
(Inner-Product) Functional Encryption with Updatable
Ciphertexts

Valerio Cini1, Sebastian Ramacher1, Daniel Slamanig1, Christoph Striecks1, and Erkan Tairi2

1 AIT Austrian Institute of Technology, Vienna, Austria
{firstname.lastname}@ait.ac.at

2 TU Wien, Vienna, Austria
erkan.tairi@tuwien.ac.at

Abstract. We propose a novel variant of functional encryption which supports ciphertext
updates, dubbed ciphertext updatable functional encryption (CUFE). Such a feature further
broadens the practical applicability of the functional encryption paradigm and is carried out
via so-called update tokens. However, allowing update tokens requires some care for the
security definition as we want that updates can be done by any semi-trusted third party and
only on ciphertexts. Our contribution is three-fold:
a) We define our new primitive with a security notion in the indistinguishability setting.

Within CUFE, functional decryption keys and ciphertexts are labeled with tags such
that only if the tag of the decryption key and the ciphertext match, then decryption
succeeds. Furthermore, we allow ciphertexts to switch their tags to any other tag via
update tokens. Such tokens are generated by the holder of the main secret key and can
only be used in the desired direction.

b) We present a generic construction of CUFE for any functionality as well as predicates
different from equality testing on tags, which relies on the existence of (probabilistic)
indistinguishability obfuscation (iO).

c) We present a practical construction of CUFE for the inner-product functionality from
standard assumptions (i.e., LWE) in the random-oracle model. On the technical level, we
build on the recent functional encryption schemes with fine-grained access control and
linear operations on encrypted data (Abdalla et al., AC’20) and introduce an additional
ciphertext updatability feature. Proving security for such a construction turned out to
be non-trivial, particularly when revealing keys for the updated challenge ciphertext is
allowed. Overall, such construction enriches the set of known inner-product functional-
encryption schemes with the additional updatability feature of ciphertexts.

1 Introduction

Functional encryption [SW05, BSW11, O’N10] is an exciting encryption paradigm that allows
fine-grained access control over encrypted data. In contrast to conventional encryption, which is
all-or-nothing, in functional encryption (FE) there is a main secret key msk that allows to generate
constrained functional decryption keys. More precisely, every decryption key skf is associated to
a function f and given an encryption Enc(mpk, x) of some message x under the main public key
mpk, the decryption with skf only reveals f(x), but nothing more about x.3

Since its introduction, FE has been subject to intense study which can broadly be categorized
into two areas. Firstly, works that consider general functionalities and thereby mostly focusing on
feasibility results. This typically results in constructions beyond practical interest, as they rely on
indistinguishability obfuscation (iO) or need to impose severe restrictions on the number of keys
given to an adversary. Secondly, works that restrict the power by only supporting limited classes
of functions that are of particular interest for practical applications, i.e., linear and quadratic
functions. Here, the main focus is then on concrete and efficient constructions. One such approach
that attracted a lot of research are FE schemes for the inner-product functionality (IPFE), i.e.,
keys are associated to vectors ~y, messages are vectors ~x and decryption reveals 〈~x, ~y〉. Initially
proposed by Abdalla et al. [ABDP15], a line of work improved the security guarantees [ALS16,
ABDP16, BBL17, CLT18], extended it to the multi-input [AGRW17, ACF+18] as well as the
decentralized setting [CDG+18, ABKW19, LT19, ABG19, ABM+20]. Although this functionality

3 Unless mentioned otherwise, we will always assume public-key functional encryption.



is very simple, it has already shown to be useful in privacy-preserving machine learning [MSH+19],
data analytics,4 or data marketplaces [KPC+20].

Limitations of large-scale deployment of FE. A problem for the practical adoption of FE
is that every issued functional decryption key inherently leaks some information. For the inner-
product functionality and thus IPFE this is particularly problematic. Specifically, if n is the dimen-
sion of the vectors, then obtaining n decryption keys in general allows to recover the full plaintext.
Consequently, as soon as IPFE is deployed in some larger-scale setting, this represents a severe
limitation. To mitigate this problem and make IPFE more practical, Abdalla, Catalano, Gay, and
Ursu [ACGU20] recently introduced the notion of IPFE with fine-grained access control providing
strong security guarantees.5 Loosely speaking, the idea is that ciphertexts are produced with re-
spect to an access policy (e.g., expressed by monotone span programs) and decryption keys are in
addition to being bound to a function also associated to an attribute. Decryption then only works
if the attribute in the key satisfies the access-policy in the ciphertext. It is important to stress
that when aiming for reasonable security which allows collusion of functional decryption keys, this
approach is non-trivial as a naive composition of IPFE with attribute-based encryption (ABE) or
identity-based encryption (IBE) suffers from simple mix-and-match attacks. Abdalla et al. pro-
vide pairing-based attribute-based constructions covering monotone span programs (AB-IPFE)
and lattice-based identity-based constructions (IB-IPFE). Nguyen et al. [NPP22] propose more ef-
ficient pairing-based constructions and investigate the approach of Abdalla et al. in a multi-client
setting. Recently, Lai et al. [LLW21] as well as Pal and Dutta [PD21] also present lattice-based
AB-IPFE constructions.

This concept of Abdalla et al. firstly mitigates the leakage problem of plain IPFE, as now this
inherent limitation on the number of issued functional decryption key only applies per identity in
IB-IPFE (or attribute-policy in AB-IPFE). This can be viewed as partitioning the keys such that
the aforementioned limitation applies to each of these partitions, making it much more scalable.
Secondly, it more closely reflects the situation in large-scale systems where even in the case of
FE, one wants to enforce a more fine-grained control over who is allowed to learn some particular
information of the encrypted plaintexts. Thirdly, this concept overcomes the problem of a trivial
approach, i.e., encrypting data separately under an IPFE public key for each recipient, which would
result in a linear blow-up of the ciphertexts.

Motivation towards more flexibility in fine-grained access control. Abdalla et al. [ACGU20]
make an important step towards applicability of FE in large-scale systems. But it still seems limited
when it comes to dynamic aspects. For instance, the medical example used in [ACGU20] envisions
that doctors in a hospital may be able to compute on a different set of encrypted data than employ-
ees of a health insurance company. What happens if the access to data for the insurance company
should be expanded? This would either mean to encrypt all the data anew under the policy that
is satisfied by the insurance company or to issue additional keys to the insurance company. While
in this medical setting this might still be manageable, there are other examples where this seems
hard to achieve.

Let us therefore consider the emerging domain of data marketplaces.6 These are platforms that
allow customers to buy access to data or statistical analysis on data offered by a potentially huge
set of data owners via data brokers. The available data sets can range from business intelligence
and research, demographic or health, firmographic, and market data to public data. (IP)FE seems
to be an interesting tool for this application. But while the use of IPFE (in a multi-client setting)
has recently been proposed in [KPC+20] to realize a privacy-aware data marketplace, it does so in
a way that it reveals the evaluations in plain to the data brokers. Now one could imagine using the
approach in [ACGU20] to let data owners encrypt their data under certain policies (or identities),
whereas data buyers are given functional keys (with respect to a certain identity or attribute) and
data brokers basically only distribute the data (and possibly perform some aggregation tasks).

4 https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-

motion-detection/
5 There is more related work such as [DP19, AJS18, JLMS19, JLS19, CZY19, Wee17] as discussed

in [ACGU20], but those schemes either provide less functionality or weaker security.
6 https://research.aimultiple.com/data-marketplace, https://datarade.ai/platform-

categories/personal-data-marketplaces

2

https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-motion-detection/
https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-motion-detection/
https://research.aimultiple.com/data-marketplace
https://datarade.ai/platform-categories/personal-data-marketplaces
https://datarade.ai/platform-categories/personal-data-marketplaces


Still, it seems cumbersome to have a fine-grained control over what buyers can access if the access
policies are fixed in the ciphertexts.

We now envision that in addition to having a fine-grained control, we allow the data brokers to
update the policies (attributes/identities) in existing ciphertexts in order to add more flexibility.
Let us now focus on the specific case of policies being represented via the equality predicate, and
thus ciphertexts and function keys are labeled and decryption yields the function of the message if
both labels match. We call those labels tags.7 Data brokers should have the capability to update
ciphertexts in a way that they can change the tags in ciphertexts using some additional information
(called an update token), but they should not learn the function evaluations and thus the privacy
of the data of the owners is guaranteed. To keep a fine-grained control over ciphertext updates
in such a broker scenario, we want to restrict the updates of a ciphertext to a single update and
the token to only work in one direction, i.e., from tag t to t′ but not vice versa. Thus, already
updated ciphertexts cannot be updated anymore. While it is possible to consider schemes that
support multiple updates and/or bidirectional tokens, we believe that this is rather dangerous in
such applications. For instance, this could allow moving ciphertexts to tags for which they were not
intended, e.g., from a tag t to t′ and then to t′′ via two updates, whereas it might be not intended
that it is possible to move all ciphertexts from t to t′′, but rather only ones under t to t′ and ones
under t′ to t′′.

We note that this functionality goes beyond what is provided by IPFE with fine-grained access
control due to Abdalla et al. [ACGU20] (but as we will see it can serve as a starting point). And a
trivial construction based upon [ACGU20] that encrypts a message multiple times under different
tags (identities) in parallel fails to provide the desired functionality. In particular, it does not allow
to dynamically decide to which tag a ciphertext can be updated as the desired tags would have
to be known at the time of producing the ciphertext, something that we want to avoid in our
approach to solve the above problem! Consequently, we are looking for a solution where we can
potentially switch a ciphertext to any tag from a large (i.e., exponential) tag space.

Since currently (IP)FE schemes that achieve the desired properties are absent in the crypto-
graphic literature, in this work we ask:

Can we define and construct (IP)FE schemes with fine-grained access control and ciphertext
updatability?

1.1 Our Contribution

We answer the above question affirmative via our three-fold contribution:
a) We define a new primitive dubbed ciphertext updatable functional encryption (CUFE) with

security notion in the indistinguishability setting. Within CUFE, functional decryption keys
and ciphertexts are labeled with tags such that only if the tag in the decryption key and
ciphertext match, then decryption succeeds. Furthermore, we allow fresh ciphertexts to update
its tags to any other tag via so-called update tokens and by any semi-trusted third party. Such
tokens are generated by the key holder of the main secret and can only be used in the desired
direction.

b) We present a generic construction of CUFE for any functionality and more powerful predicates
than equality testing on tags, which relies on the existence of (probabilistic) indistinguishability
obfuscation (iO).

c) We present a practical construction of CUFE for the inner-product functionality from standard
assumptions (i.e., the learning-with-errors (LWE) assumption) in the random-oracle model.
Proving security for such a construction turned out to be non-trivial, particularly when re-
vealing keys for the updated challenge ciphertext is allowed. In general, this further enriches
the approach presented in line of Abdalla et al. [ACGU20] with the updatability feature of
ciphertexts. Notably, our construction relies on lattice-based assumptions which are plausibly
post-quantum.

Defining ciphertext updatability for FE. CUFE can be seen as tag-based FE scheme with
tag space T . As in FE, key generation outputs a main public-secret key pair (mpk,msk), where
the decryption keys skf,t for some function f ∈ F and tag t ∈ T are derived from msk. In CUFE,

7 One can also think of these labels as identities.

3



however, msk is also used to derive update tokens ∆t→t′ . Now, encryption takes some tag t and
message x and outputs a ciphertext Ct. Then, using ∆t→t′ , any semi-trusted third party can update
Ct to Ct′ . Correctness guarantees that if the tags of the function key and the ciphertext match,
and only a single update has happened, then decryption succeeds and outputs f(x).

Defining security needs some care as we want that tokens can update ciphertexts only towards
the tag specified in the update token and updated ciphertext should not be allowed to be further
updated. That is, a token ∆t→t′ can only switch tags from t to t′ and not vice versa. As in
the work of Abdalla et al. [ACGU20], the adversary is allowed to query decryption keys for any
functionality f such that the function evaluation on the challenge ciphertext yields f(x0) = f(x1),
for adversarially chosen messages x0, x1, if the policy is fulfilled. In our constructions, we restrict the
policy to the equality test on tags of the functional decryption key and the ciphertext (we discuss
extensions in Section 4.2) which ensures a simple access control for our envisioned applications.

Concerning updated ciphertext, we have the following situation. Since the concept of update
tokens is not foreseen in conventional forms of FE, we need to consider additional aspects for our
security notions. We have to deal with the fact that tokens can potentially not only be used to
update ciphertexts from some tag t to another tag t′, but could also be used to invert a ciphertext
update. This is partly reminiscent of providing adequate and strong security guarantees in proxy
re-encryption (PRE) [Coh19, DKL+18]. Having those in mind, we define an indistinguishability-
based notion IND-CUFE-CPA, which guarantees that an adversary cannot distinguish ciphertexts
for a certain challenge target tag and adversarially chosen messages.

More concretely, as outlined in our motivation, we only want to allow updating the tags of
ciphertexts once and only in one direction. In order to capture these properties, we provide the
adversary in addition to a key generation oracle (as in plain FE) access to additional oracles.
Firstly, we allow the adversary to adaptively query corrupted and honest update tokens as well as
also provide encryption and honest-ciphertext-update oracles. Furthermore, we want to naturally
allow the adversary to see decryption keys for honestly updated challenge ciphertexts.

We show that we can prove our CUFE construction from LWE secure in such a model for
the inner-product functionality. Indeed, the tricky part in the proof is to allow the adversary to
retrieve functional decryption keys for honestly updated challenge ciphertexts (i.e., it does not see
the update token, but has access to an update oracle; see below for detailed discussion). We note
that our iO-based construction satisfies the security model for any functionality (see below).

CUFE for any function from (probabilistic) iO. The starting point of our construction
is the FE construction due to Garg et al. [GGH+13] which requires iO and uses a public-key
encryption (PKE) scheme with the Naor-Yung double encryption paradigm [NY90] using a one-time
statistically simulation sound NIZK (1-SSS-NIZK) inside the obfuscated circuit. More precisely, an
FE ciphertext is composed of two PKE ciphertexts of a message m under two public keys pk1 and
pk2, and a NIZK proof attesting that both ciphertexts encrypt the same message. On the other
hand, a functional secret key skf is the obfuscation of a circuit that has the function f and one
of the decryption keys of the PKE hard-coded. Hence, decryption with skf amounts to evaluating
the obfuscated circuit which in turn verifies the NIZK proof and decrypts the PKE ciphertext to m
and then outputs f(m). While proving that the FE adversary cannot distinguish an encryption of
m0 from that of m1, one could move to an intermediate hybrid experiment where the NIZK proof
is simulated, and the two ciphertexts encrypt m0 and m1, respectively. However, when simulating
a NIZK proof one has to change to a simulated common reference string which implies that valid
proofs to false statements exist. Though, iO requires the circuits to be equivalent on all inputs,
even on inputs that contain valid proofs for false statements. To overcome this issue, Garg et
al. [GGH+13] make use of SSS-NIZK, which requires that except with respect to one particular
statement to be simulated, all other valid proofs that exist are only for true statements. We note
that the statement must be fixed in advance, thus their construction achieves only selective security.

In order to introduce tags for the ciphertexts, a first step is to replace the 1-SSS-NIZK with
one having public labels and to use the tag as a label when computing the proof in the labeled
1-SSS-NIZK. Now the challenging part is to update the ciphertext. In order to restrict that an
updated ciphertext cannot be updated anymore, we use two different sets of PKE keys, (sko, pko)
for original ciphertexts and (sku, pku) for updated ciphertexts. For the update operation, we now
need to switch the ciphertext under pko (where the NIZK proof carries the original tag as a
label) to a new ciphertext under pku (where the NIZK proof carries the updated tag as a label).

4



However, if we want to perform this switching operation in an obfuscated circuit, due to the
probabilistic nature of the PKE we need to rely on probabilistic indistinguishability obfuscation
(piO) [CLTV15]. The required functionality is then reminiscent of a technique used to obtain
universal proxy re-encryption (URE) as proposed by Döttling and Nishimaki [DN21]. Though, in
our case we additionally need to compute a fresh NIZK proof with the label representing the new
tag inside the obfuscated circuit, which requires a careful design of the class of samplers for piO.
We argue that in order to use any IND-CPA secure PKE scheme in our construction, we require
stronger security from piO (i.e., we need to assume dynamic-input piO). Alternatively, we can
use doubly-probabilistic iO introduced by Agrikola et al. [ACH20], which can be achieved using
polynomially secure iO and the exponential DDH assumption.

CUFE for inner-products from standard assumptions. The starting point for the construc-
tion from standard assumptions is the identity-based inner-product functional encryption scheme
from the LWE assumption by Abdalla et al. [ACGU20]. Their construction essentially combines
the LWE-based inner-product FE scheme from Agrawal et al. [ALS16] – we will refer to this scheme
as ALS – with a LWE-based IBE scheme, e.g., the IBEs from [GPV08] or [ABB10]. The latter is
especially of interest for us: starting from a public key A it is possible to derive an identity-specific
matrix Aid for some identity id. This Aid describes a trapdoor function for which it is hard to
compute a short preimage. Yet, given the trapdoor for A, which is stored as part of the main
secret key, it is possible to derive skid as trapdoor for Aid. Notably, skid is a matrix which can be
projected to functional decryption keys for inner-products 〈·, ~y〉, hence giving skid,~y.

While this idea incidentally gives rise to a tag-based inner-product FE construction, producing
update tokens to transform ciphertexts from the source to the target tag is non-obvious. We want
to note, however, that this is one of the core challenges that is solved by proxy re-encryption in
the public key setting. It is however non-trivial to combine a proxy re-encryption scheme with
a functional encryption scheme without running into issues with collusion. Indeed, consider a
black-box approach that combines both worlds by encrypting the FE ciphertext with a PRE. Now
consider two colluding users t and t′ who have functional secret keys for distinct f and f ′. Now
if a ciphertext is re-encrypted to t, they can use their PRE secret key to remove the PRE layer.
Then both t and t′ can evaluate their functions by simply sharing the decapsulated FE ciphertext.
Therefore, a CUFE scheme requires tighter intertwining of the two concepts to prevent mix-and-
match-style and other attacks.

Still, ideas found in lattice-based proxy re-encryption constructions help us to turn ALS com-
bined with tag-based keys into a secure CUFE. We quickly revisit the construction by Fan and
Liu [FL19]. Their idea is to set up the user-specific matrices from a global public matrix A. Given
such a fixed matrix A, the matrix for a user u is then set to be Au = [A|Au,1 + HG|Au,2 + H′G]
where Au,i = −ARu,i with Ru,i, i = 1, 2 contained in the secret key and where H′ is randomly
sampled. Encryption follows a dual-Regev approach [GPV08] based on the user dependent matrix
Au. Re-encryption keys for user u to user u′ are generated by sampling matrices X01,X02,X11,X12

using Ru,1,Ru,2 such that

[A| −Au,1 + h(1)G| −Au,2 + B]

I X0,1 X0,2

0 X1,1 X1,2

0 0 I

 = [A| −Aj,1 + h(2)G| −Aj,2 + B]

for any matrix B. In their construction, h is used to describe the “ciphertext level” (either freshly
generated, h(1) or updated, h(2)) whereas B stems from a function producing matrices on input
of a tag.

The setting of CUFE is however vastly different in nature as ciphertexts are not equipped with
levels and there are no per-user public keys. Yet, this method to set up the matrices such that
one can update dual-Regev style ciphertexts from one matrix to another is helpful to construct
the update tokens. Additionally, with dual-Regev inspired ciphertexts we are also able to set up
keys as matrices in such a way that we are able to first sample a tag-specific trapdoor from the
main secret key which is then projected to a functional secret key. Consequently, our construction
intertwines the functional encryption features from ALS with tag-based ciphertext updates in a
non-black-box manner.

As the construction is not black-box, neither is the proof. The main technical challenge in
the proof comes from having to produce updates of the challenge ciphertext and function keys

5



for the respective target tags. Embedding an ALS instance (as done for the challenge identity in
[ACGU20]) for each of these tags does not work as the different instances should be related in order
to simulate the derived matrices of these tags correctly. On the other hand, using a single ALS
instance to simulate function keys for multiple tags leads, if done in the trivial way, to producing
function keys related to each other, and thus again to a view for the adversary distinguishable
from the expected one. However, this drawback can be overcome by “re-randomizing” the function
keys in a way that it “hides” the function key provided by the ALS challenger (similarly to Lai et
al. [LLW21]). In this way the adversary’s view is indistinguishable from that in the real experiment.

1.2 Related Work

While we are not aware of any previous work that tries to achieve the desired goals via ciphertext
updatability, a related concept is that of controlled functional encryption (C-FE) [NAP+14]. This
approach enhances FE with an authority that needs to be involved in the decryption process and
thus allows a fine-grained control over which ciphertexts can be decrypted by a holder of a functional
key. Consequently, the access control is enforced by the authority and by dynamically changing
which user is allowed to decrypt which ciphertexts one can view this as achieving similar goals as
with ciphertext updatability. However, the major difference is that C-FE requires an interactive
decryption procedure between the user and authority and thus requires the authority to be online
and available all the time. This would potentially hinder scalability in large-scale systems. In
contrast, our approach is oblivious to the users. Furthermore, the requirement of an always online
authority that needs to be fully trusted might be problematic and undesirable. This trust issue
has recently been addressed by distributing the trust in the authority via the concept of Multi-
Authority C-FE [AFS21], however, this incurs further communication overhead. Another related
(but conceptually different) line of work is updating policies in ABE [Kaw15, FS16]. In general,
these works combine ciphertext-policy ABE with PRE in order to update the policy associated with
the ciphertext. However, these works neither consider (IP)FE schemes nor are sufficient for our
envisioned applications. Our work can be seen as a combination of IBE/ABE with FE augmented
by updatability, and, hence, updatability needs to consider and tie both parts together.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite set
S, we denote by s← S the process of sampling s uniformly from S. Let y ← A(λ, x) be the process
of running an algorithm A on input (λ, x) with access to uniformly random coins and assigning
the result to y (we may omit to mention the λ-input explicitly and assume that all algorithms
take λ as input). To make the random coins r explicit, we write A(λ, x; r). We use ⊥ to indicate
that an algorithm terminates with an error and AB when A has oracle access to B, where B may
return > as a distinguished special symbol. We say an algorithm A is probabilistic polynomial time
(PPT) if the running time of A is polynomial in λ. Given ~x ∈ Zn, we denote by ‖~x‖ its Euclidean

norm, i.e., for ~x = (xi)i∈[n], we have ‖~x‖ :=
√∑n

i=1 x
2
i . For a matrix R, by R̃ we denote the

result of applying Gram-Schmidt orthogonalization to the columns of R. By ‖R‖, we will denote
the Euclidean norm of the longest column of R, and by s1(R) its spectral norm, i.e., the largest
singular value of R. A function f is negligible if its absolute value is smaller than the inverse of
any polynomial (i.e., if ∀c∃k0∀λ ≥ k0 : |f(λ)| < 1/λc). We may write q = q(λ) if we mean that the
value q depends polynomially on λ. Given two different distributions X and Y over a countable
domain D, we denote their statistical distance as SD(X,Y ) = 1

2

∑
d∈D |X(d)−Y (d)|, and say that

X and Y are SD(X,Y ) close.
We recall public-key encryption and non-interactive zero knowledge proof systems in Ap-

pendix A.1 and A.2.

2.1 (Probabilistic) Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscator). A PPT algorithm iO is an indistinguisha-
bility obfuscator (iO) for a circuit class {Cλ}λ∈N if it satisfies the following conditions:

6



Experiment Expdi-indD,A (λ)
(C0, C1, z)← Dλ
(x, st)← A1(C0, C1, z)
y ← Cb(x), for b←$ {0, 1}
b′ ← A2(st, C0, C1, z, x, y)
if b = b′ return 1 else return 0

Fig. 1. Experiment Expdi-ind for the indistinguishability property of dynamic-input samplers.

Functionality. For any security parameter λ ∈ N, any circuit C ∈ Cλ, and any input x, we have
that

Pr [C ′(x) = C(x) | C ′ ← iO(C)] = 1.

Indistinguishability. For any PPT distinguisher D and for any pair of circuits C0, C1 ∈ Cλ, such
that for any input x, C0(x) = C1(x) and |C0| = |C1|, it holds that

|Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ).

We further say that iO is subexponentially secure if for any PPT D the above advantage is smaller
than 2−λ

ε

for some 0 < ε < 1.

Next, we consider a family of sets of randomized polynomial-size circuits C = {Cλ}λ∈N. We
define a circuit sampler for C as a distribution ensemble D = {Dλ}λ∈N, where the distribution
of D is (C0, C1, z) with C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length, and
z ∈ {0, 1}poly(λ) is the auxiliary information. A class S of samplers for the circuit family C is a set
of circuit samplers for C.

Definition 2 (piO for a Class of Samplers [CLTV15, DHRW16]). A PPT algorithm piO is
a probabilistic indistinguishability obfuscator (piO) for a class of samplers S over the randomized
circuit family C = {Cλ}λ∈N if it satisfies the following conditions:

Correctness. For any security parameter λ ∈ N, any C ∈ Cλ, and any input x, the distributions of
C(x) over the random coins of C and of C ′ ← piO(1λ, C) over the random coins of the obfuscator
are identical.

Security with respect to S. For every sampler D = {Dλ}λ∈N ∈ S, and for every non-uniform
PPT machine A, there exists a negligible function negl, such that∣∣Pr

[
(C0, C1, z)← Dλ : A(C0, C1, piO(1λ, C0), z) = 1

]
−Pr

[
(C0, C1, z)← Dλ : A(C0, C1, piO(1λ, C1), z) = 1

] ∣∣ ≤ negl(λ).

Canetti et al. [CLTV15] defined four types of samplers, from which we only review the dynamic-
input indistinguishable sampler here. Roughly, a dynamic-input indistinguishability sampler is
required to output circuits C0, C1 ∈ Cλ, such that the output of these circuits on a dynamically
chosen input is computationally indistinguishable.

Definition 3 (Dynamic-input Indistinguishability Sampler [CLTV15]). The class Sdi-ind
of dynamic-input samplers for a circuit family C contains all circuit samplers D = {Dλ}λ∈N for C
satisfying the following: for every non-uniform PPT A = (A1, A2), it holds that

Advdi-indD,A (λ) :=
∣∣∣Pr
[
Expdi-indD,A (λ) = 1

]
− 1/2

∣∣∣ ,
in the experiment Expdi-indD,A represented in Fig. 1 is negligible.

We note that the dynamic-input piO is the strongest notion defined in [CLTV15] and corresponds to
a randomized variant of differing-input obfuscation [BGI+12]. Hence, it inherits the implausibility
results of differing-input obfuscation for general circuits [GGHW14, BSW16]. However, Canetti et
al. [CLTV15] argued that a construction of dynamic-input piO for specific classes of samplers is
possible, analogous to the case of differing-input obfuscation for specific circuits.

7



3 Ciphertext-Updatable Functional Encryption

We present our definitional framework of ciphertext-updatable functional encryption (CUFE).
CUFE is a tag-based functional-encryption (FE) scheme defined on functionality F : X → Y and
tag space T . Key generation outputs a main public-secret key pair (mpk,msk), where from msk,
the function keys skf,t for some function f ∈ F and tag t ∈ T can be derived. Encryption is
done according to some tag t ∈ T and message x ∈ X . Now, if the tag of the function key and
the ciphertext match, then decryption succeeds and outputs f(x). Furthermore, we want to allow
switching of tags, i.e., from t to t′, in a ciphertext once, which is carried out via tokens ∆t→t′ . Such
a token can be used to update a ciphertext Ct to a ciphertext Ct′ under the tag t′ specified in the
token but not vice versa, i.e., from t′ to t.

Definition 4. A CUFE scheme CUFE for functionality F : X → Y with message space X and tag
space T is a tuple of the PPT algorithms:
Setup(λ,F) : on input security parameter λ ∈ N and a class of functions F , the setup algorithm

outputs a main public-secret key pair (mpk,msk).
KeyGen(msk, f, t) : on input msk, function f ∈ F , and tag t ∈ T , the key-generation algorithm

outputs a function key skf,t.
TokGen(msk, t, t′) : on input msk and tags t, t′ ∈ T , the token-generation algorithm outputs an

update token ∆t→t′ .
Enc(mpk, x, t) : on input mpk, message x ∈ X , and tag t ∈ T , the encryption algorithm outputs a

ciphertext Ct for x.
Update(∆t→t′ , Ct) : on input an update token ∆t→t′ and ciphertext Ct, the update algorithm out-

puts an updated ciphertext UCt′ or ⊥.
Dec(skf,t′ , Ct/UCt)

8 : on input function key skf,t′ and a ciphertext (either a non-updated one Ct
or an updated one UCt), the decryption algorithm outputs f(x) ∈ Y if t′ = t, else outputs ⊥.

Correctness for CUFE. Correctness essentially guarantees that if the tag in a function key and
in an (updated) ciphertext match, then decryption succeeds.

More concretely, a CUFE scheme CUFE is correct if for all λ ∈ N, for any F : X → Y, for any
(mpk,msk) ← Setup(λ,F), for any f ∈ F , for any t ∈ T , for any skf,t ← KeyGen(msk, f, t), for
any x ∈ X , for any Ct ← Enc(mpk, x, t), we have that Dec(skf,t, Ct) = f(x) holds, and for any
t′ ∈ T \ {t}, for any ∆t→t′ ← TokGen(msk, t, t′), for any UCt′ ← Update(∆t→t′ , Ct), we have that
Dec(skf,t′ , UCt′) = f(x) holds.

Remark 1. Notice that the correctness of the CUFE scheme only guarantees that non-updated
ciphertexts for tag t can be updated to tag t′ using the update token ∆t→t′ and still be decrypted
correctly. Looking ahead to the CPA security notion, this will be the only possible use of the update
token. Any other successful use (e.g., updating ciphertexts in the reverse direction or updating
already updated ciphertexts) will allow the adversary to win the security experiment (see below).
Hence, a secure CUFE construction implies that the update token can only be used to update
a non-updated ciphertext to an updated one (assuming the tags match), but not vice versa and
not multiple times (i.e., to “update” an already updated ciphertext is not possible as this would
penalize CUFE security).

Intuition of our CPA security notions for CUFE. Updating ciphertexts via tokens is closely
related to the realm of proxy re-encryption (PRE) [BBS98, AFGH05] and, indeed, we start from
the recent PRE state-of-the-art security model by Cohen [Coh19] and carefully adapt such a
model to our needs in the chosen-plaintext-attack indistinguishability setting. Moreover, due to
the updatability of ciphertexts and thus the concept of update tokens not being present in plain
FE, we need to require additional aspects for our security guarantees. Such tokens could potentially
be used to also switch function keys or even invert updated ciphertexts. In that vein, we define
an indistinguishability-based notion, we dub IND-CUFE-CPA, which guarantees that an adversary
cannot distinguish ciphertexts for a certain target tag t∗ and adversarially chosen messages (x∗0, x

∗
1).

We only want to allow updating the tags of ciphertexts via the token, only in one direction, and
only from non-updated to updated ciphertexts. In order to capture these properties, we provide

8 The decryption algorithms takes either a non-updated ciphertext or an updated one but not both. We
assume that one can retrieve the information on the update status from the ciphertexts efficiently.

8



Experiment Expind-cufe-cpaCUFE,A (λ,F)
(mpk,msk)← Setup(λ,F)
K := ∅, C := UC := ∅,HT := CT := ∅, c := uc := 1, ht := ct := 1
(t∗, x∗0, x

∗
1, st)← AO1(mpk)

b← {0, 1}
C∗ ← Enc(mpk, xb, t

∗)
C := C ∪ {(0, C∗, t∗)}
b′ ← AO(C∗, st)
if b′ = b and A is valid then return 1 else return 0

Oracles O
KeyGen′(f, t): If f /∈ F or t /∈ T , then return ⊥. Compute skf,t ← KeyGen(msk, f, t), set K :=
K ∪ {(f, t)} and return skf,t.

HonTokGen(t, t′): If t′ /∈ T , t /∈ T , or (·, t, t′) ∈ CT , then return ⊥. Compute ∆t→t′ ←
TokGen(msk, t, t′) and set HT := HT ∪ {(ht, t, t′,∆t→t′)}, ht := ht + 1.

CorTokGen(t, t′): If t′ /∈ T , t /∈ T , or (·, t, t′, ·) ∈ HT , then return ⊥. Compute ∆t→t′ ←
TokGen(msk, t, t′), set CT := CT ∪ {(ct, t, t′)}, ct := ct + 1, and return ∆t→t′ .

Enc′(x, t): Compute Ct ← Enc(mpk, x, t), set C := C ∪ {(c, Ct, t)} and c := c + 1, and return Ct.
HonUpdate(t, t′, i, j): If (i, ·, t) /∈ C or (·, t, t′) ∈ CT , then return ⊥. If (j, t, t′, ·) /∈ HT , compute
∆t→t′ ← TokGen(msk, t, t′) and set HT := HT ∪ {ht, t, t′,∆t→t′}, ht := ht + 1; otherwise, retrieve
(j, t, t′,∆t→t′) from HT . Retrieve (i, Ct, t) from C and compute UCt′ ← Update(∆t→t′ , Ct). Set
UC := UC ∪ {(uc, i, t′)}, uc := uc + 1, and return UCt′ .

Validity of A
An adversary A is valid if and only if:
a) there is no (f, t∗) ∈ K with f(x∗0) 6= f(x∗1) (i.e., the adversary cannot trivially distinguish the

challenge ciphertext),
b) there is no (f, t) ∈ K with f(x∗0) 6= f(x∗1) and (·, t∗, t) ∈ CT (i.e., the adversary has not received

update tokens towards t for the challenge ciphertexts where it has queried function keys under t
with f(x∗0) 6= f(x∗1)),

c) there is no (·, 0, t′) ∈ UC for which (f, t′) ∈ K exists with f(x∗0) 6= f(x∗1) (i.e., the adversary has only
queried updated challenge ciphertexts for which it has function keys that satisfy f(x∗0) = f(x∗1)).

Fig. 2. The IND-CUFE-CPA security notion for CUFE. If O1 = ⊥ we call the security game selective and
if O1 = O we call it adaptive.

the adversary in addition to KeyGen (as in plain FE) access to four more oracles. Two of those
additional oracles are related to the generation of tokens and the other two are needed to ensure
security related to updatability of honestly generated ciphertexts.

Concerning the oracles for the token generation, we allow the adversary to adaptively query
corrupted tokens via CorTokGen and honest tokens via HonTokGen. The former mirrors attacks
where the adversary gets complete control over tokens while the latter allows the adversary to
query the generation of an honest token without access to the token itself.

Moreover, we also provide Enc′ and HonUpdate oracles. Thereby, Enc′ allows generating honest
ciphertexts (under mpk) and HonUpdate allows updating ciphertexts which have been honestly
generated via Enc′ without revealing the update token to the adversary. See that via HonTokGen,
the adversary can query an honest token generation and the experiment can use such a token for
the honest update.

The validity of the adversary is checked in the end of the security game. Essentially, the adver-
sary is valid if and only if:

a) the adversary cannot trivially distinguish the challenge ciphertext,
b) the adversary has not received update tokens towards t for the challenge ciphertexts where it

has queried function keys under t with f(x∗0) 6= f(x∗1),
c) the adversary has only queried updated challenge ciphertexts for which it has function keys

that satisfy f(x∗0) = f(x∗1).

If the adversary is valid and it has correctly guessed which message was encrypted in the
challenge ciphertext, the adversary wins the game.

9



IND-CUFE-CPA security. We say that a CUFE scheme is IND-CUFE-CPA-secure if any PPT ad-
versary succeeds in the following experiment only with probability negligibly larger than 1/2.
The experiment starts by computing the initial main public and secret key pair (mpk,msk) ←
Setup(λ,F), initializes empty sets K, C, UC, HT , CT to track keys, ciphertexts, updated cipher-
texts, honest and corrupted tokens, respectively, as well as initializes the counters c, uc, ht, ct for
ciphertexts, updated ciphertexts, honest tokens and corrupted tokens, respectively.

At some point, the adversary outputs target tag and messages (t∗, x∗0, x
∗
1). Next, the experi-

ment tosses a coin b, computes C∗ ← Enc(mpk, x∗b , t
∗), adds (0, C∗, t∗) to C, and gives C∗ to the

adversary. The adversary eventually outputs a guess b′, where the experiment returns 1 if b′ = b
and the adversary is valid. In the adaptive security game the adversary has full access to all oracles
from the beginning, whereas in the selective security game the adversary only gets access to the
oracles after committing to the target tag t∗ and challenge messages (x∗0, x

∗
1). Figure 2 depicts the

experiment.

Definition 5 (IND-CUFE-CPA security). A CUFE scheme CUFE is IND-CUFE-CPA-secure iff
for any valid PPT adversary A the advantage function

Advind-cufe-cpaCUFE,A (λ,F) :=
∣∣∣Pr
[
Expind-cufe-cpaCUFE,A (λ,F) = 1

]
− 1/2

∣∣∣ ,
is negligible in λ, where Expind-cufe-cpaCUFE,A is defined in Figure 2.

Remark 2. We model selective (i.e., the target tag and messages are chosen by the adversary before
it has access to oracles) as well as adaptive (i.e., the adversary has access to the oracles before
specifying target tag and messages) security. We note that it would also be possible to define either
only the tag or the messages in a selective sense. This is straightforward to model and we omit it
for the sake of simplicity. Also, we note that moving a selective setting to an adaptive one can be
done by the standard technique of complexity leveraging if one is willing to accept that message
and/or tag spaces are polynomially bounded in the security parameter.

4 Generic Construction of CUFE and Extensions

In this section, we present a generic construction of CUFE for any function from indistinguishability
obfuscation that provides full IND-CUFE-CPA security. For the sake of consistency, we opt to present
it for the equality predicate on tags and then extend the expressiveness of predicates beyond the
equality testing on tags. We show that due to the way our construction is built, it easily allows to
support any predicate that can be represented as a circuit of arbitrary polynomial size. Moreover,
we remark that one can obtain adaptive FE security using the black-box transformation of Ananth
et al. [ABSV15] along with applying complexity leveraging over the tag space.

4.1 Generic CUFE from iO for any Function

The generic construction is inspired by the approach to construct functional encryption from in-
distinguishability obfuscation by Garg et al. [GGH+13]. Our construction uses indistinguishability
obfuscator iO, probabilistic indistinguishability obfuscator piO, public-key encryption scheme Σ,
and labeled statistically simulation sound non-interactive zero-knowledge (`-SSS-NIZK) proof sys-
tem Π. The construction is described below (where the parts in blue in programs PKey:2 and
PUpdate:2 highlight the changes with respect to programs PKey:1 and PUpdate:1):
– Setup(1λ,F): Compute the following:

1. Generate (sko,1, pko,1)← Σ.KeyGen(1λ) and (sko,2, pko,2)← Σ.KeyGen(1λ).
2. Generate (sku,1, pku,1)← Σ.KeyGen(1λ) and (sku,2, pku,2)← Σ.KeyGen(1λ).
3. Set crs← Π.Setup(1λ).

Output the main public/secret key pair (mpk := (pko,1, pko,2, pku,1, pku,2, crs),msk := (sko,1, sku,1)).
– KeyGen(msk, f, t): Compute an obfuscation Pf,t ← iO(PKey:1[f, t, sko,1, sku,1, crs]) for the pro-

gram PKey:1[f, t, sko,1, sku,1, crs] with the circuit size equal to max{|PKey:1[f, tsko,1, sku,1, crs]|,
|PKey:2[f, t, sko,2, sku,2, crs]|}. Output the secret key skf,t := Pf,t.

10



PKey:1
Constants: f, t, sko,1, sku,1, crs
Inputs: Ct := (e1, e2, πt)

1. If Ct is updated ciphertext, set (pk1, pk2, sk2) := (pku,1, pku,2, sku,1), else set (pk1, pk2, sk2) :=
(pko,1, pko,2, sko,1).

2. If Π.Verify(crs, t, x, πt) 6= 1, for x := {∃m, r1, r2 | e1 = Σ.Enc(pk1,m; r1) ∧ e2 =
Σ.Enc(pk2,m; r2)}, output ⊥.

3. Else output f(Σ.Dec(sk1, e1)).

PKey:2
Constants: f, t, sko,2, sku,2, crs
Inputs: Ct := (e1, e2, πt)

1. If Ct is updated ciphertext, set (pk1, pk2, sk2) := (pku,1, pku,2, sku,2), else set (pk1, pk2, sk2) :=
(pko,1, pko,2, sko,2).

2. If Π.Verify(crs, t, x, πt) 6= 1, for x := {∃m, r1, r2 | e1 = Σ.Enc(pk1,m; r1) ∧ e2 =
Σ.Enc(pk2,m; r2)}, output ⊥.

3. Else output f(Σ.Dec(sk2, e2)).

PUpdate:1
Constants: t, t′, sko,1,mpk := (pko,1, pko,2, pku,1, pku,2, crs)
Inputs: Ct := (e1, e2, πt)

1. If Π.Verify(crs, t, x, πt) 6= 1, for x := {∃m, r1, r2 | e1 = Σ.Enc(pko,1,m; r1) ∧ e2 =
Σ.Enc(pko,2,m; r2)}, output ⊥.

2. Compute m← Σ.Dec(sko,1, e1), and if m = ⊥ output ⊥.
3. Compute e′1 ← Σ.Enc(pku,1,m; r′1) and e′2 ← Σ.Enc(pku,2,m; r′2).
4. Compute πt′ ← Π.Prove(crs, t′, x, w), where t′ is the label, w := (m, r′1, r

′
2) and x := {∃m, r′1, r′2 |

e′1 = Σ.Enc(pku,1,m; r′1) ∧ e′2 = Σ.Enc(pku,2,m; r′2)}.
5. Output Ct′ := (e′1, e

′
2, πt′).

– TokGen(msk, t, t′): Compute an obfuscation Pt→t′ ← piO(PUpdate:1[t, t′, sko,1,mpk]) for the
program PUpdate:1[t, t′, sko,1,mpk] with the circuit size equal to max{|PUpdate:1[t, t′, sko,1,mpk]|,
|PUpdate:2[t, t′, sko,2,mpk]|}. Output the update token ∆t→t′ := Pt→t′ .

– Enc(mpk,m, t): Compute the following:
1. e1 ← Σ.Enc(pko,1,m; r1) and e2 ← Σ.Enc(pko,2,m; r2).
2. πt ← Π.Prove(crs, t, x, w), where t is the label, w := (m, r1, r2) is a witness for the NP

statement

x := {∃m, r1, r2 | e1 = Σ.Enc(pko,1,m; r1) ∧ e2 = Σ.Enc(pko,2,m; r2)}.

Output the ciphertext Ct := (e1, e2, πt).
– Update(∆t→t′ := Pt→t′ , Ct): Run the obfuscated program Ct′ ← Pt→t′(Ct) and output Ct′ .
– Dec(skf,t := Pf,t, Ct): Run the obfuscated program f(m)← Pf,t(Ct) and output f(m).

Correctness. The correctness of our construction follows straightforwardly from the correctness
of the obfuscators iO and piO, public-key encryption scheme Σ, `-SSS-NIZK proof system Π, and
the description of the programs PKey:1 and PUpdate:1.

Security Proof. Towards establishing the security of our generic construction, we rely on the
security properties of the obfuscators iO and piO. We assume that iO is an indistinguishability
obfuscator for the circuit class Cλ and that PKey:1,PKey:2 ∈ Cλ. Furthermore, we assume that
piO is a probabilistic indistinguishability obfuscator for the class of samplers SΣ,Π , which are
defined by the public-key encryption scheme Σ and `-SSS-NIZK proof system Π. The samplers in
SΣ,Π sample pair of circuits that correspond to the circuits used in our generic construction. We
describe the class of samplers in Fig. 3.

11



PUpdate:2
Constants: t, t′, sko,2,mpk := (pko,1, pko,2, pku,1, pku,2, crs)
Inputs: Ct := (e1, e2, πt)

1. If Π.Verify(crs, t, x, πt) 6= 1, for x := {∃m, r1, r2 | e1 = Σ.Enc(pko,1,m; r1) ∧ e2 =
Σ.Enc(pko,2,m; r2)}, output ⊥.

2. Compute m← Σ.Dec(sko,2, e2), and if m = ⊥ output ⊥.
3. Compute e′1 ← Σ.Enc(pku,1,m; r′1) and e′2 ← Σu.Enc(pku,2,m; r′2).
4. Compute πt′ ← Π.Prove(crs, t′, x, w), where t′ is the label, w := (m, r′1, r

′
2) and x := {∃m, r′1, r′2 |

e′1 = Σ.Enc(pku,1,m; r′1) ∧ e′2 = Σ.Enc(pku,2,m; r′2)}.
5. Output Ct′ := (e′1, e

′
2, πt′).

Σ = (KeyGen,Enc,Dec) is a public-key encryption scheme, Π = (Setup,Prove,Verify) is an `-SSS-
NIZK proof system and T = {(t, t′)} and K = {(sk, pk)} are sequences of pairs of strings of length
t(λ) and k(λ), respectively.

Sampler DT ,K: The distribution DT ,K samples crs ← Π.Setup(1λ), and out-
puts C0 = PUpdate:1[t, t′, sko,1,mpk], C1 = PUpdate:2[t, t′, sko,2,mpk] and
z = (t, t′,mpk), where mpk = (pko,1, pko,2, pku,1, pku,2, crs), and (t, t′) ∈ T and
(sko,1, pko,1), (sko,2, pko,2), (sku,1, pku,1), (sku,2, pku,2) ∈ K.

Class SΣ,Π : Let SΣ,Π be the class of samplers with distribution DT ,K for all sequences of strings
T and K.

Fig. 3. The class of samplers for proving the security of our generic construction.

Next, we present the proof of IND-CUFE-CPA security of our generic construction.

Theorem 1. Let Σ be an IND-CPA secure public-key encryption scheme, Π be an (one-time) `-
SSS-NIZK proof system, iO be an indistinguishability obfuscator for the circuit class Cλ and piO
be a probabilistic indistinguishability obfuscator for the class of samplers SΣ,Π . Then, our generic
construction is a selectively IND-CUFE-CPA secure CUFE scheme.

Proof. For simplicity, we assume that a poly-time adversary A makes exactly Qk function secret
key queries and Qt = Qht +Qct token generation queries (where Qht and Qct denote the number
of honest and corrupted token generation queries, respectively). We denote by fi, for i ∈ [Qk], the
i-th function queried to the secret key generation oracle. We use (ti, t

′
i), for i ∈ [Qt], to denote the

i-th tag pair queried to the token generation oracles. The proof is organized in a sequence of hybrid
experiments, where initially the challenger encrypts m0 and we gradually (in multiple hybrid steps)
change the encryption into an encryption of m1. Below we formally describe all the hybrids, and
hereafter, let Hybridi ≈ Hybridi+1 denote

∣∣Pr[Hybridi = 1]− Pr[Hybridi+1 = 1]
∣∣ ≤ negl(λ).

– Hybrid0: This hybrid corresponds to the honest execution of the selective variant of indistin-
guishability game given in Section 3, such that the adversary selects a challenge tag t∗ and the
challenger encrypts m0 in the challenge ciphertext.

– Hybrid1: This hybrid is identical to Hybrid0 with the exception that (crs, πt∗) is simulated as

(crs, πt∗)← Π.Sim(1λ, t∗, {∃m, r1, r2 | e∗1 ← Σ.Enc(pko,1,m; r1)

∧ e∗2 ← Σ.Enc(pko,2,m; r2)}),

where e∗1 and e∗2 are part of the challenge ciphertext Ct∗ .
– Hybrid2: This hybrid is identical to Hybrid1 with the exception that the challenge ciphertext is

generated as Ct∗ = (e∗1 := Σ.Enc(pko,1,m0; r1), e∗2 := Σ.Enc(pko,2,m1; r2), πt∗), where πt∗ is still
simulated.

– Hybrid3,i for i ∈ [0, Qk]: In Hybrid3,i the first i function secret keys queries are answered with
the obfuscation of the program PKey:2[fi, t, sko,2, sku,2, crs], and the remaining (i + 1) to Qk
queries are answered using the program PKey:1[fi, t, sko,1, sku,1, crs]. We note that Hybrid3,0 is
equivalent to Hybrid2.

12



– Hybrid4,i for i ∈ [0, Qt]: In Hybrid4,i the first i token queries are answered with the obfusca-
tion of the program PUpdate:2[ti, t

′
i, sko,2,mpk], and the remaining (i + 1) to Qt queries are

answered using the program PUpdate:1[ti, t
′
i, sko,1,mpk]. We note that Hybrid4,0 is equivalent to

Hybrid3,Qk .
– Hybrid5: This hybrid is identical to Hybrid4,Qt with the exception that the challenge ciphertext

is generated as Ct∗ = (e∗1 := Σ.Enc(pko,1,m1; r1), e∗2 := Σ.Enc(pko,2,m1; r2), πt∗), where πt∗ is
still simulated.

– Hybrid6,i for i ∈ [0, Qt]: The challenge ciphertext and CRS remains as in Hybrid5. Other-
wise, in Hybrid6,i the first i token queries are answered with the obfuscation of the program
PUpdate:1[ti, t

′
i, sko,1,mpk], and the remaining (i+ 1) to Qt queries are answered using the pro-

gram PUpdate:2[ti, t
′
i, sko,2,mpk] as in Hybrid5. We note that Hybrid6,0 is equivalent to Hybrid5.

– Hybrid7,i for i ∈ [0, Qk]: In Hybrid7,i the first i function secret keys queries are answered with
the obfuscation of the program PKey:1[fi, t, sko,1, sku,1, crs], and the remaining (i + 1) to Qk
queries are answered using the program PKey:2[fi, t, sko,2, sku,2, crs]. We note that Hybrid7,0 is
equivalent to Hybrid6,Qt .

– Hybrid8: This hybrid is identical to Hybrid7,Qk with the exception that the CRS and the proof πt∗

are generated honestly (using Π.Setup and the witness (r1, r2), respectively). This corresponds
to the security game where the message m1 is encrypted for the challenge ciphertext.

Lemma 1. If `-SSS-NIZK proof system Π is computationally zero-knowledge, then it holds that
Hybrid0 ≈ Hybrid1.

Proof. We construct an adversary B for the zero-knowledge property of Π. First, B is given a target
tag t∗ and a pair of messages m0,m1 by A. Next, B generates all public/secret keys that form mpk
and msk, and computes the encryptions e∗1 ← Σ.Enc(pko,1,m0; r1) and e∗2 ← Σ.Enc(pko,2,m0; r2).
Then, B submits to the zero-knowledge challenger of Π the statement

x′ := {∃m, r1, r2 | e∗1 ← Σ.Enc(pko,1,m; r1) ∧ e∗2 ← Σ.Enc(pko,2,m; r2)},

along with the label t∗ and the witness (m0, r1, r2). It receives back (crs′, π′t∗), sets the main pub-
lic key to mpk := (pko,1, pko,2, pku,1, pku,2, crs := crs′) and the challenge ciphertext to Ct∗ :=
(e∗1, e

∗
2, πt∗ := π′t∗). The adversary A makes Qk function secret key queries (i.e., KeyGen′). All

queries for a function f and tag t are answered by using the generated pair (sko,1, sku,1) and
constructing PKey:1[f, t, sko,1, sku,1, crs]. Similarly, all Qt token queries for a pair of tags (t, t′) are
answered by using sko,1 and constructing PUpdate:1[t, t′, sko,1,mpk]. If the query is to HonTokGen,
then B stores PUpdate:1[t, t′, sko,1,mpk] in HT , otherwise (in case of CorTokGen query) B re-
turn PUpdate:1[t, t′, sko,1,mpk] to A. Enc′ queries are simply answered using the previously con-
structed mpk. Lastly, HonUpdate queries for a tuple (t, t′, ·, ·) are answered using the program
PUpdate:1[t, t′, sko,1,mpk], where it either already exists in HT or can be generated by B using
sko,1.

If the zero-knowledge challenger ofΠ used the honest setup algorithm and the prover to generate
crs′ and π′t∗ , then we are exactly in hybrid Hybrid0, and if it has used the simulator, then we are
in hybrid Hybrid1. Therefore, if A can distinguish the two hybrids with non-negligible advantage,
then B can break the zero-knowledge property of Π.

Lemma 2. If PKE scheme Σ is IND-CPA secure, then Hybrid1 ≈ Hybrid2.

Proof. We construct an adversary B for the IND-CPA security of Σ. First, B is given a target tag t∗

and a pair of messages m0,m1 by A. Next, B generates the pairs of keys (sko,1, pko,1), (sku,1, pku,1),
(sku,2, pku,2) and computes the encryption e∗1 ← Σ.Enc(pko,1,m0; r1). Then, B receives a public
key pk′ from the IND-CPA challenger of Σ and sets pko,2 := pk′. Next, B submits the messages
m0,m1 to the challenger and receives back e′. It sets e∗2 = e′ and uses the simulation algorithm to
obtain

(crs, πt∗)← Π.Sim(1λ, t∗, {∃m, r1, r2 | e∗1 ← Σ.Enc(pko,1,m; r1)

∧ e∗2 ← Σ.Enc(pko,2,m; r2)}),

with the tag t∗ as the label. The main public key and the challenge ciphertext are set as mpk :=
(pko,1, pko,2, pku,1, pku,2, crs) and Ct∗ := (e∗1, e

∗
2, πt∗). As in the proof of Lemma 1, B uses the secret

keys (sko,1, sku,1) and the main public key mpk to answer all the queries.

13



If the IND-CPA challenger of Σ gave an encryption of m0, then we are exactly in hybrid Hybrid1,
and if it gave an encryption of m1, then we are in hybrid Hybrid2. Therefore, if A can distinguish
the two hybrids with non-negligible advantage, then B can break the IND-CPA security of Σ.

Lemma 3. If iO is an indistinguishability obfuscator for the circuit class Cλ, then it holds that
Hybrid3,i ≈ Hybrid3,i+1 for i ∈ [0, Qk − 1].

Proof. We construct a distinguisher B for iO. First, B is given a target tag t∗ and a pair of messages
m0,m1 by A. Next, B generates all public/secret keys that form mpk and msk, and computes the
encryptions e∗1 ← Σ.Enc(pko,1,m0; r1) and e∗2 ← Σ.Enc(pko,2,m1; r2). Then, B uses the simulation
algorithm to obtain

(crs, πt∗)← Π.Sim(1λ, t∗, {∃m, r1, r2 | e∗1 ← Σ.Enc(pko,1,m; r1)

∧ e∗2 ← Σ.Enc(pko,2,m; r2)}),

with the tag t∗ as the label. The main public key and the challenge ciphertext are set as mpk :=
(pko,1, pko,2, pku,1, pku,2, crs) and Ct∗ := (e∗1, e

∗
2, πt∗). HonUpdate,HonTokGen,CorTokGen and Enc′

queries are answered in an analogous way to the proof of Lemma 1. For the function secret key
queries, A makes Qk queries to KeyGen′. For j ≤ i, the j-th function secret key is created as an
obfuscation of the program PKey:2[fj , t, sko,2, sku,2, crs] for a tag t. For j > i+1, the j-th function
secret key is created as an obfuscation of the program PKey:1[fj , t, sko,1, sku,1, crs] for a tag t.
For the (i + 1)-th function secret key query B submits C0 = PKey:1[fi+1, t, sko,1, sku,1, crs] and
C1 = PKey:2[fi+1, t, sko,2, sku,2, crs] to the iO challenger. It receives back an obfuscated circuit
C ′, which B sets as the (i+ 1)-th function secret key.

Next, we show that both programs have the same input/output behavior. In case the inputs
(e1, e2, π) consist of valid encryptions e1, e2 of the same message and π is a valid proof, then both
programs decrypt to the same message m irrespective of the key used and compute the same
function fi+1. Hence, the output is the same on all inputs of this class. The second set of inputs
we consider are when the proof π does not pass the verification (the second step in the programs).
Then, both programs output ⊥. Lastly, we consider class of inputs where π passes the verification,
but the ciphertexts e1, e2 are not valid encryption of the same message. Due to the (one-time)
statistical simulation-soundness property of the `-SSS-NIZK, this can only happen if e1 = e∗1 and
e2 = e∗2. In this case decrypting e∗1 gives m0 and decrypting e∗2 gives m1. Though, due to the
validity of the IND-CUFE-CPA adversary as defined in Section 3, the output of the first program
fi+1(m0) and the output of the second program fi+1(m1) are equal. This concludes that both
programs have the same output on all inputs.

If the iO challenger chose the first program, then we are exactly in hybrid Hybrid3,i, and if it
chose the second program, then we are in hybrid Hybrid3,i+1. Therefore, if A can distinguish the
two hybrids with non-negligible advantage, then B can break the security of iO for the circuit class
Cλ.

Lemma 4. If piO is a probabilistic indistinguishability obfuscator for the sampler SΣ,Π , then it
holds that Hybrid4,i ≈ Hybrid4,i+1 for i ∈ [0, Qt − 1].

Proof. We construct a distinguisher B for piO. First, B generates all key pairs K := ((sko,1, pko,1),
(sko,2, pko,2), (sku,1, pku,1), (sku,2, pku,2)), sets mpk := (pko,1, pko,2, pku,1, pku,2, crs) and challenge
ciphertext Ct∗ := (e∗1, e

∗
2, πt∗) using the generated keys as in the proof of Lemma 3. Moreover, B

uses the secret keys (sko,2, sku,2) and the main public key mpk to answers KeyGen′ and Enc′ oracle
queries, respectively. For the Qt token queries that A makes B proceeds as follows. For j ≤ i, the
j-th token is created as an obfuscation of the program PUpdate:2[tj , t

′
j , sko,2,mpk]. For j > i+ 1,

the j-th token is created as an obfuscation of the program PUpdate:1[tj , t
′
j , sko,1,mpk]. If the query

is to HonTokGen, then B stores the corresponding program in HT , otherwise (in case of CorTokGen
query) B return the program to A. Similarly, HonUpdate queries are answered either by using an
already stored program in HT or by generating a new program using sko,2. For the (i+1)-th token
query (for the pair T := (ti+1, t

′
i+1)), B uses the challenger of piO, which samples (C0, C1, z) ←

DT,K, where C0 = PUpdate:1[ti+1, t
′
i+1, sko,1,mpk], C1 = PUpdate:2[ti+1, t

′
i+1, sko,2,mpk] and

z = (ti+1, t
′
i+1,mpk). The challenger generates C ′ (obfuscation of either C0 or C1) and gives C ′ to

B, which B sets as the (i+ 1)-th token.

14



If the piO challenger chose the first program, then we are exactly in hybrid Hybrid4,i, and if it
chose the second program, then we are in hybrid Hybrid4,i+1. Therefore, if A can distinguish the
two hybrids with non-negligible advantage, then B can break the security of piO for the sampler
SΣ,Π .

Lemma 5. If PKE scheme Σ is IND-CPA secure, then Hybrid4,Qt ≈ Hybrid5.

Proof. The proof of this lemma follows analogously to that of Lemma 2.

Lemma 6. If piO is a probabilistic indistinguishability obfuscator for the sampler SΣ,Π , then it
holds that Hybrid6,i ≈ Hybrid6,i+1 for i ∈ [0, Qt − 1].

Proof. The proof of this lemma follows analogously to that of Lemma 4.

Lemma 7. If iO is an indistinguishability obfuscator for the circuit class Cλ, then it holds that
Hybrid7,i ≈ Hybrid7,i+i for i ∈ [0, Qk − 1].

Proof. The proof of this lemma follows analogously to that of Lemma 3.

Lemma 8. If `-SSS-NIZK proof system Π is computationally zero-knowledge, then it holds that
Hybrid7,Qk ≈ Hybrid8.

Proof. The proof of this lemma follows analogously to that of Lemma 1.

This concludes the proof of Theorem 1. ut

Instantiations of the Generic Construction Analogous to the universal proxy re-encryption
construction of Döttling and Nishimaki [DN21], the class of PKE that we can use depends on
the security level of piO. Since we do not want to impose any restrictions on the underlying
PKE scheme and to allow instantiating our generic construction using any IND-CPA PKE scheme,
we only consider piO with stronger security, namely, dynamic-input piO, and the recent work of
doubly-probabilistic iO [ACH20].

Instantiation by dynamic-input probabilistic iO. Using a dynamic-input piO we can relax
the requirements of the underlying encryption scheme and use any IND-CPA secure PKE scheme.
We note that dynamic-input piO is a generalization of differing-input iO by Garg et al. [GGHW14]
to randomized circuits, hence, it inherits the implausibility results of differing-input iO. This im-
plies that dynamic-input piO for general dynamic-input indistinguishable samplers is implausible.
However, Canetti et al. [CLTV15] argued that a construction of dynamic-input piO for specific
classes of samplers is possible, and here we conjecture that dynamic-input piO for class of samplers
SΣ,Π might exist.

Conjecture 1. A dynamic-input piO for the class of samplers SΣ,Π exists.

We note that our conjecture is quite similar to a standard (and believed to hold) conjecture
used in previous works, such as [CLTV15] and [DN21].

Corollary 1. If there exists dynamic-input piO for the class of samplers SΣ,Π , where Σ is an
IND-CPA PKE scheme and Π is an `-SSS-NIZK proof system, then our generic construction is
selectively IND-CUFE-CPA secure CUFE scheme for any IND-CPA encryption scheme Σ.

Instantiation by doubly-probabilistic iO. Following the recent work of Agrikola et al. [ACH20],
if we assume the exponential DDH assumption and polynomially secure iO, then we can instantiate
our construction using any IND-CPA PKE scheme.

Theorem 2. If there exists polynomially secure iO and the exponential DDH assumption holds,
then our generic construction is selectively IND-CUFE-CPA secure CUFE scheme for any IND-CPA
PKE Σ.

15



4.2 Extending Supported Predicates

For our generic construction it is easily possible to extend it from supporting the equality test
predicate (i.e., tags) to more powerful predicates, i.e., an access control mechanism known from
ABE in the terminology of [ACGU20].

Let us follow the notation of Gorbunov et al. [GVW13], who construct ABE for any circuit of
arbitrary polynomial size. Thus, let ind be an ` bit public index (used for encryption) and P a
Boolean predicate (associated to secret keys) and decryption should only work if P(ind) = 1. Now,
we can simply associate function keys with more expressive predicates P (encode them into PKey)
instead of tags and use as public labels for the NIZK the public index ind (i.e., the attributes).
In the decryption circuit Pf,P, one simply checks if for label ind and hard-coded P it holds that
P(ind) = 1.

Switching the public index in a ciphertext from ind to some ind′, i.e., change the attributes in
the ciphertext, can simply be done by viewing the public indices as the tags in the current solution.
Now this represents a generalization of our generic construction where we only have the equality
predicate Pt(t̂) = 1 if and only if t = t̂.

5 Lattice-Based CUFE Construction for Inner Products

After recalling the syntax and properties of the main sampling algorithms used in lattice-based
constructions, we will build a CUFE scheme for inner-products from the LWE assumption in the
random oracle model in this section. For a further exposition of lattice preliminaries we refer the
reader to Appendix A.4.

5.1 Lattice Definitions and Algorithms

For any matrix A ∈ Zn×mq , we define the orthogonal q-ary lattice of A as Λ⊥q (A) := {~u ∈ Zm :

A~u = ~0 mod q}.
The normal Gaussian distribution of mean 0 and variance σ2 is the distribution on R with

probability density function 1
σ
√
2π

1
ex2/(2σ2)

. The lattice Gaussian distribution with support a lattice

Λ ⊆ Zm, standard deviation σ and centered at ~c ∈ Zm, is defined as:

for all ~y ∈ Λ : DΛ,σ,~c(~y) =
e−π‖~y−~c‖

2/σ2∑
~x∈Λ e

−π‖~x−~c‖2/σ2

The following algorithms will be used in lattice construction, and their properties needed in the
security proof.

Lemma 9 ([GPV08] Preimage Sampable Functions). For any prime q = poly(n), any
m ≥ 5n log q, and any s ≥ m2.5ω(

√
logm), it holds that there exist PPT algorithms TrapGen,

SampleD, SamplePre such that:

1. TrapGen computes (A,T)← TrapGen(1n, 1m), where A ∈ Zn×mq is statistically close to uniform

and T ⊂ Λ⊥q (A) is a basis with ‖T̃‖ ≤ m2.5. The matrix A (and q) is public, while the good
basis T is the trapdoor.

2. SampleD samples matrices Z′ from DZm×m,s,
3. The trapdoor inversion algorithm SamplePre(A,T,D, s), for D ∈ Zn×mq , outputs a matrix

Z ∈ Zm×m such that AZ = D.

In addition, it holds that the following distributions D1, D2 are statistically close:

D1 = (A,Z,D), s.t. (A,T)← TrapGen(1n, 1m),D← Zn×mq ,

Z← SamplePre(A,T,D, s),

D2 = (A,Z′,AZ′), where A← Zn×mq ,Z′ ← DZm×m,s.

Theorem 3 ([ABB10] SampleLeft). Let q > 2, full rank A,B ∈ Zn×mq with m > n, a basis

TA of Λ⊥q (A), a matrix D ∈ Zn×mq and σ > ‖T̃A‖ · ω(
√

logm). Then there exists PPT algorithm
SampleLeft(A,TA,B,D, σ) that outputs a matrix X ∈ Z2m×m, distributed statistically close to
DΛD

q (A|B),σ.

16



5.2 Lattice Construction

We are building on the work of Abdalla et al. [ACGU20], who gave the first constructions, one in the
standard model (SM) and one in the random oracle (RO) model, of a lattice-based identity-based
IPFE scheme, and proved their security9 under the LWEq,α,n assumption (Definition 10). Their
constructions are in turn based on the IPFE scheme of Agrawal et al. [ALS16], ALS, described
in Figure 4.

Setup(1λ, n):

A←$ Zn×mqALS

Z←$DZm×`,ρALS
D← AZ
mpk← (A,D)
msk← Z
Return (mpk,msk)

KeyGen(Z, ~y ∈ Y):
Return (~y, sk~y := Z · ~y)

Enc(mpk, ~x ∈ X ):
~s←$ ZnqALS
~e1 ←$DZm,σALS

~e2 ←$DZ`,σALS

ct1 = A>~s+ ~e1
ct2 = D>~s+ ~e2 +

⌊
q
K

⌋
· ~x

Return (ct1, ct2)

Dec(ct1, ct2, sk~y, ~y ∈ Y):

µ′ = ~y> · ct2 − sk>~y · ct1
Return arg minµ∈{0,...,K+1}

∣∣⌊ q
K

⌋
· µ′ − µ

∣∣
Fig. 4. Inner-product functional encryption scheme ALS, with parameters as in [ACGU20].

In our construction, we start from the RO scheme of Abdalla et al. [ACGU20] and enhanced
their design in order to allow distinguishing fresh and updated ciphertexts. To prove its security, we
rely on the programmability of random oracles H1, H2, H3 : T → Zn×mq , where T is the tag-space.
Notice that programmability of random oracles is required in the security proof to simulate the
new supported functionality, i.e., updating ciphertexts. Thus, even though our construction is only
proved secure in the RO model, it also supports a richer class of functionalities than previous works.
Our lattice-based CUFE construction is described in Figure 5. Dimensions of matrices involved in
the construction are presented in Table 1.

Table 1. Matrices, vectors, and respective dimensions used in the construction.

A Zn×mq Xt,t′ Zm×m

TA Zm×m Yt,t′ Zm×m

Bt,1 Zn×mq ~s Znq
Bt,2 Zn×mq ~e1 Zm

Dt Zn×mq ~e2 Zm

∆t→t′,1 Z2m×2m ~e3 Zm

∆t→t′,2 Z2m×m S {±1}m×m

ctt,1,1 Z2m
q

~f1 Z2m

ctt,1,2 Zmq ~f2 Zm

ctt,2,1 Z2m
q

~f Zm

ctt,2,2 Zmq ~x {0, . . . , P}m
Zt,1 Z2m×m ~y {0, . . . , V }m
Zt,2 Z2m×m 〈~y, ~x〉 {0, . . . ,mPV }

The first component of the ciphertext, ctt,1,1, depends on the tag t but not on the message.
The second component, ctt,1,2, on the other hand, depends on the message ~x to be encrypted. The
two components are intertwined by the shared randomness ~s ∈ Znq . In order to update ciphertexts,
it is therefore necessary to update the two parts of a given ciphertext to the prescribed new tag,
while preserving the common randomness, the underlying plaintext, and, at the same time, without
increasing the error term too much. Latter would prevent correct decryption of updated ciphertexts.

9 We refer the reader to Appendix A.3 for a formal definition.

17



Setup(1λ, n):
(A,TA)← TrapGen(1n, 1m)
Return (mpk := A,msk := (A,TA))

KeyGen((A,TA), ~y ∈ Y, t):
for ` = 1, 2 : Zt,` ← SampleLeft(A,TA, H`(t), H3(t), ρ`)
Return (~y, {sk~y,t,` := Zt,` · ~y}`=1,2)

TokGen((A,TA), t, t′):

Bt,1 := H1(t), Bt′,2 := H2(t′), Dt := H3(t), Dt′ := H3(t′), Yt,t′ ←$DZm×m,ρ

Xt,t′ ← SamplePre(A,TA,Bt′,2 −Bt,1Yt,t′ , ρ)

∆t→t′,1 :=

[
Im Xt,t′

0 Yt,t′

]
∆t→t′,2 ← SampleLeft(A,TA,Bt,1,Dt′ −Dt, ρ)
Return (∆t→t′,1,∆t→t′,2)

Enc(mpk, ~x ∈ X , t):
Bt,1 := H1(t), Dt := H3(t)
~s←$ Znq , ~e1, ~e2 ←$DZm,σ, ~e3 ←$DZm,µ, S←$ {±1}m×m

ctt,1,1 := H>t,1~s+ ~f with Ht,1 := (A|Bt,1), ~f := (Im|S)> · ~e1
ctt,1,2 := D>t ~s+ ~e2 + ~e3 +

⌊
q
K

⌋
· ~x

Return (ctt,1,1, ctt,1,2)

Update(∆t→t′,1,∆t→t′,2, ctt,1,1, ctt,1,2):

Bt′,2 := H2(t′), Dt′ := H3(t′), ~r←$ Znq , ~f1 ←$DZ2m,τ , ~f2 ←$DZm,τ

ctt′,2,1 := ∆>t→t′,1ctt,1,1 + H>t′,2~r + ~f1 with Ht′,2 = (A|Bt′,2)

ctt′,2,2 := ctt,1,2 +∆>t→t′,2ctt,1,1 + D>t′~r + ~f2
Return (ctt′,2,1, ctt′,2,2)

Dec(ctt,`,1, ctt,`,2, ~y, {sk~y,t,`}`=1,2):

µ′ ← ~y> · ctt,`,2 − sk>~y,t,` · ctt,`,1
Return arg minµ∈{0,...,K+1}

∣∣⌊ q
K

⌋
· µ− µ′

∣∣
Fig. 5. Lattice-based Ciphertext-Updatable IPFE scheme.

This can be done using techniques inspired by [FL19, CCL+14]. Moreover, since the randomness is
given by uniform vector in Znq and the encryption scheme is additively homomorphic, ciphertexts
can be easily re-randomized.

To update a ciphertext from t to t′, we want to produce a 2m× 2m matrix ∆t→t′,1 over Z and
a 2m×m matrix ∆t→t′,2 over Z, with ∆t→t′,2 ← DZ2m×m,ρ. ∆t→t′,1 has the form

∆t→t′,1 :=

[
Im Xt,t′

0 Yt,t′

]
,

with Xt,t′ ,Yt,t′ ← DZm×m,ρ. ∆t→t′,1 and ∆t→t′,2 are additionally conditioned on

Ht,1 ·∆t→t′,1 = Ht′,2, and Ht,1 ·∆t→t′,2 = Dt′ −Dt.

In the real game the matrix ∆t→t′,1 and ∆t→t′,2 will be produced using the trapdoor TA, i.e.,
Yt,t′ will be sampled from DZm×m,ρ, Xt,t′ using SamplePre(A,TA,Bt′,2 − Bt,1Yt,t′ , ρ), where
Ht′,2 = (A|Bt′,2), and ∆t→t′,2 using SampleLeft(A,TA,Bt,1,Dt′ −Dt, ρ).

Vice versa, in the security proof, we will leverage on the programmability of the random oracles
H1, H2, and H3: whenever the source tag t equals the challenge tag t∗, Xt,t′ , Yt,t′ , and ∆t→t′,2 will
be sampled from the appropriate distributions, H2(t′) = Bt′,2 will be set to equal AXt,t′+Bt,1Yt,t′ ,
and H3(t′) = Dt′ to Ht,1 ·∆t→t′,2 + Dt. For all other pair of tags, t, t′, the token (∆t→t′,1, ∆t→t′,2)
is produced using the trapdoor of H1(t) = Bt,1: the matrix Bt,1 will be produced using the TrapGen
algorithm, and the update token will be produced using such trapdoor.

To update a ciphertext (ctt,1,1, ctt,2,2), given the appropriate token (∆t→t′,1, ∆t→t′,2), fresh

randomness ~r ← Znq and noises ~f1 ← DZ2m,τ ,~f2 ← DZm,τ are sampled and the new ciphertext

18



(ctt′,2,1, ctt′,2,2) is computed as

ctt′,2,1 := ∆>t→t′,1ctt,1,1 + H>t′,2~r + ~f1,

ctt′,2,2 := ctt,1,2 +∆>t→t′,2ctt,1,1 + D>t′~r + ~f2.

The functional secret keys, {skt,`,~y}`=1,2, can be produced as follows:
– for the challenge tag t∗: for ` = 1, using the ALS challenger, and for ` = 2, using the trapdoor

of Bt∗,2.
– for tags, t 6= t∗, for which no update token of the form (∆t∗→t,1, ∆t∗→t,2) was queried but

to which the challenge ciphertext was updated: using the trapdoor of Bt,1, or again the ALS
challenger for ` = 2.

– for all other tags: using the trapdoor of Bt,` for ` = 1, 2.

Parameters and Correctness. In our construction, ciphertexts encode vectors ~x ∈ {0, . . . , P}m
under a tag t. Secret keys corresponds to a tag t and a vector ~y ∈ {0, . . . , V }m. When tags match,
our scheme decrypts the bounded inner-product 〈~x, ~y〉 ∈ {0, . . . ,K}, where K = mPV . Moreover,
our scheme parameters must satisfy the following bounds:

– m ≥ 6n log q (required by TrapGen),
– αq > 2

√
n (required by hardness of LWE).

– ρ = ρ1 = ρALS ≥ m2.5 · ω(
√

logm) (required by SamplePre),
– ρ2 ≥ mρ · λω(1) (required in the security proof for the indistinguishability of function keys),
– σ = σALS,
– NoiseGen: the spectral norm of St∗ can be upper-bounded (by using the Frobenius norm) by
m. Using Lemma 15, s1(Zt∗) ≤ 3Cρ

√
m, which implies µ ≥ 3Cρm1.5,

– τ ≥
√
m(σ + µ+ 2

√
2ρσm1.5C ′)λω(1) (require in the security proof for the indistinguishability

of updated honest ciphertexts) and τ ≥ (σ
√
m + σρ2m

1.5 +
√

2m2σρ2C
′)λω(1) (for the indis-

tinguishability of updates of the challenge ciphertext). Thus, we set τ ≥ max{
√
m(σ + µ +

2
√

2ρσm1.5C ′), (σ
√
m+ σρ2m

1.5 +
√

2m2σρ2C
′)} · λω(1),

– q > 2KVm(σ+µ+ τ + 12
√

2C ′m2.5ρ2(ρσ+ τ)) (required for successful decryption of updated
ciphertexts),

Lemma 10 (Correctness). For q > 2KVm(σ+ µ+ τ + 12
√

2C ′m2.5ρ2(ρσ+ τ)), the decryption
of (updated) ciphertexts from the scheme in Fig. 5 is, w.h.p., correct.

Proof. The correct decryption of fresh ciphertexts follows directly from the correctness of the
Abdalla et al. [ACGU20] construction. On the other hand, an updated ciphertext has the following
form:

ctt′,2,1 := ∆>t→t′,1ctt,1,1 + H>t′,2~r + ~f1

= H>t′,2(~s+ ~r) +∆>t→t′,1
~f + ~f1, and

ctt′,2,2 := ctt,1,2 +∆>t→t′,2ctt,1,1 + D>t′~r + ~f2

= D>t′ (~s+ ~r) + ~e2 + ~e3 +∆>t→t′,2
~f + ~f2 +

⌊ q
K

⌋
· ~x.

Therefore, during decryption of updated ciphertexts, one obtains:

µ′ = ~y> · ctt,2,2 − sk>t,2,~y · ctt,2,1

=
⌊ q
K

⌋
〈~y, ~x〉+ ~y>(~e2 + ~e3 +∆>t→t′,2

~f + ~f2)− ~y>Z>t′,2(∆>t→t′,1
~f + ~f1)︸ ︷︷ ︸

error terms

,

where we have used the fact that Ht′,2 · Zt′,2 = Dt′ . This decrypts correctly as long as the error
terms obtained

~y>(~e2 + ~e3 +∆>t→t′,2
~f + ~f2 − Z>t′,2(∆>t→t′,1

~f + ~f1)),

are small compared to q/K. Since ∆t,t′,1 ∈ Z2m×2m, and ∆t,t′,2,Zt′,2 ∈ Z2m×m are sampled via the
SamplePre algorithm with parameter ρ and ρ2 respectively, by Lemma 11, we know that ‖Zt′,2‖ ≤
2m · ρ2, ‖∆t→t′,1‖ ≤ 2m · ρ, and ‖∆t→t′,2‖ ≤

√
2 ·m · ρ, as long as ρ, ρ2 ≥ m2.5ω(

√
log n). Using

again Lemma 11 and Lemma 14, we can also deduce that ‖~e1‖, ‖~e2‖ ≤ σ
√
m, ‖~e3‖ ≤ µ

√
m, ‖~f‖ ≤

19



C ′σ
√

2m and ‖~f1‖ ≤ τ
√

2m,‖~f2‖ ≤ τ
√
m, as long as σ, µ, τ ≥ ω(

√
log n). Therefore, ‖∆>t→t′,1 ~f‖ ≤

2
√

2C ′m2ρσ, ‖∆>t→t′,2 ~f‖ ≤ 2C ′m2ρσ, and ‖Z>t′,2(∆>t→t′,1
~f + ~f1)‖ ≤ 2mρ2(2

√
2C ′m2ρσ +

√
2mτ).

Since, ‖~y‖ ≤ V
√
m, the final error term is upper bounded by V

√
m · (σ

√
m+ µ

√
m+ 2C ′m2ρσ +

τ
√
m + 2mρ2(2

√
2C ′m2ρσ +

√
2mτ)). For decryption to succeed, we want that the error term is

smaller than q
2K , which implies:

q > 2KV
√
m · (σ

√
m+ µ

√
m+ 2C ′m2ρσ + τ

√
m+ 2mρ2(2

√
2C ′m2ρσ +

√
2mτ))

> 2KVm(σ + µ+ τ + 12
√

2C ′m2.5ρ2(ρσ + τ)). ut

Security Proof. We now show that the adaptive security of our CUFE construction follows from
the security of the ALS scheme. In order to do so, we however have to make the following restrictions
regarding the validity of the adversary in the IND-CUFE-CPA experiment:

1. if (·, t∗, t′) ∈ CT , then there is no (f, t′) ∈ K,
2. for any t ∈ T , the number of CorTokGen oracle queries, on input (t, ·), is bounded by a constant,
3. the number of HonUpdate oracle queries, on input (·, ·, 0, ·), is bounded by a constant.

The first restriction is due to limitations in our current proof techniques: given t′ ∈ T , t′ 6= t∗,
the reduction can either simulate ∆t∗→t′ , or skf,t′ , for any arbitrary f . Since CorTokGen requires
generating∆t∗→t′ , the reduction wouldn’t be able to simulate skf,t′ as well. The last two restrictions
are instead due to the security loss that the guessing strategy would otherwise lead to as the target
tags of tokens, where the source tag is the challenge one, and challenge update queries made have
to be guessed in advance. Since the proof is in the random oracle model, these guesses are not over
the entire tag-space T , which can be unbounded, but over the indices of the RO queries, which are
bounded by a polynomial in the security parameter as the adversary needs to be efficient. As long
as the number of CorTokGen-oracle queries per given source tag, and HonUpdate-oracle queries on
input the challenge ciphertext, are constant, the security loss will be polynomially bounded. We
will make this assumption in Theorem 4. This result can also be rephrased in the following terms: if
one maintains a “recording graph” that has a node for each tag queried to the RO, and whose edges
are derived from the tokens and challenge updates issued to the adversary, then the loss is given
by nδ, where n is the number of nodes in the graph, and δ is the outer degree of the graph. This
result is similar to the one obtained by Fuchsbauer et al. [FKKP19] to generically obtain proxy
re-encryption schemes secure against adversaries that can adaptively corrupt users from proxy
re-encryption schemes secure against adversaries that cannot make adaptive user corruptions.

Theorem 4 (Security). Let λ be the security parameter. Fix parameters q, n, m, α, σ, ρ, ρ1, ρ2,
µ and τ as above. Then, under the above restrictions on the adversary, the CUFE scheme described
in Fig 5 is adaptive IND-CUFE-CPA secure if the ALS-IPFE scheme [ALS16] is AD-IND secure.

Proof. We proceed in a series of hybrids, consider A to be a PPT adversary, and λ to be the security
parameter. We denote by AdvGamei(A) the advantage of A in Game i. Let Qh be the number
of random-oracle queries made by the adversary, Qt be the maximum number of TokGen-oracle
queries of the form (t, ti) for any fixed tag t, and Qu be the maximum number of Update-oracle
queries on input the challenge ciphertext. We will assume, without loss of generality, that any
adversary making key generation queries of the form (~y, t), update queries of the form (t, t′, ·, ·),
or token generation queries of the form (t, t′) will first query the random oracle H on t and t′ (we
can make this assumption because for every adversary A, we can compile it into an adversary A′
that exhibits this behavior).

Game0. This is the original IND-CUFE-CPA game.

Game1. This is the same as previous game, except that we guess the tag t∗ which will be used for
the challenge messages. Instead of guessing directly t∗ among the set of tags T , which would incur
an exponential loss, we guess the index of the random-oracle query in which the adversary queries
H to get Ht∗,1 and Dt∗ . If the guess is incorrect, we abort. This results in a 1

Qh
security loss.

Game2. This is the same as previous game, except that we guess for which tags t′ the adversary
will query an update token of the form (∆t∗→t′,1, ∆t∗→t′,2). If the guess was incorrect, we abort.
As above, instead of guessing directly the tag t′ among the set of tags T , which would incur an
exponential loss, we guess the indices of the random-oracle query in which the adversary queries

H to get Ht′,2 and Dt′ . This will result in a
(
Qh−1
Qt

)−1
security loss.

20



Game3. This is the same as previous game, except that we guess for which tags t′ the adversary will
query the Update-oracle on input the challenge ciphertext. As above, instead of guessing directly
the tag t′ among the set of tags T , which would incur in an exponential loss, we guess the indices
of the random-oracle query in which the adversary queries H to get Ht′,2 and Dt′ . If the guess is

incorrect, we abort. This results in a
(
Qh−Qt−1

Qu

)−1
security loss.

From now on, let H = {t1, · · · , tQh
} be the list of random-oracle queries made by the adver-

sary. Let i∗ ∈ [Qh] be the index of the query corresponding to the challenge tag, i.e., ti∗ = t∗. Let
QT be the list of indices {ik}k≤Qt

for which the adversary will query an update token from the
challenge tag t∗, and let QU be the list of indices {jk}k≤Qu

for which the adversary will query the
Update-oracle for a ciphertext encrypted under the challenge tag t∗.

Game4. This is the same as previous game, except for the following modifications. For each of
ik ∈ QT , we sample Xt∗,tik

,Yt∗,tik
← DZm×m,ρ, and ∆t∗→t,2 ← DZ2m×m,ρ. Then, we set H2(tik) :=

Btik ,2
:= AXt∗,tik

+ Bt∗,1Yt∗,tik
and H3(tik) := Dtik

= Ht∗,1∆t∗→t,2 + Dt∗ . When the adversary
queries the CorTokGen oracle on input (t, t′) we return

∆t∗→t,1 :=

[
Im Xt∗,tik

0 Yt∗,tik

]
and ∆t∗→t,2,

to the adversary. The rest of the game is as before. By Lemma 9, each of the token (∆t∗→t,1, ∆t∗→t,2)
is distributed statistically close to the previous game.

Game5. This is the same as previous game, except for the following modifications. For all i ∈
[Qh], i 6= i∗, we sample (Bti,1,TBti,1

) ← TrapGen(1n, 1m) and set H1(ti) := Bti,1. Whenever the
adversary makes a query to the CorTokGen oracle of the form (ti, t), we reply using TBti,1

instead
of TA:

– sample Xti,t ← DZm×m,ρ, run Yt′,t ← SamplePre(Bti,1,TBti,1
,Bt,2−AXti,t, ρ), and Rti→t,2 ←

SampleLeft(Bti,1,TBti,1
,A,Dt −Dti , ρ). Return

∆ti→t,1 :=

[
Im Xt′,t

0 Yt′,t

]
and ∆ti→t,2 :=

[
0 Im
Im 0

]
·Rti→t,2.

The rest of the game is as before. Notice that, by the invariance under permutation of the Gaussian
distribution, we have that ∆ti→t,2 ← DZ2m×m,ρ. Moreover,

Hti,1∆ti→t,2 = (A|Bti,1)

[
0 Im
Im 0

]
·Rti→t,2 = (Bti,1|A)Rti→t,2 = Dt −Dti ,

as expected. Applying again Lemma 9, we also obtain that the distribution of CorTokGen-oracle’s
replies is statistically close to that of Game4.

Game6. This is the same as previous game, except for the following modifications. Now, for all
i 6∈ {i1, . . . , iQt

} ∪ {j1, . . . , jQu
}, we sample (Bti,2,TBti,2

) ← TrapGen(1n, 1m) and set H2(ti) :=

Bti,2. Whenever the adversary makes a query to the KeyGen′ oracle of the form (ti, ~y), with
i 6∈ {i1, . . . , iQt

}∪ {j1, . . . , jQu
}∪ {i∗}, we reply using TBti,1

and TBti,2
instead of TA (recall that

TBti,1
was already introduced in the previous game for all i 6= i∗):

– for ` = 1, 2, run SampleLeft(Bti,`,TBti,`
,A,Dti , ρ`) to obtain Rti,`. Return

Zti,` :=

[
0 Im
Im 0

]
·Rti,`.

The rest of the game is as before. Notice that, by the invariance under permutation of the Gaussian
distribution, we have that Zti,` ← DZ2m×2m,ρ` . Moreover,

Hti,`iZti,`i = (A|Bti,`i)

[
0 Im
Im 0

]
Rti,`i = (Bti,`i |A)Rti,`i = D,

as expected. Therefore, the distribution KeyGen′-oracle’s replies is, by Lemma 9, statistically close
to that of Game5.

21



Game7. This is the same as previous game, except for the following modifications. We modify how
Enc′- and HonUpdate-oracles are handled for ciphertexts different from the challenge one. Every
time the adversary makes a query to the Enc′-oracle of the form (~x, t), we return (ctt,1,1, ctt,1,2)←
Enc(mpk, t, ~x), add (c, Ct, t, ~x) to C, and increment c. Whenever the adversary makes a query to
the HonUpdate-oracle of the form (t, t′, i, ·), we check if (·, t, t′, ·) is in HT and if (i, ·, t, ~x) is in C
for some ~x ∈ Zmq . If so, we sample ~r ← Znq , ~g1 ← DZ2m,τ , ~g2 ← DZm,τ , and return (ctt′,2,1, ctt′,2,2),
where

ctt′,2,1 := H>t′,2~r + ~g1, ctt′,2,2 := D>t′~r + ~g2 +
⌊ q
K

⌋
· ~x,

otherwise we return ⊥. By the Smudging Lemma 12, since the parameter of the Gaussian distri-
bution from which ~f1 and ~f2 are sampled is superpolynomially bigger than the norm of ∆>t→t′,1

~f

and ~e2 + ~e3 +∆>t→t′,2
~f , we get that

SD

(
DZn,τ ,DZ,τ,∆>

t→t′,1
~f

)
,SD

(
DZn,τ ,DZ,τ,~e2+~e3+∆>t→t′,2

~f

)
≤ 1

λω(1)
,

where we used again Lemma 9 to bound the norm of ∆>t→t′,1
~f and ~e2 + ~e3 +∆>t→t′,2

~f . Therefore,

the distribution of Enc′- and HonUpdate-oracle’s replies is statistically close to that of Game6.

Game8. The only queries for which we still need the main secret key TA are the HonUpdate-oracle
queries on input the challenge ciphertext, and the functional secret key queries for the challenge
tag t∗ (with ` = 1) and the tags tjk with {jk}k≤Qu

(for ` = 2). We now perform a reduction to
the security of the ALS [ALS16] encryption scheme. We reduce to the AD-IND security of ALS.
We first obtain from the challenger public keys AALS, DALS. Now, equipped with the knowledge
of t∗, we define Game8 to be the same as Game7, except for the following changes:

- The matrix A is replaced with AALS instead of being generated with TrapGen.
- We sample St∗ ← {±1}m×m and Zt∗ ← DZm×m,ρ1 , program H1(t∗) := ASt∗ and set H3(t∗) :=

Dt∗ := DALS + ASt∗Zt∗ .
- Similarly, for each k ∈ [Qu], we sample Stjk ← {±1}m×m and Rtjk

,Ztjk ← DZm×m,ρ2 , program
H2(tjk) := AStjk and set H3(tjk) := Dtjk

= DALS + ARtjk
+ AStjkZtjk

- For key queries of the form (t, ~y), we forward ~y to the challenger of the AD-IND security of
ALS, which replies with sk~y = ZALS ·~y, where ZALS is the main secret key of the ALS scheme.
If t = t∗, we set

skt∗,1,~y :=

(
sk~y
Zt∗~y

)
,

and using TBt∗,2 we compute skt∗,2,~y. If t = tjk for some k ∈ [Qu], then we set

sktjk ,2,~y :=

(
sk~y + Rtjk

~y

Zt∗~y

)
,

and using TBtjk ,1
we compute sktjk ,1,~y. One forwards both to the adversary.

- When the adversary finally submits a challenge (~x0, ~x1), we forward it to the ALS challenger,
which replies with ct = (ctALS

1 , ctALS
2 ). We compute

ctt∗,1 = (ctALS
1 |(St∗)> · ctALS

1 ),

ctt∗,2 = ctALS
2 + (Rt∗ + St∗Zt∗)

> · ctALS
1 + NoiseGen((Rt∗ + St∗Zt∗)

>, s),

forward (ctt∗,1, ctt∗,2) back to the adversary. (The properties of the algorithm NoiseGen are
recalled in Lemma 13 from Appendix A.4.)10

- Whenever the adversary queries the HonUpdate oracle on input the challenge ciphertext (ctt∗,1, ctt∗,2)
and target tag tjk , we compute

cttjk ,1 = (ctALS
1 |(Stjk )> · ctALS

1 ) + H>tjk ,2
~r + ~g1,

cttjk ,2 = ctALS
2 + (Rtjk

+ StjkZtjk )> · ctALS
1 + D>tjk

~r + ~g2,

and forward it to the adversary.

10 Notice that it is possible to rely on the Smudging Lemma here as well. To simplify the proof we use the
properties of NoiseGen, as done by [ACGU20], and directly refer to their security proof.

22



In this game, the advantage of the adversary is upper bounded by the advantage of breaking the
ALS scheme, i.e., that AdvGame8(A) ≤ AdvALS(A). It remains to show that Game8 is indistin-
guishable from Game7. We show that the update of the challenge ciphertext and function keys
for tag tjk , with k ∈ [Qu], are statistically close to those obtained in Game7. An identical argu-
ment to that used in [ACGU20] proves the same for the challenge tag t∗. We start by considering
the function keys. Since the parameter of the Gaussian distribution from which Rtjk

is sampled
is superpolynomially bigger than the norm of ZALS, by the Smudging Lemma 12 we have that
sk~y + Rtjk

is distributed statistically close to DZm×m,ρ2 . Moreover, we have that

Htjk ,2
· sktjk ,2,~y = (A|AStjk )

(
sk~y + Rtjk

~y

Ztjk~y

)
= Ask~y + ARtjk

~y + AStjkZtjk~y = Dtjk
~y,

as expected. As far as the update of the challenge ciphertext is concerned, as before, since the
parameter of the distribution from which ~g2 is drawn is superpolynomially bigger than the norm
of the other error terms in the expression of cttjk ,2, again by the Smudging Lemma 12, we obtain
that the distribution of the ciphertext so obtained is statistically close to that of Game7.

Putting everything together, we obtain that

Advind-cufe-cpaCUFE,A (λ,Y) ≤Qh

(
Qh − 1

Qt

)(
Qh −Qt − 1

Qu

)
·AdvALS(A) + negl(n)

≤Q (Qt+Qu+1)
h ·AdvALS(A) + negl(λ). ut

6 Conclusion

In this work we proposed ciphertext updatable functional encryption (CUFE), a variant of func-
tional encryption which allows switching ciphertexts produced with respect to one tag to one under
another tag using an update token for this tag pair. We have provided practical motivation for
such a primitive and then defined an (adaptive) security notion in the indistinguishability setting
for CUFE. We presented two constructions, where the first construction is a generic construction
of CUFE for any functionality, which can also be extended to predicates other than the equal-
ity testing on tags. This construction is based on (probabilistic) indistinguishability obfuscation
(iO) and is proven to achieve (fully) selective security. The second construction is a (plausibly)
post-quantum CUFE for the inner product functionality that relies on standard assumptions from
lattices. The lattice-based construction achieves the stronger adaptive security notion, albeit with
certain restrictions on the validity of the adversary and bound on the number of oracle queries. We
leave it as an interesting open problem to construct a CUFE scheme that satisfies our adaptive se-
curity model without any further restrictions or bound on the number of oracle queries. Moreover,
we consider it an interesting open problem to construct practical CUFE schemes for a richer class
of functionalities, e.g., quadratic functions, which can further broaden the scope of application.

Acknowledgements. This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement n◦871473 (KRAKEN), by the Austrian
Science Fund (FWF) and netidee SCIENCE via grant P31621-N38 (PROFET) and FWF via grant
W1255-N23.

References

ABB10. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572.
Springer, Heidelberg, May / June 2010.

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional
encryption schemes for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of
LNCS, pages 733–751. Springer, Heidelberg, March / April 2015.

23



ABDP16. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better security
for functional encryption for inner product evaluations. Cryptology ePrint Archive, Report
2016/011, 2016. https://eprint.iacr.org/2016/011.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client
inner-product functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, De-
cember 2019.

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentraliz-
ing inner-product functional encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part II, volume 11443 of LNCS, pages 128–157. Springer, Heidelberg, April 2019.

ABM+20. Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam Soleimanian, and
Hendrik Waldner. Multi-client inner-product functional encryption in the random-oracle model.
In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages
525–545. Springer, Heidelberg, September 2020.

ABSV15. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer, Heidelberg,
August 2015.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input
functional encryption for inner products: Function-hiding realizations and constructions with-
out pairings. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 597–627. Springer, Heidelberg, August 2018.

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional
encryption with fine-grained access control. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 467–497. Springer, Heidelberg,
December 2020.

ACH20. Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz. The usefulness of sparsifiable in-
puts: How to avoid subexponential iO. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 187–219. Springer,
Heidelberg, May 2020.

AFGH05. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. In NDSS 2005. The Internet
Society, February 2005.

AFS21. Miguel Ambrona, Dario Fiore, and Claudio Soriente. Controlled functional encryption revisited:
Multi-authority extensions and efficient schemes for quadratic functions. PoPETs, 2021(1):21–
42, January 2021.

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product
functional encryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 601–626. Springer, Heidelberg,
April / May 2017.

AJS18. Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615, 2018. https://eprint.iacr.org/2018/615.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August
2016.

BBL17. Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-product func-
tional encryption from projective hash functions. In Serge Fehr, editor, PKC 2017, Part II,
volume 10175 of LNCS, pages 36–66. Springer, Heidelberg, March 2017.

BBS98. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryp-
tography. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 127–144.
Springer, Heidelberg, May / June 1998.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, page 103–112, New York, NY, USA, 1988. Association for Computing Machinery.

BGI+12. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg,
March 2011.

24

https://eprint.iacr.org/2016/011
https://eprint.iacr.org/2018/615


BSW16. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs
obfuscation. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 792–821. Springer, Heidelberg, May 2016.

CCL+14. Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and Keita Xagawa. Re-
encryption, functional re-encryption, and multi-hop re-encryption: A framework for achiev-
ing obfuscation-based security and instantiations from lattices. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 95–112. Springer, Heidelberg, March 2014.

CDG+18. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 703–732. Springer, Heidelberg, December 2018.

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted
inner product functional encryption modulo p. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 733–764. Springer, Heidelberg,
December 2018.

CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of prob-
abilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March 2015.

Coh19. Aloni Cohen. What about bob? The inadequacy of CPA security for proxy reencryption.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
287–316. Springer, Heidelberg, April 2019.

CZY19. Yuechen Chen, Linru Zhang, and Siu-Ming Yiu. Practical attribute based inner product func-
tional encryption from simple assumptions. Cryptology ePrint Archive, Report 2019/846, 2019.
https://eprint.iacr.org/2019/846.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 93–122. Springer, Heidelberg, August 2016.

DKL+18. David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel Slamanig, and
Christoph Striecks. Revisiting proxy re-encryption: Forward secrecy, improved security, and
applications. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769
of LNCS, pages 219–250. Springer, Heidelberg, March 2018.

DM14. Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the standard model. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 335–352. Springer, Heidelberg, August 2014.

DN21. Nico Döttling and Ryo Nishimaki. Universal proxy re-encryption. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 512–542. Springer, Heidelberg, May 2021.

DP19. Edouard Dufour Sans and David Pointcheval. Unbounded inner-product functional encryption
with succinct keys. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti
Yung, editors, ACNS 19, volume 11464 of LNCS, pages 426–441. Springer, Heidelberg, June
2019.

FKKP19. Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. Adaptively secure
proxy re-encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 317–346. Springer, Heidelberg, April 2019.

FL19. Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from lattices. In Robert H.
Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume
11464 of LNCS, pages 363–382. Springer, Heidelberg, June 2019.

FMNV14. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 465–
488. Springer, Heidelberg, February 2014.

FS16. Somchart Fugkeaw and Hiroyuki Sato. Updating policies in cp-abe-based access control: An
optimized and secure service. In Marco Aiello, Einar Broch Johnsen, Schahram Dustdar, and
Ilche Georgievski, editors, ESOCC 2016, volume 9846 of Lecture Notes in Computer Science,
pages 3–17. Springer, 2016.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

GGHW14. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535.
Springer, Heidelberg, August 2014.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for
NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358.
Springer, Heidelberg, May / June 2006.

25

https://eprint.iacr.org/2019/846


GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 545–554. ACM Press, June 2013.

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May
2019.

JLS19. Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assumptions for iO.
Cryptology ePrint Archive, Report 2019/1252, 2019. https://eprint.iacr.org/2019/1252.

Kaw15. Yutaka Kawai. Outsourcing the re-encryption key generation: Flexible ciphertext-policy
attribute-based proxy re-encryption. In Javier López and Yongdong Wu, editors, ISPEC 2015,
volume 9065 of Lecture Notes in Computer Science, pages 301–315. Springer, 2015.

KPC+20. Vlasis Koutsos, Dimitrios Papadopoulos, Dimitris Chatzopoulos, Sasu Tarkoma, and Pan Hui.
Agora: A privacy-aware data marketplace. In ICDCS, pages 1211–1212. IEEE, 2020.

KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer,
Heidelberg, March 2011.

KY16. Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial functions: More
compact IBEs from ideal lattices and bilinear maps. In Jung Hee Cheon and Tsuyoshi Tak-
agi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 682–712. Springer,
Heidelberg, December 2016.

LLW21. Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice two-stage sampling technique and
its applications to functional encryption - stronger security and smaller ciphertexts. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696
of LNCS, pages 498–527. Springer, Heidelberg, October 2021.

LT19. Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions in
the standard model from LWE. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 520–551. Springer, Heidelberg, De-
cember 2019.

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.

MSH+19. Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak, and Jolanda Modic. Privacy-enhanced
machine learning with functional encryption. In Kazue Sako, Steve Schneider, and Peter Y. A.
Ryan, editors, ESORICS 2019, Part I, volume 11735 of LNCS, pages 3–21. Springer, Heidel-
berg, September 2019.

NAP+14. Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday,
Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1280–1291. ACM Press, November
2014.

NPP22. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryption
with fine-grained access control. Cryptology ePrint Archive, Report 2022/215, 2022. https:

//eprint.iacr.org/2022/215.
NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext

attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.
O’N10. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report

2010/556, 2010. https://eprint.iacr.org/2010/556.
PD21. Tapas Pal and Ratna Dutta. Attribute-based access control for inner product functional en-

cryption from LWE. In Patrick Longa and Carla Ràfols, editors, LATINCRYPT 2021, volume
12912 of LNCS, pages 127–148. Springer, Heidelberg, October 2021.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

Wee17. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 206–233.
Springer, Heidelberg, November 2017.

26

https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2022/215
https://eprint.iacr.org/2022/215
https://eprint.iacr.org/2010/556


Appendix

A Additional Preliminaries

A.1 Public-Key Encryption

Definition 6. A public-key encryption scheme Σ = (KeyGen,Enc,Dec) with message space M
consists of the following PPT algorithms:
– Σ.KeyGen(1λ), on input a security parameter 1λ, outputs a secret/public key pair (sk, pk).
– Σ.Enc(pk,m), on input a public key pk and a message m, outputs a ciphertext c.
– Σ.Dec(sk, c), on input a secret key sk and a ciphertext c, outputs a message m ∈M∪ {⊥}.

We say that an encryption scheme Σ is perfectly correct if for all λ ∈ N, for all (sk, pk) ←
Σ.KeyGen(1λ) and for all m ∈M it holds that Σ.Dec(sk,Σ.Enc(pk,m)) = m.

Next, we recall the standard notion of indistinguishability under chosen plaintext attacks
(IND-CPA security).

Definition 7 (IND-CPA). A public-key encryption scheme Σ is IND-CPA secure, if for all PPT
adversaries A it holds that

Advind−cpaΣ,A (λ) :=

∣∣∣∣∣∣Pr

 (sk, pk)← Σ, b← {0, 1},
(m0,m1, st)← A(pk), b∗ ← A(Σ.Enc(pk,mb), st) :
b = b∗

− 1

2

∣∣∣∣∣∣ ,
is negligible.

A.2 Non-Interactive Zero-Knowledge

Let R be an efficiently computable binary relation, where for pairs (x,w) ∈ R we call x the
statement and w the witness. Let L be the language consisting of statements in R. A non-interactive
zero-knowledge (NIZK) proof system [BFM88, GOS06] for a language L allows proving that some
statements are in L without leaking information about the corresponding witnesses in a non-
interactive manner. We note that we require the proof system to support labels. This can be done
by extending the algorithms of the proof system to also take a public label ` as input as described
in [KV11, FMNV14].

Definition 8 (Labeled Statistically Simulation Sound NIZK Proof System). A labeled
statistically simulation sound non-interactive zero-knowledge (`-SSS-NIZK) proof system Π for a
language L ∈ NP (with witness relation R) with label set L is a tuple of PPT algorithms Π =
(Setup,Prove,Verify), such that:
– Π.Setup(1λ), on input a security parameter 1λ, outputs a common reference string crs.
– Π.Prove(crs, `, x, w), on input crs, a label `, a statement x and a witness w, outputs a proof π.
– Π.Verify(crs, `, x, π), on input crs, a label `, a statement x and a proof π, outputs either 1 or 0.
We require Π to meet the following properties:

Perfect completeness. For every (x,w) ∈ R and ` ∈ L, we have that

Pr
[
crs← Π.Setup(1λ), π ← Π.Prove(crs, `, x, w) : Π.Verify(crs, `, x, π) = 1

]
= 1.

Statistical soundness. For every x 6∈ L, and every (possibly unbounded) adversary A, we have
that

Pr
[
crs← Π.Setup(1λ), (`, π)← A(crs, x) : ` ∈ L ∧ Π.Verify(crs, `, x, π) = 1

]
≤ negl(λ).

Computational zero-knowledge. There exists a PPT algorithm Sim = (Sim1,Sim2) such that
for every PPT adversary A,

AdvZKA (λ) :=
∣∣∣Pr

[
crs← Π.Setup(1λ) : AΠ.Prove(crs,·,·,·)(crs) = 1

]
−Pr

[
(crs, τ)← Sim1(1λ) : AO(crs,τ,·,·,·)(crs) = 1

] ∣∣∣



is negligible in λ, where O(crs, τ, ·, ·, ·) is an oracle that outputs ⊥ on input (`, x, w) when (x,w) 6∈ R
and outputs π ← Sim2(crs, τ, `, x) when (x,w) ∈ R.

Statistical simulation soundness. For every statement x and (possibly unbounded) adversary
A, we have that

Pr

[
(crs, τ)← Sim1(1λ, x), (`′, x′, π′)← ASim2(crs,τ,·,·)(crs) :
(`′, x′, π′) 6∈ Q ∧ x′ 6∈ L ∧ `′ ∈ L ∧ Π.Verify(crs, `′, x′, π′) = 1

]
≤ negl(λ),

where Q is the set of all simulated queries and responses (`i, xi, πi) made by A to Sim2(crs, τ, ·, ·).

Garg et al. [GGH+13] showed how to turn any statistically sound NIZK proof system into
an SSS-NIZK proof system using any non-interactive commitment scheme. However, statistical
simulation-soundness can only be achieved if the number of false statements for which a valid
proof exists is a priori bounded. Analogous to [GGH+13], we also only give one fake proof in the
challenge ciphertext, hence, we satisfy this constraint.

A.3 Functional Encryption with Adaptive Security

We recall the adaptive variant for the security of functional encryption here.

Definition 9. For every functional encryption scheme FE for functionality F : X → Y, every
security parameter λ, every PPT adversary A, we define the following experiment: where OKeyGen(·)

Experiment Expind−cpa
FE,A (λ,F)

(mpk,msk)← Setup(λ,F)
(x∗0, x

∗
1, st)← AOKeyGen(·)(mpk, st)

b← {0, 1}
C∗ ← Enc(mpk, xb)
b′ ← AOKeyGen(·)(C∗, st)
if b = b′ then return 1 else return 0

is an oracle that on input f ∈ F , outputs KeyGen(msk, f). Additionally, if A ever calls the oracle
OKeyGen(·) on an input f ∈ F , the challenge queries x∗0, x∗1 must satisfy f(x∗0) = f(x∗1). A functional
encryption scheme FE is AD-IND secure if for every PPT adversary A the advantage function

Advind−cpaFE,A (λ,F) :=
∣∣∣Pr
[
Expind−cpaFE,A (λ,F) = 1

]
− 1/2

∣∣∣ ,
is negligible in λ.

A.4 Lattice Preliminaries

Definition 10 ([Reg05] Learning with errors). Let q be a prime, χ be a public distribution
over Zq and ~s be uniformly random over Znq . Moreover, ~s is constant across calls to oracles O~s, or
O$, defined below:

- Oracle O~s outputs samples (~a, 〈~a,~s〉+ e) where ~a← Znq and e← χ are fresh and independently
sampled,

- Oracle O$ outputs uniformly random elements of Znq × Zq.
Define another oracle O, which across all calls, is either O~s or O$. The learning with errors
LWEq,χ,n problem is to distinguish with non-negligible probability, given access to oracle O, whether
it corresponds to O~s or O$.

Lemma 11 ([MR04],[GPV08] Gaussian Tail Bound). For any n-dimensional lattice Λ,
~c ∈ span(Λ), real ε ∈ (0, 1), and s ≥ ηε(Λ):

Pr
~x←DΛ,s,~c

[‖~x− ~c‖ > s
√
n] ≤ 1 + ε

1− ε
1

2n
.

28



Moreover, for any ω(
√

log n) function, there is a negligible ε(n) such that: ηε(Z) ≤ ω(
√

log n).
In particular, when sampling integers, we have that for any ε ∈ (0, 12 ), any s ≥ ηε(Z), and any
t ≥ ω(

√
log n):

Pr
x←DZ,s,c

[|x− c| > s · t] ≤ negl(n).

Lemma 12 (Smudging Lemma). Let n ∈ N. For any real σ > ω(
√

log n), and any ~c ∈ Zn, it
holds SD(DZn,σ,DZn,σ,~c) ≤ ‖~c‖/σ.

Noise Re-randomization. The following procedure of NoiseGen(R, s) for noise re-randomization,
was described in [KY16]. NoiseGen(R, s): given a matrix R ∈ Zm×t, and s ∈ R+ such that

s2 > s1(RR>), it first samples ~e1 := R~e + (s2Im − RR>)
1
2~e′, where Im ∈ Zm×m denotes the

identity matrix, and ~e ← Dtσ, and ~e′ ← Dm√
2σ

are independent spherical continuous Gaussian

noises. Then, it samples ~e2 ← DZm−~e1,s
√
2σ, and return ~e1 + ~e2 ∈ Zmq . We have the following

lemma.

Lemma 13 ([KY16] Noise Distribution). Let R ← Zm×t and s ≥ s1(R). The following
distributions are statistically close:
Distribution 1: ~e← DZt,σ, and ~e′ ← NoiseGen(R, s). Output R~e+ ~e′.
Distribution 2: Output ~e← DZm,2sσ.

Lemma 14 ([ABB10] Bounding Norm of a {±1}k×m Matrix). Let R be a matrix chosen
uniformly at random from {±1}k×m. There exists a universal constant C ′, for which:

Pr
[
‖R‖ ≥ C ′

√
k +m

]
<

1

ek+m
.

Lemma 15 ([DM14] Bounding Spectral Norm of a Gaussian Matrix). Let Z ∈ Rn×m be
a sub-Gaussian random matrix with parameter ρ. There exists a universal constant C such that
for any t ≥ 0, we have s1(Z) ≤ C · ρ(

√
n+
√
m+ t) except with probability at most 2

eπt2
.

29


	(Inner-Product) Functional Encryption with Updatable Ciphertexts

