sim

SKFE-SKL,A ,S (λ) = 1
]∣∣∣ ≤ negl(λ).

This is a natural simulation-based variant of adaptive lessor (indistinguishability-)security. The
simulator S = (SEnc, SKG) does not have f ∗j (x∗), and the simulated ciphertext does not reveal information
about f ∗j (x∗).

Remark B.5. We consider two key oracles KG andO∗KG as Definition B.1 to distinguish two types of queries.
We can achieve this simulation-based security since we use adaptively lessor secure SKFE-SKL in the
sense of Definition B.1 as a building block below. It is also an open question to achieve a stronger adaptive
simulation-based security where adversaries access a single key generation oracle as Definition 3.2.

De Caro, Iovino, Jani, O’Neil, Paneth, and Persiano [DIJ+13] present a transformation from
indistinguishability-based secure FE to simulation-based secure FE. The transformation works if the
number of key queries before a challenge ciphertext is given is a-priori bounded. We can apply almost the
same transformation to SKFE with secure leasing since we modify a plaintext in the ciphertext and a
function embedded in a functional decryption key.

We construct an adaptively lessor simulation-secure SKFE scheme with secure key leasing adaSKL =
adaSKL.(Setup, KG , Enc, Dec, Cert , Vrfy) using the following tools:
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• An adaptively lessor (indistinguishability-)secure SKFE scheme with secure key leasing indSKL =
indSKL.(Setup, KG , Enc, Dec, Cert , Vrfy).

• A pseudorandom-secure SKE scheme SKE = SKE.(E, D).

Let `1, `2, and m be the length of SKE ciphertexts, the length of random tags, and the output length,
respectively. The description of adaSKL is as follows.

adaSKL.Setup(1λ):

• Generate ind.msk← indSKL.Setup(1λ).
• Output msk := ind.msk.

adaSKL.KG(msk, f , 1n):

• Parse ind.msk← msk.
• Generate ctske ← {0, 1}`1 and choose τ ← {0, 1}`2 .
• Compute (ind.sk T, ind.vk)← indSKL.KG(sel.msk, T[ f , ctske, τ], 1n), where the circuit T is
described in Figure 11.

• Output sk f := ind.sk T and vk := ind.vk.

adaSKL.Enc(msk, x):

• Parse (ind.msk, Kske)← msk.
• Set x′ := (x, 0λ, (0`2 , 0m), . . . , (0`2 , 0m), 0), where m is the output length of functions.
• Generate ind.ct← indSKL.Enc(ind.msk, x′).
• Output ctx := ind.ct.

adaSKL.Dec(sk f , ctx):

• Parse ind.sk T ← sk f and ind.ct← ctx.
• Output y← indSKL.Dec(ind.sk T, ind.ct).

adaSKL.Cert(sk f ):

• Parse ind.sk f ← sk f .
• Output cert := ind.cert← indSKL.Cert(ind.sk f ).

adaSKL.Vrfy(vk, cert):

• Parse ind.vk = vk and ind.cert = cert.
• Output >/⊥ ← indSKL.Vrfy(ind.vk, ind.cert).

As we see above, we expand the plaintext space and use the trapdoor circuit T as De Caro et
al. [DIJ+13]. We can construct a QPT simulator as follows.

1. Generates ind.msk← indSKL.Setup(1λ) and Kske ← {0, 1}λ.

2. Receives sk fi
= (ind.sk fi

, ctske,i, τi) for i ∈ [qpre] and outputs for pre-challenge key queries, that
is, f1(x∗), . . . , fqpre(x∗).

3. Generates a challenge ciphertext indSKL.Enc(ind.msk, (0, Kske, (τ1, f1(x∗)), . . . , (τqpre , fqpre(x∗)), 1)).
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Trapdoor Circuit T[ f , ctske, τ](x, Kske, (τ1, y1), . . . , (τq, yq), β)

Hardwired: function f , SKE ciphertext ctske, tag τ.
Input: plaintext x, SKE secret key Kske, q pairs of tag and output (τ1, y1), . . . , (τq, yq), bit β.

1. If β = 1, do the following

• If there exists i such that τ = τi, output yi.
• Else output y′ ← SKE.D(Kske, ctske).

2. Else, output f (x).

Figure 11: Description of T[ f , ctske, τ].

4. Simulates functional decryption keys for post-challenge key queries as follows. When an output value
f ′i (x∗) for a key query f ′i is given, generates (ind.sk T, ind.vk)← Sel.KG(sel.msk, T[ f ′i , ct′ske,i, τ′i ], 1n)

where ct′ske,i ← SKE.E(Kske, f ′i (x∗)) and τ′i ← {0, 1}`2 .

Note that the simulator should not have f ∗j (x∗) for any j ∈ [q∗] since {sk f ∗j
}j∈[q∗] are deleted and

the challenge ciphertext should not reveal information about { f ∗j (x∗)}j∈[q∗], where { f ∗j }j∈[q∗] are the
challenge functions, and the simulation-security is satisfied.

Since the flag β = 1 in the simulated challenge ciphertext, the trapdoor circuit T works at the trapdoor
branch. For functional decryption keys before the challenge ciphertext, T works at the first item in
the β = 1 branch since τi is a tag embedded in the functional decryption keys for pre-challenge key
queries. So, the output of T is an embedded fi(x∗). This is consistent. For functional decryption keys
after the challenge ciphertext, T works at the second item in the β = 1 branch since τ′i is uniformly
random and must be different from τi except negligible probability. In addition, y′ = f ′i (x∗) since
ct′ske ← SKE.E(Kske, f ′i (x∗)). This is consistent. Thus, the simulated ciphertext does not include
information about { f ∗j (x∗)}j∈[q∗].

In reducing to the adaptive lessor (indistinguishability)-security, the simulator can simulate the key gen-
eration and encryption oracles in the simulation-based game by using the oracles in the indistinguishability-
based game.

Theorem B.6. If indSKL is adaptively lessor (indistinguishability-)secure and SKE is pseuodrandom-
secure, adaSKL is adaptively lessor simulation-secure.

Since the proof is almost the same as that by De Caro et al. [DIJ+13, Theorem 14 in the eprint ver.],
we omit it to avoid the replication.
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