
Efficient Asymmetric Threshold ECDSA
for MPC-based Cold Storage

Constantin Blokh∗† Nikolaos Makriyannis† Udi Peled†

Abstract

Motivated by applications to cold-storage solutions for ECDSA-based cryptocurrencies, we present a
new ECDSA protocol between n “online” parties and a single “offline” party. Our protocol tolerates all-
but-one adaptive corruptions, and it achieves full proactive security. Our protocol improves as follows over
the state of the art.

• The preprocessing phase for calculating preprocessed data for future signatures is lightweight and
non-interactive; it consists of each party sending a single independently-generated short message per
future signature per online party (approx. 300B for typical choice of parameters).

• The signing phase is asymmetric in the following sense; to calculate the signature, it is enough for
the offline party to receive a single short message from the online “world” (approx. 300B).

We note that all previous ECDSA protocols require many rounds of interaction between all parties, and
thus all previous protocols require extensive “interactive time” from the offline party. In contrast, our
protocol requires minimal involvement from the offline party, and it is thus ideal for MPC-based cold
storage.

Our main technical innovation for achieving the above is twofold: First, building on recent protocols, we
design a two-party protocol that we non-generically compile into a highly efficient (n+ 1)-party protocol.
Second, we present a new batching technique for proving in zero-knowledge that the plaintext values of
practically any number of Paillier ciphertexts lie in a given range. The cost of the resulting (batched) proof
is very close to the cost of the underlying single-instance proof of MacKenzie and Reiter (CRYPTO’01,
IJIS’04).

We prove security in the UC framework, in the global random oracle model, assuming Strong RSA,
semantic security of Paillier encryption, DDH, and enhanced existential unforgeability of ECDSA; these
assumptions are widely used in the threshold-ECDSA literature and many commercially-available MPC-
based wallets.

∗Authors are listed in alphabetical order.
†Fireblocks. Emails: costy@fireblocks.com, nikos@fireblocks.com, udi@fireblocks.com

1

Contents
1 Introduction 3

1.1 Related Work . 4
1.2 Our Results . 4

1.2.1 Comparison . 5
1.2.2 Security Features . 7
1.2.3 Technical Overview . 7

2 Preliminaries 9
2.1 Signatures and Unforgeability . 9
2.2 MPC and Universal Composability . 10

2.2.1 Proactive Threshold Signatures . 11
2.2.2 Ideal Threshold-Signature Functionality . 11
2.2.3 Global Random Oracle . 12

2.3 Group/Number-Theoretic Definitions . 12
2.4 Schnorr Protocols . 12

2.4.1 Embedded Schnorr Protocols . 13
2.5 NIZK and the Fiat-Shamir Transform . 13

2.5.1 Proof Aggregation in ROM . 14

3 Protocol 15
3.1 Baseline Two-Party Protocol . 15

3.1.1 Key Generation and Refresh . 15
3.1.2 Presigning . 17
3.1.3 Signing . 17

3.2 Virtual Party MPC . 19
3.2.1 init MPC Protocol (i.e. CMP) . 19

4 Security 20
4.1 Unforgeability & Simulatability imply UC Security . 21
4.2 Simulatability of Σecdsa . 21

5 Proof of Soundness for Batch-Proving 24
5.1 Proof of Theorem 5.1 . 25
5.2 Putting Everything Together . 26

5.2.1 Extractability . 26
5.2.2 Robustness, Unpredictability and Binding . 28

References 28

Ideal Threshold Signature Functionality 32

Appendix 33

A Missing ZK Protocols/Proofs 33
A.1 Security Proof for Multi-Pedersen Membership . 33
A.2 Well-Formed Modulus & Ciphertext ZK Proof . 33

A.2.1 ZK Proof Description . 34

B Experimental Results 35
B.1 Concluding Remarks . 36

2

1 Introduction
The digital signature algorithm (DSA) [27] in its elliptic curve variant (ECDSA) [33] is one of the most
widely used signature schemes. ECDSA’s popularity has surged in recent years because it is ubiquitous in the
Blockchain space, where it is primarily used to sign transactions. For example, in Bitcoin, each transaction is
accompanied by a datum, called a signature, generated using a secret key, such that all participants (miners,
nodes, . . .) may verify the validity of the transaction using the signature and publicly available data.

While ECDSA and digital signatures more broadly provide indispensable functionality and security (au-
thenticity & integrity) to the various applications they make possible, most schemes suffer from the “single
point of failure” problem, i.e. if the machine storing the secret key is compromised by a malicious agent, then
this agent can impersonate the owner and sign any message/transaction on their behalf, e.g. causing a total
loss of funds for the owner. The “single point of failure” problem admits a naive solution; increase the number
of signatories and require each transaction to be signed by different keys stored on separate machines (this
can be achieved for example using Bitcoin’s multisig functionality).

However, the resulting communication overhead may incur a substantial monetary cost, e.g. signatures
must be stored on the blockchain and storing data on the blockchain is expensive. Thus, the naive solution is
unattractive in many cases, especially when compared to threshold signatures, described next.

Threshold Signatures. Introduced by Desmedt [17] and Desmedt and Frankel [18], a t-out-of-n threshold
signature scheme1 is a mechanism for a group of n signatories that provides the following functionality and
security guarantee: Any quorum of t ≤ n signatories may generate a valid signature σ for an arbitrary message
msg, and no adversary controlling fewer than t signatories can forge a signature, i.e. it cannot produce a pair
(msg′, σ′) such that σ′ is a valid signature for msg′ (provided msg′ was never signed before by a quorum of t
parties). In recent years, motivated by applications to cryptocurrency custody, many truly-practical protocols
have been proposed for “thresholdizing” ECDSA signatures, that is, the recent proposals replace the signing
algorithm with a secure interactive multi-party protocol involving n signatories, thus realizing the “threshold”
paradigm both in functionality and security (see Section 1.1 for related work on threshold ECDSA). In fact,
there are many companies that have implemented these protocols in their wallet infrastructure,2 and the total
transaction volume is estimated at trillions (of US dollars).3

While recent protocols effectively solve the “single point of failure” problem very efficiently for ECDSA-
based digital assets, the highly interactive nature of existing MPC protocols makes these solutions incompat-
ible (or at least cumbersome to use) with so-called cold storage, defined next.

Cold Storage. Cold storage refers to the general principle of safeguarding the secret material underlying a
digital asset (e.g. the ECDSA secret key for Bitcoin) on a platform that is disconnected from the internet, thus
providing an extra layer of security against theft. For example, an ECDSA key written on a piece of paper
constitutes a cold-storage solution (also known as a paper wallet). To preserve ease of use, however, most
cold wallets store the secret key in a hardware device with some computation and communication capability
(e.g. USB stick), because, at the very least, the device is required to receive messages for signing, calculate
signatures, and communicate these signatures to the world.

Threshold ECDSA & Cold Storage. As mentioned above, all protocols for threshold ECDSA require
multiple rounds of communication (at least four). To make matters worse, the data sent in any given round
depend on the data sent by all signatories in previous rounds. Consequently, building a wallet infrastructure
that simultaneously supports threshold ECDSA (i.e. the key generation and the signing processes are dis-
tributed among many signatories) and cold storage (i.e. at least one of the signatories is not connected to the
internet) seems impractical given the current state of the art.4

1Threshold signatures are an instance of “Threshold Cryprography” which itself is one of the main application areas of the
more general paradigm of Multi-Party Computation (MPC).

2We mention, e.g., Fireblocks, Unbound Security (acquired by Coinbase), Curv (acquired by Paypal) and ZenGo.
3Quote: “ . . . surpassing $2 trillion in assets transferred” retrieved from fireblocks.com (August 2022).
4One promising exception is the work of Abram et al. [1] which relies on silent preprocessing via pseudorandom correlation

generators (PCGs). However, PCGs for ECDSA are based on fairly new cryptographic assumptions and real-world deployment
is still at an early stage at the time of writing.

3

https://www.fireblocks.com/blog/550m-series-e-zero-to-crypto/
fireblocks.com

1.1 Related Work
Next, we discuss related work on threshold ECDSA [24]. We focus on trustless dishonest-majority protocols
[31] and we refer the reader to the survey of Aumasson et al. [2] for a more thorough overview of general
threshold-ECDSA protocols.

The first generation of trustless and (commercially) practical dishonest-majority protocols includes Castag-
nos et al. [11], Doerner et al. [19] and Lindell [28] for the two-party setting, and Castagnos et al. [12], Dalskov
et al. [15], Doerner et al. [20], Gennaro and Goldfeder [22] and Lindell and Nof [30] for the multiparty set-
ting. These protocols all achieve competitive performance with various tradeoffs between communication,
computation and underlying cryptographic assumptions.

The second generation of dishonest-majority protocols includes Canetti et al. [9], Castagnos et al. [13],
Gągol et al. [21] and Gennaro and Goldfeder [23]. These protocols typically include some added feature on top
of dishonest security.5 For instance, [9] achieves proactive security against adaptive adversaries (we discuss
this security notion in Section 1.2.2), [23] achieves identifiable abort, i.e. the honest signatories can identify
and expel any bad actors in case of a failed execution, and [21] achieves robustness after preprocessing, i.e. the
protocol supports a preprocessing mode of operation that allows the signatories to execute (parts of) the
protocol before the message to be signed is known, and the adversary cannot perform a DoS attack after the
preprocessing phase is completed.

In fact, the preprocessing mode of operation (henceforth pre-signing), first observed in [15] and appearing
independently in [9, 16, 21, 23], also offers a significant, often dramatic, performance improvement for most
ECDSA protocols. Namely, in [9, 13, 15, 20, 23], pre-signing gives rise to a non-interactive signing phase
which is cheaper than calculating a standard, non-threshold, ECDSA signature, because half the signature
was precomputed during pre-signing.6

Why the above protocols fall short on cold storage? Unfortunately, the pre-signing mode of operation
does not solve the MPC-cold-storage conundrum because while pre-signing renders the signing phase non
interactive, pre-signing itself is a highly interactive protocol, so none of the previous protocols is particularly
well suited for cold storage. In more detail, all of these protocols require at least three rounds of interaction in
some stage (not including key generation) and each round requires heavy data processing that depends on the
previous rounds. In terms of resources, per signature, all previous protocols either require hundreds of KB in
communication complexity, e.g. for secp256k1 (the Bitcoin curve), or, a large number of expensive public-key
operations (10s to 100s of exponentiations in an RSA or Class Group, depending on the protocol).7 In concrete
terms, for 10000 signatures, or pre-signatures, the offline signatory has to send and receive gigabytes of data,
or, it has to spend minutes to hours in computation time alone, all while running an interactive protocol with
the online signatories.

1.2 Our Results
Building on the two-party protocols of Lindell [29], MacKenzie and Reiter [31] and the n-party protocol of
Canetti et al. [9], we design a new (n + 1)-party protocol involving n “online” signatories P1, . . .Pn, dubbed
the cosignatories, and a single “offline” signatory P0. Before we present the technical aspects of our protocol
of our protocol, we first discuss its key characteristics and we compare to the state of the art. Our protocol
boasts the following two new features: Non-Interactive Pre-Signing and Asymmetric Signing, both of which
are lightweight. We expand on these features next.

Non-Interactive Pre-Signing. Similarly to other threshold-ECDSA schemes, our protocol supports a
pre-signing mode of operation which allows the signatories to generate preprocessed data for future signing
known as pre-signatures. However, unlike all previous protocols, the pre-signing phase of our protocol is
completely non-interactive.8 Namely, each signatory (whether online or offline) is instructed to send a single
independently-generated Paillier ciphertext per pre-signature. We mention that all previous protocols require

5[9] and [23] are independent works that were later combined into a single work [8, 10] covering (variations of) the two protocols.
6Non-threshold ECDSA may also enjoy this performance improvement, it goes without saying.
7Estimates are cited from [35], Table 2.
8For rushing adversaries (c.f. Section 2.2), the offline signatory is instructed to wait and receive the cosignatories’ data before

it sends its own.

4

many rounds of interaction, where each round involves heavy data processing that depends on the previous
rounds.

Asymmetric Signing. Our protocol supports asymmetric signing, that is, from P0’s perspective, the signing
phase to calculate the signature boils down to receiving a single message from the “online world”. Furthermore,
this message is short and it does not depend on the number of cosignatories. Specifically, P0 receives an
encryption S of the desired signature under its own public key, and, to calculate the signature, it suffices to
decrypt S and to verify an accompanying short ZK proof. As far as we know, our protocol is the first multiparty
threshold-ECDSA protocol that simultaneously supports both non-interactive pre-signing and asymmetric
signing under standard assumptions.9

The above make our protocol very attractive for MPC-based cold storage.

1.2.1 Comparison

In Table 1 we give a summary of the costs for the offline signatory of our protocol compared to the best
performing two-party protocols under standard assumptions; further below we also compare to the PCG-
based protocol [1] (which is based on a newer assumption, c.f. Footnote 4). Thus, the comparison from
Table 1 may be interpreted in two ways; (1) Our protocol is the best-performing two-party ECDSA protocol,
or (2) our protocol is the only multiparty protocol that can accommodate an offline signatory.

In concrete terms, for two cosignatories and 10000 presignatures, our protocol requires less than a minute
of computation time and 3 megabytes of data, per party. Additionally, pre-signing is non-interactive and thus
can be conveniently scheduled for downtime. To achieve such efficiency, we use a panoply of techniques that
include Party Virtualization and Proof Aggregation, Batch-Proving, and Packing (c.f. Section 1.2.3).

Costs for the Online Signatories. The computation and communication costs of our protocol are dom-
inated by the complexity costs of the online signatories. However, these costs are very close to the costs of
most state-of-the-art threshold-ECDSA protocols. In fact, there is a lot of flexibility on the choice of MPC

9[9, 13, 15, 20, 23] trivially support asymmetric signing, but pre-signing is highly interactive. For two parties, [35] supports
both asymmetric signing and non-interactive pre-signing (and [29, 31] can be suitably modified as well).

5

Communication Computation

This Work: Pre-Signing 3nµ/p+ 2nγ (n · 300B) in M ′/p+ n(M/p+ 3m+m′ + 2g)

2µ/p+ nµ/p+ γ (n · 300B) out <M + 2n · (M + g)

This Work: Signing 3µ/p+ 3γ (300B) in M ′/p+M +m′ + 4g

(0B) out < 3M + 4g

Best Computation [35] 8γ2 (50KB) 11g

Best Communication [35] 16µ+ 11γ (6KB) 14M + 11g

Best Comm. (Class Groups) [11] 14γ (500B) 4C + 8g

Table 1: Costs for Offline Signatory vs Best 2PC ECDSA. In the above, n corresponds to the number
of online signatories and the communication column displays total incoming (in) and outgoing (out) communication.
In parentheses we report concrete estimates for secp256k1 (the Bitcoin curve) with appropriate choice of parameters.
M and M ′ denote the unit cost of exponentiation modulo M and M2, respectively, where M is a µ-bit RSA modulus
(m and m′ denote low-weight exponentiation, i.e. the bit length of the exponent is at least 10 times smaller than µ),
and C denotes exponentiation in the relevant class group. When simplifying computational costs, we use the bounds
M ′ ≤ 3M , m′ ≤ 3m and m ≤ M/2. Similarly, g denotes the unit-cost of exponentiation in the ECDSA group
(and g is much cheaper than either M and C) and γ is the corresponding bit-length. Parameter p ∈ N represents the
packing number (see Section 1.2.3) and it is assumed p ≥ 3 in the concrete estimations. All costs are amortized over
the number of signatures (or pre-signatures). For [11, 35], we report only one of either signing or pre-signing costs (the
most expensive). We note that the comparison to multiparty protocols is even more favorable towards our protocol.

protocol that the online cosignatories execute, because the desired functionality is almost identical to the
ECDSA functionality (c.f. Section 1.2.3). We instantiate the aforementioned functionality via the protocol
from [9] (aka the CMP protocol – Figure 11) and our experimental results indicate 100–200ms in computation-
time per signature per online party. (We refer the reader to Appendix B for a detailed picture of a number
of experimental results). Below we display CPU running time (in ms) for presigning for each online party,
viewed as a function of the batching parameter, i.e. number of future signatures in the batch. The plot shows
four different experiments for 1, 2, 4 and 9 online parties; recall that there is a single offline party and the
protocol does not accommodate additional offline parties. Notice that batching clearly improves (more than
2x in some cases) the performance of the pre-signing phase in computation time.

6

Comparison to the PCG-based protocol [1]. From the offline signatory’s perspective, or when viewed
as a two-party protocol, [1] requires 200B of data between each pair of parties (compared to our 300B) and the
authors estimate “1–2s per signature” [1, p. 27] (compared to our 100–200ms). Furthermore, as a multiparty
protocol, our protocol compares favorably to [1] in computation, and, since [1] makes no distinction between
online and offline signatories, it exceeds the requirements of our use case in a wasteful way.

1.2.2 Security Features

Key-Refresh & Proactive Security. Our protocol supports a key-refresh phase where the signatories
rerandomize all the secret material (ECDSA key-shares, Paillier keys, etc. . .) and it achieves full proactive
security. To elaborate further, in the proactive paradigm, time is divided in epochs where the epochs are
delineated by the key-refresh schedule. The adversary in the proactive paradigm is adaptive, i.e. it corrupts
signatories dynamically throughout the evolution of the protocol, and it can adaptively choose which signatories
to corrupt and/or decorrupt. Proactive security is defined as follows: a t-out-of-n threshold signing protocol
achieves proactive security if the scheme remains unforgeable against any adversary that corrupts at most
t − 1 signatories in any given epoch. Note that most protocols are not even known to provide traditional
(non-proactive) security against adaptive adversaries.10

Security & Composability. We use the proof technique from [9] to prove security in the Universal Com-
posability (UC) framework, that is, we start with the ideal threshold signature functionality Ftsig from [9]
which captures all the desired security properties (unforgeability, proactive security, . . .), and we show that
our protocol UC-realizes Ftsig, i.e. the protocol emulates the ideal functionality, even when it is composed with
other components of some larger system. One of our main technical contributions is a generalization of this
technique to arbitrary threshold-signature schemes, discussed next.

1.2.3 Technical Overview

Unforgeability and Simulatability imply UC-Security. Our key technique (from [9]) is to show that
our protocol UC-realizes Ftsig by way of reduction to the assumed unforgeability of the underlying non-
threshold scheme. In more detail, we describe a straightline simulator (in fact our simulator simply runs the
honest parties’ code when interacting with the environment), and the simulation is perfect, i.e. the real and
ideal distributions are identically distributed, unless the environment can produce a forgery in the protocol,
which, in turn, allows it to distinguish real from ideal execution. If so, there is a PPTM (the environment)
that achieves some computational task (a forgery in our MPC protocol). Then, by way of reduction, we show
that this PPTM can be used to achieve a different kind of computational task (a forgery for the underlying
non-threshold signature scheme). Notice that this is just a run-of-the-mill reduction; therefore, the reduction
may rewind the PPTM, and the reduction may provide simulated answers to the random oracle queries, i.e. the
oracle is observable and programmable in the reduction. The former is the crux of the proof technique from
[9] that remarkably enables UC-security against adaptive adversaries (which is notoriously difficult) without
having recourse to sophisticated techniques like non-committing encryption.

In this paper, we generalize the above so that it is applicable to general threshold protocols. So, starting
with an arbitrary, non-threshold, signature scheme and the standard notion of unforgeability,11 we define
threshold-signature protocols and the notion of simulatability which is the analogue of unforgeability for
protocols, i.e. one can simulate the adversary’s view using the signing oracle from the unforgeability game.
Our main technical lemma (Theorem 4.3) states that if the protocol is simulatable against adaptive adversaries,
and the underlying signature is unforgeable, then the protocol UC-realizes functionality Ftsig against adaptive
adversaries.

Party Virtualization & Proof Aggregation. Let (G, g, q) denote the group-generator-order tuple for
ECDSA. For this high-level overview, we will abuse notation and write R · x ∈ Fq to denote the field element

10We mention that some protocols achieve the weaker notion of proactive security against static adversaries i.e. the corruption
pattern for all (future) epochs is determined at the beginning of the execution.

11To support added functionality, e.g. pre-signing, and to achieve the utmost generality, we augment the traditional notion of
unforgeability in the technical sections.

7

obtained by projecting12 R ∈ G in Fq and multiplying by x ∈ Fq. For secret key x ∈ Fq, letting m ∈ Fq denote
the hash of a desired message, we recall that ECDSA signatures have the form (R, σ) for σ = k(m+R ·x) ∈ Fq

and R = gk
−1 ∈ G. Effectively, all multiparty ECDSA protocols realize the following functionality

tecdsag : (x1, . . . , xn) 7→ (R, ki, χi)i∈[n]

where R = g(
∑

i ki)
−1

and (
∑

i ki)(
∑

i xi) =
∑

i χi, and {xi}i are additive shares of the secret key. The
resulting ECDSA signature is obtained by publishing and summing up {σi}i∈[n] for σi = kim+R · χi.

Turning to our (n + 1)-party protocol, write P0 for the offline signatory and P1, . . . ,Pn for the online
signatories, and let x0, x1, . . . , xn denote an additive sharing of the secret key. Our breakthrough observation
is that using an encryption of x0 under an additive-homomorphic scheme, and running tecdsa(·) on a point
H provided by P0, the online signatories P1, . . . ,Pn can calculate an encryption of a “partial” signature which
P0 can complete into a “full” signature. In more detail:

0. Offline signatory P0 sends W0 = enc0(x0) and H = gα
−1 ∈ G to the online signatories P1, . . . ,Pn.

The above happens during key generation and pre-signing respectively.

1. P1, . . . ,Pn run a protocol for computing tecdsaH(x1, . . . , xn). They obtain (R, ki, χi)i∈[n].

2. When obtaining the hash m of the desired message, each online signatory Pi homomorphically evaluates

Si = enc0(kim+R · χi)⊕ (R · ki ⊙W0) = enc0(kim+R · (χi + kix0))

and they send R and the (aggregated) ciphertext S = ⊕n
i=1Si to P0. .

3. Offline signatory calculates σ̂ = dec0(S) an outputs the ECDSA signature (R, σ) for σ = α · σ̂.

Item 2 above is equivalent to P0 receiving a message from a single virtual party and this message is independent
of the number of parties. Furthermore, for malicious security, S is accompanied with a ZK proof ψ that it
is well formed and the proof ψ itself is the result of some aggregation process among the online signatories.
From a technical standpoint, aggregation is feasible (and lightweight) thanks to the homomorphic properties
of the underlying encryption scheme and proof system, explained next.

Schnorr Protocols & Batch-Proving. Almost all ZK proofs herein can be cast as Fiat-Shamir transforms
of ZK protocols for group homomorphism (referred to as Schnorr Protocols in this document). In line with
Bangerter [3] and Maurer [32], we define Schnorr protocols abstractly (c.f. Section 2.4) as protocols for proving
that the preimage w ∈ H of a group element X ∈ G by some homomorphism ϕ : H→ G lies in a given subset
R ⊆ H. Then, we prove a general theorem for batching many instances X1, . . . , Xℓ into a single proof ψ
(obtained via the Fiat-Shamir transform, c.f. Section 2.5.1). While Schnorr protocols are known to admit
batching capabilities, e.g. Gennaro et al. [25] and Thyagarajan et al. [34], previous results do not account
for our use case,13 and the unified view that we propose is new. In Table 2, we provide a comparison of our
flavor of batch-proving vs the baseline protocol of MacKenzie and Reiter [31], and the batch-proving protocol
of Thyagarajan et al. [34]; the communication complexity of our scheme compares favorably by orders of
magnitude for any batch size (we note that [34] overtakes our protocol in computation for large batches).

Packing. In general, packing refers to the principle of storing many (small) values in a single (large) unit of
space, e.g. encrypt w1, w2 as C = enc(w1+2τw2) for suitable τ assuming the bit-length of the plaintext-space
is larger than |w1|+ |w2|. We show that our protocol enjoys a performance improvement thanks to this folklore
technique and total communication is reduced by a multiplicative factor p (e.g. p ≥ 3 for secp256k1 for suitable
choice of parameters).14

12We recall that (almost) all group elements R ∈ G may be viewed as pairs of field elements (a, b) with a, b ∈ [0, q − 1].
13As far as we can tell, previous results relied on the fact that ϕ is injective, which is not the case for us, because, getting ahead

of ourselves, Pedersen commitments are only computationally binding.
14While the general principle is folklore, there were many technical challenges for showing that our protocol supports packing,

e.g. Pedersen Proof of knowledge is packable (c.f. Theorem 5.1) or Multi-Pedersen commitments are binding (c.f. Fact 5.10).

8

Comm. Prover Comp. Verifier Comp.

MacKenzie and Reiter [31] ℓ · 5µ ℓ · (M ′ +M + 2m) ℓ · (M ′ +M +m′ + 2m)

≈ ℓ · (4M + 2m) ≈ ℓ · (4M + 5m)

Thyagarajan et al. [34] κ · 3µ κ ·M ′ κ ·M ′

≈ κ · 3M ≈ κ · 3M
Batch-Proving (Our Work) 5µ M ′ +M + (ℓ+ 1) ·m M ′ +M +m+ ℓ · (m′ +m)

≈ 4M + (ℓ+ 1) ·m ≈ 4M +m+ ℓ · 4m
≤ 4M + ℓ ·M/2 ≤ 4M + ℓ · 2M

Table 2: In the ROM, for security parameter κ, comparison of [31, 34] with our work for proving that the plaintext
values of ℓ Paillier ciphertext lie in a given range. The values µ, m,m′,M ,M ′ are as in Table 1, and the target range
is [−2µ/10, 2µ/10]. The (baseline) protocol of [34] achieves constant soundness and requires amplification via parallel
repetition; hence the dependency on κ.

2 Preliminaries
Hereafter, we write presign, presigning and presignature instead pre-sign, pre-signing and pre-signature.

Notation. Throughout the paper G,H,K denote groups and F is a field (typically we write Fq to specify that
the fields has q elements). We write 1 ∈ G (or H or K) for the identity element in G (or H or K). Typically,
(G, g, q) will denote the group-generator-order tuple for ECDSA. We let Q,Z,N denote the set of rational,
integer and natural numbers, respectively. We use sans-serif letters (enc,dec, . . .) or calligraphic (S,A, . . .) to
denote algorithms. Secret values are always denoted with lower case letters (p, q, . . .) and public values are
usually denoted with upper case letters (A,B,N, . . .). Furthermore, for a tuple of both public and secret values,
e.g. an RSA modulus and its factors (N, p, q), we use a semi-colon to differentiate public from secret values (so
we write (N ; p, q) instead of (N, p, q)). Bold letters X, s, . . . denote sets and we write 2X = {A s.t. A ⊆X}
for the power set of X. Bold letters may also denote random variables. Arrow-accented letters A⃗, ρ⃗, . . . denote
ordered sets, i.e. tuples. Group products, e.g. K = G1× . . .×Gn, are endowed with the natural group-product
operation i.e. A⃗ · B⃗ = (Ai)

n
i=1 · (Bi)

n
i=1 = (Ai ∗i Bi)

n
i=1, where ∗i is the group operation of Gi. For t ∈ ZN ,

we write ⟨t⟩ = {tk mod N s.t. k ∈ Z} for the multiplicative group generated by t. For e⃗1, . . . , e⃗n ∈ Fm,
where F is a field, write ⟨e⃗1, . . . , e⃗n⟩ for the vector space generated by {e⃗i}mi=1. For ℓ ∈ Z, we let ±ℓ denote the
interval of integers {−|ℓ|, . . . , 0, . . . , |ℓ|}. We write x← E for sampling x uniformly from a set E, and x← A
or x← gen for sampling x according to (probabilistic) algorithms A or gen. A distribution ensemble {vκ}κ∈N
is a sequence of random variables indexed by the natural numbers. We say two ensembles {vκ} and {uκ} are
indistingushable and we write {vκ} ≡ {uκ} if Pr[D(1κ,uκ) = 1] − Pr[D(1κ,vκ) = 1] is negligible for every
efficient distinguisher D. We write SD(u,v) for the statistical distance of u and v. For a, b ∈ N, we write a | b
for “a divides b” and a ��| b for the negation. Finally, gcd : N2 → N denotes the gcd operation, [a]q denotes the
modular reduction operation a mod q, and φ(·) denotes Euler’s totient function (not to be confused with ϕ
which usually denotes a group homomorphism).

2.1 Signatures and Unforgeability
Definition 2.1 (Signature Scheme.). Sig = (gen, sign, vrfy) is a threetuple of algorithms such that

1. (pk, sk)← gen(1κ), where κ is the security parameter.

2. For msg ∈ {0, 1}∗, σ ← signsk(msg).

3. For msg, σ ∈ {0, 1}∗, vrfypk(σ,msg) = b ∈ {0, 1}.

Correctness. For σ ← signsk(msg), it holds that vrfypk(σ,msg) = 1.

9

FIGURE 1 (Augmented signature oracle G)
Parameters. Signature scheme Sig and randomized functionality F .

Operation.

1. On input (gen, 1κ), generate a key pair (pk, sk)← gen(1κ), initialize state = (sk, pk), and return pk.

Ignore future calls to gen.

2. On input (F , x), sample r ← $ and return τ = F(x, state; r).
Update state := state ∪ {(x, τ ; r)}.

Figure 1: Augmented signature oracle G

FIGURE 2 (G-Existential Unforgeability Experiment G-EU(A, 1κ))
1. Call G on (gen, 1κ) and hand pk to A.

2. The adversary A makes n(κ) adaptive calls to G.
3. A outputs (m,σ) given its view (randomness and query-answer pairs to G)

• Output: G-EU(A, n, 1κ) = 1 if vrfypk(m,σ) = 1 and m was not queried by A when calling G.

Figure 2: G-Existential Unforgeability Experiment G-EU(A, 1κ)

Existential Unforgeability. Next, we define security for signature schemes.

Definition 2.2 (G-Existential Unforgeability.). We say that Sig satisfies G-Existential unforgeability if there
exists ν ∈ negl(κ) such that for all A, it holds that Pr[G-EU(A, 1κ) = 1] ≤ ν(κ), where G-EU(·) denotes the
security game from Figure 2.

2.2 MPC and Universal Composability
We use the simplified variant of the UC framework (which is sufficient for our purposes because the identities of
all parties are assumed to be fixed in advance). In this section we provide a quick reminder of the framework.

The model for n-party protocol Π. For the purpose of modeling the protocols in this work, we consider
a system that consists of the following n + 2 machines, where each machine is a computing element (say,
an interactive Turing machine) with a specified program and and identity. First, we have n machines with
program Π and identities P1, . . . ,Pn. Next, we have a machine A representing the adversary an a machine Z
representing the environment. All machines are initialized on a security parameter κ and are polynomial in
κ. The environment Z is activated first, with an external input z. Z activates the parties, chooses their input
and reads their output. A can corrupt parties and instruct them to leak information to A and to perform
arbitrary instructions. Z and A communicate freely throughout the computation. The real process terminates
when the environment terminates. Let EXECZΠ,A(1

κ, z) denote the environment’s output in the above process.
In this work we assume for simplicity that the parties are connected via an authenticated, synchronous

broadcast channel. That is, the computation proceeds in rounds, and each message sent by any of of the parties
at some round is made available to all parties at the next round. Formally, synchronous communication is
modeled within the UC framework by way of Fsyn, the ideal synchronous communication functionality from
[5, Section 7.3.3]. The broadcast property is modeled by having Fsyn require that all messages are addressed
at all parties.

Ideal Process. the ideal process is identical to the real process, with the exception that now the machines
P1, . . . ,Pn do not run Π, Instead, they all forward all their inputs to a subroutine machine, called the ideal
functionality F . Functionality F then processes all the inputs locally and returns outputs to P1, . . . ,Pn. Let
EXECZF,S(1

κ, z) denote the environment’s output in the above process.

10

Definition 2.3. We say that Π UC-realizes F if for every adversary A there exists a simulator S such that
for every environment Z it holds that

{EXECZΠ,A(1
κ, z)}z∈{0,1}∗ ≡ {EXECZF,S(1

κ, z)}z∈{0,1}∗

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once
corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions
of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes
executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption. Finally, the real adversary is
assumed to be rushing, i.e. it receives the honest parties messages before it sends messages on behalf of the
corrupted parties.

Global Functionalities. It is possible to capture UC with global functionalities within the plain UC frame-
work. Specifically, having Π UC-realize ideal functionality F in the presence of global functionality G is represented
by having the protocol [Π,G] UC-realize the protocol [F ,G] within the plain UC framework. Here [Π,G] is the
n + 1-party protocol where machines P1, . . . ,Pn run Π, and the remaining machine runs G. Protocol [F ,G]
is defined analogously, namely it is the n+ 2-party protocol where the first n+ 1 machines execute the ideal
protocol for F , and the remaining machine runs G.

2.2.1 Proactive Threshold Signatures

Definition 2.4 (Proactive Threshold Signatures). Let Σ = (Σkgen,Σrefr,Σpres,Σsign) denote a protocol for
parties in P = {P0,P1, . . . ,Pn} parametrized by Q ⊆ 2P . We say that Σ is a proactive threshold-signature
scheme for Sig = (. . . , vrfy) if it offers the following functionality.

1. Σkgen takes input 1κ from Pi ∈ P and returns (pk, si) to each Pi ∈ P .

2. Σrefr takes input (pk, si) from each Pi ∈ P and returns (a fresh) value si to each Pi ∈ P .

3. Σpres takes input (pk, si,Q, L) from each Pi ∈ Q ∈ Q and returns (wi,1, . . . , wi,L) to each Pi.

4. Σsign takes input msg ∈ {0, 1}∗ and (pk, si,Q, ℓ) from Pi ∈ Q ∈ Q and returns σ to (at least one) Pi.

Correctness. Using the notation above, it holds that vrfypk(σ,msg) = 1 in an honest execution.

Sets Q ∈ Q are called quorums and the span between two consecutive executions of Σrefr is referred to as an
epoch. By convention, the span before the first execution of Σrefr is the first epoch.

A protocol Σ is said to be secure if it UC-realizes functionality Ftsig, defined below.

2.2.2 Ideal Threshold-Signature Functionality

We use the ideal functionality Ftsig of [9], which generalizes the non-threshold signature functionality of Canetti
[6]. We briefly outline Ftsig next and we refer the reader to the appendix (p. 32) for the full description.

For each signing request for a message msg, the functionality requests a signature string σ from the
adversary, which is submitted from the outside, i.e. the signature string σ is not calculated internally from
the ideal functionality. Once sigma is submitted by the adversary, the functionality keeps record of (msg, σ).
When a party submits a pair (msg′, σ′) for verification, the functionality simply returns true if it has record
of that pair and false otherwise.

For proactive security, the functionality admits an additional interface for recording corrupted and decor-
rupted parties. When a party is decorrupted, the functional record that party as quarantined until it is
instructed to purge that record (via a special key-refresh interface). If all parties are corrupted and/or quar-
antined at any given time, then the functionality enters a pathological mode of operation and it ignores the
message-signature repository it holds internally.

11

2.2.3 Global Random Oracle

We follow formalism of [4, 7] for incorporating the random oracle into the UC framework. In particular, we
use the strict global random oracle paradigm which is the most restrictive way of defining a random oracle,
defined below.

FIGURE 3 (The Global Random Oracle Functionality H)

Parameter: Output length h.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .

– Else sample a← {0, 1}h and store (m, a).

Output (answer, a) to X .

Figure 3: The Global Random Oracle Functionality H

2.3 Group/Number-Theoretic Definitions
Definition 2.5. We say that N ∈ N is a biprime if N admits exactly two non-trivial divisor. In particular, a
biprime N is a Paillier-Blum integer iff gcd(N,φ(N)) = 1 and N = pq for primes p, q ≡ 3 mod 4.

Definition 2.6 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple (gen, enc, dec) below.

1. Let (N ; p, q)← gen(1κ) where N = pq is Paillier-Blum and |p| = |q| ∈ O(κ). Write pk = N , sk = (p, q).

2. For m ∈ ZN , let encpk(m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗N .

3. For c ∈ ZN2 , letting µ = ϕ(N)−1 mod N ,

decsk(c) =

(
[cϕ(N) mod N2]− 1

N

)
· µ mod N.

Definition 2.7 (ECDSA). Let (G, g, q) denote the group-generator-order tuple associated with a given curve.
We recall that elements in G are represented as pairs a = (ax, ay), where the ax and ay are referred to as the
projection of a on the x-axis and y-axis respectively, denoted ax = a|x-axis and ay = a|y-axis, respectively. The
security parameter below is implicitly set to κ = log(q).

Parameters: Group-generator-order tuple (G, q, g) and hash function H : M → Fq.

1. (X;x)← gen(G, q, g) such that x← Fq and X = gx.

2. For msg ∈M , let signx(m; k) = (r, k(m+rx)) ∈ F2
q, where k ← Fq and m = H(msg) and r = gk

−1 |x-axis.

3. For (r, σ) ∈ F2
q, define vrfyX(m,σ) = 1 iff r = (gm ·Xr)σ

−1 |x-axis mod q.

Notation 2.8 (El-Gamal Commitment). For group-generator-order tuple (G, g, q) define algorithm com which
takes input (k, Y) ∈ Fq ×G and returns (B⃗;β) such that B⃗ = (gβ , Y βgk) for randomizer β ← Fq.

2.4 Schnorr Protocols
Let κ denote the security parameter. Hereafter, let ϕ : H → G denote a group homomorphism from (H,+)
to (G, ·) and E ⊆ Z, and R,S ⊆ H. It is assumed that (the description of) the tuple (ϕ,H,G,E,R,S) is
efficiently generated by a PPTM with input κ, and ϕ is efficiently computable as a function of the security
parameter.

12

Definition 2.9. An m-batched Schnorr protocol Π for tuple (ϕ,E,R,S) consists of the following protocol.
For common input (Xi)

m
i=1 ∈ Gm and secret input (wi)

m
i=1 ∈ Hm:

1. Prover samples α← S and sends A = ϕ(α) to the verifier.

2. Verifier replies with e⃗ = (e1 . . . en)← Em.

3. Prover sends z = α+
∑m

j=1 ej · wj ∈ H, where e · w = w∗j + . . .+ w∗j︸ ︷︷ ︸
|e| times

and w∗j =

{
wj if e ≥ 0

−wj otherwise
.

Check: Verifier accepts if and only if ϕ(z) = A ·
∏m

j=1X
ej
j ∈ G and z ∈ S.

If R and S are not specified, then it is assumed that R = S = H. The protocol is (µ, ν)-secure if it satisfies

µ-HVZK. If Xi = ϕ(wi) and wi ∈ R for all i, then τ = (A, e⃗, z) for z ← S, e⃗ ← Em and A =

ϕ(z) ·
∏m

j=1X
−ej
j is statistically µ-close to an honest transcript.

ν-Soundness. If ∃j such that ϕ(wj) ̸= Xj , for every w ∈ S, then the probability that the verifier rejects
with probability at least ν.

Further define

(ε,V)-Extractibility. For all efficient A, if {τj = (A, e⃗j , zj)}m+1
j=1 ← A are m + 1 valid transcripts for

common input {Xj}m+1
j=1 such that {e⃗1, . . . , e⃗m+1} ∈ V , then, with all but probability ε, there exists an

efficient PPTM E such that A = ϕ(α) and Xj = ϕ(wj) for α, {wj}j ← E({Xj , τj}m+1
j=1).

2.4.1 Embedded Schnorr Protocols

Unfortunately, many tuples (ϕ,E,R,S) of interest do not give rise to sound Schnorr protocols. To guar-
antee soundness, we embed the desired homomorphism ϕ into a larger one ϕ̂. Namely, let (ϕ,E,R,S) and
(ϕ̂,E, R̂, Ŝ) for ϕ : H→ G and ϕ̂ : Ĥ→ Ĝ such that

• Ĥ = H×K and ϕ̂(u, v) = (ϕ(u), θ(u, v)).

• (u, v) ∈ R̂ and (u, v) ∈ Ŝ implies u ∈ R and u ∈ S respectively.

Definition 2.10. Define the m-batched embedded Schnorr protocol for tuples (ϕ̂,E, R̂, Ŝ) and (ϕ,E,R,S)

to consist of the following protocol. For common input X⃗ ∈ Gm and secret input w⃗ ∈ Hm:

1. Prover samples (u⃗, v⃗)← R̂
m
|u⃗=w⃗ and α← Ŝ and sends (A, Y⃗) = (ϕ̂(α), θ(u1, v1), . . .).

2. Verifier replies with e⃗← Em.

3. Prover sends z = α+
∑m

i=1 ei · (ui, vi) ∈ H to the verifier.

Check: Verifier sets X̂i = (Xi, Yi) and accepts iff ϕ̂(z) = A ·
∏m

i=1 X̂
ei
i ∈ G and zi ∈ Ŝ, for all i.

HVZK, soundness and extractability are defined analogously to non-embedded protocols.

2.5 NIZK and the Fiat-Shamir Transform
Fiat-Shamir. We make extensive use of the Fiat-Shamir transform for converting an interactive zero-
knowledge protocol into an non-interactive zero-knowledge proof. Namely, consider the process from Figure 4.
(The process is analogous for embedded Schnorr protocols)15

Definition 2.11. We say that ψ = (A, e⃗, z) is a valid proof for (X, aux) if ϕ(z) = A ·
∏

kX
ek
k for e⃗ =

H(aux, X,A) and z ∈ S. Furthermore, we say that Π is a secure proof system in the ROM if

15Do not to forget to hash the extended input Y⃗ .

13

FIGURE 4 (Schnorr Proof in ROM ψ ← Π(aux, X⃗; w⃗))

Parameters: Schnorr protocol Π for tuple (ϕ,E,R,S) and random oracle H.

1. Sample α← S and set A = ϕ(α).

2. Calculate e⃗ = (e1, . . . , em) = H(aux, X⃗, A).
Output: ψ = (A, e⃗, z) for z = α+

∑m
j=1 ejwj ∈ H

Figure 4: Schnorr Proof in ROM ψ ← Π(aux, X⃗; w⃗)

Zero-Knowledge. If Xi = ϕ(wi) and wi ∈ R for all i, then τ = (A, e⃗, z) for z ← S, e⃗ ← Em and
A = ϕ(z) ·

∏m
j=1X

−ej
j is statistically close to ψ ← Π(X⃗, aux; w⃗), for every aux ∈ {0, 1}∗.

Soundness. If ∃j such that ϕ(wj) ̸= Xj , for every w ∈ S, then the probability that an efficient PPTM
outputs a valid proof is negligible.

Fact 2.12. If Π is (µ, ν)-secure for µ, ν ∈ negl(κ), then Π is a secure proof system in the ROM.

2.5.1 Proof Aggregation in ROM

Party Pi Party Pj

αi ← H and set Ai = ϕ(αi)

Set Ci = H(aux,Pi, Ai, ρi) for ρi ← {0, 1}κ

Ci

Cj

When obtaining all (Cj)j ̸=i

Ai, ρi

Aj , ρj

∀j, check Cj = H(aux,Pj , Aj , ρj)

Set A =
∏n

k=1Ak and calculate

e⃗ = H(aux, X,A) and zi = αi +
∑

ℓ eℓwi,ℓ

zi

zj

Output ψ = (A, e⃗, z) if

ϕ(z) = A ·
∏

ℓX
eℓ
ℓ and z =

∑n
k=1 zk ∈ S

Figure 5: NIZK Aggregation for common input X⃗

Let Π denote (µ, ν)-secure Schnorr protocol for (ϕ,E,R,S). For A controlling a strict subset of the
provers in Figure 5, write RealA for the adversary’s view in an execution of the protocol. For simulator S
taking auxiliary input {Xj,ℓ = ϕ(wj,ℓ)}j /∈A,ℓ with blackbox access to A and oracle access to H, write IdealS
for the output of S.

Claim 2.13. For every A, X⃗ ∈ Gm, aux ∈ {0, 1}∗, exists S in the (observable & programmable) ROM s.t.

SD(RealA, IdealS) ≤ n · µ.

14

3 Protocol
In this section we define our proactive threshold-ECDSA protocol Σecdsa = (Σkgen,Σrefr,Σpres,Σsign). We
begin by presenting the protocol in its two-party variant (Section 3.1). For the party-virtualization step
(Section 3.2), we give full details only for the signing phase Section 3.1.3, since the other phases of the
protocol can be virtualized easily (e.g. presigning) or they are very close to protocols in the literature (e.g. key
generation & key refresh from [9]). During signing, it is assumed that the parties start with the same message
to be signed, i.e. we are agnostic about how the parties reach consensus on messages {msgj,t}j,t and we write
mj,t = F(msgj,t), where F is the internal hash function of ECDSA.

Parameters. Hereafter, ℓ, ε s.t. ℓ, ε − ℓ ∈ O(κ) and ℓ ≈ log(q). For M ∈ N, let I(M) = ±M and
J(M) = ±M · 2ε.

Definition 3.1 (Pedersen Parameters). Define algorithm ped that takes input 1κ and outputs π =
(N̂ , t, s1, . . . , sm, ψ) such that

1. N̂ = pq of size λ ∈ O(κ) such that p = 2p′ + 1 and q = 2q′ + 1 and p′, q′ are prime as well.

2. t ∈ QR(Z∗
N̂
) and s1, . . . , sm ∈ ⟨t⟩.

3. ψ ← Π(s1, . . . , sm) where Π is the batched prot. for (ϕ,E) where E = {0, 1} and ϕ(α) = tα mod N̂ .

3.1 Baseline Two-Party Protocol
Each phase of the protocol is defined in Figure 6 (key generation Σkgen), Figure 7 (key refresh Σrefr), Figure 8
(presigning Σpres) and Figure 9 (signing Σsign). To help the reader understand the multiparty case later, we
have opted to describe the online party P∞ as if it locally emulates (mocks) the cosignatories P1, . . . ,Pn.

Notation and Conventions. Let λ and m denote respectively the packing and batching number. Let τ
is the pack shift, i.e. w0 + 2τw1 is a packing of w0 and w1. The parties hold a common input aux ∈ {0, 1}∗
that specifies the session identifier (sid) as well as the parties’ identities (pid’s). Furthermore, it is assumed
that aux is provided as input to the random oracle when generating proofs and thus all proofs ψ are generated
as ψ ← Π(aux, X;w) (we simply write Π(X;w) to reduce clutter) where Π is a Schnorr protocol, and each
protocol is described at the beginning of each subsection, when needed. It is stressed that most Schnorr
protocol herein are embedded Schnorr protocols (c.f. Definition 2.10).

To avoid clutter, and to improve readability, we have opted to suppress the randomizers in the protocol
descriptions, e.g. we write C = enci(k) for the encryption of k under the Paillier key of Pi where the randomizer
is chosen as prescribed. Note that the randomizers are important for the proofs, so in the description of the
Schnorr protocols we do call attention to these values.

Furthermore, the protocol description does not explicitly mention proof verification. However, it goes
without saying, the parties are instructed to verify a given proof against the available data, every time one is
received.

3.1.1 Key Generation and Refresh

The key generation (c.f Figure 6) contains a ZK protocol, Φπ, which cannot be cast entirely as Schnorr
protocol. We note that it yields the validity of the tuple (N,W,X, q) for the following NP relation, and we
defer the details to Appendix A.2.16 Namely, for (N,W,X, q) ∈ N×Z∗N2 ×G×N, integer N is a Paillier-Blum
modulus and N does not admit small factors (smaller than q). Furthermore W ∈ Z∗N2 is an encryption of
x ∈ [0, q − 1] under Paillier key N , and X = gx ∈ G. If W and X are not specified, it is assumed that
(N,W,X, q) = (N, 1,1, q).

15

“Online” Party P∞ “Offline” Party P0

For i ∈ [n], do:

Sample xi, αi, ui ← Fq, Yi ← G Sample x0, α0, u0 ← Fq, Y0 ← G

πi ← ped(1κ), (Ni; pi, qi)← gen(1κ). π0 ← ped(1κ), (N0; p0, q0)← gen(1κ),

Set Vi = H(aux,Pi, Xi, Ai, Ni, Yi, πi, ui) Set V0 = H(aux,P0, X0, A0, N0,W0, Y0, π0, u0)

for (Xi, Ai) = (gx0 , gαi) for (X0, A0) = (gxi , gαi), W0 = enc0(x0)

V1, . . . , Vn

V0

(Xi, Ai, Yi, Ni, πi, ui)i

X0, A0, Y0, N0,W0, π0, u0

Verify V0 and set u = [
∑n

j=0 uj]q, ∀i Verify Vi and set u = [
∑n

j=0 uj]q,

Y =
∏n

j=0 Yj and reassign aux := (aux, u) Y =
∏n

j=0 Yj and reassign aux

∀i, ψi ← Φπ0(Ni; pi, qi) ∀i, ψ′
i ← Φπi(N0,W0, X0; p0, q0, x0)

ei = H(Pi, Xi, Ai, u) and zi = [αi + eixi]q e0 = H(P0, X0, A0, u) and z0 = [α0 + e0x0]q

(ψi, zi)i

z0, (ψ
′
i)i

Calculate e0 and check gz0 = A0 ·Xe0
0 ∀i Calculate ei and check gzi = Ai ·Xei

i

Output (Y,X0, N0,W0, (Xi, Ni, πi)i; (xi)i) Output (Y,X0, N0,W0, π0, X∞, (Ni, πi)i;x0)

for X∞ =
∏n

i=1Xi

Figure 6: Threshold ECDSA: Key Generation (Σkgen)

“Online” Party P∞ “Offline” Party P0

Execute Key-Generation (Figure 6) Execute Key-Generation (Figure 6)

with key shares (xi)
n
i=1 with key share x̂0 = [x0 + α]q for α← Fq

Obtain (Ŷ , X̂0, N̂0, Ŵ0, (Xi, N̂i, π̂i)i; (xi)i) Obtain (Ŷ , X̂0, N̂0, Ŵ0, π̂0, X∞, (N̂i, π̂i)i); x̂0)

α

Verify X0 · gα = X̂0

Sample β1, . . . , βn ← Fq s.t. α =
∑

i βi

Set (x̂i, X̂i)
n
i=1 := (xi + βi, Xi · gβi)ni=1 Set X̂∞ := X∞ · g−α

Output (Ŷ , X̂0, N̂0, Ŵ0, (X̂i, N̂i, π̂i)i; (x̂i)i) Output (Ŷ , X̂0, N̂0, Ŵ0, π̂0, X̂∞, (N̂i, π̂i)i); x̂0)

Figure 7: Threshold ECDSA: Refresh (Σrefr)

16

“Online” Party P∞ “Offline” Party P0

For i ∈ [n], j ∈ [m], t ∈ [λ], do:

ki,j,t ← Fq, B⃗i,j,t = com(ki,j,t, Y)

Ki,j = enci(
∑λ

t=1 2
τ(t−1) · ki,j,t)

∀i, ψi ← Ξ0((Ki,j , B⃗i,j,t)j,t; (ki,j,t)j,t)

(ψi, (Ki,j , (B⃗i,j,t)t)j)i

For j ∈ [m], t ∈ [λ], do:

αj,t ← Fq, ;Hj,t = gα
−1
j,t

Cj = enc0(
∑λ−1

w=0 2
τ(t−1) · α−1j,t)

∀i, ψ′i ← Ξi((Cj , (Hj,t)t)j ; (αj,t)j,t)

(ψ′i)i, (Cj , (Hj,t)j)t

∀i output ∀j, t set B⃗j,t =
∏n

i=1 B⃗i,j,t

(ki,j,t, B⃗1,j,t, . . . , B⃗n,j,t, Hj,t)j,t output (αj,t, Hj,t, B⃗j,t)j,t

Figure 8: Threshold ECDSA: Presigning (Σpres)

3.1.2 Presigning

Hereafter, we assume that all the signing material (Paillier/El-Gamal Keys, Pedersen parameters,. . .) are
fixed according to Σkgen (or Σrefr), e.g., unambiguously, Y refers to the El-Gamal key and (Ni, πi) refers to the
Paillier key and Pedersen parameters of party Pi, as chosen in Σkgen (or Σrefr).

Definition 3.2. For (N̂ , t, s1, . . .) = πi, define Ξi to be the Schnorr protocol for (ϕ,E,R,S) where E = I(2ℓ)

ϕ : Zλ × Fλ
q × Z∗N × Z→ G2λ × Z∗N2 × Z∗

N̂

(w⃗, µ⃗, ν, ρ) 7→ (ϕ1(w⃗, µ⃗), ϕ2(w⃗, ν), ϕ3(w⃗, ρ))

and 
ϕ1 : (w⃗, µ⃗) 7→ ((g, Y)µi · (1, g)wj)λj=1

ϕ2 : (w⃗, ν) 7→
∏λ

j=1(1 + 2τ ·(j−1) ·N)wj · νN mod N2

ϕ3 : (w⃗, ρ) 7→ tρ ·
∏λ

j=1 s
wj

j mod N̂

and {
(w⃗, µ⃗, ν, ρ) ∈ R ⇐⇒ ρ ∈ I(N̂ · 2ℓ) ∧ ∀j wj ∈ I(2ℓ)

(w⃗, µ⃗, ν, ρ) ∈ S ⇐⇒ ρ ∈ J(N̂ · 2ℓ) ∧ ∀j wj ∈ J(2ℓ)

3.1.3 Signing

Without loss of generality, we assume that the signing phase consumes all the available presignatures.

Definition 3.3. Define ΘR to be the Schnorr protocol associated with (ϕ,E) for E = I(2t) and

ϕ : F2
q → G3

(k, b) 7→ (gb, Y b · gk, Rb)

16Φπ is a straightforward combination of proofs found in [9] and [14].

17

“Online” Party P∞ “Offline” Party P0

For j ∈ [m], t ∈ [λ], retrieve B⃗j,t and do:

Initialize:

Set rj,t = H
k−1
j,t

j,t |x-axis for kj,t =
∑

i ki,j,t

Set χj,t = [x∞ · kj,t]q and U⃗j,t = com(χj,t, Y)

Prepare Payload:

Set ζj,t = [kj,t · rj,t]q and ηj,t ← I(2ε)

µj,t = [rj,t · χj,t +mj,t · kj,t]q + q · ηj,t

Sj = [
∏λ

t=1W
2τ(t−1)ζj,t
0 · enc0(2τ(t−1) · µj,t)]N2

0

Generate Proofs:

ψj,t ← ΘRj,t((B⃗j,t, Hj,t)t; (kj,t)j)

ψ′ ← Θ′(((V⃗j,t, Z⃗j,t)t, Sj)j ; (ζj,t, µj,t)j)

for V⃗j,t = B⃗
rj,t
j,t and Z⃗j,t = B⃗m

j,t · U⃗
rj,t
j,t

ψ′′ ← Θ′′((B⃗j,t, U⃗j,t)j,t; (kj,t)j,t)

ψ′, ψ′′, ((U⃗j,t, rj,t, ψj,t)t, Sj)j

∀j, t decode σ̂j,t s.t.

dec0(Sj) =
∑λ

t=1 2
τ(t−1)σ̂j,t

Set σj,t = [αj,t · σ̂j,t]q
∀t, j output (rj,t, σj,t)

Figure 9: Threshold ECDSA: Signing (Σsign)

Definition 3.4. For (N̂ , t, s1, r1, . . .) = π0, define Schnorr protocol Θ′ for (ϕ,E,R,S) where E = I(2ℓ)

ϕ : Z2λ × F2λ
q × Z∗N0

× Z→ G4λ × Z∗N2
0
× Z∗

N̂

(w⃗, µ⃗, z⃗, γ⃗, ν, ρ) 7→ (ϕ1(w⃗, µ⃗), ϕ1(z⃗, γ⃗), ϕ2(w⃗, z⃗, ν), ϕ3(w⃗, z⃗, ρ))

and 
ϕ1 : (w⃗, µ⃗) 7→ (gµj , Y µj · gwj)λj=1

ϕ2 : (w⃗, z⃗, ν) 7→
∏λ

j=1(1 + 2τ ·(j−1) ·N0)
wj ·W zj

0 · νN0 mod N2
0

ϕ3 : (w⃗, ρ) 7→ tρ ·
∏λ

j=1 s
wj

j r
zj
j mod N̂

and {
(w⃗, µ⃗, z⃗, γ⃗, ν, ρ) ∈ R ⇐⇒ ρ ∈ I(N̂ · 2ℓ) ∧ ∀j (zj ∈ I(2ℓ) ∧ wj ∈ I(2ℓ+ε))

(w⃗, µ⃗, z⃗, γ⃗, ν, ρ) ∈ S ⇐⇒ ρ ∈ J(N̂ · 2ℓ) ∧ ∀j (zj ∈ J(2ℓ) ∧ wj ∈ J(2ℓ+ε))

In words, the embedded Schnorr proof Θ′ yields that for ((U⃗j , V⃗j)j , C) ∈ G4λ ×Z∗N2 , the packed ciphertext C
was calculated as a weighted combination above using the secrets fro {U⃗j , V⃗j}
Definition 3.5. Define Θ′′ to be the Schnorr protocol associated with tuple (ϕ,E) for E = I(2ℓ), ϕ : F3

q → G4

s.t. (k, b, v) 7→ (gb, Y b · gk, gv, Y v ·Xk
∞).

In words, Θ′′ yields that for (B⃗, U⃗) ∈ G2 ×G2, B⃗ and U⃗ hide the same secret base g and X∞, respectively.

18

3.2 Virtual Party MPC

Party Pi ∈ P∞ “Offline” Party P0

Retrieve (B⃗i′,j,t)i′,j,t and (Hj,t, ki,j,t)j,t and do:

Initialize: (Figure 11)

Run init MPC protocol on ((B⃗i′,j,t)i′ ; (ki,j,t))j,t

Obtain (Rj,t, χi,j,t, rj,t)j,t and set U⃗i,j,t = com(χi,j,t, Y)

Prepare Payload:

Set ζi,j,t = [ki,j,t · rj,t]q and ηi,j,t ← I(2ε)

µi,j,t = [rj,t · χi,j,t +mj,t · ki,j,t]q + q · ηi,j,t

Si,j = [
∏λ

t=1W
2τ(t−1)ζi,j,t
0 · enc0(2τ(t−1) · µi,j,t)]N2

0

Aggregate-Prove: (Figure 5)

ψj,t ← ΘRj,t
((B⃗i,j,t, Hj,t); (ki,j,t)j)

(Sj)j , ψ
′ ← Θ′(((V⃗i,j,t, Z⃗i,j,t)t, Si,j)j ; (ζi,j,t, µi,j,t)j)

for V⃗i,j,t = B⃗
rj,t
i,j,t and Z⃗i,j,t = B⃗m

i,j,t · U⃗
rj,t
i,j,t

(U⃗j,t)j,t, ψ
′′ ← Θ′′((B⃗i,j,t, U⃗i,j,t)j,t; (ki,j,t)j,t)

ψ′, ψ′′, ((rj,t, Uj,t, ψj,t)t, Sj)j

Same as Figure 9.

Figure 10: Threshold ECDSA: MPC Signing (Σsign)

3.2.1 init MPC Protocol (i.e. CMP)

Definition 3.6. For (N̂ , t, s1, . . .) = πj and N = Ni, define Schnorr protocol Ξ1
j,i for (ϕ,E,R,S) where

E = I(2ℓ)

ϕ : Z2 × Z∗2N × F2
q × Z→ (G2 × Z∗N2)2 × Z∗

N̂

(k, γ, ρ, λ, µ, ν, α) 7→ (ϕ0(k, µ), ϕ1(k, ρ), ϕ0(γ, ν), ϕ1(γ, λ), ϕ2(α, k, γ))

and 
ϕ0 : (k, µ) 7→ (gµ, Y µgk)

ϕ1 : (k, ρ) 7→ (1 +N)k · ρN

ϕ2 : (α, k, γ) 7→ tα · sk1 · s
γ
2

and (k, γ, . . . , α) ∈ R ⇐⇒ k, γ ∈ I(2ℓ) ∧ α ∈ I(N̂ · 2ℓ). Define S analogously with J(·).

Definition 3.7. For (N̂ , t, s1, . . .) = πj and (N,M) = (Nj , Ni), define Schnorr protocol Ξ2
j,i for (ϕ,E,R,S)

where E = I(2ℓ)

ϕ : Z4 × Fq × Z∗2N × Z∗2M × Z→ G×G×G2 × (Z∗N2 × Z∗M2)2 × Z∗
N̂

(x, γ, β, β̂, µ, ν, ν̂, ρ, ρ̂, λ) 7→ (Hγ , gx, ϕ0(γ, µ), ϕ1(x, β, ν, ρ), ϕ1(γ, β̂, ν̂, ρ̂), ϕ2(λ, x, γ, β, β̂))

19

Party Pi Party Pj

γi ← Fq, Γ⃗i = com(γi, Y)

Ki = enci(ki) and Gi = enci(γi)

∀j, ψj,i ← Ξ1
j,i((Ki, B⃗i, Gi, Γ⃗i); (ki, γi))

ψj,i,Ki, Gi, Γ⃗i

ψi,j ,Kj , Gj , Γ⃗j

∀j, sample βi,j , β̂i,j ← I(22ℓ+ε) and do:

Set D̂j,i = [Kγi
j · encj(β̂i,j)]N2

j
and F̂i,j = enci(β̂i,j)

Dj,i = [Kxi
j · encj(βi,j)]N2

j
and Fi,j = enci(βi,j) and Hi = Hγi

ϕj,i ← Ξ2
j,i((Hi, Xi, Γ⃗i, Dj,i, Fi,j , D̂j,i, F̂i,j); (xi, γi, βi,j , β̂i,j))

Hi, Dj,i, Fi,j , D̂j,i, F̂i,j , ϕj,i

Hj , Di,j , Fj,i, D̂i,j , F̂j,i, ϕi,j

Set δi = [kiγi +
∑

j ̸=i deci(D̂i,j) + β̂i,j]q

Set Λ =
∏

j Hj and ∆i = Λki

ωi ← Ξ3
Λ(∆i, B⃗i; ki)

δi,∆i, ωi

δj ,∆j , ωj

Set δ =
∑

j δj , ∆ =
∏

j ∆j and check gδ = ∆

Set R = Hδ−1

and χi = [kixi +
∑

j ̸=i deci(Di,j) + βi,j]q

Set r = R|x-axis and output (R,χi, r)

Figure 11: Threshold ECDSA: Virtual MPC (init)

and 
ϕ0 : (γ, µ) 7→ (gµ, Y µgγ)

ϕ1 : (x, β, ν, ρ) 7→ (Kx · (1 +N)β · νN , (1 +M)β · ρM)

ϕ2 : (λ, x, γ, β, β̂) 7→ tλ · sx1 · s
γ
2 · s

β
3 · s

β̂
4

and {
(x, γ, β, β̂, . . . , λ) ∈ R ⇐⇒ x, γ ∈ I(2ℓ) ∧ β, β̂ ∈ I(22ℓ+ε) ∧ λ ∈ I(N̂ · 2ℓ)
(x, γ, β, β̂, . . . , λ) ∈ S ⇐⇒ x, γ ∈ J(2ℓ) ∧ β, β̂ ∈ J(22ℓ+ε) ∧ λ ∈ J(N̂ · 2ℓ)

Definition 3.8. Define Schnorr protocol Ξ3
Λ for (ϕ,E) where E = I(2ℓ) and

ϕ : F3
q → G×G2

(k, b, v) 7→ (Λk, gb, Y b · gk)

4 Security
Theorem 4.1. Under suitable cryptographic assumptions, it holds that Σecdsa UC-realizes functionality Ftsig

in the presence of a global random oracle functionality H.

Our main theorem is a corollary of Theorems 4.3 and 4.5.

20

4.1 Unforgeability & Simulatability imply UC Security
Let Sig denote a signature scheme and let Σ be a threshold protocol for Sig. We show that if Σ and Sig satisfy
some limited security requirements, then Σ UC-realizes Ftsig in the strict global random oracle model. We
begin by defining the aforementioned security requirements which essentially corresponds to the standalone
definition of security.

Let A denote an adaptive adversary and write RealA for the adversary’s view in an execution of Σ in
the presence of an adaptive PPTM adversary A. Recall that H denotes the random oracle. Without loss of
generality assume that RealA = (pkΣ, . . .), where pkΣ denotes the public key resulting from the execution of
Σ. Next, for an oracle-aided algorithm S with black-box access to A and oracle access to G and H, write
IdealS = (pkG ,OutS) for the pair of random variable consisting of the public key generated by G and the
simulator’s output.

Definition 4.2 (Simulatability). Using the notation above, we say that Σ is G-simulatable in the ROM if the
following holds for every adversary A. There exists a simulator S with oracle access to G and H, and black-box
access to A, such that (1) G is queried by S only on messages intended for signing as prescribed by Σ, and, (2)
if A does not corrupt all parties in some Q ∈ Q simultaneously in any given epoch, then {RealA} ≡ {IdealS}.

Theorem 4.3. Let Sig denote a signature scheme and let Σ denote a threshold-Sig protocol. Let G denote an
augmented signature oracle such that

• Sig is G-existentially unforgeable.

• Σ is G-simulatable in the ROM.

Then, Σ UC-realizes Ftsig in the strict global random oracle model.

The above theorem informally states that if Σ achieves standalone security in the G-hybrid model, then Σ
achieves UC security (assuming that G is not useful for forging signatures).

Proof. First, we describe the UC simulation, which is trivial. The simulator simply runs the code of the
honest parties. Furthermore, every time the honest parties output a signature, then the simulator submits
the resulting signature-string to the functionality, and, depending on the adversary’s corruption pattern and
the protocol’s key-refresh schedule, the simulator registers parties as corrupted and/or quarantined. It is not
hard to see that the environment Z can distinguish real from ideal execution only if it can forge signatures in
the protocol (i.e. in the real world). However, since Σ is G-simulatable, it follows by Definition 4.2 that the
interaction between Z and the honest parties can be simulated using the oracle to G, which in turn implies
that G is useful for forging signatures of Sig, in contradiction with the hypothesis of the theorem.

4.2 Simulatability of Σecdsa

In Figure 12, we define the enhanced signing oracle for ECDSA which gives rise to the notion of enhanced
unforgeability according to Definition 2.2. We note that enhanced unforgeability has been studied by Canetti
et al. [9] in the generic group model (GGM) and the ROM, where they rule out any efficient attack in this
model, and, recently, by Groth and Shoup [26] who provide a more fine-grained analysis in the GGM. Next
we define strong-RSA, desisional Diffie-Hellman (DDH), desisional composite residuocity (DCR).

Let DDH, sRSA and DCR denote the following distriburions. (N,C)← sRSA(1κ) where N is a safe biprime
of size O(κ) and C ← Z∗N , (ga, gb, gab+cz, z)← DDH(1κ) for z ← {0, 1} and a, b, c← Fq and (G, g, q) generated
by 1κ, and (N, [(1 +N)z · ρN]N2 , z)← DCR(1κ) for z ← {0, 1} and ρ← Z∗N .

Definition 4.4. We say that strong RSA, DDH and DCR hold true if there exists a negligible function ν(·)
such that for every PPTM A the probability of following events is upper-bounded by ν(κ), 1/2 + ν(κ), and
1/2 + ν(κ), respectively.

1. (N,C)← sRSA(1κ) and (m, e /∈ {−1, 1})← A(1κ, N,C) such that [me = C]N .

2. (A,B,C, z)← DDH(1κ) and β ← A(1κ, A,B,C) such that z = β.

3. (N,C, z)← DCR(1κ) and β ← A(1κ, N,C) such that z = β

21

FIGURE 12 (Enhanced Signing Oracle G∗ for ECDSA)

Parameters. Hash function F : {0, 1}∗ →: {0, 1}∗.
Operation.

1. On input (gen, (G, g, q)), sample sk = x← Fq and return pk = X = gx.

Store (sk, pk) in memory and ignore future calls to gen.

2. On input pres, sample k ← Fq and return R = gk
−1

.

Store (R; k) in memory and standby.

3. On input (sign,msg, R), do:

(a) Retrieve (R; k) from memory.

If no such R exists or R is undefined, sample k ← Fq and (re)assign R := gk
−1

.
(b) Set σ = [k(m+ rx)]q where m = F(msg) and r = R|x-axis.
(c) Erase (R; k) from memory and return (r, σ).

Figure 12: Enhanced Signing Oracle G∗ for ECDSA

Theorem 4.5. Assuming DDH, DCR, and strong RSA, it holds that Σecdsa is G∗-simulatable.

Proof. At the beginning of simulation, the simulator chooses a random non-corrupted party, which is called
the special party, and all other non-corrupted parties are simulated by running their code as prescribed. To
deal with adaptive corruptions, we assume that the special party is chosen afresh every time Σrefr is simulated
(the simulation is reset, via rewinding, to the last key refresh if the adversary decides to corrupt the special
party). Furthermore, S simulates the random oracle as well (and A queries S when it needs to query H).
In particular, in Figure 13, every time S “retrieves” a value, we mean that it obtains the relevant value from
A’s queries, and, the simulated message of S are consistent with the simulated oracle (by programming the
simulated oracle accordingly). Then, at a high level, our simulator proceeds as follows:

1. Invoke G to obtain a public key X and run the protocol with A to land on key X (by suitably choosing
the special party’s message)

2. Extract A’s Paillier keys and ECDSA key shares by rewinding.

3. To calculate the special party’s message do:

(a) Extract the adversary’s randomness by decrypting the relevant Paillier messages (encrypted under
keys chosen by the adversary).

(b) Calculate the relevant message by (i) encrypting zeros under the Paillier and El-Gamal keys for
hidden data, e.g. Pb’s Paillier ciphertexts, and (ii) using the extracted randomness above and queries
to G for non-hidden data, e.g. the output signature.

Effectively, S does not use the messages intended for the special party (unless the simulation is terminated
early, if, say, A sends a faulty proof). See Figure 13 for the full description.

To show that the above simulation is indistinguishable from the real protocol, we define two experiments
(hybrids) where the first experiment coincides with the simulated execution and the second experiment coin-
cides with the real execution. Namely:

1. The first experiment is identical to Figure 13 except that S emulates G locally.

2. The second experiment is identical to the above except that S uses the right Paillier & El-Gamal
ciphertexts, instead of zeroes; S can do this because it has access to all the secrets.

It is not too hard to see that that the second experiment is identical to the real execution, as long as all the
proofs are sound and the simulator extracts the right values (which follows from Theorem 5.1 and Fact 5.10
under strong RSA). Next, notice that the the first experiment is identically-distributed to the simulated

22

FIGURE 13 (G∗-simulation for Σecdsa)

Parameters. Adversary A and RO H.

Operation.

init. Call G∗ on input (G, g, q). Obtain pk = X.

– (Σkgen) Choose Pb ←H = P \C and do:

1. Hand over Vb ← {0, 1}∗ to A.
2. When obtaining (Vj)j ̸=b, retrieve (Xj , Aj , Yj , Nj , πj , uj)j ̸=b and do:

(a) Set Xb = X · (
∏

j ̸=bXj)
−1 and Yb = gy · (

∏
j ̸=b Yj)

−1 for y ← Fq.

(b) Sample zb, eb ← Fq and set Ab = X
eb
b · g

−zb . If b = 0, set W0 = enc0(0).
Calculate all other values as prescribed.
Hand over (Xb, Ab, Yb, Nb,Wb, πb, ub) to A (where Wb = ∅ if b ̸= 0).

3. When obtaining (Xj , Aj , . . .)j ̸=b, do:
(a) Calculate ψb (or ψ′

1, . . . , ψ
′
n if b = 0) by invoking the HVZK simulator.

Hand over zb, ψb (or z0, (ψ′
j)j ̸=0 if b = 0) to A.

4. Rewind A by providing fresh ub and eb to extract (xj , pj , qj) such that (Xj , Nj) = (gxj , pjqj).

– (Σrefr) Reassign Pb ←H = P \C and do:

1. For β̂ ← Fq, set X̂H = gα̂+β̂ ·
∏

i∈H Xi with α̂← Fq if P0 /∈ C and α̂ = 0 otherwise.

2. Sample {x̂i ← Fq}i∈H\{b} and set X̂i = gx̂i and X̂b = X̂H · (
∏

i∈H\b X̂i)
−1.

3. Run the simulation for Σkgen (with X̂0 if P0 /∈ C).
4. When obtaining α from A, if P0 ∈ C, set α̂ = α.

Hand over (X̂i)i∈H and random (βj)j∈C\{0} to A s.t.
∑

j∈C\{0} βj = α̂− β̂.

– (Σpres) Make m · λ calls to G∗ on input pres. Obtain (Rj,ℓ)j,ℓ ∈ Gm·λ and do:

1. If Pb ̸= 0, sample B⃗b,j,ℓ ← G2 and set Kb,j = encb(0) and calculate ψb using the HVZK simulator.
Hand over ψb, (Kb,j , (B⃗b,j,ℓ)ℓ)j to A.
When obtaining (ψi)i ̸=0, (Cj , (Hj,ℓ)ℓ)j extract {αj,ℓ}j,ℓ by decrypting {Cj}j .

2. Else, when obtaining (ψi, (Ki,j , (B⃗i,j,ℓ)ℓ)j)i ̸=b, extract {ki,j,ℓ}i,j,ℓ by decrypting {Ki,j}i,j and do

(a) Set Hj,ℓ = R
kj,ℓ

j,ℓ for kj,ℓ =
∑

i̸=0 ki,j,ℓ.
(b) Set Cj = enc0(0) and calculate (ψ′

i)i̸=0 using the HVZK simulator.
Hand over (ψi)i ̸=0, (Cj , (Hj,ℓ)ℓ)j to A.

– (Σsign) Make m · λ calls to G∗ on input (sign,msgj,ℓ, Rj,ℓ). Obtain (rj,ℓ, σj,ℓ)j,ℓ ∈ F2m·λ
q and do:

If Pb = P0, when obtaining ψ′, ψ′′, ((rj,ℓ, Uj,ℓ, ψj,ℓ)ℓ, Sj)j from A, output (rj,ℓ, σj,ℓ)j,ℓ for P0.

Else, if Pb ̸= P0, retrieve {αj,ℓ}j,ℓ, set mj,ℓ = H(msgj,ℓ), and do:

1. Run the simulation for Σcmp (Figure 14). Obtain output (χ∗
j,ℓ)j,ℓ.

Set ρj,ℓ = [χ∗
j,ℓrj,ℓ +

∑
i∈[n]\{b} ki,j,ℓ(rj,ℓx0 +mj,ℓ)]q.

2. Set Sb,j = enc0(
∑

ℓ 2
τ(ℓ−1)([σj,ℓ/αj,ℓ − ρj,ℓ]q + q · ηb,j,ℓ)) for ηb,j,ℓ ← I(2ε) and U⃗j,ℓ ← G2

3. Run the simulation for proof aggregation for Θ, Θ′ and Θ′′ (Claim 2.13).
When obtaining {U⃗i,j,ℓ = (Ui,j,ℓ, U

′
i,j,ℓ)}i̸=b, set U⃗b,j,ℓ = U⃗j,ℓ ·

∏
i ̸=b(Ui,j,ℓ, U

y
i,j,ℓ · g

χi,j,ℓ)−1.

Simulate ψ′′ according to U⃗∗
b,j,ℓ = U⃗b,j,ℓ · (1, X

−
∑

i̸=b ki,j,ℓ
∞ · g

∑
i̸=b χi,j,ℓ)

Figure 13: G∗-simulation for Σecdsa

23

FIGURE 14 (Simulator for Σcmp)

Parameters. Adversary A, RO H and nonce R ∈ G.

Operation.

Round 1. Set Kb, Gb = encb(0) and Γ⃗b ← G2.

1. Calculate (ψj,b)j ̸=b using the HVZK simulator
Hand over ((ψj,b)j ̸=b,Kb, Gb, Γ⃗b) to A.

Round 2. When obtaining (ψb,j ,Kj , Gj , Γ⃗j), extract kj , γj and do:

1. Set {Fb,j , F̂b,j = encb(0)}j ̸=b and {Db,j = encb(αj), D̂b,j = encj(α̂j)}j ̸=b for αj,b, α̂j,b ∈ I(22ℓ+ε)

2. Sample δ ← Fq and set Hb = Rδ ·
∏

j ̸=bH
−γj

3. Calculate (ϕj,b)j ̸=b using the HVZK simulator
Hand over (Hb, . . . , ϕj,b)j ̸=b to A.

Round 3. When obtaining (Hj , . . . , ϕb,j)j ̸=b, γj and do:

1. Set δb = [δ −
∑

j ̸=b α̂j − (
∑

i,j ̸=b kiγj)]q and and ∆b = gδ ·
∏

j ̸=b Λ
−ki .

2. Calculate ωb using the HVZK simulator
Hand over (δb,∆b, ωb) to A.

Output. When obtaining (δj ,∆j , ωj)j ̸=b, do:

Output χ∗ = [
∑

j ̸=b αj + (
∑

i,j ̸=b kixj)]

Figure 14: Simulator for Σcmp

experiment. To conclude, we note that the two experiments above are computationally indistinguishable
under DDH and DCR (via straightforward reduction to the semantic security of El-Gamal and Paillier which
are equivalent to DDH and DCR respectively). We note that the simulation concludes with overwhelming
probability in time n log(n) ·timeΣ where timeΣ is the running time of Σecdsa (because the simulator is required
to guess the identity of the simulated honest party). This concludes the proof.

5 Proof of Soundness for Batch-Proving
In this section we prove a general claim (Theorem 5.1) about the soundness of an m-batched Schnorr protocol
depending on the soundness of the underlying non-batched protocol and some additional technical require-
ments. Then, in Section 5.2 we show that our batched protocols from Section 3 satisfy the hypothesis of
Theorem 5.1 for suitable choice of parameters.

Theorem 5.1. Let Π denote a µ-HVZK Schnorr Protocol for tuple (ϕ,E,R,S) and write Π∗ for the associated
m-batched protocol. Assume that

1. Π∗ satisfies (ε,V)-extractability for some set V ⊆ 2E
m

.

2. For all j ≤ m, if {e⃗1, . . . , e⃗j} ∈ V then Pr
e⃗j+1←Em

[{e⃗1, . . . , e⃗j , e⃗j+1} /∈ V] ≤ β.

3. For all w⃗ /∈ Sm, it holds that Pr
e⃗←Em

[α+
∑

j ejwj ∈ S] ≤ γ, for every α ∈ H.

4. For w,w′ ← A such that w ̸= w′, it holds that Pr[ϕ(w) = ϕ(w′)] ≤ δ, for every efficient A.

We refer to Items 2, 3 and 4 as β-Robustness, γ-Unpredictability and δ-Binding, respectively.

Then, for β, γ ∈ negl(κ), it holds that Π∗ is (µ∗, ν∗)-secure for{
µ∗ = m · µ
ν∗ = δ + ε+ negl(κ)

.

24

Before we prove Theorem 5.1 we point the reader to the relevant claims for showing that the batched Schnorr
protocols from Section 3 are sound. For β, γ, δ, ε as in Theorem 5.1, it holds that ε ∈ negl(κ) by Theorem 5.4
for V explicitly defined in Section 5.2, and β ∈ negl(κ) by Fact 5.8 since log(q) = |G| ∼ κ and the Paillier
moduli {Ni}ni=1 are large, squarefree and do not admit small factors (Guaranteed by protocol Φ from round
3 of Σkgen). Finally, γ, δ ∈ negl(κ) by Fact 5.9 and Fact 5.10 respectively.

5.1 Proof of Theorem 5.1
First, we show HVZK. Write σi for the random variable calculated as σi = α +

∑i
j=1 ejwj for e⃗ ← Ei

and note that SD(σ0, σ1) ≤ µ by the HVZK property of the underlying protocol. Further observe that
SD(σ0, σm) = SD(σ0, σm−1 + emwm) ≤ SD(σ0, σm−1) + SD(σ0, σ0 + emwm) and the HVZK part of the claim
follows by simple induction. Hereafter, let A denote an adversary that breaks soundness with probability λ
and fix r ∈ poly such that λr ∈ ω(log(κ)) and m/λr ∈ o(1). Consider the following experiment.

Experiment 5.2. Define E with black-box access to A as follows.

Operation.

1. Run the adversary to obtain the first message A← A(X1, . . . , Xm) for Π∗.

2. Sample e⃗1, . . . , e⃗r ← Em iid and hand it to A as the verifier’s response (in m parallel executions).

3. Obtain (possibly invalid) transcripts τ1, . . . , τr using the last message(s) of A.

Write f⃗1, . . . , f⃗m+1 for the (possibly shorter or empty) subsequence of e⃗1, . . . , e⃗r consisting of the first m + 1
vectors e⃗j such that A returns a valid transcript for e⃗j .

Output. If {f⃗1, . . . , f⃗m+1} /∈ V or there are fewer than m+2 accepting transcripts then output 0. Else,
output 1 together with the first m+ 2 accepting transcripts.

Claim 5.3. E outputs 0 in Experiment 5.2 with probability at most β · rm+ negl(κ).

Proof. By Chernoff, since λr ∈ ω(log(κ)) and m/λr ∈ o(1), then, with overwhelming probability, there are
at least m+ 2 transcripts. Furthermore, the probability that (f⃗1, . . . , f⃗m+1) /∈ V is at most β · rm, by union
bound.

Assuming that, for some j ∈ [m], Xj ̸= ϕ(wj) for all wj ∈ S, consider the following sequence of events.

1. Run Experiment 5.2 and obtain m+ 2 valid transcripts.

2. Use the first m+ 1 transcripts to compute α, (wi)
m
i=1 such that A = ϕ(α) and ϕ(wj) = Xj .

Let τ = (A, e⃗, z) denote the last (unused) transcript.

3. ẑ = α+
∑m

j=1 ejwj /∈ S.

4. ẑ = z and ϕ(ẑ) = ϕ(z).

In summary, A breaks soundness only if one of the above does not happen, i.e. with probability at most

β ·mr + negl(κ)︸ ︷︷ ︸
Item 1

+ ε+ r · γ + δ︸ ︷︷ ︸
Items 2, 3, 4

25

5.2 Putting Everything Together
In this section we prove auxiliary claims for showing our batched protocols from Section 3 satisfy the hypothesis
of Theorem 5.1 for suitable choice of parameters. We first observe that all the protocols can be cast as Schnorr
protocols for (ϕ,E,R,S) such that

ϕ : Zr × Fα
q × Z∗β1

N1
× · · · × Z∗βn

Nn
× Z→ Gγ × Z∗β1

N2
1
× . . .× Z∗βn

N2
n
× Z∗

N̂

(w⃗, µ⃗, ν⃗1, . . . , ν⃗n, ρ) 7→ (ϕ0(w⃗, µ⃗), ϕ1(w⃗, ν⃗1), . . . , ϕn(w⃗, ν⃗n), θ(w⃗, ρ))

where 
r, α, β1, . . . , βn, γ ∈ Z
ϕi(w⃗, ν⃗) = (νNi

1

∏r
k=1A

wj

i,1,k, . . . , ν
Ni

βi

∏r
k=1A

wj

i,βi,k
) ∈ Z∗βi

N2
i

for (Ai,j,k ∈ Z∗
N2

i
)j∈[βi],k∈[r]

θ(w⃗, ρ) = tρ
∏r

j=1 s
wj

j mod N̂

(w⃗, . . . , ρ) ∈ R or S iff w⃗, ρ ∈ I(·) or J(·)

Let Π denote the m-batched protocol for the tuple above and define V ⊆ 2E
m

such that {e⃗1, . . . , e⃗k} ∈ V iff
there exists e⃗k+1 . . . e⃗m+1 ∈ Em such that

E =


e⃗1 1
...

...
e⃗m+1 1

 =


e1,1 . . . e1,m 1
...

...
...

em+1,1 . . . em+1,m 1

 (1)

is invertible over Fq and (ZNi
,+, ·), for all i ∈ [n]. In the remainder, we state and prove Theorem 5.4

(Extractability) and Facts 5.8 (Robustness), 5.9 (Unpredictability) and 5.10 (Binding).

5.2.1 Extractability

Theorem 5.4. Under the strong-RSA assumption, for ε ∈ negl(κ) and (N̂ , t, s1, . . .)← ped(1κ), it holds that
Π satisfies (ε,V)-extractability.

Proof. For strong-RSA challenge (N, c) ← sRSA(1κ), the Pedersen parameters (N̂ , t, s1, . . .) are set as17
(N̂ , t) = (N, c) and sk = tλk mod N̂ for λk ← [N̂2] and let Q = |⟨t⟩| denote the size of the group gen-
erated by t ∈ Z∗N .18 We will show a reduction from Extractability to strong RSA; we will be using the λ’s in
the reduction. We prove the claim for ϕ such that19

ϕ : Zr × Z∗N0
× Z→ Z∗N2

0
× Z∗

N̂

(w⃗, ν, ρ) 7→ (νN0

r∏
k=1

Awk

k , tρ
r∏

k=1

swk

k)

So, for (C⃗, S⃗) ∈ (ZN2
0
× ZN̂)m, let {τi = ((D,T), e⃗i, (z⃗i, µi, γi))}i∈[m+1] denote m+ 1 valid transcripts i.e.

∀i,

{
µN0
i

∏r
k=1A

zi,k
k = D ·

∏m
j=1 C

ei,j
j mod N0

tγi
∏r

k=1 s
zi,k
k = T ·

∏m
j=1 S

ei,j
j mod N̂

(2)

and assume that {e⃗i}m+1
i=1 ∈ V . Define the square integer matrix E as in Equation (1) and let ∆e = det(E).

By assumption, ∆e is invertible over ZN0
, thus also over Q, and there exists an integer matrix E∗ satisfying

E∗ ·E = ∆e · id. Fix i ∈ [m+ 1] and define ∆γ =
∑m+1

j=1 e∗i,j · γj and ∆
(k)
z =

∑m+1
j=1 e∗i,j · zj,k, where e∗i,j is the

entry of E∗ indexed by (i, j). Observe that

t∆γ ·
r∏

k=1

s
∆(k)

z

k = R∆e mod N̂ s.t.

{
R = Si if i ̸= m+ 1

R = T otherwise
(3)

So, notice that if ∆e divides ∆γ and {∆(k)
z }rk=1 over the integers, then at least one of the following is true

17This is the right distribution for the Pedersen parameters
18We recall that Q = φ(N)/4 is a biprime where φ is the Euler function (with overwhelming probability).
19The general case follows straightforwardly.

26

1. ∆e ̸= 1 and gcd(∆e, Q) ̸= 1.

2. t∆γ/∆e ·
∏r

k=1 s
∆(k)

z /∆e

k = R mod N̂ .

Item 1 yields the factorization20 of N̂ and thus to prove our theorem it suffices to bound the probability
that ∆e does not divide one of {∆(k)

z }rk=1 or ∆γ . Let ε̂ = Pr[∆e ��| ∆γ ∨ ∆e ��| ∆
(1)
z ∨ . . . ∨ ∆e ��| ∆

(r)
z]

where the probability is calculated over the prover’s coins and the choice of (N̂ , t, s1, . . .). Further define
∆Σ = ∆γ +

∑
k λk∆

(k)
z and observe that ε̂ ≤ Pr[∆e ��| ∆Σ]+

∑r
k=1 Pr[∆e ��| ∆

(k)
z ∧ ∆e | ∆Σ]. Apply Claim 5.5,

Claim 5.6 and Claim 5.7 and conclude that, since i ∈ [m+ 1] was chosen arbitrarily,

ε ≤ (m+ 1) · ε̂+ negl(κ) ∈ negl(κ). (4)

Claim 5.5. It holds that Pr[∆e ��| ∆Σ] ∈ negl(κ),

Proof. Let d = gcd(∆e,∆Σ). If ∆e ��| ∆Σ, then at least one the following is true.

1. d ̸= 1 and gcd(d,Q) ̸= 1.

2. tdΣ = Rde mod N̂ for d · de = ∆e and d · dΣ = ∆Σ.

For Item 2, let (u, v) denote the Bézout coefficients of (de, dΣ) i.e. u · de + v · dΣ = 1, and deduce m = tuRv

mod N̂ and de solve strong RSA since t = tu·de+v·dΣ = tu·de ·Rv·de = (tu ·Rv)de = mde mod N.

Next, we prove that if ∆e ��| ∆
(j)
z for some j ∈ r, then the probability that ∆e | ∆Σ is bounded away from 1

(together with Claim 5.5, this yields Equation (4)).

Claim 5.6. Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z

]
≤ 1/2 + negl(κ), for every j.

Proof. Define ∆̂j = ∆γ +
∑

k ̸=j λk∆
(k)
z and write ∆Σ = ∆̂j + λ̂j ·∆(j)

z + ρj ·Q ·∆(j)
z where λ̂j = λj mod Q

and ρj is uniquely determined. We make the following preliminary observations. If ∆e ��| Q ·∆
(j)
z , then there

exists a prime power ab such that 
ab | Q ·∆(j)

z

ab+1
��| Q ·∆

(j)
z

ab+1 | ∆e

Finally, notice that if ∆e ��| Q ·∆
(j)
z and ∆e | ∆Σ, then, using the notation above,

∆̂j + λ̂j ·∆(j)
z + ρj ·Q ·∆(j)

z = 0 mod ab

and thus ρj is uniquely determined modulo a. Thus,

Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z

]
≤ Pr[gcd(∆e, Q) ̸= 1]

+ Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z ∧ gcd(∆e, Q) = 1

]
and Pr

[
∆e | ∆Σ

∣∣∣∣ ∆e ��| ∆
(j)
z ∧ gcd(∆e, Q) = 1

]
≤ 1/a, which concludes the proof of the claim.

Next, set w⃗i, α⃗ ∈ Zr and ρi, η ∈ Z such that wi,k = (
∑

j e
∗
i,jzj,k)/∆e and ρi = (

∑
j e
∗
i,jγj)/∆e and αk =

(
∑

j e
∗
m+1,jzj,k)/∆e and η = (

∑
j e
∗
m+1,jγj)/∆e, and it remains to show that the w⃗i’s are the preimages of the

Ci’s and that we can extract the randomizers (the ν’s). From Equation (2) , since ∆e is coprime to N0 (by
assumption, since ∆e is invertible in ZN0), deduce that m∏

j=1

µ
e∗i,j
j

N0

=

(
B ·

r∏
k=1

A
−wi,k

k

)∆e

mod N2
0 s.t.

{
B = Ci if i ̸= m+ 1

B = D otherwise

and use Claim 5.7 to extract the randomizers (the ν’s).
20Factoring is reducible to strong RSA.

27

Claim 5.7. Suppose that yN = xk mod p, where k and N are coprime and x, y ∈ Z∗p. Then, there exists
α ∈ Z∗p such that αN = x mod p. Furthermore, α can be computed efficiently as a function |p|.

Proof. Since k and N are coprime, there exists u, v ∈ Z such that ku + Nv = 1. Thus xku+Nv = x, and
consequently (yu · xv)N = xku · (xN)v = x mod p. For the penultimate equality, notice that yu and xv are
well defined in Z∗p.

This concludes the proof Theorem 5.4.

5.2.2 Robustness, Unpredictability and Binding

Fact 5.8 (Robustness). Let ℓ, p ∈ Z such that ℓ, log(p) ∼ κ. Assume that p is prime. If (e⃗1, 1) . . . (e⃗j , 1) ∈
Zm+1 are linearly independent over Zp then

Pr
e⃗j+1←(±2ℓ)m

[(e⃗j+1, 1) ∈ ⟨(e⃗1, 1), . . . , (e⃗j , 1)⟩Zp
] ∈ negl(κ).

Proof. Let v⃗ ∈ Zm+1
p be an (arbitrary) vector in the orthogonal complement of ⟨(e⃗1, 1), . . . , (e⃗j , 1)⟩Zp . Deduce

that Pr[v⃗ · (e⃗j+1, 1) = 0] ≤ max(1/p, 1/2ℓ), where v⃗ · u⃗ denotes the inner product of v⃗ and u⃗ in Zm+1
p .

Fact 5.9 (Unpredictability). Let w⃗ ∈ Zm and ℓ, ε ∈ Z with ε, ℓ ∼ κ. For any α ∈ Z, if w⃗ /∈ J(N · 2ℓ)m then

Pr
e⃗←(±2ℓ)m

[α+
∑
j

ejwj ∈ J(N · 2ℓ)] ∈ negl(κ).

Proof. For any fixed α ∈ Z, for any |w| > N · 2ℓ+ε, it holds that

Pr
e←±2ℓ

[α+ we ∈ ±N · 2ℓ+ε] = Pr[ew ∈ −α±N · 2ℓ+ε]

≤ Pr[e ∈ ⌈−α/w⌋ ± 1]

≤ 3

2ℓ

Fact 5.10 (Pedersen Binding). Under the factoring assumption, for π = (N̂ , t, s⃗, . . .) ← ped(1κ), for any
efficient A, it holds that

Pr

[
w⃗ ̸= x⃗← A(π) s.t. tw0

r∏
i=1

swi
i = tx0

r∏
i=1

sxi
i mod N̂

]
∈ negl(κ).

Proof. Similarly to the proof of Theorem 5.4, we will use A to break factoring. Assuming that si = tλi mod N̂
for λi ← [N̂2] with λ0 = 1, and write Q = |⟨t⟩|. Let ∆ =

∑r
i=1 λi(wi − xi) and note that t∆ = 1 mod N̂ . So,

either

1. Q divides ∆ (which yields the factorization of N̂).

2. or ∆ = 0.

To conclude the proof, we show that the probability (over the λ’s) of Item 2 is bounded away from 1. Fix i
such that xi−wi ̸= 0 and let λ̂, ρ such that λi = λ̂+Qρ and λ̂ = λi mod Q. For z =

∑
j ̸=i λj(wj−xj), deduce

that ρ = 1
Q ·
(
−z

wi−xi
− λ̂

)
which happens with negligible probability (since ρ is info-theoretically hidden).

28

References
[1] D. Abram, A. Nof, C. Orlandi, P. Scholl, and O. Shlomovits. Low-bandwidth threshold ECDSA via

pseudorandom correlation generators. In IEEE Symposium on Security and Privacy, pages 2554–2572.
IEEE Computer Society Press, May 2022. doi: 10.1109/SP46214.2022.9833559.

[2] J.-P. Aumasson, A. Hamelink, and O. Shlomovits. A survey of ECDSA threshold signing. Cryptology
ePrint Archive, Report 2020/1390, 2020. https://eprint.iacr.org/2020/1390.

[3] E. Bangerter. Efficient zero knowledge proofs of knowledge for homomorphisms. PhD thesis, Ruhr Uni-
versity Bochum, 2005.

[4] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The wonderful world of global
random oracles. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 280–312. Springer, Heidelberg, Apr. / May 2018. doi: 10.1007/978-3-319-78381-9_11.

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, Oct. 2001. doi: 10.1109/SFCS.2001.959888.

[6] R. Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint
Archive, Report 2003/239, 2003. https://eprint.iacr.org/2003/239.

[7] R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In G.-J. Ahn,
M. Yung, and N. Li, editors, ACM CCS 2014, pages 597–608. ACM Press, Nov. 2014. doi: 10.1145/
2660267.2660374.

[8] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM
CCS 2020, pages 1769–1787. ACM Press, Nov. 2020. doi: 10.1145/3372297.3423367.

[9] R. Canetti, N. Makriyannis, and U. Peled. UC non-interactive, proactive, threshold ECDSA. Cryptology
ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.org/2020/492.

[10] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. Cryptology ePrint Archive, Report 2021/060, 2021. https:
//eprint.iacr.org/2021/060.

[11] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party ECDSA from hash
proof systems and efficient instantiations. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 191–221. Springer, Heidelberg, Aug. 2019. doi: 10.1007/
978-3-030-26954-8_7.

[12] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient threshold
EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 266–296. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45388-6_10.

[13] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient thresh-
old EC-DSA revisited: Online/offline extensions, identifiable aborts, proactivity and adaptive security.
Cryptology ePrint Archive, Report 2021/291, 2021. https://eprint.iacr.org/2021/291.

[14] G. Couteau, T. Peters, and D. Pointcheval. Removing the strong RSA assumption from arguments over
the integers. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 321–350. Springer, Heidelberg, Apr. / May 2017. doi: 10.1007/978-3-319-56614-6_11.

[15] A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman. Securing DNSSEC keys via
threshold ECDSA from generic MPC. In L. Chen, N. Li, K. Liang, and S. A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 654–673. Springer, Heidelberg, Sept. 2020. doi:
10.1007/978-3-030-59013-0_32.

[16] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergård. Fast threshold ecdsa with
honest majority. Cryptology ePrint Archive, Report 2020/501, 2020.

29

https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2020/492
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/291

[17] Y. Desmedt. Society and group oriented cryptography: A new concept. In C. Pomerance, ed-
itor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, Aug. 1988. doi:
10.1007/3-540-48184-2_8.

[18] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 307–315. Springer, Heidelberg, Aug. 1990. doi: 10.1007/0-387-34805-0_28.

[19] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA from ECDSA assump-
tions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997. IEEE Computer Society Press,
May 2018. doi: 10.1109/SP.2018.00036.

[20] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA assumptions: The multiparty
case. In 2019 IEEE Symposium on Security and Privacy, pages 1051–1066. IEEE Computer Society Press,
May 2019. doi: 10.1109/SP.2019.00024.

[21] A. Gągol, J. Kula, D. Straszak, and M. Świętek. Threshold ECDSA for decentralized asset custody.
Cryptology ePrint Archive, Report 2020/498, 2020. https://eprint.iacr.org/2020/498.

[22] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 1179–1194. ACM Press, Oct. 2018.
doi: 10.1145/3243734.3243859.

[23] R. Gennaro and S. Goldfeder. One round threshold ECDSA with identifiable abort. Cryptology ePrint
Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. Inf. Comput.,
164(1):54–84, 2001.

[25] R. Gennaro, D. Leigh, R. Sundaram, and W. S. Yerazunis. Batching Schnorr identification scheme with
applications to privacy-preserving authorization and low-bandwidth communication devices. In P. J. Lee,
editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 276–292. Springer, Heidelberg, Dec. 2004. doi:
10.1007/978-3-540-30539-2_20.

[26] J. Groth and V. Shoup. On the security of ECDSA with additive key derivation and presignatures. In
O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
365–396. Springer, Heidelberg, May / June 2022. doi: 10.1007/978-3-031-06944-4_13.

[27] D. Kravitz. Digital signature algorithm. US Patent 5231668A, 1993.

[28] Y. Lindell. Fast secure two-party ECDSA signing. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 613–644. Springer, Heidelberg, Aug. 2017. doi: 10.1007/
978-3-319-63715-0_21.

[29] Y. Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, pages 613–644, 2017.

[30] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key generation and
applications to cryptocurrency custody. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM
CCS 2018, pages 1837–1854. ACM Press, Oct. 2018. doi: 10.1145/3243734.3243788.

[31] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 137–154. Springer, Heidelberg, Aug. 2001. doi: 10.1007/
3-540-44647-8_8.

[32] U. Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Des. Codes Cryptogr., 77
(2-3):663–676, 2015.

[33] National Institute of Standards and Technology. Digital signature standard (dss). Federal Information
Processing Publication 186-4, 2013.

30

https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2020/540

[34] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and D. Schröder. Verifiable timed
signatures made practical. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages
1733–1750. ACM Press, Nov. 2020. doi: 10.1145/3372297.3417263.

[35] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui. Efficient online-friendly two-party ECDSA signature.
In G. Vigna and E. Shi, editors, ACM CCS 2021, pages 558–573. ACM Press, Nov. 2021. doi: 10.1145/
3460120.3484803.

31

FIGURE 15 (Ideal Threshold Signature Functionality Ftsig)

Key-generation:

1. Upon receiving (keygen, ssid) from some party Pi, interpret ssid = (. . . ,P ,Q), where P = (P1, . . . ,Pn).

– If Pi ∈ P , send to S and record (keygen, ssid,Pi).

– Otherwise ignore the message.

2. Once (keygen, ssid, j) is recorded for all Pj ∈ P , send (pubkey, ssid) to the adversary S and do:

(a) Upon receiving (pubkey, ssid,X,V) from S, record (ssid,X,V).
(b) Upon receiving (pubkey, ssid) from Pi ∈ P , output (pubkey, ssid,X) if it is recorded.

Else ignore the message.

Signing:

1. Upon receiving (sign, sid = (ssid, . . .),m) from Pi, send to S and record (sign, sid,m, i).

2. Upon receiving (sign, sid = (ssid, . . .),m, j) from S, record (sign, sid,m, j) if Pj is corrupted.
Else ignore the message.

3. Once (sign, sid,m, i) is recorded for all Pi ∈ Q ⊆ P and Q ∈ Q, send (sign, sid,m) to S and do:

(a) Upon receiving (signature, sid,m, σ) from S,

– If the tuple (sid,m, σ, 0) is recorded, output an error.
– Else, record (sid,m, σ, 1).

(b) Upon receiving (signature, sid,m) from Pi ∈ Q:

– If (sid,m, σ, 1) is recorded, output (signature, sid,m, σ) to Pi.
– Else ignore the message.

Verification:

Upon receiving (sig-vrfy, sid,m, σ,X) from a party X , do:

– If a tuple (m,σ, β′) is recorded, then set β = β′.

– Else, if m was never signed and not all parties in some Q ∈ Q are corrupted/quarantined, set β = 0.

“Unforgeability”

– Else, set β = V(m,σ,X).

Record (m,σ, β) and output (istrue, sid,m, σ, β) to X .

Key-Refresh:

Upon receiving key-refresh from all Pi ∈ P , send key-refresh to S, and do:

– If not all parties in some Q ∈ Q are corrupted/quarantined, erase all records of (quarantine, . . .).

Corruption/Decorruption:

1. Upon receiving (corrupt,Pj) from S, record Pj is corrupted.

2. Upon receiving (decorrupt,Pj) from S:

– If not all parties in some Q ∈ Q are corrupted/quarantined do:

If there is record that Pj is corrupted, erase it and record (quarantine,Pj).

– Else do nothing.

Figure 15: Ideal Threshold Signature Functionality Ftsig

32

A Missing ZK Protocols/Proofs

A.1 Security Proof for Multi-Pedersen Membership
Recall (Definition 3.1) the m-batched Schnorr protocol Π∗ for (ϕ,E) where E = {0, 1} and

ϕ : Zφ(N̂) → Z∗
N̂

α 7→ tα

Claim A.1. It holds that Π∗ is (µ, ν)-secure for µ = 1− φ(N)
N and ν = 1

2 .

Proof. Let s⃗ = (s1, . . . , sm) denote the common input. The HVZK part of the claim follows since (A, e, z) is
(1 − φ(N)

N)-close to a honest transcript, for z ← [0, N − 1], e⃗ ← {0, 1}m and A = tz ·
∏m

i=1 s
−ei
i mod N̂ . For

the soundness part of the claim, we assume the following. WLOG si /∈ ⟨t⟩ for all i ∈ [m] (otherwise remove
all the good s’s and consider the smaller batch). Next, let e⃗, f⃗ ∈ {0, 1}m be two Boolean vectors of hamming
distance 1 from each other, i.e. ei = fi if and only if i ̸= j, for some j ∈ [m]. Observe that

1. If tz = A ·
∏m

i=1 s
ei
i mod N̂ and tz

′
= A ·

∏m
i=1 s

fi
i mod N̂ then A ∈ Z∗

N̂
, sj ∈ ⟨t⟩.

2. Any subset of {0, 1}m larger than 2m−1 contains two vectors that are 1-far from each other.

The first item follows by simple algebraic manipulation. The second item is a fact from coding theory by
notting that the largest code in Fm

2 of distance 2 is smaller than the largest code in Fm−1
2 of distance 1.

A.2 Well-Formed Modulus & Ciphertext ZK Proof
Next we describe the missing ZK-proof Φ(·) [9] from Section 3.1.1. The proof is a combination of two Schnorr
protocols Π(·) and Θ(·) (“tight range proof” from [14] and “no small-factors proof” from [9]), and the ZK protocol
Ξ (“Paillier-Blum proof” from [9]), all described below. Soundness and HVZK follow from the soundness and
HVZK of the underlying protocols and Theorem 5.1. Recall that I(M) = ±M and J(M) = ±M · 2ε. Let
π = (N̂ , s, t, . . .) for s, t ∈ Z∗

N̂
. Recall that κ denotes the security parameter.

Paillier-Blum. The protocol is described in Figure 16. For the security properties (HVZK, soundness &
Extraction) of Ξ, we refer the reader to [9, p. 28].

FIGURE 16 (Paillier-Blum Modulus ZK – Ξ(N ; p, q))

• Inputs: Common input is N . Prover has secret input (p, q) such that N = pq.

1. Prover samples a random w ← ZN of Jacobi symbol −1 and sends it to the Verifier.

2. Verifier sends {yi ← Z∗
N}i∈[κ]

3. For every i ∈ [κ] set:

– xi = 4
√
y′i mod N , where y′i = (−1)aiwbiyi for unique ai, bi ∈ {0, 1} such that xi is well defined.

– zi = y
N−1 mod ϕ(N)
i mod N

Send {(xi, ai, bi), zi}i∈[κ] to the Verifier.

• Verification: Accept iff all of the following hold:

– N is an odd composite number.

– zNi = yi mod N for every i ∈ [κ].

– x4i = (−1)aiwbiyi mod N and ai, bi ∈ {0, 1} for every i ∈ [κ].

Figure 16: Paillier-Blum Modulus ZK – Ξ(N ; p, q)

33

Tight Range. Define Πσ for (ϕ,E) for E = I(2ℓ), σ = (π, T, A⃗,N) and

ϕ : Z4 × Z4 × Z × Z∗N → Z∗5
N̂
× Z∗N2 ×G

(x, α⃗, µ, ρ⃗, β, γ) 7→ (sxtµ, (sαitρi)3i=1, T
−x ·Aα1

1 ·A
α2
2 ·A

α3
3 · tβ , (1 +N)x · γN , gx)

(x, α⃗, µ, ρ⃗, β, γ) ∈ R iff x, µ, αi, ρi ∈ I(N̂ · 2ℓ), β ∈ I(N̂ · 22ℓ) and S is analogously defined with J(·).

No Small Factors. Define Θπ,Q for (ϕ,E,R,S) for E = I(2ℓ) and ϕ : Z2×Z3 :→ Z∗3
N̂

s.t. (p, q, u, v, w) 7→
(sptu, sqtv, Qptw) with (p, q, u, v, w) ∈ R iff p, q ∈ I(

√
N · 2ℓ), u, v ∈ I(N̂ · 2ℓ) and w ∈ I(22ℓ · N̂

√
N). Define

S analogously with J(·).

A.2.1 ZK Proof Description

Define Φπ for π = (N̂ , s, t, . . .) in Figure 17.

Prover

Common Input: N,W,X, ℓ

If not defined set (W,X) = (1,1).

Secret Input: p, q, x, γ s.t. N = pq and W = encN (x; γ), X = gx with p, q ∈ I(2ℓ
√
N) and x ∈ [0, 2ℓ].

1. Find α1, α2, α3 such that 4(2ℓ − x) · x+ 1 = α2
1 + α2

2 + α2
3

2. Sample (ρi ← I(2ℓ · N̂))i=1,2,3 and set {Ai = sαitρi mod N̂}i=1,2,3

3. Sample µ, u, v ← I(2ℓ · N̂) and set (S, T) = [(sxtµ, (s2
ℓ · S−1)4)]N̂ and (P,Q) = [(sptu, sqtv)]N̂

4. Set σ = (π, T, A⃗,N) and generate Proofs:
ψ ← Πσ((S, A⃗, s,W,X); (x, µ, α⃗, ρ⃗, β, γ)) for β = −4µx−

∑3
i=1 αiρi

ξ ← Θπ,Q((P,Q, s
N); (p, q, u, v, w)) for w = −pv

η ← Ξ((N); (p, q))

Output: ζ = (P,Q, S, A⃗, ψ, ξ, η).

Verifier

Common Input: N,W,X, ℓ.

Additional Input: Packing number λ & packing shift τ .

Proof : ζ ∈ {0, 1}∗.

1. Parse ζ = (P,Q, S, A⃗, ψ, ξ, η).

2. Set T = [(s2
ℓ · S−1)4]N̂ and σ = (π, T, A⃗,N) and check that N ≥ 2τ ·λ.

3. Verify ψ(S, A⃗, s,W,X), ξ(P,Q, sN) and η(N) according to Πσ, Θπ,Q and Ξ respectively.

Output: In case of failure output 0. Else, output 1.

Figure 17: Well-Formed Modulus & Ciphertext Φπ

34

B Experimental Results
We present experimental results for evaluating the predominant cost of our protocol, i.e. computation com-
plexity. So, in our experiments, we focus on pure computation time during presigning and signing ; we view key
generation and key refresh as one-time or sporadic costs which do not affect performance in a significant way.
Furthermore, the communication between the parties is managed in a simplified way (namely, all parties run
on the same shared memory, and messages are “sent” and “received” by writing and reading the right memory
slot). Finally, though we focus on computation, we recall that communication complexity is one of the main
attractive features of our protocol, and, using our theoretical estimates (Table 1, p. 6), it is possible to infer
real-world communication costs.

Figure 18: (Plot 1) CPU time for presigning for each online party, viewed as a function of the batching
parameter, i.e. number of future signatures in the batch. Reported values are amortized over the number of
future signatures (so total costs scale linearly with respect to this quantity). We ran four different experiments
for 1, 2, 4 and 9 online parties; recall that there is a single offline party and the protocol does not accommodate
additional offline parties.

What we implement. We implement a proof of concept of the following phases of the protocol: key
generation, presigning and signing. We recall that the signing phase consists of init/CMP and aggregation for
the online parties, and ZK verification and output finalization for the offline party. Our proof of concept is
written in C and the code is available online.21 For elliptic curve operations, big numbers and hash functions,
we use openSSL. We do not use other libraries.

What we measure. Plot 1: Computation time per message during presigning for each online party and
Plot 2: for the offline party as a function of the batching parameter, i.e. how many presignatures are handled
in a single batch. Plot 3: Computation time per message during signing for each online party, as a function
of the number of parties. Plot 4: Computation time for the aggregation phase during signing for each online
party, as well as the verification and finalization time for the offline party, as a function of the batching
parameter. Plot 5: Performance improvement (speedup) when using the packing optimization vs not using it
during presigning, as a function of the number of parties.

21https://github.com/udi0peled/asymmetric_offline_cmp (accessed November 2022).

35

https://github.com/udi0peled/asymmetric_offline_cmp
https://github.com/udi0peled/asymmetric_offline_cmp

Figure 19: (Plot 2) Same measurements as Plot 1, but for the offline party.

Choice of Parameters & Machine Specs. We instantiate the random oracle with SHA-512 (for Fiat-
Shamir, commitments, etc. . .) and we opted to instantiate ECDSA with hash function SHA-256 and elliptic
curve secp256k1, i.e. the most popular variant of ECDSA in the blockchain space. The bit length of the Paillier
modulus was accordingly set to 2048 to be eight times greater than the ECDSA key length. For the ZK proofs,
we chose 64 bits for the (statistical) zero-knowledge parameter and 256 bits for the (computational) soundness
parameter.

We performed our experiments on a MacBookPro with 2.4Ghz Quad-Core Intel Core i5 processor and
16 GB 2133 MHz LPDDR3 memory. Our experiments use single-threaded processes with default level of
compilation optimization.

B.1 Concluding Remarks
Plots 1 & 2. We note that the batching technique significantly reduces the computation costs for presigning;
e.g. for 9 parties, there is more than x2 speedup when batching 200 presignatures vs no batching. On the
other hand, this speedup appears to plateau when batching more than a few hundred presignatures.

Plot 3. We observe a linear correlation between the number of parties and the computation time per message.
This confirms our expectations, since each additional party adds a constant amount of work (≈ 200ms).

Plot 4. Notice that the aggregation process for the online parties is tiny (at most 15ms for any number of
parties) compared to the init/CMP part of the signing phase (≈ 200ms with linear dependence on the number
of parties, cf. Plot 3). We mention that there is a theoretical dependence on the number of parties even during
aggregation; there is no such dependency for the offline party. However, the dependency is unnoticeable for
small number of parties (e.g. fewer than 100). Finally, observe that the offline party’s computational costs are
rather insignificant during signing, and both of the aforementioned processes, i.e. aggregation for the online
parties and verification/finalization for the offline, benefit from the batching technique.

Plot 5. As mentioned in the caption of plot 5, the speedup deteriorates for larger packing because the Paillier
plaintext size (and thus the key length) is increased to avoid overflow. As a consequence, the overhead of
increasing the Paillier key length counteracts the benefits of packing (because Paillier encryption is basically

36

Figure 20: (Plot 3) Total CPU time for the online-signing phase, i.e. init/CMP + aggregation, for each
online party (there is no offline party in this phase), per signature. The reported values were calculated by
running the protocol 100 times and taking the average. We note that the bulk of the online-signing phase
occurs during the init/CMP part of the protocol (cf. Plot 4 for the costs of the aggregation phase and those
of the offline party).

Figure 21: (Plot 4) CPU time for aggregation process for each online party and CPU running time for
verification/finalization process for the offline party, viewed as a function of the batching parameter amortized
over the number of signatures. We note that the displayed costs are not affected by the number of online
parties (though there is a theoretical dependency for the blue line, cf. concluding remarks).

37

Figure 22: (Plot 5) CPU time speedup for presigning when packing three plaintexts into one Paillier
ciphertext, compared to no packing at all, as a function of the number of online parties. E.g. when using
packing number 3 during presigning, the parties run roughly 2.5 times faster compared to packing number
1. We do not report experiments for larger packing number (> 3) because the speedup deteriorates as the
Paillier key length increases (cf. concluding remarks).

the most expensive component of our protocol). However, it may yet be desirable to increase the packing
number if the communication benefit outweighs the computational slowdown.

38

	Introduction
	Related Work
	Our Results
	Comparison
	Security Features
	Technical Overview

	Preliminaries
	Signatures and Unforgeability
	MPC and Universal Composability
	Proactive Threshold Signatures
	Ideal Threshold-Signature Functionality
	Global Random Oracle

	Group/Number-Theoretic Definitions
	Schnorr Protocols
	Embedded Schnorr Protocols

	NIZK and the Fiat-Shamir Transform
	Proof Aggregation in ROM

	Protocol
	Baseline Two-Party Protocol
	Key Generation and Refresh
	Presigning
	Signing

	Virtual Party MPC
	init MPC Protocol (i.e. CMP)

	Security
	Unforgeability & Simulatability imply UC Security
	Simulatability of Sigma ecdsa

	Proof of Soundness for Batch-Proving
	Proof of 5.1
	Putting Everything Together
	Extractability
	Robustness, Unpredictability and Binding

	References
	Ideal Threshold Signature Functionality
	Appendix
	Missing ZK Protocols/Proofs
	Security Proof for Multi-Pedersen Membership
	Well-Formed Modulus & Ciphertext ZK Proof
	ZK Proof Description

	Experimental Results
	Concluding Remarks

