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Abstract. We provide a strong definition for committing authenticated-
encryption (cAE), as well as a framework that encompasses earlier and
weaker definitions. The framework attends not only to what is committed
but also the extent to which the adversary knows or controls keys. We
slot into our framework strengthened cAE-attacks on GCM and OCB.
Our main result is a simple and efficient construction, CTX, that makes
a nonce-based AE (nAE) scheme committing. The transformed scheme
achieves the strongest security notion in our framework. Just the same,
the added computational cost (on top of the nAE scheme’s cost) is a
single hash over a short string, a cost independent of the plaintext’s
length. And there is no increase in ciphertext length compared to the
base nAE scheme. That such a thing is possible, let alone easy, upends the
(incorrect) intuition that you can’t commit to a plaintext or ciphertext
without hashing one or the other. And it motivates a simple and practical
tweak to AE-schemes to make them committing.
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1 Introduction

A natural misconception about authenticated encryption (AE) is the belief that a
ciphertext produced by encrypting a plaintext with a key, nonce, and associated
data (AD) effectively commits to those things: decrypting it with some other
key, nonce, or AD will usually fail, the transmission deemed invalid. And why
not? One wouldn’t expect to successfully open a lock when using an incorrect
key. The intuition is even memorialized in the name authenticated encryption:
things aren’t just private, the name implies, but authentic.

Yet Farshim, Orlandi, and Roşie [10] (FOR17) point out that AE provides
no such guarantee—not if the adversary can select any keys. Subsequent work
demonstrated that just knowing the keys suffices to construct a ciphertext that
decrypts into different valid messages [8,12]. A variety of work has also made
clear just how wrong things can go when designers implicitly and incorrectly
assume that their encryption is committing [2,8,14].

We call the event of a ciphertext being “explained” in multiple and valid
ways a misattribution. The cited works offer definitions and schemes that seek
to protect against misattribution. But these definitions are mostly incomparable,
weak, and fold in aims beyond avoiding misattribution.
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Definitional framework. To begin, we revisit definitions for committing
AE. We offer a definitional framework that unifies and strengthens previous
definitions targeting misattribution. We call the security goals committing-AE
(cAE). The framework applies to schemes for nonce-based AE with associated
data (nAE). Encryption takes in a key K, a nonce N , an associated data A, and
a message M , and outputs a ciphertext C. Under our framework, an adversary
succeeds in an attack when it creates a misattribution. That happens when C
results from known and distinct tuples (K,N,A,M) and (K ′, N ′, A′,M ′) for
valid messages M,M ′. We say “results from” because C could be output by en-
cryption or input to decryption—anything that results in adversarial knowledge
of the pair (K,N,A,M), (K ′, N ′, A′,M ′).

Previous definitions consider only some forms of misattribution. For exam-
ple, the full robustness and key-commitment notions [2,10] require that the keys
differ, K ̸= K ′, but ignore the possibility of misattribution under the same
key. Our framework can encompass all possible types of misattribution (see Ap-
pendix A). That said, we regard the desired target as the strongest definition,
AE that is fully committing, where the adversary wins if it manages any form of
misattribution.

Our framework attends also to the status of keys held by parties. To model
different levels of adversarial activity, we include a definitional parameter t. This
two-character string dictates what types of keys the adversary might employ for a
misattribution to occur. Keys are either: honest (represented by the character 0),
meaning they are generated uniformly at random and remain unknown to the
adversary; revealed (represented by a 1), meaning they were honestly generated,
but the adversary knows their value; or corrupted (an X), meaning the adversary
itself chose the key. This gives rise to six different definitions. This “knob” is
useful for describing and understanding attacks. The weakest of these notions
models when both keys are honest. We show that ordinary nAE-security implies
this notion assuming the adversaries do not repeat nonces for the same key. For
some applications that require cAE security, notions weaker than the strongest
notion (XX-security) may work just fine. In such cases, one might be able to
obtain stronger quantitative bounds.

Main construction. Our main result is a method to convert an arbitrary
(tag-based) nAE scheme into a similarly efficient cAE scheme. We set high bars
for security and efficiency. Security is with respect to the strongest form of
commitment: K, N , A, and M must all be “fixed” by a ciphertext, even if
the adversary controls all keys.

Our CTX construction is extremely simple. Starting from an nAE scheme
whose encryption algorithm E(K,N,A,M) produces a ciphertext C = C ∥ T
consisting of a ciphertext core C (with |C| = |M |) and a tag T (with |T | = τ),
just replace the tag T with an alternative tag T ∗ = H(K,N,A, T ) (this tag
of length µ). Decryption does the obvious, verifying T ∗. The function H is a
cryptographic hash function that, in the security proofs, is modeled as a random
oracle. The remarkable fact is that this extremely simple tweak to the nAE
scheme not only works to commit to K, N , and A, but also to the underlying
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message M . This ultimately follows from the injectivity of the map from the
ciphertext core C to the plaintext M when K, N , and A are all fixed.

The CTX construction is computationally efficient insofar as the work on
top of the base nAE scheme is a hash computation over a string that does not
grow with the plaintext or ciphertext. And the nAE scheme’s minimal ciphertext
expansion is preserved, going from the τ (typically 128) extra bits that are needed
to provide authenticity to the µ (typically 160) extra bits that are needed to
provide authenticity and the binding (commitment) of all inputs.

Attacks on GCM and OCB. Previous misattribution attacks on GCM were
mounted with adversarial control of the keys [8,12]. It is mentioned by those
same authors that knowledge of the keys is sufficient. Under our terminology,
this would be a CAEXX-attack and a CAE11-attack respectively.

We present a new attack on GCM for a weaker adversary, a CAE01-attack.
That is, the adversary can create a misattribution knowing just one key. For
any ciphertext C generated under a perfectly honest key, one can find a valid
decryption for it under a known key. The attack strategy involves computing
an AD that validates the decryption of the ciphertext. Intuitively, for any key,
nonce, message, and ciphertext, there are an infinite number of ADs that validly
decrypt the ciphertext—we only need to find one of them. The strategy extends
to mounting a CAE01-attack on OCB as well. These attacks demonstrate that
nAE-security is insufficient for even CAE01-security.

Related work. Prior work has been leading towards a definition for fully
committing AE (the cAE-xx notion), but didn’t quite get there. There has also
been movement towards efficient schemes for this end.

The notion of committing encryption goes back to 2003 with Gertner and
Herzberg [11], who consider the problem in both the symmetric and asymmetric
settings. The authors do not look at deterministic or authenticated encryption.

Abdalla, Bellare, and Neven give definitions for what they term robustness
[1]. The work is in the asymmetric setting and requires an adversary to produce
a ciphertext that validly decrypts under two different keys. Their notion encom-
passes keys that are honestly generated. Later, Farshim, Libert, Paterson, and
Quaglia point out that, for some applications, robustness against adversarially-
chosen keys is critical [9]. They strengthen Abdalla et al.’s notion to address this
observation.

Farshim, Orlandi, and Roşie (FOR17) [10] contextualized Abdalla et al.’s
robustness in the AE setting, initializing the study of what we call committing
AE. Shortly after, Grubbs, Lu, and Ristenpart (GLR17) [12] defined a variant
of committing AE with the goal of constructing schemes that support message
franking. Dodis, Grubbs, Ristenpart, and Woodage (DGRW18) [8] also target
message franking and further develop GLR17’s definitions. These two works have
goals beyond preventing misattributions. We are after simpler aims, with the
syntax of classical nAE. Albertini, Duong, Gueron, Kölbl, Luykx, and Schmieg
(ADGKLS20) [2] observe the possibility of mitigating the attacks described by
GLR17 and DGRW18 under a weaker form of misattribution prevention. Their
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observation led them to develop a more efficient construction—one that avoids
additional passes over the message.

Bellare and Hoang (BH22), in a contemporary work, offer a range of com-
mitting AE definitions, with starting points of both standard nAE and misuse-
resistant AE [5]. The strongest of their definitions, like ours, requires that the
ciphertext commit to everything– the key, nonce, AD, and plaintext. They also
consider multi-input committing security, where an adversary is required to cre-
ate misattributions of more than just two valid explanations.

Len, Grubbs, and Ristenpart demonstrate password-recovery attacks on non-
committing password-based AEAD schemes [14]. Their attacks are built on effi-
ciently creating ciphertexts that successfully decrypt under many keys.

A more detailed comparison of some of the cited works is in Section 6.

2 Preliminaries

Collision-resistant hash functions.A hash function H : D→ {0, 1}h maps
strings from some domain D ⊂ {0, 1}∗ to strings of length h. Informally, a hash
function is collision-resistant if it is difficult for an adversary A to find two unique
inputs that map to the same output. This notion is captured by a collision
resistance game CR where A is ran and outputs a pair (M,M ′). The game
outputs true if H(M) = H(M ′) and M ̸= M ′. The adversary A’s advantage
against H is then quantified as Advcol

H (A) = Pr[CRA
H ⇒ true]. This definition

of collision-resistance of unkeyed hash functions follows the human-ignorance
approach of [18].

Nonce-based AE. An nAE scheme, or a nonce-based authenticated encryption-
scheme supporting associated data (AD) is a pair of functions (E ,D). The former,
the encryption algorithm, is a deterministic function E : K×N×A×M→ C that
takes in a key, a nonce, an AD, and a message, and outputs a ciphertext. The
latter D, the decryption algorithm, is a deterministic function D: K×N×A×C→
M×{⊥}. We sometimes write EN,A

K (M) and DN,A
K (C) to denote E(K,N,A,M)

and D(K,N,A,C). An nAE scheme is correct if DN,A
K (EN,A

K (M)) = M for all
K,N,A,M . A notable property of correct schemes is how encryption is injective
from M to C when K,N,A are fixed. K ∈ K, N ∈ N, A ∈ A,M ∈ M and
DN,A

K (C) = ⊥ otherwise. We assume that the message space M ⊆ {0, 1}∗ is a
set of strings where M ∈M implies {0, 1}|M | ∈M. We insist of an nAE scheme
that there is an associated value, its expansion, which is a constant τ such that
|EN,A

K (M)| = |M |+ τ for all K,N,A,M .
A customary formulation of nAE security asks an adversary attacking the

nAE scheme Π = (E ,D) to distinguish between a pair of oracles [17]. The “real”
oracles use Π’s algorithms while the “ideal” or “fake” oracles only give bogus
responses. For an adversary A attacking Π, its advantage is defined as follows:

Advnae
Π (A) = Pr[K↞K; AEK(·,·,·), DK(·,·,·) ⇒ 1]−

Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1].
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Its interaction with the EK and Dk oracles, the “real” oracles, begins with the
uniformly random sampling of a key K. An oracle query then EK(N,A,M)
returns EK(N,A,M), while an oracle query DK(N,A,C) returns DK(N,A,C).
In contrast, an “ideal” oracle query of $(N,A,M) returns a uniformly random
string of length |M |+ τ , while ⊥(N,A,C) always returns ⊥.

The adversary is forbidden from querying its decryption oracles with N,A,C
if it acquired C from its encryption oracles using N,A as doing so would allow
it to trivially win. Similarly, the definition demands that adversaries are nonce-
respecting, meaning that they never repeat a nonce in its encryption queries.

We will find it useful to define a variant of nAE security that directly models
multiple keys, which was first formalized in [7]. In this variant, an infinite number
of keys are uniformly randomly generated for the real oracles at the initialization
of the security game. Each oracle takes in an additional parameter, an index,
that the adversary uses to specify which key to use for its query. Its advantage
notion in this game is:

Advnae∗
Π (A) = Pr[K↞K∞; AEK(·,·,·,·), DK(·,·,·,·) ⇒ 1]−

Pr[A$(·,·,·,·),⊥(·,·,·,·) ⇒ 1].

Similarly, the adversary is restricted from querying (i,N,A,C) to its decryption
oracle if C is the result of some (i,N,A,M). The adversary is nonce-respecting
in this case if it never repeats the same nonce for the same key when querying
the encryption oracle.

3 Committing AE

Committing AE. Informally, we call an nAE scheme a committing AE scheme
(cAE) if it commits to any of the elements used to produce a ciphertext. We are
primarily interested in cAE schemes that commit to all of these elements. By
the definition of nAE in section 2, those elements would be the key, nonce, AD,
and message. The CAE game that captures this property is presented in Fig. 1.

An adversary attacking the CAE-security of an nAE scheme Π aims to pro-
duce a ciphertext C that has two distinct valid “explanations.” That is, cipher-
text C could decrypt to a messages M using (Ki, N,A), or it could decrypt
to a message M ′ using (Kj , N

′, A′) such that (Ki, N,A,M) ̸= (Kj , N
′, A′,M ′)

and M,M ′ ̸= ⊥. When either of these occur, we say that the ciphertext is
misattributed. We sometimes refer to C as the colliding ciphertext and the
(K,N,A,M) associated to it as one of its attributions. In the game code, we
write S

∪← {x} as shorthand for S
∪← S ∪ {x}, adding x to the set S.

The adversary initializes the game with the Initialize procedure, which gen-
erates an infinite number of uniformly random keys indexed by the natural num-
bers. Several sets are also initialized, one of which is the set S which keeps track
of (K,N,A,M,C) tuples that constitute encryption and decryption queries and
responses made by the adversary. The game terminates with the Finalize proce-
dure, which checks the tuples of S in a pairwise fashion for an adversarial win.
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That is, it searches for a pair of tuples where the ciphertexts are equivalent and
that the explanations are distinct and valid. There is an additional condition
checked that pertains to the function chk that we describe later.

There are four other game procedures surfaced to the adversary: ENC,DEC,
REV,COR. These are the encryption, decryption, reveal, and corruption ora-
cles. The first two oracles let the adversary use Π’s encryption and decryption
algorithms using a key specified by an index i. Any ciphertext or message gen-
erated by the call to Π’s algorithms is stored alongside the queried Ki, N,A,M
(or C) are stored in the set S. The reveal oracle allows the adversary to query an
index i and learn the key Ki. For the corruption oracle, the adversary queries an
index i and a key K and supplants Ki with K. Keys that are affected by these
two oracles are added to the sets Kr and Kc respectively.

Note that ENC queries are restricted to be nonce-respecting for honest keys.
That is, an adversary cannot repeat nonces for its encryption queries to an
honest key Ki. This is reflected in the game code. The purpose of this is to
prevent possibilities of an adversary in learning an honest key through abuse
of the nonce as this would otherwise blur the distinction between revealed and
honest keys.

When the adversary yields a colliding ciphertext with two distinct valid expla-
nations, there is one more condition to check before the adversary is considered
to have won. That is, the chk function is ran on the keys of the explanations.
This function is the collision check function and relies on a parameter of the
CAE game, t, which we refer to as the collision type. For any key Ki in the
game, the key can either be corrupted, revealed, or honest. A key is corrupted
when it is added to the game through the corruption oracle COR and thus part
of the set Kc. A key is revealed when the adversary learns of it through the
reveal oracle REV and thus part of the set Kr. If the key is part of neither set,
meaning it was chosen uniformly at random and unaffected by the adversary,
then it is considered honest. Whether keys are corrupted, revealed, and honest
are represented by X, 1, and 0 bits respectively. Six different types of collisions
arise from these types of keys. The parameter t is a two-bit string that describes
the kind of collision the adversary may win with.

Finally, the advantage of an adversary A attacking the CAE-security of an
nAE scheme Π in regards to a collision type t is quantified as Advcae

Π,t(A) =

Pr[CAEA
Π,t → 1]. When discussing CAE-security with a specific type of collision,

we denote the collision with a subscript i.e. CAEXX-security.

Other committing notions. Most other committing AE definitions focused
on cases where the adversary has control over both keys when creating a col-
liding ciphertext, which would be a corrupted-corrupted (or t = XX) collision
[2,8,12]. Farshim et al. consider one definition of key-robustness, called semi-
full robustness, where the adversary is asked to come up with a ciphertext that
decrypts under an honest key and a key that it knows (what we would call a 01-
collision) [10]. Bellare gives another robustness notion for randomized symmetric
encryption called random-key robustness in [4] that is comparable to the CAE00

notion and shows that authenticity implies random-key robustness. Our defini-
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CAEΠ,t

procedure Initialize()

00 for i ∈ N do Ki↞K; N i ← ∅
01 S,Kc,Kr ← ∅

procedure Finalize()

10 ret ∃(Ki, N,A,M,C), (Kj , N
′, A′,M ′, C′) ∈ S s.t.

11 (M ̸= ⊥ ∧M ′ ̸= ⊥)∧
12 (C = C′)∧
13 (Ki, N,A,M) ̸= (Kj , N

′, A′,M ′)∧
14 (chk(Ki,Kj) ∨ chk(Kj ,Ki))

chk(Ki,Kj)

16 if t = 00∧Ki /∈ Kc∪Kr ∧Kj /∈ Kc∪Kr then ret 1

17 if t = 01 ∧Ki /∈ Kr ∪ Kc ∧Kj /∈ Kc then ret 1

18 if t = 0X ∧Ki /∈ Kr ∪ Kc then ret 1

19 if t = 11 ∧Ki /∈ Kc ∧Kj /∈ Kc then ret 1

1A if t = 1X ∧Ki /∈ Kc then ret 1

1B if t = XX then ret 1

1C ret 0

procedure ENC(i,N,A,M)

20 if Ki /∈ Kr∪Kc∧N ∈N i

21 then ret ⊥
22 C ← Π.E(Ki, N,A,M)

23 N i
∪← {N}

24 S
∪← {(Ki, N,A,M,C)}

25 ret C

procedure DEC(i,N,A,C)

30 M ← Π.D(Ki, N,A,C)

31 S
∪← {(Ki, N,A,M,C)}

32 ret M

procedure REV(i)

40 Kr
∪← {Ki}; ret Ki

procedure COR(i,K)

50 Ki ← K; Kc
∪← {Ki}

Fig. 1: The CAE-security game. The encryption, decryption, reveal, and cor-
ruption oracles are on the right. On the left, the game finalization procedure
depends on the collision check function chk, which in turn relies on the collision
type parameter t of the game. This function places restrictions on the keys that
the adversary may win with.

tional framework can be tuned to consider these collisions and more, allowing
flexibility when using the definition to model real systems.

Our definition considers the strongest level of misattributions. That is, we
require that (Ki, N,A,M) ̸= (Kj , N

′, A′,M ′). This means the adversary wins
as long as one of the inputs to encryption differ when creating the colliding
ciphertext. We call a cAE scheme that attends to all encryption inputs fully
committing.

Most other works only consider sub-tuples. For example, the notion of key
commitment from Albertini et al. only requires that Ki ̸= Kj from the adversary
when it creates a collision [2]. They show that key commitment is important for
several real world systems. Nonetheless, this definition does not capture collid-
ing ciphertexts that are generated under the same key. In section 4, we give a
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transform as efficient as theirs while protecting against misattributions over the
entire tuple of encryption inputs. (In a way, our transform is more efficient as it
does not need to re-key every encryption call).

Contemporary work from Bellare and Hoang considers fully committing cAE
schemes as well as sub-tuples [5]. Their argument for fully committing schemes is
to provide ease of use. Prior definitions required different inputs to be committed
to achieve the different security goals demanded by their relevant applications.
The designer of an application may not know exactly what they need to be
committed. So, if full commitment is inexpensive, then one should aim to do so.

Nonetheless, we provide an alternative CAE-security game that considers
weaker misattributions, which we present in Appendix A. It uses an additional
parameter allowing the specification of which encryption inputs are important
when considering misattributions. However, we do note our construction CTX
presented in Section 4 achieves full commitment efficiently.

Relationship with nAE security. Previously, DGRW18 show how to con-
struct a ciphertext for AES-GCM in such a way that it decrypts validly under
two different keys [8]. This shows that nae-secure schemes do not achieve CAEXX-
security. In fact, the attack presented by DGRW18 does not require the adversary
to have full control over the keys; it is possible to do the attack with only knowl-
edge of the keys, which means nae-secure schemes do not achieve CAE11-security
either.

We show that nAE schemes that are nae-secure in the multi-key sense—nae∗-
secure, are already CAE00-secure. That is, when an adversary may not affect the
keys in any way, it is already difficult to find colliding ciphertexts for nae-secure
schemes.

Theorem 1. Any authenticated encryption scheme Π that is nae∗-secure is also
CAE00-secure. That is, for any adversary A attacking the CAE00-security of Π,
there exists an adversary B against the nae∗-security of Π such that

Advcae-00
Π (A) ≤ 3 ·Advnae∗

Π (B) + q2e
2τ+1

where qe is the number of encryption queries made by A and τ is the expansion
of the scheme Π. Furthermore, B makes the same number of encryption and
decryption queries that A makes. That is, B makes Θ(qe) encryption queries
and Θ(qd) decryption queries where qd is the number of decryption queries made
by A.

Proof. Let A be an adversary attacking the CAE00-security of Π. We assume
that A is nonce-respecting and that it does not query output of encryption to
decryption as it would already know the answers of those queries and those
queries would not help A in obtaining a win. We also assume that A never calls
the reveal or corruption oracles as it can only win with a collision on a pair of
honest keys. We can construct an adversary B attacking the nae-security of Π as
follows. Adversary B sets up the CAE game as described in Fig. 1, maintaining
its own set S to keep track of query and response tuples. Whenever A makes
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encryption or decryption queries, B queries its own encryption and decryption
oracles to provide a response for A. When A terminates, B checks S to see if
A has created a colliding ciphertext. If it has, then B returns 1. Otherwise, it
returns 0.

Consider the three different ways that A can add a winning ciphertext and
its associated explanations to S. Either they were added through two decryption
queries, an encryption and a decryption query, or two encryption queries. Let
E1, E2, E3 be the events that those yielded A a win respectively. As these three
events are all the ways to win, A’s advantage is upper-bounded by the sum of
the probabilities that each of these occur.

We bound the probabilities of each event by examining what happens when
B’s oracles are real or fake. For E1 it is impossible for a winning tuple to be
added to S when B’s decryption oracle is fake as that oracle only ever returns ⊥
and a winning tuple must have a valid message. As such, B only ever returns 0.
However, if B’s oracle is real, then B will return 1. Hence, Pr[E1] ≤ Advnae

B .
For E2 a fake decryption oracle for B makes winning through this event

impossible by the same reasoning as that of E1, meaning B only returns 0 here
as well. Similarly, B will return 1 if its oracles are real in this event. As such,
the probability follows: Pr[E2] ≤ Advnae

B .
For E3, B can return 1 with a fake encryption oracle so long as A gets a

collision through its encryption queries. We can get the probability that this
occurs by a birthday bound on the number of encryption queries made by A.
The birthday bound is over the random ciphertexts generated by the fake en-
cryption oracle. With a real encryption oracle, B always returns 1. This gives

the probability Pr[E3] ≤ Advnae
B +

q2e
2τ+1 .

4 The CTX Construction

The CTX scheme. Recall that a cAE scheme is fully committing if it commits
to the key, nonce, AD, and message and not some subset of them. We say that
a scheme is efficient if its cost of getting cAE security on top of nAE security is
independent of the message length. We call a scheme strong if it achieves CAEXX

security. Our CTX construction is fully committing, efficient, and strong.
Let Π = (E ,D) be a tag-based nAE scheme. That is, ciphertexts it out-

puts consist of a ciphertext core C and an authentication tag T . We assume
that the encryption algorithm E can be split into two independent algorithms
E1 and E2 such that on inputs K,N,A,M , E1 produces the core C and E2
outputs the tag T . The core C is the same length as M . As such, E1 is bi-
jective when K,N,A are fixed. The inverse of E1 is then decryption’s subrou-
tine D1, which takes in K,N,A and just the core C, and outputs M . That
is, D1(K,N,A, E1(K,N,A,M)) = M . Common schemes like GCM and OCB
satisfy these structural demands.

From such an nAE scheme Π and a collision-resistant hash function H, we
can construct a CAEXX-secure cAE scheme, CTX[Π,H]. CTX’s main mechanism



10 Chan and Rogaway

CTX.E(K,N,A,M)

20 C ← Π.E1(K,N,A,M)

21 T ← Π.E2(K,N,A,M)

22 T ∗ ← H(K,N,A, T )

23 ret C ∥ T ∗

CTX.D(K,N,A, C)
30 C ∥ T ← C
31 M ← Π.D1(K,N,A,C)

32 T ′ ← Π.E2(K,N,A,M)

33 if T ̸= H(K,N,A, T ′) then ret ⊥
34 ret M

Fig. 2: A CAEXX-secure cAE scheme CTX[Π,H] built from a tag-based nAE
scheme Π and a collision-resistant hash function H. The nAE encryption and
decryption algorithms can be broken down into E1, E2, and D1. These create the
ciphertext core, create the authentication tag, and recover the message from the
core respectively.

is hashing the authentication tag T along with K,N,A into a new tag T ∗. This
effectively makes T ∗ function as the nAE authenticity check and a commitment
to K,N,A. The name CTX captures the scheme’s ciphertext structure, which is
a ciphertext core followed by a modified tag. The ‘X’ in the name suggests the
scheme’s XX-security level. The scheme is presented in Fig. 2.

We claim that CTX is CAEXX-secure as long as H is collision-resistant.

Theorem 2. Let Π = (E ,D) be a tag-based nAE scheme and let H be a collision-
resistant hash function. Let E1, E2,D1 be the algorithms used by Π to encrypt
messages into ciphertext cores, create authentication tags, and decrypt cores into
messages respectively. Let CTX[Π,H] be an nAE scheme constructed from Π
and H as described in Fig. 2. Then, for any adversary A attacking the CAEXX-
security of Π ′, there exists an adversary B, explicitly given in the proof of this
theorem and depending only on A as a black-box, such that

Advcae-XX
CTX (A) ≤ Advcol

H (B).

Proof. We construct adversary B to find a winning collision for H as follows.
Adversary B sets up the CAE game and runs A, answering its queries appro-
priately. When A terminates, it will have produced a pair of winning tuples
for the CAE game: (Ki, N,A,M,C ∥ T ∗), (Kj , N

′, A′,M ′, C ∥ T ∗). Then, B can
compute T = Π.E2(Ki, N,A,M) and T ′ = Π.E2(Kj , N

′, A′,M ′) to produce au-
thentication tags for the winning tuples. Furthermore, it must be the case that
T ∗ = H(Ki, N,A, T ) = H(Kj , N

′, A′, T ′) as that is how C ∥ T ∗ of the winning
tuples was produced in the first place.

So for (Ki, N,A, T ), (Kj , N
′, A′, T ′) to be a winning collision for B, the two

tuples must not be equivalent. Suppose for contradiction that they are equivalent.
Then forA’s tuples to have won the CAE game it must be the case thatM ̸= M ′.
But this is impossible as it would violate the bijectivity of E1. Since core C is
fixed and (Ki, N,A) = (Kj , N

′, A′) are fixed from the collision, there exists only
one M ′′ such that E1(Ki, N,A,M ′′) = C = E1(Kj , N

′, A′,M ′′). Thus M ̸= M ′
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is a contradiction and (Ki, N,A, T ) ̸= (Kj , N
′, A′, T ′) follows. In conclusion, the

winning collision for B is H(Ki, N,A, T ) = H(Kj , N
′, A′, T ′) = T ∗.

From Theorem 2, we see that the CAEXX-security of CTX is bounded by
the collision-resistance of the hash function it employs. One can break this with
about 2µ/2 operations doing a birthday-attack, which is why we recommend
having CTX tag length be 160-bits over, say 128-bits. This raises a question:
Can one lower the security requirement (something weaker than CAEXX) and
avoid the birthday bound?

The answer is that with CTX, you cannot unless there are further assumptions
made of the nAE scheme Π that it uses. There exists an attack on the CAE0X-
security of CTX using a birthday attack under standard assumptions on Π. We
explicitly describe this attack in Appendix C.

It remains to show that CTX remains nAE-secure after its transform. We do
so in the random oracle model (ROM), denoting CTX as CTX[Π] (as opposed
to CTX[Π,H]) when it is in the ROM. The privacy and authenticity notions in
Theorem 3 can be attained by breaking the nAE security notion in 2 apart and
can be found in [19]. We prove Theorem 3 in Appendix B.

Theorem 3. Let Π = (E ,D) be a tag-based nAE scheme with an expansion of
τ . Let CTX[Π] be the scheme described in Fig. 2. Fix an integer δ ≥ 0. Then, in
the random oracle model, for any adversary A1 attacking the privacy of CTX, we
can construct nonce-respecting (explicitly given) adversaries B1 and B2 attacking
the privacy of Π such that

Advpriv
CTX[Π](A

H
1 ) ≤ Advpriv

Π (B1) +Advpriv
Π (B2) +

qH
2δ+τ

where qH is the number of random oracle queries made by A1. Let qe be the
number of encryption queries made by A1. Then B1 also makes qe queries to its
own encryption oracle and B2 makes qe + 1 such queries.

Furthermore, for any adversary A2 attacking the authenticity of CTX, there
exists adversary B3 attacking the authenticity of Π with advantage

Advauth
CTX[Π](AH

2 ) ≤ Advauth
Π (B3) +

1

2µ

where µ is the output length of the random oracle. We give B3 explicitly in the
proof. If A2 makes qe encryption oracle queries, then B3 makes qe+1 queries to
its own oracle.

Note that the last term in the privacy bound
q2H

2δ+τ can be made small by
choice of δ, so it will not result in much loss.

5 Commitment Security of GCM and OCB

Prior work from GLR17 and DGRW18 has shown that it is possible to construct
a colliding ciphertext with GCM when the attacker has control of both keys
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NAE.E(K,N,A,M)

00 K1 ∥ K2 ← K; P ← G(K1, N)

01 C ←M ⊕ P [0..|M | − 1]

02 T ← H(K2, C ∥ A)

03 ret C ∥ T

NAE.D(K,N,A,C)

10 K1 ∥ K2 ← K; C ∥ T ← C

11 if H(K2, C ∥ A) ̸= T then ret ⊥
12 P ← G(K1, N)

13 M ← C ⊕ P [0..|M | − 1]; ret M

Fig. 3: A simple nAE scheme given a PRG G and a MAC H. GCM has a com-
parable structure if one considers the counter-mode operations as the PRG and
GHASH as the MAC.

[8,12]. DGRW18 mentions that with their attack, control over the keys is not
necessary, only knowledge of the keys is. Here, we show that it is possible for an
attacker to create a colliding ciphertext with knowledge of only one key. That
is, there exists an attack that violates the CAE01-security of GCM. As GCM is
nae-secure, this attack means that nae-security does not imply CAE01-security.

A simple nAE Scheme. Before we present the attack, consider a simple nAE
scheme NAE[G,H] built on a PRGG and a MACH. The definition of NAE[G,H]
is given in Fig. 3. In our pseudocode, we write S[0..n] to denote a substring of
the bitstring S starting from the 0th bit to the nth bit.

However, NAE is vulnerable to a variety of CAE attacks given that the MAC
H is targetable. Suppose that the keyK used for computingH is known and there
exists an arbitrary target tag T that an adversary is interested in producing. We
call H targetable if there exists a target function target that takes in K and T
and outputs a message M such that H(K,M) = T . We say that H is prefix-
targetable if there exists a prefixed target function may also take in an additional
argument C, a prefix, such that H(K,C ∥M) = T . GHASH, the MAC used by
GCM, is prefix-targetable, and we will show how shortly.

Attack on GCM. The simple nAE scheme described has structure similar to
GCM. For concreteness, we assume the blockcipher GCM employs E has a block
size of 128 bits. GCM uses E in counter mode with the nonce as part of the initial
counter in order to generate a one-time pad. This acts like the PRG that the
simple scheme uses. For a key K, GCM uses K ′ = EK(0128) when computing its
MAC, GHASH. For a ciphertext C, the tag T = H(K ′, A,C) ⊕ EK(N ∥ 0311)
where A is the AD, C is the ciphertext, N is the nonce and H is the GHASH
function. We follow the GCM specification of [15,16].

GHASH works by computing a polynomial over the field GF(2128) using
EK′(0128) as the variable and the ciphertext and AD blocks as coefficients. By
block, we mean blocks of b bits that can be used as input into a blockcipher.
If the last block isn’t a full 128 bits, GCM pads it with zeroes until it is. Let
there be c ciphertext blocks and a AD blocks in the ciphertext and AD. Let len
be a function where given some input, it outputs a 64-bit representation of said



On Committing Authenticated-Encryption 13

input. Let P = EK′(0128). Then GHASH is computed as follows (addition and
multiplication done over GF(2128)):

GHASH(K ′, A,C) =

[
a∑

i=1

Ai · P a+c+2−i

]
+

[
c∑

i=1

Ci · P c+2−i

]
+(len(A) ∥ len(C))·P

(1)
And the tag T is finalized as:

T = GHASH(K ′, A,C) ⊕ EK′(N ∥ 0311) (2)

where N is the nonce.
Observe that the entire MAC is prefix-targetable as if one knows K ′ and T ,

one can compute A = ptarget(K ′, T, C) for a ciphertext C by evaluating the
polynomial. Explicitly, we can solve for a single block AD A as follows:

A =

[
T ⊕ EK′(N ∥ 0311) + (len(A) ∥ len(C)) · P+[

c∑
i=1

Ci · P c+2−i

]]
· (P c+2)−1

(3)

Once we can compute A with the prefix-targeting function, we have an CAE01

attack, call it adversary A, as follows: A selects an arbitrary nonce N and AD
A; A queries its encryption oracle, asking for the encryption of a string of 0’s
of length m under K0, N , and A, and receives C ∥ T back; A uses its reveal
oracle to learn K1; A computes a one-time pad P in the style of GCM using K1

and the nonce N ; A computes a message M ′ as the xor of P and C; A uses the
prefix-target function ptarget(K ′, T, C) as shown in Equation 3 where K ′ is the
blockcipher E applied to 0128 with K1 (how GHASH is keyed) and acquires an
AD A′; A queries its encryption oracle with K1, N,A′,M ′ and receives a winning
collision on C ∥ T . This attack on GCM prove that nae-security does not imply
even CAE01-security as GCM is nae-secure.

While Equation 3 computes a single AD block that allows us to obtain a
target tag, this is actually not restrictive. An attack can use an arbitrary AD A,
perhaps with actually relevant header information, and search for a single block
A′ that they can add to that AD to satisfy the equation. To capture this in terms
of prefix-targeting, one would compute A′ = ptarget(K ′, T, A ∥ C) instead of
ptarget(K ′, T, C). Keep in mind that the dummy block can be placed anywhere
in A, but we limit our description to prepending for simplicity.

Attack on OCB. We now turn to performing a CAE01 attack on OCB. We
follow the specification of OCB as described in [13].

During encryption, OCB computes an offset ∆ for each message block using
the key and the nonce. This offset is xor-ed with each message block before being
processed by a blockcipher under the key. The output of the blockcipher is then
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ACAE
OCB,01

20 N↞N; M↞{0, 1}m; C ∥ T ← ENC(0, N, ε,M)

21 C1 ∥ C2 ∥ ... ∥ Cn ← C where |Ci| = b for all i ∈ [1..n]

22 K ← REV(1); ∆← init(K,N)

23 for i = 1 to n do

24 ∆← incri(∆)

25 P ← Ci ⊕ ∆; M ′
i ← E−1

K (P ) ⊕ ∆

26 chk ←M ′
1 ⊕ M ′

2 ⊕ ... ⊕ M ′
n

27 F ← chk ⊕ incr$(∆); F ← EK(F )

28 ∆← incr1(0
128)

29 auth← T ⊕ F ; A← E−1
K (auth) ⊕ ∆

2A ENC(1, N,A,M ′
1 ∥ ... ∥M ′

n)

Fig. 4: An CAE01 attack on OCB. For simplicity, this attack assumes that the
length of the ciphertext is a multiple of the blockcipher E’s block size b. The
attack written here shows how to compute a single associated data block to get
a colliding ciphertext (line 26-29). But it should be noted that it is possible to
mount the attack by choosing an arbitrary AD first and computing a single block
that satisfies a necessary value for auth to get the colliding tag.

xor-ed with the offset again, finalizing a ciphertext block. Since the adversary
has a revealed key Kj and a nonce of its choice N , it can freely compute the
offsets for each block. This allows it to decrypt the target colliding ciphertext
C ∥ T , where C is the ciphertext core and T is the authentication tag, into some
message M . The next step requires the adversary to ensure that T verifies for
M under Kj and N . In OCB, tag T is generated first with a checksum that
consists of an xor over all message blocks. The adversary can do this over the
bogus message M it got from decryption. This checksum is then xor-ed with a
special offset, again computable with knowledge of key and nonce, before being
processed by the blockcipher. This output, F , is xor-ed with a block called “auth”
which finalizes the tag T .

The adversary then needs auth = F ⊕ T for T to that remain valid with
Kj , N,M,C To do so, it has a choice of AD A. OCB computes auth by computing
offsets for each block of AD, xor-ing the offsets and blocks together, and applying
the blockcipher on the results (a process identical to how the message blocks
are processed with the exception of how the offsets are initialized). Each of
these blocks are then xor-ed with each other, finalizing a single block auth. To
acquire an A that finishes the attack, the adversary deciphers F ⊕ T with the
blockcipher, xors the result with the appropriate offset, and uses that for its final
query ENC(j,N,A,M). The attack is described in code in Fig. 4.

Like the attack on GCM, it should be noted that the attack is not limited to
a single AD block. An adversary may select an arbitrary AD A′ that it wants
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to use to mount the attack. It can then compute a single dummy block B′ to
append to the end of A′ to create an AD that validates decryption. Specifically,
the adversary first computes F as described above. Then it computes a value
auth′ over the blocks of A′. The value B = auth′ ⊕ F ⊕ T will then be
the “enciphered” AD block corresponding to B′. So the adversary only needs
to decipher B and apply the appropriate offset to compute B′. The final AD it
uses is A = A′ ∥ B′.

6 Other Committing AE Notions

Here we describe the committing AE notions of previous authors and highlight
their differences. A summary of each of their definitions can be found in Table
1. The first to study committing encryption in the AE setting was Farshim,
Orlandi, and Roşie (FOR17) [10]. Calling the property key-robustness, FOR17
give a set of definitions capturing different adversarial behaviors that can result
in the misattribution of a ciphertext. Their strongest notion, full robustness,
requires an adversary to produce two keys and a ciphertext (K,K ′, C) such that
C decrypts validly under both keys. It needs to be noted that FOR17 study
randomized AE without AD support.

An interesting result from FOR17 is that security for such AE schemes implies
semi-full robustness. In this notion, two keys are generated uniformly at random
and one of them is shown to the adversary. With the help of encryption and
decryption oracles for the hidden key, the adversary must find a ciphertext that
validly decrypts under both keys. This definition is comparable to our CAE01

notion, where the adversary must find a misattribution with a revealed and an
honest key. One of our results is the existence of CAE01-attacks against AES-
GCM and OCB, which implies that nAE security does not grant 01-security.
This seemingly contradicts FOR17’s result of semi-full robustness because their
analysis is for AE schemes without AD support.

In the same year as FOR17, Grubbs, Lu, and Ristenpart (GLR17) study
message franking, which as they describe it, is the verifiable reporting of abusive
messages in encrypted messaging systems [12]. To accomplish this goal, they
use committing AE, focusing on randomized AE with AD support (AEAD) as
it is more applicable to current encrypted messaging systems. In their model,
there is a sender, a receiver, and a third party that verifies abuse reports. Every
ciphertext comes with a commitment tag that serves as a commitment to the
message and AD. Decryption produces an opening for the commitment along-
side recovering the message. Their committing AE notion adds an additional
verification algorithm as it is the third party’s role to verify the commitment
using that opening. We conflate their decryption and verification algorithms for
ease of discussion and comparison to other notions.

There are several parts of their committing AE notion that make it dif-
ficult to compare as they tend to other things besides preventing misattri-
butions. The part that attends to misattributions is their notion of receiver
binding. This notion asks the adversary to find a ciphertext C and two tuples
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Paper AE Variant Committing AE Definition

FOR17 [10]
Probabilistic AE,
No AD support

Full robustness - A finds (K,K ′, C)
s.t. decryption of C with
both keys is successful.

GLR17 [12]
Probabilistic and

deterministic AEAD

Receiver-binding - A finds
((K,A,M), (K ′, A′,M ′), C)

s.t. decryption of C
with both sub-tuples is

successful and (A,M)) ̸= (A′,M ′).

DGRW18 [8] Probabilistic AEAD
Strong Receiver-binding -

Same as receiver-binding except
(K,A,M) ̸= (K ′, A′,M ′).

ADGKLS20 [2] Deterministic AEAD

Key-commitment - A finds
((K,N,A,M), (K ′, N,A′,M ′), C)

through ENC, DEC queries
s.t. K ̸= K ′ and M,M ′ ̸= ⊥.

BH22 [5]
Deterministic AEAD +
misuse-resistant AE

CMT(D)s-ℓ security - A finds
(K1, N1, A1,M1), .., (Ks, Ns, As,Ms)

such that what is committed
from each tuple is distinct.
The parameter ℓ specifies
“what is committed.”

This Paper Deterministic AEAD

CAEt-security - A finds
((K,N,A,M), (K ′, N ′, A′,M ′), C)

through ENC,DEC queries
s.t. (K,N,A,M) ̸= (K ′, N ′, A′,M ′)

and M,M ′ ̸= ⊥.
The parameter t specifies how
A interacts with the keys.

Table 1: A comparison of the subtly different definitions in CAE literature.

(K,A,M), (K ′, A′,M ′) such that decrypting C with those keys and ADs re-
sults in those (valid) messages. The adversary must do so in a way such that
(A,M) ̸= (A′,M ′). This definition does not prevent the possibility of an adver-
sary finding two keys that can validly decrypt C into M using A.

Dodis, Grubbs, Ristenpart, and Woodage (DGRW18) [8] extend GLR17’s
receiver binding to strong receiver binding. This notion accounts for the key to
address the way receiver binding does not. One can argue that strong receiver
binding commits to all encryption inputs for randomized AEAD. As a building
block for cAE, DGRW18 introduce a new primitive encryptment that serves as
a one-time use, deterministic encryption and commitment of a message.

One goal that GLR17 and DGRW18 consider that other works do not (in-
cluding ours) is that of multiple-opening security. This security notion allows
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different ciphertexts encrypted under the same key to be “opened” and verified
without jeopardizing the security of unopened ciphertexts. This is particularly
useful in the message franking context as it allows a receiver to report a cipher-
text to the verifying party without having to reveal the secret key, which would
ruin the security of all other ciphertexts sent under that key.

Working with deterministic AEAD, Albertini, Duong, Gueron, Kölbl, Luykx,
and Schmieg (ADGKLS20) [2] define their security goal as key-commitment.
The adversary, in this notion, is tasked with finding a ciphertext C and two
“explanations” (K,N,A,M), (K ′, N,A′,M ′) such that the messages are valid
and K ̸= K ′.

Bellare and Hoang (BH22), in a contemporary work, target fully committing
schemes [5]. They attend to deterministic AEAD as well as misuse-resistant
AE with encryption inputs K,N,A,M . Their committing security notion is
CMT(D)s-ℓ where s is an integer and ℓ ∈ {1, 3, 4}. The presence or absence
“D” denotes whether the adversary is tasked with finding multiple decryption
inputs that validly decrypt the same ciphertext or multiple encryption inputs
that encrypt to the same ciphertext. The parameter ℓ determines what is com-
mitted: ℓ = 1 denotes just the key, ℓ = 3 denotes everything but the plaintext,
and ℓ = 4 denotes full commitment. Comparatively, our cAE definition pre-
sented in Section 3 does not allow for tweaking for commitments of sub-tuples
of inputs, but the alternative framework given in Appendix A does. The s pa-
rameter generalizes their definition to capture misattributions with more than
two valid explanations—what they call multi-input committing security. That
is, s is the number of distinct (K,N,A,M) tuples the adversary needs to find
that encrypt to the same C. While s = 2 implies all s ≥ 2, Bellare and Hoang
motivate this dimension of their definition by giving schemes where bounds on
adversarial advantage improve as s grows. All in all, they are the first to study
misuse-resistant AE and multi-input committing security in the cAE space.

Constructions.We describe a number of selected constructions from the above
works. These constructions, each satisfying the committing AE notion defined
in the work of their origin, are presented in Table 2.

Recall that FOR17 are in the probabilistic AE setting without associated
data. Their construction EtM[E , H] creates a tag that provides authenticity while
serving as a commitment to the encryption key as well. This is comparable to
how CTX’s tag provides authenticity while committing to all of K,N,A, T .

The scheme CEP[G,F, F cr] is the deterministic AEAD construction from
GLR17. It makes two passes over the message—one to encrypt it one-time-pad-
style using output from the PRG G and the other to commit to the message and
AD using the collision-resistant PRF F cr. The ciphertext output is expanded by
both a tag for authenticity and a commitment—the output lengths of the two
PRFs. Comparatively, our CTX construction requires no passes over the message
and would typically expand ciphertexts from a 128-bit authentication tag to a
160-bit hash function output that gives both cAE security and nAE authenticity.
An advantage of CEP is that one can verify the commitment without revealing



18 Chan and Rogaway

Construction Description

EtM[E , H] [10]

E is AE scheme, H is CR MAC.
Encrypt M w/ E under key Ke to get C.

Get T by using MAC w/ key Kh on (C,Ke).
Output C ∥ T .

CEP[G,F, F cr] [12]

G is PRG. F, F cr are PRFs. F cr is CR
Use G w/ K and N to get K0,K1, P .

Use P ⊕ M to get C1. Use F cr w/ K0 on A,M for C2.
Use F w/ K1 on C2 to get T . Output C1 ∥ T ∥ C2.

HFC* [8]

HFC is an encryptment scheme built
from a compression function and a padding scheme.
DGRW18 show a simple transform that promotes

an encryptment scheme into a cAE scheme.

CommitKeyIV [2]

E is nAE scheme. F0, F1 are independent CR PRFs.
Get Ke from using F0 w/ K on nonce N .
Get Kc from using F1 w/ K on nonce N ′.
Use E on N,A,M to get C. Output C ∥ Kc.

UtC[E ,F] [5]
E is nAE scheme. F is committing PRF.

Get (P,L) from F(K,N). Get C from E(L,N,A,M).
Output P ∥ C.

HtE[E , H] [5]
E is a CMT-1 nAE scheme. H is a CR function.
Get L from H(K, (N,A)). Output E(L,N, ε,M).

Table 2: A comparison of selected constructions targeting their respective cAE
security goals. *Not a committing AE scheme, but closely related.

the encryption key. One only needs to reveal K0 to do so. This is in line with
GLR17’s additional goal of multiple opening security.

DGRW18 had similar goals to GLR17 as they both investigated committing
AE for the purpose of message franking. They propose a new primitive, encrypt-
ment, that we do not describe in detail here. Encryptment is a a primitive that
simultaneously encrypts and commits a message and is one-time use. They give
a concrete encryptment scheme HFC that uses a compression function and a
padding scheme. They give a simple transform that builds a cAE scheme out
of an encryptment scheme and a probabilistic nAE scheme. We note that HFC
requires a pass over the message to apply encrypt and commit it.

The CommitKey scheme from ADGKLS20 comes in four flavors. We describe
the variant CommitKeyIV here. It consists of an nAE scheme and two independent
collision-resistant PRFs, On encryption, the PRFs are used on the nonce to
generate an encryption key and a “key-commitment.” The encryption key is then
used to perform routine nAE encryption on the message, producing a ciphertext.
Encryption returns both the ciphertext and the key-commitment. It commits
only to the key and as such, does not require any passes over the plaintext.
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With this scheme, it is possible to find a misattribution where different AD lead
to valid decryptions.

One can argue that this kind of misattribution may not be impactful to
real-world systems. But CTX protects against these misattributions as well and
without giving up efficiency. In fact, CTX enjoys the efficiency benefit of not
having the re-key with each message encrypted.

That argument is specious, in any case. It is difficult for designers of systems
to know exactly what needs to be committed to achieve their security goals.
GLR17 and DGRW18 showed message franking requires the commitment of the
header and message. ADGKLS20 found that various real-world systems (key
management services, envelope encryption, and Subscribe with Google [3]) had
potential vulnerabilities from lack of key commitment. It is not always clear what
exactly needs to be committed, so a scheme that can inexpensively commit to
everything would provide a way to cover all bases for application designers.

Bellare and Hoang give a fully committing cAE construction that builds off
of one that only commits to a key. Their UtC construction only commits to
the key (CMT-1 secure going by their notions). It uses a primitive they call a
committing PRF which informally outputs a commitment to the key and the
PRF input along with the conventional PRF output. They describe an efficient
committing PRF in their paper.

To promote a CMT-1 secure scheme to a fully committing (CMT-4) one,
BH22 give the HtE transform. Like our CTX construction, the application of
HtE to UtC commits to everything without having to make a pass over the
plaintext beyond encrypting it. The ciphertext expansion of BH22’s transform
however is expected to be at least 128-bits—the block length of the blockcipher
that their committing PRF employs. On the other hand, CTX is expected to
replace a conventional nAE tag, say 128-bits, to a 160-bit tag that provides both
nAE authenticity and the commitment to all encryption inputs. This would be
a 32-bit expansion compared to the expansion by a full block.
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A CAE with Misattribution Types

Modeling weaker misattributions. The CAE definition presented in 3 only
attends to the strongest level of misattributions. Specifically, a ciphertext C
experiences the strongest level of misattribution if an adversary finds two distinct
explanations (K,N,A,M) ̸= (K ′, N ′, A′,M ′) for it. We call schemes that are
resistant against this type of misattribution fully committing.

However, one may be interested in schemes that protect against weaker
misattributions. After all, other works have investigated these weaker notions
[10,12,8,2] and contemporary work by [5] give a framework that supports com-
mitting to subsets of the encryption inputs.

In addressing this, we have an alternative definition given in Fig. 5. In this
definition, the game is parametrized with an additional four-bit string u. This
string allows the specification of which elements of the (K,N,A,M) tuple one
should commit to. The first bit corresponds to the key, the second the nonce,
and so on. This framework is finer-grained than the contemporary framework
of [5] as theirs only captures three kinds of commitments: committing to just
the key; committing to the key, nonce, and AD; and committing to everything.
The framework here allows the expression of all sixteen ways one can commit to
encryption inputs.
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CAEΠ,t,u

procedure Finalize()

10 ret ∃(Ki, N,A,M,C), (Kj , N
′, A′,M ′, C′) ∈ S s.t.

11 (M ̸= ⊥ ∧M ′ ̸= ⊥)∧
12 (C = C′)∧
13 tup((Ki, N,A,M), (Kj , N

′, A′,M ′))∧
14 (chk(Ki,Kj) ∨ chk(Kj ,Ki))

chk(Ki,Kj)

16 if t = 00∧Ki /∈ Kc∪Kr ∧Kj /∈ Kc∪Kr then ret 1

17 if t = 01 ∧Ki /∈ Kr ∪ Kc ∧Kj /∈ Kc then ret 1

18 if t = 0X ∧Ki /∈ Kr ∪ Kc then ret 1

19 if t = 11 ∧Ki /∈ Kc ∧Kj /∈ Kc then ret 1

1A if t = 1X ∧Ki /∈ Kc then ret 1

1B if t = XX then ret 1

1C ret 0

tup((Ki, N,A,M), (Kj , N
′, A′,M ′))

1D Ti, Tj ← (⊥,⊥,⊥,⊥)
1E if u[0] = 1 then Ti[0]← Ki; Tj [0]← Kj

1F if u[1] = 1 then Ti[1]← N ; Tj [1]← N ′

1G if u[2] = 1 then Ti[2]← A; Tj [2]← A′

1H if u[3] = 1 then Ti[3]←M ; Tj [3]←M ′

1I ret Ti ̸= Tj

procedure Initialize()

00 for i ∈ N do

01 Ki↞K; N i ← ∅
02 S,Kc,Kr ← ∅

procedure ENC(i,N,A,M)

20 if Ki /∈ Kr∪Kc∧N ∈N i

21 then ret ⊥
22 C ← Π.E(Ki, N,A,M)

23 N i
∪← {N}

23 S
∪← {(Ki, N,A,M,C)}

24 ret C

procedure DEC(i,N,A,C)

30 M ← Π.D(Ki, N,A,C)

31 S
∪← {(Ki, N,A,M,C)}

32 ret M

procedure REV(i)

40 Kr
∪← {Ki}; ret Ki

procedure COR(i,K)

50 Ki ← K; Kc
∪← {Ki}

Fig. 5: An alternative CAE-security game. This definition of CAE-security
parametrizes the game with a four-bit string u that dictates which elements—key,
nonce, AD, message—should count as an adversarial win when misattributed.

B nAE-Security of CTX

Privacy and Authenticity. We find it convenient to approach privacy and
authenticity separately for CTX instead of using an all-in-one nAE definition.
As such, we first recall games capturing these two notions [19]. Let Π be an
nAE scheme. Let A be a nonce-respecting adversary attacking the privacy of
Π. Adversary A is asked to distinguish between a “real” and “ideal” encryption
oracle. The real oracle E is initialized with a keyK sampled uniformly at random
and uses it to output Π.E(K,N,A,M) for any queries (N,A,M) that A makes.
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The ideal oracle $ always outputs a uniformly random string of length |M |+ τ
where τ is the expansion of Π. The advantage of A in this privacy game is then
quantified as:

Advpriv
Π (A) = Pr[K↞K;AEK(·,·,·) ⇒ 1]− Pr[A$(·,·,·) ⇒ 1].

The authenticity game asks that the nonce-respecting adversary A forges. That
is, A is asked to output a tuple (N,A,C) such that Π.D(K,N,A,C) ̸= ⊥ for
some key K sampled uniformly at random upon initialization of the game. Ad-
versary A has access to an encryption oracle that performs encryption under K.
Its authenticity advantage is defined as:

Advauth
Π (A) = Pr[K↞K;AEK(·,·,·) forges ].

To prevent trivial wins, if A made an encryption query (N,A,M) that returned
C, it may not output (N,A,C) as its forgery.

We now prove Theorem 3 from Section 4.

Proof. (1) We begin with the privacy part of the theorem. Let G0 and G1 be
the games presented in Fig. 6. Note G0 uses the boxed code whereas G1 does
not. Let G2 be the game presented in Fig. 7. We claim that the advantage of
adversary A1 is

Advpriv
CTX[Π](A1) = Pr[G0(A1)]− Pr[G2(A2)] (4)

where Pr[G(A)] denotes the probability that running adversary A in game G
results in the Finalize procedure of G returning true.

One can observe that G0 is exactly the real privacy game of nAE security
using CTX as the scheme. There are two tables keeping track of random oracle
entries, HT and ET. The former records new random oracle (RO) entries gen-
erated by direct calls to H and the latter by calls to ENC. On the other hand,
G2 is the ideal privacy game for nAE security, coupled with access to a random
oracle. Hence, Equation 4 follows by the definition of nAE privacy. Equation 4
is equivalent to the following:

Advpriv
CTX[Π](A1) = Pr[G0(A1)]− Pr[G1(A1)] + Pr[G1(A1)]− Pr[G2(A1)] (5)

From here, we can build adversary B1 such that

Pr[G1(A1)]− Pr[G2(A1)] ≤ Advpriv
Π (B1). (6)

Adversary B1 behaves as follows. First, it initializes a table HT that it will
maintain during its execution. Then, it runs adversary A1. When A1 makes a
query of:

– ENC(N,A,M) - Adversary B1 calls its own encryption oracle with the same
N,A,M , getting back C ∥ T as a response. It then samples T ∗↞{0, 1}µ and
returns C ∥ T ∗ to A1.
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Games G0 /G1

procedure Initialize()

00 K↞K

procedure ENC(N,A,M)

10 C ∥ T ← Π.EK(N,A,M)

11 T ∗↞{0, 1}µ

12 if HT[K,N,A, T ] ̸= ⊥ then bad← true; T ∗ ← HT[K,N,A, T ]

13 ET[K,N,A, T ]← T ∗

14 ret C ∥ T ∗

procedure H(L,N,A, T )

20 if HT[L,N,A, T ] ̸= ⊥ then ret HT[L,N,A, T ]

21 HT[L,N,A, T ]↞{0, 1}µ

22 if ET[L,N,A, T ] ̸= ⊥ then

23 bad← true; HT[L,N,A, T ]← ET[L,N,A, T ]

24 ret HT[L,N,A, T ]

procedure Finalize(d)

30 ret d

Fig. 6: Games G0 and G1 for the privacy proof of Theorem 3. The two games
are identical except G0 contains the boxed code and G1 does not.

– H(L,N,A, T ) - Adversary B1 checks to see if there is an entry in HT[L,N,A, T ].
If not, then it samples a string uniformly at random from {0, 1}µ and records
it at HT[L,N,A, T ]. It always responds to A1 with HT[L,N,A, T ].

When A1 terminates and outputs a bit, B1 outputs the same bit. When B1’s
encryption oracle is fake, then it perfectly simulates G2 as the ciphertext bodies
C it returns to A1 will be uniformly random strings. When B1’s encryption
oracle is real, then it perfectly simulates G1 as C would be generated through
encryption with Π under some hidden key (which is unknown to B1). This gives
the advantage term of Equation 6.

Games G0 and G1 are identical-until-bad. By the Fundamental Lemma of
Game Playing [6], we have that the advantage of an adversary distinguishing
these two games is at most the probability of bad being set. That is, we have

Pr[G0(A1)]− Pr[G1(A1)] ≤ Pr[G1(A1) sets bad]. (7)

In the games, bad gets set to true on lines 12 and 22 in Fig. 6 when the
tables HT and ET are checked for an entry. Recall that the table ET records
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Games G2

procedure ENC(N,A,M)

40 C↞{0, 1}|M|; T ∗↞{0, 1}µ; ret C ∥ T ∗

procedure H(L,N,A, T )

50 if HT[L,N,A, T ] = ⊥ then HT[L,N,A, T ]↞{0, 1}µ

51 ret HT[L,N,A, T ]

procedure Finalize(d)

60 ret d

Fig. 7: Games G2 for the proof of Theorem 3.

mappings of K,N,A, T quadruples to random T ∗ that are generated during
encryption. The key K here is fixed to the one sampled at game initialization.
The table HT, on the other hand, tracks mappings from L,N,A, T quadruples to
random T ∗ generated during random oracle queries. The key L here is part of the
adversary’s query. The flag bad gets set to true if one oracle (either encryption
or the random oracle) finds an entry already recorded in the other’s table when
trying to generate the random T ∗. For example, suppose the adversary makes a
query (K,N,A, T ) to H that results in some T ∗. If the adversary later queries
encryption with N,A,M such that C ∥ T is the result of Π’s encryption, then
the T ∗ returned to the adversary needs to be the T ∗ in the random oracle query.
This is covered by the table HT. The other table ET covers the other direction–
when a later RO query needs a tag from a previous encryption query.

Observe that for bad to be set true, the adversary will need to make a query
to H with K, the secret key, as the argument L. It has to in order to satisfy the
conditions of either 12 or 22 . Following this, game G3 in Fig. 8 is set up in a
way such that an adversary wins if it queries the random oracle with the secret
key. It runs its encryption oracle like G1. Hence, we have that

Pr[G1(A1) sets bad] ≤ Pr[G3(A1)]. (8)

Now, we build adversary B2 such that

Pr[G3(A1)] ≤ Advpriv
Π (B2) +

qH
2δ+τ

(9)

Adversary B2 initializes with a table HT and a set S. It runs A1 and re-
sponds to encryption queries just like adversary B1. For queries H(L,N,A, T ),
B2 answers like B1 except it also adds L to its set S.

When A1 terminates, B2 ignores its output. It then picks a nonce N∗ that
was not used by A1 in any of its ENC queries. It picks a message M∗↞{0, 1}δ.
Recall that δ ≥ 0 is the adjustable parameter from the theorem statement. Then
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Games G3

procedure Initialize()

70 K↞K; S← ∅

procedure ENC(N,A,M)

80 C ∥ T ← Π.EK(N,A,M); T ∗↞{0, 1}µ; ret C ∥ T ∗

procedure H(L,N,A, T )

90 if HT[L,N,A, T ] = ⊥ then HT[L,N,A, T ]↞{0, 1}µ

91 S← S ∪ {L}; ret HT[L,N,A, T ]

procedure Finalize(d)

A0 ret (K ∈ S)

Fig. 8: Games G3 for the proof of Theorem 3.

it queries its own ENC with N∗, ε,M∗ and gets back a response C∗ of the length
δ+ τ . Next, it sets a flag b← 0 before executing a loop, iterating over every key
L ∈ S. Each iteration, it checks whether Π.EL(N∗, ε,M∗) outputs C∗, setting
b← 1 if one does. Finally, B2 outputs b as its output.

Let E1 be the event that B2 outputs 1 in its real game and E0 be the event
it does so in its ideal game. Then, we have that Pr[E1] ≥ Pr[G3(A1)] because
if the key K (the key to B2’s real game) is in the set S, then b is set to 1 when
L = K during B2’s loop. For E0, we have that Pr[E0] ≤ qH/2δ+τ . Since S is fixed
independently of the random C∗ returned by the ideal encryption oracle, each
iteration of B2’s loop sets b to 1 is at most 2−δ+τ . Applying the union bound
across iterations, we get the bound for Pr[E0]. Finally, we get

Advpriv
Π (B2) = Pr[E1]− Pr[E0] ≥ Pr[G3(A1]−

qH
2δ+τ

which gives Equation 9. Combining Equations 4, 6, and 9 yields the stated
privacy bound in the theorem.

(2) We now proceed with the authenticity part of Theorem 3. Let A2 be the
adversary attacking the authenticity of CTX[Π]. We can construct an adversary
B3 attacking the authenticity of Π such that

Advauth
CTX[Π](A2) ≤ Advauth

Π (B3) +
1

2µ
. (10)

We define B3 as follows. Adversary B3 responds to A2’s ENC and H queries
the same way that B1 does. WhenA2 terminates with a forgery (N2, A2, C2 ∥ T2),
adversary B3 then picks a message M∗ of length δ, and a nonce N∗ that has
not been used by A2 in its ENC queries and is not the nonce in A2’s forgery
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(N∗ ̸= N2). It then makes a query to its own encryption oracle ENC with
N∗, ε,M∗, getting back a response C∗.

Now B3 selects particular entries in its table HT. We write these entries
as quintuples (L,N,A, T, T ∗) to succinctly denote the mapping of (L,N,A, T )
to T ∗. Specifically, B3 picks entries (L,N,A, T, T ∗) such that N = N2, A =
A2, and T ∗ = T2. It then iterates through all such entries and tests whether
Π.EL(N,A,M∗) = C∗. Let S be the set of entries that satisfy this condition.
Adversary B3 then executes the following:

for (L,N,A, T, T ∗) ∈ S do
M ← Π.D1(L,N,A,C2)
T ′ ← Π.E2(L,N,A,M)
if T = T ′ then ret (N,A,C2 ∥ T )

Recall that E2 and D1 are the algorithms of a tag-based nAE scheme that
produce the authentication tag and decrypt the ciphertext core respectively.
This loop checks which of the candidate entries contains a forgery B3 can use
for C2 by verifying a tag (for the scheme Π) for it. If the loop finishes without
successfully verifying a tag, this means that A2 failed its own forgery, which
would cause B3 to fail as well. When A2 succeeds in forging, then B3 can recover
a tag T appropriate for its own forgery. This gives us the authenticity advantage
term for B3 in the bound.

It is possible for A2 to forge without B3 being able to recover the tag it needs.
Suppose A2’s forgery is (N,A,C ∥ T ∗). Then, for example, A2 could never ask H
the appropriate query to fill in HT with T ∗. However, all responses to H queries
are independent of one another, so one response for H tells A2 nothing about
another response for H. This is also true for the random tags generated by any
ENC queries made by A2. So, without querying to H the exact (L,N,A, T ) used
by B3’s encryption oracle to make C, the best A2 can do to come up with a valid
T ∗ for its forgery is by guessing. For a fixed key, nonce, AD, and ciphertext core,
there is exactly one tag that verifies. Following this, the probability A2 creates a
valid tag T ∗ and forges by guessing is 1/2µ as it has a single guess for its forgery
over 2µ possible tags. This gives us the last term in the bound.

C CAE0X Attack on CTX

Let Π ′ be a tag-based nAE scheme that uses a PRG G to generate a one time
pad for the plaintext M using the key K and the nonce N to get a ciphertext
core C and a tagging function E2(K,N,A,M) for an AD A to produce a tag
T . It returns C ∥ T as its final ciphertext. AES-GCM is an example of such a
scheme. Now let Π be a scheme that runs exactly the same as Π ′ except if the
key input is a special reserved key, say K∗ = 0k where k is the key length of Π,
then E2 outputs a tag T = 0t for all N,A,M where t is the tag length of Π.

We give an adversary A against CTX[Π,H] even if H is a collision-resistant
hash function. Let µ be the output length ofH and q be the number of encryption
queries A makes. Adversary A fixes N1, . . . , Nq distinct nonces as well as some
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message M and some AD A. It then makes q queries to its encryption oracle
where the ith query is in the form Ci ∥ Ti ← ENC(Ni, A,M). Note that these
queries are made under some hidden key K where K is the target honest key
that A is trying to collide with.

Now A chooses a fresh nonce N distinct from its previous nonces and chooses
distinct AD values A1, . . . , Aq that are different from the previous A. It then
computes a q candidate tags where the jth hash computation is in the form
Uj ← H(0k, N,Aj , 0

t).
By the birthday paradox, with probability Ω(q2/2µ), there are indices i, j

such that Ti = Uj . Now A computes Mj ← G(0k, N) ⊕ Ci. We end up with the
misattribution Π.E(0k, N,Aj ,Mj) = Ci ∥ Ti through the following equations:

Π.E(0k, N,Aj ,Mj) = G(0k, N) ⊕ Mj ∥ H(0k, N,Aj , E2(0k, N,Aj ,Mj))
= G(0k, N) ⊕ G(0k, N) ⊕ Ci ∥ H(0k, N,Aj , 0

t) // def of Mj & E2
= Ci ∥ Uj = Ci ∥ Ti // by def of Uj and birthday collision

So, CTX is unable to avoid a birthday bound even for CAE0X-security. It is
possible that it may be able to do so with additional assumptions on the nAE
scheme it uses. We leave the investigation of such assumptions and the possibility
of other cAE schemes with better CAE0X-security to future work.
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