MULTIPLE MODULAR UNIQUE FACTORIZATION DOMAIN SUBSET PRODUCT WITH ERRORS

TREY LI

ABSTRACT. We propose the multiple modular subset product with errors problem over unique factorization domains and give search-to-decision reduction as well as average-case-solution to worst-case-solution reduction for it.

1. INTRODUCTION

In [Li22a] we proposed a family of new computational problems. One of them is the modular unique factorization domain subset product with errors problem (MUSPE). It was defined as a single-instance problem, and we had only studied its *global-case hardness*, which is a notion stronger than worst-case hardness but incomparable with average-case hardness. If we zoom in each unique factorization domain (UFD), then global-case hardness is about worst-case hardness in the UFDs.

In this paper we consider the multiple-instance version of the problem and study its average-case hardness in certain UFDs. We call it the multiple modular unique factorization domain subset product with errors problem (M-MUSPE).

We give a search-to-decision reduction for M-MUSPE over unique factorization domains that are also cyclic groups. We give a worst-case-solution to average-case-solution reduction for M-MUSPE over unique factorization domains that are also cyclic groups and with integral solutions $x \in \mathbb{Z}^n$ (i.e. not restricted to be in $\{0, 1\}^n$).

2. **Problem**

First recall that (worst-case single-instance) MUSPE [Li22a] is given n+1 elements a_1, \ldots, a_n, X of a unique factorization domain (UFD) R, an ideal I of R, as well as a set $L \subset R$ of prime elements of R that are coprime to all a_i , find a binary vector $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and a square-free ring element e factored over L such that

$$\prod_{i=1}^n a_i^{x_i} \cdot e \equiv X \pmod{I}.$$

A concrete example is the *modular subset product with errors problem* (MSPE) [Li22a], which is given n+2 integers a_1, \ldots, a_n, X, N and a set L of primes such that no elements of L divide any a_i for $i \in [n]$, find a binary vector $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ and a square-free integer e factored over L such that

$$\prod_{i=1}^n a_i^{x_i} \cdot e \equiv X \pmod{N}.$$

Now we define the average-case multiple-instance problem.

This is the 4th paper of the series. Previously: [Li22a; Li22b; Li22c].

Date: October 4, 2022.

Email: treyquantum@gmail.com

Setup

Let *R* be a UFD and *I* be an ideal of *R* such that the quotient ring *R*/*I* is a cyclic group.¹ Let $L = \{\ell_1, \dots, \ell_w\}$ be a set of (random) prime elements of *R*, where *w* is super-polynomial in n.²

Let D_{ℓ} be a (not low entropy) distribution over *L*.

Let D_e be the distribution that samples t elements $u_1, \ldots, u_t \leftarrow D_\ell$, a uniform vector $v \leftarrow \{-1, 1\}^t$, and outputs the integer $e := \prod_{i=1}^t u_i^{v_i, 3}$.

An M-MUSPE oracle O_x with respect to some $x \in \{0,1\}^n$ is an oracle that outputs random MUSPE instances of the form (a_1,\ldots,a_n,X) , where $a_1,\ldots,a_n \leftarrow R/I$, $e \leftarrow D_e$, and $X = \prod_{i=1}^n a_i^{x_i} \cdot e \pmod{I}$.

Problem

Search M-MUSPE (or M-MUSPE) is given access to O_x , find x.

Decision M-MUSPE is given access to either an M-MUSPE oracle O_x for some $x \in \{0,1\}^n$, or a random oracle O_{ran} which outputs random instances $(a_1, \ldots, a_n, X) \leftarrow (R/I)^{n+1}$, decide which oracle is given.

3. UNIQUE SOLUTION

This section is about quotient order $R/I := \mathcal{O}_K/I = \langle g \rangle$ that is a cyclic group of even order d and that the second power residue symbol of the generator g is $(g/I)_2 = -1$. The reason for requiring R to be an order \mathcal{O}_K is because we want the second power residue symbol to be defined; and requiring $(g/I)_2 = -1$ and even order d is for a convenient probability argument⁵.

A typical example is $R/I = (\mathbb{Z}/q\mathbb{Z})^{\times} = \mathbb{Z}_q^{\times}$ with q a rational prime.

PROPOSITION 1. The solution $x \in \{0, 1\}^n$ to an M-MUSPE over a quotient order $\mathcal{O}_K/I = \langle g \rangle$ which is a cyclic group of even order d is unique with overwhelming (in n) probability if $(g/I)_2 = -1$.

Proof. Take the second power residue symbol for an MUSPE equation

$$\prod_{i=1}^{n} a_i^{x_i} \cdot e \equiv X \pmod{I}$$

we have an equation

$$\prod_{i=1}^{n} \left(\frac{a_{i}}{I}\right)_{2}^{x_{i}} \cdot \left(\frac{e}{I}\right)_{2} = \left(\frac{X}{I}\right)_{2},$$
$$\longleftrightarrow \prod_{j=1}^{n} \left(\frac{a_{i}}{I}\right)_{2}^{x_{i}} = \left(\frac{e}{I}\right)_{2} \cdot \left(\frac{X}{I}\right)_{2},$$
$$\longleftrightarrow \prod_{j=1}^{n} \left(\frac{a_{i}}{I}\right)_{2}^{x_{i}} = \left(\frac{eX}{I}\right)_{2}.$$

¹A variant is to consider different random ideals I for different MUSPE instances.

²A typical choice for w is 2^n .

³A typical choice for t is 1.

⁴Here we assume the existence of an efficient algorithm for uniform sampling from R/I.

⁵We could see from the proof that an odd d does not make a big difference and that the uniqueness of solutions is plausible in that case.

This gives a linear equation

$$\sum_{i=1}^n \alpha_i x_i = \beta \pmod{2},$$

where α_i and β are 1 if $(a_i/I)_2$ and $(eX/I)_2$ are -1, respectively; α_i and β are 0 if $(a_i/I)_2$ and $(eX/I)_2$ are 1, respectively.

For k > n MUSPE equations we have a system of k linear equations of this kind. Write the system as a matrix equation we have

$$Ax \equiv b \pmod{2}$$

where $A \in \mathbb{Z}_2^{k \times n}$ and $b \in \mathbb{Z}_2^k$.

Note that $a_i = g^{r_i} \pmod{I}$ for a uniform $r_i \leftarrow \mathbb{Z}_d$. Also g is a quadratic non-residue modulo I. Hence a_i is a quadratic residue if an only if r_i is even, of which the probability is 1/2. Therefore A is uniform over \mathbb{Z}_2 .

Now notice that the probability [Lan93; Ber80; BS06] that a uniform matrix in $\mathbb{F}_2^{k \times n}$ with k > n is of full \mathbb{F}_2 -rank n is

$$p = \prod_{i=k-n+1}^k \left(1 - \frac{1}{2^i}\right).$$

Hence *A* is of full \mathbb{F}_2 -rank *n* with probability *p*.

In particular, if $k \ge 2n$ then A is of full \mathbb{F}_2 -rank n with probability

$$p = \prod_{i=k-n+1}^{k} \left(1 - \frac{1}{2^{i}}\right) \ge \prod_{i=n+1}^{2n} \left(1 - \frac{1}{2^{i}}\right) > \left(1 - \frac{1}{2^{n}}\right)^{n},$$

which is overwhelming in n.

If A is really of full \mathbb{F}_2 -rank *n* then $Ax \equiv b \pmod{2}$ has a unique solution and thus M-MUSPE has a unique solution. Therefore M-MUSPE has a unique solution with overwhelming probability *p*.

4. SEARCH-TO-DECISION REDUCTION

THEOREM 1. Search M-MUSPE \leq Decision M-MUSPE.

Proof. Assume a distinguisher \mathcal{D} for Decision M-MUSPE. We learn each entry of $x \in \{0, 1\}^n$ from multiple fresh MUSPE instances from O_x .

To learn the k-th entry x_k , we do the following. Each time sample an MUSPE instance

$$(a_1,\ldots,a_n,X),$$

where

$$X \equiv \prod_{i=1}^{n} a_i^{x_i} \cdot e \pmod{I}.$$

Sample a random element

$$r \leftarrow R/I$$
.

Let

$$b_k = a_k \cdot r$$
; and $b_i = a_i$ for $i \in [n], i \neq k$.

Let

$$Y \equiv X \cdot r \pmod{I}$$

Call the distinguisher \mathcal{D} with

 $(b_1,...,b_n,Y)$

and record the output of \mathcal{D} .

Repeat the above process for poly(n) times with poly(n) MUSPE instances; and output $x_k = 1$ if \mathcal{D} outputs 1 more than poly(n)/2 times, or output $x_k = 0$ otherwise.

Now we show how it works. Note that both a_k and r are uniform over R/I. Thus $b_k = a_k \cdot r$ is uniform. Therefore (b_1, \ldots, b_n) is a legal base vector for both O_x and O_{ran} .

Again, note that

$$Y \equiv \prod_{i=1}^{n} a_i^{x_i} \cdot r \cdot e \equiv \prod_{i=1}^{n} b_i^{x_i} \cdot r^{1-x_k} \cdot e \pmod{I}.$$

Hence Y is an MUSPE product with respect to (b_1, \ldots, b_n) if $x_k = 1$; and it is a random element if $x_k = 0$ because r is uniform. It follows that (b_1, \ldots, b_n, Y) is an MUSPE instance from O_x if $x_k = 1$; and it is a random instance from O_{ran} if $x_k = 0$. Note that the advantage of learning x_k is the same as the advantage of \mathcal{D} distinguishing D_1 and D_2 , which is noticeable by assumption. Hence with polynomially many trials we are able to amplify the success probability to approximately 1.

5. AVERAGE-TO-WORST SOLUTION REDUCTION

The following reduction is for M-MUSPE with integral solutions $x \in \mathbb{Z}_d^n$.

THEOREM 2. M-MUSPE with average-case-solution $x \leftarrow \mathbb{Z}_d^n$ is at least as hard as the problem with worst-case-solution $x \in \mathbb{Z}_d^n$.

Proof. For each instance

$$(a_1,\ldots,a_n,X)$$

from the MUSPE distribution D_x with respect to an arbitrary (i.e. worst-case) solution $x \in \mathbb{Z}^n_d$ such that

$$\prod_{i=1}^{n} a_i^{x_i} \cdot e \equiv X \pmod{I},$$

choose a random vector $y \leftarrow \mathbb{Z}_d^n$, compute

$$\prod_{i=1}^n a_i^{y_i} \equiv Y \pmod{I}$$

and

$$Z \equiv XY \pmod{I}.$$

Call the M-MUSPE solver with the instances of the form

$$(a_1,\ldots,a_n,Z).$$

Note that

$$\prod_{i=1}^{n} a_{i}^{x_{i}+y_{i}} \cdot e \equiv Z \pmod{I};$$

where y_i are uniform, hence $x_i + y_i \pmod{d}$ are uniform. Hence the M-MUSPE solver will return

$$z \equiv x + y \pmod{d}$$

and we have that

$$x \equiv z - y \pmod{d}$$

6. SUBSET SUM WITH ERRORS

We show relation with other problems.

Let $N \in \mathbb{N}$ and D_1, D_2 be two distributions over \mathbb{Z}_N . Let O_x with respect to some $x \in \{0, 1\}^n$ be an oracle that outputs instances of the form $(\alpha_1, \ldots, \alpha_n, \beta)$, where $\alpha_1, \ldots, \alpha_n \leftarrow D_1$, $\epsilon \leftarrow D_2$, and $\beta = \sum_{i=1}^n \alpha_i x_i + \epsilon \pmod{N}$. We define the *multiple modular subset sum with errors problem* (M-MSSE) to be given access to O_x , find x.

A special case is the learning with errors problem (LWE) [Reg09], which is M-MSSE with uniform coefficient distribution D_1 and Gaussian error distribution D_2 .

Another special case is the learning parity with noise problem (LPN) [BMT78; BFKL94; BKW03; Pie12], which⁶ is given oracle access to instances of the form $(\alpha_1, ..., \alpha_n, \beta)$ with respect to the same vector $(x_1, ..., x_n) \in \mathbb{Z}_2^n$, where $\alpha_1, ..., \alpha_n, \epsilon \leftarrow \mathbb{Z}_2$ and $\beta = \sum_{i=1}^n \alpha_i x_i + \epsilon$ (mod 2), find the vector $(x_1, ..., x_n)$. We see that LPN is the special case of M-MSSE with N = 2 and uniform D_1 and D_2 .

We show that M-MSSE is at least as hard as the M-MUSPE variant that satisfy the following conditions: (1) it is over a quotient order $\mathcal{O}_K/I = \langle g \rangle$ that is a cyclic group of even order d; (2) the second power residue symbol of the generator g is $(g/I)_2 = -1$; and (3) both the bases a_i and the errors e are sampled uniformly from \mathcal{O}_K/I . In other words, this is the M-MUSPE in Section 3 with uniform error distribution.

In particular, we will work with LPN since the second power residue symbol $(\cdot/\mathfrak{p})_2$ is always well-defined for any prime ideal $\mathfrak{p} \subset \mathcal{O}_K$.⁷

In fact, the reduction is implied by the proof of Proposition 1. Specifically, take the second power residue symbols for an MUSPE equation

$$\prod_{i=1}^n a_i^{x_i} \cdot e \equiv X \pmod{I}$$

we have an equation

$$\prod_{i=1}^{n} \left(\frac{a_i}{I}\right)_2^{x_i} \cdot \left(\frac{e}{I}\right)_2 = \left(\frac{X}{I}\right)_2.$$

This gives a linear equation

$$\sum_{i=1}^n \alpha_i x_i + \epsilon = \beta \pmod{2},$$

where α_i , ϵ and β are 1 if $(a_i/I)_2$, $(e/I)_2$ and $(X/I)_2$ are -1, respectively; or α_i , ϵ and β are 0 if $(a_i/I)_2$, $(e/I)_2$ and $(X/I)_2$ are 1, respectively.

⁶Here we use the typical definition of LPN with uniform coefficient and noise distributions.

⁷Let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime ideal and let $\ell \in \mathbb{Z}_{\geq 2}$ be an integer coprime to \mathfrak{p} . I.e., $\ell \notin \mathfrak{p}$; in particular, ℓ can be a rational prime. We say that the ℓ -th power residue symbol $(a/\mathfrak{p})_\ell$ is well-defined if $N(\mathfrak{p}) \equiv 1 \pmod{\ell}$ so that by the analogue of Fermat's theorem $a^{N(\mathfrak{p})-1} \equiv 1 \pmod{\mathfrak{p}}$ for any $a \in \mathcal{O}_K - \mathfrak{p}$, the number $a^{\frac{N(\mathfrak{p})-1}{\ell}}$ is "well-defined", namely $a^{\frac{N(\mathfrak{p})-1}{\ell}} \equiv \zeta^k \pmod{\mathfrak{p}}$ for a *unique* ℓ -th root of unity ζ^k , where ζ is a primitive ℓ -th root of unity and $k \in \mathbb{Z}_{\geq 0}$, also $N(\mathfrak{p}) := |\mathcal{O}_K/\mathfrak{p}|$ is the norm of the ideal \mathfrak{p} .

By similar arguments as in the proof of Proposition 1, α_i and ϵ are uniform over \mathbb{Z}_2 . This means that we can always transform an M-MUSPE oracle into an LPN oracle by taking second power residue symbols for the MUSPE instances (a_1, \ldots, a_n, X) ; and by similar arguments as in the proof of Proposition 1, the LPN problem has a unique solution with overwhelming probability. Hence if one solves the LPN, one solves the source M-MUSPE with overwhelming probability.

REFERENCES

- [Ber80] E.R. Berlekamp. "The technology of error-correcting codes". In: *Proceedings of* the IEEE 68.5 (1980), pp. 564–593. DOI: 10.1109/PROC.1980.11696.
- [BFKL94] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. "Cryptographic Primitives Based on Hard Learning Problems". In: Advances in Cryptology — CRYPTO' 93. Ed. by Douglas R. Stinson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 278–291. ISBN: 978-3-540-48329-8.
- [BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. "Noise-tolerant learning, the parity problem, and the statistical query model". In: *Journal of the ACM (JACM)* 50.4 (2003), pp. 506–519.
- [BMT78] E. Berlekamp, R. McEliece, and H. van Tilborg. "On the inherent intractability of certain coding problems (Corresp.)" In: *IEEE Transactions on Information Theory* 24.3 (1978), pp. 384–386. DOI: 10.1109/TIT.1978.1055873.
- [BS06] Ian F Blake and Chris Studholme. "Properties of random matrices and applications". In: Unpublished report available at http://www. cs. toronto. edu/~ cvs/coding (2006).
- [Lan93] Georg Landsberg. "Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe." In: Journal für die reine und angewandte Mathematik 111 (1893), pp. 87–88. URL: http://eudml.org/doc/148874.
- [Li22a] Trey Li. "Subset Product with Errors over Unique Factorization Domains and Ideal Class Groups of Dedekind Domains". 1st paper of the series. 2022, October 1.
- [Li22b] Trey Li. "Jacobi Symbol Parity Checking Algorithm for Subset Product". 2nd paper of the series. 2022, October 2.
- [Li22c] Trey Li. "Power Residue Symbol Order Detecting Algorithm for Subset Product over Algebraic Integers". 3rd paper of the series. 2022, October 3.
- [Pie12] Krzysztof Pietrzak. "Cryptography from Learning Parity with Noise". In: SOF-SEM 2012: Theory and Practice of Computer Science. Ed. by Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György Turán. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 99–114. ISBN: 978-3-642-27660-6.
- [Reg09] Oded Regev. "On lattices, learning with errors, random linear codes, and cryptography". In: *Journal of the ACM (JACM)* 56.6 (2009), p. 34.