
Revisiting Nearest-Neighbor-Based
Information Set Decoding

Andre Esser

Technology Innovation Institute, UAE
andre.esser@tii.ae

Abstract. The syndrome decoding problem lies at the heart of code-
based cryptographic constructions. Information Set Decoding (ISD) algo-
rithms are commonly used to assess the security of these systems. The
most efficient ISD algorithms rely heavily on nearest neighbor search
techniques. However, the runtime result of the fastest known ISD algo-
rithm by Both-May (PQCrypto ’17) was recently challenged by Carrier
et al. (Asiacrypt ’22), which introduce themselves a new technique called
RLPN decoding which yields improvements over ISD for codes with small
rates k

n
≤ 0.3.

In this work we first revisit the Both-May algorithm, by giving a clean
exposition and a corrected analysis. We confirm the claim by Carrier et
al. that the initial analysis is flawed. However, we find that the algorithm
still (slightly) improves on time complexity and significantly improves on
memory complexity over previous algorithms. Our first main contribution
is therefore to set the correct baseline for further improvements.
As a second main contribution we then show how to improve on the Both-
May algorithm, lowering the worst case running time in the full distance
decoding setting to 20.0948n. We obtain even higher time complexity gains
for small rates, shifting the break even point with RLPN decoding to rate
k
n

= 0.25. Moreover, we significantly improve on memory for all rates
k
n

< 0.5. We obtain our improvement by introducing a novel technique
to combine the list construction step and the list filtering step commonly
applied by ISD algorithms. Therefore we treat the nearest neighbor
routine in a non-blackbox fashion which allows us to embed the filtering
into the nearest neighbor search. In this context we introduce the fixed-
weight nearest neighbor problem, and propose a first algorithm to solve
this problem. Besides resulting in an improved decoding algorithm this
opens the direction for further improvements, since any faster algorithm
for solving this fixed-weight nearest neighbor variant is likely to lead to
further improvements of our ISD algorithm.

Keywords: representation technique· syndrome decoding· nearest neighbor
search · code-based cryptography

1 Introduction

Cryptography based on the hardness of the decoding problem, known as code-
based cryptography, is a promising candidate for post quantum secure systems.

https://orcid.org/0000-0001-5806-3600

The ongoing fourth round standardisation effort of NIST includes three candi-
dates, all of them being code-based constructions. Therefore it is certain that
after the end of this round at least one code-based scheme will be selected for
standardisation. This makes analysis of those schemes, their security and espe-
cially strengthening our understanding of the hardness of the underlying problem
an important task.

The binary syndrome decoding problem can be formulated as given the parity-
check matrix H of a binary linear code of length n and dimension k as well as a
syndrome s = He, recover the low Hamming weight vector e. The fastest known
algorithms for solving generic instances of this problem are usually Information
Set Decoding (ISD) algorithms, pioneered by the original work of Prange in
1962 [17]. Since then there have been numerous improvements on Prange’s
algorithm [1–4, 7, 14–16, 18], mostly by extending the initial algorithm by an
enumeration step. These works usually improve the asymptotic runtime exponent
as long as the error-weight, i.e., the Hamming weight of e, is as high as Ω(n). In
this case the asymptotic running time is of the form 2cn, where the constant c
depends on the precise code parameters and the ISD algorithm. However, most
code-based constructions do not fall into this regime by using an error-weight as
small as o(n). Moreover, it has been shown that the asymptotic advantage of all
these improvements vanishes for a sublinear choice of the error weight [19]. And
yet, the best known algorithms for attacking code-based schemes are still exactly
these ISD extension of Prange’s algorithm, still improving second order terms or
polynomial factors in this regime.

Usually, the theoretical study of algorithmic improvements in the constant
or high weight regime serves as an indicator which variations lead to practical
improvements in the code-based setting. Just recently the ISD algorithms by
May-Meurer-Thomae (MMT) [15] and the one by Becker-Joux-May-Meurer
(BJMM) [1], both initially studied and proposed in the constant weight regime,
were used to obtain new computational records in the cryptographic setting [10].
In their work, Esser, May and Zweydinger [10] identify the memory consumption
of these algorithms as one of the major bottlenecks for practical applications.
Further, the memory consumption, or more precisely the slowdown emerging
from the memory access cost that goes along with accessing large amounts of
random access memory (RAM), is essential for currently proposed parameter
sets to reach the necessary security goals [6, 8, 10]. Therefore, for the security
of code-based constructions as well as for the practical adaptation of advanced
ISD techniques it is important to understand how and if this memory usage
can be reduced. Recently, first time-memory trade-offs to achieve this goal were
introduced, but those techniques always come at the cost of an increased time
complexity.

The most recent ISD algorithms speed up the enumeration step by the use of
nearest neighbor search techniques [3,4,16]. The fastest of these algorithms by
Both-May [4] claims significant improvements on the time and memory complexity
of previous proposals. However, in a recent work, Carrier, Debris-Alazard, Meyer-
Hilfiger and Tillich [5] challenge the result of Both-May, by pointing out a flaw in

2

the analysis of its time complexity. Therefore, for now it is unclear what the best
asymptotic runtime exponent of ISD algorithms is and, hence, a baseline for new
improvements is missing. This baseline is of major importance to classify the gain
of new ISD and other decoding algorithms, as for instance the newly proposed
RLPN technique of Carrier et al. [5], which achieves runtime improvements
over ISD in some regimes. In this work we clarify those doubts by giving a
corrected analysis of the Both-May algorithm showing that it (slightly) improves
the running time, while yielding significant memory imporovments over previous
algorithms. Overall, this is in line with the results from Esser and Bellini [8] who
performed a more practical study of the algorithm also observing mostly memory
rather than time improvements.

After we set the bar for new ISD improvements, we extend the algorithm
by Both-May improving its running time and memory complexity. We obtain
our improvement by a novel technique of combining two steps which are usually
performed sequentially in the enumeration part of the algorithm – the nearest
neighbor search and a subsequent filtering of the found solutions according to
some criterion. Therefore we treat the nearest neighbor search in non black-box
fashion which allows us to directly embed the filtering into the procedure.

Our Contribution. The contribution of this work is twofold. First we provide a
clean description of the most recent ISD algorithm by Both-May and a corrected
analysis. Our first main contribution is therefore to provide the correct baseline
for further improvements. In this context, we confirm the claim of Carrier et
al. that the initial analysis of the algorithm is flawed. However, we show that
the algorithm still (slightly) improves on running time and significantly lowers
the memory consumption of previous ISD algorithms. More precisely, we find
that the worst-case runtime in the full distance decoding setting is reduced from
20.0953n down-to 20.0951n, while the memory consumption is lowered from 20.092n

to 20.076n, yielding the largest memory improvement made by any ISD algorithm
so far.

Our second main contribution is an improvement of the algorithm by Both-
May, which yields a reduced time complexity and again a significant improvement
in the memory complexity. From an algorithmic perspective we achieve our
improvement by a novel combination of the nearest neighbor search and a
subsequently applied filtering step. We therefore treat the nearest neighbor search
in a non-black box fashion to embed the filtering, such that a single application
of the adapted algorithm yields the already filtered lists. In this context, we
introduce a variation of the nearest neighbor problem, the fixed-weight nearest
neighbor problem and propose a first algorithm solving the problem. Besides
improving the state of the art, we therefore lead the way to further improvements,
as any faster algorithm for solving this variation is likely to yield a faster ISD
algorithm. Such research directions are especially desirable where recent results
by Kirshanova and Laarhoven [13] rule out significant speedups of ISD algorithms
via generic improvements of nearest neighbor search techniques.

3

Our algorithm obtains the largest improvements for small code rates, i.e.,
small values of k/n. Hence, the running time in the full distance setting with
large worst-case rate of 0.423 is only slightly reduced to 20.0948n with still a
significant memory improvement down-to 20.071n. We illustrate the improvement
of our algorithm (Both-May+) over the algorithm by Both-May for all rates
in Figure 1. The graphic shows the difference c − c+, where the time (resp.
memory) complexity of the Both-May and Both-May+ algorithm are 2cn and
2c+n respectively. Additionally we illustrate the gain of the two previous ISD
improvements by Both and May [3,4] over their chronological predecessor.1 It can
be observed that our adaptation obtains by far the largest absolute improvement
in time exponent over all rates. Further, it can be observed that our algorithm
significantly improves the constant in the memory complexity exponent. Note
that, this is the second largest memory improvement made by an ISD algorithm
that also improves on time since 1962, only surpassed by the gain of the Both-May
algorithm.

0 0.5 1
0.000

0.001

0.002

0.003

code rate k
n

im
pr

ov
em

en
t

in
tim

e
/

m
em

or
y

ex
po

ne
nt

time

0 0.5 1

0.000

0.010

0.020

code rate k
n

memory

BJMM-MO [3] Both-May ([4]/Section 3.2) Both-May+ (Section 4.2)

Fig. 1: Improvement in time (left) and memory exponent (right) of ISD algorithms over
their chronological predecessor in the full distance setting.

Furhter, due to our improvement for small rates we shift the break even point
from where the recent RLPN technique from [5] becomes preferable to rates
smaller than 0.25 from initially 0.3. Note that even if RLPN is preferable for small
rates, the technique requires to find low weight codewords, which is accomplished
by executing an ISD algorithm as a subroutine. Hence, ISD improvements remain
substantial also for improving the RLPN decoder.
1 The chronological order of the latest four improvements is (old to new): May-Ozerov

[16], BJMM-MO [3], Both-May [4] (corrected result in Section 3.2), Both-May+

(Section 4.2).

4

All used optimization code is made available under https://github.com/
Memphisd/Revisiting-NN-ISD.

Outline. In Section 2 we cover necessary basics on nearest neighbor search, the
syndrome decoding problem and the general technique of ISD. In Section 3 we
recall the Both-May algorithm and give a corrected analysis. Subsequently, we
provide in Section 4 our improved algorithm. We conclude with a numerical
optimization of our algorithm’s complexity and comparison to other decoding
techniques in Section 5.

2 Preliminaries

We denote vectors by bold lower case and matrices by bold upper case letters.
All logarithms are base two. We use standard landau notation for complexity
statements. We denote by H(x) := −x log(x) − (1 − x) log(1 − x) the binary
entropy function. To approximate binomial coefficients, we make use of the well
known approximation (

n

k

)
= Θ̃

(
2nH(k/n)

)
. (1)

For a vector v we denote by vi the projection to the i-th coordinate of v. We
extend this notation to sets of coordinates, i.e., for a set I ⊆ {1, . . . , n}, where n
is the length of v we denote by vI the projection of v to the coordinates indexed
by I. For a binary vector x ∈ Fn

2 , we let wt(x) := |{i | xi = 1}| be its Hamming
weight. We refer to the set of vectors of length n and Hamming weight w as
B(n, w) := {x ∈ Fn

2 | wt(x) = w}.

Nearest neighbor search. Most recent ISD techniques rely on subroutines
to solve a specific kind of nearest neighbor search problem. Informally, given
two lists of binary vectors and a distance ε the problem asks to find all pairs
with distance ε between the two lists. In our analysis we use the algorithm by
May and Ozerov [16] to solve this problem, which achieves the best known time
complexity. More precisely, we use a recent adaptation of the algorithm by Esser,
Kübler and Zweydinger [9], which generalizes May-Ozerov’s result to arbitrary
list sizes and distances. The following lemma (compare to [9, Theorem 1]) states
the time complexity of the algorithm

Lemma 2.1 (May-Ozerov Nearest Neighbor [9, 16]). Let ε ∈
q
0, 1

2
y

and
λ ∈ J0, 1K, n ∈ N. Given two lists L1, L2 of size |Li| = 2λn containing uniformly
at random drawn elements from Fn

2 . Then there is an algorithm that returns all
pairs (x1, x2), xi ∈ Li with wt(x1 + x2) = εn in expected time 2ϑn(1+o(1)), where

ϑ =

(1 − ε)
(

1 − H

(
δ⋆− ε

2
1−ε

))
for ε ≤ ε⋆

2λ + H(ε) − 1 for ε > ε⋆ ,

with δ⋆ := H−1(1 − λ) and ε⋆ := 2δ⋆(1 − δ⋆) using memory |Li|(1+o(1)).

5

https://github.com/Memphisd/Revisiting-NN-ISD
https://github.com/Memphisd/Revisiting-NN-ISD

We encounter a slightly different setting where the vectors contained in the
lists are of length ℓ · n for some constant ℓ ∈ J0, 1K instead of length n. It is easy
to see that by normalizing ε and λ to ℓ we can still make use of Lemma 2.1 in
this case.

Corollary 2.1. Let ε′ ∈
q
0, 1

2
y

and λ′, ℓ ∈ J0, 1K, n ∈ N. Given two lists L1, L2
of size |Li| = 2λn containing uniformly at random drawn elements from Fℓn

2 . Then
there is an algorithm that returns all pairs (x1, x2), xi ∈ Li with wt(x1+x2) = ε′n

in expected time 2ϑ·ℓn(1+o(1)), where ϑ is as in Lemma 2.1 for ε := ε′

ℓ and λ := λ′

ℓ .

Decoding. A binary linear code C of length n and dimension k is a k-dimensional
subspace of Fn

2 . Such a code can be represented via the kernel of a parity-check
matrix H ∈ F(n−k)×n

2 , i.e. C = {c ∈ Fn
2 | Hc = 0}. The task of recovering

a codeword c ∈ C from a given faulty version c′ = c + e is known as the
decoding problem. This problem is polynomial-time equivalent to the syndrome
decoding problem, which asks to recover the error term e from the given syndrome
Hc′ = H(c + e) = He.

Definition 2.1 (Syndrome Decoding Problem). Let C ⊆ Fn
2 be a random

linear code of dimension k with constant rate k
n and parity-check matrix H. Given

a syndrome s ∈ Fn−k
2 and an integer ω < n the syndrome decoding problem asks

to find a vector e ∈ Fn
2 of Hamming weight wt(e) = ω that satisfies He = s. We

call e the solution and (H, s) an instance of the problem.

Note that ω is usually rather small and that without this restriction on the
Hamming weight the problem could easily be solved by Gaussian elimination.
The most commonly considered setting is the full distance decoding setting,
which bounds ω by the minimum distance of the code. The minimum distance
d of a code C is the minimal weight of the sum of two codewords of C, i.e.,
d := minc1,c2∈C wt(c1 + c2) = minc∈C wt(c). Random linear codes are known
to asymptotically achieve a minimum distance of ω = H−1(1 − k/n)n [11, 20].
Now, the full distance decoding setting bounds ω ≤ d, which implies that for each
uniformly random choice of (H, s) there exists one solution in expectation.

Information Set Decoding (ISD). The best known strategy to solve generic
instances of the syndrome decoding problem is ISD. Given an instance (H, s′) of
the syndrome decoding problem, ISD algorithms first apply a random permutation
P to the columns of H to obtain a permuted instance (HP, s′) with solution
P−1e. Then HP is transformed into systematic-form by multiplication with an
invertible matrix Q, which yields the identity

(QHP)(P−1e) = (In−k | H1)(e1, e2) = e1 + H1e2 = Qs′ =: s,

where P−1e = (e1, e2). The permutation step aims at distributing the weight on
P−1e such that wt(e1) = ω − p and wt(e2) = p, where p hast to be optimized.

6

In a last step the algorithm then recovers e2 and e1 from the identity

H1e2 + s = e1.

The subroutines to accomplish this last step differ between ISD algorithms, but
commonly they rely on enumeration of the weight-p vector e2 and try to identify
those for which H1e2 + s is of small weight ω − p. If this does not lead to a
solution the weight was not distributed as desired and the algorithm starts over
with a new random permutation.

ISD and nearest neighbor. The identity H1e2 + s = e1 defines a nearest neighbor
problem. Therefore let e2 = (e21, e22) and rewrite the identity as

H1(e21, 0) = H1(0, e22) + s + e1.

Since e1 is not known, but of small Hamming weight ω − p we have

H1(e21, 0) ≈ H1(0, e22) + s.

We can solve this identity directly by applying Lemma 2.1. Therefore, enumerate
all e2i and store the left (resp. right) side of the above identity in list Li, and let
the target distance be ε = ω − p.

However, prior to the result of Both-May, ISD algorithms solve the identity
mostly by guessing (or enumerating) the bits of e1 on some projection π of its
coordinates. This leads to an exact identity π(H1e2) = π(s + e1) where the value
of π(s + e1) is known. Now the algorithms solve the problem on the projection π
after which they check if they fulfill the identity on all coordinates.

Modern ISD algorithms split e2 in multiple addends and then solve the exact
identity in a binary tree fashion, where at the leaves candidates for the summands
are enumerated (similar to the two list example above).

3 The Algorithm by Both-May

The algorithm by Both-May differs from previous works in how it solves the
nearest-neighbor identity

H1e2 + s = e1 (2)

In contrast to previous works the algorithm does not enumerate coordinates of
e1 to obtain an exact identity. Instead it solves the nearest neighbor identity
directly by using the May-Ozerov nearest neighbor search algorithm.

The algorithm still relies on a search-tree to construct e2. Therefore it splits
e2 = z1 + z2 in the sum of two addends. From Equation (2) it follows that H1z1
and H1z2 + s are wt(e1) close, since e1 is of small weight this implies

Hz1 ≈ Hz2 + s. (3)

7

Now the algorithm makes the bet that both sides of the equation are itself
small on some projection π of the coordinates, i.e., that wt

(
π(Hz1)

)
= ω

(1)
a

and wt
(
π(Hz2 + s)

)
= ω

(1)
a for some small ω

(1)
a . Then it splits z1 = y1 + y2

and z2 = y3 + y4 again in the sum of two addends. Assuming both sides of
Equation (3) are indeed small on the projection π, we obtain the two nearest
neighbor identities

π(Hy1) ≈ π(Hy2) and π(Hy3) ≈ π(Hy4 + s). (4)

3.1 Depth-2 Variant

For didactic reasons let us start with the algorithm using a search tree in depth
two to construct the solution e2. Therefore, in the base lists Li, i = 1, . . . , 4 all
possible values for the yi are enumerated. Then L1, L2 and L3, L4 are combined
by solving the respective nearest neighbor identities from Equation (4). This
yields two new lists L

(1)
1 and L

(2)
1 containing candidates for z1 and z2 respectively.

In a final step the lists L
(1)
1 and L

(2)
1 are combined by solving the nearest neighbor

identity from Equation (3) to find e2. This process is illustrated in Figure 2. A
pseudocode description of the algorithm is given by Algorithm 1. In the graphic
as well as in the algorithmic description the projection π is chosen to map to the
first ℓa bits of the given vector.

0
y1H1y1

n− k k
2

k
2

p1/2

L1

0
y2H1y2

n− k k
2

k
2

p1/2

L2

N 0
y3H1y3

n− k k
2

k
2

p1/2

L3

0
y4H1y4 + s

n− k k
2

k
2

p1/2

L4

N

z1H1z1

n− k − ℓaℓa k

p1L
(1)
1

ω(1)
a

z2H1z2 + s

n− k − ℓaℓa k

p1 L
(1)
2

ω(1)
aN

n− k − ℓaℓa k

L = L
(2)
1 ω − p− ωa

ω − p− ωa

e2e1 = H1e2 + s

pωa

Fig. 2: Both-May algorithm in depth-2. Weight in gray regions differs from weight of
uniformly random vectors. Numbers inside gray areas indicate regions of fixed weight.
Curly arrows illustrate final check for contained solution, N indicates nearest neighbor
search.

Finding a representation of the solution. Let the permutation induce a
weight distribution, such that wt(e2) = p and wt(π(e1)) = ωa, where π is, as

8

defined in Algorithm 1, the projection to the first ℓa coordinates of e1, while
p, ωa and ℓa have to be optimized. Also let zi ∈ B(k, p1), i = 1, 2 , for some p1
that has to be optimized. Observe that this implies multiple representations of
e2, i.e. multiple different pairs (z1, z2) that sum to e2. Precisely there are

R1 =
(

p

p/2

)(
k − p

p1 − p/2

)
such representations, where z1, z2 have both weight p1. Here the first term counts
the possibilities to distribute p/2 out of the p one entries of e2 on z1, while
the remaining p/2 ones must be set in z2. The second factor then counts how
the remaining p1 − p/2 one entries in z1 and z2 can cancel out. The goal of
the algorithm is to enumerate only an 1/R1 fraction of these representations,
as any representation leads to e2. To achieve this, a constraint on the space of
representations is enforced via the weight-guess ω

(1)
a made on the projection π of

both sides of Equation (3). The parameter ω
(1)
a has to be optimized as well.

On the base level all possible yi are enumerated in list Li, where we let
y1, y3 ∈ B(k/2, p1/2) × 0k/2 and y2, y4 ∈ 0k/2 × B(k/2, p1/2), i.e., we perform a
meet-in-the-middle split of z1 and z2. The lists L1 and L2 are then combined by
searching those pairs y1, y2 with wt(π(H1(y1 + y2))) = ω

(1)
a . The lists L3 and

L4 are combined analogously by previously adding s.
Let us analyze the probability that any representation of the solution fulfills

the weight-guess ω
(1)
a on the projection. More precisely, let the probability that for

any representation (z1, z2) of e2 we have wt(π(H1z1)) = wt(π(H1z2 + s)) = ω
(1)
a

be q. Then we have

q : = Pr
[
wt(π(H1z1)) = wt(π(H1z2 + s)) = ω(1)

a | e2 = z1 + z2, wt(π(e1)) = ωa

]
= Pr

[
wt(a1) = wt(a2) = ω(1)

a | e′
1 = a1 + a2, wt(e′

1) = ωa, e′
1 ∈ Fℓa

2

]
(5)

=

(
ωa

ωa/2
)(ℓa−ωa

ω
(1)
a −ωa/2

)
2ℓa

,

since there exist 2ℓa pairs a1, a2 that fulfill e′
1 = a1+a2, but only

(
ωa

ωa/2
)(ℓa−ωa

ω
(1)
a −ωa/2

)
of them have correct weight ω

(1)
a .2 Note that the first equality follows from the

randomness of H and the fact that e1 = H1e2+s. Concluding, as long as q·R1 ≥ 1,
we expect the two lists L

(1)
1 and L

(2)
1 to contain at least one representation of e2.

Note that our construction of L
(1)
i (via a meet-in-the-middle split) only

allows to obtain balanced zi, i.e., elements with weight p1/2 on both halves of
their coordinates. However, balanced elements form a polynomial fraction of all
elements, since using Equation (1) we obtain(

k/2
p1/2

)2(
k
p1

) = Θ̃(1).

2 This term corresponds to the number of representations of one weight-ωa vector of
length ℓa as sum of two weight-ω(1)

a vectors.

9

Therefore we still can construct R1 representations up to a polynomial factor.

Algorithm 1: Both-May Depth-2
Input : H ∈ F(n−k)×n

2 , s′ ∈ Fn−k
2 , ω ∈ N

Output : e ∈ Fn
2 , He = s′ with wt(e) = ω

1 Choose optimal p, p1, ℓa, ωa, ω
(1)
a and define

π : Fn−k
2 → Fℓa

2 , π(x1, . . . , xn−k) = {x1, . . . , xℓa}

π̄ : Fn−k
2 → Fn−k−ℓa

2 , π̄(x1, . . . , xn−k) = {xℓa+1, . . . , xn−k}

2 Enumerate
Lj = {yj | yj ∈ B(k/2, p1/2)× 0k/2}, j = 1, 3

Lj = {yj | yj ∈ B(k/2, p1/2)× 0k/2}, j = 2, 4

3 repeat
4 choose random permutation matrix P
5 H′ ← QHP =

(
In−k H1

)
, s← Qs′

6 Compute via Nearest-Neighbor

L
(1)
1 = {z1 | z1 = y1 + y2, yi ∈ Li, wt(π(H1z1)) = ω(1)

a }

L
(1)
2 = {z2 | z2 = y3 + y4, yi ∈ Li, wt(π(H1z2 + s)) = ω(1)

a }

L = {e2 | e2 = z1 + z2, zi ∈ L
(1)
i , wt

(
π̄(H1e2 + s)

)
= ω − ωa − p}

7 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s) = ω − p then
8 return P(H1e2 + s, e2)

Complexity of the algorithm. The probability for the permutation distribut-
ing the weight as desired is

P =
(

n
ω

)(
ℓa

ωa

)(
k
p

)(
n′

ω′

) ,

where n′ := n − k − ℓa and ω′ := ω − p − ωa. Hence, after P −1 iterations we
expect to have chosen one permutation that distributes the weight as desired.

Next we investigate the time per iteration of the loop of Algorithm 1, which
is dominated by the nearest neighbor search. Therefore, let us first calculate the
(expected) list sizes. The base lists Li are of size

L0 =
(

k/2
p1/2

)
,

10

while we expect the level-1 lists to be of size

L1 := E[L(1)
i] = (L1)2 ·

(ℓa

ω
(1)
a

)
2ℓa

= Õ

(k
p1

)(ℓa

ω
(1)
a

)
2ℓa

 ,

since by the randomness of H the probability that H1x for any x ̸= 0 has weight

ω
(1)
a on a projection to ℓa coordinates is

(ℓa

ω
(1)
a

)
2ℓa

.
For the construction of the lists L

(1)
i and L we use the May-Ozerov nearest

neighbor search algorithm. The complexity of this algorithm to find all ε close
pairs on lists of size L containing length-ℓ vectors is given by Corollary 2.1 and
we denote it as NL,ℓ,ε. Therefore the overall time complexity of the algorithm is

T = P −1 · max(NL1,ℓa,ω
(1)
a

, NL2,n′,ω′),

while the memory complexity is max(L1, L2). Note that the final list does not
affect the memory complexity, as its elements can be checked on-the-fly for being
a solution. Furthermore the construction of this list is at least as expensive as its
size, which is why it does not appear in the time complexity.

Complexity exponent. In our optimizations we approximate the binomial coeffi-
cients in the analysis using Equation (1). Then for each optimization parameter
oi we let oi = ôi ·n, where ôi ∈ J0, 1K. Furthermore, we similarly let k = k̂n, where
k̂ = k

n is the rate of the code. We then minimize the running time over the choices
of the ôi under the correctness constraint qR1 ≥ 1. Finally we maximize over all
possible choices for the rate k̂ with corresponding weight ω = ω̂n = H−1(1 − k̂)n
(full distance setting). This results in a complexity of the form 2cn for constant c.

The numerical optimization leads to a running time of T = 20.0982n with
memory complexity M = 20.716n at worst-case rate k̂ = 0.422 and, hence,
ω = H−1(1 − 0.422)n ≈ 0.1373.

We stress that these results essentially match those given in the original work
of Both-May [4]. The reason is that in contrast to higher search tree depth variants
the depth-2 variant does not make use of a filtering step, which introduced the
flaw in the analysis of [4] as we describe in the following section.

3.2 Depth-4 Variant

Both and May obtain their best result for a tree in depth four. Here the splitting of
e2 is continued recursively, i.e. yi = x2i−1+x2i, i = 1, 2, 3, 4 and xj = w2j−1+w2j ,
j = 1, . . . , 8. The algorithm then recursively makes a bet on the smallness of Hyi

(respectively Hy4 + s) and Hxj (respectively Hx8 + s) on some projections to
obtain nearest neighbor identities for each level. Also it enforces a specific weight
on the vectors yi and zi itself. Eventually, all possible wj are enumerated in the
base lists Lj , j = 1, . . . , 16.

11

Similar to before the wi form a meet-in-the-middle split of the xj , i.e.,
w2i−1 ∈ B(k/2, p1/2) × 0k/2 and w2i ∈ 0k/2 × B(k/2, p1/2), where p1 is subject
to optimization.

Additionally, a filtering step is introduced after the construction of the level-2
and level-3 lists. This filtering step discards all vectors which do not sum to
predefined weights or which do not sum to predefined weights on projections that
already have fixed weights, i.e., those already used for nearest neighbor search
on previous levels (compare to Figure 3).

0
w1H1w1

n− k k
2

k
2

p1/2

L1

0
w2H1w2

n− k k
2

k
2

p1/2

L2

x1H1x1

n− k − ℓaℓa k

p1L
(1)
1

ω(1)
a

N

ℓbℓa k

L
(2)
1

ω(2)
b

N · · ·

· · ·

y1H1y1

p2ω(2)
bω(2)

a

ℓcℓbℓa k

L
(3)
1 ω(3)

c

N · · ·

z1H1z1

p3ω(3)
bω(3)

a ω(3)
c

ℓ′ℓcℓbℓa k

L = L
(4)
1 ω′

N · · ·

e2H1e2 + s

p

ℓ′ := n− k − ℓa − ℓb − ℓc

ω′ := ω − p− ωa − ωb − ωc

ω′ωa ωb ωc

Fig. 3: Leftmost path of depth-4 algorithm from leaves (base lists) to root (final list).
Gray areas indicate regions where weight differs from weight of uniformly random vectors.
Numbers inside gray areas indicate regions of fixed weight. Curly arrows illustrate
filtering process, N indicates nearest neighbor search.

The pseudocode of the algorithm is given by Algorithm 2 and an illustration
in Figure 3. For simplification we choose the projections on each level to be the
next ℓa, ℓb and ℓc coordinates respectively. More precisely, we define

πa : Fn−k
2 → Fℓa

2 , πa(x1, . . . , xn−k) = {x1, . . . , xℓa
}

πb : Fn−k
2 → Fℓb

2 , πb(x1, . . . , xn−k) = (xℓa+1, . . . , xℓa+ℓb
)

πc : Fn−k
2 → Fℓc

2 , πc(x1, . . . , xn−k) = {xℓa+ℓb+1, . . . , xℓa+ℓb+ℓc}

(6)

12

Analogously to the depth-2 case, we let

π̄ : Fn−k
2 → Fn−k−ℓ′

2 , ℓ′ := ℓa + ℓb + ℓc with π̄(x) = (xℓ′+1, . . . , xn−k) (7)

be the projection to the remaining coordinates.

Remark 3.1 (Block notation). We use letters to refer to different projections (or
blocks) of coordinates while we use numbers to indicate different levels of the
tree. For instance, ω

(3)
b is the predefined weight of block b on level 3.

Algorithm 2: Both-May Depth-4
Input : H ∈ F(n−k)×n

2 , s′ ∈ Fn−k
2 , ω ∈ N

Output : e ∈ Fn
2 , He = s′ with wt(e) = ω

1 Choose optimal p, p1, p2, p3, ℓa, ℓb, ℓc, ωa, ωb, ωc, ω
(1)
a , ω

(2)
a , ω

(3)
a , ω

(2)
b , ω

(3)
b , ω

(3)
c

2 Let πa, πb, πc, π̄ be defined as in Equations (6) and (7)
3 Enumerate

Lj = {wj | wj ∈ B(k/2, p1/2)× 0k/2}, j = 1, 3, . . . , 15

Lj = {wj | wj ∈ B(k/2, p1/2)× 0k/2}, j = 2, 4, . . . , 16

4 repeat
5 choose random permutation matrix P

6 H′ ← QHP =
(
In−k H1

)
, s← Qs′ and define sj,i :=

{
s , i = j

0n−k , else
7 Compute level-1 lists via nearest neighbor for i = 1, . . . , 8

L
(1)
i = { xi | xi = w2i−1 + w2i, wj ∈ Lj , wt(πa(H1xi + s8,i)) = ω(1)

a }

8 Compute via nearest neighbor then filter level-2 lists for i = 1, . . . , 4
L

(2)
i = { yi | yi = x2i−1 + x2i, xj ∈ L

(1)
j , wt(πb(H1yi + s4,i)) = ω

(2)
b }

L
(2)
i ← {y ∈ L

(2)
i | wt

(
πa(H1y + s4,i)

)
= ω(2)

a ∧ wt(y) = p2}

9 Compute via nearest neighbor then filter level-3 lists for i = 1, 2
L

(3)
i = { zi | zi = y2i−1 + y2i, yj ∈ L

(2)
j , wt(πc(H1zi + s2,i)) = ω(3)

c }

L
(3)
i ← {z ∈ L

(3)
i | wt

(
πa(vi)

)
= ω(3)

a ∧ wt
(
πb(vi)

)
= ω

(3)
b ∧ wt(z) = p3}

, with vi := H1z + s2,i

10 Compute final (level-4) list via nearest neighbor, ω′ := ω − ωa − ωb − ωc − p

L = { e2 | e2 = z2i−1 + z2i, zj ∈ L
(3)
j , wt(π̄(H1e2 + s′)) = ω′}

11 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s′) = ω − p then
12 return P(H1e2 + s′, e2)

13

Finding a representation of the solution. Let us assume the permutation
P distributes the weight on P−1e = (e1, e2) such that

wt(e2) = p and wt
(
πδ(e1)

)
= ωδ for δ ∈ {a, b, c},

which implies wt
(
π̄(e1)

)
= ω − ωa − ωb − ωc − p.

The algorithm constructs on each level i = 1, 2, 3 vectors of weight pi that
should sum to weight-pi+1 vectors, where p4 := p. Note that each such weight-pi+1
vector has Ri representations as sum of weight-pi vectors, where

Ri =
(

pi+1

pi+1/2

)(
k − pi+1

pi − pi+1/2

)
.

Therefore, we intend again to enumerate an 1/Ri-fraction of all possible rep-
resentations to ensure that their is one representation on expectation of each
weight-pi+1 vector contained on level i. Let us analyze the constraint imposed
on each level introduced by restricting to a specific weight on the projections
πa, πb and πc. We have already seen in Section 3.1 that the probability that any
representation of a level-2 element survives the level-1 constraint is

q1 =

(ω(2)
a

ω
(2)
a /2

)(ℓa−ω(2)
a

ω
(1)
a −ω

(2)
a /2

)
2ℓa

,

compare to Equation (5). By the same reasoning if we now on level-2 impose
weight restrictions on both projections πa and πb, we obtain

q2 :=
∏

δ∈{a,b}

Pr
[
wt(πδ(Hy1)) = wt(πδ(Hy2)) = ω

(2)
δ | wt(πδ(H(y1 + y2))) = ω

(3)
δ

]
=

∏
δ∈{a,b}

Pr
ai∈Fℓδ

2

[
wt(πδ(a1)) = wt(πδ(a2)) = ω

(2)
δ | wt(πδ(a1 + a2)) = ω

(3)
δ

]

=

(ω(3)
a

ω
(3)
a /2

)(ℓa−ω(3)
a

ω
(2)
a −ω

(3)
a /2

)
2ℓa

·

(ω
(3)
b

ω
(3)
b

/2

)(ℓb−ω
(3)
b

ω
(2)
b

−ω
(3)
b

/2

)
2ℓb

.

Eventually for the last level we obtain analogously

q3 :=
∏

δ∈{a,b,c}

Pr
[
wt(πδ(Hz1)) = wt(πδ(Hz2)) = ω

(3)
δ | wt(πδ(H(z1 + z2))) = ωδ

]

=
∏

δ∈{a,b,c}

(
ωδ

ωδ/2
)(ℓδ−ωδ

ω
(3)
δ

−ωδ/2

)
2ℓδ

.

Now as long as we have qi · Ri ≥ 1 we ensure that in expectation on each level
i at least one representation of each possible level-(i + 1) element, i.e., of each
x ∈ Fk

2 with wt(x) = pi+1 is present. This implies in turn that on level 3 there
is a representation of the searched weight-p vector e2. Since we conditioned on
wt(π̄(e1)) = ω − p − ωa − ωb − ωc this representation is found by the level-4 list
construction.

Note that to avoid duplicates in the lists we will also optimize parameters
according to the constraint qi · Ri ≤ 1, which implies qi · Ri = 1.

14

Complexity of the algorithm. The probability for the permutation distribut-
ing the weight as desired is

P =
(

n
ω

)(
ℓa

ωa

)(
ℓb

ωb

)(
ℓc

ωc

)(
ℓ′

ω′

)(
k
p

) ,

where ℓ′ := n − k − ℓa − ℓb − ℓc and ω′ := ω − p − ωa − ωb − ωc. Therefore after
P −1 iterations we expect one to distribute the weight as desired.

Now let us analyze the cost to construct the tree. First, we argue about the
expected list size on each level after filtering, which is exactly where the analysis
of [4] goes wrong. The base lists are analogously to the depth-2 variant of size

L0 =
(

k/2
p1/2

)
.

Now, we have already shown that for suitable parameters, satisfying qiRi = 1, on
level i = 1, 2, 3 there exists exactly one representation of each possible level-(i+1)
element, i.e., of each x ∈ Fk

2 with wt(x) = pi+1. Therefore the expected list size
on level-i after filtering is

Li =
(

k

pi

)
· ρi,

where ρi is the probability that a vector x ∈ Fk
2 fulfills the level-i restriction.

Since level i imposes a weight restriction on a total of i blocks, we have

ρ1 =

(ℓa

ω
(1)
a

)
2ℓa

, ρ2 =

(ℓa

ω
(2)
a

)(ℓb

ω
(2)
b

)
2ℓa+ℓb

and ρ3 =

(ℓa

ω
(3)
a

)(ℓb

ω
(3)
b

)(ℓc

ω
(3)
c

)
2ℓa+ℓb+ℓc

.

In Appendix A we outline the difference to the original analysis of [4].
The time complexity per iteration of the loop is again given by the time

it takes to construct all lists. The level-i lists, i = 1, 2, 3 are constructed via a
nearest neighbor search on lists of size Li−1 including vectors of length ℓδ with
target weight ω

(i)
δ , δ ∈ {a, b, c}. The final list is then constructed via nearest

neighbor search on the remaining ℓ′ coordinates for target weight ω′. Therefore
the cost for each level i is Ti, where

T1 = NL0,ℓa,ω
(1)
a

, T2 = NL1,ℓb,ω
(2)
b

, T3 = NL2,ℓc,ω
(3)
c

and T4 = NL3,ℓ′,ω′ ,

Eventually the total time complexity of Algorithm 2 is given as the number of
iterations times the cost for one iteration, giving

T = P −1 max
i

(Ti).

Numerical Optimization of Algorithm 2. We follow the same optimization
methodology as for the depth-2 case, under correctness constraints qiRi = 1, to
obtain the asymptotic running time and memory exponents. We find a worst

15

case rate for the algorithm of k̂ = 0.42 with ω = H−1(1 − k̂) ≈ 0.1384, leading
to a time and memory complexity of

T = 20.0951n and M = 20.076n,

for optimal parameters3

p̂ = 0.05180, p̂3 = 0.04719, p̂2 = 0.03371, p̂1 = 0.01783,

ℓ̂a = 0.05280, ℓ̂b = 0.10178, ℓ̂c = 0.12367,

ω̂a = 0.00651, ω̂(3)
a = 0.00593, ω̂(2)

a = 0.00428, ω̂(1)
a = 0.05,

ω̂b = 0.01220, ω̂
(3)
b = 0.01091, ω̂

(2)
b = 0.09414,

ω̂c = 0.01504, ω̂(3)
c = 0.01354.

While this running time is far greater than the initially claimed 20.0885n [4], it
still slightly improves on the previously best running time of 20.0953n reported
in [3]. Further, the memory complexity is drastically improved by a factor of
20.0197n from previously 20.0915n to 20.0754n. We give a more detailed comparison
to other ISD algorithms also for different rates in Section 5.

4 An Improved Algorithm

Note that the Both-May algorithm works on each level in two steps. First it
combines two lists of the previous level to obtain vectors which fulfill a weight
restriction on a subset of the coordinates. Then in a second step it filters the
vectors for the weight restriction on the remaining coordinates. We improve this
by embedding the filter process into the nearest neighbor search algorithm, to
directly obtain vectors that satisfy the weight restriction on all coordinates.

In the following we first show how to adapt the May-Ozerov algorithm to also
perform the filtering step. After that we describe how to integrate this adaptation
into the Both-May algorithm and how its complexity changes.

Our adaptation of the May-Ozerov algorithm requires to solve a specific
variant of a nearest neighbor problem as a subroutine. Therefore in Section 4.3
we develop an algorithm to solve this variant and upper bound its complexity to
finally obtain a numerical complexity estimate for our whole decoding procedure.

4.1 Combining Nearest Neighbor Search and Filtering

Let us first briefly recall how the May-Ozerov nearest neighbor search algorithm
finds all ε-close pairs between two same-sized input lists L1, L2 containing uni-
formly random vectors from Fm

2 and how its complexity is composed. For an
in-depth explanation and analysis the reader is referred to [9, 16]. First, the
3 Due to rounding to a precision of 10−5 there might be a certain deviation in

satisfying the correctness constraints. For the exact numbers we refer to our
optimization scripts, which are provided as supplementary material.

16

algorithm computes an exponential number of list pairs L′
1, L′

2 from the initial
lists. For optimal parameter choices it is guaranteed that L′

1, L′
2 each have only

polynomial size, while simultaneously any distance-ε pair between L1 and L2 is
still contained in at least one of the constructed pairs L′

1, L′
2. In a final step the

algorithm then finds the ε-close pairs by computing L′
1 × L′

2 for every list pair
L′

1, L′
2 naively.

L1 L2

. . .

. . .

1 1/qε2
.
...

1

1 2 1/qε

. . .

.

Level

1

...

r − 1

r

q−r
ε leaves

.

Fig. 4: Illustration of the May-Ozerov nearest neighbor search algorithm. Arrows indicate
the application of a locality sensitive filter. Each node branches q−1

ε times. Bold stripes
in lists indicate pair of distance ε progressing through all r applied filters.

The list pairs are computed in a tree-like fashion, where the input pair
L1, L2 forms the root of the tree (compare to Figure 4). This tree is constructed
iteratively, level by level. In every step of the algorithm each leaf of the tree is
branched 1/qε times. A child-node is computed by traversing both lists of the
parent node and applying a locality-sensitive filter to each element. This filter
discards elements that do not match the filter criterion and, hence, reduces the
lists’ sizes. Furthermore, it has the property, that an arbitrary element passes
the filter with probability qf, while for an ε-close pair (x, y) between the lists,
x and y pass the filter at the same time with probability qε > q2

f . Therefore
close pairs are more likely to pass the filter than non-close pairs. The branching
factor of q−1

ε ensures that if there is an element of distance ε contained in the
current node, it progresses to the next level through at least one of the filters.

17

This procedure is repeated r times to construct a tree of depth r containing q−r
ε

leaves.4
The time complexity is then given (compare to [9, Theorem 2]5) as

TMO = q−r
ε · max

(
|L1| · qr−1

f , (|L1| · qr
f)2
)1+o(1)

. (8)

Here, the first term in the maximum describes the size of lists after applying
the filter r − 1 times and corresponds to the cost of constructing a single leaf of
the tree. In [9] it is shown that the construction of the leaves from its parents
dominates the construction of the whole tree. The second term describes the
cost for naively finding all ε-close pairs between list pairs contained in the leaves,
i.e., after applying the filter r times. The initial factor in front of the maximum
accounts for the number of leaves.

Furthermore, for the locality sensitive filter criterion chosen in [9] the proba-
bilities qε and qf are parameterized via an optimization parameter δ < m and
are given as

qε =
(

ε/r

ε/2r

)(
(m − ε)/r

(δ − ε/2) /r

)(
1
2

)m/r

and qf =
(

m/r

δ/r

)(
1
2

)m/r

. (9)

Note that for the optimal choice of δ the maximum from Equation (8) is dominated
by the first term, as the second one becomes polynomial. Further, optimal
parameter choices lead to the result stated in Lemma 2.1.

Algorithm 3: May-Ozerov
Input : lists L1, L2 ∈ (Fm

2)∗, integer ε
Output : all pairs x, y ∈ L1 × L2 with wt(x + y) = ε

1 Choose optimal δ, r and let qε be as in Equation (9), L← ∅
2 Construct q−r

ε list pairs L′
1, L′

2, each by applying a locality-sensitive filter r
times to L1, L2

3 foreach pair L′
1, L′

2 do
4 L← L ∪ {(x, y) ∈ L′

1, L′
2 | wt(x + y) = ε}

5 return L

Adapting the May-Ozerov Algorithm. In Algorithm 2 the May-Ozerov
algorithm operates only on a projection π to m out of n coordinates, e.g., on
projection π := π̄ to construct the final level-4 list. However, for the remaining
4 In [9] r was chosen as m

log2 m
to ease the analysis. However, in [16] it was shown

that a large enough constant is already sufficient.
5 In comparison to [9] we assume 2λm · qr−1

f ≥ 1 to remove one term from the
maximum.

18

n − m coordinates there are also weight restrictions, which are imposed via the
filtering step. We now exchange the naive search for ε-close pairs on projection π
at the leaf-level (line 4 of Algorithm 3) by an algorithm that finds those vectors
that match the weight restriction on the remaining ℓ := n − m coordinates. We
then only keep those pairs attaining distance ε on the projection π. A formal
description of the adapted algorithm is given by Algorithm 4.

If we denote the time complexity to find all ω2 close pairs between two lists
of size L containing vectors from B(ℓ, ω1) as FL,ℓ,ω2,ω1 , the time complexity of
Algorithm 4 is given as

TMO+ = N ℓ,ω1,ω2
|L1|,m,ε := q−r

ε · max
(

|L1| · qr−1
f , FL,ℓ,ω1,ω2

)1+o(1)
, (10)

where L = |L1| · qr
f . As long as F∗ is smaller than L2 we expect a re-balancing of

both terms in the maximum to yield an improved time complexity, i.e. TMO+ <
TMO.

Algorithm 4: May-Ozerov+

Input : lists L1, L2 ∈ (Fm
2 × B(ℓ, ω1))∗, integer ε, ω1, ω2

Output : all pairs x, y ∈ L1 × L2 with x + y ∈ B(m, ε)× B(ℓ, ω2)
1 Choose optimal δ, r and let qε be as in Equation (9), L← ∅
2 Construct q−r

ε list pairs L′
1, L′

2, each by applying a locality-sensitive filter r
times to L1, L2

3 foreach pair L′
1, L′

2 do
4 Compute then filter:

L← L ∪ {(x, y) ∈ L′
1, L′

2 | x + y ∈ Fm
2 × B(ℓ, ω2)}

L← {(x, y) ∈ L | x + y ∈ B(m, ε)× B(ℓ, ω2)}

5 return L

Note that F∗ describes the complexity to solve a variant of the nearest
neighbor problem, where the input vectors have fixed weight. Let us define this
problem more formally.

Definition 4.1 (Fixed Weight Nearest Neighbor Problem). Let ℓ, ω1, ω2
be integers with ω1, ω2 ≤ ℓ. Given two lists L1, L2 of same size containing
uniformly at random drawn elements from B(ℓ, ω1) the fixed weight nearest
neighbor problem asks to find all pairs (x1, x2), xi ∈ Li with wt(x1 + x2) = ω2

But before we discuss how to solve this problem let us first describe how to
incorporate May-Ozerov+ into the decoding procedure.

19

4.2 Both-May+ – Embedding MayOzerov+ into the Decoding
Algorithm

In the following we integrate our adapted May-Ozerov algorithm May-Ozerov+

into the decoding algorithm (Algorithm 2) and describe how it affects the time
complexity of the decoding procedure.

To be able to exchange the conventional May-Ozerov nearest neighbor search
used for list construction in Algorithm 2 by our adaptation, we require that input
vectors have a certain amount of coordinates with fixed weight. Therefore note
that on every level i the vectors in the lists are ensured to have fixed weight pi,
where p4 := p (compare to Figure 3). Further, from level i ≥ 1 on-wards the
product lj,i := Hvj + sj,24−i for any vj ∈ L

(i)
j has fixed weight on projection πa.

For i ≥ 2, li,j has additionally fixed weight on projection πb and, finally, for i ≥ 3
we find that li,j has fixed weight on all projections πδ for δ ∈ {a, b, c}.

Therefore, we can exchange the computation of level-2, level-3 and level-4 lists
in lines 8, 9 and 10 of Algorithm 2 by directly computing the following (partly)
filtered lists (from the lists of the previous level)

L
(2)+
i = {yi ∈ L

(2)
i | wt(yi)+ wt(πa(H1yi + s4,i)) = p2 + ω(2)

a }

L
(3)+
i = {zi ∈ L

(3)
i | wt(zi) +

∑
δ∈{a,b}

wt(πδ(H1zi + s2,i)) = p3 + ω(3)
a + ω

(3)
b }

L+ = {e2 ∈ L | wt(e2) +
∑

δ∈{a,b,c}
wt(πδ(H1e2 + s)) = p +

∑
δ∈{a,b,c}

ωδ }.

We call the resulting algorithm Both-May+ in the following. Note that the
constraints ensure that the weights of all blocks sum to the correct value, while
it is not enforced that every block itself has the desired weight. Therefore, to
reduce the list size further, we still perform the usual filtering step. Further, since
on level one there is by construction no filtering, we stay with the conventional
May-Ozerov algorithm for level-1 list creation.

Complexity. The analysis of the time complexity follows along the lines of the
analysis in Section 3.2 with the only difference that the time complexities for
creating the level-2,-3 and -4 lists, given by T2, T3 and T4, have to be adapted. The
time complexity for this list construction is given as TMO+ in Equation (10). This
complexity is determined by the parameters of the nearest neighbor problem (the
subscripts of N) and the parameters of the fixed weight nearest neighbor problem
(the superscripts of N). The parameters of the standard nearest neighbor problem
remain the same as in the previous analysis in Section 3.2. Let us determine the
parameters of the fixed weight nearest neighbor problem in the following. First
we define

ℓ2 := k + ℓa, ℓ3 := k + ℓa + ℓb and ℓ4 := k + ℓa + ℓb + ℓc,

and

ε(i)
a = pi + ω(i)

a , ε
(i)
b = pi +

∑
δ∈{a,b}

ω
(i)
δ and ε

(i)
c = pi +

∑
δ∈{a,b,c}

ω
(i)
δ .

20

Now for the level-2 list construction the considered level-1 elements have ℓ2
coordinates with fixed weight ε

(1)
a on which they should add up to a weight-ε(2)

a

vector. Analogously the parameters for level-3 list construction are ℓ3, ε
(2)
b , ε

(3)
b

and for final list construction ℓ4, ε
(3)
c , ε

(4)
c , where ω

(4)
δ := ωδ.

Overall this leads to complexities of the list construction steps of

T2 = N ℓ2,ε(1)
a ,ε(2)

a

L1,ℓb,ω
(2)
b

, T3 = N ℓ3,ε
(2)
b

,ε
(3)
b

L2,ℓc,ω
(3)
c

and T4 = N ℓ4,ε(3)
c ,ε(4)

c

L3,ℓ′,ω′ .

To finally derive a numerical estimate for the time complexity we need a
complexity formula for F∗ in TMO+ (Equation (10)), which is the time for solving
the fixed weight nearest neighbor problem.

4.3 Solving the Fixed Weight Nearest Neighbor Problem

Note that the May-Ozerov nearest neighbor search is still applicable to the
fixed weight nearest neighbor problem, even though, its time complexity changes.
However, in [9] the corresponding analysis is performed concluding that the
algorithm is not well suited for fixed weight input lists. Therefore we develop
in the following an Indyk-Motwani [12] inspired algorithm for solving this fixed
weight variant, which achieves a better performance. This algorithm then allows
us to derive a formula for F∗ in Equation (10).

Similar to the Indyk-Motwani locality-senstive hashing, our algorithm relies
on the fact that for x, y ∈ L1, L2 with wt(x + y) = ω2 a projection to arbitrary
coordinates of x + y is more likely to be zero for small ω2.

The algorithm samples in each iteration a random subset I ⊂ {1, . . . , ℓ} of size
|I| = α and hopes that the projection of z = x+y to the coordinates indexed by I
is zero, i.e., that zI = 0 or equivalently xI = yI . Then all elements x′, y′ ∈ L1, L2
with x′

I = y′
I are constructed and for each it is checked if wt(x′ + y′) = ω2. The

pseudocode of the algorithm is given by Algorithm 5.

Algorithm 5: Indyk-Motwani
Input : integer ω1, ω2 ≤ ℓ, lists L1, L2 ∈ B(ℓ, ω1)∗

Output : all (x, y) ∈ L1 × L2 with wt(x + y) = ω2

1 set α as in Equation (13), N := (ℓ
α)

(ℓ−ω2
α)

2 for i = 1 to N do
3 choose random I ⊆ {1, . . . , ℓ} with |I| = α
4 for (x, y) ∈ {(x, y) ∈ L1 × L2 | xI = yI} do
5 if wt(x + y) = ω2 then
6 L← L ∪ (x, y)

7 return L

21

Analysis of Algorithm 5. The probability that for a searched pair x, y, with
wt(x + y) = ω2 a random projection to α coordinates of x + y is zero is

qω2 = Pr
I

[xI = yI | I ⊆ {1, . . . , ℓ}, |I| = α, wt(x + y) = ω2] =
(

ℓ−ω2
α

)(
ℓ
α

) . (11)

Hence, after N := q−1
ω2

iterations we expect that for one of the chosen subsets
this is the case and we recover x, y.

The time complexity is the number of iterations times the cost for finding the
matching elements with xI = yI . The construction of list L can be done via a
sort-and-match procedure in time linear in |L1|, |L2| and |L|. The expected size
of L is

E
[
|L|
]

= |L1 × L2| · Pr
I

[xI = yI | I ⊆ {1, . . . , ℓ}, |I| = α, wt(x) = wt(y) = ω1]︸ ︷︷ ︸
=:qω1

.

In following we derive an upper bound for qω1 , which gives an upper bound on
the expected size of L. The probability that two weight-ω1 vectors sum to a
weight-x vector is (

ℓ
x

)(
x

x/2
)(

ℓ−x
ω1−x/2

)
(

ℓ
ω1

)2 .

Estimating the binomial coefficients via Equation (1) and setting x to its ex-
pectation x′ := (1 − ω1

ℓ)ω1, yields a probability of Θ̃(1). This implies that two
weight-ω1 vectors add to a weight-x′ vector with inverse polynomial probability.
Therefore, let us assume that all vectors in |L1 × L2| sum to weight x′, which
leads at most to a polynomial deviation. Then we can determine qω1 as

qω1 =
(

ℓ−x′

α

)(
ℓ
α

) = (ℓ − x′)(ℓ − x′ − 1) · · · (ℓ − x′ − α + 1)
ℓ(ℓ − 1) · · · (ℓ − α + 1) ≤

(
1 − x′

ℓ

)α

Eventually, this leads to a time complexity of

T = Õ (N · max(|Li|, |L|))

= Õ

((
ℓ
α

)
· max

(
|Li|, |Li|2 · (1 − x′/ℓ)α

)(
ℓ−ω

α

))
,

(12)

where x′ := (1 − ω1
ℓ)ω1. Further analysis shows that a choice of

α = ℓ · min
(

1 − ω̂2

2ω̂1(1 − ω̂1) , − log |L1|
log(2ω̂2

1 − 2ω̂1 + 1)

)
, (13)

minimizes the running time, where ω̂1 := ω1/ℓ and ω̂2 := ω2/ℓ.

22

5 Complexity Results for Decoding

In this section we give the results of the numerical optimization of the worst-case
time complexity of our improved decoding algorithm from the previous section.
Further, we compare its performance against the three latest ISD improvements,
which are the May-Ozerov algorithm [16], the BJMM with nearest neighbor
algorithm (BJMM-MO) [3] and the Both-May algorithm [4] for different rates.
We also give a comparison to the recently proposed RLPN decoding procedure
[5]. We then conclude with possible future work and some remarks on further
improvements.

Numerical Optimization of Both-May+. We again follow the same optimiza-
tion methodology outlined at the end of Section 3.1, where we again impose the
correctness constraints qiRi = 1. We find the worst case rate for Both-May+ at
k̂ = 0.43 yielding ω = H−1(1 − k̂) ≈ 0.1346 with a time and memory complexity
of

T = 20.0948n and M = 20.071n,

for optimal parameters6

p̂ = 0.04514, p̂3 = 0.03919, p̂2 = 0.02469, p̂1 = 0.01235,

ℓ̂a = 0.02625, ℓ̂b = 0.06893, ℓ̂c = 0.15672,

ω̂a = 0.00277, ω̂(3)
a = 0.00241, ω̂(2)

a = 0.00153, ω̂(1)
a = 0.00076,

ω̂b = 0.00716, ω̂
(3)
b = 0.00619, ω̂

(2)
b = 0.06511,

ω̂c = 0.02058, ω̂(3)
c = 0.13524.

This improves upon the Both-May algorithm with time complexity 20.0951n. Note
while this improvement seems rather small, we find that our algorithm improves
over Both-May especially for smaller rates. In this regime it even yields larger
improvements than previous works [3,4], as we show in the following. Furthermore
we again improve the memory complexity for the worst case rate from 20.076n

down-to 20.071n with even higher gains for smaller rates.

Comparison to Previous ISD Improvements. In Figure 5 we compare
the time exponent c of the running time 2cn of different ISD algorithms for
various rates. We observe that for both, time and memory, we obtain our largest
improvements for small rates. Especially, the memory complexity, which has
found to be a bottleneck in practical implementations [10], is reduced significantly
by our new algorithm. We also obtain a noteable decrease in time, comparable if
not higher than those of previous improvements.
6 Due to rounding to a precision of 10−5 there might be a certain deviation in

satisfying the correctness constraints. For the exact numbers we refer to our
optimization scripts, which are provided as supplementary material.

23

0.2 0.4 0.6 0.8

0.06

0.08

0.10

code rate k
n

tim
e

/
m

em
or

y
ex

po
ne

nt
time

0 0.5 1
0.00

0.05

0.10

code rate k
n

memory

May-Ozerov [16] BJMM-MO [3]
Both-May (Section 3.2) Both-May+ (Section 4.2)

Fig. 5: Comparison between the time (left) and memory (right) exponent of our algorithm
against the last three improvements on ISD algorithms in the full distance setting.

Let us compare the exponent reduction achieved by latest ISD improvements
over their predecessor. Figure 6 shows the exponent difference cp − c, where the
running time (resp. the memory) of the ISD algorithm is 2cn, while 2cpn for its
predecessor.7

We observe that our algorithm achieves by far the largest running time
reduction for small rates. The BJMM-MO algorithm [3] achieves improvements
for rates more centered around the worst-case rate. We observe that BJMM-MO
achieves its time improvement by investing more memory than its predecessor,
which is the May-Ozerov algorithm [16], indicated by the negative values of
the memory exponent difference. In terms of memory the Both-May algorithm
achieves the largest improvement. However, our improvement is still significant
and the second largest memory improvement made by any ISD algorithm (that
improves on time) over its predecessor. Note that this even holds if considering
all ISD improvements made since Prange’s original algorithm in 1962.

Comparison to recently proposed RLPN technique. Recently Carrier et
al. [5] proposed a new technique, which reduces the decoding problem to the
Learning Parity with Noise (LPN) problem. It then gathers several LPN samples
until it is able to solve the LPN instance via majority vote (or more precisely via
the fast Fourier transform).

This new technique improved over existing ISD algorithms for small rates
k̂ ≤ 0.3. If considering our new algorithm this break-even point, where the RLPN
7 The chronological order of the latest four improvements is (old to new): May-

Ozerov [16], BJMM-MO [3], Both-May [4] (Section 3.2), Both-May+ (Section 4.2).

24

0 0.5 1
0.000

0.001

0.002

0.003

code rate k
n

im
pr

ov
em

en
t

in
tim

e
/

m
em

or
y

ex
po

ne
nt

time

0 0.5 1

0.000

0.010

0.020

code rate k
n

memory

BJMM-MO [3] Both-May ([4]/Section 3.2) Both-May+ (Section 4.2)

Fig. 6: Improvement in time (left) and memory exponent (right) of ISD algorithms over
their predecessor in the full distance setting.

technique becomes preferable is shifted to k̂ ≤ 0.25. In Figure 7 (on the left)
we visualize the time and memory exponent difference of the RLPN and our
Both-May+ algorithm. We observe that the time improvement for small rates
comes along with a significant increase in memory complexity. For higher rates the
memory complexity of the RLPN technique drops until it is even lower than the
one of our algorithm. However, on the right of Figure 7 we illustrate the exponent
difference if we restrict the numerical optimization of the Both-May+ algorithm
to parameters which yield a smaller (or equal) memory complexity than the
RLPN technique. We observe that still for all rates k̂ > 0.25 our algorithm obtains
time improvements by using less or equal memory than the RLPN technique.

Eventually note that even if RLPN is preferable for small rates k̂ ≤ 0.25, the
algorithm generates the needed LPN samples by executing an ISD algorithm as
a subroutine. Hence, ISD improvements remain substantial also for improving
the RLPN decoder.

Some remarks on future work and further improvements Let us first
outline two unsuccessful strategies we explored after which we outline further
research directions.

First, our optimization of the algorithm in depth-5 did neither yield time
nor memory improvements. Additionally, we explored the strategy of splitting
the permutation step across the different levels of the tree, inspired by recently
introduced time-memory trade-offs. Here we wanted to exploit the fact that the
correct weight distribution on all blocks is not required at every level of the tree.
Precisely the first level only requires the correct distribution on block a, the
second on block a and b and so forth. This allows to repeat the construction of
different levels differently many times (based on the already existing lists of the

25

0 0.25 0.5 0.75 1
−0.040

−0.020

0.000

0.020

0.040

code rate k
n

di
ffe

re
nc

e
in

tim
e

/
m

em
or

y
ex

po
ne

nt
unrestricted memory

0 0.25 0.5 0.75 1

0.000

0.020

0.040

code rate k
n

MBM+ ≤MRLPN

time: log (TRLPN/TBM+) /n memory: log (MRLPN/MBM+) /n

Fig. 7: Difference in time and memory exponent of Both-May+ and the RLPN decoder
from [5]. On the right numerical optimization for the Both-May+ was performed by
bounding its memory by the memory of the RLPN decoder.

previous level). However, even after re-balancing the cost for the construction of
all levels we were not able to obtain time or memory improvements.

We introduced in our work a new technique to combine the so far separately
treated list construction (nearest neighbor search) and filtering step of ISD
algorithms. Therefore we defined the fixed-weight nearest neighbor problem (see
Definition 4.1). Any progress on algorithms for solving this problem is likely
to lead to further improvements on our Both-May+ algorithm. Furthermore,
we did not get completely rid of the filtering by only ensuring the correct joint
weight distribution over all blocks, but not the correct weight in individual blocks.
We pose it as an open question if a further refinement of the algorithm allows for
time improvements by merging list construction and filtering step completely.

References

1. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_31

2. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_
42

3. Both, L., May, A.: Optimizing bjmm with nearest neighbors: full decoding in 22/21n
and mceliece security. In: WCC workshop on coding and cryptography. p. 214 (2017)

4. Both, L., May, A.: Decoding linear codes with high error rate and its impact for lpn
security. In: International Conference on Post-Quantum Cryptography. pp. 25–46.
Springer (2018)

26

https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-642-22792-9_42

5. Carrier, K., Debris-Alazard, T., Meyer-Hilfiger, C., Tillich, J.P.: Statistical decoding
2.0: Reducing decoding to lpn. arXiv preprint arXiv:2208.02201 (2022)

6. Chou, T., Cid, C., UiB, S., Gilcher, J., Lange, T., Maram, V., Misoczki, R., Nieder-
hagen, R., Paterson, K.G., Persichetti, E., et al.: Classic McEliece: conservative
code-based cryptography 10 october 2020 (2020)

7. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory. pp. 50–52 (1991)

8. Esser, A., Bellini, E.: Syndrome decoding estimator. In: Public-Key Cryptography
- PKC 2022 - 25th IACR International Conference on Practice and Theory of
Public-Key Cryptography. Lecture Notes in Computer Science, vol. 13177, pp.
112–141. Springer (2022)

9. Esser, A., Kübler, R., Zweydinger, F.: A faster algorithm for finding closest pairs in
hamming metric. In: 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2021)

10. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284
and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_16

11. Gilbert, E.N.: A comparison of signalling alphabets. The Bell system technical
journal 31(3), 504–522 (1952)

12. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: 30th ACM STOC. pp. 604–613. ACM Press (May 1998).
https://doi.org/10.1145/276698.276876

13. Kirshanova, E., Laarhoven, T.: Lower bounds on lattice sieving and information
set decoding. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS,
vol. 12826, pp. 791–820. Springer, Heidelberg, Virtual Event (Aug 2021). https:
//doi.org/10.1007/978-3-030-84245-1_27

14. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359
(1988)

15. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_
6

16. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (Apr 2015). https:
//doi.org/10.1007/978-3-662-46800-5_9

17. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

18. Stern, J.: A method for finding codewords of small weight. In: International Collo-
quium on Coding Theory and Applications. pp. 106–113. Springer (1988)

19. Torres, R.C., Sendrier, N.: Analysis of information set decoding for a sub-linear
error weight. In: Post-Quantum Cryptography. pp. 144–161. Springer (2016)

20. Varshamov, R.R.: Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR 117, 739–741 (1957)

27

https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-030-84245-1_27
https://doi.org/10.1007/978-3-030-84245-1_27
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9

A Details on flaw in original Both-May analysis

In [4] Both and May decide to calculate the expected list size on level i based
on the probability that a pair of level-(i − 1) elements advances to level i. Let
us denote this probability by ϕi. Then the expected list size on level i is equal
to Li = (Li−1)2 · ϕi. However, instead Both and May take Li =

(
k
pi

)
· ϕi. Note

that the square of level-(i − 1) lists is usually larger than the number of possible
elements with weight pi, as only an exponential small fraction sums to weight-pi

vectors (making the filtering step effective). In turn, the expected list size is
underestimated in the original work.

28

	Revisiting Nearest-Neighbor-Based Information Set Decoding

