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ABSTRACT. We propose the multiple modular subset product with errors problem over unique
factorization domains and give search-to-decision reduction as well as average-case-solution
to worst-case-solution reduction for it.

1. INTRODUCTION

In [Li22a] we proposed a family of new computational problems. One of them is the
modular unique factorization domain subset product with errors problem (MUSPE). It was
defined as a single-instance problem, and we had only studied its global-case hardness,
which is a notion stronger than worst-case hardness but incomparable with average-case
hardness. If we zoom in each unique factorization domain (UFD), then global-case hardness
is about worst-case hardness in the UFDs.

In this paper we consider the multiple-instance version of the problem and study its
average-case hardness in certain UFDs. We call it the multiple modular unique factor-
ization domain subset product with errors problem (M-MUSPE).

We give a search-to-decision reduction for M-MUSPE over unique factorization domains
that are also cyclic groups. We give a worst-case-solution to average-case-solution reduc-
tion for M-MUSPE over unique factorization domains that are also cyclic groups and with
integral solutions x ∈Zn (i.e. not restricted to be in {0,1}n).

2. PROBLEM

First recall that (worst-case single-instance) MUSPE [Li22a] is given n+1 elements a1, . . . ,
an, X of a unique factorization domain (UFD) R, an ideal I of R, as well as a set L ⊂ R of
prime elements of R that are coprime to all ai, find a binary vector (x1, . . . , xn) ∈ {0,1}n and a
square-free ring element e factored over L such that

n∏
i=1

axi
i · e ≡ X (mod I).

A concrete example is the modular subset product with errors problem (MSPE) [Li22a],
which is given n+2 integers a1, . . . ,an, X , N and a set L of primes such that no elements of L
divide any ai for i ∈ [n], find a binary vector x = (x1, . . . , xn) ∈ {0,1}n and a square-free integer
e factored over L such that

n∏
i=1

axi
i · e ≡ X (mod N).

Now we define the average-case multiple-instance problem.

This is the 4th paper of the series. Previously: [Li22a; Li22b; Li22c].
Date: October 4, 2022.
Email: treyquantum@gmail.com

1



Setup
Let R be a UFD and I be an ideal of R such that the quotient ring R/I is a cyclic group.1

Let L = {ℓ1, . . . ,ℓw} be a set of (random) prime elements of R, where w is super-polynomial
in n.2

Let Dℓ be a (not low entropy) distribution over L.
Let De be the distribution that samples t elements u1, . . . ,ut ← Dℓ, a uniform vector v ←

{−1,1}t, and outputs the integer e :=∏t
i=1 uvi

i .3

An M-MUSPE oracle Ox with respect to some x ∈ {0,1}n is an oracle that outputs ran-
dom MUSPE instances of the form (a1, . . . ,an, X ), where a1, . . . ,an ← R/I, e ← De, and
X =∏n

i=1 axi
i · e (mod I).4

Problem
Search M-MUSPE (or M-MUSPE) is given access to Ox, find x.
Decision M-MUSPE is given access to either an M-MUSPE oracle Ox for some x ∈ {0,1}n,

or a random oracle Oran which outputs random instances (a1, . . . ,an, X ) ← (R/I)n+1, decide
which oracle is given.

3. UNIQUE SOLUTION

This section is about quotient order R/I :=OK /I = 〈g〉 that is a cyclic group of even order
d and that the second power residue symbol of the generator g is (g/I)2 = −1. The reason
for requiring R to be an order OK is because we want the second power residue symbol
to be defined; and requiring (g/I)2 = −1 and even order d is for a convenient probability
argument5.

A typical example is R/I = (Z/qZ)× =Z×
q with q a rational prime.

PROPOSITION 1. The solution x ∈ {0,1}n to an M-MUSPE over a quotient order OK /I = 〈g〉
which is a cyclic group of even order d is unique with overwhelming (in n) probability if
(g/I)2 =−1.

Proof. Take the second power residue symbol for an MUSPE equation
n∏

i=1
axi

i · e ≡ X (mod I)

we have an equation
n∏

i=1

(ai

I

)xi

2
·
( e

I

)
2
=

(
X
I

)
2

,

⇐⇒
n∏

j=1

(ai

I

)xi

2
=

( e
I

)
2
·
(

X
I

)
2

,

⇐⇒
n∏

j=1

(ai

I

)xi

2
=

(
eX
I

)
2

.

1A variant is to consider different random ideals I for different MUSPE instances.
2A typical choice for w is 2n.
3A typical choice for t is 1.
4Here we assume the existence of an efficient algorithm for uniform sampling from R/I.
5We could see from the proof that an odd d does not make a big difference and that the uniqueness of

solutions is plausible in that case.
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This gives a linear equation
n∑

i=1
αixi =β (mod 2),

where αi and β are 1 if (ai/I)2 and (eX /I)2 are −1, respectively; αi and β are 0 if (ai/I)2 and
(eX /I)2 are 1, respectively.

For k > n MUSPE equations we have a system of k linear equations of this kind. Write
the system as a matrix equation we have

Ax ≡ b (mod 2),

where A ∈Zk×n
2 and b ∈Zk

2 .
Note that ai = gr i (mod I) for a uniform r i ←Zd. Also g is a quadratic non-residue modulo

I. Hence ai is a quadratic residue if an only if r i is even, of which the probability is 1/2.
Therefore A is uniform over Z2.

Now notice that the probability [Lan93; Ber80; BS06] that a uniform matrix in Fk×n
2 with

k > n is of full F2-rank n is

p =
k∏

i=k−n+1

(
1− 1

2i

)
.

Hence A is of full F2-rank n with probability p.
In particular, if k ≥ 2n then A is of full F2-rank n with probability

p =
k∏

i=k−n+1

(
1− 1

2i

)
≥

2n∏
i=n+1

(
1− 1

2i

)
>

(
1− 1

2n

)n
,

which is overwhelming in n.
If A is really of full F2-rank n then Ax ≡ b (mod 2) has a unique solution and thus M-

MUSPE has a unique solution. Therefore M-MUSPE has a unique solution with overwhelm-
ing probability p. □

4. SEARCH-TO-DECISION REDUCTION

THEOREM 1. Search M-MUSPE ≤ Decision M-MUSPE.

Proof. Assume a distinguisher D for Decision M-MUSPE. We learn each entry of x ∈ {0,1}n

from multiple fresh MUSPE instances from Ox.
To learn the k-th entry xk, we do the following. Each time sample an MUSPE instance

(a1, . . . ,an, X ),

where

X ≡
n∏

i=1
axi

i · e (mod I).

Sample a random element
r ← R/I.

Let
bk = ak · r; and bi = ai for i ∈ [n], i ̸= k.

Let
Y ≡ X · r (mod I).
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Call the distinguisher D with
(b1, . . . ,bn,Y )

and record the output of D.
Repeat the above process for poly(n) times with poly(n) MUSPE instances; and output

xk = 1 if D outputs 1 more than poly(n)/2 times, or output xk = 0 otherwise.
Now we show how it works. Note that both ak and r are uniform over R/I. Thus bk = ak ·r

is uniform. Therefore (b1, . . . ,bn) is a legal base vector for both Ox and Oran.
Again, note that

Y ≡
n∏

i=1
axi

i · r · e ≡
n∏

i=1
bxi

i · r1−xk · e (mod I).

Hence Y is an MUSPE product with respect to (b1, . . . ,bn) if xk = 1; and it is a random
element if xk = 0 because r is uniform. It follows that (b1, . . . ,bn,Y ) is an MUSPE instance
from Ox if xk = 1; and it is a random instance from Oran if xk = 0. Note that the advantage of
learning xk is the same as the advantage of D distinguishing D1 and D2, which is noticeable
by assumption. Hence with polynomially many trials we are able to amplify the success
probability to approximately 1. □

5. AVERAGE-TO-WORST SOLUTION REDUCTION

The following reduction is for M-MUSPE with integral solutions x ∈Zn
d.

THEOREM 2. M-MUSPE with average-case-solution x ←Zn
d is at least as hard as the prob-

lem with worst-case-solution x ∈Zn
d.

Proof. For each instance
(a1, . . . ,an, X )

from the MUSPE distribution Dx with respect to an arbitrary (i.e. worst-case) solution
x ∈Zn

d such that
n∏

i=1
axi

i · e ≡ X (mod I),

choose a random vector y←Zn
d, compute

n∏
i=1

ayi
i ≡Y (mod I)

and
Z ≡ XY (mod I).

Call the M-MUSPE solver with the instances of the form

(a1, . . . ,an, Z).

Note that
n∏

i=1
axi+yi

i · e ≡ Z (mod I);

where yi are uniform, hence xi + yi (mod d) are uniform. Hence the M-MUSPE solver will
return

z ≡ x+ y (mod d)
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and we have that
x ≡ z− y (mod d).

□

6. SUBSET SUM WITH ERRORS

We show relation with other problems.
Let N ∈N and D1, D2 be two distributions over ZN . Let Ox with respect to some x ∈ {0,1}n

be an oracle that outputs instances of the form (α1, . . . ,αn,β), where α1, . . . ,αn ← D1, ϵ ←
D2, and β = ∑n

i=1αixi + ϵ (mod N). We define the multiple modular subset sum with errors
problem (M-MSSE) to be given access to Ox, find x.

A special case is the learning with errors problem (LWE) [Reg09], which is M-MSSE with
uniform coefficient distribution D1 and Gaussian error distribution D2.

Another special case is the learning parity with noise problem (LPN) [BMT78; BFKL94;
BKW03; Pie12], which6 is given oracle access to instances of the form (α1, . . . ,αn,β) with
respect to the same vector (x1, . . . , xn) ∈ Zn

2 , where α1, . . . ,αn,ϵ ← Z2 and β = ∑n
i=1αixi + ϵ

(mod 2), find the vector (x1, . . . , xn). We see that LPN is the special case of M-MSSE with
N = 2 and uniform D1 and D2.

We show that M-MSSE is at least as hard as the M-MUSPE variant that satisfy the
following conditions: (1) it is over a quotient order OK /I = 〈g〉 that is a cyclic group of even
order d; (2) the second power residue symbol of the generator g is (g/I)2 =−1; and (3) both
the bases ai and the errors e are sampled uniformly from OK /I. In other words, this is the
M-MUSPE in Section 3 with uniform error distribution.

In particular, we will work with LPN since the second power residue symbol (·/p)2 is
always well-defined for any prime ideal p⊂OK .7

In fact, the reduction is implied by the proof of Proposition 1. Specifically, take the second
power residue symbols for an MUSPE equation

n∏
i=1

axi
i · e ≡ X (mod I)

we have an equation
n∏

i=1

(ai

I

)xi

2
·
( e

I

)
2
=

(
X
I

)
2

.

This gives a linear equation
n∑

i=1
αixi +ϵ=β (mod 2),

where αi, ϵ and β are 1 if (ai/I)2, (e/I)2 and (X /I)2 are −1, respectively; or αi, ϵ and β are 0
if (ai/I)2, (e/I)2 and (X /I)2 are 1, respectively.

6Here we use the typical definition of LPN with uniform coefficient and noise distributions.
7Let p⊂OK be a prime ideal and let ℓ ∈Z≥2 be an integer coprime to p. I.e., ℓ ∉ p; in particular, ℓ can be a

rational prime. We say that the ℓ-th power residue symbol (a/p)ℓ is well-defined if N(p)≡ 1 (mod ℓ) so that by
the analogue of Fermat’s theorem aN(p)−1 ≡ 1 (mod p) for any a ∈OK −p, the number a

N(p)−1
ℓ is “well-defined”,

namely a
N(p)−1

ℓ ≡ ζk (mod p) for a unique ℓ-th root of unity ζk, where ζ is a primitive ℓ-th root of unity and
k ∈Z≥0, also N(p) := |OK /p| is the norm of the ideal p.
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By similar arguments as in the proof of Proposition 1, αi and ϵ are uniform over Z2.
This means that we can always transform an M-MUSPE oracle into an LPN oracle by tak-
ing second power residue symbols for the MUSPE instances (a1, . . . ,an, X ); and by similar
arguments as in the proof of Proposition 1, the LPN problem has a unique solution with
overwhelming probability. Hence if one solves the LPN, one solves the source M-MUSPE
with overwhelming probability.
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