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Abstract. We investigate the relationship between the classical RSA
and factoring problems when preprocessing is considered. In such a model,
adversaries can use an unbounded amount of precomputation to produce
an “advice” string to then use during the online phase, when a problem
instance becomes known. Previous work (e.g., [Bernstein, Lange ASI-
ACRYPT ’13]) has shown that preprocessing attacks significantly im-
prove the runtime of the best-known factoring algorithms. Due to these
improvements, we ask whether the relationship between factoring and
RSA fundamentally changes when preprocessing is allowed. Specifically,
we investigate whether there is a superpolynomial gap between the run-
time of the best attack on RSA with preprocessing and on factoring with
preprocessing.
Our main result rules this out with respect to algorithms in a natural
adaptation of the generic ring model to the preprocessing setting. In
particular, in this setting we show the existence of a factoring algorithm
(albeit in the random oracle model) with polynomially related parame-
ters, for any setting of RSA parameters.

1 Introduction

1.1 Motivation and Main Results.

Background. Use of the RSA function [26] fN,e(x) = xe mod N where N =
pq is ubiquitous in practice, and attacks against it have been the subject of
intensive study, see e.g. [4]. A key question about its security is its relationship
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to factoring N . While it is trivial to see that factoring N allows one to invert
RSA, the converse is a major open problem. To make progress on this question,
researchers have studied it in restricted (aka. idealized) models of computation.
To our knowledge, this approach was initiated by Boneh and Venkatesan [5],
who showed that a reduction from factoring to low-exponent RSA that is a
straight-line program (SLP) gives rise to an efficient factoring algorithm. An
SLP is simply an arithmetic program (performing only ring operations) that
does not branch. A complementary approach, which we pursue in this work, is
to consider RSA adversaries that are restricted. The best known result of this
nature is due to Aggarwal and Maurer (which we abbreviate as AM) [1], who
showed that breaking RSA and factoring are equivalent wrt. so-called “generic-
ring algorithms” (GRAs), namely ones that treat the ring ZN like a black-box,
only performing ring operations and equality checks that allow branching. Put
another way, GRAs work in any efficient ring isomorphic to ZN . Note that SLPs
are a special case of GRAs.

In the context of any cryptographic problem or protocol it is valuable to
consider preprocessing attacks, because an adversary may be willing to perform
highly intensive computation to break many instances of the problem, if that
computation only has to be performed once. To model this, one considers an
unbounded algorithm that produces a short “advice” string that can be used
to efficiently solve a problem instance once it becomes known (much more effi-
ciently than without the advice string). Note that above-mentioned attacks on
RSA from [4] do not take advantage of preprocessing. However, in the prepro-
cessing setting, Bernstein and Lange [3] describe a Number Field Sieve (NFS)
with preprocessing, based on work by Coppersmith [7], which significantly re-
duces the exponent in the running-time compared to the standard NFS factoring
algorithm, and they use this to get an improved attack on RSA. Thus, a natural
question is:

Does the relationship between RSA and factoring fundamentally change
in the preprocessing setting?

The Need for a New Model. To answer this question, we need to formalize
a model of computation for this setting. First, we will briefly survey some re-
lated models in the literature. The generic ring model (GRM) of AM considers
an algorithm (called a generic ring algorithm or GRA) to be a directed acyclic
graph where nodes are labelled with constants (or the input indeterminate) in
Z∗N and operations (+, ×, ÷); execution corresponds to a walk in the graph
according to suitable rules. One can contrast this with Shoup’s generic group
model (GGM) [29], where the group representation is random and accessible
only via an oracle; otherwise, an algorithm is allowed arbitrary computation. A
Shoup-style GRM has also been considered by Dodis et al. [14]. We consider a
hybrid of this model and AM’s, wherein the ring representation is random and
accessible via an oracle, but an algorithm is restricted (though more general than
in AM). To understand the rationale, it is instructive to see why AM’s model,
extended to the preprocessing setting in the obvious way, is not suitable. In this
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model, after the preprocessing stage the adversary outputs a GRA to run in
the online stage. But then observe that the best the adversary could do in the
preprocessing stage is to pick a single GRA of size at most some T that obtains
optimal advantage, where the advantage is computed with respect to the random
choice of N with bitlength at most security parameter κ and random choice of
y = xe (mod N). The description of this optimal GRA would then be passed to
the online stage. This process does not capture our intuition of what can be done
with preprocessing. For example, the following simple algorithm would not be
captured: Create a table of many input/output pairs ((y = xe (mod N), N), x)
in the preprocessing stage, then, in the online stage, perform a lookup on the
challenge input (y∗, N∗). Output the trivial GRA that outputs the constant

x∗ = y∗1/e (mod N) if (y∗, N∗) is found in the table, and output the afore-
mentioned optimal GRA otherwise. This algorithm cannot be captured in AM’s
model since the table lookup (via a binary tree or hash table structure) requires
use of the bit-representation of the input (y∗, N∗), while a GRA is agnostic of
the particular representation of the ring. While this is a simple example, it cap-
tures the techniques originating from Hellman’s tables [17], which are common
strategies for preprocessing algorithms in practice.

Our New “GRM-with-Preprocessing” Model. To allow these types of
representation-specific strategies, we must associate integers y of bitlength at
most κ with labels. This is somewhat analogous to moving Shoup’s model of the
GGM to the GRM setting. While this approach was used in Dodis et al. [14] for
the specific problem of RSA-FDH, a version of the GRM that is analogous to
Shoup’s GGM has not been previously considered in full generality to the best of
our knowledge. Indeed, we find that allowing completely arbitrary computation
on labels becomes extremely hard to analyze. We therefore consider an interme-
diate model that allows for representation-specific yet structured algorithms.

In our definition of the generic ring model, an injective mapping π takes every
element in {0, 1}κ to a unique random string in {0, 1}m, wherem > κ. We let the
unbounded preprocessing algorithm read the entire description π and perform
arbitrary computation. It produces a short advice string st that is passed to the
online phase. The online algorithm is split into two parts, an intermediate algo-
rithm, and a GRA. The intermediate algorithm is bounded but not generic and
gets the problem instance (N, e, π(xe)), where N = pq has bit-length κ, but does
not get access to π. This intermediate algorithm is crucial to our model, since
this is what allows computation that depends on the input representation, and
therefore allows the online part of the algorithm to leverage the advice from the
preprocessing stage. Finally, this intermediate algorithm outputs an oracle-aided
GRA that computes relative to π, and which we then run on the RSA problem
instance. For example, an addition step of the oracle-aided GRA takes as in-
put two strings y1, y2 ∈ {0, 1}m and outputs π(π−1(y1) + π−1(y2) (mod N)).
(Multiplication and division proceed analogously.) We call S = |st| the space of
the adversary and its running-time is specified by the pair (T1, T2), where T1 is
the runtime of the intermediate algorithm, and T2 is the run-time of the GRA
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output by the intermediate algorithm. (Note that we require that T2 ≤ T1.) We
refer to this model as the “GRM-with-preprocessing” for simplicity.

Main Results. We show that in the GRM-with-preprocessing model, any RSA
algorithm with preprocessing implies the existence of a factoring algorithm with
preprocessing in the random oracle model, with polynomially related parameters.
This essentially answers our question for RSA algorithms in the GRM-with-
preprocessing model and shows that the relationship of RSA and factoring does
not fundamentally change in this setting.

Theorem 1. (Informal.) Suppose there is an RSA adverary in the GRM with
preprocessing model with space Sr and running-time (T1,r, T2,r) that succeeds with
probability ϵr. Then there is a factoring adversary in the random oracle model
(ROM) with space Sf = Sr+O(1) and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr)
that succeeds with probability ϵf = poly(ϵr).

See Theorem 4 for the formal statement. Our result implies that any significant
speed-up on attacking RSA vs. factoring even with preprocessing must use non-
generic techniques. Note that the space complexity of our factoring algorithm is
essentiallly the same as that of the RSA algorithm. In terms of time complex-
ity and success probability, our bounds are similar to those achieved by AM,
which is to be expected. We differ from AM in that the success probability of
our factoring algorithm ϵf depends only on ϵr, and not on T1,r, T2,r. We discuss
additional differences between the time complexity and success probability of
our factoring algorithm and that of AM in Section 4.

On the Use of a Random Oracle. We note that our final factoring algorithm
with preprocessing is in the random oracle (RO) model. We believe using a
RO is reasonable since prior work on space/time tradeoffs (such as the seminal
results of Hellman [17] and Fiat-Naor [15]) either required a random oracle or
achieved simplified algorithms/improved parameters in the random oracle model.
Further, achieving a polynomial time factoring algorithm with preprocessing in
the random oracle model would still be considered a breakthrough result.

Note that since our model allows an inefficient preprocessing phase, the ran-
dom oracle (RO) cannot easily be removed from our final factoring algorithm
while maintaining the desired polynomially related space complexity and runtime
from Theorem 1. The reason is that in the preprocessing phase of the factoring
algorithm, the entire RO could be queried and global information about it could
be stored in the preprocessing advice. In this case, it is no longer possible for
the online part of the factoring algorithm to simulate the RO “on the fly” since
the responses generated by the simulator need to be consistent with the global
information learned in the preprocessing phase. One approach would be to show
that the global information about the random oracle (which has length Sf ) can
be simulated by fixing the input/output of some set of some q queries to the
random oracle, and showing that any remaining queries not in this set can still
be chosen “on the fly.” This “bit-fixing” technique has been studied in a number
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of works [9, 13]. However, this line of work proved a lower bound that q must be
larger than SfTf/(ϵf )

2 in order for this simulation to be ϵf -indistinguishable to
an adversary making Tf queries (note that we require ≈ ϵf -indistinguishability
to guarantee that the factoring algorithm in the standard (RO-devoid) model
still succeeds with probability poly(ϵf ) = poly(ϵr)). For us, this would lead to
trivial parameter settings.
On Using Bit-Fixing Instead of Compression. A different approach to
our use of the compression technique is to use bit-fixing instead (cf. [8]). That
is, one would first show that an RSA algorithm of the form (A0, A1, A2) with
advice of size Sr, making at most Tr number of queries, and achieving success
probability ϵr, implies the existence of an RSA algorithm of the form (A′1, A

′
2)

making at most T ′r number of queries, and achieving success probability ϵ′r in the
bit fixing model, which fixes the labeling function π in q locations. It is possible
that the AM reduction could then be applied more directly to (A′1, A

′
2) to obtain

a factoring algorithm without going through a compression argument.
Unfortunately, similarly to the discussion above, this approach requires the

number of fixed locations q to be at least SrTr/(ϵr)
2. Since A′1 cannot itself

make oracle queries, for it to be able to choose A′2 adaptively in the bit-fixing
model, the information about the q fixed locations would need to be given to A′1
as non-uniform advice. This would mean that the space of the RSA algorithm,
and hence the resulting factoring algorithm, be at least SrTr/(ϵr)

2, leading to
trivial parameter settings.

1.2 Technical Overview

Our main result shows that any generic attack on RSA with preprocessing gives
rise to a factoring algorithm with preprocessing in the random oracle model with
polynomially related parameters. We begin by recapping the subclass of RSA
algorithms we consider, and then discuss the high level approach of our proof of
equivalence.

The RSA algorithm. Recall that we consider RSA adversaries that are split
into two ‘fixed’ parts (Aπ0 , A1) and a third part Gπ that is adaptively chosen
by A1 upon seeing the RSA instance. In more detail, Aπ0 gets oracle access to
π : {0, 1}κ → {0, 1}m and is completely unbounded both in terms of computation
and number of queries to π. Aπ0 finally outputs a state st of size Sr (called A’s
space). A1 takes as input st and the RSA instance (N, e, π(y) = π(xe)), runs
in time T1,r, and outputs a GRA Gπ of size (and hence running-time) T2,r.
The GRA Gπ is an oracle-aided program that computes relative to π. In other
words, each multiplication (resp. division, addition) step of Gπ with inputs y1, y2
outputs π(π−1(y1)·π−1(y2) (mod N)) (resp. π(π−1(y1)·(π−1(y2))−1 (mod N)),
π(π−1(y1) + π−1(y2) (mod N))). A1 is computationally bounded but may run
for superpolynomial time; however, it may not make any queries to the oracle π.
Finally, Gπ takes as input π(y) and evaluates Gπ(π(y)). In the following, we fix
π, a state st of some bounded size Sr output by A

π
0 , as well as a modulus N and

value e with gcd(e, ϕ(N)) = 1. We consider the success probability ϵr on input
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π(y) of A1 relative to these fixed values in outputting Gπ such that Gπ(π(y)) =
π(x) and xe = y (mod N). Here, the success probability is taken over random
choice of y ← ZN and coins of A1. Fixing π, st, N, e simplifies our discussion and
can easily be justified by an averaging argument. Our final analysis, however,
considers these values drawn from an appropriate distribution. Our goal is to
construct a factoring algorithm in the random oracle model with preprocessing
and with parameters Sf , Tf , ϵf (space, time, and success probability) that are
polynomially related to Sr, T1,r, T2,r, ϵr. Specifically, we require that Sf = Sr +
O(1), Tf = poly(κ, T1,r, T2,r, 1/ϵr) and ϵf = poly(ϵr), where κ = log(N) is
security parameter.

In the following, we first restrict our attention to the special case where A1

outputs a straight-line program (SLP) with addition/multiplication only (i.e.,
without equality checks). This special case already requires most of the key ideas
of our proof. We then explain how to extend our result to the case where A1 may
output a generic ring algorithm (GRA). Extending the model to allow division
is straightforward and we therefore omit this part from the technical overview.

Both our model and main theorem are very general in the sense that they
show existence of a factoring algorithm with polynomially related parameters
for any setting of RSA parameters T1,r, T2,r, Sr, ϵr and for a general class of
algorithms. Our result does not restrict the relationship between (T1,r, T2,r, Sr)
(other than the requirement that T1,r ≥ T2,r, which is implied by the model)
and we show that generic RSA with preprocessing implies factoring with pre-
processing, even for unconventional parameter settings (such as setting Sr to
be larger than the time complexity of the best online factoring algorithm). We
believe it is important to cover all parameter regimes, as this ensures that our
result actually suggests a mathematical connection between the factoring and
RSA problems themselves, rather than just showing that for the typical param-
eter settings used in practice the best factoring and RSA algorithms happen to
have the same complexity.

We consider algorithms with unbounded preprocessing. Moreover, the algo-
rithm A1 does not have access to π, but can perform arbitrary (and superpoly-
nomially many) operations after learning the modulus N and the RSA instance
π(xe). Only then does it hand over the remaining computation to the fully
generic program Gπ. In order for this to be possible, we must do several case
analyses. To simplify this technical overview, we will henceforth conflate the
online portion of algorithm’s running times by setting Tr = Tr,1 + Tr,2.

First case analysis: Fiat-Naor argument. In the case that Tr ·Sr ≥ ϵr ·2κ/16,
we will completely ignore the RSA algorithm, and construct a different Factoring
algorithm in the RO model “from scratch.” The idea is to use a theorem of Fiat
and Naor [15], which extends Hellman’s seminal result on space/time tradeoffs for
inversion of a random function [17], to obtain space/time tradeoffs for inversion
of any function f . Specifically, Fiat and Naor consider an arbitrary function
f : D → D and show that f can be inverted with probability 1 − 1/|D| in the
random oracle (RO) model with space S and time T , as long as S2·T ≥ |D|3·q(f),
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where q(f) is the probability that two random elements in D collide under f .4

We apply Fiat-Naor to the factoring problem by viewing f as the function that
takes two κ/2 bit strings and multiplies them to obtain a κ-bit string, where
κ = log(N). Using properties of the second moment of the divisor function, we

bound q(f) ∈ O(κ
3

2κ ). Thus, we obtain a factoring algorithm with Sf ′ := 1/ϵ · Sr
and and Tf ′ := O(κ3) · T 2

2,r that inverts with probability 1 − 1/2κ. Indeed, one
can check that for the Sf ′ , Tf ′ defined above, S2

f ′ · Tf ′ ≥ 22κ · κ3 as long as
Tr · Sr ≥ ϵr · 2κ/16. We then observe that since we only need O(ϵ) success
probability, we can reduce the space from Sf ′ = 1/ϵ · Sr to Sf = Sr, while
Tf = O(Tf ′). Thus, our final parameters are Sf = Sr, Tf = poly(κ) · T 2

2,r

and inversion probability O(ϵ). Note that all parameters are polynomial in the
parameters of the RSA algorithm. Our goal is therefore achieved in the case that
Tr · Sr ≥ ϵr · 2κ/16. See Section 4.4 for more details.

Factoring from RSA. We now consider the main parameter regime of interest,
where Tr ·Sr < ϵr ·2κ/16. In this parameter regime, we will show how to use the
RSA algorithm to construct a factoring algorithm. However, before we can do
that, we need to eliminate a crucial case in which the RSA algorithm is unhelpful
for constructing a factoring algorithm. Let us first consider when and why the
RSA algorithm is useful for factoring. Then we will show how to eliminate the
remaining case.

Note that if A is successful with probability ϵr, then with probability ϵr the
SLP S output by A1 is such that on a randomly chosen y = xe, Sπ(π(y)) = π(x).
We define an “inversion procedure” on SLP’s that, given S such that Sπ(π(y)) =
π(x) and oracle access to π, outputs an SLP S̃ with no oracle access such that
S̃(y) = x. This, in turn, means that y is a root of the SLP S̃(Y )e − Y , with
respect to formal variable Y . In AM’s analysis, they were able to conclude that
if A is successful, then S̃(Y )e− Y must have many roots. Then, they showed an
algorithm that successfully factors, given as input a non-zero SLP S̃(Y )e − Y
with a sufficiently large fraction of roots. In our setting, however, we cannot
necessarily conclude this.. This is because we allow A1 to output a different
SLP Sπ(y) after seeing input π(y) (we use the notation Sπ(y) to emphasize that
the chosen SLP may depend on π(y)). This means that the SLP Sπ(y) output
by A1 can be tailored to succeed on π(y) and on only few other inputs, while
A1 maintains overall high success probability. So while w.h.p. y itself must still
be a root of the “inverted SLP” S̃π(y)(Y )e − Y , we are not guaranteed that

S̃π(y)(Y )e − Y has many roots overall. In this case, factoring fails.

The above reasoning leads to the second and third cases considered in our
proof: The second case is that w.h.p. y is a root of S̃π(y)(Y )e−Y , and S̃π(y)(Y )e−
Y has at most J roots. The third case is that w.h.p. the SLP S̃π(y)(Y )e−Y , has
at least J roots. The second case will lead to contradiction due to a compression
argument. We will therefore be left with the third case which will imply existence
of a factoring algorithm.

4 Their final algorithm actually requires only k-wise independent hash functions in-
stead of a RO. For simplicity, we instead assume a RO with O(1) evaluation time.
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Second case analysis: Compression. Intuitively, if y is a root of S̃π(y)(Y )e−
Y , and S̃π(y)(Y )e − Y has at most J roots, then there is an efficient way to

transmit y to a decoder who knows S̃π(y): Simply output the index of y among

the J roots of S̃π(y)(Y )e − Y . Intuitively, we save space when log(J) is small
compared to the trivial encoding of y, which specifies the index of y among all
pre-images that are not yet mapped to an image. Making this intuition rigorous
is quite challenging.

First, we must show how the encoder can efficiently transmit the description
of Sπ(y) to the decoder. Although A1 and st are known to the decoder, to obtain
the correct SLP Sπ(y), the decoder must run A1 on the correct random coins ρ
and on the correct input π(y). Furthermore, A1 is only guaranteed to output an
SLP Sπ(y) that is successful on π(y) w.h.p., when π(y) = π(xe) and ρ are chosen
uniformly at random. But we cannot afford to transmit the value of a random
π(y), nor the value of random coins ρ of A1, while still achieving compression.
To solve both of these problems, we rely, as prior work of Corrigan-Gibbs and
Kogan [10] did, on a lemma of De, Trevisan, and Tulsiani [12]. This lemma
proves incompressibility of an element x from a sufficiently large set X in a
setting that allows the encoder and decoder to pre-share a random string of
arbitrary length. For our purposes, this random string will allow us to both
(1) select a random π(y) from the set of images whose preimages are not yet
known and (2) select the random tape ρ for A1 to use together with input π(y).
Thus, the successful randomness can simply be encoded by its index within
the shared random string, thus saving space. We mention that Corrigan-Gibbs
and Kogan avoided encoding successful π(y) values by using the random self-
reducibility property of the discrete log problem to obtain an adversary that
succeeds w.h.p. on every input. Unlike Corrigan-Gibbs and Kogan, our argument
does not require random self-reducibility, and rather uses the random tape to
select a random image π(y) instead. Thus, while RSA also enjoys random self-
reducibility, our proof does not make use of it, potentially making our techniques
applicable to broader settings.

The third challenge is that in order to obtain S̃π(y) from Sπ(y), the decoder
must run the SLP inversion procedure, which requires access to π. Therefore, we
include all the responses of queries to π during evaluation of the SLP inversion
procedure in the encoding, replacing any query to π−1(π(y)) itself with the
formal variable Y . The final challenge is the delicate setting of parameters needed
for the result to go through. We must set the value J (the number of roots in the
SLP S̃π(y)(Y )e−Y ) such that compression is achieved when the number of roots
is at most J and, looking ahead, such that efficient factoring (with parameters
Sf , Tf , ϵf that are polynomially related to Sr, Tr, ϵr) is possible when the number
of roots is at least J . We note that our techniques for analyzing the encoding
length are significantly different from those used by Corrigan-Gibbs and Kogan
and may be of independent interest. (See Section 4.2 for more details.)

Third case analysis: Factoring routine. When the SLP Sπ(y)(Y )e − Y , has
at least J roots w.h.p., we can apply a theorem of AM to obtain a factoring
algorithm. Unfortunately, the final factoring algorithm (with preprocessing) that
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we obtain is in the random injection (RI) model, where the algorithm requires
access to both π and π−1. So our final step is to switch from the RI model to
the more-standard RO model. In other words, we need to construct a RI from
a RO. To construct a RI from κ-bits to m-bits for some m ≥ κ, the idea is to
construct a random permutation (RP) onm-bits and define the RI on subdomain
{0, . . . , 2κ − 1}. To construct a RP, we use a result of Luby and Rackoff [21]
showing that forward and backward oracle access to a 4-round Feistel network
with m/2-bit ROs as the round functions is indistinguishable from forward and
backward oracle access to a RP. (Note that the adversary does not have oracle

access to the round functions.) However, the distinguishing probability is q2

2m/2
,

where q is the number of queries made by the adversary. So, for example, m = κ
will not lead to a sufficient security level since A0 can query the RI on all
inputs from {0, . . . , 2κ − 1} and thus q can be as large as 2κ, which renders the

distinguishing probability of q2

2m/2
> 1 meaningless. We therefore use a larger m

such that (2κ)2/2m/2 ≪ ϵ̃/2, where ϵ̃ is the success probability of the factoring
algorithm in the RI model. Now the output of the random injective function on
an input in {0, . . . , 2κ − 1} is obtained by padding the input (e.g. with 0’s) up
to a length of m-bits, and then running the 4-round Feistel construction with
m/2-bit ROs as the round functions. Now, although A0 may query the entire
truth table of the injective function, this corresponds to making only q = 2κ

number of queries. And since (2κ)2/2m/2 ≪ ϵ̃/2, oracle access to the 4-round
Feistel is ϵ̃/2-indistinguishable from oracle access to random injective function.
This means that the factoring algorithm must still succeed with probability ϵ̃/2
relative to the 4-round Feistel in the RO model. This means that obtain our
final factoring algorithm in the RO model and we do not require forwards and
backwards access to a RI. See Sections 4.3 and 4.3 for additional details.

Extending to the GRA case. We first note that, in fact, compression can be
achieved in a slightly broader setting. Specifically, we define a notion of “y being
negatively oriented w.r.t. an SLP S” and show that if y is negatively oriented
w.r.t. S then there is an efficient way to transmit y to a decoder who knows
S. We say that “y is negatively oriented w.r.t. an SLP S” if either (1) S has
few roots (δ-fraction or less) and y is one of the roots or (2) S has many roots
((1 − δ)-fraction or more) and y is a non-root. In this case, given S, one can
efficiently encode y by giving the index of the root or non-root, as appropriate.

Now, given a GRA G we consider the dominating path of the GRA, which
itself corresponds to an SLP Sψ+1. As defined by AM, this means that whenever
we reach a branching vertex, we go either left or right depending on whether
most inputs satisfy the equality test or dissatisfy the equality test. We view every
branching vertex as a comparison of two SLP’s evaluated at the input. When
comparing two SLPs, S1, S2, if most inputs satisfy the equality test it means
that S1 − S2 has many roots, whereas if most inputs dissatisfy the equality test
it means that S1 − S2 has few roots.

We now consider an A1 that outputs w.h.p. a successful GRA Gπ such that
Gπ(π(y)) = π(x). Let G̃ be the “inverse” of Gπ relative to π, and let S1, . . . , Sψ+1
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corresponding to the nodes along the dominating path of G̃. We show that one of
the following must occur: (1) y is negatively oriented to some Si ∈ S1, . . . , Sψ+1.
Intuitively, this corresponds to the case that either input y does not take the
dominating path in G̃, or that y does take the dominating path but that G̃
succeeds on only a small fraction of inputs. In this case y can be efficiently
encoded. (2) The SLP Sψ+1 has a large fraction of roots. In this case we can run
a factoring algorithm inspired by AM that is guaranteed to either find a factor
of N or output the dominating path of G̃ with high probability. If the algorithm
succeeds in finding the dominating path, then we can finally invoke the previous
factoring algorithm for the SLP special case to complete the proof.

1.3 Related Work

There is an extensive body of literature on the hardness of the RSA problem
and is relationship to factoring. Boneh and Venkatesan [5] gave the first among
these results. Their result shows that reducing low-exponent RSA from factoring
using a straight-line reduction is as hard as factoring itself. A similar result by
Joux et al. [18] shows that when given access to an oracle computing eth roots
modulo N of integers x+ c (where c is fixed and x varies), computing eth roots
modulo N of arbitrary numbers becomes easier than factoring.

A more closely related line of work initiated by Brown [6] shows that for
generic adversaries, computing RSA (or variants thereof), is as hard as factoring
the modulus N . Brown’s initial work considered only the case of SLPs without
division and was subsequently extended by Leander and Rupp [20] to the case
of GRAs without division.The work of Aggarwal and Maurer [1] finally showed
that the problems are equivalent even for GRAs with division. A subsequent
result of Jager and Schwenk showed that computing Jacobi symbols is equivalent
to factoring for GRAs. Their result puts into question the soundness of the
generic ring model (GRM), as it shows that there are problems which are hard
in the GRM, but easy in the plain model. On the other hand, this result has no
immediate implication for other computational problems like the RSA problems,
which may still be meaningful to consider in the GRM. A recent work by Rotem
and Segev also showed how the GRM can been used to analyze the security of
verifiable delay functions [28].

The Generic Group Model (with Preprocessing). Starting with Nechaev [24],
a long line of work has studied the complexity of group algorithm in the generic
group model (GGM) [29, 22]. Algorithms in this model are restricted to accessing
the group using handles and cannot compute on group elements directly. This
makes it possible to prove information theoretic lower bounds on the running
times and success probabilities of generic group algorithms for classic problems
in cyclic groups (e.g., DLP, CDH, DDH). To the best of our knowledge, only two
works have considered the RSA problem in idealized group models. The first of
these work is due to Damgard and Koprowski [11] who ported Shoup’s generic
group model [29] to the setting of groups with unknown order and showed the
generic hardness of computing eth roots in this model. The second work is that
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of Dodis et al. [14] who considered the instantiability of the hash function in
FDH-RSA when modelling Z∗N as a generic group. Their techniques are similar
to ours in the sense that they combine factoring and compression arguments. On
the one hand, their techniques apply to a more general type of online adversary
who can perform side computations over Z∗N in any way that it likes. Recall that
we do not allow such computations in our model once we have chosen the generic
online algorithm to solve the RSA instance (although the generic algorithm itself
can depend on the instance in non-adaptive and non-generic fashion). On the
other hand, we face many additional technical issues due to considering a more
general generic model of computation for the ring ZN as well as preprocessing.
Even more recently, the work of Corrigan-Gibbs and Kogan [10] initiated the
study of preprocessing algorithms in the GGM. They considered generic upper
and lower bounds for the discrete logarithm problem and associated problems.
Their modelling approach is very similar to our own, in that the algorithm in the
offline phase has access to the labelling oracle π and can pass an advice string
of bounded size to the online phase of the algorithm. A key difference is that in
their setting, the group is fixed throughout the offline and online phase, whereas
in our setting, the group is fixed together with the RSA instance only in the
online phase. Moreover, they can also consider adversaries who, in the online
phase, may perform arbitrary side computations.

The Algebraic Group Model. More recently, a series of works has explored
the algebraic group model [16] as a means to abstract the properties of the
groups QRN and Z∗N more faithfully. The work of Katz et al. [19] introduced
a quantitative version of the algebraic group model called the strong algebraic
group model to relate the RSW assumption [27] over QRN to the hardness
of factoring (given that N is a product of safe primes p, q). Their model and
ideas were extended to Z∗N by Stevens and van Baarsen [30] who gave a general
framework for computational reductions in the (strong) algebraic group model
over Z∗N .

2 Preliminaries

2.1 Notation and Conventions

We denote the sampling of a uniformly random element x from a set S as x← S.
Similarly, we denote the output y of a randomized algorithm A on input x as y ←
A(x). We sometimes also write y := A(x;ω) to denote that A deterministically
computes y on input x and random coins ω. To denote that an algorithm A has
access to an oracle O during runtime, we write AO. We denote as ZN the ring of
integers modulo N , and as [N ] the set {1, ..., N}. We write νN (f) to denote the
fraction of roots of a polynomial f over ZN , i.e.,

νN (f) :=
|{a ∈ ZN | f(a) = 0}|

N
.

Throughout, we denote the security parameter as κ. For k,m ∈ N we denote
by Func[k,m] the set of functions F : {0, 1}k → {0, 1}m. Denote by Perm[m] the
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set of permutations on {0, 1}m. We denote by FuncInj[k,m] the set of injective
functions I : {0, 1}k → {0, 1}m.

2.2 Incompressibility Lemma

We use the following lemma by De et al. [12].

Lemma 1. (De, Trevisan, Tulsiani [12].) Let E : X ×{0, 1}ρ → {0, 1}m and D :
{0, 1}m → X×{0, 1}ρ be randomized encoding and decoding procedures such that,
for every x ∈ X ,Prr←{0,1}ρ [D(E(x, r), r) = x] ≥ γ. Then, m ≥ log |X | − log 1/γ.

Remark 1. As noted by [10], this lemma also holds when the encoding and de-
coding algorithms have access to a common random oracle.

2.3 Relevant Problems

In this subsection, we introduce the main relevant problems: the RSA Problem,
the Factoring Problem, and the general Function Inversion Problem (all with
preprocessing). Algorithm RSAGen on input 1κ generates (N, e, d, p, q) where
N = pq and p, q are primes of bit-length κ/2 with leading bit 1. Finally, ed =
1 mod ϕ(N).

Definition 1 (Factoring with Preprocessing). Let F = (F0,F1) be an algo-
rithm and RSAGen be an RSA generator. Consider the factoring-with-preprocessing
game facFRSAGen:

– Offline Phase. Run F0 on input 1κ to obtain an advice string st.
– Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Then run

F1 on input (N, st).
– Output Determination. When F1 returns p′, the experiment returns 1 if
p = p′ or q = p′. It returns 0 otherwise.

Define F’s advantage in the above experiment as

AdvfacRSAGen(F) = Pr[facFRSAGen = 1] .

We call F an (S, T )-factoring algorithm relative to RSAGen if F0 outputs advice
strings of size at most S and F1 runs in time at most T .

Definition 2 (RSA with Preprocessing). Let A = (A0,A1) be an adversary.
Consider the RSA-with-preprocessing game rsaARSAGen:

– Offline Phase. Run A0 on input 1κ to obtain an advice string st.
– Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Sample
x← Z∗N and run A1 on input (N, e, st, xe mod N).

– Output Determination. When A1 returns x′, the experiment returns 1 if
x = x′ (mod N). It returns 0 otherwise.
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Define A’s advantage in the above experiment as

AdvrsaRSAGen(A) = Pr[rsaARSAGen = 1] .

We call A an (S, T )-RSA algorithm relative to RSAGen if A0 outputs advice
strings of size at most S and A1 runs in time at most T .

In the following, we consider a domain D of finite size along with a random-
ized point generator G that outputs points in D.

Definition 3 (Function Inversion with Preprocessing). Let D be a fi-
nite set and let f : D → D be a function. Let I = (I0, I1) be an adversary and
Gen a point generator. Consider the function-inversion-with-preprocessing game
funcIf,Gen:

– Offline Phase. Run I0 on input 1κ to obtain an advice string st.
– Online Phase. Run Gen on input 1κ to obtain a point y ∈ D. Run I1 on

input (y, st)
– Output Determination. When I1 returns x′, the experiment returns 1 if
f(x′) = y. It returns 0 otherwise.

Define I’s advantage in the above experiment as

Advfuncf,Gen(I) = Pr[funcIf,Gen = 1] .

We call I an (S, T )-function-inversion algorithm relative to Gen if I0 outputs
advice strings of size at most S and I1 runs in time at most T .

Definition 4 (Collision Probability). Let D be a finite set and let f : D → D
be a function. For z ∈ D, If (z) denotes the number of preimages for z under f ,
i.e.

If (z) := |{u ∈ D : f(u) = z}| .

The collision probability of f : D → D, denoted by q(f) is defined as follows:

q(f) :=

∑
z∈D I

2
f (z)

|D|2
.

Theorem 2 (Fiat-Naor [15]). For any D, f,Gen as in Definition 3 and any
S, T such that T ·S2 = |D|3 ·q(f), there is a RO-model (S, T )-function-inversion
algorithm I such that Advfuncf,Gen(I) ≥ 1− 1/|D|.5

3 Computational Models

In this section, we review some idealized models that will be relevant in our
analyses and discuss their relationships to each other.

5 This statement is weaker than the one proven in [15] but is sufficient for our purpose.
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Random Oracle Model (ROM). In the random oracle model [2] all algo-
rithms have oracle access to a uniformly random function from Func[m1,m2] for
some m1,m2 ∈ N specified by the model.

Random Injection Model (RIM). In the random injection model all algo-
rithms have forwards and backwards oracle access to a uniformly random func-
tion from FuncInj[n,m] for some n ≤ m specified by the model.

Random Permutation Model (RPM). In the random permutation model
all algorithms have forwards and backwards oracle access to a uniformly random
function from Perm[m] for some m ∈ N specified by the model.

3.1 Switching from RIM to ROM

To switch from the RIM to the ROM, we need to show how to simulate oracle
access to a random injection (forward and backward), given oracle access to a
random function. We implement the random injection by padding the input and
using Luby-Rackoff’s strong pseudorandom permutation construction [21].

Luby-Rackoff. We first recall the Luby-Rackoff construction [21], which we
view as a construction of a random permutation oracle from a random oracle.
Formally, suppose ρ is a RO from {0, 1}m/2 to {0, 1}m/2 for m ∈ N. Define oracle
LubRac[ρ] on {0, 1}m as follows:

– Parse x as x1∥x2 with |x1| = |x2| = m/2 and apply a 4-round balanced
Feistel network with h as the round function to obtain y. Output y.

Oracle LubRack−1[ρ] is defined accordingly.

Theorem 3 (Luby-Rackoff [21]). For any (even unbounded) adversary A
making at most q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[ALubRack[ρ](·),LubRack−1[ρ](·) outputs 1]−

Pr
π←Perm[m]

[Aπ(·),π
−1(·) outputs 1]| ∈ O(q2/2m/2).

Random Injection from Random Permutation. We next show a construc-
tion of a random injection oracle π from a random permutation oracle ψ. Suppose
ψ is a random permutation oracle on m bits and ψ−1 is its inverse. For n ≤ m,
define π[ψ] : {0, 1}n → {0, 1}m as π[ψ](x) := ψ(pad(x)) where pad(x) is the func-
tion that pads the LSBs of x with m − n zeros. Define π[ψ]−1 accordingly. It
should be clear that π[ψ] is a random injection oracle.

Now, composing the above constructions gives a construction of a random
injection oracle from a random oracle. Namely, suppose ρ : {0, 1}m/2 → {0, 1}m/2
is a RO. Define the random injection oracle π[ρ] : {0, 1}n → {0, 1}m as π[ρ](x) =
LubRac[ρ](pad(x)) and π[ρ]−1 accordingly. By a simple hybrid argument we have:
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Proposition 1. (RIM-to-ROM.) For any (even unbounded) adversary A mak-
ing at most q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[Aπ[ρ](·),π[ρ]
−1(·) outputs 1]−

Pr
π←FuncInj[n,m]

[Aπ(·),π
−1(·) outputs 1]| ∈ O(q2/2m/2).

3.2 Straight-Line Programs and Generic Ring Algorithms

Let N ∈ N and assume that m ≥ κ, where κ is the bit length of N . Below, we
define two types of programs (aka. algorithms) that use oracles, namely generic-
ring algorithms (GRAs) and straight-line programs (SLPs).

Program Graphs and Their Execution. The below is based on [1]. We
consider deterministic programs that perform arithmetic operations (mod N)
on indeterminate Y .

We associate a program on a single input with its program graph over ZN , a
labelled graph where a label of a node represents a (binary) operation and the
program implicitly stores all intermediate results. We only consider programs
whose graphs are binary trees. Vertices can be either branching or non-branching.

Execution of a program corresponds to traversing a labelled path in its pro-
gram graph over ZN . Non-branching vertices are used to execute arithmetic
operations (mod N) or to load inputs and constants into the program. They are
accordingly labelled with elements a ∈ ZN corresponding to constants in the
program, with a (unique) indeterminate Y corresponding the programs input,
or with an arithmetic operation label (i, j, ◦, b) which applies the arithmetic ring
operation ◦ (mod N) to operands at indices i and j that the program previ-
ously stored. (The flag b ∈ {−1, 1} indicates inversion of the second operand.)
Branching vertices are used to test two values i, j previously computed by the
program for equality (mod N). A branching vertex has two outgoing edges that
are labelled 0 (for left) and 1 (for right).

The program applies the operations indicated by the labels of the vertices
and edges it encounters in the order of traversal as follows:

– The first three vertices are a path and are always labelled 0, 1, and Y . That
is, they are used to load the constants 0 and 1, and the single input y of the
program. The program stores the intermediate results y0 = 0, y1 = 1, y2 = y
for these vertices, respectively, and continues execution along this path.

– For k ≥ 4:

• If the kth vertex vk is labelled with a ∈ ZN , the program stores yk ← a
as the intermediate result for this vertex. It continues execution along
this path.

• If the kth vertex vk is labelled with (i, j, ◦, b) then the program does
as follows. Here ◦ ∈ {·,+}, b ∈ {−1, 1}, and i, j < k correspond to
the ith and jth vertices on the path of traversal, which must be non-
branching. The program computes yk := yi ◦ ybj (mod N) and stores
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the intermediate result yk for vertex v. In case ◦ = + and b = −1,
then ybj = −yj (mod N). In case ◦ = ·, b = −1, and yj = 0 (mod N),
yk := ⊥. In case yi = ⊥ or yj = ⊥, yk := ⊥. It continues execution along
this path.

• If the kth vertex vk is labelled (i, j) where i, j < k correspond to the ith
and jth vertices on the path of traversal, which must be non-branching,
the program makes an equality test whether yi = yj (mod N). If the
result is 1, the program continues its execution along the right edge;
otherwise, along the left.

– Whenever vk is the last vertex on the path, the program computes yk and
outputs it, terminating execution.

Oracle-Aided Programs. Apart from the types of programs we have discussed
above, we are also interested in programs that can perform arithmetic operations
via oracle access (as opposed to directly).

Hence, we define oracles π, eq, and opπ as follows. Oracle π initially samples
a random function π ∈ FuncInj[κ,m] and on query x ∈ ZN returns y = π(x) ∈
{0, 1}m. Here we refer to y ∈ {0, 1}m as a label. We slightly abuse notation by
referring to the oracle π and the internally sampled function indiscriminately.
We also make the convention of parsing x ∈ ZN as a κ-bit binary string. Given
π ∈ FuncInj[κ,m], we first consider an oracle eq for testing equality. On input
y1, y2 ∈ {0, 1}m, eq returns 1 iff π−1(y1) = π−1(y2) (mod N), and 0 otherwise.
Now, we define the behavior of the ring oracle opπ on input as y1, y2 ∈ {0, 1}m
as

opπ(y1, y2, ◦, b) := π
(
π−1(y1) ◦

(
π−1(y2)

)b
mod N

)
for all y1, y2 ∈ {0, 1}m, ◦ ∈ {+, ·}, b ∈ {1,−1}, where the inverse is additive
in case ◦ = +, b = −1. We implicitly assume that in case ◦ = ·, b = −1, opπ
internally queries eq(y2, 0). opπ returns ⊥ in case either of the operands is ⊥ or
the call to eq returns 1, i.e., if π−1(y2) = 0 (mod N).

Oracle-aided program graphs over ZN are labelled very similarly to plain
program graphs over ZN . Roughly speaking, all values in ZN are now replaced
with their labels, according to π. Thus, a non-branching vertex is now labelled in
one of two ways. Either it is labelled with (i, j, ◦, b) where i and j correspond to
the ith and jth non-branching vertex among the vertices previously encountered
on the path and ◦ ∈ {+, ·}, b ∈ {1,−1}. Otherwise, it is labelled with some m-bit
label σ in the image of π.

As before, a branching vertex is labeled with (i, j), where i and j correspond
to the ith and jth non-branching vertex among the vertices previously encoun-
tered on the path. It has two outgoing edges labelled 0 (for left edge) and 1 (for
right edge). The only difference is that the program now has to invoke eq on the
intermediate values yi and yj so as to test their equality (rather simply testing
whether they are equal).

Execution of an oracle-aided program corresponds to its program graph by
adapting the above correspondence in the straight forward manner:
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– The first two nodes on a path are always labelled as π(0), π(1), respectively;
that is, they are used to load the constants 0 and 1. The third node on a
path is used to load the (single) input π(y) to the program. It is labelled
with a special label ϕ. The program stores the intermediate results y0 =
0, y1 = 1, y3 = π(y) for these vertices, respectively, and continues execution
along this path.

– When the program encounters a non-branching vertex v:
• If v is labelled with (i, j, ◦, b), where i, j are indices and b ∈ {0, 1}, and

this is the kth non-branching vertex on the path of traversal for some
k ≥ 4, and, then the program invokes the oracle opπ on input (yi, yj , ◦, b).
It stores the output of opπ as yk.

• If v is labelled with σ and this is the kth non-branching index on the path
of traversal for some k ≥ 4, store yk ← σ and continue the execution of
the program along this path.

– If the program encounters a branching vertex v: if v is labelled (i, j), the
program invokes the oracle eq on input (yi, yj). If the result is 1, the program
continues its execution along the right edge; otherwise, along the left.

– If k is the last vertex on the path, the program outputs yk and terminates.

Types of Programs. We define two types of programs:

Definition 5. A T -step (possibly oracle-aided) straight line program (SLP) S
over ZN is a program whose program graph over ZN is a labelled path v0, . . . , vT+3.

A deterministic generic ring algorithm (GRA) is a generalization of SLPs
that allows equality tests. As explained above, such queries are represented as
branching vertices in our graph representation of a GRA. Thus, an SLP can be
seen as special case GRA, where an SLP is a GRA that contains no branching
vertices.

Definition 6. A T -depth deterministic (possibly oracle-aided) generic ring al-
gorithm (GRA) G over ZN is a program whose program graph over ZN is a
depth-(T + 3) vertex-labelled and partially edge-labelled binary tree.

To keep the distinction between oracle aided vs. regular programs clear, we
will always make the dependency on π explicit by superscripting oracle-aided
programs with π, i.e., Gπ.

The following definition applies only to non-oracle aided programs. It induc-
tively defines the polynomial corresponding to an execution of a program on
input x ∈ ZN . Essentially, if the program encounters a non-branching vertex v
and v corresponds to an arithmetic operation, then we associate the resulting
tuple (PGv (x), QGv (x)) with vertex v. Here, PGv (x) and QGv (x) are interpreted as
the numerator and denominator of a rational function PGv (x)/QGv (x) that is the
result of applying the arithmetic operation to the rational functions associated
with prior vertices w, u.

Definition 7. For a GRA G (or SLP S) over ZN of size T and non-branching
vertex v in its execution graph, the pair (PGv (x), QGv (x)) of polynomials in ZN [x]
associated with v is defined inductively, as follows:
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1. The root has associated the pair (0, 1), the child of the root the pair (1, 1),
and the child of that child has the pair (x, 1).

2. A vertex v labelled with a ∈ ZN is associated with (a, 1).
3. For each non-branching vertex v, labelled with operation (u,w,+, b), we have:

(PGv (x), QGv (x)) :={
(PGu (x) ·QGw(x) + PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = 1

(PGu (x) ·QGw(x)− PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = −1

4. For each non-branching vertex v, labelled with operation (u,w, ·, b), we have:

(PGv (x), QGv (x)) :=
(PGu (x) · PGw (x), QGu (x) ·QGw(x)) b = 1

(PGu (x) ·QGw(x), QGu (x) · PGw (x)) b = −1, QGu (x) ̸= 0 (mod N)

⊥ b = −1, QGu (x) = 0 (mod N)

Note that PGv (x) and QGv (x)) can each be represented as an SLP of size at most
T .

Definition 8. For an SLP S over ZN of size T , we denote by (PS(x), QS(x))
the pair of polynomials in ZN [x] associated with the final vertex on the evaluation
path. If QS(x) ≡ 1, we denote by fS the polynomial PS(x). Note that PS(x)
and QS(x)) can each be represented as an SLP of size at most T .

Definition 9. For each non-branching vertex v in the program graph over ZN
of an ℓ-step GRA G with corresponding pair of polynomials (PGv (a), QGv (a)), we
associate the function

fGv : ZN → ZN ∪ {⊥} : a 7→
PGv (a)

QGv (a)

where the function is undefined if QGv (a) = 0, which is denoted as fGv (a) =⊥,
and where PGv (a) and QGv (a) are evaluated over ZN . Moreover, for an argument
a ∈ ZN , the computation path from the root v0 to a leaf vℓ+3(a) is defined by tak-
ing, for each equality test of the form (u,w), the edge labeled 0 if fGv (a) = fGw (a),
and the edge labeled 1 if fGu (a) ̸= fGw (a). The partial function fG computed by
G is defined as

fG : ZN → ZN ∪ {⊥} : a 7→ fGvℓ+3(a)
.

We define the output of G on input x ∈ ZN as G(x) := fG(x).

3.3 Model Specific Versions of the RSA Assumption

We introduce a new variant of the RSA game with preprocessing model specif-
ically tailored to the oracle-aided computational models from the previous sec-
tion. In the following, we fix the security parameter κ and an integerm ∈ Z,m ≥
κ.
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Definition 10 (Generic RSA Problem with Preprocessing). For a tuple
of algorithms A = (Aπ0 ,A1) and an RSA instance generator RSAGen, define
experiment crsaARSAGen as follows:

– Offline Phase. Sample π ← FuncInj[κ,m]. Run Aπ0 on input 1κ. Let st
denote the return value of Aπ0 .

– Online Phase. Compute (N, e, d)← RSAGen(1κ) and sample x← ZN . Run
A1 on input (N, e, π(xe), st) and let Gπ denote the output. If Gπ does not
correspond to the description of a GRA, abort. Note that A1 does not get
access to oracle π.

– Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs
z ∈ {0, 1}m, the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to RSAGen as

AdvcrsaRSAGen(A) = Pr[crsaARSAGen = 1] .

We call A = (Aπ0 ,A1) an (S, T1, T2)-generic-RSA-with-preprocessing algorithm
(GP-RSA) relative to RSAGen if Aπ0 outputs advice strings st of size at most S,
A1 runs in time at most T1, and and any program Gπ in the output of A1 runs
in time at most T2. Note that we require that T1 ≥ T2.

We also give an alternative version of this game in which π ∈ FuncInj[κ,m]
and (N, e, d) ∈ RSAGen(1κ) are a fixed.

Definition 11 (Fixed Generic RSA Problem with Preprocessing). Fix
integers (N, e, d) ∈ RSAGen(1κ), let π ∈ FuncInj[κ,m], and let st be of size at
most S. Define experiment fcrsaA(N,e,d,st,π) as follows:

– Online Phase. Sample x← ZN . Run A on input (N, e, π(xe), st) and let Gπ

denote the output. If Gπ does not correspond to the description of a GRA,
abort. Note that A does not have oracle access to π.

– Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs
z ∈ {0, 1}m, the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to (N, e, d, st, π) as

Advfcrsa(N,e,d,st,π)(A) = Pr[fcrsaA(N,e,d,st,π)(1
κ) = 1],

We call A an (S, T1, T2)-fixed-generic-RSA-with-preprocessing (FGP-RSA) al-
gorithm relative to (N, e, d, st, π) if A runs in time at most T1, and and any
program Gπ in the output of A runs in time at most T2.

Note that in the above definition we do not require the advice string st to be
output by a preprocessor Aπ0 . However, by a standard averaging argument, we
obtain the following lemma:

Lemma 2. Let A = (A0,A1) be an (S, T1, T2)-GP-RSA algorithm and suppose
that AdvcrsaRSAGen(A) ≥ ϵ. Then with probability at least ϵ/2 over the coins of
RSAGen, the choice of π, and coins of Aπ0 , A

π
0 outputs st and RSAGen outputs

(N, e, d) s.t. Advfcrsa(N,e,d,st,π)(A1) ≥ ϵ/2.
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4 Main Result

Theorem 4. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative
to RSAGen, and let ϵ := AdvcrsaRSAGen(A).

Then there exists a (Sf , Tf )-factoring algorithm B in the random oracle model
relative to RSAGen such that

AdvfacRSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and such that Sf := Sr +O(1).

Remark 2. In the following, we set ϵ′ := ϵ/4.

Remark 3. We slightly abuse notation in the proof and denote by Sr, T1,r, T2,r, ϵ
′

both of the following: (1) constants Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ),
ϵ′ = ϵ′(κ) for a fixed setting of security parameter κ and (2) functions Sr :=
Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ

′ = ϵ′(κ) with respect to an indeterminate
κ. For simplicity, in our case analysis below, we assume that one of the following
mutually exclusive scenarios occur: (1) for sufficiently large κ, Sr(κ) · T2,r(κ) ≥
ϵ′(κ) · 2κ/4 or (2) for sufficiently large κ, Sr(κ) · T2,r(κ) < ϵ′(κ) · 2κ/4. We
note that it is also possible that for infinitely many κ, Sr(κ) · T2,r(κ) ≥ ϵ′(κ) ·
2κ/4, and simultaneously, for infinitely many κ, Sr(κ) · T2,r(κ) < ϵ′(κ) · 2κ/4.
We can still handle this case and show existence of a factoring algorithm with
parameters as above. If the above occurs, then the unbounded pre-processing
stage of the factoring algorithm will do the following: On fixed input κ, it will
run the GP-RSA algorithm exhaustively on all possible random coins and inputs
to determine the exact constants Sr(κ), Tr,2(κ), ϵ

′(κ). It will then check whether
Sr(κ) ·Tr,2(κ) ≥ ϵ′(κ) ·2κ/4 or Sr(κ) ·Tr,2(κ) < ϵ′(κ) ·2κ/4. If the former is true,
it will append a “0” bit to the preprocessing advice st to tell the online portion
of the factoring algorithm to run the factoring algorithm from Section 4.3. If
the latter is true, it will append a “1” bit to the preprocessing advice to tell the
online portion of the factoring algorithm to run the factoring algorithm from
Section 4.4. Thus, the preprocessing advice increases by a single bit (so it still
satisfies Sf = Sr +O(1)) and the other parameters Tf ,Adv

fac
RSAGen(B) remain the

same and therefore satisfy the required constraints.

Remark 4. Note that achieving the desired factoring algorithm when Tr,2 ≥
2κ/10 or ϵ′ ≤ 1/2κ/6 is trivial since there is a trivial factoring algorithm that
runs in time Tf = O

(
(2κ/10)5

)
= O

(
2κ/2

)
, with zero pre-processing and suc-

cess probability 1, as well as a trivial factoring algorithm that achieves success
probability Ω

(
(2−κ/6)3

)
= Ω

(
2−κ/2

)
with zero pre-processing and poly(κ) time

(which just guesses a random number in [2κ/2] as one of the factors of N). We
therefore assume WLOG that Tr,2 < 2κ/10 and ϵ′ > 2−κ/6.

Remark 5. We give a comparison here of the bounds we achieve versus those
achieved by AM’s factoring algorithm. First, we consider our runtime of Tf :=

poly(κ) · (T1,r+T 5
2,r+

T
7/2
2,r

ϵ3/2
), and focus on the (T1,r+T 5

2,r+
T

7/2
2,r

ϵ3/2
) part. The first

20



term’s dependence on T1,r is unavoidable, since the factoring algorithm must run
the RSA algorithm at least once. The second term of T 5

2,r comes from running the
SLPFactoringπ algorithm with M ′ := poly(κ) · (T2,r)2. This corresponds exactly
to running AM’s Algorithm 1 M ′ number of times, whereas they only run it
once. The reason for one of the T2,r factors in M

′ is that the success probability
of AM’s Algorithm 1 depended linearly on 1/T2,r (the size of the SLP) and we
wanted to remove the dependence on T2,r from our factoring algorithm’s success
probability. The reason for the second T2,r factor is that the success probability
of AM’s Algorithm 1 also depends linearly on the fraction of roots in the SLP. For
them, this is essentially equivalent to the RSA algorithm’s success probability.
But for us, due to our compression argument, the fraction of roots in the SLP
is only guaranteed to be at least J/N ≈ ϵ/T2,r. Since we want to remove the
dependence on T2,r from the success probability of the factoring algorithm, this
accounts for the second factor of T2,r in our runtime. Moving to the third term

of
T

7/2
2,r

ϵ3/2
, this comes from the runtime of Alg2AM which is essentially the same as

Algorithm 2 of AM. We are able to reduce from ϵ3/2 to ϵ5/2 in the denominator,
since we assume that ϵ > 1/N and since we ignore polylog(N) = poly(κ) factors
in our analysis.

Next we move on to our success probability. We have ϵ3 compared to linear
dependence on ϵ in AM because we only provide a factoring algorithm when a
certain event occurs. The event that we consider is only guaranteed to occur
with probability ϵ with respect to ϵ-fraction of oracles.

4.1 Notation and Algorithms

We begin by introducing some additional notation, terminology, and useful al-
gorithms.

Recall that at a branching vertex v with label (u,w) in the program graph of
a GRA G, the program performs an equality test on rational functions PGu /Q

G
u

and PGw /Q
G
w , evaluated at the input y of the program. As in AM, we refer to

such a branching index as extreme if the test consistently yields either 0 or 1 for
most possible inputs y of the program.

Definition 12 (Extreme Branching Vertex). Let δ ∈ [0, 1] and N ∈ Z. A
(δ,N)-extreme branching vertex of a GRA G is a branching vertex v labeled with
(u,w) such that νN (PGu ·QGw − PGw ·QGu ) ∈ [0, δ] ∪ [1− δ, 1].

Our next definition defines a property of an element y ∈ ZN with respect to
a polynomial f over ZN . We refer to this property as negative orientation.

Definition 13 (Negative Orientation). Let δ ∈ [0, 1], N ∈ Z, and let f be
a polynomial with νN (f) ∈ [0, δ] (resp. νN (f) ∈ [1 − δ, 1]). We say that y is
(δ,N)-negatively oriented with respect to f if f(y) = 0 (mod N) (resp. f(y) ̸= 0
(mod N)).

We now define algorithm PreGRAπ in Figure 1. Intuitively, the purpose of
this algorithm is to turn an oracle-aided GRA Gπ into a GRA G̃ that succesfully
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computes the eth root x of y (mod N), whenever Gπ successfully computes
π(x) on input π(y). We prove this property of PreGRAπ in Lemma 3. A crucial
property of PreGRAπ is that it never queries π−1(σy) when run on input σy.

Algorithm PreGRAπ

Input: A GRA Gπ of size at most T , a label σy ∈ {0, 1}κ.
Output: A GRA G̃.

– Traverse the nodes of the execution graph of Gπ using a topological
ordering. Let vi be the i-th node.
• If vi corresponds to a non-branching vertex with label σy, then set

the i-th node ṽi of G̃ with value Y , where Y is the indeterminant
of the GRA G̃.

• If vi corresponds to a non-branching vertex with label σz, where
σz ̸= σy, then label the i-th node ṽi of the GRA G̃ with π−1(σz).

• If vi is a non-branching vertex labelled with (vu, vw, ◦, b), where vu
and vw are predecessor nodes of vi (according to the topological
order), label ṽi with (ṽu, ṽw, ◦, b).

• If vi is a branching vertex corresponding to the equality check of
two nodes vu, vw, where vu and vw are predecessor nodes of vi
(according to the topological order), set ṽi as the branching vertex
labelled with (vu, vw)

– Output G̃.

Fig. 1: Inversion algorithm for GRAs.

Lemma 3. Let Gπ be a T -depth oracle-aided GRA over ZN , and let y = xe

(mod N). Suppose that G̃ := PreGRAπ(Gπ, π(y)) and that Gπ(π(y)) = π(x).
Then G̃ is a T -depth GRA over ZN and G̃(y) = x (mod N).

Proof. The claim on the number of steps is immediate. For the second claim,
observe that for every intermediate value stored at a v node labeled with σz =
π(z) in the program graph of Gπ, PreGRAπ stores the value z ∈ ZN , unless
z = y (mod N). In the latter case, PreGRAπ stores Y . Hence, for every operation
(◦, b) ∈ {+, ·}×{−1, 1} or equality check performed by Gπ on two labels π(a) and
π(b) at some node vi of its program graph, G̃ performs the analogous operation
on a and b. It follows that if Gπ(π(y)) = π(x) then G̃(y) = x. ⊓⊔

We next define the algorithm DomPath from AM in Figure 2. This algorithm
extracts the path most likely to be taken from a GRA G over ZN , when G is
run on a random input y, i.e., it extracts the ‘dominating path’ in G. Note that
when viewing a GRA as its program graph, then the dominating path can be
seen as corresponding to an SLP that corresponds to the nodes in this path.
DomPath takes a sensitivity parameter δ ∈ [0, 1] that determines how accurate
its guess of the dominating path will be. On top of the SLP corresponding to
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this path, DomPath also outputs all the SLPs induced by branching vertices
encountered along the dominating path. That is, if a node along the dominating
path is labeled (u,w), then DomPath, on input G, will include the SLP PGu −PGw
in its output.

Algorithm DomPath

Input: A GRA G over ZN of depth at most T , δ ∈ [0, 1].
Output: A list of Polynomials R1, . . . , Rψ+1 over ZN , where ψ ≤ T − 1.

– Let Gex be the tree obtained from G by truncating the sub-tree rooted
at v for all non-(δ,N)-extreme branching verteces v (in particular,
v must be branching). Thus the leaf vertices of Gex are either non-
branching or non-extreme branching vertices.

– Consider a traversal of Gex starting from the root and, at the i-th
extreme vertex v labeled with (u,w), going to the edge labeled 1 if
νN (fGu −fGw ) ∈ [0, δ] and to the edge labeled 0 if νN (fGu −fGw ) ∈ [1−δ, 1].
Let ψ be the number of extreme vertices encountered in the path from
the root to a leaf. Note that ψ ≤ T − 1. For each extreme vertex
labeled with (u,w), let Ri denote the polynomial (PGu ·QGw −PGw ·QGu ).
Let R̂ψ+1 denote the final SLP formed by the path from the root to

the leaf (note that f R̂ψ+1 is different from Rψ, since the leaf is not an
extreme branching vertex).

– If the last vertex of R̂ψ+1 is a non-branching vertex with

(P R̂ψ+1 , QR̂ψ+1), then let Rψ+1(Y ) := [P R̂ψ+1(Y )]e− Y · [QR̂ψ+1(Y )]e.
– If the last vertex of R̂ψ+1 is a non-extreme branching vertex labeled

with (u,w), then let Rψ+1 := PGu ·QGw − PGw ·QGu .

Fig. 2: Inversion algorithm for GRAs.

Note that for all the SLP’s R1, . . . , Rψ+1 with corresponding pairs
(PR1(Y ), QR1(Y )), . . . , (PRψ+1(Y ), QRψ+1(Y )) returned by DomPath, we have
that QR1(Y ) ≡ · · · ≡ QRψ+1(Y ) ≡ 1. We therefore denote by fR1

, . . . , fRψ+1
the

polynomials PR1(Y ), . . . , PRψ+1(Y ).
Finally, we define the algorithm ComGRAπ (see Figure 3). This algorithm

internally runs the online phase of an FGP-RSA algorithm to obtain the oracle
aided GRA Gπ. It then runs PreGRA on its input π(y) to obtain a GRA G̃, from
which it extracts the dominating path via DomPath.

We prove the following Lemma:

Lemma 4. Let A be an (Sr, T1,r, T2,r)-FGP RSA algorithm relative to N, e, π

and st. Suppose that AdvfcrsaN,e,d,st,π(A) ≥ ϵ/2 and let δ ∈ [0, 1]. Then with proba-
bility at least ϵ/2 over the coins of ComGRA[A]π and y ← ZN , at least one of
the following two events occurs when running ComGRA[A]π on input π(y), and
δ ∈ [0, 1].

1. ComGRA[A]π returns R1, ..., Rψ+1 such that y is (δ,N)-negatively oriented
with respect to Ri for some i ∈ [ψ + 1].
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Algorithm ComGRA[A]π

Input: A label π(y), a sensitivity parameter δ ∈ [0, 1]. Denote the random
coins as ρ.
Output: A list of polynomials {R1, . . . , Rψ+1} over ZN .

– Run A on input (N, e, π(y), st) and randomness ρ. Let Gπ denote the
output. If Gπ does not correspond to the description of a T2-depth GRA
over ZN , abort. Let G̃ := PreGRA(Gπ, π(y)).

– Return {R1, . . . , Rψ+1} ← DomPath(G̃, δ)

Fig. 3: Combined Algorithm. A is an (S, T1, T2) FGP-RSA algorithm relative to
N, e, st, π.

2. ComGRA[A]π returns R1, ..., Rψ+1 such that νN (Rψ+1) ≥ δ and Rψ+1 ̸≡ 0
(mod N).

Proof. Let Gπ be the oracle aided GRA output by A on input N, e, π(y), st,
where y = xe (mod N). We will show that whenever the algorithm is successful
(i.e. Gπ(π(y)) = π(x)) then the conclusion of Lemma 4 must hold. This is
sufficient to prove the lemma.

Let G̃ = PreGRA(Gπ, π(y)). Consider the execution of DomPath(G̃) and recall
that for each extreme vertex labeled with (u,w), Ri denotes the SLP

(P G̃u ·QG̃w − P G̃w ·QG̃u ).

Finally, recall that R̂ψ+1 denotes the final SLP formed by the path from the root
to the leaf.

If the last vertex of R̂ψ+1 is a non-extreme branching vertex labeled with

(u,w), thenRψ+1 is defined asRψ+1 = P G̃u ·QG̃w−P G̃w ·QG̃u and by definition of non-
extreme branching vertex, νN (Rψ+1) ∈ (δ, 1−δ). This implies that νN (Rψ+1) ≥ δ
and Rψ+1 ̸≡ 0. (If Rψ+1 ≡ 0 then νN (Rψ+1) = 1.). So the conclusion of Lemma 4
holds.

We therefore assume w.l.o.g. that the last vertex of R̂ψ+1 is a non-branching

vertex — in which case Rψ+1 is defined as Rψ+1 = [P R̂ψ+1(Y )]e−Y ·[QR̂ψ+1(Y )]e

— and that the algorithm is successful (i.e. Gπ(π(y)) = π(x)).

Case 1: R̂ψ+1(y) = x. If νN (Rψ+1) ≥ δ then the conclusion of Lemma 4
holds. Otherwise, νN (Rψ+1) ∈ (0, δ). In this case, y is a root of Rψ+1, since

by Lemma 3, P R̂ψ+1(y)/QR̂ψ+1(y) = x and Rψ+1(Y ) = [P R̂ψ+1(Y )]e − Y ·
[QR̂ψ+1(Y )]e. Moreover, Rψ+1(Y ) ̸≡ 0, which was shown by Aggarwal and
Maurer [1] as part of the proof for their Corollary 1. Hence, y is negatively
oriented with respect to Rψ+1, and again the conclusion of Lemma 4 holds.

Case 2: R̂ψ+1(y) ̸= x. Since the algorithm is successful, Gπ(π(y)) = π(x)

and due to Lemma 3, we have that G̃(y) = x. Note that G̃(y) = x but
R̂ψ+1(y) ̸= x and the last vertex of R̂ψ+1 is a non-branching vertex. Hence,
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the execution of G̃(y) takes a different branch than the execution of R̂ψ+1(y)
at some extreme branching vertex on the path from the root to the leaf
corresponding to R̂ψ+1. But then this means that for some i ∈ [ψ], either
νN (Ri) ∈ (0, δ) and Ri(y) = 0 or νN (Ri) ∈ (1 − δ, 1) and Ri(y) ̸= 0. By
definition, this implies that for some i ∈ [ψ], y is negatively oriented with
respect to Ri, so again the conclusion of Lemma 4 holds.

This concludes the proof of Lemma 4. ⊓⊔

Two Events. Fix A, N, e, π and st as in Lemma 4. We consider the probability
of two events over the randomness of ComGRA and choice of y ← ZN . Set

J := (1−ϵ′/2)ϵ′·N
8 logNT2,r

= (1−ϵ′/2)·N
4R1T2,r

= N · δ, where δ := J/N .

– Event E[N, e, st, π]1: ComGRA[A]π on input π(y) returns a list of polyno-
mials {R1, . . . , Rψ+1} s.t. y is negatively oriented with respect to one of
{R1, . . . , Rψ+1}.

– Event E[N, e, st, π]2: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. νN (Rψ+1) ∈ (δ, 1− δ).

By Lemma 4, we obtain the following corollary:

Corollary 1. Suppose that the conditions of Lemma 4 hold. Then at least one
of the events E[N, e, st, π]1 or E[N, e, st, π]2 occurs with probability at least ϵ/4.

Looking ahead, if E[N, e, st, π]1 occurs, then A will be useless for factoring.
Our task, therefore, is to prove that E[N, e, st, π]1 occurs with probability less
than ϵ′ = ϵ/4 (which we do in the following Section 4.2 via a compression
argument). We can therefore conclude that E[N, e, st, π]2 occurs with probability
at least ϵ′ = ϵ/4.

4.2 Bounding the Probability of Event E[N, e, st, π]1 when
Sr · T2,r ≤ ϵ′2κ/4

In this section, we upper bound the probability of the event E[N, e, st, π]1 as
defined in the previous section, given that Sr · T2,r ≤ ϵ′2κ/4, where ϵ′ := ϵ/4. In
particular, we fix the values of N, e, st, π throughout most of this section. We also
fix the length of the labels and interpret our labelling function as an injective
mapping π : ZN → ZL, where L ≥ N is chosen of appropriate size.

To achieve our upper bound, we will construct an encoding routine Ẽncπ

(which is itself a “wrapped” version of Encπ that includes the RSA instance
generation and preprocessing steps)6 that compresses the function table of π

6 Separating them is convenient because otherwise, we couldn’t keep N fixed while

arguing about Encπ. We also comment that Ẽncπ uses more randomness than Encπ

and Dec. So when the non-wrapped routines read their shared random string ρ, they
should start at the position corresponding to the number of random bits used by

Ẽncπ.
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whenever the event E[N, e, st, π]1 is likely to happen. We also present a corre-

sponding decoding routine Dec. Together, Ẽncπ,Dec will lead to a contradiction
of Lemma 1, given E[N, e, st, π]1 happens with too large of a probability. We first

present our encoding routine Ẽncπ and decoding routine Dec in Figures 4, 5, and
6 and argue their correctness. Here we set r1 := ⌈2 logN/ϵ′⌉, r2 := ⌊ ϵ

′N
2T2,r
⌋, and J

to be the maximum integer that satisfies J ≤ ⌊N/T2,r⌋−⌊ϵ′N/(2T2,r)⌋
8R1

and r1JT2,r

is a power of two. Note that we can lower bound J by J ≥ (1−ϵ′/2)N
32r1T2,r

.

Algorithm Encπ

Interface: Encπ takes as input (N, e, st). Denote Encπ’s random coins as ρ.
Encπ outputs an encoding E of the labelling function π : ZN → ZL.
Initialization: Initialize a set E = {st, N, e} and an (empty) table Table
that stores rows of the form (x, π(x)) for x ∈ ZN . Split random tape ρ into
ρ[1]||ρ[2] of appropriate size. Let I ⊆ ZL denote the image of π : ZN → ZL.
Add to E an encoding of I (of length log

(
L
N

)
).

Set j := 0. Repeat the following steps while j < r2:

– Set good := false. Parse ρ[1] as ρ[1] = ρ[1, 1], ..., ρ[1, r1 · r2] and ρ[2] as
ρ[2] = ρ[2, 1], . . . , ρ[2, r1 · r2].

– Set k := 0 and repeat the following steps while k ≤ r1 and ¬good:
• Set k := k + 1.
• Use ρ[1, j · r1 + k] to select a random image π(yk) from the images

that are not yet contained in Table.
• Run ComGRAπ[A1] on random coins ρ[2, j · r1 + k] and inputs
δ, π(yk).

• If ComGRAπ[A1] returns {R1, . . . , Rψ+1} such that yk is negatively
oriented with respect to Rζ for some ζ ∈ [ψ + 1], set good := true.

– If ¬good, abort. (Call this Failure Event 2.1; we will show it occurs
with probability at most 1/2.)

– Denote by 1 ≤ ℓ ≤ J the index of yk among the J roots or non-roots
of Rζ , depending on which case of Definition 13 Rζ , yk falls into.

– Add to E the entry (ζ, ℓ, k). Re-run ComGRAπ[A1] on random coins
ρ[2]j·r1+k and input δ, π(yk). If ComGRAπ[A1] internally queries (during
the execution of PreGRAπ) π−1(z) s.t. (π−1(z), z) is not yet stored in
Table add to E the trivial encoding of π−1(z) (of length log(N−|Table|))
and add (π−1(z), z) to Table. Add (yk, π(yk)) to Table.

– Set j := j + 1.

At this point there is a set of pre-images S and images S′ stored in Table.
Add an encoding to E of π restricted to (ZN \ S)→ (I \ S′).

Fig. 4: Non-wrapped encoding routine.
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Algorithm Dec

Interface: Dec takes as input an encoding E and random coins ρ. It
outputs the function table Table[π] of a function π ∈ FuncInj.

– Initialize Table[π] = ⊥ and done := false.
– Recover from E the image of π and add it to Table[π].
– Interpret random coins ρ as ρRSAGen, ρA0 , ρ

π
Enc.

– Split ρπEnc into two parts ρπEnc[1]||ρπEnc[2] and parse these parts as ρπEnc[1] =
ρπEnc[1, 1], ..., ρ

π
Enc[1, r1 · r2] and ρπEnc[2] = ρπEnc[2, 1], ..., ρ

π
Enc[2, r1 · r2].

– Compute st = Aπ0 (1
κ; ρA0) and (N, e, d) = RSAGen(1κ; ρRSAGen). Let

δ := (1−ϵ′/2)
4r1T2,r

.

– While ¬done do:
• Find the next tuple t = (ζ, ℓ, k) in E. If this is the jth tuple of this

form, set m← r1 · j + k.
• Use random coins ρπEnc[1,m] to select a point π(y) in the image of
π.

• Run ComGRA[A1]
π on input (δ, π(y)) with random coins ρπEnc[2,m].

• If ComGRA[A1]
π queries π on input x, find π(x) in E and return it

to ComGRA[A1]
π.

• When ComGRA[A1]
π returns {R1, . . . , Rψ+1}, find the ℓth root y

of Rζ .
• Add to Table[π] the entry (y, π(y)).
• Remove t from E. If no further tuple of the above form exists in E,

set done := true.
– Add all remaining preimages stored in E to the appropriate positions

in Table[π].
– Return Table[π]

Fig. 5: Our decoding routine.
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Lemma 5. Suppose that Ẽncπ with access to π and on random coins ρ outputs E.
Then Dec on input E and on random coins ρ outputs the function table Table[π]
of π.

Proof. The lemma follows by construction of Encπ and Dec. Specifically, Encπ

stores one tuple of the form (ζ, ℓ, k) per iteration of the outer loop. As Encπ

stores the tuples E in the order in which they are found, it follows that Dec
can deterministically recover the tuple corresponding to the jth iteration of the
outer loop. Since both algorithms parse the random tape ρπEnc[2] in the same
manner, Dec can also recover the proper index m = r1 · j+k and (via ρπEnc[1,m])
the image π(y) in order to run ComGRA[A1]

π. Moreover, Encπ ensures that any
call x to π that ComGRA[A1]

π makes during its run can be answered by looking
up the pair (x, π(x)) in E. Hence, Dec obtains from ComGRA[A1]

π the same list
of polynomials {R1, . . . , Rψ+1} as Encπ does. It can now identify the correct
polynomial Rζ among them and use the ℓ root y as the preimage y of π(y)
in order to complete the pair (y, π(y)) in Table[π]. Once Dec finds no further
points, it can easily recover the remaining points of the function table by using
the trivial encoding provided by Encπ.

We next present the main technical lemma of this subsection. The proof of
this lemma is deferred to Appendix A. Combining it with Lemma 7 below, we
get that the encoding routine is compressing with high probability.

Lemma 6. Let Sr ≤ ϵ′2κ/(4T2,r) and fix some N, e, π and st of size at most Sr.

Let A be an (Sr, T1,r, T2,r)-FGP RSA algorithm. Suppose that Advfcrsa(N,e,st,π)(A) ≥
ϵ/2 and Pr [E[N, e, st, π]1] ≥ ϵ′ (over the random coins of ComGRA[A1]

π and
random choice of y ∼ ZN ). Then with probability at least 1/2 over the coins of
Encπ, Encπ, on input (N, e, st), returns E of size at most log

(
L
N

)
+ log(N !) +

2 log(N)− ϵ′N/(2T2,r) + 2.

Algorithm Ẽncπ

Interface: Ẽncπ takes in random coins ρ. It outputs an encoding E of π.

– Parse ρ as ρ = (ρRSAGen, ρA0 , ρEnc).
– Compute st = Aπ0 (1

κ; ρA0) and (N, e, d) = RSAGen(1κ; ρRSAGen).
– Obtain an encoding E as E← Encπ(st, N, e; ρEnc). If Enc

π aborts, abort.
– Output E.

Fig. 6: Our final, wrapped encoding routine.

Lemma 7. Let RSAGen be an RSA generator and let A = (A0,A1) be an AG-
RSA algorithm with AdvcrsaRSAGen(A) ≥ ϵ s.t. Sr ·T2,r < 2κ ·ϵ/16. Then the following
happens with probability less than ϵ/2 over the choice of π, the random coins of
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A0, and the random coins of RSAGen: Aπ0 outputs st of size at most Sr and
RSAGen outputs (N, e, d) s.t. E[N, e, st, π]1 occurs with probability at most ϵ/4
(over the random coins of ComGRA[A1]

π and random choice of y ∼ ZN ).

Proof. Let A be as in the lemma statement and assume toward a contradiction
that with probability at least ϵ/2 (over their internal coins and choice of π), Aπ0
and RSAGen output st and (N, e, d) s.t. E[N, e, st, π]1 occurs with probability
at least ϵ′ = ϵ/4 over the randomness of ComGRA[A1]

π and random choice of
y ∼ ZN . Then by Lemma 6, given that π, st, and N, e are such that E[N, e, st, π]1
occurs with probability at least ϵ′ = ϵ/4 over the internal coins of ComGRA[A1]

π

and random choice of y ∼ ZN , we have that, for sufficiently large κ, Encπ outputs
an encoding E of size at most log

(
L
N

)
+ log(N !) + 2 log(N) − ϵ′N/(2T2,r) +

2 with probability at least 1/2 over its choice of random coins. Moreover if
Encπ returns E, then running Dec on E reproduces the function table of π with

probability 1 (when run with the same coins). Now consider the algorithm Ẽncπ

depicted in Figure 5. Ẽncπ gets access to π and internally runs A0 and RSAGen
on input 1κ to obtain st of size at most Sr and (N, e, d), respectively. It then
runs Encπ on input (N, e, st) with access to π. It returns the encoding E returned

by Encπ and aborts in case Encπ aborts. We can view (Ẽncπ,Dec) as a pair of
encoding/decoding routines that produce, for any input π, an encoding E which
successfully decodes to π with probability at least ϵ′ over the random coins of

Ẽncπ. We now use Lemma 1 where we set E = Encπ (here we give π as an
oracle, but this is equivalent to giving it as input as in the Lemma since Encπ

can make an unbounded number of queries), D = Dec, and X = {0, 1}log(
L!

(L−N)!
),

m = log(N !) + 2 log(N) − ϵ′N/(2T2,r) + 2, and γ = ϵ′. Note that our choice of

X is large enough to store the function table of π. Lemma 1 says that log
(
L
N

)
+

log(N !)+2 log(N)−ϵ′N/(2T2,r)+2 = m ≥ log |X |−log 1/γ = log(N !)−2+log(ϵ′).

Since log
(
L
N

)
+ log(N !) = log( L!

(L−N)! ) = log |X |, we arrive at a contradiction

whenever ϵ′ > 16N2/2ϵ
′N/(2T2,r). Since we have assumed that ϵ′ > 2−κ/6 ≥

(1/(2N)1/6) and T2,r < 2κ/10 ≤ (2N)1/10, we indeed have that for sufficiently

large κ, ϵ′ > 16N2/2ϵ
′N/(2T2,r) ≥ 16N2/2N

3/5/219/15 > 16N2/2ϵ
′N/(2T2,r), which

yields the desired contradiction.

4.3 Constructing a Factoring Algorithm in the RO Model when
Sr · T2,r ≤ ϵ′2κ/4

Recall that in Lemma 4 we showed that, for properly generatedN, e, st, π, at least
one of the events E[N, e, st, π]1, E[N, e, st, π]2 occurs with probability at least
ϵ/4. Further, in Lemma 7 we showed that for a large fraction ϵ/2 of N, e, st, π, the
event E[N, e, st, π]1 occurs with probability at most ϵ/4, when Sr ·T2,r ≤ ϵ′2κ/4.
This means that (for ϵ/2-fraction of N, e, st, π) event E[N, e, st, π]2 occurs with
probability at least ϵ/4 = ϵ′, when Sr · T2,r ≤ ϵ′2κ/4. In this subsection, we will
first present a factoring algorithm in the RI model that succeeds when event
E[N, e, st, π]2 occurs with probability at least ϵ′. Put together with Lemmas 4
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and 7, this means that the factoring algorithm presented in this section is guar-
anteed to succeed with high probability when Sr ·T2,r ≤ ϵ′2κ/4. Looking ahead,
at the end of this section, we will show how to switch the algorithm from the RI
model (with backwards and forwards access to the random injective function)
to the RO model. In Section 4.4, we will present a completely different factoring
algorithm in the RO model that succeeds when Sr · T2,r > ϵ′2κ/4.

We begin by recalling Algorithm 2 (denoted Alg2AM) from Aggarwal and
Maurer in Figure 7.

Algorithm Alg2AM

Input: A GRA G over ZN .
Output: A factor of N or an SLP S over ZN .

– Let v1, ..., v4 be the first 4 nodes on a path from the root of G.
– Initialize S to be a path of length 2 with v1, v2, v3. Let v = v4.
– While v.right is defined do:
• If v is a non-branching vertex, then append v with its label to Sπ.
• Else, let the label of v be (u,w).
• For i← 1 to M := log(N) · δ−3/2 do:

* Generate a uniformly random element x ∈ ZN
* Compute g as the gcd of PGu (x) ·QGw(x)− PGw (x) ·QGu (x) and
N

* If g ̸∈ {1, N}, then return g
• Generate a uniformly random element x′ ∈ ZN
• If PGu (x′) ·QGw(x′)− PGw (x′) ·QGu (x′) = 0 then v := v.left
• Else, v := v.right

• If the final vertex of S originated from a non-branching vertex v,
let (PS , QS) denote the SLP’s computed by the path S from the
root to v. Let Sψ+1(Y ) := [PS(Y )]e−Y · [QS(Y )]e. I.e. Sψ+1(Y ) is
the SLP obtained by exponentiating the outputs of SLP’s PS(Y )
and QS(Y ) (which can be done in O(log(e)) steps, mutliplying the
second by indeterminate Y (which can be done in a single step)
and subtracting the two (which can be done in a single step).

• If the final vertex of S originated from a non-extreme branching
vertex labeled with (u,w), set Sψ+1 := PGu ·QGw−PGw ·QGu . I.e. Sψ+1

is the SLP obtained by multiplying the outputs of SLP’s PGu , Q
G
w

and PGw , Q
G
u (which can be done in two steps) and subtracting the

two (which can be done in a single step).
• Else, set Sψ+1 := ⊥.

– Return Sψ+1.

Fig. 7: Algorithm 2 from Aggarwal Maurer

This algorithm runs in polynomial time and takes as input a GRA G and an
integer N . It outputs either a non-trivial factor of N or an SLP S with many
roots. In the former case, we are done. In the latter case, the idea is to run
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Algorithm SLPFactoringπ (see Appendix B) on input S and N , which similarly
produces a non-trivial factor of N in polynomial running time. SLPFactoringπ

corresponds to Algorithm 1 of Aggarwal and Maurer [1]. The only difference is
that we repeat their algorithmM ′ times with independent random coins in order
to improve the success probability. For our purposes, we will set the parameter
M ′ as M ′ := logN · (T2,r)2. We next consider a simple augmentation of Alg2AM
in Figure 7. For sake of simplicity, in the following, we refer to an SLP S as func-
tionally equivalent to a polynomial R if for all x ∈ ZN , S(x) = R(x) (mod N).
Our main reason for distinguishing SLPs from polynomials is because an SLP
has an efficient representation. Note that this need not be true for a polynomial
in general.

Lemma 8. Let Gπ be a GRA, let y = xe, let G̃ = PreGRAπ(Gπ, π(y)), and let
{R1, . . . , Rψ+1} be the list of polynomials returned by DomPath(G̃). Then with

probability 1− T2,r · δ = 1− T2,r · (1−ϵ
′/2)ϵ′

32κT2,r
≥ 1− ϵ/8 over the random coins of

Alg2AM, Alg2AM on input G̃ outputs a non-trivial factor g of N or outputs an
SLP Sψ+1 s.t. Sψ+1 is functionally equivalent to Rψ+1.

Proof. We consider the set V of all vertices v encountered during a run of
Alg2AM. Let p1 denote the probability that there is some v ∈ V that is a
non-extreme branching vertex. Let p2 = (1 − p1) denote the probability that
all v ∈ V are either non-branching vertices or extreme branching vertices. Let p3
denote the probability that Alg2AM outputs a factor g conditioned on all v ∈ V
being either non-branching vertices or extreme branching vertices. If there is
some v ∈ V that is a non-extreme branching vertex then (invoking Lemma 2 of
Aggarwal and Maurer [1]) Alg2AM outputs a factor g with probability at least
1−(1−δ3/2)M . Further, conditioned on (1) all v ∈ V being either non-branching
vertices or extreme branching vertices, and (2) Alg2AM not outputting a factor
g, we have that Sψ+1 is functionally equivalent to Rψ+1 with probability at least
1− T2,rδ. This follows directly from the fact that Alg2AM performs an identical

traversal of the nodes in G̃’s execution graph as does DomPath(G̃).
Thus, the overall success probability is at least

p1 · (1− (1− δ3/2)M ) + p2 · (p3 + (1− p3)(1− T2,rδ))
≥ p1 · (1− (1− δ3/2)M ) + p2(1− T2,rδ)
= p1 · (1− (1− δ3/2)M ) + (1− p1)(1− T2,rδ)
≥ (1− T2,rδ),

where the final inequality follows due to setting parameter M = log(N) · δ−3/2

so that 1− (1− δ3/2)M ≥ 1− e−Mδ3/2 ≥ (1− 1/N) ≥ (1− T2,rδ).

Lemma 9. Let A = (A0, A1) be an (Sr, T1,r, T2,r)− FGP RSA algorithm. Fix
(N, e, π), let st ∈ Aπ0 (1κ) and suppose that Sr · T2,r ≤ 2κ · ϵ′/4. If E[N, e, st, π]2
occurs with probability at least ϵ′ over the randomness of ComGRA and ran-
dom y ∼ ZN , then Algorithm Factoringπ on input (N, e), st runs in time
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O((κ2
κT2,r

(1−ϵ′/2)ϵ′ )
3/2 + T 5

2,rκ
3 + T1,r) and outputs a non-trivial factor of N with

probability Ω((ϵ′)2(1− ϵ′/2)) over its choice of random coins.

Algorithm Factoringπ

Input: A tuple (N, e) and a state st.
Output: A factor g of N .

1. Sample y at random.
2. Run A1 on input (N,π(y), st) and let Gπ denote the output. If Gπ does

not correspond to the description of a GRA, abort.
3. Run G̃ := PreGRAπ(G)
4. Run Alg2AM(G̃). If it returns a factor, return the factor and abort.

Otherwise let Sψ+1 be the returned SLP.
5. Return the output of SLPFactoringπ on input (Sψ+1, N) with M ′ :=

logN · (T2,r)
2.

Fig. 8: Factoring Algorithm

Algorithm ˜FactoringH

Offline Phase: Run A0 on input 1κ to obtain state st of size Sr. Simulate
the oracle for A0 by using random oracle H as the labelling function.

Online Phase:

– Choose a prime e uniformly at random.
– Return the output of Factoringπ run on input (N, e), st. Simulate the

oracle π using oracle H.

Fig. 9: Wrapped Factoring Algorithm

Proof. We now analyze the success probability of the above algorithm in the
case that E[N, e, st, π]2 occurs with probability at least ϵ′.

First, Lemma 8 implies that if E[N, e, st, π]2 occurs with probability ϵ′, then
with probability at least ϵ′/2, E[N, e, st, π]2 occurs and Alg2AM either returns a
factor of N or Sψ+1 that is functionally equivalent to Rψ+1.

Let p1 denote the probability that E[N, e, st, π]2 occurs and Alg2AM returns
a factor of N Let p2 denote the probability that E[N, e, st, π]2 occurs and Sψ+1

is functionally equivalent to Rψ+1. Note that, by the above, p1 + p2 ≥ ϵ/8.
If E[N, e, st, π]2 occurs and Sψ+1 is functionally equivalent to Rψ+1, then

it means that νN (Sψ+1) ≥ δ. Using Lemma 10 we have that SLPFactoringπ
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factors successfully on input Sψ+1 with probability p3 ∈ Ω(M ′ · νN (f)/T2,r) =

Ω(M ′ · ϵ′(1−ϵ′/2)
logN(T2,r)2

) = Ω(ϵ′(1− ϵ′/2)).
Thus, in total, the probability of factoring successfully is at least p1+p2 ·p3 ≥

p3(p1 + p2) ≥ p3 · ϵ′/2 ∈ Ω((ϵ′)2(1− ϵ′/2)). This concludes the proof.

Corollary 2. Let A = (Aπ0 , A
π
1 ) be an (Sr, T2,r)− GP-RSA algorithm with

advantage ϵ and let Sr · T2,r < 2κ/(16 · ϵ). Let Sf = Sr and Tf =

O(κ2
(κT2,r)

7/2

(1−ϵ′/2)ϵ′)3/2 +T
5
2,rκ

3+T1,r). Then
˜FactoringH is an (Sf , Tf )-factoring algo-

rithm and AdvfacRSAGen(
˜FactoringH) ∈ Ω(ϵ3) in the random invertible permutation

model.

Proof. By Lemma 7, with probability at least ϵ/2 over the random coins of A0,
choice of π, and coins of RSAGen, Aπ0 outputs st and RSAGen outputs (N, e, d)
s.t.

Pr
ComGRA,y←ZN

(E[N, e, st, π]2) ≥ 1− ϵ/4 ≥ ϵ/2 = ϵ′

By Lemma 9, we see that running Algorithm Factoringπ on inputN, e, st takes
time O((κ2

κT2,r

(1−ϵ′/2)ϵ′ )
3/2+T 5

2,rκ
3+T1,r) and returns a non-trivial factor ofN with

probability at least Ω((ϵ′)2(1 − ϵ′/2)) over its choice of random coins. Overall,

this implies that ˜FactoringH runs in online time O((κ2
κT2,r

(1−ϵ′/2)ϵ′ )
3/2+T 5

2,rκ
3+T1,r)

and returns a factor of N with probability at least Ω(ϵ · (ϵ′)2(1− ϵ′/2)) ∈ Ω(ϵ3).

Switching to the RO Model. We now show that the factoring algorithm
from above, which was presented in the Random Injective Function model (with
backwards and forwards access to the function), can be converted into a factoring
algrotihm in the Random Oracle model.

In Proposition 1 we take A to be our factoring algorithm Factoringπ from
Lemma 9 and q = 2κ. Now set L such that

22κ/L ∈ O(N2/L) ≤ 1/(2N) .

As ϵf ∈ Ω(1/N) where ϵf is the advantage Factoringπ relative to a random
injection on [L], we have

ϵ′f ≥ ϵf/2

where ϵ′f is the advantage of the factoring algorithm in RO model that runs
Factoringπ, answering its queries via Luby-Rackoff.

4.4 Constructing a Factoring Algorithm in the RO model when
Sr · T2,r ≥ ϵ′2κ/4

We begin by recapping Hellman’s construction [17] for inverting a function f :
{0, 1}κ → {0, 1}κ before presenting the main result of this section.
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Hellman’s Inversion Algorithm in the RO model. Hellman’s algorithm is param-
eterized by (ℓ,m, t) and achieves space S = ℓ ·m and time T = ℓ · t.

Preprocessing Phase: The preprocessing phase outputs a table Table that con-
sists of ℓ smaller tables Table = Table1, . . . ,Tableℓ. For i ∈ [ℓ], each Tablei
consists of m entries entries [(spji , ep

j
i )]j∈[m], where sp

j
i is chosen at random

from {0, 1}κ, epji = gti(sp
j
i ), and gi = hi ◦f , where each hi is an independent

random oracle.
Online Phase: To invert an input z ∈ {0, 1}κ, for i ∈ [ℓ] do the following:

1. Set ui = hi(z).
2. Repeat for k ∈ [t]: (a) Search for ui in Tablei. If found (i.e. ui = epji for

some j), compute gt−ki (spji ). If f(g
t−k
i (spji )) = z, then we have found a

pre-image of z and we say that (i, j) is useful for z. Return gt−ki (spji ).
(b) Set ui = gi(ui).

Proposition 2. Let A = (A0, A1) be a (Sr, T2,r)-RSA algorithm with advantage
at least ϵ′ = ϵ/4 and assume Sr · T2,r ≥ ϵ′2κ/4. Then there exists a RO-model
(Sf , Tf )-factoring-with-preprocessing algorithm such that for κ ∈ N, we have

AdvfacRSAGen(A) ∈ Ω(ϵ),

we have that Sf = Sr, and Tf = poly(κ) · T 2
2,r.

Proof. We first construct a factoring algorithm that succeeds with high proba-
bility and uses more space. We will then show how to reduce the space at the
cost of reducing the success probability (but still achieving the required bounds).

We will invert the multiplication function f := Multκ(x, y) := ⟨x⟩ · ⟨y⟩, where
the brackets indicate encodings of x, y as κ/2-bit unsigned binary integers, for
x, y ∈ {0, 1}κ/2. Our point generator for the function inversion problem with
respect to f = Multκ(x, y) will be G(1κ) which outputs N = pq where p, q
are random κ/2-bit primes. Note that N outputted by RSAGen is identically
distributed to N outputted by G(1κ). Further, for N = pq where N has length
κ, and p, q are κ/2-bit primes, Mult−1κ (N) = {(p, q), (q, p)}; there are no other
inverses. Therefore inverting f = Multκ reveals its correct factorization.

For z ∈ {0, 1}κ, recall that If (z) denotes the number of preimages for z
under f = Multκ. Note that If (z) ≤ d(z), where d is the divisor function–i.e. the
function that returns the number of divisors of an integer (including 1 and the
number itself). We upperbound the collision probability q(f) of f as follows:

q(f) :=

∑2κ−1
z=0 I2f (z)

22κ
≤
I2f (0)

22κ
+

∑2κ

z=1 d
2(z)

22κ
.

An important line of work [23, 25, 31] proved that

2κ∑
z=1

d2(z) = O(2κ · κ3).
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Combining the above two equations and using the fact that I(0) ≤ 2κ/2+1 yields

q(f) ≤ 4

2κ
+O

(
κ3

2κ

)
∈ O

(
κ3

2κ

)
. (1)

Applying a theorem of Fiat and Naor (see Theorem 2), we have that for any
choice of S′f , T

′
f such that T ′f · (S′f )2 ≥ 23κ · q(f), there exist settings of parame-

ters (ℓ′,m′, t′) such that Hellman’s technique instantiated with these parameters
yields an RO model algorithm that uses space S′f = ℓ′ · m′, time T ′f = ℓ′ · t′,
and achieves an inversion probability of 1 − 1/2κ. Recall that by assumption,
Sr · T2,r ≥ ϵ′2κ/4, and that by (1) there is a constant c such that for sufficiently

large κ, q(f) ≤ c · κ
3

2κ . We set Sf ′ := 1/ϵ′ ·Sr and and Tf ′ := 16 · c ·κ3 ·T 2
2,r. This

setting satisfies the requirement T ′f · (S′f )2 ≥ 23κ · q(f) when Sr · T2,r ≥ ϵ′2κ/4,
therefore yielding an inversion algorithm that succeeds with probability 1−1/2κ.

We now modify the output of the preprocessing stage to reduce the space
requirements, at the cost of lowering the success probability. Let S be the subset
of {0, 1}κ which consists of strings N of the form N = pq, where p, q are primes of
length κ/2. Note that the algorithm described above inverts with some constant
probability, p, on the set S (actually it can be made to succeed with higher
advantage, but this is sufficient for our purposes). For N ∈ S, consider the set UN
of pairs (i, j) such that (i, j) is useful for N (see Step 2(a) of Hellman’s algorithm
at the beginning of the subsection for the definition of useful). Define entry(N) =
(i, j), to be the lexicographically first pair in the set UN , if the set is non-
empty, and define entry(N) = ⊥ otherwise. Let indicator variable Ientry(N)=(i,j)

be equal to 1 if entry(N) = (i, j). Note that
∑
N∈S

∑
(i,j)∈[ℓ′]×[m′] Ientry(N)=(i,j) =∑

(i,j)∈[ℓ′]×[m′]

∑
N∈S Ientry(N)=(i,j) ≥ p|S|. This implies that there must exist a

setR of ϵ′·ℓ′·m′ number of entries (i, j) such that
∑

(i,j)∈R
∑
N∈S Ientry(N)=(i,j) ≥

ϵ′p|S|. Consider a modified preprocessing algorithm that generates the table
as before, selects this set R of entries, and then outputs the table consisting
only of entries (spji , ep

j
i ) such that (i, j) ∈ R to the online stage. Now, the

online stage of the new algorithm is guaranteed to succeed with probability pϵ′,
where p is constant. Further the new running time Tf is equal to Tf ′ . However,
Sf = ϵ′ · ℓ′ ·m′ = ϵ′ ·Sf ′ = Sr. Note that, as desired, Sf = Sr, Tf ∈ poly(κ) ·T 2

2,r,
and ϵf = p · ϵ′ ∈ Ω(ϵ).
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Appendix

A Proof of Lemma 6

Proof. Let A = (Aπ0 ,A1) be as in the lemma statement. We set r1 := ⌈2 logN/ϵ′⌉
and r2 := ⌊ ϵN

2T2,r
⌋. We will now use A1 to construct a compression algorithm

Encπ.

Analysis of Encπ. The length of the encoding E can be calculated as follows.
Encπ initially stores st, N in E, which are of size at most Sr and logN , respec-
tively. It then stores an encoding of I of length log

(
L
N

)
. In each of the r2 = ⌊ ϵ

′N
2T2,r
⌋

runs of the outer loop, Encπ stores a log(r1) bit encoding of the index among the
r1 runs of the inner loop that sets the condition good to true. It also stores the
index ℓ among the roots of the polynomial f s.t. f(y) = 0, where y is the value be-
ing encoded in that repetition of the outer loop. This takes another log(J) bits. It
also stores the index ζ ∈ [ψ+1] of the polynomial with respect to which y is nega-
tively oriented, and where ψ+1 ≤ T2,r. This takes another log(T2,r) bits. So, over-
all, the outer loop adds at most r2·(log(r1)+log(J)+log(T2,r)) = r2 log(r1·J ·T2,r)
bits to E in this manner. Note that we choose J in such a way to ensure that
r1 · J · T2,r is a power of 2.

Next, we consider the number of bits added to E via Table. Note that values
are added to Table in the order of iterating through the loops and so we can
encode them slightly more efficiently than using the trivial encoding by using
values already stored in Table. More concretely, suppose that Table has size
|Table| at the time when a new value is to be added to Table. Then we can store
this value using only log(N − |Table|) many (amortized) bits, (rather than N
many) by excluding all of the values already in Table.

For i ∈ [1, . . . , r2], let ti be the number of table entries modified in the i-th
run; define t0 := 0. Note that ti ≤ T2,r. During the ith run of the outer loop,
Table will be of size t1+ ...+ti+ℓ−1 when adding the ℓth value of run i to Table.
This means that we can encode this value using log(N−(ℓ+t1+...+ti−1)) many

bits. Overall, we get at most r2+
∑r2
m=2

∑tm−1
ℓ=0 log(N − (ℓ+ t1+ · · ·+ tm−1)) for

the size of Table, where the additive r2 comes from packing the ti entries into a
single encoding with an integer number of bits.

Finally, we can add the remaining points of the mapping π to E using log(N−
(t1 + · · · + tr2)) number of bits to specify the mapping, giving a final term of
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∑N−1
k=(t1+···+tr2 )

log(N − k). Hence, we obtain overall:

|E| ≤

Sr + logN + log

(
L

N

)
+ r2(log(r1JT2,r) + 1) +

N−1∑
k=t1+···+tr2

log(N − k)

+

r2∑
m=1

tm−1∑
ℓ=0

log(N − (ℓ+ t1 + · · ·+ tm−1))

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

N−1∑
k=t1+···+t⌊ ϵ′N

2T2,r
⌋

log(N − k).

+

⌊ ϵ′N2T2,r
⌋∑

m=1

tm−1∑
ℓ=0

log(N − (ℓ+ t1 + · · ·+ tm−1))

To upper bound this encoding length in the worst case, we examine the size of
an element added to E as a result of the ith run of the outer loop. We distinguish
two types of elements. The first type are entries of Table; these are added after
the outer loop has terminated and they are size at least log(N − (t1 + · · ·+ tr2))
(amortized). The second type of element that is added are the pointers k, ℓ, and
ζ; they take up a combined space of at most log(r1JT2,r). Since elements of the
second type are larger than the size of the first type, it is clear that we want to
add as few of the latter type as possible, while as adding as many of the former
type as possible in order to maximize the size of E. Hence, we want to maximize
the number of added elements ti in each of these repetitions. We therefore set
for i ∈ [d], ti = T2,r.
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Thus, we have:

Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+

⌊ ϵ′N2T2,r
⌋∑

m=1

tm−1∑
ℓ=1

log(N − (ℓ− 1 + t1 + · · ·+ tm−1)) +

N−1∑
k=t1+···+t⌊ ϵ′N

2T2,r
⌋

log(N − k)

≤ Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)+

⌊ ϵ′N2T2,r
⌋∑

m=1

T2,r−1∑
ℓ=1

log(N − (ℓ− 1 + (m− 1)T2,r)) +

N−1∑
k=⌊ ϵ′N2T2,r

⌋·T2,r

log(N − k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+

⌊ ϵ′N2T2,r
⌋∑

m=1

T2,r−1∑
ℓ=1

log(N − (ℓ− 1 + (m− 1)T2,r)) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k).

Note that ifm = 1, then log(N−(ℓ+(m−1)T2,r)) = log(N−ℓ) takes values from
log(N−1), ..., log(N−T2,r+1), as ℓ varies. Similarly, if m = 2, then log(N−(ℓ+
T2,r)) = log(N − ℓ− T2,r) takes values log(N − 1− T2,r), . . . , log(N − 2T2,r +1),
as ℓ varies. More generally, log(N − (ℓ+(m−1)T2,r)) takes all values log(N − j)
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s.t. j ∈ [ϵ′N/2] and T2,r ∤ j. Hence, we continue with

Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[⌊ ϵ′N2T2,r

⌋·T2,r]

T2,r∤j

log(N − j + 1) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[⌊ ϵ′N2T2,r

⌋·T2,r]

log(N − j + 1)

−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j + 1) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N ]

log(N − j + 1)−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j + 1)

≤ Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N ]

log(N − j + 1)−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j)

= Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N ]

log(N − j + 1)− log


∏

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

(N − j)


= Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N ]

log(N − j + 1)

− log

 ∏
j∈[⌊ ϵ′N2T2,r

⌋]

(N − j · T2,r)


≤ Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N ]

log(N − j + 1)

− log

 ∏
j∈[⌊ ϵ′N2T2,r

⌋]

(
T2,r

(⌊
N

T2,r

⌋
− j
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The second to last step in the above derivation follows from the fact that we can
write any m ∈ [⌊ ϵ

′N
2T2,r
⌋ ·T2,r] s.t. T2,r | m as m = j ·T2,r, where j ∈ [⌊ ϵ

′N
2T2,r
⌋]. We

continue with

=Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N ]

log(N − j + 1)

− log

(T2,r)
⌊ϵ′N/(2T2,r)⌋

∏
j∈[⌊ ϵ′N2T2,r

⌋]

(⌊
N

T2,r

⌋
− j
)

=Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N ]

log(N − j + 1)

− log

(
⌊N/T2,r⌋!

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r⌋))!
· (T2,r)⌊ϵ

′N/(2T2,r⌋)
)

=Sr + 2 logN + log

(
L

N

)
+ (log((r1JT2,r) + 1)⌊ϵ

′N/(2T2,r)⌋) + log(N !)

− log

(
⌊(N/T2,r)⌋!

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)!
· (T2,r)⌊ϵ

′N/(2T2,r)⌋
)

=Sr + log

(
L

N

)
+ log

(
N !N2(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)!(2r1JT2,r)⌊ϵ

′N/(2T2,r)⌋

⌊(N/T2,r)⌋! · (T2,r)⌊ϵ
′N/(2T2,r)⌋

)

≤ log

(
2Sr ·N ! ·N2(2r1J)

⌊ϵ′N/(2T2,r)⌋

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)⌊ϵ′N/(2T2,r)⌋

)
.

Next, we analyze Encπ’s failure probability.

Claim. Failure Event 2.1 occurs with probability at most 1/2 over the random-
ness of Encπ.

Proof. Recall that we have set r1 = 2 logN/ϵ′. Moreover, we have assumed that
PrComGRA[A1],y←ZN [E[N, e, d, st, π]1] ≥ ϵ′. To bound the probability of Event 2.1,
we consider the binary matrix Q defined for fixed π, N , and the randomized
algorithm ComGRA[A1]

π in the following manner:

– Row i of Q is labelled with π(y), where y ∈ ZN is such that π(y) is the ith
value in lexicographical order in the range of π.

– Column j of Q is labelled with the jth bitstring ρ ∈ {0, 1}t in lexicographical
order, where t denotes the number of random coins ComGRA[A1]

π takes in.
– Let π(y) and ρ correspond to rows i and column j. Qi,j = 1 if ComGRA[A1]

π

on input π(y) and random coins ρ outputs a set of SLPs over ZN such that
y is (δ,N)-negatively oriented with respect to at least one of them. Qi,j = 0
otherwise.

If ComGRA[A1]
π succeeds with probability ϵ′ over random choice of π(y), ρ

then at least ϵ′ fraction of Q’s entries are 1. Furthermore, a random run of
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ComGRA[A1]
π on input π(y) for random y ∈ ZN corresponds to choosing a

point in Q uniformly at random.
Consider a randomized procedure that in each step adds an entry (y, π(y))

to Table, where Table is initialized as empty.
Now consider the submatrix Q′ of Q with rows labeled by values in Y where

π(y) ∈ Y if y ∈ ZN and (y, π(y)) /∈ Table.
Then the submatrix Q′ has at least ϵ′ ·N ·2t−|Table| ·2t = (ϵ′ ·N −|Table|)2t

number of 1’s. If at each step of the randomized procedure, the size of Table is
upper bounded by ϵ′N/2, then at each step, the submatrix Q′ corresponding to
Y × {0, 1}t has at least (ϵ′N/2)2t number of 1’s. Further, the fraction of 1’s in
Q′ is at least

(ϵ′ ·N − |Table|)2t

(N − |Table|)2t
=
ϵ′ ·N − |Table|
N − |Table|

≥ ϵ′ ·N − ϵ′N/2
N

= ϵ′/2.

Further, the fraction of 1’s at each step is at least ϵ′/2.

Thus, Failure Event 2.1 occurs with probability at most (1−ϵ′/2)r1 ≤ e(−ϵ′r1/2) =
e(−2ϵ

′ log(N)/(2ϵ′)) ≤ 1/N in any repetition of the inner loop. As r2 = ϵ′N/(2T2,r),
by a union bound, the probability that any of the r2 repetitions of the outer loop
produce Event 2.1, is at most Nϵ′/(2T2,r) · 1/N ≤ 1/2. ⊓⊔

Recall that J is the maximum integer that satisfies J ≤ ⌊N/T2,r⌋−⌊ϵ′N/(2T2,r)⌋
8r1

and r1JT2,r is a power of two. Note that we can lower bound J by J ≥ (1−ϵ′/2)N
32r1T2,r

.

Plugging the value of J gives us that the length of the encoding is upperbounded
as follows:

log

(
2Sr ·

(
L
N

)
·N ! ·N2(2r1J)

⌊ϵ′N/(2T2,r)⌋

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)⌊ϵ′N/(2T2,r)⌋

)

≤ log

(
2Sr ·

(
L

N

)
·N ! ·N2(1/4)⌊ϵ

′N/(2T2,r)⌋
)

= Sr + log

(
L

N

)
+ log(N !) + 2 log(N)− log

(
4⌊ϵ

′N/(2T2,r)⌋
)

= Sr + log

(
L

N

)
+ log(N !) + 2 log(N)− 2⌊ϵ′N/(2T2,r)⌋.

Thus, Encπ does not fail with probability at least 1/2 over its randomness and
returns an encoding E of the appropriate size. Since by assumption, Sr · T2,r ≤
ϵ′2κ/4, and since N ≥ 2κ/2, we have Sr · T2,r ≤ ϵ′N/2. Substituting Sr ≤
ϵ′N/(4T2,r) in the above expression yields, |E| < log

(
L
N

)
+ log(N !) + 2 log(N)−

ϵ′N/(2T2,r).

B SLP Factoring Algorithm

In this section we present SLPFactoringπ, which is a slightly modified version of
Algorithm 1 due to Aggarwal and Maurer [1] and is used in one of the cases of
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the proof of our main result. In this algorithm, we let H(b(x), c(x)) denote the
non-trivial, non-invertible element output when Euclid’s algorithm is executed
on ZN [x] with input b(x) and c(x). The only difference from Algorithm 1 of
Aggarwal and Maurer [1] is that we repeat their entire algorithm M ′ times with
independent random coins in order to improve the success probability.

Algorithm SLPFactoringπ

Input: A T -step SLP S, a parameter M ′, and an integer N .
Output: A factor of N .

1. Repeat M ′ times, each with a freshly chosen random tape:
(a) Choose a monic polynomial h(x) uniformly at random from all

monic polynomials of degree T in ZN [x].
(b) Compute h′(x), the derivative of h(x) in ZN [x].
(c) Choose a random element r(x) ∈ ZN [x]/(h(x)).
(d) Compute z(x) = f(r(x)) in ZN [x]/(h(x)) using the instructions of

SLP S (where f is the polynomial function computed by SLP S).
(e) Run Euclid’s algorithm in ZN [x] on h(x) and z(x). If this fails,

return gcd(N,H(h(x), z(x))).
(f) Run Euclid’s algorithm in ZN [x] on h(x) and h′(x). If this fails,

return gcd(N,H(h(x), h′(x))).

Fig. 10: Modified version of Algorithm 1 from Aggarwal and Maurer

Lemma 10. Algorithm SLPFactoringπ takes as input N = pq where p, q > 3
are primes, as well as T ∈ N, a T -step SLP S and, for any M ∈ N such that
M · νN (f)/(8T ) ≤ 1/2, runs in time O(M · T 3κ2), and does the following: if
(PS(x), QS(x)) = (fS(x), 1), fS(x) ̸≡ 0 mod N, then SLPFactoringπ outputs a
non-trivial factor of N with probability at least Ω (M · νN (fS)/(16T )).

Proof. Algorithm 1 from [1] is identical to lines all lines of SLPFactoringπ inside
the loop (namely, lines 1.(a) through 1.(f)). The analysis of Algorithm 1 [1]
gives us that each run of this loop takes O(T 3 log2N) time, and if the given
SLP S is such that (PS(x), QS(x)) = (fS(x), 1) and f(x) ̸≡ 0 mod N, then

the algorithm returns a factor of N with probability at least
νN (fS)

8T
. Then the

runtime of SLPFactoringπ is O(M · T 3 log2N) and its failure probability is at
most (

1− νN (fS)

8T

)M
=

(
1− νN (fS)

8T

)8T/νN (fS)·M ·νN (fS)/(8T )

= e−M ·νN (fS)/(8T )

≤ 1−M · νN (fS)/(16T ),

where the inequality follows due to the fact that e−2x ≤ 1−x for x ≤ 1/2. Thus
the success probability is at least M · νN (fS)/(16T ).
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