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Abstract

In this work we investigate the asymptotically best-possible succinctness and
efficiency of functional encryption (FE) and attribute-based encryption (ABE),
focusing on simultaneously minimizing the sizes of secret keys and ciphertexts
and the decryption time. To this end, we consider the notion of partially hiding
functional encryption (PHFE) that captures both FE and ABE, and the most efficient
computation model of random access machine (RAM). A PHFE secret key sk, is tied
to a function f, whereas a ciphertext ct,(y) is tied to a public input x (e.g., ABE
attribute) and encrypts a private input y. Decryption reveals f(x,y) and nothing
else about y.

We present the first PHFE scheme for RAMs based on the necessary assumption
of FE for circuits. It achieves nearly optimal succinctness and efficiency:

+ The secret keys sky are of (optimal) constant size, independent of the description
size |f| of the function tied to it.

+ The ciphertexts ct,(y) have (nearly optimal) rate-2 dependency on the private
input length |y| and (optimal) independency of the public input length |x|.
 Decryption is efficient, running in time linear in the instance running time
T of the RAM computation, in addition to the input and function sizes, i.e.,
Toec = (T +|f] + x| + |y[) poly ().
Our construction significantly improves upon the asymptotic efficiency of prior
schemes. As a corollary, we obtain the first ABE scheme with both constant-size
keys and constant-size ciphertexts, and the best-possible decryption time matching
an existing lower bound.

We show barriers to further improvement on the asymptotic efficiency of
(PH-)FE. We prove the first unconditional space-time trade-off for (PH-)FE. No
secure (PH-)FE scheme can have both key size and decryption time sublinear
in the function size |f|, and no secure PHFE scheme can have both ciphertext
size and decryption time sublinear in the public input length |x|. These space-
time trade-offs apply even in the simplest selective 1-key 1-ciphertext secret-key
setting. Furthermore, we show a conditional barrier towards achieving the optimal
decryption time Tpec = T poly(1) — any such (PH-)FE scheme implies a primitive
called secret-key doubly efficient private information retrieval (SK-DE-PIR), for
which so far the only known candidates rely on new and non-standard hardness
conjectures.


https://orcid.org/0000-0003-1225-5310

Contents

1 Introduction
11 Technical Overview . . . . . . v v v v i e e e e e e e e e e e e e e
1.2 Related Works . . . . . . . 0 v i e e e e e e e e e e e e

2 Preliminaries
2.1 Multi-Tape Random Access Machine . ... ... ... ...........
2.2 Laconic Garbled RAM . . . . . .. .. . ... ..
2.3 Partially Hiding Functional Encryption and FE for Circuits . . . . . .. ..
24 Universal RAM and PHFE for RAM . . . ... ... ... ..........
2.5 Indistinguishability Obfuscation . . . . . . .. ... ... ... .......
2.6 Laconic Oblivious Transfer . . . . . . . ... ... ... ... .. ......
27 Garbled Circuits . . . . . . . . o oL e e e e
2.8 Puncturable Pseudorandom Function . . . . . ... ... ... .. .....
29 Secret-Key Encryption . . .. .. ... ... ...,
210 Oblivious RAM . . . . . . . . i e e e e e e e
3 Efficiency Trade-Offs of PHFE for RAM
3.1 Contention Between Storage Overhead and Decryption Time . . . . . . . .
3.2 Barrier to Time Optimality . . . . . ... ... ... ... ... ...,
4 Bounded LGRAM with Fixed-Memory Security
41 Construction . . . . . . . it e e e e
4.2 SeCurity . . . . . i e e e e e e e e e e e e e e e e e
5 Transformations of LGRAM
51 Fixed-Memory to Fixed-Address . . . . . . ... ... ... ... .....
5.2 Fixed-Address to Full Security . . . . . ... .. ... ... ... ... ..
5.3 Bounded to Unbounded . . ... ........... ... ... .....

6 PHFE for RAM

6.1 Bounded Private Input . . . . . . . . ... L e
6.2 Full-Fledged PHFE for RAM . . . . . . .. ... ...,
References

i

13

15
15
17
19
21
22
23
25
26
26
27

29
29
33

39
40
43

53
53
57
60

63
63
72

75



1 Introduction

Functional encryption (FE) [BSW11,0’N10] is a powerful enhancement of public-key
encryption enabling creation of functional secret keys that allow for computing specific
functions on encrypted data and reveal only the output. A closely related concept is
attribute-based encryption (ABE) [SW05,GPSWO06], which supports fine-grained access
control. An ABE secret key is tied to a predicate and can only decrypt ciphertexts that
are tied to attributes satisfying the predicate. Both FE and ABE have been extensively
studied in the literature and have numerous applications.

In this work, we consider the most general notion of partially hiding functional
encryption (PHFE) [GVW15,AJL*19,JLMS19] that captures both FE and ABE. A secret
key sk is tied to a function f, and a ciphertext ct,(y) is tied to a public input x in
addition to encrypting a private input y, so that decryption produces the computation
output z = f(x,y). Collusion-resistant (indistinguishability-based) security ensures that
given unboundedly (polynomially) many secret keys {sky, }, tied to different functions,
ciphertexts ct,(yo) and ct,(y;) encrypting different private inputs w.r.t. the same public
input remain indistinguishable so long as none of the secret keys separate the ciphertexts
through outputs, i.e., f,(x, y0) = f;(x, y1). Put simply, the only information revealed about
the private input y is the outputs {f,(x,y)},. Thanks to its generality and flexibility,
advances in PHFE construction immediately imply those in FE, ABE, and their special
cases such as IPFE, broadcast encryption, IBE, etc.

Over the past decade, significant progress has been made in establishing the
feasibility of FE and PHFE, for various classes of computation, with different levels
of efficiency, and from different assumptions. However, we still yet to understand the
asymptotic optimality and theoretical limits of the efficiency of (PH-)FE. We ask

Can we construct PHFE with best-possible asymptotic efficiency?
Can we show matching lower bounds?

We make progress towards answering the above questions. For the lower bounds, we
show inherent trade-offs between the sizes of keys/ciphertexts and the decryption time,
and show barriers towards achieving asymptotically optimal decryption time. From
the constructive side, we present the first collusion-resistant PHFE for RAM based on
the necessary assumption of (polynomially secure) collusion-resistant FE for circuits,
which in turn can be based on well-studied assumptions [JLS21,JLS22]. Our scheme
has nearly minimally sized keys and ciphertexts, and the best-possible decryption time
matching our lower bounds. As a corollary, we obtain the first ABE with both constant-
size keys and constant-size ciphertexts, and the best-possible decryption time matching
the recently discovered lower bound [Luo22]. We emphasize again that this work focuses
on asymptotic efficiency rather than concrete efficiency.

Dream Efficiency. Before describing our results, we first picture the dream efficiency
w.r.t. three important dimensions. Each dimension has been a consistent research theme
across many primitives in cryptography.

« Efficient Computation Model. Functions should be represented by random access
machines (RAM), the most efficient computation model subsuming both circuits
and Turing machines.
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RAM Computation. It would be flexible to represent a RAM computation by a
constant-size RAM machine U' with access to multiple tapes, a function tape
containing f, a public input tape for x, and a private input tape for y. Moreover,
the computation may have arbitrarily long outputs.

This model flexibly captures many natural scenarios, e.g., binary search where the
database could be a part of f, x, or y. It can emulate the evaluation of a circuit C on
input (x,y) by including the circuit description in the function tape. In ciphertext-
policy ABE, the ciphertext is tied to a predicate C, which can be captured by putting
the description of C on the public input tape. These examples tell us that any of
f, x, and y could have a long description and we want to optimize the efficiency
dependency on their lengths.

Succinctness. Having small communication- and storage- overhead means having
small-sized master public key mpk, secret keys sk¢, and ciphertext ct,(y). At the
most basic level, the size of each component should be polynomial in the length of
the information it encodes — |mpk| = O(1), |sk¢| = poly(|f]), and |ct| = poly(|x|, |y]),
where |f], |x|, |y| are the description lengths of f,x, y, respectively — referred to as
polynomial efficiency.” (In this introduction, O(-) hides poly(1) factors.) However,
there is much to be desired beyond this basic level of efficiency. For instance, linear
efficiency means |ske| = O(|f]) and |ct| = O(|x| + |y]), and rate-1 efficiency means
Iske| = |f] + O(1) and |ct| = |x| + |y| + O(1).

In fact, even smaller parameters are possible. Since (PH-)FE does not guarantee
the privacy of the function f, it is possible to give a description of f in the clear
in the secret key, and the non-trivial part of the secret key may be shorter than f.
In this case, the right measure of efficiency should be the size of the non-trivial
part (i.e., the overhead), which we now view as the secret key. We can now aim for
secret keys of size independent of that of the function — i.e., |sk¢| = O(1) — referred
to as constant-size keys. The same observation applies to the public input x tied
to the ciphertext and we can hope for ciphertexts of size independent of |x| while
having optimal, rate-1 dependency on the length |y| of the private input — i.e.,
cte(¥)| = |yl + O(1). In summary,

Optimal Succinctness: |mpk|=O0(1), |[ske|=0(1), |ct.(¥)|=I]y]+O(1).

Note that the ideal component sizes are completely independent of the running
time or output length of the computation.

Decryption Time. Decryption is also a RAM computation, Dec/*k =) (mpk), which
on input mpk and with random access to f,x,ske,ct.(y), computes the output
U*»f(). We want decryption to be efficient, ideally taking time linear in the
instance running time T of the RAM computation with (f,x,y), that is,

Optimal Decryption Time: Tpec =O(T) .

Iwith loss of generality, one can think of U as the universal RAM machine.

It may appear that polynomial efficiency is the bare minimal. However, it is possible to consider
components whose sizes depend on an upper bound on the length of the information not encoded in
them. Many schemes are as such, e.g., the FE scheme of [GGH*13] has |mpk| = poly(max |y|), and the
sizes of master public keys and ciphertexts of the celebrated ABE scheme by [BGG*14] grow polynomially
with the maximal depth of the computation. When a scheme requires knowing an upper bound on
parameter Z (e.g., input length, depth, or size), it is referred to as Z-bounded FE/ABE.
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Table 1. Comparison among some FE schemes. T is the instance running time of the Turing
machine computation. 1-key sls FE stands for 1-key sublinearly succinct FE. Sub-exp iO stands
for sub-exponentially secure iO.

citation functionality |sk| |ct] Thec adaptive assuming
[GGH*13] Circuit-FE poly(|C)) poly(ly]) poly(|C|) no i0
[KNTY19] Circuit-FE poly(|C)) poly(|y]) poly(|C)) yes 1-key sls FE
[GWZ22] Circuit-FE poly(|C)) ly] + O(1) poly(|C)) no i0

[AS16] TM-FE poly(If1) poly(lyl) poly(If1,lyDT yes io

[AJS17] TM-FE c-|f|+0() c-|y|+0Q1) poly(|f], lyNT yes sub-exp i0
[AM18] TM-FE poly(|£]) O(lyl) poly(|fDT yes Circuit-FE
[KNTY19]  TM-FE poly(f)  poly(yh)  poly(Ifl, lyhT no  lkeysls FE
This work RAM-PHFE 0(1) 2ly|+0(1) O(T +|f| + |x| + |y yes Circuit-FE

Our Results. The question is whether the dream efficiency is simultaneously attainable
in all above three dimensions. Towards understanding this, we present both new
construction and lower bounds.

New PHFE for RAM with Almost Optimal Succinctness. Starting from polynomially secure
FE for circuits with only polynomial efficiency (i.e., all of |mpk], |ske], |ct(y)| are just
poly(|f],1¥])), which in turn can be constructed from three well-studied assump-
tions [JLS21,JLS22], we construct PHFE for RAMs with almost optimal succinctness.

Theorem 23 (informal). Assume polynomially hard selectively secure FE for circuits. There is
an adaptively secure PHFE scheme for RAM with arbitrarily long outputs, satisfying

Efficiency of Our PHFE: |mpk| =0(1), [ske| =0(1), |ct.(y)|=2]y|+0O(1),
Toec = O(T + [F| + |x] + |y]).

Our construction gives the first collusion-resistant FE for RAM, and also the first FE
for any model of computation (e.g., circuit or TMs) with almost optimal succinctness.
The only gap to optimality is that the ciphertext has rate-2 dependency on |y| instead
of rate-1. Prior constructions work with either circuits [GGH*13,JLS21,JLS22] or Turing
machines [AS16,AM18, KNTY19], and achieve only polynomial efficiency as summarized
in Table 1 (more discussion on related works in Section 1.2).

As a corollary, we obtain the first ABE for RAM from falsifiable assumptions, and the
first ABE for any model of computation with both constant-size keys and constant-size
ciphertexts. The only prior construction of ABE for RAM by [GKP*13] relies on non-
falsifiable assumptions like SNARK and differing input iO. In terms of efficiency, known
schemes achieve either constant-size keys or constant-size ciphertexts [ALdP11,YAHK14,
Tak14,Att16,2GT*16,AT20,LL20,LLL22]. Achieving constant-size keys and ciphertexts
simultaneously has been an important theoretical open question in the area of ABE (see
discussion in [LLL22]). The state-of-the-art is summarized in Table 2.

Corollary (informal). Assume polynomially secure FE for circuits. There is an adaptively
secure key-policy ABE scheme for RAM, and an adaptively secure ciphertext-policy ABE scheme
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Table 2. Comparison among some key-policy ABE schemes. d is maximal depth of the circuit.
GGM stands for Generic Group Model, ABP for Arithmetic Branching Program, diO for differing
input i0. In [GKP*13], the challenge attribute can be chosen after seeing mpk and keys for
adaptively chosen TMs, but no keys can be published after seeing the challenge ciphertext.

citation functionality [sk| [ct] Thec adaptive assuming
[BGG*14] Circuit-ABE poly(d)  |x|poly(d) |C| poly(d) no LWE

[LL20] ABP-ABE o(|C] - |x]) o) o(|C] - |x]) yes k-lin

[LLL22] Circuit-ABE o1 poly(d) |C| poly(d) yes LWE & GGM
[GKP*13] RAM-ABE 0o(1) poly(jx])  O(T +|f| + |x|) no SNARK & diO
This work RAM-ABE o1 o1 O(T +|f| + |x|) yes Circuit-FE

for RAM, satisfying

Efficiency of Our KP-ABE:  |mpk| =0(1), |[ske| =0(1), |ct(x,L1)| =0(1),
Toec = O(T + [f] + |x]).

Efficiency of Our CP-ABE: |mpk| = 0(1), |[sk.|=0(1), |[ct(f,L1)|=0(),
Toec = O(T + [£| + [x]).

It appears that the decryption time of our PHFE (or ABE) scheme is sub-optimal: Besides
from the linear dependency on the RAM instance running time 7, it additionally depends
linearly on |f|, |x|, and |y|. It turns out that, optimal succinctness and optimal decryption
time are at conflict: We show that conditioned on optimal succinctness, the linear
dependency of decryption time on |f], |x| is inherent. We also show barriers towards
removing the dependency on |y|, or |f], or |x|, irrespective of succinctness. Hence, our
PHFE scheme matches the lower bounds and barriers. For ABE, our lower bounds and
barriers do not apply. Nevertheless, our ABE scheme matches an existing lower bound
by [Luo22] showing that any ABE must satisfy |ct|/Thec = Q(|x|) and |sk|Tpec = Q(|F])>.
Given that our ABE has constant size keys and constant-size ciphertexts, its decryption
time matches the lower bound of [Luo22] and is optimal.

Trade-Offs Between Succinctness and Fast Decryption. We now describe our lower bounds
in more detail. First, consider the efficiency dependency on the length of public
information f and x. We show that unconditionally, it is impossible to simultaneously
have key size sublinear in |f|, and decryption time with sublinear dependency on |f]|.
Similarly, it is impossible to simultaneously have ciphertext size sublinear in |x|, and
decryption time sublinear in |x|. In fact, these trade-offs exist for the simplest, secret
key, 1-key, 1-ciphertext, selectively secure PHFE, and the first trade-off w.r.t. |f| applies
to plain FE. More precisely,

Theorem 4 (informal). For a secret-key, 1-key, 1-ciphertext, selectively secure PHFE with the
following efficiency, it must hold that @ > 1 or § > 1.

skl = O(If|*) and Tpec = O(T +|f|P +|y]) poly(x|)

The same holds for FE where |x| = 0.

3Theorem 14 in [Luo22] proved the first trade-off w.r.t. ciphertext size. Essentially the same proof also
gives the second trade-off w.r.t. key size.

4 /80



Theorem 5 (informal). For a secret-key, 1-key, 1-ciphertext, selectively secure PHFE with the
following efficiency, it must hold that « > 1 or § > 1.

lct] = O(|x|*) poly(lyl) and  Tpec = O(T + || + |x|”) poly(lyl)

Our PHFE schemes achieve one profile of optimality, @ = 0 and § = 1. A natural question
that our work leaves open is whether the other profile of optimality, « =1 and 8 < 1 or
even f = 0, is attainable. Another question is whether decryption time must depend on
the length of the private input y.

Barriers to Decryption Time Optimality. We illustrate barriers to positive answers to the
above two questions. We show that a PHFE scheme with decryption time independent
of |y|, or |x|, or |f|, implies a primitive called secret-key doubly efficient private
information retrieval (SK-DE-PIR), which currently have no construction based on
standard assumptions.

Theorem 9 (informal). If there is a secret-key, 1-ciphertext, many-key, selectively secure PHFE
scheme with following decryption time, there is a secret-key doubly efficient PIR scheme.

Toec = O(TT + || + |x|* + |y|*), wheree, =0o0re, =0

If there is a secret-key, many-ciphertext, 1-key, selectively secure PHFE scheme with the
following decryption time, there is a secret-key doubly efficient PIR scheme.

Toec = O(TT + |f|% + |x|* + |y|*), where e =0
The same holds for FE where |x| = 0, w.r.t. e, and es.

SK-DE-PIR, introduced by [BIPW17,CHR17], allows a client to privately encode a database
D into D while keeping a secret key k. Later, client can outsource the encoded database
D to a remote storage server, and obliviously query the database using % hiding the
logical access pattern. Different from ORAM, the server never updates the encoded
database nor keeps any additional state. Different from PIR, SK-DE-PIR allows the
database to be privately encoded, in exchange for double efficiency — for each query,
the complexity of both the client and server is independent of the database size |D]|,
whereas PIR necessarily have server complexity Q(|D]). The double efficiency of SK-DE-
PIR makes it highly desirable. However, so far, there are only candidates [BIPW17,CHR17]
based on a new conjecture that permuted local-decoding queries (for a Reed-Muller
code with suitable parameters) are computationally indistinguishable from uniformly
random sets of points. More recently, a simple “toy conjecture” inspired by (but formally
unrelated to) these SK-DE-PIR schemes has been broken [BHMW21]. Constructing SK-
DE-PIR based on well-studied assumptions (including primitives like :O/FE) has been
left open. Our theorem shows that achieving optimal decryption time in PHFE based
on standard assumptions entails resolving this open problem. In fact, even improving
the decryption time to be sublinear in |f|, or |y|, or |x| would imply SK-DE-PIR where
the server complexity per query is sublinear in database size |D|. Moreover, having a
ciphertext of size c|y| implies a SK-DE-PIR where the encoded database size is |D| = ¢|D|
for any ¢, a even more challenging task.
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Asymptotically Efficient Succinct Garbled RAM, and Constant-Overhead i©. The main tool
in our construction of efficient RAM-FE is succinct Garbled RAM (GRAM). Initiated
by [KLW15,BGL*15,CH]JV15], a sequence of works have constructed succinct garbled RAM
based on sub-exponentially hard circuit-FE [CH16,CCC*16,ACC*16,CCHR16] and succinct
garbled Turing machines based on (polynomially-hard) circuit-FE [KLW15,AJS17,AL18,
GS18b].

In this work, we formulate a new notion of succinct GRAM (informally described in
the technical overview and formal definition in Section 2.2) geared for building efficient
RAM-FE, and construct it based on circuit-FE. Our construction has two consequences:
1) we obtain the first succinct GRAM (under our or the standard notion) based on
polynomial hardness, as opposed to sub-exponential hardness as in prior constructions,
and 2) using iO for circuits, we obtain iO for RAM with constant-overhead - the size of
the obfuscated program is 2|M| + poly(A,1), where M is the original RAM and [ is the
input length. Constant overhead iO was only known for Turing machines before [AJS17].

1.1 Technical Overview

We start with an overview of our negative results.

Unconditional Lower Bound. As introduced earlier, we show that it is impossible for
a secure PHFE to enjoy sublinear dependency on |f]| (resp. |x|) simultaneously for |ske|
(resp. |cty(y)]) and Tpec When Tpe is linear in T, [x|, |y| (resp. T, |f], |y]). We illustrate our
ideas of proving the contention between

Iske] = O(]f|*) and Toec = O(T + |F|P + |x| + |y]) fora<land <1

by exhibiting an efficient adversary breaking the security of PHFE for RAM (polynomial
factors in the security parameter are ignored).

Adversarial Function and Strategy. The adversary will selectively request one secret key
and one ciphertext. Let n < N be determined later.

« The function f is described by a string R € {0,1}".
+ There is no public input, so x = L.

+ The private input y is either (I C [N],w € {0,1}") or z € {0,1}", where I is a set
containing n indexes and w is a one-time pad.

The functionality is simply reading and XORing or outputting as-is, i.e.,

R(Ilow, ify=(1,w);,
z, ify =z

f(x,y)={

where R[I] means the n bits of R at the indices in I. Clearly,
Ifl = O(N), [sk|=O(N), lx| =0(1), |yl=0(n), T=0(n), Tpec=O0(n+NP).
More precisely, |y| = O(rlogn), but the logn factor is absorbed by the poly(1) factor

hidden in the big-O notation.
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The adversary chooses
key query f with R & {0,1}V,
challenge x — L, yo < random (I,w), y; «— z=R[I] o w.

By our choice, f(x,y0) = R[I] ®w =z = f(x,y1), so the challenge is well-formed. Upon
receiving sk and ct, the adversary simply runs the decryption algorithm on (sk, ct) with
random access to the function, i.e., R, in the clear. Let L C [N] be the set of indexes in
R that is read during decryption.

R[I] ® w « Dec®*=*(sk, ct), where Dec reads R[L]
The adversary determines that

yo = (I,w), if |[LNI|is large;

ct is an encryption of ) ]
y1=2, if [L N I] is small;
where the threshold for large and small is described below.

Intuition and Toy Proof. The intuition behind the adversary’s strategy is simple. Let L,
be the index set L that decryption accessed when decrypting ct encrypting ys.

« When ct encrypts yo, and decryption must correctly recover R[I] (as the adversary
knows w). Decryption can only obtain information of R[I] either from sk or via
accesses to the tape R. Since R[I] contains n bits of information and by setting
Isk| = O(N?%) << n, decryption must read a large portion of information of R[I]
from the tape R, implying |L N I| is large Q(n).

+ In contrast, when ct encrypts y;, observe that the joint distribution of (R, ct, sk) is
independent of I, as w is a one-time pad and completely hides I in y; = R[I] & w.
Thus the behavior of, Dec, is independent of I. Since Dec runs in a short time
O(n + NP) < N, without knowing I, where it reads in R cannot overlap with I for
a large portion. Therefore, |L N I] is likely to be small.

It remains to analyze how large and small |L N I] is in the above two cases. Let us first
consider a toy proof, under the hypothesis that sk contains no information about R[I] at
all. We will remove this hypothesis below. By this hypothesis, when ct encrypts yo, the
decryption algorithm must read the entire R[I] from the tape R and hence |L N I| = n.
When ct encrypts y;, since the indexes L; that the decryption algorithm reads from R is
independent of I, |L; N I| follows a hypergeometric distribution, and hence

Toec - n

E[|Lin1|] < <n (1)

This means the adversary can distinguish when ct encrypts y or y; with good probability,
and contradicts the security of PHFE.
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Removing the Hypothesis. The hypothesis that sk contains no information about R[I]
at all may well be false. When it is removed, we can no longer argue that I C Lo,
as the adversary may obtain some information of R[I] from sk. Our intuition is that
|Lo N I| > |I| — |sk|, but proving this formally is not trivial as sk may contain arbitrary
information of R[I], such as, its parity.

We employ a compression argument. The basic rationale behind a compression
argument is that there is no pair of encoding and decoding algorithms (Encode, Decode),
with arbitrarily long shared randomness s, is able to transmit a n-bit random string u
(independent of s) from one end to the other, via an encoding v containing less than n
bits. Informally,

s « Dy
if Pr [Decode(s,v) = u u« {0,1}* =1, then |v| > |u|
v <« Encode(s,u)

(Formal statement by [DTT10] is in Lemma 8.) We show that suppose |Lo N I| < |I| — |sk|
then we can design a pair of (Encode, Decode) violating the above information theoretic
bound.

+ the shared randomness s contains the PHFE randomness and I, w, R[[N] \ I].

« To encode u € {0,1}", Encode sets R[I] = u. Using s, it then generates a PHFE key
sk for R and a ciphertext ct encrypting yo = (I, w), runs Dec to obtain the locations
Ly in R that decryption reads. Finally, it sets the codeword to be v = (sk, R[Lo N I]).

« To decode, Decode regenerates ct using s, and runs Dec to obtain the output
z = R[I] @ w and recover u = z & w. During decryption, Dec queries for locations Ly
in R. Every query is in either R[[N] \ I] or R[L( N I]; the former can be answered
by finding the right element in s and the latter in v.

Suppose |LoNI| < |I| —|sk|, we have |v| is less than |I| = |u|, which contradicts the
incompressibility of u. (In the formal proof, we make v fixed-length and suffer from
incorrect decoding, hence the statements are probabilistic. See Section 3.1 for more
details.)

Stepping back, the compression argument shows that |Ly N I| > |I| — |sk|. In contrast,
by Equation (1), |L; N I| < n/2 with high probability. To show that the adversary can
distinguish ct encrypting yo or y1, we can set, e.g., n = N@/2 5o that |sk| = O(N%) < n,
and |[LoNI| > |I|—|sk|] > n/2. (In the formal proof, N itself is a large poly(1) to
overwhelm poly(A) factors, which is ignored in this overview.) In summary, any PHFE
with both |sk| sublinear in |f| and Thec sublinear in |f| (and linear in T, |x|, |y|) is insecure.

Computational Implausibility for Fast Decryption. As described earlier, we show
implausibility results against constructing a PHFE scheme with fast decryption. Consider
a PHFE scheme where the decryption time is O(T(f(Tf,x’y) + 1% + |x|P + |y|%) for some
constants Br, B¢, Bxfy. We show that even if any of §,, B, or f is zero, then such a scheme
implies SKDEPIR protocols (an informal description of SKDEPIR is in the introduction and
formal definition in Section 3.2).

To illustrate our main idea, we start by describing this transformation for the case
when the decryption is efficient in the length of the public input x, namely when g, = 0.

The ideas naturally extend to the other cases.
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Since the decryption is efficient in |x|, as a first attempt, we set DB € {0,1}" as x, and
y as empty. The client processes the database DB by first sampling (mpk, msk) for the
PHFE scheme and then encodes the database into DB = (x, ctenre = PHFE.Enc(mpk, (x, y)))
and sends it over to the server. To look up a location DB;, the client can compute a PHFE
function key sk, for the program f; that looks up and outputs DB;; and sends the key as
the query to the Server.

DB = (DB, ctprre = PHFE.Enc(mpk, (DB, 1)) , query = sk, where £’° = DB;,

The server responds to the query by decrypting ctpyre in DB using the key ske, and with
random access to DB, and learns DB;;. Note that double efficiency requirement is already
satisfied. Client only needs to compute a function key sk, that can be computed in time
polynomial in the description length of f;, and hence polynomial in A and logrn. On
the other hand, due to the supposed efficiency of decryption, the decryption time is
polynomial in Tj,( ), |fjl, |y, which are also polynomial in 1 and logn.

While this idea solves the core issue, we have completely missed one important
aspect. The scheme reveals the indices {i;} to the Server as the function key {sk} is
not guaranteed to hide the function description {f;}. To resolve this issue, we observe
that if we had a function hiding PHFE scheme, we would have been done. To enable
this, we will use similar techniques as used to convert any functional encryption scheme
to a function hiding functional encryption scheme [BS15]. Namely, we will compute a
symmetric key encryption SKE of the index i (denoted as ctk;). We will hardwire ctk;
in the function secret key instead of the index i. The corresponding secret key SKE.sk;
will be put in the private component y, which will be used to decrypt ctk; to learn index
i. While this might seem to be enough, we face yet another issue. Learning DB;; in the
clear upon decryption can reveal information about the index ; to the Server. To fix this,
the decryption will output an encryption of DB;; under another secret key SKE.sk; of the
secret-key encryption scheme. We will put this key in the private input y along with a
PRF key to derive randomness to compute the encryption.

DB = (DB, Ctpyee = PHFE.Enc(mpk, (DB, (SKE.sk;, SKE.sko, PRF.%)))) ,
query = sk, where f;[ckt; (i), $]°® (SKE-ski-SKEske.PRER) — K (SKE.sky, DB;, ; PRF(PRF.E, $))

Observe how double efficiency is still preserved. We have increased the complexity
of f; multiplicatively by a polynomial amount (in A and logn), similarly the size of
y is also polynomial in A to store secret keys of SKE and a PRF key. There are few
more subtleties : to make the proof go through, we need to use the trojan method in
the FE literature [DIJ*13] which requires another encryption key SKE.sks; and additional
programming.

Overview of Our FE for RAM. At a very high level, we use a succinct garbled RAM
(GRAM) scheme to lift a FE for circuits to a FE for RAMs. This former can be viewed
as a l-key, l-ciphertext, secret-key FE for RAMs, where succinctness implies that the
running time of key generation and encryption is independent of the running time of the
RAM computation. The (collusion resistant) FE for circuits is then used to lift the one-
time security to many-time security. This high-level approach first appeared in [AS16]
for building FE for TMs. In this work, towards nearly optimally efficient FE for RAMs,
we first observe that existing definitions and constructions of succinct GRAM [BGL*15,
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CHJV15,CH16,CCC*16,ACC*16,CCHRI16] are insufficient. Therefore, we first formulate
a new variant of succinct GRAM, termed laconic GRAM, and then construct it using
polynomially hard FE for circuit. Along the way, we weaken the assumption underlying
succinct GRAM schemes from i0, which requires sub-exponentially hard FE for circuit,
to polynomially-hard FE for circuits.

Let us first review the syntax and security of standard GRAM schemes. They consist
of the following algorithms. The encoding algorithm encodes a database D into D and
outputs a private state 7. The garbling algorithms uses 7 to garble a RAM M into M and
outputs a collection of input labels {L;}; 5. The evaluation algorithm given the garbled
RAM M, a subset of labels L; corresponding to an input %, and random access to D,
returns the output MP (k) of the RAM computation. Slmulatlon based security ensures
that D, M, L;, = {L;p,}: can be simulated using only the output MP (k). The efficiency of
different algorithms is is described below.

(D, 7) «— Encode(D) , M, {Liy}i < Garble(M,7), MP(k)=Eval®(M, L)
1D| = |D| poly(A) , |M| = poly(A), Ty = T poly(|M], 1)

We now describe why the standard notion falls short for our purpose of building very
efficient FE for RAMs and how to address these issues. An informal definition of our
succinct GRAM is provided in Figure 1.

« many-tape v.s. single-tape: To start with, we consider RAM computation with
multiple tapes U*¥/ (1) instead of a single tape MP (k).

* public-tape v.s. private-tape: Some of the tapes we consider, such as x and f, are
public. But standard GRAM only provides a mechanism for encoding private tape,
and the encoding is necessarily at least as long as the tape itself. However, optimal
succinctness requires the FE ciphertext- and key-size to be independent of |x| and
|f|. Hence we cannot afford to encode x, f as in standard GRAM. Instead, our new
notion of succinct GRAM has a Compress algorithm that compresses the public
tapes into hashes/digests &, and &;; the Garble algorithm “ties” these hashes to the
garbled program U; and finally Eval makes random access to x and f in the clear
directly (just as the decryption algorithm of RAM-FE does).

* rate-2 encoding v.s. rate-poly(1) encoding of private tape: Our setting also has private
tape, namely y. But optimal succinctness requires concretely efficient, rate-1 or
rate-2, encoding of y, whereas standard GRAM allows much worse rate poly(A).
To achieve concretely efficient encoding, we can only encrypt y using a rate-1
encryption scheme. To bind the encryption y with a garbled program, we simply
treat y as yet another public tape just like x,f. In other words, we consider the
modified RAM computation U (k) = U/ (1), where % is the secret key of the
rate-1 encryption. As such, our succinct GRAM only need to handle public tapes.

In our construction of FE, additional care needs to be taken to ensure that our
GRAM security implies that y is hidden. To achieve this, We rely on existing
techniques [NY15], which requires two (rate-1) encryption of y with independent
keys so that different security hybrids can invoke the semantic security of different
encryption. This is is why our FE has rate-2 dependency on [y|, instead of rate-1.
We omit details in this overview.
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« reusable digests v.s. one-time encoding: In standard GRAM, the database encoding D
can only be used, once, by a single garbled program M generated using the right
state 7. The technical cause of the one-time security of D is due to the use of ORAM
in order to hide the access pattern of M to D; the same ORAM storage D cannot
be used by multiple garbled programs®. The one-time security means that when
using succinct GRAM to construct RAM-FE, the decryption of every ciphertext and
key pair must generate fresh encoding D (and M). Such fresh encoding can only
be generated using the underlying FE for circuit, by encoding D in its key or
ciphertext, which would lead to large polynomial dependency on |D|.

Our notion of succinct GRAM compresses the public tapes into hashes A, hy, h;.
For the same reasons, we cannot afford to generate fresh hashes at decryption of
every pair of ciphertext and key. Instead, our hashes are reusable - they can be tied
to multiple garbled programs; this is ensured by the fact that our Garble algorithm
does not take any private state from the Compress algorithm. A technical issue we
must resolve is how to hide access pattern to the public tapes «x, y, f since they are
not encoded using ORAM, which we discuss later.

« Difference in decryption time: The reusability comes at a cost. In our new notion,
evaluation time is (T +|x| +|y| +|f]) poly(1) whereas standard GRAM has evaluation
time T poly(|M|, 1) independent of tape size |D|. Nevertheless, our lower bound
for RAM-FE implies that the dependency on [x|, |y|, |f] is hard to get around (as our
succinct GRAM implies RAM-FE with the same decryption time).

« RAM with long outputs v.s. single-bit output: Standard succinct GRAM handles RAM
computation with a single-bit output. To handle RAM with m-bit output, it reduces
to creating m instances of garbled RAM, one for each output bit. Under simulation
security, the size of the garbled RAM necessarily grows linearly with the output
length m.

In our notion, we require garbling RAM with arbitrarily long outputs, without effi-
ciency degradation in the output length. To do so, we switch to indistinguishability
based security instead of simulation security.

Putting the above pieces together, we formulate succinct GRAM as in Figure 1.

Our Construction of Succinct GRAM. One approach towards constructing succinct GRAM
for TMs or RAMs is starting from a non-succinct GRAM for TMs or RAMs where the
size of the garble program scales with the worst-case time complexity of the TM/RAM
U, into one that is succinct. First introduced in [BGL*15], this approach uses iO to
obfuscate a circuit that on input an index ¢, outputs the #th component in the non-
succinct GRAM. If every component of the non-succinct GRAM can be locally generated
using a small circuit of size poly(|U|,1), then the obfuscated circuit also has size
poly(JU|,A) and can be viewed as the succinct garbled program. To prove security,
[BGL*15] identified that the non-succinct garbling scheme must satisfy another property,

4This should be distinguished from the scenario of GRAM with persistent database where a sequence of
garbled program (M, Ms,---)P are executed sequentially with D. The difference lies in that in sequential
execution, each garbled RAM can modify D and the changes are kept persistently to the next computation.
Here, we are considering the scenario where the unmodified D is used by multiple garbled program, which

breaks ORAM security.
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Our Notion of Succinct Garbled RAM

« Compress(7,D;) compresses the 7’th public tape D, into a short hash digest; of
length poly(A). It runs in time O(|D;|).

* Garble(U, {digest; };¢[77) outputs a garbled program U tied with hashes of the
public tapes, and pairs of labels {L; 3 }; 5. It runs in time poly(1) (U has constant-
size).

Security guarantees that for two computations UP1PT(kg) and UPvPT (ky)
with different inputs but identical outputs and running time, the distributions
of (17, {digest; }z¢[77, Lk,) and (U‘, {digest; }ze[77, L#,) are indistinguishable. This
holds when the tapes {D;} are chosen adaptively dependent on the hashes of
previously chosen tapes, before the program U and inputs ko, k2; are chosen.

Figure 1. Our notion of succinct GRAM.

articulated later by [AL18], called local simulation. Informally, it requires that the non-
succinct garbled scheme is proven secure via a sequence of hybrids, where components
of every hybrid garbled program can be locally generated using a small circuit, and
in neighboring hybrids, only a few components changes. Beyond succinct garbling,
local simulation has also found application in achieving adaptive security [BHR12] of
garbling schemes. A sequence of works developed local simulation strategies for garbled
circuit [HJO*16,GS18a], TM [GS18b,AL18], and RAM [GOS18]. Most notably, the work by
Garg and Srinivasan [GS18a] introduced a beautiful pebbling technique for realizing local
simulation.

Our construction of succinct GRAM proceeds in steps. First, we use the Garg-
Srinivasan [GS18a] pebbling technique to obtain a non-succinct GRAM that has a local
simulation proof for, however, weak indistinguishability security called fixed memory
security. Indistinguishability only holds when the two RAM computations have not
only identical outputs and running time, but also identical memory access pattern and
content. Then by the same approach of [BGL*15,GS18b,AL18], we turn it into a succinct
GRAM, still with only fixed memory security, relying on iO for polynomial-sized domain
which is implied by polynomially-hard FE for circuits. (In the body, we merge these
two steps together in Section 4.) Many details need to be ironed out in order to realize
our new notion of succinct GRAM. For example, prior works [GS18a,GS18b,AL18] deal
with single-bit output RAM and can build intermediate security hybrid where the suffix
(i.e., the last certain number of steps) of a computation is simulated by hard-wiring the
single-bit output. In contrast, we directly garble RAM with arbitrarily long outputs. Hard-
wiring the long output would compromise the local simulation property (since the hybrid
garbled program can no longer be locally generated by a small circuit). To avoid this,
we build a hybrid GRAM that runs with one input k¢ in the prefix of the computation
and with another input %; in the suffix (recall that these two inputs produce identical
memory). This ensures that the output is always correctly computed, while keeping local
simulation. Similar hybrids appeared in [GOS18] for different reasons.
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Finally, we lift fixed memory security to full security using punctured PRF and ORAM
to protect the memory content and access pattern. One issue is that in our succinct
GRAM, the public input tapes D, --- , Dy are not encoded using ORAM, and evaluation
is given random access to them in the clear. Yet, to ensure security, evaluation must
access these tapes in an oblivious way, independent of the input k¢ or k;. To solve this
issue, we consider a modified RAM program U’, which has random access to Dy, --- , Dy
and additionally a work-tape that contains an ORAM storage that initially contains no
elements. The program U’ starts with linearly scanning every tape D, and inserting every
element into the ORAM storage. Only after that, it emulates the execution of the original
RAM program U; every time U read from/write to a location in tape D,, U’ accesses the
corresponding location on its work-tape through ORAM, which hides the access pattern
of U. The intuition is that since the access pattern of U’ is independent of the input, it
suffices to garble it using GRAM with fixed memory security. Clearly, the running time
of U’ scales linearly with the total length of all tapes ; |D;|. This is why the evaluation
time of our succinct GRAM is linear in 3, |D;|. Nevertheless, our lower bound shows
that this dependency is hard to circumvent. Lastly, we mention that to prove security,
one must ensure that the use of ORAM does not hurt local simulation. Fortunately, the
techniques by [CH16] provide a solution.

1.2 Related Works

Our new construction significantly improve upon the efficiency of prior FE and ABE
schemes. The state-of-the-art is summarized in Table 1 and 2; below, we compare with
prior works in more detail.

FE for Circuits. The first construction of collusion resistant FE for polynomial-sized
circuits is by [GGH"13] and based on i0, which in turn relies on subexponential hardness.
Later works [GS16,LM16,KNT18,KNTY19] improved the assumption from iO to 1-key FE
with sublinearly compact ciphertext, |ct(y)| = poly(|y|)|T¢|'"¢, where ¢ is a positive
constant and Ty is the circuit complexity of /. The latter has been recently constructed by
[JLS21,JLS22] from the polynomial hardness of three well-studied assumptions. However,
these circuit-FE schemes have polynomial efficiency. The only exception is the recent
construction by [GWZ22], which has rate-1 ciphertext |ct(y)| = |y| + O(1) but still large
secret keys |ske| = poly(T).

FE for Turing Machines. Several works constructed FE for Turning machines with
arbitrary-length inputs, first from the assumption of iO [AS16], then from FE for
circuits [AM18], and more recently from 1-key sublinearly compact FE [KNTY19] (which
implies collusion resistant FE for circuits). The construction of [AS16] relies on a 1-key
I-ciphertext secret-key FE for TMs, which is essentially a succinct garbling scheme for
TMs with indistinguishability security. They constructed it by modifying the succinct
garbling for TM of [KLW15]. Later, the works of [AL18,GS18b] improved and simplified
the construction of succinct garbling for TM. Following these works, [KNTY19] improved
the assumption to the existence of 1-key sublinearly succinct FE, and showed that their
garbling scheme can be combined with [AS16] to obtain FE for TMs. On the other hand,
[AM18] presented an alternative direct approach to FE for TMs from FE for circuits,
that does not use succinct garbling for TM. Prior constructions of FE for TMs [AS16,
AM18,KNTY19] focus more on weakening the underlying assumptions, and only show
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polynomial efficiency. Examining their schemes, we think they achieve efficiency listed
in Table 1.

FE for Bounded-Input RAM. A line of research obtained bounded-input iO for Turning
machines [KLW15,AJS17,GS18b] and for RAMs [BGL*15,CHJV15,CH16,CCC*16,ACC*16,
CCHRI6]. Plugging these iO schemes into the [GGH*13] construction yields bounded-
input FE for TMs and RAMs. Unfortunately, these schemes are not full-fledged FE for
TMs and RAMs for the following reason: existing iO only handles bounded-input TMs
and RAMs in the sense that the obfuscator needs to know the maximal input length
max(|y|) to the TM/RAM f being obfuscated. (Constructing iO for unbounded input
TMs/RAMs remains an major open question.) Plugging this into the FE construction
of [GGH*13] gives a scheme where the key generation algorithm needs to know the
maximal input length max(|y|), despite that the TM/RAM f could process arbitrarily long
inputs. Such FE is called bounded-input FE. In terms of efficiency, the secret key contains
an obfuscated program of size poly(|f|, max(|y|)) when using RAM-iO of [CHJV15,CH16],
and poly(|f|, max(|y|),S) where S is the space complexity of f when using RAM-iO
of [BGL*15].

In summary, our construction gives the first full-fledged (PH-)FE scheme for RAM
computation (with arbitrarily long inputs and outputs), significantly improves the
efficiency of prior FE schemes, and matches lower bounds.

ABE for Circuits and Turing Machines. Since FE implies ABE, the above mentioned FE
schemes immediately imply ABE with the same level of efficiency. The literature on ABE
focuses on constructing ABE from weaker assumptions, or achieving better efficiency,
etc. The celebrated works of [GVW13,BGG*14] showed that ABE for bounded-depth circuits
can be constructed from Learning With Errors (LWE). Parameters of these schemes
however depends polynomially in the maximal depth d of the circuits supported,
namely, |mpk| = poly(d), |sk¢| = poly(d), |ct(x,m)| = poly(d)|x|, where the encrypted
message m is a bit, and decryption time is Tpec = poly(d)T. A recent work [LLL22]
improved this construction to obtain constant-size keys while keeping the sizes of master
public key and ciphertext, but at the cost of additionally relying on the Generic Group
Model (GGM). ABE for low-depth computation such as NC! or (arithmetic) Branching
programs can be constructed using pairing groups, where several schemes have either
constant-size keys or constant-size ciphertexts, but never both [ALdP11,YAHK14,Tak14,
Att16,ZGT*16,AT20,1120].

The work of [GKP*13] constructed ABE for Turing machines and RAMs with constant-
size secret keys |ske| = O(1), but still large ciphertexts |ct(x, m)| = poly(|x|). However,
their scheme uses SNARK and differing-input iO, which cannot be based on falsifiable
assumptions. Another work [AFS19] tries to construct ABE for RAMs from LWE, at the
cost of making master public keys, secret keys, and ciphertexts all grow polynomially
with the maximal running time of RAMs supported; in other words, this is an ABE for
bounded-time RAMs.

In summary, we give the first full-fledged ABE for RAMs from falsifiable assumptions,
which has simultaneously constant-size secret keys and constant-size ciphertexts, and
best-possible decryption time matching known lower bound [Luo22].
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2 Preliminaries

Throughout the paper, we denote the security parameter by 1. An ensemble X of objects
is a sequence {X; }1en of such objects indexed by A. Except in definitions, we omit A and
(ab-)use the symbol X of an ensemble to represent the A™ object X;. Let S be a set and
n a natural number, then S=" is the set of non-empty strings over alphabet S of length at
most n. For a string «, its i symbol is denoted by x[i]. As an example, the third bit in
some sufficiently long x € ({0,1}?)=3 is x[2][1]. For two strings x, y, we write x||y for their
concatenation. We denote by C[x;] the circuit C with x; hardwired as the first portion of
input so that C[x1](x2) = C(x1,x2).

2.1 Multi-Tape Random Access Machine

We use a model of multi-tape random access machines, with several read-only input tapes
and one read/write working tape. In addition to the tapes, the machine also has a short
input and maintains a (small) state.° The behavior of a RAM is described by its step
circuit:

CPU
(4, ..., % ,w,oldst, rdata) —— (done, newst, 7,1, wdata, out).
The step circuit takes as input i) the input tape lengths 4,--- , 4 and a short input w,

which stay the same throughout the computation, and ii) the previous state oldst and
the last string rdata read from the tapes, which change from step to step during the
computation. It outputs whether the machine should halt in the flag done. If the machine
does not halt, it outputs the next state newst, the next tape 7 and address i to read
from. Additionally, if 7 specifies the working tape, then the step circuit also outputs
a string wdata, which gets written at address i of the working tape. Each step also
optionally generates out, one bit of output.

The execution of a machine M with Ds,...,Ds on the input tapes and w as the
short input begins by zero-initializing® the working tape, the state, and the last-read
bit. Throughout the process, the short input stays unchanged and the state is updated
by the machine. For each step, the requested location (determined by the output of the
previous step) is read, whose value is passed into the last-read bit of the current step,
before that location is overwritten. For simplicity, we insist that overwriting happen if
and only if the requested tape is the working tape (the input tapes are read-only). The
whole sequence of out’s, including the timing information of at which step each output
bit is produced, is the output of the execution. This process is denoted by MP1PT (w).
We now give the formal definition.

Definition 1 (multi-tape RAM). Let 7 be a natural number. A T-tape RAM M is specified
by its step circuit CPU,

CPU: (4,...,4,w,oldst,rdata) — (done, newst, 7,7, wdata, out),

which is subject to the constraints below. The set of 7-tape RAMs is denoted by RAM.

5The distinction between input and state is arbitrary, and many works formulate them as a single
entity. We choose to separate them for clearer semantics.
5We do not consider persistent memory in this work.
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Addresses and Tapes. An (input-tape) address is an 4,q4.-bit string indexing a cell. Each
input tape consists of at most 2%ddr cells, and each cell is £..j;-bit long, i.e., the content D

of each input tape is in ({0, l}gceﬂ)fzgadd'. For technical convenience, we allow the working
tape to have different address and cell lengths, denoted by 4yppr and 4cgrr., than the input
tapes. Without loss of generality (efficiency- and security-wise), we assume fappr > addr
and feerr > - Conceptually, the working tape has exactly 2boor cells.

Inputs and Outputs of CPU. The inputs include:
« ¢, € [2%ddr] is the length (in cells) of the 7™ input tape.
« w € {0,1}% is the short input of length &,.
« oldst € {0,1}% is the state of length 4.
« rdata € {0,1}%w is the string that was read.

Among the outputs, done is a flag indicating whether the machine should halt. If done
is set, all of newst, 7,7, wdata, out should be L. Otherwise:

« newst € {0,1}% is the new state.
« 7 € [T] U{work} is the tape to read from (and possibly write to).

- If 7 € [T], then i € [4] is the address to read from on the 7™ input tape, and
wdata = L.

- If 7 = work, then i € [2%rr] is the address to read from and write to on the
working tape, and wdata € {0, 1} is the string to be written.

« out € {L1,0,1} is an optional output bit.

Executing RAM. We now formally present the steps involved in executing RAM. Let
Di,...,Dr € ({0,1}%)<2%4 he the input tape contents and w € {0,1}% the short input.
To execute MP1-DT (w):

1. Let sty « 0%, rdatag « 0%#t) Dyoro «— Qlemr24PPR 1y

2. Let (doney, sty, 74, 1, wdata,, out;) «— CPU(|D4|,...,|D7|, w, st;_1, rdata;_1).
3. If done; is set, the execution halts.

4. If 1, € [T, let rdata; « D, [i;]||0%s:~%et and Dyork s < Dwork,t-1-

5. Otherwise, 7; = work, let rdata; «<— Dyork-1[i:] and let Dyork: be Dyork:—1 With
Dyorkt[1:] replaced by wdata;.

6. Lett « ¢t +1 and go back to step 2.

We assume, without loss of generality, that all constraints of RAM are respected during
all executions.” For a halting execution,

7For example, the memory access should never be out of range. Given a step circuit, it is efficient
to wrap it inside another circuit checking all the constraints and correcting any error (e.g., by halting
immediately when a constraint is violated).
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« its running time T = time(M, D1, ..., D7, w) is the value of ¢ when it halts;®

« its running space is space(- - -) = maX;<r r,=work ir;’

« its state sequence is stS(---) = (sty, ..., str_1);

« its address sequence is addrS(---) = (11,11, ..., Tr-1,i7-1);
- its write sequence is writeS(- - -) = (wdatay, ..., wdatar_);
* its output sequence is outS(---) = (outy,...,outr_p).

It is worth noting that the machine does not necessarily produce non-L outputs at the
end or even consecutively. For most part of this work, we do not care whether the output
sequence is in some particular format. When defining secure evaluation of RAM, we
simply require that all information be hidden except the output sequence, which implies
that the running time and the time steps when each non-L output is produced are not
supposed to be hidden as such information is incorporated in the output sequence.

2.2 Laconic Garbled RAM

Our notion of garbling RAM laconically involves two steps. First, a short digest is created
for each input tape. The digest has length independent of that of the tape itself, and the
digest must be computable in linear time. Second, the RAM and the short digests are put
together to produce a garbled program and the labels. This procedure runs in time poly-
logarithmic in the RAM running time. Given a garbled program and one set of labels
(selected by the bits of the short input), the evaluation procedure computes the output
sequence in time linear in the RAM running time.

We consider indistinguishability-based security for the short input. The input tape
contents can be chosen adaptively, but the short input cannot depend on the garbled
program (i.e., selectiveness). We also consider several weaker notions, where the
running space is bounded and more information about the execution is allowed to be
revealed.

Definition 2 (LGRAM). Let 7 be a natural number. A laconic garbling scheme for T-tape
RAM consists of 3 algorithms:

« Compress(14, 1%, 1%dir 7 D.) takes as input a cell length 1%, an address
length 1%, an input tape index 7 € [T], and its content D, € ({0, 1}%e1)<2% ¢
outputs a short digest digest;. The algorithm runs in time |D;| poly(A, e, faddr)s
and its output length is poly(A, e, faddr)-

« Garble(1*, Tmax, M, {digest; };¢[7]) takes as input a time bound Trmax € N¥, a T-tape
RAM M, and T input tape digests. It outputs a garbled program M and ¥4, pairs of
labels {L; }ic[e,],6e{0,1}- The algorithm runs in polynomial time.

« EvalPv o PT (14 Tax, M, {digest,},e[ﬂ,ﬁ, {Li}ie[e,)) takes as input the time bound

Tmax, the T-tape RAM M, the input tape digests, the garbled program M, and one

81If the execution does not halt, we say time(- - -) = +c.
°To be complete, space(---) is defined to be 1 if the working tape is never accessed.
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set of labels. Given random access to the input tapes, it is supposed to compute the
output sequence. The algorithm runs in time

e
(min{Tmax’ tlme(M7 D19 ct DT9 w)} + Z |DT| pOIY(A” |M|’ Iog Tmax)’
i=1
where w is the short input corresponding to the labels.

: ea r
The scheme must be correct, i.e., for all A, £.ei1, faddrs &n € N, Tmax € N*, D1, ..., Dy € ({0, 1} cen)<22ddr

digest, < Compress(1*, 1% 144 7. D) V1 e [T]]

(M, {Lip}icie,1e(0.1)) < Garble(1!, Tmax, M, {digest; }rc[77)
Pr .

= outS(M, D, ...,Dr,w)

Definition 3 (LGRAM security). An LGRAM scheme (Definition 2) is (tape-adaptively,
indistinguishability-based) secure if EXpY gy ¥ EXPLcgan Where Explp o\ (11) with adver-
sary A proceeds as follows:

« Setup. Launch A(1') and receive from it the cell length 1% and the address
length 1,

« Tape Choices. Repeat this for 7 rounds. In each round, A chooses 7 € [7T] and
D, € ({0,1}%1)<2%¥" Upon receiving such choice, run
digest; & Compress(lﬁ, 1feett | 1 fadar 7,D;)
and send digest; to A.

+ Challenge. A chooses the instance running time bound 17 (in unary), the time
bound Tpax (in binary), a 7-tape RAM M, and two inputs wy, w;. Run

(M, {LipYiete] peto.)) < Garble(1*, Timax, M, {digest; }re(77)
and send (M, {L; u, (] }ic[4,]) t0 A.

+ Guess. A outputs a bit 4’. The output of the experiment is &’ if all of the following
conditions hold:

- The 7’s in all rounds of Tape Choices are distinct.
- Both MP1-D7 (wy) and MPr-P7 (w;) halt in time T < T < Tmax with identical
output sequences outS(- - -).
Otherwise, the output is set to 0.
Weaker security notions are obtained by strengthening the second condition in Guess.

« Fixed-address security. “... with identical outS(---) and addrS(---)”.

« Fixed-memory security. “... with identical outS(---), addrS(---), and writeS(---)”.

We emphasize that the scheme (Definition 2) must be efficient when Ty« is written in
binary. However, security only has to hold for polynomially large instance running time,

which is captured by the requirement that the adversary must produce 17, an upper
bound of the instance running time in unary.
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Bounded LGRAM. As an intermediate primitive, we consider bounded LGRAM:

Definition 4 (bounded LGRAM and security). The notion of a bounded LGRAM scheme is
obtained by modifying Definition 2 as follows:

+ The evaluation procedure runs in time

-
(Tmax + ) IDTI) poly(A, M|, 10g Timax)-
=1

« Correctness is required only if MP1PT (w) halts using space at most Tiay in time
at most Tiax-
Its security notions are obtained by modifying Definition 3 as follows:
+ In Challenge, the adversary chooses 17ma (instead of 17 and Trax)-
+ In Guess, the second condition is strengthened to “.. halt using space S < Thayx in
time T < Tax With identical ...”
2.3 Partially Hiding Functional Encryption and FE for Circuits

We define partially hiding functional encryption (PHFE) with respect to functions of the
form

@ : FxXXY - {L}U(WN; x2),

where F,X,Y,Z are the sets of function description, public input, private input, and
output, respectively. Each key is associated with some f € F, and each ciphertext
encrypts some private input y € Y and is associated with some public input x € X. The
decryptor should be able to recover z if ¢(f,x,y) = (T, z), in which case T is the time
to compute z from f,x,y in the clear and serves as a baseline for decryption efficiency.
For security, we only consider f,x,y for which T is polynomially bounded. On the other
hand, when ¢(f,x,y) = L, we require neither correctness nor security. This can be used
to exclude non-halting computation.

Definition 5 (PHFE). Let ® = {®,},cn be a sequence of functionality families such that
each ¢ € @, is a function

@:F,x Xy, XY, — {L}U(N; XZ,).

A partially hiding functional encryption scheme for ® consists of 4 algorithms, with
efficiency defined in Definition 6:

« Setup(1%, ¢) takes a functionality ¢ € ®, as input, and outputs a pair of master keys
(mpk, msk).

+ KeyGen(1*, msk, f) takes as input the master secret key msk and a function
description f € F,,. It outputs a secret key skr.

« Enc(1*, mpk, x,y) takes as input the master public key mpk, a public input x € X,
and a private input y € Y,,. It outputs a ciphertext ct,.
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« Dec/ skt (11, mpk) takes the master public key mpk as input and is given random
access to the function description f, the public input x, the secret key sk¢, and the
ciphertext ct,. It is supposed to compute z in ¢(f,x,y) = (T, z) efficiently.

The scheme is correct if for all AeN, pe®y, feF, xecX, yecY, such that
@(f,x,y) = (T,2) # 1, it holds that

(mpk, msk) < Setup(1%, )
Pr ske <& KeyGen(1*, msk, f) : Dec/ =<t (11 mpk) = 2| = 1.
ct, & Enc(1, mpk, x, y)

Definition 6 (PHFE efficiency). The basic efficiency requirements of a PHFE scheme
(Definition 5) are as follows:

* Setup, KeyGen, Enc are polynomial-time.
» Dec runs in time poly(4, |¢l, ], |xl, [y|,T), where p(M, f,x,y) = (T,2) # L.
The following time-efficiency properties are considered for a PHFE:

« It has linear-time KeyGen [resp. Enc] if KeyGen [resp. Enc] runs in time |f| poly(A, |¢|)
[resp. (lx| + |y) poly(4, l¢)];

« It has (T°T + |f|% + |x|* + |y|%)-time Dec (for constants er,er,e,,e,) if Dec runs in
time

(TT + 1717 + x| + |y|*) poly(4, @),

where ¢(M, f,x,y) = (T,z) # L. Furthermore, the scheme has f-fast [resp. x-fast, y-
fast] Dec if it has (T°" + |f|7 + |x|* + |y|%)-time Dec with e = 0 [resp. e, = 0, e, = 0].

The following size-efficiency properties are considered for PHFE:
« Itis f-succinct if |ske| = poly(4, |¢|), independent of |f].

« Itis x-succinct if |ct,| = poly(A, |¢|, |y|), independent of |x|. Furthermore, it has rate-
¢ ciphertext for some constant c if |ct,;| = poly(A, |@|) + c|y|;

We consider adaptive IND-CPA for polynomially bounded T

Definition 7 (PHFE security). A PHFE scheme (Definition 5) is (adaptively IND-CPA) secure
if EXpOypp ~ EXPhypg, Where Expdupp(11) with adversary A proceeds as follows:

* Setup. Launch A(1") and receive from it a functionality ¢ € ®; and a time
bound 17. Run

(mpk, msk) < Setup(1%, )
and send mpk to A.

* Query 1. Repeat the following for arbitrarily many rounds determined by 4. In
each round, A submits a function description f, € F,,. Upon receiving the query,
run

sk, < KeyGen (11, msk, f;)

and send sk, to A.
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+ Challenge. A submits x € X, y0,y1 € Y,. Upon the challenge, run
ct & Enc(1*, mpk, x, v5)
and send ct to A.

* Query II. Same as Query I.

* Guess. A outputs a bit ’. The outcome of the experiment is 4’ if

lyol = Iy1l,
and ¢(fy,x,50) = @(fg, %, 51) = (Ty,29) # L for all g,
and T, < T for all q.

Otherwise, the outcome is set to 0.
We will use FE for circuits as a building block:

Definition 8 (FE for circuits). An FE scheme for circuits is a PHFE scheme (Definition 5)
for

® = {D) }en, D) = {@es}esen,,
Wrs:Fps xX xY, > {L} U(N,; x 2),
F; s = { circuits of input length ¢ and size at most s },
X={1}, Y.={0,1}, z={01),
Pes(f,L,9) = (L)),

where the functionality ¢, is represented by (1¢,1%).

We remark that the first output of ¢y s is just a dummy value and all efficiency parameters
(Definition 6) are always allowed arbitrary polynomial dependency on A,¢,s by our
choice of representing ¢ ¢ by (1¢,1°). This is intended as we use FE for circuits as a
building block and do not wish to start with too strong a scheme. In fact, thanks to
many beautiful prior works in the literature, we can further weaken the assumption all
the way down to an “obfuscation-minimum FE” with only polynomial security.

Lemma 1 ([KNTY19]). Assuming the existence of “weakly selective secure, 1-key, sublinearly
succinct FE for circuits” (per definitions in [KNTY19]), i.e., so-called “obfuscation-minimum
FE with only polynomial security”, there exists an FE scheme for circuits (Definition 8) with
adaptive IND-CPA security (Definition 7).

2.4 Universal RAM and PHFE for RAM

In this section, we define PHFE for RAM after explaining some rationales.

We will employ the standard transformation [QWW18] of using FE for circuits to
compute LGRAM to obtain PHFE for RAM. However, in LGRAM (Definition 2), the
encryption time, as well as the ciphertext size, could depend on the size of the
machine M. This dependency is inherited by the key size of the resultant PHFE for
RAM if we associate each key with a RAM. To make the scheme f-succinct, we fix some
universal RAM U upon setting up the scheme, and associate with each key a piece of
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code interpreted by U. The size of U is some fixed poly(1),° and so is the LGRAM
garbling time. This translates to f-succinctness in the constructed PHFE for RAM.

The other issue is that LGRAM puts an upper bound on the running time and its
incorrectness in case of exceeding time limit is propagated to the PHFE scheme. We
avoid it'! by defining ¢ = L if the running time exceeds some super-polynomial value
prescribed upon set-up.

The above explains the intended usage of our PHFE for RAM, yet we define it for
general RAM. Moreover, as a stepping stone, we will first consider PHFE for RAM with
bounded private input, where the private input is simply the short input to the RAM:

Definition 9 (PHFE for RAM with bounded private input). A PHFE scheme for RAM with
bounded private input is a PHFE scheme (Definition 5) for

O = {®)}1en, Dy = {PM Tax MERAMy, Tnax €N* 5
OM T - Fy x Xy XYy — {J_} U (]N+ X Z),
Fy = Xy = ({0, 1}%0)=2%  yp = (0,1}, Z={1,0,1}",
(T,outS(M, f,x,y)), iftime(M,f,x,y) =T < Tmax;
PM T ([ %, y) =

1, otherwise;

where ¢ 1., 1S represented by (M, Tmax)-

In a full-fledged PHFE for RAM, the RAM no longer has a short input, and the private
input is encoded on a tape:

Definition 10 (full-fledged PHFE for RAM). A full-fledged PHFE scheme for RAM is a PHFE
scheme (Definition 5) for

O = {D) }1en, D@1 = {PM Tax }MeRAM, (with £,=0) and TmaxeN*»
PM Toax - FM X XM X YM — {J_} U (]N+ X Z),
Far = Xor = Yo = ({0, 1} %) <29 7 - (1 0,1)",
(T,outS(M, f,xlly, €)),

¢M,Tmax(f7xay) = if x|+ [y] < 2har and time(M, f,x|ly, &) =T < Tmax;
1, otherwise;

where ¢ is the empty string and ¢y 1, is represented by (M, Tmax)-

2.5 Indistinguishability Obfuscation

We will use indistinguishability obfuscation for circuits with polynomial-sized domains as
a building block.

107/ is not a fixed RAM — its input address length should be w(log 1) to accommodate all polynomially
long input.

HAn alternative solution is to blatantly reveal everything if the running time is too large so that
correctness in that case can be implemented by executing the machine in the clear. Security is not
affected because the adversary is not allowed to choose keys and ciphertexts with super-polynomial
instance running time. However, non-halting computation still needs to be handled separately.
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Definition 11 (;0). An indistinguishability obfuscator is an efficient algorithm iO(1%,C)
taking a circuit C as input. It outputs an obfuscated circuit C.

The obfuscator must be correct, i.e., for all 1 € N, circuit C : {0,1}" — {0,1}™, input
x € {0,1}", it holds that

Pr[iO(1%,C)(x) = C(x)] = L.

The obfuscator is secure for polynomial-sized domains if for all polynomial-sized
(12", Cy, C1) such that Cy,C; : {0,1}* — {0,1}™ have identical truth tables and sizes, it
holds that

{1, Co, C1,i0 (1%, Co)} ~ {14, Co, C1,iO (1%, C)} .

We remark that the above definition does not allow the obfuscator to work by simply
outputting the truth table, as the constraint of having polynomial-sized domains only
applies to security, not efficiency nor correctness. Such an obfuscator is implied by the
existence of FE for circuits (with polynomial security loss), either via a tight security
reduction of FE to iO transformation [LT17] or via decomposable obfuscation [LZ17]:

Lemma 2 ([LT17,LZ17]). If there exists a secure FE for circuits (Definition 8), there exists an
indistinguishability obfuscator for circuits that is secure for polynomial-sized domains.

2.6 Laconic Oblivious Transfer

Definition 12 (LOT [CDG"17]). A laconic oblivious transfer scheme consists of 4 algorithms:

« HashGen (14, 1%en 1%dar) takes as input the cell length 1% and the address
length 1% and outputs a hash key hk. It runs in polynomial time.

- Hash(1%, hk, D) takes as input the hash key hk and a database D ¢ ({0, 1} eelt ) <2adds
and deterministically outputs a hash A and a processed database D. It runs in time
|D| poly(A, &en, 4addr), and the hash length is fash = poly(4, Leen, baddr)-

. SendRead(lA,hk,h,i,{mb}j’;{f 1}) takes as input the hash key hk, a hash A, an

address i € [2%dr], and £ pairs of messages of identical length. It outputs a read
ciphertext rct. The algorithm runs in polynomial time.

. RecvReadﬁ(l’1 hk, h,i,rct) takes as input the hash key hk, the hash &, the
address I and the read ciphertext rct. Giyen random access to the processed
database D, it is supposed to recover {m ]}je[(cen]. The algorithm runs in time

pOly(/1 gcell: addr> |I’Ct|)
The %cheme must be correct, i.e., for all A, Gy, faar € N, D € ({0, 1}5e1)<2% i < [D]],
m?3°<0L f identical length, it holds that
] J€lbenl
hk & HashGen(1%, 1%en  1¢dar)
(h, D) « Hash(1*, hk, D)

=1.
rct <& SendRead(1%, hk, &, i, {m b}be{O oy

J€[4enl

: ReCVReadD(l/l, hk, h, L, rCt) {m il }jE cell]

Pr

An updatable LOT has 2 additional algorithms:
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« SendWrite(14, hk, A, i, wdata, {mjl.’ Jlf[{fh’l}h]) takes as input the hash key hk, the hash 4,

the address i, an overwriting string wdata € {0, 1}%¢!, and 6,4, pairs of messages
of identical length. It outputs a write ciphertext wct. The algorithm runs in
polynomial time.

- RecvWrite? (1%, hk, &, i, wdata, wct) takes as input the hash key hk, the hash A, the
address i, the overwriting string wdata, and the write ciphertext wct. Given random
access to the processed database D, it is supposed to update D to D’ and recover
{mj }JG[[haSh], where D’ is D with D’[i] replaced by wdata and 4’ is the hash of D’.
The algorithm runs in time poly(A, &e1, faddr, IWCt]).

It is required that for all A, £y, faqar € N, D € ({0, 1}%e)<2% i ¢ [|D|], wdata € {0, 1}%el,

b be{0,1} . : :
{m/} o ] of identical length, it holds that

hk < HashGen(1%, 1%ei | 1ddr)

(h,D) « Hash(1*,hk,D),  (k’,D’) — Hash(1}, hk, D’)

. ) 1 . b be{0,1}
Pr| wct < SendWrite(1%, hk, &, i, wdata, {m; }jE[fhash])

: RecvWrite? (1, hk, h, i, wdata, wet) = {m!"V1)jcjq )

and D is updated to D’ by RecvWrite
where D’ is D with D’[i] replaced by wdata.

Part of our LGRAM garbling procedure involves hashing the all-zero string (the initial
working tape) under a newly generated LOT hash key. It must be done very efficiently:

Definition 13 (LOT fast initialization). An LOT scheme (Definition 12) has fast initial-
ization if there is an efficient algorithm Hash0s(1%, hk, S) computing the hash of Q%S
given the hash key and the length (in binary). More precisely, for all A, ..y, baaar € N,
S € [2%ar], it holds that

hk & HashGen (14, 1%l 1%ar) 1
Pr N : HashOs(1*,hk,S) = h| = 1.
(h, D) « Hash(1*, hk, 0%e15)

The generic bootstrapping procedure [CDG*17,AL18,KNTY19] for LOT using Merkle tree
always yields a scheme with fast initialization, because the Merkle hash of an all-zero
string of length S can be computed in time poly(1,logS).

Security. Following [KNTY19], we consider database-selective security for LOT.

Definition 14 (LOT read security [CDG*17]). An LOT scheme (Definition 12) is read-secure
if there exists an efficient simulator SimRead such that for all polynomial-sized 1%ei, 1%ddr

D e ({0, 1} )24 i o [1D|], | j”};’j{o 1 of identical length, it holds that

{14, 1%, 1% hk, D, i, {m? Jb:[{; M vet} ~ {-- -, rct}, where

hk < HashGen(1%, 1%, 1%4dir) (h, D) «— Hash(1%, hk, D),
rct & SendRead(1%, hk, &, 1, {mj’};’f{z;}])

rct & SlmRead(l’l, hk, D, 1, {mJl-)[ ] }je[eceu])-
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Definition 15 (LOT write security [CDG*17]). An updatable LOT scheme (Definition 12)
is write-secure if there exists an efficient simulator SimWrite such that for all polynomial-
sized 1%en, 14 D e ({0, 1}4’ceu)s2eaddr) i € [|D|], wdata € {0, 1}l’ceu’ {mjl')};)ee[{l?}:l}h] of identical
length, letting D’ be D with D’[i] replaced by wdata, it holds that "

- be{0,1 ~
{1/1’ 1£cell’ 1€addr’ hk, D, i, Wdata, {I’nj7 }j:[{éhas}h] , Wct} ~ { (R WCt}, Where
hk & HashGen(1%, 1%en 1dar),

(h,D) « Hash(1*,hk,D), (K,D’) « Hash(1*, hk,D’),

. ] 1 . by b€{0,1}
wct < SendWrite(1%, hk, h, i, wdata, {m} ;7" ),

wct <& SimWrite(1, hk, D, i, wdata, {mj’.l,[j] Yeltan])-

We remark that the above definitions is also index-selective and message-selective.
Without loss of generality, we may assume that security holds even if the adversary is
allowed to choose i and mjl.”s adaptively (depending on hk). Adaptive security with respect
to i can be obtained by a standard guessing argument as noted in [GOS18], and that with
respect to mjl.”s by using the scheme as a key encapsulation mechanism (or by encrypting
bit by bit and following a standard hybrid argument).

Lemma 3 ([LZ17,CDG*17,AL18,KNTY19]). Assuming the existence of FE for circuits (Defini-
tion 8), there exists an updatable LOT with fast initialization that is both read-secure and
write-secure.

2.7 Garbled Circuits

Following the formulation in [GS18a], we make the garbling procedure to take the
labels as input instead of letting it generate them. However, their formulation cannot
be perfectly correct, which we fix by incorporating the point-and-permute [BMR90]
technique:

Definition 16 (garbled circuits [Yao82]). A circuit garbling scheme (with label length ¢;,(1))
consists of 2 efficient algorithms:

« Garble(14,C, 7, {Lip}icn] pefo,1y) takes as input a circuit C of input length n, a point-
and-permute string 7 € {0, 1}", and n pairs of labels, each of length ¢;,(4). It outputs
a garbled circuit C.

. Eval(1},C,x @ 7, {Li}ien)) takes as input the garbled circuit C, the permuted input,
and n labels. It is supposed to compute C(x).

The scheme must be correct, i.e., for all A,n € N, circuit C of input length n, input
x € {0,1}", it holds that

x & {0,1)"
Lip & {0,12W for i € [n],b € {0,1
Pr l’i${ I A [n] { }:y:C(x):L
C < Garble(1”,C, 7, {Lip}ic[n] be(0,1})
y « Eval(1!,C,x @ 7, {L; x[ }ie[n))
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The scheme is secure if there exists a simulator Garble such that for all polynomial-sized
C, x, the following distributions are indistinguishable:

{1*, ¢, x, Garble(1%, C, 7, ALy Yien]be(01))s X ® 7, {Li i) Yie[n }
~ {1, C, x, Garble(1*, 1!, C(x), x ® 7, {L; x[i) }ie[n) ), £ ® 7, {L; x[;1 Yie[n] }»

where L;, < {0,1}%W for all i € [n],b € {0,1} and 7 & {0,1}".

2.8 Puncturable Pseudorandom Function
We need puncturable pseudorandom functions as a building block.

Definition 17 (puncturable PRF [BW13]). A puncturable pseudorandom function with key
(resp. input, output) length ey (1) (resp. £n(A), fut(1); all polynomial in 1) consists of
2 efficient algorithms:

« Eval(1%, %, x) takes as input a (punctured or not) key %, an input x € {0, 1}% @ and
deterministically outputs a bit-string of length £,,¢(1).

« Puncture(1},%,S) takes as input a non-punctured key % € {0, 1% and a set
S c {0,1}% @ It outputs a punctured key Eg.

The scheme must be correct, ie., for all AeN, ke {0,1}4% @M §c{0,1}4W,
x € {0,1}% W\ § it holds that

Pr|Eval(1*, Puncture(1*, &, S), x) = Eval(1}, k,x)| = 1.
The scheme is secure if for all polynomial-sized S ¢ {0,1}% @™ it holds that

{]-/17 S7 ];S7 {EVal(l/l, k7 S)}SES} ~ {1/1’ Sa kaa {rS}SGS}) Where
B {0, l}gkey(’l), l%s & Puncture(l’l,k,S),
rs & {0,1}%@ for all s € S.

29 Secret-Key Encryption

We need secret-key encryption as a building block.

Definition 18 (SKE). A secret-key encryption scheme consists of 3 efficient algorithms
+ Gen(1") outputs a key k.

* Enc(1%, &, m) takes as input a key % and a message m of arbitrary length, and outputs
a ciphertext c.

« Dec(1%, %, c) takes as input a key % and a ciphertext c. It is supposed to recover the
message.

12We also use selectively secure usual PRF, yet omit it here as it is implied by PPRF.
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The scheme must be correct, i.e., for all 1 € N and m € {0,1}", it holds that
Pr[k & Gen(1") : Dec(1*,Enc(1*,k,m)) =m| = 1.

It has pseudorandom ciphertexts if the ciphertext length is a function of 1 and the message
length (independent of key generation and encryption randomness) and for all 1 € N and
polynomially long sequence of messages {mg}qe[q], it holds that

{1119, {mg, cqloet@} = {1119, {mq, rg}gelq)}, where
k& Gen(1h), ¢, <& Enc(1t, b, my), 1y & {0,134 forall g € [Q].

2.10 Oblivious RAM

We define ORAM as a mechanism to translate logical accesses into physical accesses.
It separates the logic of protecting memory access from the computation performed.
Compared to defining it as an algorithm transforming an underlying RAM to an ORAM’ed
RAM, we avoid having to incorporate randomness'® into the definition of RAM. We also
add error (overflow) checking into our definition so that our LGRAM and PHFE can be
made perfectly correct.

Definition 19 (ORAM). An oblivious RAM scheme is an efficient deterministic algorithm
MakeORAM (14, 1%t éoor 1 Y

taking as input the logical cell length 1% the logical address length 1%4r>r | and a time
bound T,y € N. It outputs a physical space bound S,..., a physical cell length 1%,
an ORAM randomness length 14, an ORAM state length 1%, and a sequence of circuits
{oRWy, }4,e[1y satisfying the following conditions:

* Llei < POLy(A, Leprr, Yappr, 108 Tmax)-
* Shax < Tmax POIY(/L YceLL; YapDR, log Tmax)-

* Ty < poly(A, €cerr, fappr, 10g Tmax) is the number of physical steps to perform one
logical access.

+ The circuits have the following input/output syntax:

oRW; : (i, wdata, r1) — (osty, i}, wdata)) or L,
ORW;, :  (ost_1, rdatago_l,rto) — (0Stsy+1, i;oﬂ, wdata;w) or 1, for 1 < ty < T,
OoRWr, :  (ostp,_1, rdata}o_l,rTo) — (i;,o,wdata’TO, rdata) or L.

Here,

- i € [2%x] is the logical address to read from and write to,

- rdata € {0, 1}t is the logical string that was read,

130ur LGRAM only works with deterministic RAM and dealing with garbling of randomized computation
is cumbersome. An ORAM’ed machine is probabilistic and cannot be directly fed into LGRAM with lesser
security to obtain LGRAM with better security, so the notion of ORAM’ed RAM does not simplify formalism
and might lead to confusion (it bears the name of RAM yet cannot be used as an input to LGRAM). We
choose to avoid this notion and define ORAM as a memory access translation mechanism.
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wdata € {0,1}%m is the logical string to write,
- ri,...,rr, € {0, 1}% are the ORAM randomness,
- osty,...,ostr,_1 € {0, 1}%t are the ORAM states,

-/ !

= 1}, ...,ip € [Shax] are the physical addresses to read from and write to,

- wdataj, ..., wdatay, € {0, 1} are the physical string to write.

The scheme must be correct, i.e., for all A, %grr, fappr, Tmax € N and all sequence
{(i¢, wdata;) }rer,,.,] Of logical accesses, let

(S 11, 1% {ORW,, }1oc]) < MakeORAM (17, 16cme 1feor 0y )
res < {0,135 for ¢ € [Tmaxl, to € [Tol,
and consider the following process:
» Let Do < 0% and D, « 05max,
e Fort=1,...,Thax:

- (Logical step.) Let rdata; « D;_;[i;] and let D; be D,_; with D,[i;] replaced by
wdata;.

- Perform T, physical steps by

(osty, i;yl, Wdata;’l) «— ORW; (i;, wdatas, 7 1),

(0styy, it 4, wdatay ;) < ORWy, (0sty,—1, rdata; , 1, 74¢4,) for 1 < ¢ < T,
(i;’TO, wdata;,TO, rdata;) « oRWr, (ost; 1,-1, rdata;,TO_l, reTy)s where
4 ’ ’ ’ > ’ -/ ’
D10 < Dy gy Diy < Dy with D; , [i;,,] replaced by wdata; , ,

rdata; ,, < D;, [i},].
It is required that (over the random choices of r’s)

Pr[any of oRW,,, outputs L] < 274 and

Pr[(some of oRW,;,, outputs L) Vv (rdata; = rdata, for all ¢ € [Tmax])] = 1.
In our definition, error is indicated by L from oRW,,,’s. The correctness requirements
postulates that it is negligibly likely that any error is reported and that every logical

access is perfectly fulfilled until the first error is reported. The latter ensures that errors
are always caught before they can corrupt computation.

Security. Following [CH16], we need an ORAM with localized randomness.

Definition 20 (ORAM localized randomness). An ORAM scheme (Definition 19) has
localized randomness if there exist efficient deterministic algorithms PartRnd, SimORAM
such that for all A, fgrr, fappr, Tmax € N and all sequence {(i;, wdata;)};c;r; of logical
accesses with T € [Tax],

PartRnd (1%, 1feme 1beor o0 {(ir, wdatay) Yrerr) — {Ri}ieim)
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satisfies
R; C [T] x [Ty] for all ¢ € [T], m[aTJ]( |R:| < poly(A, €eerr, Cappr, 10g Tmax),
te

i A qéeLL 14por ./
Pr SImORAM(l ’ 1 ’ 1 ’ Trnax, t7 tO: {ri}iERt) i lt,to S 2_/1’
for some t € [T], to € [To]

where the probability is over r’s and the notations follow those in Definition 19.

3 Efficiency Trade-Offs of PHFE for RAM

3.1 Contention Between Storage Overhead and Decryption Time
In this section, we show that it is impossible to achieve
skl = O(If1*) and  Toec = O(T +If|” + x| + |y)

simultaneously for a secure PHFE for RAM when «a, § < 1, where polynomial factors in
the security parameter are ignored. This leaves us with two candidate optima:

« a =0 and g =1 for succinct keys; or
« a =1and B =0 for f-fast decryption.

Similarly, it is impossible to achieve
lct] = O(|x|*) poly(lyl) and  Tpec = O(T + |f| + |x|” +|y])

simultaneously if @, f < 1, which implies a contention between succinct ciphertexts and
x-fast decryption.
Formally, our theorems are slightly stronger than the discussion above:

Theorem 4 (contention of |f|-dependency between |sk| and Tpec; ). For a secure full-
fledged PHFE for RAM (Definitions 5, 7, and 10), if
skl < IF1%(A+[p))¢ and Thec < (T +IfIP + |y (A + |g| + Jx])€

for infinitely many A, where a, B8,C are constants, thena > 1 or f > 1.

Theorem 5 (contention of |x|-dependency between |ct| and Tpec). For a secure full-fledged
PHFE for RAM (Definitions 5, 7, and 10), if

lct] < |x[*(A+ gl +1yDC and  Toec < (T +|f] +|xl’) (A + |g] + |y
for infinitely many A, where a, 8, C are constants, then @ > 1 or f > 1.

We will only prove Theorem 4. The proof of Theorem 5 is similar.

Proof (Theorem 4). Let (Setup, KeyGen, Enc,Dec) be a secure PHFE for RAM. Suppose
for contradiction that @, f < 1 - 5¢ for some ¢ > 0. By enlarging C as needed, we could
assume || < A€ — 1 — 1 for all sufficiently large 1, where

o= (M,2Y), f=Re{0,1}%, x=1,
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)€ w) =G, w(l], ..., w(n]) € ([21] x {o, 1})s24’.
y= z=(1, 2[1],..., 1, z[n]) € ({1} x {0,1})=%";

pf o) — {(R[il] owll],...,Rlin] ®wln]), ify=(,w);
(  z[1] e z[n] ), ify=z.

Under appropriate encoding and step circuit design, y has exactly n cells and M halts in
exactly (n + 1) steps.
We focus on the values of 1 (hereafter, “1 with efficiency”) such that

Isk| < I£F1*(A+19D)¢ and Thec < (T +IfI1P + [y} (A + || + |x])€
By setting
|R| =N-= |'/1(CZ+1)/£'|’ n= LN1—3£J,

we would have n < N < 24 for sufficiently large 1. Consider the following adversary A
(Definition 7):

+ Upon launching, it computes ¢ define above and N, n, sets up the PHFE scheme
for ¢, and submits 1"*! as the time bound.

- It samples R < {0,1}" and requests a key sk for f = R.
« It samples w < {0,1}" and a list I of n distinct random elements from [N], sets
z=(R[i1]] ®wll],...,R[i,] ®w[n]).
It challenges with
x=1, yo=,w), »n=gz
and obtains a ciphertext ct encrypting either yq or y;.

« It runs Dec/**k“t(mpk) and notes down the list L of indices into R = f where it is
read during decryption. A outputs 1 if and only if

|ILN1I| > N¥*,

where L and I are regarded as sets (unordered and deduplicated) for the
intersection operation.

Clearly, A would be efficient and its challenge would satisfy the constraints of PHFE
security for sufficiently large 1. We claim:

Claim 6 (€]). For sufficiently large A with efficiency,
. 3
Pr[|LNI|>N"% in Exppyps | > =

Claim 7 (9]). For sufficiently large A with efficiency,

. 1
Pr(|LNI|>N"% in Exppypg | < y
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The two claims together would contradict the security of PHFE, as the advantage of .4
would be at least § for infinitely many A. Therefore, @ > 1 or § > 1. i

To prove Claim 6, we need the following lemma about incompressibility of information:

Lemma 8 ([DTT10]). Suppose E: SxU —V and D : S xV — U are functions and S is a
distribution over S, then

[Vl > |U|- Pr [D(s,E(s,u)) = u].
s&S
u&U

Proof (Claim 6). We use the PHFE scheme to compress a string u of length n. To encode,
we embed u into a string R of length N at random locations (i.e., I) and generate a
PHFE key for R. The encoding is the key plus some bits in R used during decryption. To
decode, run the decryption algorithm. Lemma 8 will generate the following inequality
equivalent to the desired one:

Pr|L NI < [N"] in Expdygg | <

I

Formally, let

(mpk, msk) < Setup(¢)
(I,w) as how A samples it

R'[i] < {0,1} fori e [N]\I

.

I'KeyGen, 'Encs 'Dec

(mpk, msk, I, w, R’,
S =

T'KeyGens T'Enc I'Dec & algorithm randomness
U=1{0,1)", V={0,1}¥"Ixo, )"
The encoding procedure E(s, u) works as follows:

- Parse I = (iy,...,i,) and set

R'[i], ifie[N]\I;

R A

uljl, ifi=i,.

* Run

sk < KeyGen(msk, R; rkeyGen),
ct «— Enc(mpk, L, (I, w); renc),

u®w — Dec®H R (mpk; rpec),
and note down the list L = (4, ...) of indices into R read by Dec.
» Output v = (v1, v2) with vy, v, € {0, W™ and

vy = OV ISk g

{ij], if [{@,.... 41} NIl =i-1and [{&,..., 4., 4} 01| =35
0,

va[i] = . ..
i if no such ; exists.
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Here, v; is a fixed-length encoding of sk and is indeed well-defined since
Isk| < [F19(A +|@)¢ < N*75¢(1+ (A€ =1 -1))¢ < N'51" < |[N"%] -1

for sufficiently large A with efficiency. The string v, records, sequentially, the bits in R
at each distinct index read by Dec that are part of u and not known from R’, for at most
| N4 bits.

The decoding procedure D(s,v) works as follows:

* Run ct « Enc(mpk, L, (I, w); renc).
« Parse v = (v1,v2) and recover sk from v; as specified in E.

« Initialize j, an index into vy, by j < 0, and initialize R by

R[] = R'[i], ifie[N]\I;
SR ifiel

Run z « Dec®+5(mpk; rpec) with R filled on the fly. When Dec reads R[]:

- if R[i] = L and j < [N, then let j « j +1 and set R[i] « v2[/];
- if R[i] = L and j = [N'"*], then abort by outputting 0";

- otherwise, R[i] # L, then just proceed without aborting;
and return R[] to Dec if not aborting.
* Output z @ w.

D will fill v, into the correct indices of R since Enc and Dec are derandomized with the
same randomness as in E.

The sampling of s, u and the setting of R in E(s, u) simulate A in ExpSp. If s and u
are such that |[L N I| < [N'*] in E(s, u), then D will successfully recover u. By Lemma 8,

Pr[|LnI| < [N"]in Expdyps | = Pr [ILNI| < [N"™¥]in E(s,u) |
s&S

u<iU

Pr [D(s,E(s,u)) = u]

s&S

u<iU

IA

1-4e
m _ 22|'N J _ 22LN1—4£J_LN1—3€J

< o = <
U| 2"

e

for sufficiently large A with efficiency. o
Proof (Claim 7). For sufficiently large A with efficiency,
IL| < Toec < (T +1f1P +|yD(A+ o] +[x])°
<((n+1)+N"%4n0)(A+(A°-21-1)+1)°
< (2N17% 4 N5 4 1)2C° < N2
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In Exppypg, the input to Dec is independent of I, which only symbolically appears in ct
as

y1=z= (R[] ®wll],...,R[i,] ®w[n])

and is fully hidden by the one-time pad w. Therefore, the list of indices into R read
by Dec (i.e., L) is independent of I. Conditioned on L, the intersection size |L N I| follows
a hypergeometric distribution. By the law of total expectation,

- Nl—SE

E[ILn1] =E[E[ILn1l|L]] :E[Ill;u} j Nl—s}Nl_%

for sufficiently large A with efficiency, which implies, by Markov’s inequality,

E[ILNI||] N5
N1—4£ = N1—4£

Pr[|L NI| > N in Exphypg ] <

=N*<

e

3.2 Barrier to Time Optimality

In this section, we show that if we build PHFE schemes that have very efficient
decryption, i.e. ones that are f-fast, or x-fast or y-fast naturally imply doubly efficient
secret-key PIR protocols (SKDEPIR) which are currently known only from a very specific
assumption [BIPW17,CHR17].

We start by defining syntax of a SKDEPIR, along with the correctness, efficiency and
security notions we consider. These definitions are suitably adapted from [BIPW17,
CHR17].

Definition 21. (Syntax of SKDEPIR) An SKDEPIR scheme consists of five probabilistic
polynomial-time algorithms (Keygen, Process, Query, Resp, Dec) with the following spec-
ification:

« Keygen takes as input the security parameter 1* and samples a key k.

* Process takes as input a key &, and a database DB € {0,1}" and outputs a processed
database DB.

* Query takes as input the key &, an index i € [n], and outputs a query ¢ (and possibly
a state st).

+ Resp is a deterministic algorithm that takes as input o and DB and outputs a server
response p.

+ Dec is a deterministic algorithm that takes as input (o, p, k, st) and outputs a data
element in {0, 1}.

Next, we define the correctness and the efficiency property of SKDEPIR.

Definition 22. (Correctness/Efficiency of SKDEPIR) Let ¢ > 0 be a constant, A € N be
the security parameter and n = A°. Let DB € {0,1}", i € [n] and consider the following
process:

- Run £ « Keygen, DB « Process(k, DB) and (o, st) «— Query(k, i),
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+ Compute p = Resp(o, 5I§) and m « Dec(a, p, k, st).

Then, we say that SKDEPIR is correct if m = DB; with probability at least 1 — negl(1) for
some negligible negl where the probability is over the coins of the process. Further,
we say that it is doubly-efficient if the running time of Resp with RAM access to DB is
polynomial in A and logarithm of n.

We now define the security notion we consider. For strengthened notions of security
see [BIPW17,CHR17].

Definition 23. (Security of SKDEPIR) We say that SKDEPIR is secure if there exists a
stateful p.p.t. simulator S such that for any stateful p.p.t. adversary .4 the following
distributions are computationally indistinguishable. The first distribution is:

- A(1%) outputs 17, a database DB € {0,1}" and i, . .., i, where every i; € [£].
* Run % « Keygen, DB « Process(k, DB) and (aj,stj) « Query(k,i;) for j € [¢],
* Output (DB,il,...,ig,ISE, 01,...,070)

The second distribution is:
« A(1") outputs 17, a database DB € {0,1}" and iy, ..., i, where every ij € [¢].
+ The simulator outputs (DB, 01, . ..,00) — S(DB, ?).
* Output (DB, iy,. .., 1, DB,oy,..., oyp)

One could consider a stronger security definition where an adversary can ask for
index queries adaptively. As of currently, this weaker definition is not known to
be any easier to achieve. We will show that any PHFE scheme satisfying a weak
form indistinguishability security, where the functions and the challenge messages
are declared in the beginning, that is additionally f-fast/x-fast/y-fast implies such an
SKDEPIR scheme. We now give overview of three (very similar) constructions. The
first construction converts an x-fast PHFE scheme to an SKDEPIR scheme. The second,
converts an f-fast PHFE scheme to an SKDEPIR scheme. Finally, the third scheme
converts an y-fast PHFE scheme to an SKDEPIR scheme. Our main result is:

Theorem 9. If there exists a PHFE scheme that is either x-fast or y-fast or f-fast as per definition
6, then, then there exist a secret-key doubly efficient PIR scheme as per Definitions 23 and 22.

Overview We aim to show that an x-fast/f-fast/y-fast PHFE scheme imply a SKDEPIR
scheme. We start by describing the main idea assuming x-fast PHFE scheme, and then
we will sketch the ideas for the other cases. In a x-fast PHFE scheme the time it takes to
compute decryption in the RAM model is proportional to (Tf (Tf,x,y) +|f|% +|y|?) for some

constants fr, B, B, upto polynomial factors in 1. We will exploit the fact that there is no
dependence on |x| to turn this into a SKDEPIR scheme.

As a first attempt, we set DB as x, and y as empty. Then Process algorithm computes
ctpure = PHFE.Enc(mpk, (x,y)) as a preprocessing of the database. To look up DB;, the
Query algorithm computes a PHFE function key sk, for the program that looks up and
outputs DB; and sends the key to the Server. Observe that Query algorithm runs in time
polynomial in A and logn as PHFE.KeyGen is a polynomial time in the description size of
f and the security parameter.
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Further, the Resp algorithm simply decrypts ctpyre using ske. Observe that due to
x- fastness, the time it takes to run Resp is also polynomial in A and logn. While this
solves the core issue, we have completely missed one aspect. The scheme completely
reveals the indices i to the Server as the function key sk¢ is not guaranteed to hide the
function description f. To resolve this issue, we observe that if we had a function hiding
PHFE scheme, we would have been done. To enable this, we will use similar techniques
as used to convert any functional encryption scheme to a function hiding functional
encryption scheme [BS15]. Namely, we will compute a symmetric key encryption SKE of
the index i (denoted as ctk;). We will hardwire ctk; in the function secret key instead of
the index i. The corresponding secret key SKE.sk; will be put in the private component
v, which will be used to decrypt ctk; to learn index i.

This might seem to be enough, but we face yet another issue. Learning DB; in the
clear upon decryption can reveal information about the index i to the Server. To fix this,
the decryption will output the encryption of DB; under another secret key SKE.sky of
the secret-key encryption scheme. We will put this key in y component of the message
along with a PRF key to derive randomness to compute the encryption. To make the
proof go through, we need to use another encryption key SKE.sk; and compute another
ciphertext that will be hardwired in the functional secret key, along with a mode variable
and a separate slot in y used in encryption. This is done in a standard fashion inspired
by [BS15].

While these are the ideas to convert an x-fast PHFE scheme to a SKDEPIR, they
immediately extend to converting a y-fast PHFE scheme to a SKDEPIR scheme. The idea
is that while encrypting one could set x = L and just use the hidden slot y alone. Now,
the database DB will also be a part of the hidden input.

Conversion of an f-fast PHFE to SKDEPIR scheme is a slightly different. The idea is
yet again a natural one. Instead of now encrypting DB inside the cipherthext, the client
will process it as a part of a function key skpg. To look up an index ij, the client will
generate ciphertexts ctpyre ;. These ciphertexts will encrypt a public component x; = L
and a secret component y; = (SKE.sk,rj,i;, L) where SKE.sk is a secret key of a secret
key encryption scheme chosen once and for all by the Process algorithm and r; is a
randomness of length polynomial in A, and L represents an additional slot used in the
proof. The function key is set so that upon decryption we get SKE.Enc(SKE.sk,DB; ;).
Now using SKE.sk client can learn DB;.. Observe that the function corresponding to the
PHFE secret key on the input encrypted inside the ciphertexts takes time 7' which is
polynomial in A and logn in the RAM model. The length |y;| is also polynomial in
A and logn. Therefore, the scheme satisfies the desired efficiency properties. Owing
to similarities, we omit a formal treatment of this scheme. Below we give a formal
description of how to convert an x-fast PHFE to a SKDEPIR scheme.

Ingredients for the constructions Our first ingredient is a PHFE scheme PHFE =
(Setup, Enc, Keygen, Dec) that is additionally x-fast. We also use a secret-key encryption
scheme SKE = (Setup, Enc, Dec).

Construction: x- fast PHFE to SKDEPIR

+ Keygen : On input 1*, we run (mpk, msk) « PHFE.Setup(1*). We also sample three
secret keys for a secret-key encryption scheme {SKE.sk; « SKE.Setup(lA)},-e[g].
We additionally sample a PRF key kpge for a PRF = (Setup,Eval) with input
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Computation ¢(f,x,y)

Hardwired: Ciphertexts ctkj, ctkz and ¢ € {0,1}*
Input: x =DB and y = (mode, a1, a», a3, as)

Output: p
« If mode = 0, parse a; = SKE.sk;, @ = SKE.skp, a3 = kpgr otherwise parse
CK4=SKE.Sk3.
-« Case mode = 0: Compute ¢ <« SKE.Dec(SKE.skj,ctk;) and output p =

SKE.Enc(SKE.sky, DB;; PRF.Eval(kpgr, t)).

« Case mode = 1: Output p = SKE.Dec(SKE.sks, ctks)

Figure 2. The computation ¢(f,x,y).

and output lengths implicitly defined. The output of this algorithm is 2 =
(mpk, msk, SKE.Skl, SKE.Skz, SKE.Skg, kpRF).

* Process : On input 2 and DB e {0,1}", we set the public-input x = DB and
y = (mode = 0, a; = SKE.sky, @y = SKE.sky, a3 = kprr, @4 = L) (Where the mode is a bit
that can take two values in {0,1} and L will be used in the proof. The algorithm
outputs DB = (x = DB, Ctpure = PHFE.Enc(mpk, (x,))).

* Query(k,i) : We sample a random string ¢t « {0,1}* along with the following
quantities:

- Compute ctk; « SKE.Enc(SKE.skj, 1),

- Compute ctky < SKE.Enc(SKE.sky, 0) and ctks = SKE.Enc(SKE.sks, ctks),

- Compute skf < PHFE.Keygen(msk, f) for a RAM program f where we describe
the computation ¢(f,x,y) in Figure 2. Output of the algorithm is o = (f, skr)
and st = L.

« Resp(c = (f,skr), DB = DB, ctpyre) : Output p = PHFE.Dec/-DBskr cterre (14),

* Dec(oc = (f,ske),p,k = (mpk, msk, SKE.ski, SKE.sko, SKE.sks, kprr), L) : Output
SKE.Dec(SKE.ska, p).

We now prove various properties associated below.

Correctness: The correctness follows from the correction of the SKE, and PHFE schemes.
Note that Process encodes DB by computing a PHFE ciphertext ctpyre encrypting DB in
the public component and SKE secret keys (SKE.sk;, SKE.sky) and a PRF key in the secret
component. Query on input i, produces a PHFE function secret key that upon decrypting
the ciphertext produces an SKE encryption of for any index i, under SKE.sky. Resp then
simply performs this decryption to come up with p, which is a SKE ciphertext encrypting
DB; using key SKE.sk;. Finally, Dec uses SKE.sk, to learn DB;.

Efficiency: We now bound the running time of Query and Resp.
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+ Running time of Query: Observe that Query computes a PHFE secret key ske for
a function f that has a size polynomial in A and logn. This step takes time
polynomial in 1 and logn as KeyGen algorithms of PHFE takes polynomial time.
Further, to construct f, the Query algorithm constructs ctk; and ctks, which also
take time polynomial in A and logn.

+ Running time of Resp: Resp simply performs PHFE.Dec/-PBskictenre(11)  Since
PHFE is x-fast the running time of decryption is (Tgf{f,x,y) + |f1P + |y|%)poly(A, |¢|)
for some constants fr,f,B,, since PHFE is x-fast. Observe that Ty .,) is
bounded by polynomial in A and logn as it consists of a constant number of SKE
decryptions/encryption, a PRF computation, and a single lookup of DB at an index
i. Furthermore, y is of size polynomial in A as it consists of a PRF key along with
SKE secret keys. Finally, f is of size polynomial in A and logn as argued above. As
a result, total time complexity of Resp in the RAM model is polynomial in A and
logn.

We now prove security for the constructed SKDEPIR scheme.

Theorem 10. Assuming PRF is a secure pseudorandom function, SKE is secure secret-
key encryption scheme and PHFE is a secure partially hiding functional encryption scheme
satisfying security Definition 7, the SKDEPIR scheme described above satisfies the security
Definition 23.

We prove this by providing a set of indistinguishable hybrids. The first hybrid
corresponds to the first distribution of the security game, whereas the last hybrid
corresponds to the second distribution. The simulator is implicit from the distribution
in the last hybrid. We then formally describe our simulator. We use properties of various
primitives involve to prove that the intermediate hybrids are indistinguishable.

* Hj is the first distribution of the SKDEPIR game, where the adversary receives

(DB, {ij}erers DB = (DB, ctpure) , {0 = (fj,skfj)}je[g]) where ctpurg, sk are computed
as follows:

(mpk, msk) « PHFE.Setup(1%), {SKE.sk; « SKE.Setup(lA)}iE[g], kpre < PRF.Setup(1%)
x=DB, y=(mode = 0,SKE.sky, SKE.sky, kpgrr, L)

ctpure = PHFE.Enc(mpk, (x, y))

ctky,; = SKE.Enc(SKE.ski,7;),  ctky ; = SKE.Enc(SKE.sk, 0),

ctks,; = SKE.Enc(SKE.sks, ctks ;)

tj —{0,1}* sk, = PHFE.KeyGen(msk, f; = f[ctky,;, ctks j, ¢;])

* Hy In this hybrid, the only change is that ctks ; is now computed as an encryption
of ctky ; that is computed differently. ctk, ; is now computed as an SKE encryption
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of DB; using randomness derived from %pgg:

(mpk, msk) « PHFE.Setup(1!), {SKE.sk; « SKE.Setup(1*)}ic[3), kprr < PRF.Setup(1%)
x = DB, y = (mode = 0, SKE.sk;, SKE.sky, kpgr, J_)
ctpure = PHFE.Enc(mpk, (x, y))

Ctkl,j = SKE.Enc(SKE.sk,, ij), Ctkz)j = SKE.Enc(SKE.sko, DBij; PRF.Eval(%prgr, tj)) ,

] ctks j = SKE.Enc(SKE.sks, ctky ;) \

tj — {0,1}* sk, = PHFE.KeyGen(msk, f; = f[ctky,j, ctks j, ¢;])

Observe that H; and H, are indistinguishable due to the security of SKE. The key
SKE.sks is hidden from the adversary.

* Hs In this hybrid, the only change is that we now compute ctpyee differently. The
private component y is now designed so that it sets mode = 1. The secret keys
SKE.sk;, SKE.sk, and the PRF key kpgr is removed and they are replaced with SKE.sks:

(mpk, msk) « PHFE.Setup(1}), {SKE.sk; < SKE.Setup(1*)}ic[3), kprr < PRF.Setup(1%)

x=DB, |y=(mode=1,1,1,.1,SKE.sks)]

| ctoure = PHFE.Enc(mpk, (x,)) |

ctky,j = SKE.Enc(SKE.sky,7;),  ctky,; = SKE.Enc(SKE.sky, DB;;; PRF.Eval(kpge, £;)),
ctks,; = SKE.Enc(SKE.sks, ctks ;)

tj <10, % skr, = PHFE.KeyGen(msk, f; = f[ctky j, ctks ;, 2;])

Observe that H, and Hj are indistinguishable due to the security of PHFE. Observe
that in both the cases ¢(fj,x,y) produce the same outcome ctky ;. Therefore
due to the security of the PHFE scheme these hybrids are computationally
indistinguishable.

* Hy4 In this hybrid, the only change is that now we encrypt ctk; ; as an encryption of
0:

(mpk, msk) < PHFE.Setup(1'), {SKE.sk; « SKE.Setup(1*)},c[3), kprr < PRF.Setup(1%)
x=DB, y=(mode=0,.1,1,.1,SKE.sks)

ctpure = PHFE.Enc(mpk, (x, y))

’Ctkl’j = SKE.Enc(SKE.sky,0) ,  ctky ; = SKE.Enc(SKE.skz, DB; ; PRF.Eval(kprr, ¢/)),

ctks ; = SKE.Enc(SKE.sks, ctky ;)

tj —{0,1}* sk, = PHFE.KeyGen(msk, f; = f[ctkyj, ctks j, ¢;])

Observe that H; and Hy4 are indistinguishable due to the security of SKE. The key
SKE.sk; is hidden from the adversary.

* Hs In this hybrid, the only change is that to compute ctk, ; instead of deriving
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randomness using the PRF key kpge:

(mpk, msk) « PHFE.Setup(11), {SKE.sk; < SKE.Setup(1!)}ic[3), kprr < PRF.Setup(1%)
x=DB, y=(mode=0,.1,1,.1,SKE.sks)

ctpure = PHFE.Enc(mpk, (x, y))

ctky ; = SKE.Enc(SKE.ski, 0), ctky,j = SKE.Enc(SKE.sky, DB;;) |,

ctks j = SKE.Enc(SKE.sks, ctky ;)
tj —{0,1}* sk, = PHFE.KeyGen(msk, f; = f[ctkyj, ctks j, ¢;])
Observe that Hs and Hs are indistinguishable due to the security of the PRF. The

key kpge is hidden from the adversary and appears only in the form of values
PRF.Eval(kpgr, L‘j).

* He In this hybrid, the only change is that ctk, ; are now computed as an encryption
of 0:

(mpk, msk) < PHFE.Setup(1'), {SKE.sk; « SKE.Setup(1*)};c[3), kprr < PRF.Setup(1%)
x=DB, y=(mode=0,.1,1,1,SKE.sks)

ctpure = PHFE.Enc(mpk, (x, y))

ctky ; = SKE.Enc(SKE.ski, 0), ’Ctkz,j = SKE.Enc(SKE.skj, 0)
ctks j = SKE.Enc(SKE.sks, ctky ;)

tj —{0,1}* sk, = PHFE.KeyGen(msk, f; = f[ctkyj, ctks j, ¢;])

o

Observe that Hs and He are indistinguishable due to the security of SKE. The key
SKE.sk; is hidden from the adversary.

From the description of the hybrid above, we now define the simulator S below:
Simulator S:

+ Simulating DB: We compute ctpyre = PHFE.Enc(mpk, (x,y)). where x = DB and
y=(mode=1, 1,1, 1,SKE.sks).

+ Simulating skr: We sample t; « {0, 134, ctky,; = SKE.Enc(SKE.ski,0) and ctky ;
SKE.Enc(SKE.sk,0) and ctks; = SKE.Enc(SKE.sks,ctky ;). Then, we set sk
PHFE.KeyGen(msk, f; = f[ctky, ctks, ¢]).

4 Bounded LGRAM with Fixed-Memory Security

In this section, we present our LGRAM with fixed-memory security. The construction is
based on the works of [GS18a,G0OS18,AL18,KNTY19].

Roughly speaking, [GS18a] constructs a circuit garbling scheme from adaptively
secure LOT with local proof of security and lifts it to an adaptively secure scheme using
somewhere equivocal encryption, which is further developed to obtain a garbled RAM
scheme with fixed-memory security (or unprotected memory access) [GOS18]. The work
of [AL18] modularizes the construction and shows how to obtain a succinct garbling
scheme using obfuscation for circuits with polynomial-sized domains, which is in turn
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GenAugCPU [{hkr, hz, |DT|}TE[ﬂ7 hkworky k] (t)

Hardwired. hk;, hkyork, LOT hash keys for the tapes;
hz, |Dy|, LOT hashes and lengths of the input tapes;
k, PPRF key.

Input. ¢ € [Thax], current time (step number).

Output. AugCPU;, the garbled “augmented step circuit” at time ¢,
computed as follows.
1. Obtain randomness from PPRF:
(76, {Lys i p }ip, 70T, S¢) « PPRF.Eval(k, t)

(7141, {Le+1,ip}ip) < PPRF.Eval(k, t +1) with 9, 7S removed

2. Garble AugCPU (Figure 4):

hk, A., |D , hkwork,
AugCPU, « AugCPU {hks, Az, | rl}re[T]LOT work

o1, { L4, }ih> Ty

output AugCPU, «— GC.Garble(AugCPUy, 7r;, {Ly; 5 }ip; 7S)

Figure 3. The circuit GenAugCPU in Construction 1.

implied by FE for circuits. The work of [KNTY19] shows that selectively secure LOT
suffices and that such an LOT is implied by FE for circuits.

All of the works consider garbling schemes with no public input, and the security
notions for their final products are simulation-based. Consequently, the length of the
garbling necessarily [AIKW13] grows linearly with the input and output lengths. In
contrast, our notion of garbling has a short private input and we are interested in
indistinguishability and succinctness.

4.1 Construction

Ingredients of Construction 1. Let
+ iO be a circuit obfuscator,
+ LOT an updatable LOT with fast initialization,
LOT = (LOT.HashGen, LOT.Hash, LOT.SendRead, LOT.RecvRead,
LOT.SendWrite, LOT.RecvWrite, LOT.HashOs),
« GC = (GC.Garble, GC.Eval) a circuit garbling scheme, and
« PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.

Construction 1 (bounded LGRAM with fixed-memory security). Our bounded LGRAM
works as follows:
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{hkn hry |DT|}TE[7']a hkwork,

LOT

AugCPU; :  AugCPU
To1, {Lts1,i 0}y Tt

(w, st;—1, rdata;_1, hwork,t—l)

Hardwired. hk;, hkyork, A7, |D;|, see Figure 3;

Tos1, {Lt+1.0 Vids to be selected for evaluating AugCPU,,1;

ot LOT randomness to select 7, L for AugCPUy,1.
Input. w,st;1, rdata;_1, short input, old state, last-read cell content;

hwork -1, LOT hash of the old working tape.

Output. doney, 73,1, wdatay, out;, produced by MPv-P7 (w) at time ¢;
selected (or LOT ciphertexts to select) 7, L for AugCPU,,1;
computed as follows.

1. Run one step of M:
(doney, st;, 14,1, wdata,, out;) « CPU(|D4|, ..., |Dy|,w, st;_1, rdata;_1)
output done;, 14, iy, wdata;, out;

2. Split 797, and 7441, {Ls+146 )i by the input components of AugCPU:

rLOT rLOT w st rdata _h
t,rct> © t,wet? t+12 T+ e+l 0 T+l

. t . LOT
{L?iu,b}le[&n],b’ {L:+1,i,b}le[€st]1b’ — (g, 7ea1, {Lt1ip bih)
dat. h
{Lya s Vieltemnlbs L p Vieltuasul b

T T T T

3. Select 7, L for w, st; if ~done;:

t t
output w & w5y, {Lf; ytielanls  Ste ® Mg, {L7, ;g 1 Hielan)

4a. If 7, € [T], select n, L for Dy, [i;] ||0%em—ben and hworkt = Pwork ¢-1:
hthathih .rLOT
data: dat trct
{(b® M iDL s Yl s ™
data: dat
and  {(0@ w7 ED LT, o Yelenwa M\ [een]

h 3 ,
and  hworkt ® 7Ty, {Lt+1,i,hwork,, [7] Vielbuasul

output rct; — LOT.SendRead (

4b. If 7, = work, select &, L for Dyork¢-1[i:] and updated Awork:

hkwork, Awork,t-1, iz,
output rct, — LOT.SendRead ( A LOT)

datar: dat 3Tt ret
{(b ® 77”;+? : [l]) ||L;+iia,b}ie[€CELL]sb rC
hKkwork, Awork,t—1, ¢, Wdatay,

and wct; « LOT.SendWrite j s ptO7
{(be ”?+1[l])||L?+1,i,b}i€[€HASHJ,b) et

Figure 4. The circuit AugCPU in Construction 1.
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+ Compress(1%en, 1% 7, D) takes as input the cell length, the address length, the
tape index, and the tape content. It runs

hk; < LOT.HashGen (1%, 1%ddr) (h,,D,) « LOT.Hash(hk,, D,),
and outputs digest; = (hk;, A;, |D;|).

* Garble(Tmax, M, {digest; },c|7]) takes as input an upper bound of the running time,
the machine, and the input tape digests. It runs

hkwork <~ LOT.HashGen(1%ms 1%400r)  p o o« LOT.Hash0s(hkyork, Tmax)s
samples PPRF key %, prepares GenAugCPU using M (Figure 3), and runs
GenAugCPU <& iO(GenAugCPU[E, {hky, ks, |D;[}reir1, hkwork])-

GenAugCPU is padded to size poly(A, |[M|,1og Tmax) for the security proof to work.
The algorithm computes using % and splits 7, L for AugCPU; as defined in Figure 4,

. st _rdata _h
mo: oAy, e, wy,
. st rdata h
{Luipliv o ALY, Yielbalbr L7, p ietal,oo {L1, b Yieltomnlbr {17 p Yieltuasul b
sets sty = 0%, rdatag = 0%=1, and outputs
ii - hkwork, GenAugCPU, sto & 7%, rdatag @ 7193, hyoro @ 7,
= st ) rdata . h .
(LT sto iy Yielal> LY rGatag i) Ve femns ] {Ll,i,hwmk,o (i) i€l aasia]»

{Lip = (b @ [iDILY;  tielan),be(0,1}-

the running time, the machine, the input tape digests, the garbled machine, and a
set of labels. It parses M as specified in Garble, and does the following:

1. Initialize by

(h;,D;) «— LOT.Hash(hk;,D;)  for 7 € [T],
(Fwork,0» Duwork,0) < LOT.Hash(hkwork, 07ms),

sty — 0%, rdatag « Qfrr t 1.
2. Writing
X; = w||st;_1]|rdata;_1 ]| Awork,t-1,
Y, = parts of (X;41 @ m441) and L.y and rct;, wety,
run'*

AugCPU, — GenAugCPU(2),
(doney, 73, i;, wdata,, out,, Y;) «— GC.Eval(AugCPU,, X, & 7,, {Ly;x,1i1})s

and halt if done; is set. Otherwise, output out; and continue.

14X, itself is not needed for evaluation and is not supposed to be efficiently computable. The values
of (X ®m) and {L,; x,[;}; for t =1 are read from M, and those for ¢ > 1 are computed by evaluating

AugCPU,_; as explained later.
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3. If r; € [T], pick rct; from Y; and run

{(rdata, [i] ® 7S |LI%® | Yielgn] < LOT.RecvRead?" (hky,, fr,, i¢, rcty).

t+1,0 t+1,i,rdata;

Combine it with parts of (X1 ® m:41) and L,y already in Y; to obtain
(Xi41 ® m141) and { Ly x,., (i) }i-
4, Otherwise, 7; = work, then pick rct;, wct; from Yy, run

{(rdata;[i] ® ﬂ_;iicla) ”L;(iit?,rdata,[i] Yielten] < LOTReCVReadDWDrk’t*l(hkwork, hwork,t-1,1t, rcty),
- hkwork, Fwork ¢
h h + Duworkte works fbwork,t—15
{(hwork,t (&) ﬂt+1,i)||Lt+1,i,hwork,t[i]}ie[eHASH] «— LOT.RecvWrite k,t-1 (it’wdatat’ W tt ,

updating ﬁwork,t_l into ﬁwork,t. Again, combine it with parts of (X;,; @ 7441) and
L, already in Y; to obtain (X;41 @ 7441) and {Ly1, x,., (i1 }i-

5. Let ¢t « ¢ +1 and go back to step 2.

Correctness and Efficiency. They follow from those of all the ingredients and the
invariant that AugCPU, is evaluated on w,st;_j,rdata;_1, Aworks—1 coinciding with those
from the execution of M. We remark that the evaluation time is not instance-
specific, because processing the empty working tape for LOT already takes time
Tmax poly(4, |M]).

4.2 Security

Theorem 11 (€). Suppose in Construction 1, iO is secure for polynomial-sized domains
(Definition 11), LOT is read- and write-secure (Definitions 14 and 15), and GC, PPRF are secure
(Definition 16 and 17), then the constructed scheme is fixed-memory secure (Definition 4).

The proof follows the pebbling strategy in [GS18a]. Recall that in ExpfGR Ay the LGRAM

we write M (w;) hereafter in this proof. Along the hybrids from Exp? .y t0 EXPlgrans
we gradually switch the trailing steps from those for M (wy) to those for M (w).

Specification of Hybrids. Each hybrid Hi; is indexed by a natural number
0<t<Thmax+1and a set s C [Tmax]- The indices t,s specify how AugCPU, is garbled
and what it does:

« when ¢ < t, it runs the ¢ step of M (wo);

- if ¢ ¢ s, the step is garbled normally;

- if ¢ € 5, the step is simulated with true randomness for labels and LOT
encryption that selects the labels for AugCPU,,1;

« when ¢ = t, it is simulated and outputs the labels so that AugCPUt,; runs the (t + 1)t
step of M (w»), i.e., it switches the execution from M (wg) to M (w1);

« when ¢ > t, it is garbled normally but runs the ¢ step of M (w;), due to the
behavior of AugCPU;.
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There are two special cases:

« when t = 0, we give the LGRAM labels for w; (think of them as the output of the
zeroth step circuit) to the adversary so that AugCPU; runs the first step of M (w;)
when the LGRAM is evaluated normally;

« when ¢ > T for ¢ € {t} Us, neither execution has a ™ step, and we simulate this
step as if it were the last step of the execution, whose output would not select any
label for the (t +1)%t step.™®

In the parlance of [GS18a], consider a line graph where vertex ¢ represents step ¢,
+ a gray pebble is placed on ¢ € s if ¢ < t (the step is being simulated), and
+ a black pebble is placed on ¢ > t (the step is done for good).

However, the first black pebble (on t) is special for us as step t facilitates the transition

from M (wo) to M (w1). We will use an optimized pebbling sequence [GS18a] to connect
the hybrids.
Formally, let

stS(M, Dy, ...,D7,wo) = (sto,...,Stor-1),
StS(M,Dq,...,Dr,wi) = (stia,...,Stir-1),
addrS(...,wp) = addrS(...,w1) = (11,11, ..., T7-1,17-1),
writeS(...,wq) = writeS(...,w;) = (wdatay, ..., wdatar_),
outS(...,wqg) = outS(...,wy) = (outy,...,outyr_q).

We also write Dyork;: for the working tape content, rdata, for the read cell content, and
hz, hworkt for the LOT hashes — due to the constraint of fixed-memory security, the values
of them in the two executions coincide. Define

Xy = wb||stb,t-1||rdatat-1||hwork,t-1-
In His, we change GenAugCPU in M to

1O | GenAugCPU’

{hkl'a hr; |DT|}T€[7—]) thOI’k;
t, s, Bgyus, {76, {Ltip}ips mt}te{t}Us ’

where
* GenAugCPU’ is shown in Figure 5,
« Egyus is a PPRF key punctured at {t} U's,
« /s and L;; 3’s are random strings, and

- AugCPU,’s are the simulated garbled step circuits.
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{hkT7 hT7 |DT|}TE[7—], thOFk7

GenAugCPU’ . _ (2)
1,8, Rityus, {74, {Lti b Yios AUGCPU; }reqtyus
Hardwired. hk;, hkyork, 27, |D;|, see Figure 3;
t, s, switching time, hardwired step numbers;
Etyuss punctured PPRF key;
{7, {Lt;ip}ip, AugCPU, }seqtyus, hardwired randomness and garbled steps.
Input. ¢ € [Thaxl, current time (step number).
Output. AugCPU,, computed as follows.

1. Check for hardwired steps, if ¢ € {t} U s:

output hardwired AugCPU, and terminate

2. Otherwise, obtain randomness, either hardwired or from PPRF:
(76, {L i, 70T, 7EC) — PPRF.Eval(Byt)us, £)
hardwired, ift+1e{t}us;
(7441, {Les1ip tin) < PPRF.Eval(l:a{t}Us, t+1) with ri97, rSG removed,

ift+1¢{t}Us;

3. Garble AugCPU (Figure 4) as done in GenAugCPU (Figure 3):

{hkT7 hT; |DT|}T€[7—]’ thOI’k7

LoT
Tt { L4, }ih> Ty

output AugCPU, «— GC.Garble(AugCPU,, 7r;, {Ly }ip; 7S)

AugCPU; « AugCPU

Figure 5. The circuit GenAugCPU’ in the proof of Theorem 11.

45/ 80




We still use 74, L; ; 5 for part of the PPRF output when ¢ ¢ {t} Us.
AugCPU,’s are generated by

0, ift<tandtes;

GC.Garble(1A6PYl 7, . Xo: @ 7s, {Ls; x,,1i1}:) With b = {1 oot
, ift=t;

where GC.Garble is a simulator for GC, and Z;, for b € {0,1} consists of (done, 7,1,
wdata;, out;), parts of (Xp 41 @ 7:41) and Ly, and rcty, wet; (cf. Figure 4):

« If ~done,, then Z;, contains (dependent on b)
t
wo & Ty AL oy 1) iellals Stor © T AL 1 sty 117 Viellnl-

« If 7, € [T], then Z;, contains (independent of b)

hthyDTp ity
{(rdata;[i] ® ”;ﬂ?ta [z]) ”L;iitirdatat[i] }ie[fceu] ,
{(0 @ 7P DL o el tomu\ el

h h
Pwork,t © 74,1, {Lt+1,i,hwork,t[i] }ie[fHASH]-

rct; < LOT.SimRead (

« If 7, = work, then Z;, contains (independent of b)

hkwork, Dwork,t—l, it,
. datar: dat:
{(rdata; [i] ® m T [ED LT 7 rdata, 1) Vielbore)

>

rct, < LOT.SimRead (

hkwork, Dwork,:-1, 1, Wdatay,

wct; < LOT.SimWrite , _ :
{(Awork,t [2] © 7[?+1 [l])”L?ﬂLLi’h‘Nork,t[i]}ie[ZHASH])

Connecting the Hybrids. We start with the experiments in Definition 4:

Claim 12 (€). ExpgGRAM ~ Hr,.+1,0 and EXpiGRAM ~ Ho .

It remains to connect Hr 410 and Hpg, for which we employ the pebbling strategy
of [GOS18]. We state our claims in parallel with the pebbling rules:

Claim 13 (Rule A; ). A gray pebble can be placed on or removed from t* if ¢* =1 or a gray
pebble is placed on (¢* — 1). Formally, Hs ~ Hy gxyus for t* ¢ sand t* < tift* =lort* —-1les.

Claim 14 (Rule B; ). A gray pebble on t* can be replaced by a black pebble if black pebbles are
placed on all vertices greater than t*. Formally, His ~ Hi_1e\t-1) if t —1 € s (here, t* =t - 1).
Moreover, Hi g = Ho .

I5This pretention trick unifies the usage of garbled circuit security. Since an out-of-range ¢ step is
pretended to repeat the last existent step, simulating it removes all the labels for the (z+ 1)t step, and
consequently (and inductively), we can pretend that the set of labels for the ( + 1)t step corresponding to
the input to the last existent step were revealed, so that the (¢ + 1)t step can also be pretended to repeat
the last step. Without pretending, we will need another security notion of garbled circuits, namely that
it can be simulated without any output if no input labels are given. This notion holds for many known
constructions, but is not implied by the usual version.
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~ Rule B

I

St0,7 st; 8 St1,9

L]

~ Rule A, repeat

e ]

{4,6,7}

Legend: box shading for pebble, star for switching execution,
curved arrows for labels selected for next garbled step.

Figure 6. Typical hybrid transitions in the proof of Theorem 11.

Claim 14 is different from rule B in [GOS18] (no need for a gray pebble on (¢* — 1) for us)
because the step corresponding to the first black pebble is always simulated.

It is helpful to consider a virtual vertex 0 (corresponding to M and the LGRAM labels),
where a gray pebble is initially placed, and put 0 into s. With the virtual vertex, the
separate case t* =1 in rule A is just a special case of t* —1=0 € s, and the separate
case Hip ~ Hop in rule B becomes a special case of the general rule (which would
read Hy (o) = Ho,» instead). However, for consistency with existing literature, we will go
without the virtual vertex in the text below.

The hybrid sequence can be built using an optimized pebbling strategy:

Lemma 15 ([Ben89,GS18a]). There exists an efficient algorithm that on input 1Tmax computes
a pebbling sequence for a line graph of size Tmax With O(logTmax) gray pebbles at any time
during the poly(Tmax) moves using rule A or B, starting with no pebbles and ending with
black pebbles on all vertices. As a corollary, the efficient algorithm can compute

to = Tmax + 1,50 = 9, c1, 11, 51, c2, 12, 99, e
Cpoly(Tmax)~1> tpoly(Tmax)-1 = L Spoly(Tima)-1 = D5 Cpoly(Timax)> tpoly(Tima) = 05 Spoly(Tmax) = 25
such that max; |s;| = O(log Tmax) and Hy; s, ; = Hy,s; by Claim c;j € {13, 14}.
A typical sequence of hybrid transitions is depicted in Figure 6.
Proof (Theorem 11). By Claims 12, 13, and 14, and Lemma 15, EXp? .t & EXPLgran- O

We remark that for full rigor, Thax is a random variable, not a fixed number for each 1. It
cannot be derandomized even in the non-uniform setting, because .4, given hk’s returned
for the input tapes, can choose Ty adaptively, whose randomness originates from that
of the LGRAM scheme. This phenomenon is not uncommon and can be solved by either
guessing Thax (or targeting a specific Thax in the non-uniform setting), or considering a
polynomial upper bound of Thax and supplying appropriate definitions for hybrids with
out-of-range indices.
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Proof (Claim 12). Both follow from the security of O for polynomial-sized domains. O

Proof (Claim 13). Lett, s, #* be such that t* ¢ sand ¢* < t and either ¢* =1or#* — 1€ s. The
hybrids below are mostly identical to H; s except the contents hardwired into GenAugCPU’
are modified. We specify them:

* Go. This is just Hi s, where the hardwired information is

{hk‘DhT) |DT|}T€[T]7 thOI‘k, t’ S, ];{t}US’
{me,{L¢ip}ip, mt}te{t}w-

* G;. In this hybrid, the PPRF key £ is punctured at {¢*,t} U s instead of {t} Us, and
the (¢*)™ garbled step (but not its randomness) is hardwired into GenAugCPU’, i.e.,
the hardwired information is

{hk‘[’ hTa |DT|}T€[ﬂ1 thOI’ka t7 a ]%{t,t*}US ’
{m, {Lt,i,b}i,b, AU’gC\PUt}te{t}Us, mt*,

where the newly hardwired information is computed using (Figure 5 Step 3)

(e, {L i b }ips rth)T, rf*c) «— PPRF.Eval(k, t*),

{hkn hT7 |DT|}TG[7'] s hkwork;‘

LOT

AugCPU;» « AugCPU
Tpe1s {Loxs1,ib bips Tyr

AUECPU,+ « GC.Garble(AugCPUy, s, {Lx ;b }ip; rS0).

This is different from AugCPU,’s for ¢ € {t} Us, which are simulated. The absence
of mx and {Ls;}ip in GenAugCPU’ is fine, because they are only used in Step 2
(Figure 5) for t =¢* — 1 and ¢ = t*. In G;, that branch is not taken for those two
values of ¢ as both of them are handled by Step 1. Therefore, the two versions of
GenAugCPU’ in Gy and G; have identical truth tables (and are padded appropriately
to the same size), and Gy ~ G; follows from the security of iO for polynomial-sized
domains.

* Gy. In this hybrid, PPRF.Eval(%,¢*) is replaced by a uniformly random string, i.e.,
the hardwired information is

{hkT7 hT7 |DT|}TE[ﬂ7 thOFk, t’ {t*} U S, I;{t,t*}U§7
{”ta {Lt,i,b}i,ba A?gC\PUt}te{t}Us’ A?gC\PUt’U

where

(e, AL i b }ib, r't‘PT, rtG*C) — ‘ uniformly random

>

{hkT7 hT’ |DT|}TE[7-]> thOI‘k’

LOT ’
Tpni1, ALe% 41,06 }ios T

mt* — GC.Garble(AugCPUt*, T yx, {Lt*,i,b}i,b; rtG*C).

AugCPU; «— AugCPU

G; ~ G follows from the security of PPRF.
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* Gs. In this hybrid, AugCPU,« is simulated instead of being normally generated, i.e.,
the hardwired information is
{hk‘h hT) |DT|}TE[7—]7 thOI‘k’ t’ {t*} U S, é{t,t*}uw
{70, {Luip}is, AUCPU treqtyus,  AUCPUp,

where

r=-- ="
(7wexs {Lex i }is rl‘*OTl ,75 ) « uniformly random,
L - -4

AugCPU;+ | GC.Garble(1"8Y], Zy 1, X+ @ 7y, {Los i x, o 101}) |

in the clear,
: . ..LOT
ZO,t* . 7Tt*+1; {Lt*+l,i,b}i,b mn rCtt* «— LOT.SendRead( ) rt*o,rct 5

in wctgx «— LOT.SendWrite(- - +; rtLPIVCt .

This is different from Z, s for ¢ € {t} U s, which might contain simulated rct,’s and
wcts’s. In Gy, the augmented step circuit AugCPU is garbled with truly random
e, {Lpr i p }ip, Tor - If t* =1, then 71, {Ly3}ip only additional appear in M and the
LGRAM labels given to the adversary as (Xo1 @ 71) and {Ly;x,,[}i- If t*-1¢€s,
then they are only additionally used to simulate

AugCPU_; & GC.Garble(. .., Zos 1, ...),

where Zg+_; contains only (Xo @ 7+) and {Ly; x, ,.[;]}i, Potentially in the clear,
in rct+_;, in wct_;, and by imagination.’® Also, AugCPU,;(Xo +) = Zo . It follows
from the security of GC that G, ~ Gs.

* G4. In this hybrid, Zo; contains rct,wct simulated using LOT.SimRead and
LOT.SimWrite as needed, instead of normally generated ones, i.e., the hardwired
information is

{hkr, hra |Dr|}re[7'], hkwork, t: {t*} Us, I;{t,t*}Us,
{ﬂta {Lt,i,b}i,ba mt}t&{t}Uﬁ; mt*a

where

| |
(e, {Lg=iptip ,FLOT ) « uniformly random,
[

AugCPU,+ < GC.Garble(1MEPY! Z . Xo o @ 7y, {Lv i x, o111 }1)5

in the clear,

K

. — $ B
ZO,t* : XO,t*+1 D 41, {Lt*+1,i,X0’[*ﬂ[i]}i mn rCtt* — ‘ LOTS|mRead( : )

in wct & ‘ LOT.SimWrite(- - -)

The LOT ciphertexts rct;«, wct;» are encrypted using truly random rLEPT in Gs. Each
database is known before its LOT hash key is provided to the adversary: for an

16When t* > T, none of m, {L ;5 }ip appears in Zg ;. We pretend X+ = Xor and that (Xo s @ mx)
and {t*,i,Xq [i]}; are revealed, imagining that the (5t step repeated the last existent step.
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input tape, hk; is provided after D, is chosen; for the working tape, Dyork -1 and
i;x, wdata;« are known once the adversary commits to the challenge M, wy, w1, after
which hkyork is provided. Therefore, it follows from the read/write security of LOT
that G3 =~ G4.

* Gs. In this hybrid, we hardwire m;x, {Ls; 5} into GenAugCPU’, i.e., the hardwired
information is

{(hke, B, ID: ey, Bkwork, 1 {E*YUS,  Egiusyus,
{6 ALt }ins AUBCPU Y eqjuss | ens {Liv i }is | AUGCPUpe.

G4 ~ G5 follows from the security of iO for polynomial-sized domains.
By inspection, Gs is just Hi ;s+jus. Therefore, Hi s = Go = Gs = Hi (4+}us- mi

Proof (Claim 14). Let t,s be such thatt=1or t-1 e s. The hybrids are mostly identical
to Hi ; except for the contents hardwired into GenAugCPU’:

* Go. This is just H; 5, where the hardwired information is

{hk‘l’yhra |DT|}TE[7—]a thOI’ka t7 Sa Ig{t}USa
{ms, {Lt,i,b}i,ba mt}te{t}u-

* G;. In this hybrid, we no longer directly hardwire ;,{L;;s};» into GenAugCPU’ for
t =t, i.e., the hardwired information is

{hk‘hhT) |DT|}T€[ﬂ, thOI’k7 t’ S, l;{t}US’

{me {Ltin}ip, AUgCPUt}’

-
|
L e e e e - - - - = A

where

(m, {Ltip}ip) & uniformly random;
M, LGRAM labels « Xo1 ® 1, {L1;x,,(11}is - - -» ift =1
11AugCPUl 70 1,
Xot-1 D 7-1, {Lt-1,i, X111 }i) ’
Zo-1 : Xot @ mt, { Ly x,,[ }i in the clear, rcti_y, e, ift-1es;
/AugCPl 7
Xot @ mt, {Lti xo,[1] }i) ’

Au’gmlt_l & GC.Garble(

AugCPU; & GC.Garble(
Z1t t X1t @ 7, { Lt x, 00 i A0 the clear, ret, wety,  if t < Tiax.

Note that GenAugCPU’ still indirectly contains 7, {Lt,;  }; 5 Via M and LGRAM labels,
or Zpt-1. Removal of their direct hardwiring does not alter the truth table of
GenAugCPU’ as they are only used in Step 2 (Figure 5) for ¢t =tand ¢t =t — 1, a branch
never taken for those values of ¢ because they are handled by Step 1. By the security
of iO for polynomial-sized domains, Gy ~ G;.
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* Gy. In this hybrid, we change the input of AugCPU; from X+ to X; 1 by modifying the
permuted input and the labels selected for AugCPUy, i.e., the hardwired information
is

{hke, hr, IDelyrerrys hKworks £ s, Fityus,
{7t {L 1}, AUGCPU e, AugCPUL,
where
(mt, {Ltip}ip) < uniformly random;
M, LGRAM labels « | Xi1 @ 71, {L1; x,,[i] }i b- - -» ift=1;

- 1|AugCPU| ZOt 1
AugCPU;_; & GC.Garble( o ),

Xot-1 ® 7t-1, {Lt-1,i, X1 [i] i

Zoi-1 ¢ | X1t © m1, {Lf,i,Xl,tlil }i |in the clear, ﬁt—l, V/V‘Citt_l, ift-1e€ S;

AugCPU
11AuecPul 7, 4, )

X1,1 @ 71, {Lyix,, 01 }i

b

AugCPU; <& Gc.m(

Z1t : X141 @ a1, {Lty1i, x40 (i) i iD the clear, rcty, wety, if t < Tmax.

This change does not alter the distribution, i.e., G; = G, because 7; is a one-time
pad that hides Xj or X; 1 and either set of {Lt,  }i » chosen by X1 and X ¢ is simply
random.

* G3. In this hybrid, we undo the simulation of rct; and wct, i.e., the hardwired
information is

{hk‘hhT’ |DT|}T€[ﬂ7 thOI’k7 t’ S, ]’;{t}Us,
{4, {Le.i 0}, AUGCPU  }res,  AugCPUL,

where

(7, {Ltip}ip| 7O ) < uniformly random;

M, LGRAM labels « X11® 71, {L1;,x,,[i] }is - - - » ift=1
o 1lAugcPyl o
AugCPU;_;, < GC.Garble oD ,

Xot-1 @ -1, {Lt-1,i,X041[i] i

ZO,t—l : Xl,t ® 11, {Lt,i,Xl,t[i]}i in the clear, F&H, Vﬁt,l, ift-1¢ S5

1|AugCPU| , Z1 "

X11 @ w1, {Lyix,, 00 }i)

Zit: ‘ i1, {Lt+1ib }ip ‘ in the clear,| rct;, wct; |, if t < Tax.

Gy ~ G3 by the read/write security of LOT.

RagTPU, & Gc.m(

« G4. In this hybrid, we undo the simulation of AugCPU;, i.e., the hardwired
information is

{hkT7 hT} |DT|}T€[7—] ’ thOFk’ t’ S, ];{t}Us,
{ﬂta {Lt,i,b}i,ba mt}tes, mt,
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where

(7, {Lt,ip }ipr 707 |, 7EC ) €& uniformly random;

M, LGRAM labels « X11® 71, {L1;,x,,[i] }is - - - » ift=1
- - 1/AugCPUl 7
AugCPU;_; < GC.Garble e ,
Xot-1 0 7-1, {Lt-1,i, X1 [i] i
ZO,t—l : Xl,t ® 11, {Lt,i,XLt[i]}i in the clear, ﬁt—l, Vﬁt_l, ift-1¢€ S5

AugCPU; « AugCPU -

{hkT’ hTa |DT|}T€[T]7 thOI"k’]

Lo
41, {Lte1,ib }ibs Ty

mt «— | GC.Garble(AugCPUy, my, {Lt,i,b}i,b;' Y‘tGC) , if t < Tmax.

Since AugCPU(X1t) = Z14, it follows from the security of GC that G3 ~ Gs.

* Gs. In this hybrid, we change the randomness for step t to the PPRF evaluation,
i.e., the hardwired information is

{hk‘l’yhra |DT|}TE[7—]a thOI’ka t7 Sa é{t}USa
{”ta {Lt,i,b}i,ba WJt}tes> mt)

where
(e, {Lip i 0T, rEC) & ‘ PPRF.Eval(k, t) ‘;
M, LGRAM labels « X;; @ 7y, {Ll,i,Xl,l[i]}i’ e, ift=1;
o AueCPUl 70
AugCPU;_; < GC.Garble ,
Xot-1 ® 7t-1, {Lt-1,i X4 [i] i
Zot - X1t © m, {Lt,i,XLt[i]}i in the clear, F&t_l, th—l; ift-1¢ S5
{hk;, h;, |D;|} , hkwork,
AugCPU; — AugCpy |\ T TTETh Terel

41, {Lte1,i,b }ibs Ty

mt — GC.Garble(AugCPUt, TTt, {Lt,i,b}i,b; I”th), if t < Thax.

G4 ~ Gs by the security of PPRF.

* Gg. In this hybrid, we no longer puncture the PPRF key at t and no longer hardwire
the randomness nor the garbled step for t, i.e., the hardwired information is

{hk‘r; hl’a |DT|}TE[7-]a thOI’ka t - 17 S \ {t - 1}> ];{t—l}U(S\{t—l}) >

{ﬂta {Lt,i,b}i,b’ AugCPUt} te{t—-1}U(s\{t-1}) |

and M and the LGRAM labels given to the adversary contain X & 71, {Lyix 101
if t = 1. By the security of O for polynomial-sized domains, Gs ~ Gg.

By inspection, G is just Hi_j ¢\ t-1;. Therefore, H; s = Go = G = Hi_1 o\ (-1} - |
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5 Transformations of LGRAM

In this section, we describe the transformations of LGRAM to upgrade its security and
functionality. We adapt known transformations [CH16] to our syntax of bounded LGRAM
to go from fixed-memory security, to fixed-address section (Section 5.1), and to full
security (Section 5.2). We employ the powers-of-two transformation [AL18] to construct
an unbounded LGRAM from a bounded one (Section 5.3).

5.1 Fixed-Memory to Fixed-Address

Given an LGRAM with fixed-memory security, we construct one with fixed-address
security. Recall that in such a scheme, we want to hide the write sequence, consisting
of the contents written to the working tape. The addresses where each read and write
occurs are not protected, though. We employ a transformation due to [CH16] upgrading
fixed-memory security to fixed-address security, by encrypting the data before they are
written to the working tape. In more details, given a RAM M, we construct another
machine M’, which runs two copies of M in parallel and encrypts the two logical working
tapes of M using two puncturable PRF keys. Normally, only one copy is used and the
other mimics its memory access pattern. The idle copy is used in the security proof.

Ingredients of Construction 2. Let
+ LGRAM’ = (Compress’, Garble’, Eval’) be an LGRAM with fixed-memory security, and

« PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.

Construction 2 (LGRAM with fixed-address security). Our scheme works as follows:
« Compress(1%en 14dar 7 D) is the same as Compress’.

* Garble(Tmax, M, {digest; },c[7]) prepares M’ from M as shown in Figure 7, samples
B <& {0,1} and two random PPRF keys kg, k1, runs

(M, {L;,}i) < Garble'(Tmax, M’, {digest; }rc[77),
and splits {L!, }; », according to the part of input to M’ they select, into
B W, W, K K T data’
L} {Li,lg}i,b’ {Li,g}i,b’ {Li,bo ib’ {Li,é i,b’ {Li,b}i,b’ {Lg,vba ’ }i,b'
The algorithm sets and outputs

M = (M’, {labels for B = 8, Ky = ko, K1 = k1, T’ = 0, wdata’ = 1}),
Lip = LPILY,  forie [6],b € {0,1}.
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Machine M’ Transformed from M

Lengths. ¢ = poly(A, |M|,10g Tmax), ¢, = poly(A, |M|,1og Trax),
gziddr = laddr» g(;ell = Leell,
Y opr = YapDR, Coprr = 20crrr + O(log Tmax)-
Input (w’). B, bit indicating the active copy;
Wo, Wy, short inputs to the two copies of M;
Ky, K3, PPRF keys for the two copies of M;
T, progress of security proof;
wdata’, hardwired content of one cell of M’.
State (st’). ¢-1, current time step minus one (initially 0);
s~to,t_1, s~t1,t_1, optional old states of the two copies of M,
Ty-1, 111, location of the last-read cell.

Steps. Each step of M’ executes one step in each copy of M.

1. Translate rdata’ for M’ into rdata for M’:
ift=1lorr_1€[T]:
parse rdata;_; into rclf‘atiao,t_l||0‘7‘51~:LL“7‘3*SLL = mf‘aE\l,t_1||0€éELL_€CELL
if t # 1 and 7;_; = work:
compute %O,t—l, %LH
from rdata;_, = #'||(rdata,_1 ® PPRF.Eval(ko, ¢'))||(rdata; ;_; ® PPRF.Eval(ky, '),

if ¢ #0;
as Qfeerr (Qfers otherwise;
2. Execute one step in the active copy:
(doney, &BJ, 7;,1t, wdatag ¢, out;) < CPU(4, ..., ér, ws, s~tB,t_1, rdatag ;—1)

3. Optionally execute one step in the inactive copy:

(Oest, 0€CELL), ift > T’,’

a,...,%,wis, ]
from CPU [ 1= 7> 71B , ift<T.
sti-p¢-1, rdata;_p ;-1

(sti_p,, wdata;_p,;) «—

4. Translate wdata for M into wdata’ for M’:

1, if , € [T];
, wdata’, if t = work and ¢ = 7" and wdata’ # 1;
wdata; «— 7 —
t||(wdatag, @ PPRF.Eval(ko, ¢))|| (wdata;; & PPRF.Eval(ky, t)),
otherwise;

5. Output and finish:
output (done;, newst’, 7;, i;, wdatay, out;)

where newst’ contains incremented ¢ and sto, Sti;, 7, i

Figure 7. The machine M’ in Construction 2.
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Correctness and Efficiency. By construction, during evaluation, the labels selected
for M’ correspond to

B:ﬁ, Wo=w,Wi=w, Ky=kyK; =k, T'=0,Wdata':J_.
The execution of M’ has the following important invariants:
. &ﬁ,t = st;, where st; is from M (w).

L) D,

vork s [1] for all ¢,i is either all-zero if never touched (never read nor written to) or

t,” (DO’Work’t [i] @ PPRF.EVaI(kO, t/)) “ (Dl,work’t [i] @ PPRF.EVal(kl, t/)),

where ¢ # 0 is the last time when cell i on the working tape of M was touched,
Dg work,t 1S Dwork, of M (w), and D1_g work, is all-zero. In all cases, rdatas; = rdata,,
where rdata; is from M (w).

Correctness follows from that of LGRAM’ and those invariants, together with the other
logics in M’. For efficiency, clearly |[M’| = poly(A, |M|,log Tmax), and M’ has the same
running time as M when supplied with the input specified above.

Theorem 16 (). Suppose in Construction 2, LGRAM’ is fixed-memory secure (Definition 3
or 4) and PPRF is secure (Definition 17), then the constructed scheme is fixed-address secure
(Definition 3 or 4) and inherits the (un-)boundedness of LGRAM'.

Proof (Theorem 16). EXpiGRAM of the constructed scheme corresponds to ExpfGRAM
of LGRAM’ with machine M’ and input

B=pg & {01}, Wo=wy Ko=koy, Wi=wpy,Ki=k, T =0,wdata’=_1,

where ko, k; are random PPRF keys. We will consider hybrids that effectively changes
the input to M’ by altering M and {L;}; given to the adversary, so we describe them by
specifying the changed input.

b . . . b .
* Hy. This is just EXp]gray i-€-5

B =4, W =wp, Kp=kg, Wi_g = wy, Ky g =k p, T'=0, wdata’ = 1.

« HY. In this hybrid, we change Wi_g to w1, i.e.,

B= IB, Wﬂ = Wy, K/j = kﬁ, Wl_ﬁ = , Kl_’g = kl_’g, T = 0, wdata’ = L.

The only place M’ uses Wy_p is the branch ¢ > 7" in Step 3 of M’. But 7V =0 and
that branch is never taken. Therefore, for each b € {0, 1}, the executions of M’ in
HY and H? satisfy the condition of fixed-memory security of LGRAM’, and H} ~ H?.

. le)t fort=0,...,T, where T is the (common) running time of M (wo) and M (w;).
In this hybrid, we increase 7" to t, i.e.,

B =5, W =wp, Kgp=kg, Wig=wiyp, Kip=kig, T = , wdata’ = L.

Clearly, H} = H ; for each b € {0,1}.
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Claim 17 (). le),t—l = le),t forallt € [T] and b € {0,1}.

« H%. In this hybrid, we set 7" to T, i.e.,
B =4, W =wp, Kp=kg, Wi g=wiyp, Kip=kigp, T = , wdata’ = L.
By definition, H3, = HY for each b € {0,1}.

« H. In this hybrid, we rename (8 ® b) to y. It can be described as

B= , Wi =wpl, Ky = ko, Wiy =wi), Kiy]= ki) T =T, wdata’ = L.
Since the change is syntactical, H} = H} for each b € {0,1}.

In H} and H}, the machine M’ fully executes both M~ (wp) on the copy y and
M (w;) on the copy (1-7v). Their only difference is from which execution M’ takes
(doney, 74,1z, 0ut;). The two executions of M satisfy the constraint of fixed-address
security, so their (done;, 74,1, out;) sequences are identical. Therefore, Hg =~ Hi by the
fixed-memory security of LGRAM'.

We conclude that EXp{ oy = Ho & Hy = EXpj ogay for the constructed scheme.

It is clear that the time of Eval is instance-specific if so is that of Eval’. Note that the
number of hybrids is polynomial in (a polynomial upper bound of) the instance running
time T, not Trax. Therefore, the proof shows that LGRAM inherits the (un-)boundedness
of the security of LGRAM'. o

Proof (Claim 17). We further alter the input to M’ to show H, | ~ H} .
* Go. This is just le”t_l, described by

B=p, Ws=wy, Ksg=ks, Wig=wis, Ki_p=Fkip, T =t-1,
wdata’ = L.

* G1. In this hybrid, we puncture k; g at t, hardwire wdataj, and increment 7" to
activate the hardwiring at the right time step. The hybrid is described by

B=p, Ws=wy, Ks=ks, Wipg=wip, Kip=lbisgm, T = ,

1, ifiy € [T];
wdata” = | { t||(wdatap + & PRF(ko, t))||PRF(k1,t), if iy = work and f = 0;
t||PRF(ko, t)|| (wdata, + & PRF(k1,t)), if iy = work and § = 1;

where wdata,; is from M (w;) and wdatag; = wdata,; in the execution of M’.
Go ~ G; by the fixed-memory security of LGRAM'.

* Gy. In this hybrid, we make the portion of wdata’ for the copy (1 — 8) random, i.e.,
B=p, Wg=wy, Kg=kpg, Wip=wiyp, Kip= 7;1—ﬁ,{t}, T =t,
1, ifiy e [T1;
wdata’ = { t|| (wdatap ;+ ® PRF(ko, t))||, if iy = work and 8 = 0;
t||||(wdatab,t ® PRF(k1,1)), if it =work and g =1.

Note that the altered portion is PPRF.Eval(k1_g,t) in G;. By the security of PPRF, it
follows that G; = G,.
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* Gs. In this hybrid, we encode wdata;_; ¢ in the portion of wdata’ for the copy (1 - ).
It is described by
B=f, Ws=wy, Ks=ks, Wip=wip, Kip=kipp, T =t
1, ifiy € [T];
wdata’ = { tl|(wdatap + ® PRF(ko, t))|| (wdata;_s+ & PRF(kq,1)) |, if i = work and 8 = 0;
t|ll (wdata;_p+ @ PRF(ko, t)) ||(wdatap s+ ® PRF(k1,t)), if it = work and  =1.

G2 ~ G3 by the security of PPRF.

* Gy. In this hybrid, we undo puncturing and hardwiring, i.e.,

B=p, Wp=ws, Kp=ks, Wip=wis, Kip=|kis, T'=t,
wdata’ = L.

Gs ~ G4 by the fixed-memory security of LGRAM’, analogously to Gy ~ G;.

By inspection, Gy is just le’t. Therefore, le’t_l =Gy~ Gy = le’t.

5.2 Fixed-Address to Full Security

Given an LGRAM with fixed-address security, we construct one with full security with a
transformation due to [CH16] using ORAM.

There are two technical differences of our LGRAM from existing notions of garbled
RAM that are relevant to this transformation. First, the input tapes are compressed,
and their digests cannot be an ORAM’ed version of their contents, because that would
make the digests as long as the tape contents and our digests must be reusable while
the usual ORAM is not. Second, the garbling procedure is only allowed to run in time
poly(A, |M|,log Tmax), which is not sufficient to initialize an ORAM for the working tape.

The first issue is resolved by copying the input tapes to the working tape before
the actual computation is performed, and reading from the copy on the working
tape whenever the actual computation wants to read from an input tape. During the
copying stage, the access pattern to the tapes is simply sequential reading and writing,
independent of the computation. The second issue is resolved by delaying ORAM
initialization to evaluation time. Recall that our notion of ORAM (Definition 19) starts
the physical execution with an empty physical tape, implicitly requiring on-demand
initialization. This is matched by our notion of LGRAM (Definition 2), where the initial
working tape is all-zero.

Similar to the transformation from fixed-memory security to fixed-address security
(Section 5.1), we run two copies of the underlying machine in parallel to facilitate the
security proof.

Ingredients of Construction 3. Let
« LGRAM’ = (Compress’, Garble’, Eval’) be an LGRAM with fixed-address security,
+ MakeORAM an ORAM with localized randomness with (PartRnd, SimORAM), and

« PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF.
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Machine M’ Transformed from M

Lengths. ¢ = poly(A, |M|,10g Tmax), ¢, = poly(A, |M|,1og Trmax),
ga{ddr = addr, eéeu = leells
Ciopr = 11085, (257,01, ... determined by MakeORAM.

Input (w'). B,W(),Wl,K(),Kl,T’,
see Figure 7,

R/, hardwired ORAM randomness if Kp is punctured;
K/, PPRF key for ORAM simulation;
addrs/, Ty hardwired addresses of M’.

State (st'). e, flag indicating whether an error is detected;
t—1, current time period minus one (initially 0);
to— 1, current time step minus one (initially 0)

modulo the period (27, + 4);
stos—1, rdatag ;_1, 0Sto 11,401, St1,4-1, rdatay ;_1, 0ty s—1,40-1,
for the two copies of M and their ORAM,;
done;,out;, output of M from the copy B of M.

Steps. Each step of the two copies of M is usually
simulated by (27} + 4) steps of M’.

1. Decide what to do in this period:
if ;= > |D;| <t < > |D,| for some 7 € [T]:

n<T T
copy D; [t — ¢-;] to ORAM for both copies of M
else: execute or simulate one step of M

2a. Copy one cell from input tape to ORAM:

1 step to read the cell

(To + Ty) steps to ORAM-write for the copy 0 and 1

1 step to report potential error, 2 step unused
2b. Execute or simulate one step of M:

2(1+Ty) step for one step of M then ORAM-R/W for the copy 0 and/or 1
simulated using K’, if¢ - Zﬁl >T';
hardwired in addrS’, if ¢ — Zﬁl =T

1 step to report potential error, 1 step to output done;, out;

the copy (1-B) is {

3. Error handling and other details:
ORAM randomness for non-simulated steps is from Ky, K;, R’
addresses of ORAM for the copy 0 (resp. 1) are
mapped to those of M’ by i — 2i — 1 (resp. i > 2i; i.e., interleaved)
if an error is detected by ORAM
idle and report it at the end of this period
use 4, extra steps to output Wy and halt

Figure 8. The machine M’ in Construction 3.

58 / 80




Construction 3. Our scheme works as follows:
« Compress(1%en, 14 7, D;) runs
digest! < Compress’ (1%, 1%dir 7 D)
and outputs digest, = (|D,|, digest’).

* Garble(Tmax, M, {digest; };¢[7]) runs

ki

(Shax 11, 1% 1% {0RW, }yc[7y]) < MakeORAM (1"CELL,1‘?ADDR, > ID7| + Trnax

max>
Te[T]

|

prepares M’ as shown in Figure 8. It sets

T} .x = max {2s;nax, bn+ (2To + 4) (Tmax + > D]
e[ T]

runs
(M',{L; ,}ip) < Garble' (T, M', {digest; }re(71),
splits the labels according to the part of input to M’ they select into
(L2 PRR R AU PR T ALY PN 1 207d PR 20 FORIE (29 VR Y ZS PR 278 SR Uil IO
samples S & {0,1} and three random PPRF keys ko, k1, &/, and sets and outputs

M= (]\2’, {labels for B=§,Ky = ko, K1 = k1, T"=0,R' = 1L,K' = k’,addrS’ = 1}),
Lip=L|LM  forie [6a],b € {0,1}.

If the evaluation does not report any ORAM error, the algorithm removes the
empty, placeholder output (all steps in the periods of copying the input tapes,
and (2T, + 3) steps in the periods of executing M) from Eval’, and use the stripped
version as the output. Otherwise, the algorithm will obtain w after the error is
reported, and it evaluates MP1+P7 (w) in the clear and outputs it.

Correctness and Efficiency. Correctness and efficiency follow from those of the
underlying ingredients as well as the error reporting mechanism of ORAM used by M’.

Theorem 18 (7). Suppose in Construction 3, LGRAM’ is fixed-address secure (Definition 3 or
4), MakeORAM has localized randomness with PartRnd, SiImORAM (Definition 20), and PPRF
is secure (Definition 17), then the constructed scheme is (fully) secure (Definition 3 or 4) and
inherits the (un-)boundedness of LGRAM'.
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Proof (Theorem 18). The proof is analogous to that of Theorem 16. We only demonstrate
the key differences:

« When the randomness (e.g., after puncturing a PPRF key) is altered, M’ could halt
early due to error arising from the unfortunate randomness. We must argue that
such case only happens with negligible probability. ORAM guarantees 2+ error
(overflow) probability over the entire execution if the randomness is truly random,
and by PRF security, the error probability is negligible when the randomness is
pseudorandom (or a mix of pseudorandomness and true randomness, as needed
in certain hybrids).

+ The proof corresponding to Claim 17 is slightly more involved. Let R; be the set
produced by PartRnd, which is the index set of the randomness precisely affecting
the access pattern for logical step t. The core idea is to puncture k;_p at Ry and
argue it can be simulated using SImORAM due to the localized randomness property.
However, PPRF.Eval(k;-g,7) for i € Ry is written into the working tape of M’ at
various time steps and locations, which are difficult to track. This is where the
fixed-address property helps. It can be used to “decouple” or “couple” what is
written during previous steps and where is read for logical step t. Following [CH19;
Section 6.3], the transition sequence is as follows:

1. (Fixed-address security.) Puncture k;_p at Ri, puncture k' at t, hardwire
{PPRF.Eval(k1-g, i) }icr, into R’, and hardwire SimORAM(..., PPRF.Eval(¥’,t))
into addrS’.

2. (PPRF security.) Change PPRF.Eval(%’,t) in addrS’ into true randomness.

3. (Fixed-address security.) Change {PPRF.Eval(k1-g,7)}icr, in R’ into the same
true randomness used by addrS’. This step “couples” the previously written
content and the later physical addresses.

4. (PPRF security.) Change the common true randomness in both R and addrS’
into {PPRF.Eval(kl_B,i)}ieRt.

5. (Fixed-address security.) Undo puncturing and hardwiring. o

5.3 Bounded to Unbounded

So far we only obtain bounded LGRAM from Constructions 1, 2, and 3. While the
actual evaluation time of the resultant scheme is instance-dependent (scaling with T
instead of Thmax) and it works even if the machine access memory at large addresses
(both are syntactical restrictions for bounded LGRAM), its security proof requires Tmax
to be polynomially bounded. To get rid of this restriction, we apply the transformation
due to [AL18]. The idea is to generate a series of LGRAM garblings with Ty, , = 2°
for e € [log Tmax], each encrypted under a different key. The ™ garbling simulates the
execution, but if the time exceeds 2¢, it outputs the secret key that decrypts the next
garbling, and the evaluation can be retried. This avoids the exponential security loss
because we can apply the LGRAM security to the garblings with T7,,, < 2T and argue
that the other, larger garblings are hidden by encryption, removing the need to apply
the LGRAM security on those large garblings.
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Machine M’ Transformed from M and Ty«

Lengths. & = by +poly(d), . = st + O(log Trmax) + poly(4, |[M]),
ge:ddr = laddr» Zéell = Leell,
Cippr = POLY(A, [M|,108 Tmax), €gr, = POLy(A, | M|, 108 Timax)-
Input (w’). W, short input to M;
E, attempted time limit of M,
K, secret key of SKE.
State (st’). t-1, current time period minus one (initially 0);

to—1, current time step minus one (initially 0)
modulo the period;
st, state of M.

Steps. Each step of M is simulated by one period of M’.

1. When ¢ < 28:
1 step for one step of M
poly(A, [M|,log Tmax) steps for the memory operation of M
(using a deterministic balanced binary tree of capacity 2£
to implement a virtual sparse memory for M)
halt if M halts

2. When 2% < ¢ < 2% 4+ poly(A):
report runningtimeexceeded
output K

Figure 9. The machine M’ in Construction 4.

Ingredients of Construction 4. Let
* LGRAM’ = (Compress’, Garble’, Eval’) be a bounded LGRAM, and

+ SKE = (SKE.Gen, SKE.Enc, SKE.Dec) a secret-key encryption scheme.

Construction 4. Our scheme works as follows:
« Compress(1%dir 1%en 7 D) is the same as Compress’.

* Garble(Tmax, M, {digest; },c[7]) prepares M’ from M and Tmax as shown in Figure 9.
For e € [[log, Tmax1], it samples SKE key %, and runs

(Mé, {Lé,i,b}i,b) (i Garble,(Tr,nax,e’ M,’ {dngStr}re[T]) fore e [l—logz Tmax-l],
where Ty,,, , = 2° + poly(4, |[M|,10g Tmax). The algorithm encrypts M. and L’ ., by

e,i,b

M. & SKE.Enc(ke, M,), L, < SKE.Enc(ke, Ly ; ),

5Ly
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and splits the encrypted labels into {ZV.,} ... {LE,,} . {LX ,} . by the portion

of input to M’ they correspond to. Defining kfiog, 7,,,,1+1 = L, it sets and outputs
M = (kl, {Mé, Ef’i)b’s and Efiyb’s for E = e,K = ke+1}e€[f10g2 Tmax”)’

R A TR T
Lip = Ll,i,b” ”Lrlog2 Trmax],i,b"

Fore =1,...,[log, Tmax|, it retrieves k., either from Mife= 1, or from the previous
call to Eval’ if e > 1, and runs

outs, if running time is not exceeded;
(prefix of outS, k.41), if running time is exceeded.

The algorithm removes the empty, placeholder output from outS, use the stripped
version as the output, and halt, if the running time is not exceeded. Otherwise, it
attempts the next e.

Correctness and Efficiency. Those are clear by inspection.

Theorem 19 (7). Suppose in Construction 4, LGRAM’ is a (fixed-memory, fixed-address, fully)
secure bounded LGRAM (Definition 4) and SKE is secure (Definition 18), then the constructed
scheme is an unbounded LGRAM with the same level of security as LGRAM’ (Definition 3).

Proof (Theorem 19). Since M’ uses a deterministic balanced binary tree to implement
the virtual sparse memory for M, it preserves the constraints of fixed-memory, fixed-
address, or full security. Let T be the instance running time and e = [log,T']. We
consider the following hybrids:

« H®,. This is just Exp? g, for the constructed scheme, where
M: Ry, {M, Ef,i,b’s and ij,i,b’s for E = e,K = ken}
L;: {EZVL p's for W = ws}

e€| |—10g2 Trmax1]’

e€| flogz Tmax]]”

« Hi fore=0,..., [log, Tmax |- In this hybrid, we remove k;,; as well as all the unused
garblings up to time bound 2¢ as follows.

M, LE sand LE ’sfor E = e,K = key, ife<g;
v ~E”’ ~KH’ _ = _ : _ =

M, LEibsandLE’i,bsforE—e,K—, ife=c¢;

random |, ife>eande < ¢
M, LE ’sand LX ’sfor E =e,K = k.., ife>eande> ¢
LY s for W=w,, ife<é;

L;: random |, ife>ecande < ¢

fzvib’sforszb, ife>eande > e.
To see indistinguishability:
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« H%, ~ HS. Compared to H®}, in H, the garbling M’ has K in its input changed from
ks1 to L. Since 2° > T, the execution of M in that garbling does not output K and
this change satisfies the constraint of LGRAM security. Moreover, 77, _ =2° < 2T

max,e

is polynomially bounded. Therefore, H’, ~ H} by the bounded security of LGRAM'.

« H® , ~H%. The two hybrids are different only when e >¢, in which case the
ciphertexts under k. changes into random strings and k. is not used in the two
hybrids. Therefore, H? ; ~ H? by the ciphertext pseudorandomness of SKE.

. HPlog2 o] ™ H%lc)gz Toa]” The difference is that the e non-erased garblings have W

in their inputs changed between w, and w;. By how M’ works, this change
satisfies the constraint of LGRAM security. Moreover, all of them have Ty,,,, < 2T
polynomially bounded. Therefore, HPI 08, Trax] ™~ Hh 08, Trmar| follows from a standard

hybrid argument by the bounded security of LGRAM'.

We conclude that Exp? 0y = H?, & HY) = EXplcpane o

6 PHFE for RAM

6.1 Bounded Private Input

In this section, we build a PHFE for RAM with bounded private input that is f- and x-
succinct and has linear-time KeyGen and Enc and whose Dec runs in time O(T + |f] + |x|),
ignoring polynomial factors in the security parameter. (See Definitions 5, 7, and 9.)

Recall that in PHFE for RAM with bounded private input, the functionality (resp. key,
ciphertext) is associated with some RAM M and (up to exponential) time bound Trax
(resp. f of arbitrary length, x of arbitrary length and y of some fixed polynomial length)
and decryption yields M/*(y) if the execution halts in time at most Tyax.

Ingredients of Construction 5. Let

« ckt = (ckt.Setup, ckt.KeyGen, ckt.Enc, ckt.Dec) be an FE scheme for circuits,

* LGRAM = (LGRAM.Compress, LGRAM.Garble, LGRAM.Eval) a 2-tape LGRAM scheme,

« PPRF = (PPRF.Puncture, PPRF.Eval) a puncturable PRF, and

« SKE = (SKE.Gen, SKE.Enc, SKE.Dec) a secret-key encryption scheme.
Construction 5 (PHFE for RAM with bounded private input). It works as follows:

» Setup(M, Tmax) TUns

(ckt.mpk, ckt.msk) & ckt.Setup(17,17),

and outputs (mpk,msk) = ((Tmax, M, ckt.mpk), ckt.msk), where the input/circuit
sizes given to ckt.Setup are appropriately chosen (see below).

* KeyGen(msk, f) samples random strings sppgy, idx,, lgram;,, runs

digest, & LGRAM.Compress (1%l 14ddr 1 f),
ckt.sk & ckt.KeyGen(ckt.msk, GenLGRAM[digest, spprr, idx;,, lgram/,]),
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and outputs sk = (digesty, spprr, idx;,, [gram,, ckt.sk). where GenLGRAM is in Fig-
ure 10.

« Enc(mpk, x,y) samples random string kppgre, runs

digest, &G RAM.Compress(lZce“, 1bder 2 x), 8" Xt idXH Kl ol o (BTAME

—
ckt.ct & ckt.Enc(ckt.mpk, L, (digesty, v, kpprr, Normal, L, L, 1, L, 1, 1)),
and outputs ct = (digest,, ckt.ct).

« Dec/*k<(mpk) parses mpk, sk, ct as defined earlier, runs
(ﬁ, {L:};) & th‘DeCGenLGRAM[digestf,sPPRp,idX;k,lgram;k],J_,ckt.sk,ckt.ct(ckt'mpk),
and outputs LGRAM.Eval’* (Tay, M, digesty, digest,, M, {L;}i).

Correctness and Efficiency. To ensure correctness, it suffices to set the input/circuit
sizes of the underlying FE for circuits to be poly(1, M,log Tmax) — the normal branch
of GenLGRAM is just LGRAM.Eval, which runs in time poly(A, M, log Tmax). This (order of)
value is also sufficient for the security proof to go through. By the efficiency guarantees
of its ingredients, Construction 5 is f- and x-succinct, has linear-time KeyGen and Enc,
and its Dec runs in time (7" + |f| + |x|) poly(A, M, Trmax)-

Theorem 20 (7). Suppose in Construction 5, ckt, LGRAM, PPRF are secure (Definitions 7, 3,
and 17) and SKE has pseudorandom ciphertexts (Definition 18), then the constructed scheme is
secure (Definition 7).

We prove security by hybridizing over the keys. We denote by

’

. C
dlgestfq » SPPRF,g5 idx sk,q

kg lBram

the content hardwired into GenLGRAM for the ¢ secret key sk,. In the hybrids,

¥, idXct, idxy, lgramet, &y, kl'gram

in the challenge ciphertext ct are used, and its decryption behavior is controlled by mode
and those values. The strategies of handling pre- and post-challenge keys are different.
At a high level, they work as follows:

* idx, , is an encryption of g so that each key “knows” its ordinal number.
* idx is the ordinal number of the challenge ciphertext.
« idxy indicates the progress of the proof and increases from 0 to @:

- initially, ¢ > idxy, decrypting ct by sk, yields an LGRAM garbling for yo;

- when transitioning, g = idxy, the behavior depends on mode and the relative
timing of ct and sk,

* when mode = hardwire, decryption takes the hardwired LGRAM garbling
from either lgram;k’ g (in skg) or lgram (in ct), whichever is generated later
the security game (decided by comparing idx. and g);
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digesty, spprr,

GenLGRAM [ " ,
idx,, lgram(,

digest,, y, kpprr, mode,
¥, idXct, idxu, By, kl'gram, lgramet

Hardwired. digesty, LGRAM digest of f (tape 1);
SPPRF, PPRF input for LGRAM randomness;
idxg, encrypted ordinal (¢™ query) of this key;
lgram/,, encrypted hardwired LGRAM garbling.

’

Input. digest,,y, LGRAM digest of x (tape 2), short input;

kPPRF, PPRF key for LGRAM randomness;

mode, mode of ciphertext and security proof;

v, alternative short input;

idXct, ordinal of the challenge ciphertext
(number of pre-challenge keys);

idxy, progress of security proof

’ .
sk’

(number of keys using y’);
Rigx Rigrams  SKE keys to decrypt idx;,, [gram
lgramct, hardwired LGRAM garbling.

Output. lgram, LGRAM garbling, computed as follows.

1. If mode = normal (garbling is for y):
~ Tmax, M, digesty, digest,;
(B, {Li»}i5) — LGRAM.Garble | ™20 7> C188S CIEESL
T PPRF.Eval(%&pprr, SpPRF)
output lgram = (ZVI, {Liyi1})

2. Otherwise, this key is decrypting the challenge ciphertext:
idxsk <= SKE.Dec(kjy,, idx,)

idx?

3a. If mode = hybrid or idxsk # idxy (garbling is for y or y’):

Tmax, M, digesty, digest,;
PPRF.Eval(kpprr, sPPRF))

(M, {Liy}:),  if idxy < idx;

(M, {Li[}),  if idxy > idxek.

(M,{Li3};») — LGRAM.Garble (
output lgram = {

3b. If mode = hardwire and idxs = idxy (garbling is hardwired):

lgramet, if idxet > idxgy;
SKE.Dec(%/ lgram/,), if idx. < idxek.

lgram?

output lgram = {

Figure 10. The circuit GenLGRAM in Construction 5.

65/ 80




* when mode = hybrid, the behavior is the same as when ¢ < idxy;

- eventually, ¢ < idxy, decrypting ct by sk, yields an LGRAM garbling for y;.

Proof (Theorem 20). Let @1,Q, be the number of secret key queries in Query I and
Query II, respectively. Writing kigx for a random key of SKE and %k for a random (non-
punctured) key of PPRF, we list our hybrids.

* Ho. This is just Expypg, described as

. $ s 1! $ ’ $ .
skg :  spprr,q < random, |dxsk,q < random, lgramsk’q « random;
ct: Yy < Yo, kpprr <— k&, mode < normal,
Y — 1, idxet « L, idxy « 1,

’ ’
iax < L, kigram < L, lgramet « L.

* Hi. In this hybrid, we sample sppgr,’s without replacement, i.e.,

. $ . L. c o $ ’ $ .
sky ' sppRrrq < | distinct, |dxsk,q < random, lgramsk’q « random;
ct: Yy < Yo, kpprr < K, mode « normal,
Y — 1, idxct «— L, idxy «— L,

’ 4
iax < L klgram — 1, lgrame «— L.

Ho and H; are statistically indistinguishable.

* Hy. In this hybrid, we change idx, , into an encryption of ¢ (padded to some fixed
poly(A) bits), i.e.,

’ $

. $  qe e . $ .
skg :  spprr,q < distinct, |dx;k,q — ‘ SKE.Enc(kidyx, q) |, lgramsk’q « random;
ct: ¥y < 0, kppre < k, mode « normal,
y o~ 1, idXet «— L, idxy «— L,

’ ’
iax < L klgram — 1, lgrame «— L.

H; =~ H, follows from the ciphertext pseudorandomness of SKE, as the key kjqx is
not used anywhere else.

* Hs. In this hybrid, we prepare for hybridizing over the keys. Hs is described as

sky 1 SppRrg & distinct, idxgkq & SKE.Enc(kidx, q), lgram;k’q & random,;
ct: Yy < Yo, kpprr <— k&, mode « | hybrid |,

y —[y) idxet | Q1 idxy [0
i < , kfgram — 1, lgrame; « L.

It is readily verified that the decryption outcome (as perceived by ckt) does not
change. Therefore, H, ~ H3 follows from the security of ckt.

* Hyqfor g =0,...,Q1 + Q. In this hybrid, idxy is incremented to ¢, i.e.,

’

$ .
kg < randomy

sky 1 SppRrg & distinct, idx;k,q & SKE.Enc(kidx, q), lgram
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ct: Y < Yo, kppre < &, mode « hybrid,
Yy — 1, idxt — Q1, idxy « @,
ki/dx — Ridx,

k(gram — 1, lgrame « L.

Ha is just Hz. The proofs of indistinguishability between Hy -1 and Hs  depend on
whether g < @; or q > Q.

Hiq fora=1,...,@Q1.

Hiq fora=@Q1+1,...,Q1+@Q>.

X

Claim 21 (7). Haq 1

Claim 22 (‘D H4’q_1

X

Hs. In this hybrid, we finish the hybrid argument over the keys. Hs is described as

skg :  SPPRFg & distinct, idx;kyq & SKE.Enc(kidy, q), lgram;k,q & random,;
ct: Y < Yo, kpprr «— &, mode « hybrid,
y 1, idxet < @1, idxy «— ,
k{dx — kidx, kfgram «— 41, lgramet «— L.

Hs is just H1,0,+9,-

He. In this hybrid, the challenge ciphertext becomes a normal one for y, i.e.,

sky :  spprrg < distinct, idxfy & SKE.Enc(kigy, ), lgramy, & random;

ct: Yy — , kppre «— k, mode « ,
y |1}, idxee [ L], idxy [ L],

i,dX — ’ k[,gram — 1, lgramct «— 1.
Hs ~ He follows from the security of ckt, analogously to H, ~ Hs.

H7. In this hybrid, we revert idx{, ., o random, i.e.,

. $ e L. c o $ ’ $ .
skq : spprrg < distinct, idxg , < , lgramg, , < random;
ct: Y <Y1, kpprr — k, mode « normal,
Y — 1, idxct < L, idxy «— L,

’ 4
iax < L klgram — 1, lgrame «— L.

He ~ H; by the ciphertext pseudorandomness of SKE, analogously to H; ~ Hj.

Hg. In this hybrid, sppgr,’s are sampled as specified by KeyGen, i.e.,

. $ [ $ ’ $ .
sky i spprrg < |random |, |dxsk’q < random, lgramskyq « random;

ct: Y < Y1, kpprr < k, mode « normal,
Y — 1, idxet «— L, idxy «— L,
’ ’
iax < L klgram — 1, lgrame «— L.

Hg is statistically indistinguishable from H;.
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By inspection, Hg is just Exphypg, and therefore, Expdyer = Ho ~ Hg = EXPhyypg- O

Proof (Claim 21). To show indistinguishability between H4,; and Hs, when ,
we temporarily hardwire the LGRAM garbling yielded by decryption ct using sk, into

, which is generated when both f; and «, yo, y1 are known.
Let I;{q} be % punctured at the singleton set {q}. We specify the hybrids.

* Go. This is just Hy 4-1, described as

sky :  spprrg < distinct, idxgy & SKE.Enc(kigy, ), lgramy, & random;
ct: Y < Yo, keprr < k&, mode « hybrid,
y 1, idxt < @1, idxy «— q -1,
Rl — kiax, Rlgram < L, lgrame; — L.

* G;. In this hybrid, we puncture kpprr, hardwire the decryption result of ct by sk,
into ct at lgram, indicating hardwiring using mode, and increment idxy, i.e.,

skg:  Spprrg & distinct, idx;k,q & SKE.Enc(kigx, q), lgram;k,q & random;
ct: y <« 0, Fppre < | Eigy | mode « | hardwire |,
y ey, idxct < @1, idxy @,
iy, — Ridx kl,gram — 1,

Y Tmax, M, digest; , digest,;
lgramet < | (M, {L; y,;1}:) from LGRAM.Garble |~ ™% gest,, AIgeSLs;
’ PPRF.Eval(E, spprr.q)

Go =~ G; follows from the security of ckt.

* Gy. In this hybrid, we change the LGRAM randomness from PPRF.Eval(%, q) to true
randomness, i.e.,

skg:  Spprrg & distinct, idx;k,q & SKE.Enc(kidy, q), lgram;k,q & random;
ct: Yy < Yo, RppRE <— é{q}, mode « hardwire,
y 1, idxt < @1, idxy < q,
Kl kioe Figom — L.

l ( - ( . o Trax, M, digestfq, digest,;
rame «— (M, {L; y,1;1}:) from LGRAM.Garble .
s Rkl

G; ~ G, follows from the security of PPRF.

* Gs. In this hybrid, we change the hardwired LGRAM garbling into one for y, i.e.,

sky :  spprrg ¢ distinct, idxfy & SKE.Enc(kigx, ), lgramy, & random;
ct: Y < Yo, Eppre < E(q), mode « hardwire,
Yy — 1, idxet < Q1, idxy < q,
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ki,dx — kidx, kl/gram 41
Tmax, M, digesty, , digest,;

lgram M, {L; 1};) from LGRAM.Garble
g ct — (M, { l,[l]} ) random

Gy ~ G3 follows from the security of LGRAM.

* Gy. In this hybrid, the hardwired LGRAM garbling is reverted to be generated with
pseudorandomness PPRF.Eval(k, ), i.e.,

sky :  spprrg ¢ distinct, idxfy & SKE.Enc(kigy, ), lgramy, . & random;
ct: Yy < Yo, RppRF «— Ig{q}, mode « hardwire,
y 1, idxct < @1, idxy < q,
iy, — Ridx kl/gram — 1,

Tmax, M, digesty, , digest,;

lgramet «— ﬁ, L;, n};) from LGRAM.Garble .
grame — (M, {Liypi i) [ PPRF.Eval(, sperr.q) |

G3 ~ G4 follows from the security of PPRF.

* Gs. In this hybrid, kpprr is no longer punctured and hardwiring is undone, i.e.,

sky :  spprrg ¢ distinct, idxf) & SKE.Enc(kigx, ), lgramy, & random;
ct: Yy < Yo, kppRE < , mode « hybrid,
y e, idxct < @1, idxy « q,
kg, — kiax, Flgram < L lgramee « [ L.
G4 ~ Gs follows from the security of ckt.
By inspection, Gs is exactly H4 4. Therefore, Hy q_1 = Go = G5 = Hyq. o

Proof (Claim 22). To show indistinguishability between H4,_; and Hs, when ,
we temporarily hardwire the LGRAM garbling yielded by decryption ct using sk, into

lgram;k,q , generated when both x, yo, y1 and f; are known. Let lg{q} be & punctured at {q}
and kigram a random secret key of SKE. We specify the hybrids.

* Go. This is just Hy 4-1, described as

Skgsq :  SppRrg ¢ distinct, idxfy & SKE.Enc(kigx, ), lgramy, & random;
ct: Y < Yo, keprr < k&, mode « hybrid,
y ey, idxt < Q1, idxy < q -1,
kg < kidx, Rigram < L lgramet «— L;
skysQ, ©  SppRr,q < distinct, idx) o & SKE.Enc(kigy, q), lgramy, & random.

* Gi. In this hybrid, we encrypt the LGRAM garbling into Igramy, , i.e.,

SKgzq 1 SPPRFgq & distinct, idxgk,q & SKE.Enc(kidx, q), lgram;k’q & random,;
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ct: Yy < o, kppre < R, mode « hybrid,

v — y1, idxt «— @1, idxy «— q—1,
Rl < Kidxs Flgram < L, lgrame; — L;
Ske>@, ©  SPPRF,q & distinct, idxgy o & SKE.Enc(kidy, 9),
(M,{L; (i1 }i) from
lgram;, . & | SKE.Enc| kigram, Timax, M, digest;, , digest,;

LGRAM.Garble
PPRF. Eval(k, SPPRF,q)

Go ~ G; by the ciphertext pseudorandomness of SKE.

* Gy. In this hybrid, we puncture % at {q}, activate the hardwiring using kl’gram, mode,
and increment idxy, i.e.,
Skgq :  SppRrg < distinct, idx & SKE.Enc(kiay, @), lgramy, & random;
ct: Yy < o, RppRE <— /;{q} ! mode « ,
y' 1, idxct < @1, idxy —[q},
kly, < kidx kfgram — , lgramet «— 1;
skysQ, ©  SppRr,q < distinct, idx) o & SKE.Enc(kigx, q),

(M, {Li 111 }:) from

lgram(, . - SKE.Enc | Eigram,

sk, max, M, digesty, , digest,;

T,
LGRAM.Garble
PPRF.Eval(k, SppRF,q)

G1 ~ G follows from the security of ckt.

* G3. In this hybrid, we generate the hardwired garbling with true randomness
instead of PPRF.Eval(%, q), i.e.,

Skgsq :  SppRrg ¢ distinct, idxfy & SKE.Enc(kigx, ), lgramy, & random;
ct: Y < Yo, kppre — kiq), mode « hardwire,
y <1, idxct < @1, idxy « q,
kigy — kidx, Rlgram < igram, lgram; « L;
skq=@, ©  SppRr,q < distinct, idxgy 4 & SKE.Enc(kidy, 9),

(M, {Liy,(1}i) from
Tmax, M, digesty, , digest,;

lgram(, , < SKE.Enc| kigram,

LGRAM.Garble

Gy ~ G3 follows from the security of PPRF.

* Gy4. In this hybrid, the hardwired garbling becomes one for y,, i.e.,

’

$ .
kg < randomy

Skgq :  SppRrg < distinct, idxg & SKE.Enc(kigx,q),  lgram
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ct: Y < Yo, kppre ];{q}, mode « hardwire,

y ey, idxct — @1, idxy < q,
ki/dx — kidx, kl,gram — kigram, lgramey < L;
Ske>@, ©  SPPRF,q & distinct, idxgy o & SKE.Enc(kidy, 9),

(M, {Li[5, i1 }:) from
lgramgkq & SKE.Enc kigram, Tmax, M, digesty, , digest,;

LGRAM.Garble
random

G3 ~ G4 follows from the security of LGRAM.

* Gs. In this hybrid, the randomness for generating the hardwired LGRAM garbling
is reverted to be pseudorandom, i.e.,

Skgsq :  SppRrg < distinct, idxgy & SKE.Enc(kigx, ), lgramy, . & random;
ct: Yy < Yo, RppRF <— IE{q}, mode « hardwire,
y 1, idxt < Q1, idxy < q,
ki < Eidx, kl,gram — kigram, lgrame; « L
sky>Q, ©  SppRr,q < distinct, idx) o & SKE.Enc(kigx, q),

(M, {L;,,};) from

’ $ . . .
lgramsk’q « SKE.Enc klgram, LGRAM.Garble Tmax, M, d'gGStfq, d'gGStx;
PPRF.Eval(k, ) |

G4 ~ Gs follows from the security of PPRF.

* Gg. In this hybrid, the hardwiring is deactivated by reverting most of the changes
made in the transition from G; to Gy, i.e.,

Skgzq 1 Spprrg ¢ distinct, idx¢) & SKE.Enc(kigx, q), lgramy, , & random;
ct: Y < Yo, kpprr , mode « ,
y 1, idxct < @1, idxy < q,
kly, — kidx Rlgram < (1], lgrame; < L;
sky>Q, ©  SppRr,q < distinct, idx)) o & SKE.Enc(kigy, q),

(M, {L;,;};) from

lgram, . <~ SKE.Enc kigram,

sk,q Tmax, M, digesty, , digest,;

PPRF.Eval(%, q)

LGRAM.Garble

Gs ~ Gg follows from the security of ckt.

’

* Gy. In this hybrid, we revert lgram/, _to random, i.e.,

sk,q
Skgsq :  SppRrg < distinct, idxf, & SKE.Enc(kigx, ), lgramy, . & random;
ct: Yy «— o, kpprr < R, mode « hybrid,
y 1, idxt < Q1, idxy < q,
ki < Eidx, Rigram < L lgramet < L;
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skysQ, ©  SppRF.q < distinct, idx}, & SKE.Enc(kigx, 0), lgram;, . e
Ge ~ Gy by the ciphertext pseudorandomness of SKE.

By inspection, G is exactly H4 . Therefore, Hy q—1 = Go = G7 = Ha q. o

6.2 Full-Fledged PHFE for RAM

In this section, we build a full-fledged PHFE for RAM that is f-succinct and has
rate-2 ciphertext and linear-time KeyGen and Enc and whose Dec runs in time
O(T +|f| + |x| + |y]), ignoring polynomial factors in the security parameter. (See
Definitions 5, 7, and 10.)

Recall that in full-fledged PHFE for RAM, the functionality (resp. key, ciphertext) is
associated with some RAM M and (up to exponential) time bound T (resp. f, (x,y),
each of arbitrary length) and decryption yields M7*I¥() if the execution halts in time at
most Tiax.

Ingredients of Construction 6. Let

« PHFE’ = (Setup’, KeyGen’,Enc’,Dec’) be a PHFE scheme for RAM with bounded
private input that is /- and x’-succinct and has linear-time KeyGen’ and Enc’ and
whose Dec’ runs in time (7" + |f’| + |«’|) poly(A, M’,log T},.x), and

* PRF a pseudorandom function.

Construction 6 (full-fledged PHFE for RAM). Our scheme works as follows:
* Setup(M, Tmax) runs and outputs
(mpk, msk) = (mpk’, msk’) & Setup’(M’, T/,
where M’ is shown in Figure 11 and T}, ,x = Tmax + Poly(A, 1og Trmax)-

. KeyGen(msk, f) pads f by setting one cell on an input tape of M’
——

"= (FILNO%)] - - I (FLIFITI0%m),

and runs and outputs

sk = sk’ & KeyGen’(msk’, f').

« Enc(mpk, x,y) samples g &{0,1}, a PRF key kg, and a string w;_g of the same
length as y. It pads x and appends to it an interleaved version of wy,w;, where
wp encrypts y, by setting

wﬁ[i] —yli] ® PRF(kﬁ,i) fori € [|y]],

w — (wo[1llw1[IDIl - - - lwollyll[w1[lyID),
S
one cell on an input tape of M’
1 1
x — (x[o][jo% )| - - [ (x[|xl N0 [lw, ¥ (xl, B, kp).

The algorithm runs ct’ & Enc’(mpkK, «,y’) and outputs ct = (ct’, w).

« Dec/ %<t (mpk) prepares oracles for f7,x’ from f,x, ct as specified in KeyGen, Enc.
It runs and outputs

(Dec’)" K- (mpk’).
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Lengths.

Input.

Steps.

2-Tape RAM M’

gslt = bt + POIY(/L |M], 10g Tmax),
the state of M, the location of the last-read cell;
¢ = poly(A, |M|,10g Tmax) + 1+ poly(4, |M|,log Trmax),
to encode |x|, choice bit §, and PRF key kg;
ee;ddr = baddr + 1, gc/ell = 24een,
twice as many cells with each cell twice as large
on an input tape (to encode x, yg, y; in x’);
&iopr = Yappry &gy, = LerrL,
exactly the working tape of M.
w’ = (x|, B, k), length of x, choice bit, PRF key for y or yg;
D) =f', ¢/ =6, padded version of f;
DIQ =/, 52, = lx| +yl,
padded version of x followed by
interleaved encryption of y or yg, y;.

Each step of M’ replicates one step of M
by translating its memory access as follows.

1. If M reads Dq[i] = f[i]:
read D/ [i] = f'[i] = f[i]||0%" in this step
provide f[i] in the next step (similar below)

2a. If M reads D,[i] = x[z] for i € [|x|]:
read D) [i] = x'[i] = x[i]]|0%en
provide x|i]

2b. If M reads D, |[|x| +i] = y[i] for i € [|y|]:
read D, [|x| +i] = w[i] = woli]||w[i]
provide wg[i] ® PRF(kg, 1)

3. If M reads Dyon[i]:

read and provide D;_, [7]

Figure 11. The machine M’ in Construction 6.
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Correctness and Efficiency. Correctness is immediate by inspection. The construction
scheme incurs an additional storage twice as long as y in ct, no additional machine
time, and constant-factor additional decryption time. Since |M’| = poly(4, |M|,10g Tmax)
and 7Y, ,x = Tmax + poly(A, M,log Tmax), with parameters for PHFE" denoted with primes,

skl = [sk’| = poly(4, |M’|,1og Tfy)
= poly(4, |M|,10g Tmax),
2|y + |ct'| = 2|y| + poly(4, |M’|, log Tyax)
= 2|yl + poly(4, |M|,10g T'max),
TKeyGen = TlieyGen = |fl| pOIY(/L |M/|’ log Tr/nax)
= |f1 poly(A, M|,108 Tmax),

|ct]

Tenc=  T{pe = x| poly(A, |M’|,1og T ax)
= (|x| + |y|) pOIY(/L |M|’ longax),
Toec=  Tpee = (T'+I|f'|+[x']) poly(A, |M’|,1og Tp.y)

= (T +1f1+ x| +|y]) poly(4, M|, 10g Trmax)-

Theorem 23 (7). Suppose in Construction 6, PHFE’, PRF are secure (Definitions 7 and 17), then
the constructed scheme is secure (Definition 7).

Proof (Theorem 23). Let & {0,1} be a random bit and kg, k15 two random PRF keys.
We describe how the challenge ciphertext is generated in each hybrid.

. Hg. This is just Expf,HFE, where

wpli] « yp[i] ® PRF(kg, i), wy-p[i] < random,
' — (x[1]]]0%) ||+ [l [|x[[10%e) || wo [1] w1 EDI - - - 1 (wolly w1 [I¥1]),
ct’ <& Enc’(mpk,«, (|x], B, kg)).

. H’l’. In this hybrid, we make w;_g an encryption of y;_, under ky_g, i.e.,

wpli] — yp[i] ® PRF(kg, i), \wl_ﬁm — y1-5[i] ® PRF(k1_p,1) |,

x — ([1][]0%en) || - - || e[| [ 10%<) || (wo [1] [[w1 [ED)]] - - - 1 (wo LIy Iwi[1y1]),
ct’ & Enc’(mpk,«, (Jx], B, kgp)).

HY ~ H? for each b € {0,1} by the security of PRF.

« H. In this hybrid, we rename (8 & b) to y, making it

wiy[i] < yallil ® PRF(k;,0),  wisy][i] « yi)li] @ PRF (ki ),
' (x[1]]]0%) || - [l [|x[[10%et) | wo [1] w1 [EDI - - | (wolly[1lwi[I¥1]),

ct’ & Enc’ (mpk, «/, (|x|,, kya5))

where y < {0,1}. This change is conceptual, hence H® = H’ for each b € {0,1}.

Hg ~ H; follows from the security of PHFE’. Therefore, ExpgHFE = Hg ~ H(l) = Exp%,HFE. |
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