
Additive-Homomorphic Functional Commitments and Applications
to Homomorphic Signatures?

Dario Catalano1, Dario Fiore2, and Ida Tucker2

1 University of Catania, Italy.
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain.
dario.fiore@imdea.org

Abstract. Functional Commitments (FC) allow one to reveal functions of committed data in a succinct
and verifiable way. In this paper we put forward the notion of additive-homomorphic FC and show two
efficient, pairing-based, realizations of this primitive supporting multivariate polynomials of constant
degree and monotone span programs, respectively. We also show applications of the new primitive
in the contexts of homomorphic signatures: we show that additive-homomorphic FCs can be used to
realize homomorphic signatures (supporting the same class of functionalities as the underlying FC) in a
simple and elegant way. Using our new FCs as underlying building blocks, this leads to the (seemingly)
first expressive realizations of multi-input homomorphic signatures not relying on lattices or multilinear
maps.

1 Introduction

Functional commitments (FC), put forth by Libert, Ramanna and Yung [LRY16], allow a sender to
commit to a vector x of length n and later to open the commitment to functions of the committed
vector, namely to prove that f(x) = y. FCs are required to be evaluation binding, meaning that it
is computationally hard to open a commitment at two distinct outputs y 6= y′ for the same function
f . The distinguishing feature of FCs is that commitments and openings should be succinct, i.e., of
size independent of n.

Functional commitments generalize the well known notions of vector commitments (VC) [CFM08,
LY10, CF13] and polynomial commitments (PC) [KZG10]—two functionalities that, albeit specific,
have nowadays a large number of applications. Besides VCs and PCs, state-of-the-art functional
commitments capture linear forms [LRY16, LM19] and semi-sparse polynomials [LP20].

An FC for an arbitrary computation f can be built via succinct commitments and SNARKs
for NP: simply, use the latter to generate a succinct argument that “y = f(x) and x opens the
commitment”. However, such an FC holds under non-falsifiable assumptions that are required to
build SNARKs [GW11].

In contrast, due to the falsifiability of the evaluation binding notion and as confirmed by the
existing constructions [LRY16, LP20], functional commitments are realizable from falsifiable as-
sumptions. Thanks to these two properties – succinctness and security under falsifiable assumptions
– FCs can be seen as a simple form of succinct non-interactive arguments.3 Whenever evaluation
binding is sufficient, FCs are an attractive building block: they provide communication-efficiency
through succinctness, without having to sacrifice assumptions (e.g., see the applications of vec-
tor/polynomial commitments, and FCs for inner products in [CF13, KZG10, LRY16]). For this
? This article is the full version of the paper that appears in the proceedings of ASIACRYPT 2022, © IACR 2022.
3 Their functionality resembles commit-and-prove SNARKs except that FCs are evaluation binding rather than
(knowledge) sound.

reason we believe that advancing the understanding of FCs could help us better understand the
fundamental problem of constructing succinct argument systems from minimal assumptions.

1.1 Our results

In this work we make progress, along different fronts, in the study of functional commitments based
on falsifiable assumptions.

We begin by exploring potential applications of FCs. While we know several applications of FCs
for linear functionalities (and all the functionalities implied by them, such as vector and polyno-
mial commitments), to the best of our knowledge, less is known about FCs for, say, multivariate
polynomials or circuits.

We address this problem by showing a new application of FCs to building homomorphic signa-
tures [BF11]. As it will be apparent later, this application becomes particularly interesting if the FC
is additively homomorphic, namely if given two commitments to vectors x1 and x2, one can compute
the commitment to the vector x1 +x2. This is a basic and useful property of commitment schemes.
Yet we know of no FC that is additive-homomorphic and supports a rich class of computations; the
only known additive-homomorphic FCs are the ones for linear forms of [LRY16, LM19].

We bridge this gap by proposing the first additive-homomorphic FCs supporting the evaluation
of functions beyond linear. Our techniques yield new homomorphic signatures that advance the
state of the art, and a SNARG for a polynomial-time language from a falsifiable assumption.

Below we present our results in more detail, and in the next section we provide an overview of
our techniques.

Additive-homomorphic FC for polynomials. We propose an additive-homomorphic FC scheme
that allows one to commit to a vector x of length n and to open the commitment to f(x) where
f is a collection of m multi-variate polynomials of bounded constant degree. Our scheme enjoys
compact openings, i.e., a single proof, of size constant in both n and m, for all the m evaluations.
We build this FC using bilinear groups and prove its security based on the Diffie-Hellman exponent
assumption [BGW05].

Compared to the FC for semi-sparse polynomials of [LP20] and an FC for polynomials obtained
via linearization (cf. section 1.2), the main novelty of ours is to be additively homomorphic. Also,
ours is the first FC with compact openings whose security is based on established assumptions:
the scheme of [LM19] relies on the generic group model, and that of [LP20] uses a newly proposed
assumption.

Additive-homomorphic FC for monotone span programs. Our second realization is an FC
for a new polynomial time language, called semi-quadratic arithmetic programs (sQAPs, for short).
In a nutshell, an sQAP is defined by a matrix F and accepts a pair of vectors (z,y) if there exists a
solution w such that F · (z ◦w) = y, where ◦ denotes entry-wise multiplication of vectors.4 An FC
for sQAPs allows one to commit to (z,y) and then open to F, in the sense of proving that F accepts
the pair of committed vectors. Our scheme is based on pairings, it is additively homomorphic and
has constant size proofs consisting of three group elements. We prove its security based on a variant
of the Diffie-Hellman exponent assumption that we justify in the generic group model.

We show that sQAPs are sufficiently expressive to capture the well known class of monotone
span programs (MSPs) [KW93] and show how to turn our FC for sQAPs into one for MSPs. Also,

4 sQAPs is in P as it can be decided via Gaussian elimination.

2

via known transformations (see footnote 11) it is possible to build a monotone span program that
models the satisfiability of an NC1 circuit, which therefore allows us to obtain the first FC for NC1

circuits.

Applications to homomorphic signatures, and more. To motivate additive-homomorphic
FCs we present a novel application of this primitive to build homomorphic signatures (HS) [BF11]
(see section 1.3 for an overview).

Notably, by plugging our new FCs in this transformation we obtain new HS that advance the
state of the art as follows:

– Our FC for polynomials yields the first multi-input HS for polynomials based on pairings, and the
first HS with “compact” signatures, where, again, by compact we mean that, for functions of the
form f : Fn → Fm, the resulting signatures have size which is constant in both n and m. None
of the previous schemes, e.g., [BF11, CFW14, GVW15] has compact signatures, as they need one
signature for every output value.

– Through our FC for NC1 we obtain the first multi-input HS based on pairings for NC1 circuits. The
most expressive HS based on pairings is that of Katsumata et al. [KNYY19] that also supports
NC1 circuits, but in the single-input model where the signer must sign the entire data vector at
once. Prior multi-input HS for functions beyond linear instead need lattices [BF11, GVW15] or
multilinear maps [CFW14]. Our result essentially shows that these powerful algebraic structures
are not necessary to build such expressive HS.

In Appendix A.4 we discuss further applications of additive-homomorphic FCs, such as updatable
FCs and verifiable databases with expressive queries.

A SNARG for linear systems from falsifiable assumptions. In [LM19], Lai and Malavolta
put forth a stronger security property for FC, that we call strong evaluation binding, which considers
as an attack not only two inconsistent openings for the same function but also inconsistent openings
for multiple functions. Namely it must be computationally hard to produce a commitment and a
collection of valid openings for function-output pairs {fi, yi}Qi=1 for which there exists no vector x
such that fi(x) = yi for every i = 1 to Q. Lai and Malavolta only show how to realize a strong
evaluation binding FC for linear maps by resorting to the generic group model. This is unsatisfactory
as a generic group model proof essentially uses non-black-box extractability techniques, which cannot
be considered falsifiable, and would defeat the main goal of this work which is constructing FCs
from falsifiable assumptions.

In our construction of FC for sQAPs we show a new proof technique that allows us to reduce
an adversary that produces a valid proof for an inconsistent system of equations to an adversary
against a falsifiable assumption. Interestingly, we can apply the same technique to the linear map
FC of [LM19] and prove its strong evaluation binding based on a falsifiable assumption, the parallel
bilinear Diffie-Hellman exponent in [Wat11] (see Appendix D).

This is to the best of our knowledge the first strong evaluation binding and compact FC from
a falsifiable assumption. This result is interesting since, as one could observe, a strong evaluation
binding FC with compact proofs for a language L yields de facto a SNARG for L (see Appendix
A.3). Also, a strong evaluation binding FC with compact proofs for quadratic polynomials would
yield a SNARG for NP, since a system of quadratic equations can model circuit satisfiability, e.g.,
through R1CS [GGPR13]. Therefore, due to the impossibility of Gentry and Wichs [GW11], our
SNARG for linear maps from falsifiable assumptions can be seen as optimal, in the sense that it is
unlikely to have an analogous result for quadratic functions.

3

1.2 Related work

Functional commitments. Libert et al. [LRY16] introduce the notion of functional commitments
and propose a construction for linear forms based on the Diffie-Hellman exponent assumption in
bilinear groups. Lai and Malavolta [LM19] extend the scheme of [LRY16] to support linear maps with
compact openings, namely of size independent of both the input and the output lengths. Lipmaa
and Pavlyk [LP20] propose an FC construction that supports, with compact proofs, a class of
arithmetic circuits which roughly corresponds to semi-sparse polynomials. Their scheme is obtained
by “scaling down” SNARK-based techniques and is proven secure from a newly proposed falsifiable
assumption in bilinear groups. More generally, an FC for linear maps is sufficient to realize an FC
for any linearizable function, that is a function f which can be implemented as f(x) = 〈p(x),φf 〉
where p(·) is a vector of polynomial-time computable functions which do not depend on f and can
be precomputed. Simply, the sender commits to the vector p(x) and then, for any f , opens the
commitment to the linear form φf . Both the scheme of [LP20] and the one based on linearization
are not additively homomorphic5 and thus cannot be used in the applications discussed in this
paper.

In a recent work, Peikert et al. [PPS21] propose the first construction of a vector commitment
based on lattice assumptions and show an extension of it to a functional commitment for circuits.
Their FC, however, works in a weaker model where a trusted authority uses secret information to
generate an opening key for each function for which the prover wishes to generate an opening.

Finally, as mentioned earlier, a construction of FCs can be obtained via succinct commitments
and SNARKs for NP. This however yields an FC from non-falsifiable assumptions due to the latter
being necessary for SNARKs [GW11]. The focus of this work is constructing FCs from falsifiable
assumptions.

Homomorphic signatures. Homomorphic signatures (HS) allow a user Alice to sign a large
collection of data (x1, . . . , xn) using her secret key. Then Alice can give this data and the associated
signatures (σ1, . . . , σn) to an untrusted server which can execute a computation f over it, producing
the result y = f(x1, . . . , xn) along with a valid “signature” σf,y on the result. The latter is a certificate
that vouches for the correctness of y as the result of applying f on data signed by Alice, and it
can be verified by anyone holding Alice’s public key. A key feature of homomorphic signatures is
succinctness: both fresh and “produced” signatures should be short, i.e. transmitting them should
require much less bandwidth than sending out the original dataset. While there is a vast body of
work on HS for linear functions, e.g., [BFKW09, GKKR10, AL11, CFW12, Fre12, LPJY13, CFN15],
only few HS constructions support functions beyond linear ones. In particular, it appears that
this primitive needs powerful algebraic structures, such as those needed for fully homomorphic
encryption, i.e., lattices, or multilinear maps. This is indeed the case for [BF11, GVW15, CFW14].
An exception is a scheme by Katsumata et al. [KNYY19] that is based on pairings and supports
NC1 circuits (via monotone span programs). This scheme, however works in the weaker single-input
model where the signer must sign the entire data set at once and is therefore less demanding in
terms of homomorphic properties for combining different signatures. In this work, we obtain pairing-
based HS for polynomials and NC1 circuits that are multi-input. These HS schemes are much more
versatile, e.g., they can be used in dynamic scenarios where a signer streams signed data to the
server and the latter computes on the currently available snapshot.
5 Even if one starts from an additive-homomorphic FC for linear maps, one can notice that the transformation to
FCs for linearizable functions does not preserve the additive-homomorphism.

4

As discussed in other works [KW20], the construction of homomorphic signatures by Gorbunov
et al. [GVW15] can be interpreted as a generic construction from equivocable homomorphic com-
mitments. This notion of homomorphic commitments can also be seen as a form of functional com-
mitments except that they are not succinct. Our construction of HS from FCs is rather different, as
it mainly relies on the succinctness of the FC and does not exploit any trapdoor property.

1.3 Technical overview

FC for polynomials. To illustrate the main ideas of our construction let us consider the sim-
plified case where one opens the commitment to a single polynomial (i.e., no compactness) that
is homogeneous. Note that a homogeneous polynomial of degree d, that we can write as f(x) =∑

` f` · (x
d`,1
1 · · ·xd`,nn) with

∑
j d`,j = d, can be linearized as an inner product between the vector

of its coefficients and the vector of all degree-d terms. More precisely, assuming d = 2δ a power of
2, given a homogeneous polynomial f we can build a vector f̂ ∈ Fnd such that for any x ∈ Fn it
holds 〈f̂ ,x(δ)〉 = f(x), where x(δ) is the δ-fold Kronecker product of x with itself, i.e., x(1) = x⊗x,
x(2) = x(1) ⊗ x(1), etc.

Following this observation, one could use an FC for linear forms to commit to x(δ) and then
open/verify the commitment using the appropriately computed linear form f̂ . This idea however
suffers the problem that the commitments would not be additively homomorphic.

Our approach to solve this problem is to generate a commitment C to x such that: (i) C is
additively homomorphic, and (ii) the prover creates, at opening time, a linear-map commitment Xδ

to x(δ) and convinces the verifier that the vector committed in Xδ is indeed the δ-fold Kronecker
product of the vector committed in C. Once (ii) is achieved we could use the linear-map functionality
to open Xδ to 〈f̂ ,x(δ)〉. The challenge of achieving (ii) is to make this proof succinct without having
to extract the committed vectors from the prover.

Our technique to solve this problem is algebraically involved. In what follows highlight the main
ideas, without focusing too much on security.

For the Xδ produced in the opening we use the linear-map commitment of [LRY16, LM19] in
which the vector x(δ) is encoded in a group element

Xδ = [p
(δ)
x (α)]1 =

nd∑
j=1

x
(δ)
j · [α

j]1

where the elements [αj]1 are part of the public parameters.6 For the commitment to x, assume for
now that it includes

X0 = [p
(0)
x (α)]1 =

n∑
j=1

xj · [αj]1

6 We use the bracket notation for bilinear groups of [EHK+13].

5

and consider for simplicity the case of δ = 1 (i.e., opening to a polynomial of degree d = 2). Then
our first key observation is that

p
(0)
x (α) · (p(0)x (αn)/αn) =

(
n∑
i=1

xi · αi
) n∑

j=1

xj · αn(j−1)

=

n∑
i,j=1

xixj · αi+n(j−1) =

n2∑
k=1

x
(1)
k · α

k = p
(1)
x (α)

Thus, if we include in the commitment the element X̂0 = [p̂
(0)
x (α)]2 = [p

(0)
x (αn)/αn]2, the verifier can

test the correctness of X1 via a pairing e(X1, [1]2) = e(X0, X̂0). Intuitively, this is secure because the
pair (X0, X̂0) is part of the commitment and can be somehow considered “trusted”; so the pairing
allows transferring this trust to X1. To handle openings of polynomials of degree > 2, this is not
sufficient though. Say that the prover includes in the opening the elements X2, X1, X̂1, and the
verifier tests the correctness of X2 via a “chain” of checks

e(X1, [1]2)
?
= e(X0, X̂0) and e(X2, [1]2)

?
= e(X1, X̂1).

The issue is that in the second check (X1, X̂1) is not “trusted”; in particular, while X1 can be
considered trusted due to the previous check, X̂1 is not, since it is generated by the prover and not
tested.

Our second key idea is based on showing that the polynomial p̂(1)x (α) in X̂1 can be expressed
as the product of two polynomials φ(2)x (α), φ

(3)
x (α), each of them a linear function of x. Precisely, it

holds that (cf. Claim 2)

p
(1)
x (αn)/αn = φ

(2)
x (α) · φ(3)x (α) = (p

(0)
x (αn

2
)/αn

2
) · (p(0)x (αn

3
)/αn

3
)

So, if we include in the commitment group elements Φ2, Φ3 encoding φ
(2)
x (α) and φ(3)x (α) respectively,

the verifier will be able to use a pairing to test the correctness of the element X̂1 included in the
opening, and mark X1 as “trusted”, as it can establish a correct link with the group elements in the
commitment.

To summarize, in this example of a degree-4 homogeneous polynomial f , the commitment C of
x includes (X0, X̂0, Φ2, Φ3), and the opening includes (X1, X̂1, X2) and a linear-map opening proof
generated using [LM19] to show that X2 (seen as a commitment to x(2)) opens to 〈f̂ ,x(2)〉 = f(x).

Importantly, all the group elements in the commitment can be expressed as a linear map of the
vector x, thus making C additively homomorphic.

Going beyond degree 4 requires further extensions of our technique since a polynomial p̂(k)x (α)
factors into 2k polynomials, which for k > 1 cannot be tested with a pairing. We bridge this gap by
showing how to break each of these tests into a system of k quadratic equations using a tree-based
encoding. This is our third key idea that allows us to generalize the techniques illustrated so far to
handle degree-2δ polynomials.

Eventually, we obtain an FC for arbitrary polynomials of constant degree d in which commitment
and openings consist of exactly d group elements (notably, even if one opens m polynomials at the
same time). Comparing to the techniques of prior FCs for linear maps [LRY16, LM19], while our
FC uses them in the final step of our opening algorithm, the remaining design ideas are novel and
significantly different.

6

FC for semi-quadratic arithmetic programs. We recall that in an FC for sQAPs one commits
to a pair of vectors x = (z,y) and then opens to F in the sense of proving that ∃w : F · (z ◦w) = y.
Similarly to the FC for polynomials, we start from the idea of linearizing the computation in such
a way that we can eventually resort to a linear-map FC (LMC). Specifically, we use the LMC of
[LM19]. However, to do this linearization we cannot use the same technique of the previous scheme
to produce a commitment to, e.g., z ◦w or z⊗w. Roughly speaking, the issue is that in sQAPs w
is not committed ahead of time together with z; here w is a non-deterministic witness depending
on each specific F.

So we proceed differently. We let the prover compute a succinct encoding of the matrix Fz =
F ◦Z, where Z ∈ Fm×n is the matrix with z> in every row, and we show how the verifier can check
the validity of this encoding given F and a committed z. This way, we are left with the problem
of proving that (Fz | y) is a satisfiable system of linear equations. To prove this, we let the prover
generate a commitment W to the solution w and then generate an opening proof to argue that
y = Fz ·w for the committed w. The generation of W and its opening to Fz rely on the LMC of
[LM19].

Compared to [LM19], we introduce two technical novelties. The first one deals with enabling the
verifier to check the opening by having only an encoding of Fz, which can be linked to the public
F and the commitment to z. The second and most important novelty concerns the security proof.
The challenge is the presence of this non-deterministic component w which requires the prover
to show the satisfiability of a system – a task that goes beyond what is captured by the notion
of evaluation binding since we need that an efficient adversary cannot generate a valid opening if
(Fz | y) is not satisfiable. This could be solved by resorting to the strong evaluation binding of
the [LM19] LMC, but they only prove this property in the generic group model, essentially using
a non-black-box extraction technique. In our paper we show a new proof technique for reducing an
adversary producing a valid opening for an inconsistent system of equations into an adversary against
a falsifiable assumption. As we mentioned earlier, in Appendix D, we apply the same technique to
show that the LMC of [LM19] is strong evaluation binding, without resorting to the GGM.

From FCs to homomorphic signatures. We present a novel approach to construct HS based on
(additively homomorphic) FCs. The basic idea is that the signer generates a commitment Cx to the
dataset x and a (standard) digital signature σCx on the commitment. Given (Cx, σCx), the server can
compute a function f by giving to the verifier this pair (Cx, σCx) (which is succinct) along with an
opening of Cx to f (which is succinct as well). The resulting HS construction is clearly single-input
since the signer must commit to the dataset all at once. We achieve a multi-input HS by exploiting
FCs that are additively homomorphic. To sign the i-th element of the dataset, Alice commits to the
sparse vector xi ·ei with xi in position i and 0 everywhere else; let Ci be the resulting commitment. If
the server is given these commitments one by one, eventually it can reconstruct a commitment C to
the currently available dataset by computing their sum homomorphically, and then proceed as in the
single-input construction by opening C to the desired function f . This construction however is not
secure as the verifier cannot be assured that C is validly obtained from commitments provided by
Alice. Therefore we let Alice sign Ci using an homomorphic signature that only needs to support one
functionality, the homomorphic sum in the commitment space. Interestingly, for pairing-based FCs,
this HS can be implemented via well known linearly-homomorphic structure-preserving signatures
[LPJY13]7. Finally, we notice that for the sake of this application the FC only needs to satisfy a
7 Strictly speaking the signature does not need to be structure preserving as long as it allows to (homomorphically)
sign group elements.

7

weaker notion of evaluation binding in which the adversary reveals the vector x committed in C,
yet it manages to produce an opening to a function f and a result y 6= f(x) that is accepted by the
verification algorithm.

2 Preliminaries

Notation. We use λ ∈ N to denote the security parameter. If a function ε(λ) = O(λ−c) for every
constant c > 0, then we say that ε is negligible, denoted ε(λ) = negl(λ). A function p(λ) is polynomial
if p(λ) = O(λc) for some constant c > 0. We say that an algorithm is probabilistic polynomial time
(PPT) if its running time is bounded by some p(λ) = poly(λ). Given a finite set S, x←$S denotes
selecting x uniformly at random in S. For an algorithm A, we write y ← A(x) for the output of A
on input x. For a positive n ∈ N, [n] is the set {1, . . . , n}. We denote vectors x and matrices M
using bold fonts. For a ring R, given two vectors x,y ∈ Rn, x ◦y denotes their entry-wise product,
i.e., the vector with entries (xiyi)i, while z := (x⊗y) ∈ Rn2 denotes their Kronecker product (that
is a vectorization of the outer product), i.e., ∀i, j ∈ [n] : zi+(j−1)n = xiyj .

Bilinear Groups. Our FC constructions build on bilinear groups. A bilinear group generator
BG(1λ) outputs bgp := (q,G1,G2,GT , e, g1, g2), where G1, G2, GT are groups of prime order q,
g1 ∈ G1 and g2 ∈ G2 are two fixed generators, and e : G1 ×G2 → GT is an efficiently computable,
non-degenerate, bilinear map. We present our results using Type-3 groups in which it is assumed
that there is no efficiently computable isomorphisms between G1 and G2.

For group elements, we use the bracket notation of [EHK+13] in which, for s ∈ {1, 2, T} and
x ∈ Zq, [x]s denotes gxs ∈ Gs. We use additive notation for G1 and G2 and multiplicative one
for GT . For s = 1, 2, given an element [x]s ∈ Gs and a scalar a, one can efficiently compute
a · [x] = [ax] = gaxs ∈ Gs; given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute
[ab]T = e([a]1, [b]2).

3 Functional Commitments

We recall the notion of functional commitments (FC) [LRY16]. A crucial feature that makes this
primitive interesting and nontrivial is that both commitment and the openings are succinct, i.e.,
of size independent of the vector’s length. In our work we also consider compact FCs, a notion
introduced in [LM19], which requires openings size to be also independent of the function’s output
length.

Definition 1 (Functional Commitments). A functional commitment scheme is a tuple of al-
gorithms FC = (Setup,Com,Open,Ver) with the following syntax and that satisfies correctness and
succinctness (or compactness).

Setup(1λ, n,m)→ ck on input the security parameter λ and the vector length n, outputs a commit-
ment key ck, which defines the message space X and the class of admissible functions F ⊆ {f :
X n → Xm} for some n,m = poly(λ).

Com(ck,x; r)→ (C, aux) on input a vector x ∈ X n and (possibly) randomness r, outputs a commit-
ment C and related auxiliary information aux. We often omit r from the inputs, in which case we
assume it is randomly sampled in the appropriate space.

8

Open(ck, aux, f)→ π on input an auxiliary information aux and a function f ∈ F , outputs an
opening proof π.

Ver(ck, C, f,y, π)→ b ∈ {0, 1} on input a commitment C, an opening proof π, a function f ∈ F
and a value y ∈ Xm, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n,m ∈ N, all ck←$ Setup(1λ, n), any f : X n → Xm in the
class F , and any vector x ∈ X n, if (C, aux)← Com(ck,x), then it holds Ver(ck, C, f, f(x),Open(ck, aux, f)) =
1 with probability 1.

Succinctness/Compactness. A functional commitment FC is succinct if there exists a fixed
polynomial p(λ) = poly(λ) such that that for any n,m = poly(λ), any admissible function f ∈ F
such that f : X n → Xm, honestly generated commitment key ck← Setup(1λ, n,m), vector x ∈ X n,
commitment (C, aux) ∈ Com(ck) and opening π ← Open(ck, aux, f), it holds that |C| ≤ p(λ) and
|π| ≤ p(λ) ·m. Furthermore, we say that FC is compact if |π| ≤ p(λ).

3.1 Binding notions of FCs

Intuitively, the security of FCs should model the hardness of computing openings for false statements
that are accepted by the verification algorithm. The first definition in [LRY16] is inspired by that of
vector commitments [CF13]. It states that it should be computationally hard to open a commitment
to two distinct outputs for the same function. Formally, it is defined as follows.

Definition 2 (Evaluation Binding). For any PPT adversary A,

AdvEvBind
A,FC (λ) = Pr

Ver(ck, C, f,y, π) = 1

∧ y 6= y′ ∧
Ver(ck, C, f,y′, π′) = 1

:
ck← Setup(1λ, n)

(C, f,y, π,y′, π′)← A(ck)

 = negl(λ)

We define a weaker notion of evaluation binding in which the adversary is required to fully open
the commitment (i.e., to show the vector x it contains) and to generate a valid opening for a false
output, i.e., for some y 6= f(x).8 Intuitively, this is sufficient in applications where the verifier has
either computed once the commitment or has received the commitment from a trusted party (e.g.,
the commitment comes with a valid signature of this party). We show in Section 6 that this notion
is sufficient to construct homomorphic signatures from FCs.

Definition 3 (Weak Evaluation Binding). For any PPT adversary A

AdvwEvBind
A,FC (λ) = Pr

(C, ·) = Com(ck,x; r)

∧ y 6= f(x) ∧
Ver(ck, C, f,y, π) = 1

:
ck← Setup(1λ, n)

(x, r, f,y, π)← A(ck)

 = negl(λ)

One may observe that if an FC satisfies evaluation binding, then it also satisfies weak evaluation
binding. For a formal proof, we refer to the full version.

Finally, we also mention a stronger version of evaluation binding, put forward by Lai and Mala-
volta [LM19]. Here, the adversary outputs a commitment, and a collection of openings to one or
more functions. It is successful if all the claimed outputs define an inconsistent system of equations.
Namely, it outputs {fi,yi} for which there exists no x such that for all i fi(x) = yi.
8 This notion is similar in spirit to the basic security of accumulators [CL02].

9

Definition 4 (Strong Evaluation Binding). For any PPT adversary A, the advantage AdvsEvBind
A,FC (λ)

defined below is negligible.

Pr

[
∀i ∈ [Q] : Ver(ck, C, fi,yi, π1) = 1

∧ @x ∈ X n : ∀i ∈ [Q] : fi(x) = yi
:

ck← Setup(1λ, n)

(C, {fi,yi, πi}
Q
i=1)← A(ck)

]

3.2 Hiding and Zero-Knowledge

A functional commitment scheme can be hiding if the commitments generated by Com are hiding
in the standard sense. In our work we define it via the notion of equivocation.

Definition 5 (Com-Hiding). A FC has perfectly (resp. statistically) hiding commitments if there
are simulator algorithms Sim = (SimSetup, SimCom,SimEquiv) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck ← Setup(1λ, n,m)} and {ck : (ck, td) ← SimSetup(1λ, n,m)} are identical (resp. statistically
indistinguishable).

– (ii) for any vector x ∈ X n, keys (ck, td) ← SimSetup(1λ, n,m), the following distributions are
identical (resp. statistically indistinguishable):

{Com(ck,x)} ≈ {(C, aux) : (C, ãux)← SimCom(td), aux← SimEquiv(td, C, ãux,x)}

We define a notion of zero-knowledge for the openings produced by Open. Our notion is slightly
more powerful than that of [LP20] as we require an independent simulator algorithm for creating fake
commitments and for equivocating them, rather than letting the simulator simulate commitment and
openings altogether in one shot. This variant is more versatile in applications where the commitment
may have been created by another simulator.9

Definition 6 (Zero-knowledge openings). An FC has perfect (resp. statistical) zero-knowledge
openings if there is simulator Sim = (SimSetup,SimCom, SimEquiv,SimOpen) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck ← Setup(1λ, n,m)} and {ck : (ck, td) ← SimSetup(1λ, n,m)} are identical (resp. statistically
indistinguishable).

– (ii) for any vector x ∈ X n, keys (ck, td)← SimSetup(1λ, n,m), commitment (C, aux)← SimCom(ck),
equivocation auxx ← SimEquiv(td, C, aux,x), and functions f1, . . . , fQ ∈ F , the following two dis-
tributions are identical (resp. statistically indistinguishable):

(C, {SimOpen(td, aux, C, fj , fj(x))}Qj=1) ≈ (C, {Open(ck, auxx, fj)}Qj=1)

3.3 Additional properties of FCs

Here we define some extra properties of functional commitments that can be useful in applications
and that are enjoyed by our constructions.

Additive-homomorphic FCs We consider additively homomorphic FCs in which, given two
commitments C1 and C2 to vectors x1 and x2 respectively, one can compute a commitment to
x1+x2. Below, we formalize this property, considering also how to obtain the corresponding random
coins and auxiliary information of the commitment.
9 Our application to homomorphic signatures is an example (cf. Section 4.5).

10

Definition 7 (Additive-homomorphic FCs). Let FC be a functional commitment scheme where
X is a ring. Then FC is additive homomorphic if there exist deterministic algorithms FC.Add(ck, C1, . . . , Cn)→
C, FC.Addaux(ck, aux1, . . . , auxn) → aux and FC.Addr(ck, r1, . . . , rn) → r such that for any xi ∈ X
and (Ci, auxi) ← Com(ck,xi; ri), if C ← FC.Add(ck, C1, . . . , Cn), aux ← FC.Addaux(ck, aux1, . . . ,
auxn), and r ← FC.Addr(ck, r1, . . . , rn), then (C, aux) = Com(ck,

∑n
i=1 xi; r).

Efficient Verification In FCs the verification algorithm must read the function’s description,
which can be as large as its running time for certain computational models (e.g., linear forms,
polynomials, circuits) and thus can make verifying and output of f as expensive as running f . To
address this problem, we define a notion of amortized efficient verification for FCs. Similarly to
homomorphic signatures [CFW14] and preprocessing universal SNARKs [GKM+18], an FC has this
property if the verifier can precompute a short verification key vkf associated to f , and later can
verify any opening for f by using only vkf .

Definition 8 (Amortized efficient verification). A functional commitment scheme FC has
amortized efficient verification if there are two additional algorithms vkf ← VerPrep(ck, f) and
b← EffVer(vkf , C,y, π) such that for any honestly generated commitment key ck← Setup(1λ, n,m),
vector x ∈ X n, commitment (C, aux) ∈ Com(ck) and opening π ← Open(ck, aux, f) with f ∈ F , it
holds: (a) EffVer(VerPrep(ck, f), C,y, π) = Ver(ck, C, f,y, π), and (b) EffVer running time is a fixed
polynomial p(λ, |y|).

Aggregation. Intuitively, we say that FC has aggregatable openings if given several openings
π1, . . . , π` such that each πi verifies for the same commitment C and function-output pair (fi,yi),
and given a function g : Xm1 × · · · × Xm` → Xm one can compute an opening π that verifies for
the composed function g(f1, . . . , f`) and the output g(y1, . . . ,y`).

Definition 9. A functional commitment scheme FC satisfies aggregation if there is an algorithm
π ← Agg(ck, C, ((π1, f1,y1), . . . , (π`, f`,y`)), g) such that, for honestly generated commitment key
ck ← Setup(1λ, n,m), commitment C and triples {(πi, fi,yi)}`i=1 such that for all i ∈ [`] it holds
yi ∈ Xmi and Ver(ck, C, πi, fi,yi) = 1, then for any admissible function g : Xm1×· · ·×Xm` → Xm,

Ver(ck, C,Agg(ck, C, ((π1, f1,y1), . . . , (π`, f`,y`)), g), f∗, g(y1, . . . ,y`)) = 1

where f∗ is the composed function f∗(X) = g(f1(X), . . . , f`(X)).

In Appendix A.2 we show a generic implication of the aggregation property: any functional commit-
ment for linear forms f> · x that is evaluation binding and has linear aggregation, it also achieves
strong evaluation binding. An interesting byproduct of the following theorem is a proof that the
scheme for linear forms by Libert et al. [LRY16] satisfies strong evaluation binding. Indeed, it is
easy to see that this scheme has linear aggregatable openings.

4 Additive-Homomorphic FC for Polynomials

In this section we propose our FC for polynomials, which supports the following features: additive-
homomorphic, opening to multiple (multivariate) polynomials of the committed vector with a com-
pact proof, efficient verification and linear aggregation. We build our scheme in bilinear groups and
prove that it satisfies evaluation binding under the DHE assumption (Def. 10 [BGW05]).

11

More in detail, with our FC one can commit to a vector x ∈ Fn and then open the commitment to
a function f : Fn → Fm such that the i-th output is fi(x), where fi(X) is a multivariate polynomial
of total degree d, where d is a constant. The opening proofs of our FC scheme are compact, i.e.,
constant in both the input length n and the output length m.

We build this FC in two steps. We begin by constructing an FC that only supports homogeneous
multivariate polynomials whose degree is a power of two (see next section). Next, in Section 4.6 we
show how an additive-homomorphic FC for homogeneous polynomials can be turned into one for
all multivariate polynomials by letting one commit to vectors (1,x).

4.1 Additive-homomorphic FC for Homogeneous Polynomials

Below we describe our FC for homogeneous polynomials. See section 1.3 for an intuition. To keep
the exposition simpler we present a deterministic version of our FC which is not hiding, and discuss
later in section for how to modify it in order to satisfy com-hiding and zero-knowledge openings.

Setup(1λ, n,m, d) Let n,m, d ≥ 1 be three integers representing the length of the vectors to be
committed, the number of the polynomials to be computed at opening time, and the degree of
these polynomials, respectively. Define N := nd, generate a bilinear group description bgp :=
(q,G1,G2,GT , e, g1, g2) ← BG(1λ), and let F := Zq. Next, sample random α←$Zq, β←$Fm and
output

ck :=

(
{[αj]1, [αj]2}j∈[N], {[βi · αj]2}i∈[m],j∈[N]

{[αβi]1}i∈[m], {[αjβi]1}i∈[m],j∈[2N]\{N+1}

)
Com(ck,x) We encode the vector x with the polynomial px(Z) :=

∑n
j=1 xj · Zj . Also, for ` =

1, . . . , d− 1, we define the polynomials

φ
(`)
x (Z) := px(Zn

`
)/Zn

`
=

n∑
j=1

xj · Zn
`(j−1) of degree ≤ n`+1 − n`

Next, we compute

X0 :=
n∑
j=1

xj · [αj]1 = [px(α)]1, X̂0 :=
n∑
j=1

xj · [αn(j−1)]2 = [px(αn)/αn]2

∀` = 2, . . . , d− 1 : Φ` :=

∑n

j=1 xj · [αn
`(j−1)]1 =

[
φ
(`)
x (α)

]
1

if ` even∑n
j=1 xj · [αn

`(j−1)]2 =
[
φ
(`)
x (α)

]
2

if ` odd

Output C := (X0, X̂0, {Φ`}d−1`=2) and aux = x.
Open(ck, aux,f) Let f = (f1, . . . , fm) be a vector ofm n-variate homogeneous polynomials of degree
d, where d = 2δ is a power of 2. We use a representation of each polynomial fi via a linear form
f̂ i : Fnd → F such that fi(x) = f̂

>
i · x(δ), where x(δ) = (x ⊗ · · · ⊗ x) is the result of taking the

Kronecker product of x with itself δ times.10 Next, set x(0) := x and proceed as follows.
10 Since x(δ) has several terms repeated multiple times (e.g., after one product, the resulting vector contains both xixj

and xjxi), we assume f̂ i to always use the first of them, according to lexicographic order, and have 0 coefficients
for the others.

12

– For k = 1, . . . , δ − 1, compute

x(k) := x(k−1) ⊗ x(k−1), Xk :=

n2k∑
j=1

x
(k)
j · [α

j]1, X̂k :=

n2k∑
j=1

x
(k)
j · [α

n2k (j−1)]2

Let us define the polynomials

p
(k)
x (Z) :=

n2k∑
j=1

x
(k)
j · Z

j , p̂
(k)
x (Z) := p

(k)
x (Zn

2k

)/Zn
2k

=
n2k∑
j=1

x
(k)
j · Z

n2k (j−1)

and note that for every k the pair (Xk, X̂k) is ([p
(k)
x (α)]1, [p̂

(k)
x (α)]2).

(Xk, X̂k) can be seen as a commitment to the vector x(k) ∈ Fn2k .
– Compute the last vector x(δ) := x(δ−1) ⊗ x(δ−1), and its commitment Xδ :=

∑nd

j=1 x
(δ)
j · [αj]1 =

[p
(δ)
x (α)]1.

For k = 1 to δ, one can verify the correctness of the element Xk based on the correctness of the
previous pair (Xk−1, X̂k−1) (which eventually reduces to the correctness of the commitment pair
(X0, X̂0)) by testing e (Xk, [1]2)

?
= e

(
Xk−1, X̂k−1

)
. This equality holds based on the fact that,

for every k, p(k)x (Z) = p
(k−1)
x (Z) · p̂(k−1)x (Z) (see Claim 2).

The checks above can be seen as a way to progressively build trust in the elements X1, . . . , Xδ.
However for it to work we need that for a given k both elements of the previous pair (Xk−1, X̂k−1)
are deemed correct.

– In this step we show how to enable the verification of the correctness of X̂k. This cannot be done
via a quadratic equation, as we observed for Xk, but it is possible by letting the prover provide
additional hints to the verifier.
The main idea of this step is that, for k = 1 to δ− 1, we can factor p̂(k)x (Z) as the product of 2k

polynomials (implicitly) known to the verifier, namely

p̂
(k)
x (Z) =

2k+1−1∏
`=2k

φ
(`)
x (Z) (cf. Section 4.2, Claim 1)

To let the verifier check this factorization with a pairing computation, we break the verification
of this product into a set of ≈ 2k quadratic equations. The idea is that, for every k, the prover
builds a binary tree of height k in which the 2k polynomials are the leaves and then are multiplied
pair-wise in a bottom-up tree fashion, i.e., each node of the tree is the multiplication of its child
nodes. More precisely, if we index the nodes of the k-th tree with an integer 1 ≤ µ ≤ 2k+1 − 1,
then an internal node µ ∈ {1, . . . , 2k−1} of the k-th tree is a group element Ψk,µ, which encodes
the product of the polynomials encoded in the two child nodes Ψk,2µ and Ψk,2µ+1. Instead, the
leaves are the elements {Φ` = [φ

(`)
x (α)]b}2

k+1−1
`=2k

(where b = (` mod 2) + 1) that are included in
the commitment. In detail, the computation of all the internal nodes Ψk,µ proceed as follows.
For every k = 2, . . . , δ−1 and µ = 2k, . . . , 2k+1−1, initialize the polynomials ψk,µ(Z) := φ

(µ)
x (Z).

These are the leaves of the k-th tree. Next, for µ = 2k − 1, . . . , 2, compute

Ψk,µ :=

{
[ψk,2µ(α) · ψk,2µ+1(α)]1 if µ even
[ψk,2µ(α) · ψk,2µ+1(α)]2 if µ odd

13

Note that we do not compute the root node Ψk,1 but only stop at its children Ψk,2, Ψk,3. The
root is indeed the element X̂k already computed in the first step of this Open algorithm.

– Finally, we compute a linear-map evaluation proof for the commitment Xδ as follows. For every
i = 1 to m, take the linear form f̂ i : Fnd → F such that fi(x) = f̂

>
i ·x(δ), and define the matrix

F :=

f̂
>
1
...
f̂
>
m

 ∈ Fm×N

We generate a proof π̂ ∈ G1 for y = F · x(δ) as

π̂ :=
∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1

– Return π := ({Xk}δk=1, {X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂).

Ver(ck, C, π,f ,y) Parse the commitment as C := (X0, X̂0, {Φ`}d−1`=2), and the proof π := ({Xk}δk=1,

{X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂) as returned by Open.

Output 1 if all the following checks pass and 0 otherwise:
– For k = 1 to δ − 1 and µ ∈ [2k, 2k+1 − 1] set Ψk,µ := Φµ.
– For k = 2 to δ− 1, check the validity of the k-th tree of elements {Ψk,µ}2

k−1
µ=2 . First, check all the

internal nodes, bottom-up:

for k = 2 . . . δ − 1, for µ = 2k − 1 . . . 2 :

e(Ψk,2µ, Ψk,2µ+1)
?
=

{
e(Ψk,µ, [1]2) if µ even
e([1]1, Ψk,µ) if µ odd

(1)

Second, check the roots of the trees:

for k = 1 . . . δ − 1 : e([1]1, X̂k)
?
= e(Ψk,2, Ψk,3) (2)

– Check the validity of the chain of commitments:

for k = 1 . . . δ : e(Xk, [1]2)
?
= e(Xk−1, X̂k−1) (3)

– Define the matrix F from f as in the Open algorithm, and check the proof for the linear map:

e

Xδ,
∑
i∈[m]
j∈[N]

Fi,j · [αN+1−jβi]2

 ?
= e (π̂, [1]2) · e

(
m∑
i=1

yi · [αβi]1, [αN]2

)
(4)

We refer the reader to Section 4.4 to see how this scheme has the properties of additive homomor-
phism, linear aggregation, and efficient amortized verification.

Compactness. In our scheme, an opening consists of 2δ+
∑δ−1

k=2(2
k − 2) = d group elements, and

a commitment also comprises d elements. Since the degree is assumed to be a constant, d = O(1),
compactness follows.

14

Efficiency. It is easy to see that the complexity of Com is O(nd), while Ver takes time O(d+|y|+|f |)
(and the O(|f |) part can be precomputed when using efficient verification). The most complex and
computationally heavy procedure of our scheme is the Open algorithm, whose time complexity is
O(mdnd log n), which we justify as follows. Computing the commitments (X1, . . . , Xδ, X̂1, . . . , X̂δ−1)

in the first and second step takes time at most
∑δ

k=0O(n2
k
) which is O(δnd). Computing all the

group elements Ψk,µ in the third step can take time at most O(d2nd log n). This estimation is
obtained by observing that: every ψk,µ(Z) has degree < nd (this is a non-tight worst case analysis,
as many of them actually have much lower degree); for each node of the tree the polynomial ψk,µ(Z)
can be computed via a multiplication of its children polynomials which, using FFT, takes time
O(dnd log n). So by summing over all the d elements {ψk,µ}k,µ, we obtain the above estimation.
Finally, the generation of π̂ in the last step takes O(mN logN) = O(mdnd log n). This follows from
an observation that, for every row i = 1 to m, the coefficients of the polynomial in α of degree < 2N
can be computed using an FFT-based multiplication instead of going over all the N2 indices j, k.

4.2 Proof of Correctness

To prove correctness we proceed one by one on the equations of the verification algorithm. We begin
recalling the definition of the polynomials

p
(k)
x (Z) :=

n2k∑
j=1

x
(k)
j · Z

j , p̂
(k)
x (Z) := p

(k)
x (Zn

2k

)/Zn
2k

, φ
(`)
x (Z) := p

(0)
x (Zn

`
)/Zn

`

Verification equation (1). For 2 ≤ k ≤ δ − 1 and 2k ≤ µ ≤ 2k+1 − 1, the first step of the
verification algorithm sets Ψk,µ = Φµ, for 2 ≤ k ≤ δ − 1 and 2k ≤ µ ≤ 2k+1 − 1, where each Φµ is
defined in Com as

Φµ =
[
φ
(µ)
x (α)

]
b

=
[
px(αn

µ
)/αn

µ]
b

: b = 1 if µ even, b = 0 if µ odd

On the other hand, Open initializes the polynomials ψk,µ(Z) := φ
(µ)
x (Z) and then, for 2 ≤ µ ≤

2k − 1, it constructs Ψk,µ = [ψk,2µ(α) ·ψk,2µ+1(α)]b, with b = 1 if µ is even and b = 2 if µ is odd. By
the construction of Ψk,µ for 2 ≤ µ ≤ 2k − 1, and having observed that both algorithms start from
the same leaves, it is therefore clear that each check of equation (1) is satisfied.

Verification equation (2). The intuition is that the check e([1]1, X̂k)
?
= e(Ψk,2, Ψk,3) is verifying

whether the element X̂k =
[
p̂
(k)
x (α)

]
2
is the root of the k-th binary tree computed starting from the

leaf nodes {φ(µ)x (α)}µ=2k,...,2k+1−1, and where each node is the multiplication of its two children.
To show this, we observe that by the construction of the polynomials ψk,µ(Z) in Open as a

multiplication tree, we have that

ψk,2(Z) · ψk,3(Z) =

2k+1−1∏
`=2k

φ
(`)
x (Z)

The correctness of equation (2) then follows from the following Claim (whose proof appears at the
end of this section), which shows that the polynomial p̂(k)x (Z) encoded in X̂k can be factored into
the product

∏2k+1−1
`=2k φ

(`)
x (Z).

15

Claim 1 Fix any vector x(0) ∈ Fn and for any k ∈ [δ−1], let x(k) = x(k−1)⊗x(k−1) and p̂(k)x (Z) =∑n2k

j=1 x
(k)
j ·Zn

2k (j−1). For 2 ≤ ` ≤ d− 1, let φ(`)x (Z) =
∑n

j=1 x
(0)
j ·Zn

`(j−1). Then, it holds p̂(k)x (Z) =∏2k+1−1
`=2k φ

(`)
x (Z).

Verification equation (3). By construction of Open, we have

∀k ∈ [δ] : Xk = [p
(k)
x (α)]1, ∀k ∈ [δ − 1] : X̂k = [p

(k)
x (αn

2k

)/αn
2k

]2

and by construction of Com, we have

X0 = [p
(0)
x (α)]1, X̂0 = [p

(0)
x (αn)/αn]2

Let us state the following claim (whose proof appears slightly below).

Claim 2 Fix any vector x(0) ∈ Fn and for any k ∈ [δ], let x(k) = x(k−1) ⊗ x(k−1) and p̂(k)x (Z) =∑n2k

j=1 x
(k)
j · Zn

2k (j−1). Then for every k ∈ [δ] it holds p(k)x (Z) = p
(k−1)
x (Z) · p̂(k−1)x (Z).

Then for every 1 ≤ k ≤ δ it holds

e
(
Xk−1, X̂k−1

)
=

[
p
(k−1)
x (α) · p(k−1)x (αn

2k−1

)/αn
2k−1

]
T

=
[
p
(k)
x (α)

]
T

= e (Xk, [1]2)

Verification equation (4). By construction of Open we have

π̂ =
∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1

Thus, consider a correct output yi = fi(x) which, by the definition of F in Open and Ver, is
yi =

∑
j∈[N] Fi,j · x

(δ)
j . Then it holds

e

 ∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · [α
N+1−j+kβi]1, [1]2

 · e
(

m∑
i=1

yi · [αβi]1, [αN]2

)

=

 ∑
i∈[m]

j,k∈[N]:j 6=k

Fi,j · x(δ)k · α
N+1−j+kβi +

∑
i∈[m],j∈[N]

Fi,j · x(δ)j · [α
N+1βi]1

T

=

 ∑
i∈[m]
j,k∈[N]

Fi,j · x(δ)k · α
N+1−j+kβi

T

=

∑
k∈[N]

x
(δ)
k · α

k

∑
i∈[m]
j∈[N]

Fi,j · αN+1−jβi

T

= e

Xδ,
∑

i∈[m],j∈[N]

Fi,j · [αN+1−jβi]2

16

Proof (Proof of Claim 1). We prove the claim by induction on k.
For k = 1 we have

p̂
(1)
x (Z) =

n2∑
`=1

x
(1)
` · Z

n2(`−1) =
n∑

i,j=1

x
(0)
i · x

(0)
j · Z

n2(i+n(j−1)−1)

=

n∑
i,j=1

x
(0)
i · x

(0)
j · Z

n2(i−1) · Zn2n(j−1)

=

(
n∑
i=1

x
(0)
i · Z

n2(i−1)

)
·

 n∑
j=1

x
(0)
j · Z

n3(j−1)

 = φ
(2)
x (Z) · φ(3)x (Z)

Next, for any 2 ≤ k ≤ δ − 1 assume that the claim holds for k − 1, i.e.,

p̂
(k−1)
x (Z) =

2k−1∏
`=2k−1

φ
(`)
x (Z)

then we show that it holds for k. To this end, we first show below that

p̂
(k)
x (Z) = p̂

(k−1)
x (Zn

2k−1

) · p̂(k−1)x (Zn
2k

)

which main follows by the definition of x(k):

p̂(k)x (Z) =

n2k∑
`=1

x
(k)
` · Z

n2k (`−1) =

n2k−1∑
i,j=1

x
(k−1)
i · x(k−1)

j · Zn
2k (i+n2k−1

(j−1)−1)

=

n2k−1∑
i,j=1

x
(k−1)
i · x(k−1)

j · Zn
2k (i−1) · Zn

2kn2k−1
(j−1)

=

n2k−1∑
i=1

x
(k−1)
i ·

(
Zn

2k−1
)n2k−1

(i−1)

 ·
n2k−1∑

j=1

x
(k−1)
j · Zn

2kn2k−1
(j−1)

= p̂(k−1)

x (Zn
2k−1

) · p̂(k−1)
x (Zn

2k

)

Next, let us apply the inductive assumption about p̂(k−1)x (Z):

p̂
(k−1)
x (Zn

2k−1

) =

2k−1∏
`=2k−1

φ
(`)
x (Zn

2k−1

) =

2k−1∏
`=2k−1

φ
(`+2k−1)
x (Z)

=
2k−1+2k−1∏

`′=2k−1+2k−1

φ
(`′)
x (Z) =

3·2k−1−1∏
`′=2k

φ
(`′)
x (Z)

p̂
(k−1)
x (Zn

2k

) =

2k−1∏
`=2k−1

φ
(`)
x (Zn

2k

) =

2k−1∏
`=2k−1

φ
(`+2k)
x (Z) =

2k+2k−1∏
`′=2k+2k−1

φ
(`′)
x (Z)

=
2k+1−1∏
`′=3·2k−1

φ
(`′)
x (Z)

17

where above we applied the fact that for a positive integer ω it holds φ(`)x (Zn
ω
) = φ

(`+ω)
x (Z). Finally,

we can see that

p̂
(k−1)
x (Zn

2k−1

) · p̂(k−1)x (Zn
2k

) =
3·2k−1−1∏
`′=2k

φ
(`′)
x (Z)

2k+1−1∏
`′=3·2k−1

φ
(`′)
x (Z) =

2k+1−1∏
`′=2k

φ
(`′)
x (Z)

which concludes the proof of Claim 1. ut

Proof (Proof of Claim 2). It follows via the following sequence of equations

p
(k−1)
x (Z) · p̂(k−1)x (Z) =

n2k−1∑
i=1

x
(k−1)
i · Zi

n2k−1∑
j=1

x
(k−1)
j · Zn2k−1

(j−1)

=

n2k−1∑
i,j=1

x
(k−1)
i x

(k−1)
j · Zi+(j−1)n2k−1

=
n2k∑
`=1

x
(k)
` · α

`

= p
(k)
x (Z)

where the all but last equality holds by that x(k) = x(k−1) ⊗ x(k−1).

4.3 Proof of Security

We prove the evaluation binding of our FC based on the N -Diffie-Hellman-Exponent (N -DHE)
assumption [BGW05], which we recall below.

Definition 10 (N-DHE [BGW05]). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group set-
ting. The N -DHE holds if for every PPT A the following advantage is negligible

AdvN-DHEA (λ) = Pr[A(bgp, {[αi]1, [αi]2}i∈[2N]\{N+1}) = [αN+1]1]

where the probability is over the random choice of α←$Zq and A’s random coins.

Theorem 1. If the nd-DHE assumption holds, then the scheme FC of Section 4.1 satisfies evaluation
binding.

Proof. Consider an adversary A who returns a tuple (C,f ,y, π,y′, π′) that breaks evaluation bind-
ing. Parse

π = ({Xk}δk=1, {X̂k, {Ψk,µ}2
k−1
µ=2 }

δ−1
k=1, π̂), π′ = ({X ′k}δk=1, {X̂ ′k, {Ψ ′k,µ}2

k−1
µ=2 }

δ−1
j=1, π̂

′)

and recall that by definition both proofs verify for the same commitment C = (X0, X̂0, {Φ`}d−1`=2)
and that y 6= y′. Let us call this event Win.

Let us define Coll as the event that A’s output is such that β> · (y − y′) = 0, where β is the
vector sampled in ck.

We can partition adversaries in two classes: those that make Coll occur and those that do not.
Clearly it holds.

Pr[Win] ≤ Pr[Win ∧ Coll] + Pr[Win | Coll]

18

To prove the theorem we show that under the nd-DHE assumption both probabilities are negligible.
For the first probability, Pr[Win ∧ Coll], it is easy to see that we can reduce it to the discrete

logarithm assumption (which is implied by nd-DHE). The idea of the reduction is that, if β> · (y−
y′) = 0 occurs then one can recover the value of βi such that yi−y′i 6= 0. Hence a discrete logarithm
adversary that receives as input [η]1, [η]2 can choose a random index i∗←$ [m], implicitly set βi∗ = η
and perfectly simulate all the group elements of ck. If yi∗ 6= y′i∗ (which happens with probability
≥ 1/m), then one can recover βi∗ = η. We don’t formalize this reduction further as it is rather
standard.

In the rest of the proof we focus on proving the remaining case, namely that Pr[Win | Coll] is
negligible. In particular, we show that for any PPT A there is a PPT B such that

Pr[Win | Coll] ≤ Advn
d-DHE
B (λ)

B takes as input {[αi]1, [αi]2}i∈[2N]\{N+1}, samples β←$Fm and generates ck, which is dis-
tributed identically to that generated by Setup.

Next, B runs (C,f ,y, π,y′, π′)← A(ck) and proceeds as follows.
It computes z := β> · y and z′ := β> · y′ (recall that conditioned on Coll, z 6= z′) and then

outputs
(z′ − z) ·

(
π̂ − π̂′

)
.

Next, we claim that for a successful adversary A, B’s output is [αN+1]1.
Consider the executions of the Ver algorithm for π and π′.
First, for k = 1 to δ − 1 and µ ∈ [2k, 2k+1 − 1], let Ψk,µ and Ψ ′k,µ be the internal variables set in

the first step of the verification algorithm. We observe that Ψk,µ = Ψ ′k,µ since in both cases (cf. the
first step of Ver) they are built from the same set of values {Φ`}d−1`=2 included in C, which is common
to both executions of Ver.

Second, we argue that by the validity of the verification equation (1) for both proofs (and by the
non-degeneracy of the pairing function) we obtain that Ψk,µ = Ψ ′k,µ for every k = 2, . . . , δ − 1 and
µ = 2j−1, . . . , 2. We show this by induction. Let us consider the case of µ even (µ odd is analogous).
For µ = 2k−1, . . . , 2k−1, we are checking the parents of the leaves, and it holds Ψk,2µ = Ψ ′k,2µ = Φ2µ,
Ψk,2µ+1 = Ψ ′k,2µ+1 = Φ2µ+1 since 2µ ∈ [2k, 2k+1 − 2] and 2µ + 1 ∈ [2k + 1, 2k+1 − 1]. Therefore, by
the non-degeneracy of the pairing function we have

e(Φ2µ, Φ2µ+1) = e(Ψk,µ, [1]2)

e(Φ2µ, Φ2µ+1) = e(Ψ ′k,µ, [1]2)

}
⇒ Ψk,µ = Ψ ′k,µ

Next, using the fact Ψk,µ = Ψ ′k,µ for µ = 2k−1, . . . , 2k−1, we can apply the same argument inductively
to obtain that Ψk,µ′ = Ψ ′k,µ′ for µ

′ = 2k−1 − 1, . . . , 2k−2. Eventually, we obtain that for all k,
Ψk,µ = Ψ ′k,µ for µ = 2, 3.

Third, notice that by the validity of verification equations (3) and (2) for k = 1 (and by the
non-degeneracy of the pairing function) we obtain that X1 = X ′1 and X̂1 = X̂ ′1. Moving to k > 1,
we can see that from the equalities Xk−1 = X ′k−1 and X̂k−1 = X̂ ′k−1, we can derive in a similar
way Xk = X ′k and X̂k = X̂ ′k. In particular for the latter we use the conclusion of the second claim.
Notice that this argument leads to conclude that it must be the case that Xδ = X ′δ.

19

Finally, by the validity of the verification equation (4) for both proofs with the same Xδ, we
have

e(π̂, [1]2)e([α]1, [α
N]2)

z = e(π̂′, [1]2)e([α]1, [α
N]2)

z′

⇒ π̂ − π̂′ = (z − z′) · [αN+1]1 ut

4.4 Additive homomorphism, aggregation, and efficient verification

It is easy to see that, by the construction of the elements of the commitment, our FC scheme
for homogenous polynomials is additively homomorphic. Below is the formal specification of the
homomorphic addition algorithms. Their correctness can be easily verified by inspection.

Add(ck, C1, C2) Parse Ci := (X
(i)
0 , X̂

(i)
0 , {Φ(i)

` }
d−1
`=2) for i = 1, 2 and return C := (X0, X̂0, {Φ`}d−1`=2)

computed by performing the group operation on each pair of elements of the commitment tuple,
i.e., X0 ← X

(1)
0 +X

(2)
0 , etc.

Addaux(ck, aux1, aux2) return aux1 + aux2 ∈ Znq .

Linear Aggregation Next we show that the scheme has aggregatable openings with respect to
linear functions over the vector of polynomials. Namely given ` openings for vectors of polynomials
f1, . . . ,f ` respectively, one can compute an opening for the (homogeneous) polynomial γ1 · f1 +
· · ·+ γ` · f `. This property follows from the linear aggregation of the linear map commitment that
we are implicitly using in our construction for polynomials. For simplicity we show aggregation for
two openings, the extension to ` openings is straightforward.

AggLin(ck, C, (π1,f1,y1), (π2,f2,y2), (γ1, γ2)) For i = 1, 2, parse

πi := ({X(i)
k }

δ
k=1, {X̂

(i)
k , {Ψ (i)

k,µ}
2k−1
µ=2 }

δ−1
j=1, π̂i)

and proceed as follows. If the first portion of the openings differs, i.e.,

({X(1)
k }

δ
k=1, {X̂

(1)
k , {Ψ (1)

k,µ}
2k−1
µ=2 }

δ−1
k=1) 6= ({X(2)

k }
δ
k=1, {X̂

(2)
k , {Ψ (2)

k,µ}
2k−1
µ=2 }

δ−1
k=1)

then output ⊥. Otherwise compute π̂ = γ1 · π̂1 + γ2 · π̂2 ∈ G1 and output

π := ({X(1)
k }

δ
k=1, {X̂

(1)
k , {Ψ (1)

k,µ}
2k−1
µ=2 }

δ−1
k=1), π̂).

To show the correctness of the (linear) aggregation property, we mainly need to show that from
two proofs π̂1, π̂2 that satisfy the verification equation (4) for matrices F1 and F2 (that are built
from the vectors of polynomials f1,f2 as described in Open) and for results y1 and y2 respectively,
we have that the proof π̂ = γ1 · π̂1 + γ2 · π̂2 computed by AggLin satisfies the verification equation
(4) for the matrix F = γ1 · F1 + γ2 · F2 (which in turn corresponds to the vector of polynomials
f = γ1 · f1 + γ2 · f2) and for the result y = γ1 · y1 + γ2 · y2.

e(Xδ,
∑
i∈[m]
j∈[N]

(γ1F1,i,j + γ2F2,i,j) · [αN+1−jβi]2)

=

(
e (π̂1, [1]2) e

(
m∑
i=1

y1,i · [αβi]1, [αN]2

))γ1
·

(
e (π̂2, [1]2) e

(
m∑
i=1

y2,i · [αβi]1, [αN]2

))γ2

= e (π̂, [1]2) · e

(
m∑
i=1

yi · [αβi]1, [αN]2

)

20

Efficient amortized verification This property follows in a straightforward way from the obser-
vation that, given f and ck, one can precompute vkf :=

∑
i∈[m],j∈[N] Fi,j · [αN+1−jβi]2. Given this

vkf the efficient verification runs in time O(m+d) in order to check equations (1)–(2)–(3), and then
check equation e (Xδ, vkf)

?
= e (π̂, [1]2) · e

(∑m
i=1 yi · [αβi]1, [αN]2

)
in place of equation (4).

4.5 Extension to hiding and zero-knowledge

We discuss how our construction can be extended so that the commitments become hiding and the
openings are zero-knowledge. We start from the observation that a commitment consists of d group
elements such that each of them is the evaluation of the same polynomial px(Z) on d distinct points
(α, αn, . . . , αn

d−1
). Hence, we can instantiate the same construction in order to commit to vectors

of length n + d so that the commitment of x is a commitment of the vector (r,x) where r←$Fd.
This way a commitment is distributed like a tuple of d random group elements. Also, notice that
the scheme remains additively homomorphic and Addr simply computes the corresponding linear
function over the r vectors of the commitments. Efficient verification and linear aggregation also
remain preserved.

The other change consists into encoding an n-variate polynomial over x into a polynomial with
n+ d variables in which the coefficients that touch the terms including one of the ri’s are set to 0.
This ensures that the new scheme is also correct and evaluation binding remains unchanged.

Finally, the scheme has zero-knowledge openings based on the observation that for a fixed
commitment C and function f , the proof is unique. Let the trapdoor be the values α,β used to
generate the commitment key ck. The SimCom algorithm is defined so that it generates a commitment
to 0, which we recall is a commitment to the vector ρ := (r,0).

The SimEquiv algorithm, on input the trapdoor, the auxiliary information r, the commitment C
and a vector x, uses α in order to find a vector rx such that C can be also written as the result
of computing Com(ck, (rx,x)). It is not difficult to see that this can be done via interpolation as
follows. Let χ0 = α(pρ(α)−p(0,x)(α)) and, for ` = 1, . . . , d−1, let χ` = pρ(α

n`)−p(0,x)(αn
`
). Then,

find the polynomial r′ of degree d−1 such that for every ` = 0, . . . , d−1 it holds r′(αn`) = χ` (here
we use that with overwhelming probability over the choice of α the d points αn` are all distinct),
and set rx as the coefficients vector of r′.

Finally, given a commitment C and auxiliary information r, the simulator SimOpen can create the
proof elements {Xk}δk=1, {X̂k, {Ψk,µ}2

k−1
µ=2 }

δ−1
k=1) by computing them as in the Open algorithm using

ρ as the committed vector. Finally, the proof π̂ can be simulated using the trapdoor by computing

π̂ :=

 ∑
i∈[m],j∈[N]

Fi,j · αN+1−jβi

 ·Xδ −

[
m∑
i=1

yi · αN+1βi

]
1

4.6 From Homogeneous to Generic Polynomials

We show how to go from an additive homomorphic FC scheme for homogenous polynomials to an
FC that supports generic multivariate polynomials of the same degree. The basic idea is to extend
vectors by prepending a 1 in the first position and then, instead of evaluating f(x) one evaluates
f̂(1,x) where f̂ is the homogeneous polynomial in n + 1 variables defined as f̂(x0, . . . , xn) :=

xd0 · f
(
x1
x0
, . . . , xnx0

)
, which is such that ∀x : f̂(1,x) = f(x).

21

In order to preserve the additive homomorphic property, we actually let one commit to vectors
(0,x). Then a commitment to (1,x) is obtained by adding homomorphically (1,0) at verification
time.

In terms of security, we show that the scheme from this transformation satisfies evaluation
binding (and thus weak evaluation binding) provided that so does the FC we start from.

Setup(1λ, n,m, d) run Setup′(1λ, n + 1,m, d′), where d′ is the smallest power of 2 greater than d,
and return the same output.

Com(ck,x) output Com′(ck, (0,x)).
Open(ck, aux,f) Assume aux is the auxiliary information of a commitment to a vector (0,x), i.e.,
with 0 in the first position. The opening proceeds as follows.
– Compute a commitment to the vector (1,0) without using random coins: (C1, aux1)← Com(ck,

(1, 0, . . . , 0); ∅).
– Use the additive homomorphism to compute the auxiliary information corresponding to the

commitment to vector (1,x): ˆaux← FC′.Addaux(ck, aux, aux1).
– Let f = (f1, . . . , fm), where each fi is an n-variate polynomial of degree d. Let d′ be the smallest

power of 2 greater than d. For every i = 1 to m, define the homogenized polynomial (whose
degree is a power of 2)

f̂i(x0, . . . , xn) := xd
′

0 · fi
(
x1
x0
, . . . ,

xn
x0

)
and run π̂ ← FC′.Open(ck, ˆaux, f̂).

Return π := π̂.
Ver(ck, C, π,f ,y) Define the vector of homogeneous polynomials f̂ from f as in the Open algorithm.
Compute (C1, aux1)← Com(ck, (1, 0, . . . , 0); ∅) and Ĉ ← FC′.Add(ck, C, C1). Output

FC′.Ver(ck, Ĉ, π̂, f̂ , z)

We state the following theorem to formalize this transformation.

Theorem 2. If FC′ is a functional commitment for homogeneous polynomials that satisfies eval-
uation binding, additive homomorphism, linear aggregation, efficient verification, com-hiding and
zero-knowledge openings, then FC is a functional commitment for multivariate polynomials that sat-
isfy the same properties.

The proof is rather straightforward and is omitted. For evaluation binding we note that an at-
tack against FC immediately implies one for FC′. Indeed, if the attack is valid the commitment Ĉ
computed by the verifier would be validly opened at two distinct values.

In Appendix B we also show a stronger transformation that starts from a strong evaluation
binding FC and obtains one with the same property.

5 Additive-Homomorphic FC for Semi-Quadratic Arithmetic Programs

In this section we propose our second FC scheme that supports a new language called semi-quadratic
arithmetic programs (sQAP). As we show in Section 5.4, an FC for sQAPs is sufficiently powerful
to build an FC for monotone span programs [KW93] and thus, using known transformations, an FC
for NC1 circuits.11
11 It is known that a circuit in the class NC1 can be converted into a polynomial-size boolean formula, and the latter

can be turned into a monotone span program of equivalent size, e.g. [LW11, Appendix G].

22

In a nutshell, an sQAP checks the satisfiability of a class of quadratic equations (from which the
name). More in detail, an sQAP defined by a matrix M accepts a pair of vectors (z,y) if the linear
system of equations (M | y) has a solution w′ which is in multiplicative relation with the input z,
i.e., w′ = w ◦ z for some w. More formally:

Definition 11 (Semi-Quadratic Arithmetic Programs). A semi-quadratic arithmetic program
(sQAP) f : Fn × Fm → {true, false} over a finite field F is defined by a matrix F ∈ Fm×n. On an
input x = (z,y), f accepts (i.e., outputs true) iff

∃w ∈ Fn : F · (w ◦ z) = y

We observe that sQAPs are a polynomial time language. Given (z,y), one can decide as follows.
Define F′ as the matrix of entries F ′i,j = Fi,j · zj and output true if and only if ∃w ∈ Fn : F′ ·w = y
(e.g., using Gaussian elimination).

5.1 Our FC for sQAPs

We present our additive-homomorphic FC for sQAPs (see sec. 1.3 for an overview).

Setup(1λ, n,m) Let m,n ≥ 1 be two integers representing the size of the sQAPs supported by
the scheme (i.e., matrices in Fm×n) and thus the length of the input vectors (pairs in Fn × Fm).
Generate a bilinear group description bgp := (q,G1,G2,GT , e, g1, g2) ← BG(1λ), and let F := Zq.
Next, sample random α, γ←$F,β←$Fm and output

ck :=

(
{[αj]1, [γj]1}j∈[n], [(αγ)n]2, {

[
αjβiγ

`
]
2
}i∈[m],j∈[n],`∈[2n],

{[αjβiγn+1]1}i∈[m],j∈[2n]\{n+1},
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]:`6=n+1

)

Com(ck,x) Given an input x = (z,y), we compute

Cz :=
∑
j∈[n]

zj · [γj]1, Cy :=
∑
i∈[m]

yi · [αγβi]1

Note, we encode z with the polynomial pz(X) =
∑m

j=1 zj ·Xj , and thus Cz = [pz(γ)]1. We output
the commitment C := (Cz, Cy) and auxiliary information aux := (z,y).

Open(ck, aux,F) Let F ∈ Fm×n be a sQAP which accepts the input (z,y) in aux. The opening
algorithm performs the following steps:
– Compute a witness w ∈ Fn such that F · (w ◦ z) = y and compute a commitment to it as
W := [pw(α)]1 =

∑
j∈[n]wj · [αj]1.

– Next, we compute an encoding Φz of the matrix F ◦ Z where Z ∈ Fm×n is the matrix with z>

in every row:
Φz :=

∑
i∈[m]
j,`∈[n]

Fi,j · z` ·
[
αn+1−jβiγ

n+1+`−j
]
2

Precisely, note that F ◦ Z is encoded in the terms including γn+1 of the above polynomial, i.e.,
the (i, j)-th entry is in the term Fi,j · zj · [αn+1−jγn+1βi]2.

23

– Finally, we compute an evaluation proof to show that the vector w committed inW is a solution
to the linear system ((F ◦ Z) | y), i.e., (F ◦ Z) ·w = F · (w ◦ z) = y:

π̂ :=
∑
i∈[m]

j,k∈[n]:j 6=k

Fi,j · zj · wk · [αn+1−j+kβiγ
n+1]1

+
∑
i∈[m]

j,k,`∈[n]:`6=j

Fi,j · z` · wk ·
[
αn+1−j+kβiγ

n+1−j+`
]
1

Output π := (W,Φz, π̂).

Ver(ck, C, π,F, true) First, compute Φ ←
∑

i∈[m],j∈[m] Fi,j · [(αγ)n+1−jβi]2 and then output 1 if all
the following checks are satisfied.

e (Cz, Φ)
?
= e ([1]1, Φz) (5)

e (W,Φz)
?
= e (π̂, [1]2) · e (Cy, [(αγ)n]2) (6)

Before moving to prove the correctness of the scheme we observe that: proofs are succinct (three
group elements), and commitments are additively homomorphic. Also, it is easy to see that the
scheme enjoys efficient amortized verification: VerPrep is the algorithm that on input F computes
the element Φ, and EffVer performs the two checks described in Ver.

5.2 Correctness

Let us first focus on the equation (5), which follows easily by construction of Cz in Com and Φ in
Ver:

e (Cz, Φ) =

pz(γ) ·

 ∑
i∈[m],j∈[n]

Fi,j · (αγ)n+1−jβi

T

=

 ∑
i∈[m],j,`∈[n]

Fi,j · z` · αn+1−jβiγ
n+1−j+`

T

= e ([1]1, Φz)

24

Next, let us focus on the equation (6). By construction of W we have e (W,Φz) = [pw(α) · φz]T ,
which is

pw(α) · φz =
∑
i∈[m]
j,k∈[n]

Fi,j · zj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,`∈[n]:`6=j

Fi,j · z` · wkαn+1−j+kβiγ
n+1−j+`

=
∑
i∈[m]
j∈[n]

Fi,j · zj · wj · αn+1βiγ
n+1 +

∑
i∈[m]

j,k∈[n]:j 6=k

Fi,j · zj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,`∈[n]: 6̀=j

Fi,j · z` · wkαn+1−j+kβiγ
n+1−j+`

=
∑
i∈[m]

yi · (αγ)n+1βi +
∑
i∈[m]

j,k∈[n]:j 6=k

Fi,j · zj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,`∈[n]: 6̀=j

Fi,j · z` · wkαn+1−j+kβiγ
n+1−j+`

where the last equality follows from the fact that for every i ∈ [m], it holds
∑

j∈[n] Fi,jzjwj = yi.
Notice that Cy = [

∑
i∈[m] yi · αγβi]1 and thus

e (Cy, [(αγ)n]2) =

∑
i∈[m]

yi · (αγ)n+1βi

T

.

Finally, by plugging the definition of π̂ in Open we obtain that

e (π̂, [1]2) · e (Cy, [(αγ)n]2) = [pw(α) · φz]T

5.3 Proof of Security

We prove the weak evaluation binding of our FC for sQAPs based on the following assumption that
we call double parallel bilinear Diffie-Hellman exponent (DP-BDHE) assumption, as it can be seen
as a “double version” of the PBDHE assumption introduced by Waters in [Wat11]. In Appendix C
we justify (n,m)-DP-BDHE in the generic group model.
Definition 12 ((n,m)-DP-BDHE assumption). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear
group setting. The (n,m)-DP-BDHE holds if for every n,m = poly(λ) and any PPT A, the following
advantage is negligible

Adv
(n,m)-DP -BDHE
A (λ) = Pr[A(bgp, Ω) = [αn+1γn+1δ]T] where

Ω :=

{
[αj]1, [γ

j]1
}
j∈[n] ,

{
[αjβiγ

n+1]1
}
i∈[m],j∈[2n]
j 6=n+1

,
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]

`6=n+1

[(αγ)n]2,
{[
αjβiγ

`
]
2

}
i∈[m],j∈[n],`∈[2n] ,{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i 6=k
,
{[

αjβiγ
`δ

βk

]
2

}
i,k∈[m],j∈[n]
`∈[2n]\{n+1}

and the probability is over the random choices of α, γ, δ←$Zq, β←$Zmq and A’s random coins.

25

Theorem 3. If the (n,m)-DP-BDHE assumption holds then the FC scheme of Section 5.1 satisfies
weak evaluation binding.

Proof. Let A be a PPT adversary against the weak evaluation binding of the FC scheme. We use A
to build a PPT adversary B against the (n,m)-DP-BDHE assumption. B runs on input the bilinear
group description and the list of group elements Ω.

B takes a subset of the elements in Ω, sets ck as below, and runs A(ck).

ck :=

(
{[αj]1, [γj]1}j∈[n], [(αγ)n]2, {

[
αjβiγ

`
]
2
}i∈[m],j∈[n],`∈[2n],

{[αjβiγn+1]1}i∈[m],j∈[2n]\{n+1},
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]:` 6=n+1

)

Let A’s output be ((z,y),F, true, π). If A is successful we have that: (i) the proof is valid
for the commitment C = Com(ck, (z,y)), and (ii) the sQAP does not accept (z,y). If we parse
π := (W,Φz, π̂), condition (i) means

e ([pz(γ)]1, Φ) = e ([1]1, Φz) (7)

e (W,Φz) = e (π̂, [1]2) · e
(

[αγβ>y]1, [(αγ)n]2

)
(8)

while condition (ii) means that for F′ = (Fi,j · zj)i,j

@w ∈ Fn : F′ ·w = y (9)

As first step, for every k ∈ [m], B computes

π′k := e

(
π̂,

[
δ

βk

]
2

)
.

By the construction of Φ in the Ver algorithm and by equation (7) we have:

Φz =

∑
`∈[n]

z` · γ`
 ·

 ∑
i∈[m],j∈[n]

Fi,j · (αγ)n+1−jβi

2

=
∑
i∈[m]
j∈[n]

Fi,j · zj · [αn+1−jβiγ
n+1]2 +

∑
i∈[m]

j,`∈[n]:`6=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`
]
2

26

Hence, by applying equation (8), for every k ∈ [m], it holds

π′k = e

W, ∑
i∈[m],j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·
e

W, ∑
i∈[m]

j,`∈[n]:` 6=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`δ

βk

]
2

 ·
[
−

m∑
i=1

yi ·
(αγ)n+1βiδ

βk

]
T

= e

W, ∑
j∈[n]

Fk,j · zj ·
[
αn+1−jγn+1δ

]
2

 · [−yk · (αγ)n+1δ
]
T
·

e

W, ∑
i∈[m]\{k}
j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

e

W, ∑
i∈[m]

j,`∈[n]: 6̀=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`δ

βk

]
2

 ·
− ∑

i∈[m]\{k}

yi ·
(αγ)n+1βiδ

βk

T

As the second step, for every k ∈ [m], B computes

π∗k := π′k · e

W, − ∑
i∈[m]\{k}
j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

e

W,− ∑
i∈[m]

j,`∈[n]:`6=j

Fi,j · z` ·
[
αn+1−jβiγ

n+1−j+`δ

βk

]
2

 ·

e

[(αγ)n]1 ,
∑

i∈[m]\{k}

yi ·
[
αγδβi
βk

]
2

= e

W, ∑
j∈[n]

Fk,j · zj ·
[
(αγ)n+1−jδ

]
2

 · [−yk · (αγ)n+1δ
]
T

Notice that the elements above can be efficiently computed by B, given the group elements
included in its input Ω. In particular, for every j, ` ∈ [n] such that ` 6= j (and any i, k ∈ [m]), notice

that
[
αn+1−jβiγn+1−j+`δ

βk

]
2
is part of

{[
αj
′
βiγ

`′δ
βk

]
2

}
j′∈[n],`∈[2n]\{n+1}

.

If the sQAP is not satisfied, i.e., condition (9) holds, it means that (F′ | y) is an inconsistent
system of equations, thus there exists a vector c ∈ Fm such that c> · F′ = 0> and c> · y = τ 6= 0.
Let V := {v · c : v ∈ F}. Then any vector v ∈ V is such that

v> · F′ = (0, . . . , 0) ∧ v> · y 6= 0

27

In particular, one of them, u = τ−1 · c, is such that u> · y = 1. So, B finds u such that

u> · (F′ | y) = (0, · · · , 0, 1) (10)

(e.g., by Gaussian elimination), and then B computes and returns

∆∗ =
∏
k∈[m]

(π∗k)
−uk

We show below that, conditioned on A being successful, ∆∗ = [(αγ)n+1δ]T , and thus B succeeds
in breaking the (n,m)-DP-BDHE assumption.

Expanding each term π∗`,k we have

∆∗ = e

W, −∑
j∈[n]

[
(αγ)n+1−jδ

]
2

∑
k∈[m]

Fk,j · zj · uk

 ·
(αγ)n+1δ

∑
k∈[m]

ykuk

T

The equality ∆∗ = [(αγ)n+1δ]T follows from the fact that, by equation (10), we have that for every
j ∈ [n],

∑
k∈[m] uk · Fk,j · zj =

∑
k∈[m] uk · F ′k,j = 0 and that

∑
k∈[m] uk · yk = 1. ut

5.4 From FC for sQAPs to an FC for monotone span programs

Here we show how to construct an FC for monotone span programs from an additive-homomorphic
FC for sQAPs, which can be instantiated using the scheme presented in section 5.1. We instantiate
the same construction with vectors of length n+ 1 so that the commitment to

We recall the notion of (monotone) span programs (MSP) of Karchmer and Wigderson [KW93].

Definition 13 (Monotone Span Programs [KW93]). A (monotone) span program for attribute
universe [n] is a pair (M, ρ) where M ∈ F`×m and ρ : [`]→ [n]. Given an input x ∈ {0, 1}n, we say
that

(M, ρ) accepts x iff (1, 0 . . . , 0) ∈ span〈Mx〉

where Mx denotes the matrix obtained from M by taking only the i-th rows Mi for which xρ(j) = 1,
and span is the linear span of row vectors over F.

So, (M, ρ) accepts x iff there exist w ∈ F` such that∑
i:xρ(i)=1

wi ·Mi = (1, 0, . . . , 0)

Notice that the MSP can be evaluated in polynomial time by using Gaussian elimination to find w.
As in other cryptographic works, e.g., [LOS+10, CGW15, CGKW18], we work with a restricted

version of MSPs in which each input xi is read only once. Hence, ` = n and ρ is a permutation,
which (up to a reordering of the rows of M) can be assumed to be the identity function. Notice that
the one-use restriction can be removed by working with larger input vectors of length k ·n in which
each entry xi is repeated k times, if k is an upper bound on the input’s fan out.

Therefore, in what follows we assume a monotone span program defined by a matrix M ∈ Fn×m
and we say that

M accepts x iff ∃w ∈ Fn : (w ◦ x)> ·M = (1, 0 . . . , 0)

28

It is easy to see that MSPs are an instance of the sQAPs of Definition 11. Given M, set F := M>

and consider sQAP inputs (z,y) := (x, (1, 0 . . . , 0)>). Then it is clear that the MSP M accepts x
iff the sQAP M> accepts (x, (1, 0 . . . , 0)>).

We can use this relation to build an FC for monotone span programs from an FC for sQAP. In
particular, we can do it in such a way to preserve the additive-homomorphic property, which allows
us to use this scheme in the application to homomorphic signatures of section 6.

FC for MSPs from FC for sQAPs. Let FC′ be a functional commitment scheme for sQAPs.
We build a scheme FC for monotone span programs as follows.

Setup(1λ, n,m) output ck← Setup′(1λ, n,m)

Com(ck,x) Output (C, aux)← Com′(ck, (x,0))

Open(ck, aux,M) Assume aux is the auxiliary information of a commitment to a pair of vectors
(x,0). The opening proceeds as follows.
– Compute a commitment to the vector (0, (1,0)) without using random coins: (C1, aux1) ←

Com(ck, (0, (1,0)); ∅).
– Use the additive homomorphism to compute the auxiliary information corresponding to the

commitment to (x, (1,0)): ˆaux← FC′.Addaux(ck, aux, aux1).
– Let F := M> and run π ← FC′.Open(ck, ˆaux,F).
Return π.

Ver(ck, C, π,M, true) Compute (C1, aux1) ← Com(ck, (0, (1,0)); ∅) and Ĉ ← FC′.Add(ck, C, C1).
Output FC′.Ver(ck, Ĉ, π,M>, true).

We state the following theorem. The proof easily follows from the characterization of MSPs from
sQAP mentioned earlier.

Theorem 4. If FC′ is a weak evaluation binding FC for sQAP, then FC is a weak evaluation binding
FC for MSPs.

Remark 1. We note that our FCs for sQAPs and MSPs allow the prover to show that the program
accepts, but not that it rejects. We believe that the schemes could be changed to achieve this property
and we leave it for future work. However, we observe that proving only acceptance is sufficient when
the MSP is used to express that a circuit C outputs 1, due to the following observation. If the claim
is that C outputs 0, prover and verifier could switch to use C̄ (that is C with a negated output),
build an MSP for it, and show it accepts.

5.5 Extension to hiding and zero-knowledge

We discuss how the FC scheme for sQAPs can be extended so that the commitment to z becomes
com-hiding and the openings zero-knowledge. Namely, we do not make Cy hiding, and note that
this is sufficient for our application to MSPs in which the y vector is a known constant. The idea
to make Cz hiding is similar to that for the FC for polynomials (Section 4.5).

First, we instantiate the scheme for longer vectors of length n+ 1 and we commit to z̃ = (r, z)
where r←$F. This makes Cz distributed like a uniformly chosen group element and so hiding
trivially follows. For equivocation we can set the SimCom algorithm to be the one that generates a
commitment to 0, i.e., by what we just described, a commitment to (r,0) using a random r←$F,

29

and SimEquiv the algorithm that solves a linear equation to find r′ such that rγ = p(r′,z)(γ), that is
r′ = p(r,z)(γ)/γ.

Second, in order to maintain correctness, on input a matrix F the opening and verification
algorithms internally define and run with a matrix F̃ = (0 | F). This way the linear system remains
functionally equivalent as r is ignored.

To make the opening proofs zero-knowledge we change the Open algorithm by committing to
the vector w̃ = (s,w) for a random s←$F. This way the proof element W is uniformly distributed.
Again, since we work with F̃ the correctness remains preserved.

Finally, to see that this variant of our FC satisfies zero-knowledge openings we sketch how to
simulate proofs. The simulator is supposed to know α, γ,β as the trapdoor. The element Φz can
be computed as in the Open algorithm but using an opening z̃ = (r,0). The element W can be
simulated as [ω]1 for a random ω←$F, and finally the proof π̂ can be (perfectly) simulated as

π̂ :=

ω · ∑
i∈[m],j,`∈[n+1]

F̃i,j · z̃` · αn+2−jβiγ
n+2−j+` −

m∑
i=1

yi · (αγ)n+2βi

1

6 Homomorphic signatures from additive-homomorphic functional
commitments

Here we show an application of FCs to homomorphic signatures.

6.1 Homomorphic Signatures

We recall the definition of homomorphic signatures (HS) of [BF11], extended to work with labeled
programs [GW13], as used in several prior works, e.g., [CFW14, CFN18].

In an HS scheme, the signer can sign a set of messages {xi} so that anyone can later compute a
function f on the signed messages and obtain a signature that certifies the correctness of the result.
Each set of messages is grouped into a “dataset” which has an identifier ∆ (e.g., the filename); inside
such dataset each message xi is assigned a “label” τi (e.g., its position). So, more precisely, in HS
the signer signs a collection of messages (xi) with respect to a dataset identifier ∆ and a label τ .
Evaluation instead consists in executing a function f on the messages associated to some labels
τ1, . . . , τn of a dataset ∆. A property that makes HS an interesting primitive is that the signatures
resulted from the evaluation are succinct, i.e., of size at most logatithmic in the input size. In this
paper we generalize HS to the case of functions with multiple outputs and define the notion of
compactness, which says that signatures are succinct with respect to both input and output size.
We provide below formal definitions.

Labeled Programs [GW13]. Let L be the label space (e.g., L = {0, 1}∗ or L = [n]). A labeled
program P is a tuple (f, τ1, ..., τn) where f : X n → Xm and every τi ∈ L is the label of the i-th
input of f . Given a function g : X ` → Xm, we can compose t labeled programs P1, . . . ,Pt with
m1, . . . ,mt outputs respectively, into P∗. The latter, denoted as P∗ = g(P1, . . . ,Pt), is the program
obtained by evaluating g on the ` =

∑t
i=1mi outputs of P1, . . . ,Pt. The labeled inputs of P∗ are

the distinct labeled inputs of P1, . . . ,Pt (all inputs with the same label are merged into a single
input of P∗). If fid : X → X denotes the identity function and τ ∈ L, Iτ = (fid, τ) is the identity
program with label τ .

30

Definition 14 (Homomorphic Signature). A homomorphic signature scheme HS is a tuple of
PPT algorithms (KeyGen,Sign,Ver,Eval) that work as follows and satisfy authentication correctness,
evaluation correctness and succinctness.

KeyGen(1λ,L)→ (sk, pk) Given the security parameter λ and the label space L, outputs a public key
pk and a secret key sk. The public key pk defines the message space X and the set F of admissible
functions.

Sign(sk, ∆, τ, x)→ σ On input the secret key sk, a dataset identifier ∆ ∈ {0, 1}∗, a label τ ∈ L, and
a message x ∈ X , outputs a signature σ.

Eval(pk, f, σ1, . . . , σn)→ σ On input the public key pk, a function f : X n → Xm in the class F and
a tuple of signatures (σi)

n
i=1, outputs a new signature σ.

Ver(pk,P, ∆,y, σ)→ {0, 1} On input the public key pk, a labeled program P = (f, τ1, . . . , τn) with
f : X n → Xm, a dataset identifier ∆, a value y ∈ Xm, and a signature σ, outputs either 0 (reject)
or 1 (accept).

Authentication Correctness. Informally, authentication correctness means that a “fresh” signa-
ture generated by Sign on message x and label τ verifies correctly for x as output of the identity
program Iτ . More formally, a scheme HS satisfies authentication correctness if for a given label
space L, all key pairs (sk, pk)← KeyGen(1λ,L), any label τ ∈ L, dataset identifier ∆ ∈ {0, 1}∗, and
any signature σ ← Sign(sk, ∆, τ, x), Ver(pk, Iτ , ∆, x, σ) = 1 holds with all but negligible probability.

Evaluation Correctness. Informally, this property means that executing Eval with a function g on
signatures (σ1, . . . , σt), where σi verifies for xi as output of Pi, produces a signature σ that verifies
for g(x1, . . . , xt) as output of the composed program g(P1, . . . ,Pt). More formally, fix a key pair
(pk, sk)← KeyGen(1λ,L), a function g : X ` → Xm, and a set of program/message/signature triples
{(Pi,xi, σi)}ti=1 such that Ver(pk,Pi, ∆,xi, σi) = 1. If x∗ = g(x1, . . . ,xt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(pk, g, σ1, . . . , σt), then Ver(pk,P∗, ∆,x∗, σ∗) = 1 holds with all but negligible probability.

Succinctness/Compactness. An HS scheme HS is succinct (resp. compact) if there exists a
universal polynomial p(λ) such that for any keys (pk, sk) ← KeyGen(1λ,L), integer n = poly(λ)
and function f : X n → X in F (resp. integers n,m = poly(λ) and function f : X n → Xm
in F), messages (x1, . . . , xn) ∈ X n, labels (τ1, . . . , τn) ∈ Ln, and dataset ∆ ∈ {0, 1}∗, if σi ←
Sign(sk, ∆, τi, xi) and σ ← Eval(pk, f, σ1, . . . , σn), then |σ| ≤ p(λ) · log n (resp. |σ| ≤ p(λ) · log n ·
logm).

Remark 2 (One-hop vs. multi-hop HS). If evaluation correctness holds only for signatures {σi}
generated by Sign then HS is called one-hop. Otherwise, if evaluation correctness holds for signatures
σi obtained after k−1 sequential executions of Eval on signature generated by Sign, then HS is called
k-hop. An HS that is k-hop for any k = poly(λ) is called multi-hop.

Remark 3 (Single-input vs. multi-input HS). The HS notion presented here allows one to sign the
messages of a dataset one by one. We call such a scheme a multi-input HS. In contrast, single-input
HS are HS schemes where Sign only works on input all the messages of the dataset.

Security Informally, an HS is secure if an adversary, without knowledge of the secret key, can
only produce signatures that are either the ones obtained from the signer, or they are signatures
obtained through the Eval algorithm on signatures obtained from the signer. The formalization
of this intuition can have different strengths according to how a forgery is defined. We refer to

31

Expstrong-Ad-UF
A,HS (λ)

T ← ∅; (pk, sk)←$KeyGen(1λ,L)

(P∗,∆∗, x∗, σ∗)← AOSign(·)(pk) // signing query phase

bVer ← Ver(pk,P∗,∆∗,m∗, σ∗) // the signature verifies

b1 ← ∃j : (∆∗, τ∗j , ·, ·) /∈ T // type-1: new dataset/label

b2 ← x∗ 6= f∗(x1, . . . , xn) // type-2: all inputs queried

where ∀i : (∆∗, τ∗i , xi, ·) ∈ T // but wrong result

return bVer ∧ (b1 ∨ b2)

Oracle OSign(∆, τ,m)

if (∆, τ, ·, ·) /∈ T then

σ ← Sign(sk,∆, τ, x)

T ← T ∪ {(∆, τ, x, σ)}
return σ

else return ⊥

Fig. 1: Strong adaptive security experiment for homomorphic signatures.

[CFN18] for a discussion on different notions of unforgeability. In this work we adopt the simplest
and strongest notion from [CFN18], called strong-adaptive security.

Definition 15 (Strong Adaptive Security). Let Expstrong-Ad-UF
A,HS (λ) be the security experiment

of Fig. 1, and let Advstrong-Ad-UF
A,HS (λ) = Pr[Expstrong-Ad-UF

A,HS (λ) = 1] be the advantage of A against
the strong adaptive security of scheme HS. We say that HS is strong adaptive secure if for every
PPT adversary A there exists a negligible function ε(λ) such that Advstrong-Ad-UF

A,HS (λ) ≤ ε(λ).

Context Hiding HS can satisfy a privacy property called context-hiding which, informally speak-
ing, guarantees that signatures on outputs do not reveal information about the signed inputs. In
our work we use a statistical version of the notion proposed by Boneh and Freeman [BF11] called
weak context hiding.12

Definition 16 (Weak Context-Hiding [BF11]). An HS scheme is weakly context-hiding if there
exists a simulator Sim such that for any keys (sk, pk) ∈ KeyGen(1λ,L), data-set ∆, labels τ1, . . . , τn ∈
L, messages xτ1 , . . . , xτn ∈ X , signatures {στi ← Sign(sk, ∆, τi, xτi)}ni=1, and any tuple of labeled
programs {Pj = (fj , τj,1, . . . , τj,`j)}

Q
j=1, we have, for yj = fj(xτj,1 , . . . , xτj,`j),

{Eval(pk, fj , στ1 , . . . , στ`)}
Q
j=1 ≈s Sim(sk, pk, ∆, {Pj , yj}Qj=1)

where the probabilities are over the randomness of Eval and Sim.

Efficient Verification An HS scheme has efficient verification [BFR13, CFW14] if its verification
can be split in two algorithms: an offline algorithm VerPrep that on input the public key pk and a
labeled program P precomputes a concise verification key vkP ; an online algorithm EffVer that uses
vkP to verify signatures w.r.t. P and any dataset ∆ in time faster than that of Ver. More formally:

Definition 17 (Efficient Verification). An homomorphic signature scheme HS = (KeyGen, Sign,Ver,
Eval) has efficient verification if there are two additional algorithms vkP ← VerPrep(pk,P) and
b← EffVer(vkP , ∆, y, σ) such that
12 The term “weak” refers to the fact that this is weaker than a notion by Ahn et al. [ABC+12] in which evaluated

signatures should be indistinguishable from fresh signatures. This is not realizable in our case where signatures on
outputs may have a different form than signatures on inputs.

32

KeyGen(1λ, [n])

ck← FC.Setup(1λ, n,m)

(skLHS, pkLHS)← LHS.KeyGen(1λ, [n])

pk := (pkLHS, ck), sk := skLHS

return (sk, pk)

Eval(pk, f, σ1, . . . , σt)

C ← FC.Add(ck, C1, . . . , Ct)

aux← FC.Addaux(ck, aux1, . . . , auxt)

σ̂ ← LHS.Eval(pkLHS,FC.Add, σ̂1, . . . , σ̂t)

π ← FC.Open(ck, aux, f̂i)

return σf,y := (σ̂, C, πf)

Sign(sk, ∆, i, xi)

Let ei s.t. ei,i = 1, ei,j = 0 ∀i 6= j

(Ci, auxi)← FC.Com(ck, xi · ei)
σ̂i ← LHS.Sign(skLHS,∆, i, Ci)

return σi := (σ̂i, Ci, auxi, i)

Ver(pk, (f, i), ∆,y, σ)

bLHS ← LHS.Ver(pkLHS, (FC.Add, i),∆,C, σ̂)

if σ = (σ̂, C, aux, i)

π ← FC.Open(ck, aux, f̂id,i)

bFC ← FC.Ver(ck, C, f̂i,y, π)

return bFC ∧ bLHS

Fig. 2: HS from additive FC and LHS for FC.Add.

• Correctness: For any keys (sk, pk)← KeyGen(1λ,L) and any tuple (P, ∆, y, σ), if vkP ← VerPrep(pk,P),
then EffVer(vkP , ∆, y, σ) = Ver(vk,P, ∆, y, σ) with overwhelming probability.
• Amortized Efficiency: Let P = (f, τ1, . . . , τn) be a labeled program and ∆ be a dataset identifier,
let (x1, . . . , xn) ∈ X n be any vector of inputs. If vkP ← VerPrep(pk,P), then EffVer(vkP , ∆, x, σ)
runs in time poly(λ, log(n))

6.2 From FCs to HS

Let FC be an additively homomorphic functional commitment scheme for a class of functions F ,
such that the commitments are in C and FC.Add : Cn → C is its homomorphic addition algorithm.
Let LHS be an HS with message space C and that supports the evaluation of FC.Add. We use these
two schemes to build an HS scheme HS for functions in F . The scheme is described in Fig. 2. We
refer to the introduction for an intuitive explanation of the construction.

Below, given a labeled program (f, i) with f : X t → Xm and i = (i1, . . . , it) ∈ [n]t, we define
f̂i : X n → Xm as the n-input function that, ignoring inputs at positions j /∈ i, works identically as
f .

The correctness of the scheme can be checked by inspection. In the following theorem we prove
its security.

Theorem 5. If LHS is strongly-adaptive secure and FC is weak evaluation binding, then HS is
strongly-adaptive secure.

Proof. The idea of the proof is that to break the security of HS an adversary must either return
a commitment C which is a forgery under the FC.Add function for the LHS scheme, or, when the
commitment is correct, generate an opening proof for a false result.

Game0(λ): this is the same as the real experiment Expstrong-Ad-UF
A,HS (λ).

Game1(λ): this game proceeds as the previous one except that it outputs 0 if the following condition
occurs. Let (f∗, (i∗1, . . . , i

∗
t), ∆

∗, σ∗,y∗) be the forgery returned by A, parse σ∗ = (σ̂∗, C∗, π∗) and
assume this is accepted by Ver. If this is a type-1 forgery (i.e., ∃j ∈ [t] such that the adversary

33

never queried a tuple (∆∗, ij , ·)) the game outputs 0. Otherwise, assuming that the adversary has
queried all the labels i∗1, . . . , i∗t for the dataset ∆∗, let C1, . . . , Ct be the commitments generated
upon each of these queries. If C∗ 6= FC.Add(ck, C1, . . . , Ct), then the game outputs 0 as well.

To prove the theorem we first show that Game0 and Game1 are indistinguishable under the
strongly adaptive unforgeability of LHS; next, we show that any adversary winning in Game1 can
be reduced to an adversary breaking the weak evaluation binding of FC.

Lemma 1. For any PPT A there exists a PPT B such that

|Pr[Game0 = 1]− Pr[Game1 = 1]| ≤ Advstrong-Ad-UF
B,LHS (λ).

Proof. As one can see, the event by which Game1 differs from Game0 is the event that the forgery
returned by A implies a forgery for the scheme LHS. The reduction is straightforward and is omitted.

Lemma 2. For any PPT A there exists a PPT B such that

Pr[Game1 = 1] ≤ AdvwEvBind
B,FC (λ).

Proof. The adversary B on input the FC commitment’s key ck, generates the LHS keys (skLHS, pkLHS)←
LHS.KeyGen(1λ), sets vk := (pkLHS, ck) and runs A(vk). The simulation of signing queries is straight-
forward since B has the secret key skLHS.

Consider A’s output (f∗, (i∗1, . . . , i
∗
t), ∆

∗, σ∗, y∗). Given the changes introduced in Game1, a
forgery returned by A in this game must be a type-2 forgery. Also, the commitment C∗ is the
same as FC.Add(ck, C1, . . . , Ct), where each Cj is the commitment generated by B at the signing
query (∆∗, ij , xj). If σ∗ = (σ̂, C∗, aux∗, i∗), i.e., it is a non-evaluated signature, then B computes
π∗ ← FC.Open(ck, aux∗). The rest of the reduction proceeds identically to the case of an evaluated
signature as described below (considering that in such a case t = 1 and the program must be the
identity function).

By definition of type-2 forgery it holds y∗ 6= f∗(x1, . . . , xt) = f̂∗i∗(x̂1, . . . , x̂n) as well as FC.Ver(ck,

C∗, f̂∗i∗ , y
∗, π∗,) = 1, where for every k ∈ [n]: x̂k = xj if k = i∗j and 0 everywhere else. Therefore, B

computes r ← FC.Addr(ck, r1, . . . , rt), where rj is the randomness used to generate the commitment
Cj at the signing query (∆∗, ij , xj), and then it returns (x̂, r, f̂∗i∗ ,y

∗, π∗). It is easy to see that if A
makes Game1 return 1, then B’s output is a successful break of weak evaluation binding.

6.3 Context-Hiding

Theorem 6. If FC is com-hiding and zero-knowledge, then HS is weakly context hiding.

Proof. To prove the theorem we consider a small variant of our scheme in which the commitment
key ck is generated by using the Sim1 algorithm along with a trapdoor td, which is included in sk
(although not used for signing).13

The context hiding simulator, on input sk := (skLHS, td) works as follows.

13 We could have changed the description of HS with this change but we prefer to keep it simpler. Another way to
avoid this change is to assume a context hiding notion of HS in which (indistinguishable) keys are generated by
the simulator.

34

HS.Sim(sk, ∆, {(fj , ij),yj}
Q
j=1)

for i = 1, . . . , n : (Ci, auxi)← SimCom(ck); σ̂i ← LHS.Sign(skLHS,∆, i, Ci)

for j = 1, . . . , Q :

Cj ← FC.Add(ck, Cij,1 , . . . , Cij,`j)

σ̂j ← LHS.Eval(pk,FC.Add, σ̂ij,1 , . . . , σ̂ij,`j)

πj ← FC.Sim2(td, Cj , f̂ij ,yj)

σj := (σ̂j , Cj , πj)

return (σ1, . . . , σQ)

To prove context hiding we can define the following hybrid simulator HS.Sim that takes addi-
tionally as input the vector x and generates signatures correctly:

HS.Sim′(sk, ∆,x, {(fj , ij),yj}
Q
j=1)

for i = 1, . . . , n : (Ci, ãuxi)← SimCom(ck); σ̂i ← LHS.Sign(skLHS,∆, i, Ci)

auxi ← SimEquiv(td, Ci, ãuxi, xiei)endfor

for j = 1, . . . , Q :

Cj ← FC.Add(ck, Cij,1 , . . . , Cij,`j)

auxj ← FC.Addaux(ck, auxij,1 , . . . , auxij,`j)

σ̂j ← LHS.Eval(pk,FC.Add, σ̂ij,1 , . . . , σ̂ij,`j)

πj ← FC.Open(ck, auxj , f̂ij)

σj := (σ̂j , Cj , πj)

return (σ1, . . . , σQ)

It is easy to see that by the zero-knowledge of FC the output distributions of HS.Sim and HS.Sim′

are indistinguishable.
Next, consider the real experiment in which each σj is generated via our HS.Eval algorithm. The

only difference with the signatures generated by HS.Sim′ is that in the former the commitments are
directly generated as commitments to xiei whereas in the latter they are generated by using SimCom

and later equivocated. This difference can be reduced to the com-hiding of the FC scheme.

6.4 Efficient Verification

It is easy to see that if both the homomorphic signature LHS and the functional commitment FC
enjoy amortized efficient verification, then so does the resulting HS scheme. We show below how to
construct VerPrep and EffVer algorithms for HS from the corresponding algorithms of LHS and FC.
Their correctness follows from the efficient verification correctness properties of LHS and FC

HS.VerPrep(pk,P := (f, i))

pkLHS,P ← LHS.VerPrep(pkLHS, (FC.Add, i))

vkf ← FC.VerPrep(ck, f̂i)

return vkP := (ck, pkLHS,P , vkf)

EffVer(vkf , ∆,y, σ)

bLHS ← LHS.Ver(pkLHS,P ,∆,C, σ̂)

if σ = (σ̂, C, aux, i)

π ← FC.Open(ck, aux, f̂id,i)

bFC ← FC.EffVer(vkf , C,y, π)

return bFC ∧ bLHS

35

6.5 Instantiating LHS

Here we explain how to instantiate the linearly-homomorphic structure signature (LHS) scheme
required by our construction of HS based on FCs, in the case when we instantiate the FC scheme
using the pairing-based FCs proposed in our paper. Recall that the desiderata here is a scheme to
sign the group elements comprised in the commitments of the FC schemes and that also provides
efficient verification and strong adaptive security.

The simplest scheme satisfying all these requirements is the LHS from [CMP14], that we discuss
here for completeness. Informally, Catalano et al. in [CMP14] present a very simple linearly homo-
morphic scheme to sign messages m that are element of some bilinear group G. The scheme builds
on the randomness-reuse technique originally introduced by Attrapadung and Libert [AL11] in the
context of homomorphic network coding signatures: for each dataset ∆, the signer signs some ran-
dom commitment gr, via a standard signature scheme and then uses the randomness r as a key to
sign all the messages from ∆. In particular, [CMP14] build their scheme in two steps: first they give
a construction realizing random message security only (i.e. where the adversary has no control on
the signed messages it receives). Next, they show a generic, yet efficient, transformation to achieve
adaptive security. The original scheme however does not satisfy the strong adaptive security as de-
fined in [CFN18] (in fact, this notion did not exist at the time). To address this, a possibility could
be to resort to the efficient compiler relying on linearly homomorphic signatures from [CFN18].
In our setting there is a simpler and more efficient solution, though. Indeed, our transform from
additive FC to homomorphic signatures requires the underlying LHS to guarantee strong adaptive
security only when forgeries are restricted to very specific function families f∗. Specifically, letting
f∗ = (α∗1, . . . , α

∗
t), it has to be the case that α∗i ∈ {0, 1} and, for all queried inputs τi it holds

αi 6= 0. This is because, in our transformation the various commitments Ci are only combined via
the FC.Add functionality and letting α∗i = 0 only means excluding the corresponding Ci from the
computation. For the expert reader, this restriction on the classes of function implies that it can
never occur that adversaries return forgeries that are of Type-3 according to the security notion
proposed by Freeman [Fre12].

In Appendix E we described a slightly optimized variant of the construction from [CMP14]
and prove that it achieves full adaptive security (under the restriction on the admissible functions
discussed above).

Acknowledgements. We would like to thank Pierre Bourse for initial discussions that inspired
this work, and Ignacio Cascudo for a useful discussion.

This work has received funding in part from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant
agreement No. 101001283), by the Spanish Government under projects SCUM (ref. RTI2018-102043-
B-I00), and RED2018-102321-T, by the Madrid Regional Government under project BLOQUES (ref.
S2018/TCS-4339), by a research grant from Nomadic Labs and the Tezos Foundation, and by the
Programma ricerca di ateneo UNICT 35 2020-22 linea 2 and by research gifts from Protocol Labs.

References

ABC+12. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Waters. Com-
puting on authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 1–20.
Springer, Heidelberg, March 2012.

36

AL11. Nuttapong Attrapadung and Benoît Libert. Homomorphic network coding signatures in the standard
model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 17–34. Springer, Heidelberg, March 2011.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size ci-
phertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer,
Heidelberg, May 2005.

BF11. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Heidelberg,
May 2011.

BFKW09. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Signature
schemes for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of
LNCS, pages 68–87. Springer, Heidelberg, March 2009.

BFR13. Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of computation on out-
sourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
863–874. ACM Press, November 2013.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short cipher-
texts and private keys. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275.
Springer, Heidelberg, August 2005.

Boy08. Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G.
Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, Heidelberg, September
2008.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72. Springer, Heidelberg,
February / March 2013.

CFM08. Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short proofs. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 433–450. Springer, Heidelberg, April
2008.

CFN15. Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go private: Construc-
tions and applications to (homomorphic) signatures with shorter public keys. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 254–274. Springer,
Heidelberg, August 2015.

CFN18. Dario Catalano, Dario Fiore, and Luca Nizzardo. On the security notions for homomorphic signatures.
In Bart Preneel and Frederik Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 183–201.
Springer, Heidelberg, July 2018.

CFW12. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in the standard
model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 680–696. Springer, Heidelberg, May 2012.

CFW14. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient verification
for polynomial functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 371–389. Springer, Heidelberg, August 2014.

CGKW18. Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via bilinear entropy
expansion, revisited. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 503–534. Springer, Heidelberg, April / May 2018.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via predicate
encodings. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 595–624. Springer, Heidelberg, April 2015.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002.

CMP14. Dario Catalano, Antonio Marcedone, and Orazio Puglisi. Authenticating computation on groups: New
homomorphic primitives and applications. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 193–212. Springer, Heidelberg, December 2014.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

37

Fre12. David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework.
In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 697–714. Springer, Heidelberg, May 2012.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GKKR10. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over the
integers. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
142–160. Springer, Heidelberg, May 2010.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August
2018.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable as-
sumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press,
June 2011.

GW13. Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 301–320. Springer,
Heidelberg, December 2013.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated verifier/prover
and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651. Springer, Heidelberg, May 2019.

KW93. M. Karchmer and A. Wigderson. On span programs. In [1993] Proceedings of the Eigth Annual Structure
in Complexity Theory Conference, pages 102–111, 1993.

KW20. Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. Journal of Cryptology,
33(3):619–702, July 2020.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Heidelberg, December 2010.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct arguments.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 530–560. Springer, Heidelberg, August 2019.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer, Heidelberg, May / June
2010.

LP20. Helger Lipmaa and Kateryna Pavlyk. Succinct functional commitment for a large class of arithmetic
circuits. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 686–716. Springer, Heidelberg, December 2020.

LPJY13. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-preserving
signatures and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 289–307. Springer, Heidelberg, August 2013.

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From polyno-
mial commitments to pairing-based accumulators from simple assumptions. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs,
pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567. Springer, Heidelberg, May
2011.

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and independent zero-knowledge
sets with short proofs. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517.
Springer, Heidelberg, February 2010.

38

PPS21. Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional commitments from lattices. In
Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 480–511.
Springer, Heidelberg, November 2021.

Wat11. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 53–70. Springer, Heidelberg, March 2011.

A More on FCs definitions

A.1 Evaluation binding implication

We prove the following simple proposition to show that evaluation binding implies weak evaluation
binding.

Proposition 1. If an FC satisfies evaluation binding then it also satisfies weak evaluation binding.

Proof. Proceeding by contradiction, we show an adversary B against evaluation binding from an
adversaryA against weak evaluation binding. B(ck) runs (x, r, f,y, π)← A(ck), computes a commit-
ment (C, aux)← Com(ck,x; r) and an honest evaluation opening π̂ ← Open(ck, aux, f) for ŷ = f(x).
B outputs (C, f,y, π, ŷ, π̂). If A is successful then y 6= f(x) = ŷ and Ver(ck, C, f,y, π) = 1. At the
same time, by correctness of the FC scheme we have that Ver(ck, C, f, ŷ, π̂) = 1. Hence B succeeds
in breaking evaluation binding with the same success probability of A.

A.2 From Linear Aggregation to Strong Evaluation Binding

Theorem 7. Let FC be an FC scheme for linear forms over a finite field that satisfies evaluation
binding and linear aggregation. Then FC is strong evaluation binding.

Proof. Consider an adversary A against strong evaluation binding that outputs (C, {f i, yi, πi}
Q
i=1),

where f i ∈ X n and yi ∈ X . Our goal is to build B against evaluation binding.
B runsA to obtain the output above. IfA is successful each proof is valid, i.e., Ver(ck, C,f i, yi, πi) =

1, and @x ∈ X n : ∀i ∈ [Q] : f>i · x = yi.
Define F ∈ XQ×n and the vector y as the “concatenation” of these linear systems, i.e.,

F :=

f
>
1
...
f>Q

 , y :=

y1...
yQ

 .

The winning condition of strong evaluation binding means that (F | y) is an inconsistent system
of equations which means there exists an α ∈ XQ such that α> · F = 0> and α> · y = δ 6= 0. Let
V := {c ·α : c ∈ X}. Then any vector v ∈ V is such that

v> · F = 0> ∧ v> · y 6= 0

In particular, one of them, u = δ−1 ·α is such that u> · y = 1. Then, B proceeds by finding u such
that

u> · (F | y) = (0, · · · , 0, 1)

and builds an attack against evaluation binding as follows.

39

First it defines the function f∗ = u1 · f1. Since u> · F =
∑Q

j=1 ui · f
>
i = 0>, we have f∗ =

−
∑Q

j=2 uj · f
>
j .

Second, it defines the outputs y∗ = u1 · y1 and y = −
∑Q

j=2 uj · yj . Notice that y − y′ =∑Q
j=1 uj · yj = u> · y = 1 and thus y 6= y′.
Third, it builds the two openings by computing14 π ← Agg(ck, C, (π1,f1, y1), (u1)) and π′ ←

Agg(ck, C, (π2,f2, y2), . . . , (πQ,fQ, yQ), (u2, . . . , uQ)).
By the linear aggregation property we have that

Ver(ck, C, f∗, y, π) = Ver(ck, C, f∗, y′, π′) = 1

and thus B’s output is a valid attack against evaluation binding. ut

A.3 From Strong Evaluation Binding to SNARGs

Here we give more details about the observation that a strong evaluation binding FC with succinct
proofs for a language L yields a SNARG for L.

Let R be the NP relation associated to L such that a statement x ∈ L iff ∃w : R(x,w) = y
for some known y.15 If FC is an FC scheme for a class of functions that include the computation of
R(x, ·) for any x, then we can build a SNARG Π for the language L as follows.

Π.Setup runs ck ← FC.Setup and returns crs = ck; Π.P(crs, x, w) computes (C, aux) ←
FC.Com(ck, w), πf ← FC.Open(ck, aux, f) where f is the function such that f(·) = R(x, ·), and
returns π = (C, πf); Π.Ver(crs, x, π) returns FC.Ver(ck, C, πf , f,y).

The reduction from the soundness of Π to the strong evaluation binding of the FC works
as follows. Let A be a SNARG adversary that returns (x, π = (C, πf)) such that x /∈ L and
Π.Ver(crs, x, π) = FC.Ver(ck, C, πf , f,y) = 1. Since x /∈ L there is no w such that R(x,w) = y,
and thus the reduction can return (C, f, πf ,y) as a break for the strong evaluation binding of FC.

Note that the resulting SNARG is adaptively sound and the language does not need to be
honestly generated (unless this is required by the FC scheme, but for example this is not needed
in the scheme for linear maps). Furthermore, the compactness of FC implies the succinctness of Π.
Note that, when the NP relation has a constant-size output, the SNARG is succinct even if one
starts from a succinct, not necessarily compact, FC.

A.4 Further applications of additive-homomorphic FCs

Here we discuss further applications that follow immediately from any functional commitment that
is additively homomorphic.

More in general, we argue that having homomorphic properties in cryptographic primitives is
notoriously useful to obtain primitives with more complex functionalities. Additive-homomorphic
commitments have plenty of applications for example. For this reason, we believe that additive-
homomorphic functional commitments may have even more applications than the ones we mention
below.
14 We denote the description of the linear function used in aggregation as a vector of coefficients.
15 Usually, y is a bit but here we are considering a more general case in which y could be a constant value whose

length could depend on |w|, e.g., think of the vector of 0’s if R is an R1CS checking that every gate of a circuit is
correctly computed.

40

Updatable FCs. The first one is updatability, in a sense similar to the updatable VC notion of
[CF13]). An FC is updatable if, given a tuple (C, i, xi, x

′
i) where C is a commitment to a vector

x, and xi (resp. x′i) is the old (resp. new) value at position i, there is an efficient algorithm that
computes a commitment C ′ to the vector x′ which is the same as x except for having x′i at position
i, i.e., ∀j 6= i : x′j = xj .

In an additive-homomorphic FC, the update algorithm can be obtained by generating a com-
mitment Ci to the sparse vector (0, . . . 0, x′i − xi, 0, . . . 0) and by homomorphically adding Ci to
C.

Notice that this updatability approach does not work for FCs obtained through the linearization
trick, i.e., if using an additive-homomorphic FC for linear functions to commit to all the monomials.
In such a construction, when updating an entry xi one would have to update all the vector entries
with monomials involving xi, and this would require the knowledge of the full vector.

Verifiable Databases with expressive queries (VDB) An application where updatable FCs are useful
is an extension of the verifiable databases application shown in [CF13]. In VDB, a client outsources
a large database consisting of key-value pairs (i, xi) to an untrusted server, and later the client can
retrieve records (i.e., obtain xi) and update them (i.e., change xi into x′i) in a verifiable way. In brief,
in the VDB construction from vector commitments the client stores a commitment to (x1, . . . , xn);
the server proves the correctness of the i-th record by providing a VC opening for position i; to
update the i-th record the client (who no longer stores the full database) uses the updatable property
to update its local commitment in such a way that xi is replaced with x′i. We refer to [CF13] for
the formal description of their VDB scheme.

By replacing updatable vector commitments with updatable functional commitments in this
VDB construction, we obtain a VDB notion in which the client ask to the server queries more
expressive than retrievals. In particular, the client can ask to the server to compute f(x), for any
f supported by the FC and be convinced of its correctness with a succinct proof. Also, the client
can use the updatability of the FC in order to deal with updates, which is a desirable feature in
outsourced storage applications.

B A stronger transformation from FC for homogeneous polynomials to FC for
generic polynomials

It is interesting to note what happens if a malicious party creates a commitment which, instead of
having 0 in the first position of the committed vector, it includes some other value δ 6= 0. According
to the notion of weak evaluation binding (Def. 3), this attack is not deemed valid as the adversary
must open the commitment; hence it is forced to commit to the vector in the correct way. Curiously,
although this attack is not explicitly caught by the evaluation binding experiment (Def. 2), the
evaluation binding of the transformed scheme still holds if the commitment is malformed in this way.
This is due to the fact that evaluation binding only asks the adversary to produce two inconsistent
openings for the same function. However, if we consider strong evaluation binding, it is not hard to
see that by setting the first entry of the vector to a value δ 6= 0 then the FC of this transformation
does not satisfy this property.

Nevertheless, we can strengthen our transformation of Section 4.6 by letting the prover add an
opening to the first position to show that indeed x0 = 1. Slightly more in detail, given FC′ we define
FC∗ whose Setup and Com algorithms are the same as those of the scheme FC described earlier,
while the opening and verification are as follows.

41

FC∗.Open(ck, aux,f) It works the same as FC.Open except for the following step.

– Compute a proof that 1 is in the first position. Let f̂0 be the degree-1 (homogeneous) polynomial
in n+1 variables that returns x0, i.e., f̂0(x0, . . . , xn) := x0 and compute π1 ← FC′.Open(ck, ˆaux, f̂0).

Return π := (π̂, π1).
FC∗.Ver(ck, C, π,f ,y) Define the homogeneous polynomial f̂ from f as above. Compute (C1, aux1)←

Com(ck, (1, 0, . . . , 0); ∅) and Ĉ ← FC′.Add(ck, C, C1). Output

FC′.Ver(ck, Ĉ, π̂, f̂ ,y) ∧ FC′.Ver(ck, Ĉ, π1, f̂0, 1)

Theorem 8. If FC′ satisfies strong evaluation binding, so does FC∗.

Proof. Consider an adversary A∗ against the strong evaluation binding of FC∗ who returns (C, {f `,
y`, π`}

Q
`=1) such that the proofs are all valid and @x ∈ X n : ∀` ∈ [Q] : f`,i(x) = y`,i. We can build an

adversary B who returns (C, {f̂ `,y`, π̂`}
Q
i=0) where y0 = 1 and π̂0 = π1,1 (i.e. any of the proofs that

the first variable is 1 – recall that each proof π` = (π̂`, π`,1)). Then, since the adversary’s output is
such that @x ∈ X n : ∀` ∈ [Q] : f `(x) = y` and by the construction of f̂ ` from f `, we obtain that
for B’s output it holds @(x0, x1, . . . , xn) ∈ X n+1 : x0 = 1 ∧ ∀` ∈ [Q] : f̂ `(x0, x1, . . . , xn) = y`. ut

C Analysis of the DP -BDHE assumption in the generic bilinear group model

Lemma 3. For n,m = poly(λ) the (n,m)-DP-BDHE assumption holds in the generic bilinear group
model.

Proof. To justify that the (n,m)-DP-BDHE assumption holds in the generic bilinear group model we
observe that it is an instance of the (computational) “Uber assumption” with Laurent polynomials of
[BBG05, Boy08]. In particular, it is a special case in which all the polynomials given as input to the
adversary consist of monomials. In this case, it is sufficient to show that the challenge monomial to
be computed by the adversary in the target group, that is [(αγ)n+1δ]T , is not symbolically equivalent
to any of the monomials that one can obtain by taking the product of all the terms of Ω given in
G1 with those in G2.

For convenience, let us recall the adversary’s input Ω.

Ω :=

{

[αj]1, [γ
j]1
}
j∈[n] ,

{
[αjβiγ

n+1]1
}
i∈[m],j∈[2n]
j 6=n+1

,
{[
αjβiγ

`
]
1

}
i∈[m],j,`∈[2n]

` 6=n+1{[
δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i 6=k
,
{[

αjβiγ
`δ

βk

]
2

}
i,k∈[m],j∈[n]
`∈[2n]\{n+1}

Notice that since the target monomial contains the variable δ, we can only consider products

that involve terms from the last row of Ω. Furthermore, since these elements in the third row are
all in G2, we can only consider their product with elements of G1, namely terms in the first row of
Ω. We also note that, among its inputs, the adversary also has [1]1, [2]2. However, it is clear that
the challenge monomial cannot be obtained through a pairing with [1]1 or [1]2 since [(αγ)n+1δ]T is
not given in any of G1 or G2.

42

Let us begin by considering all the products of elements in
{[

δ
βk

]
2

}
k∈[m]

and the elements in

the first row of Ω, which result in the following sets:

S1,1 :=

{[
αjδ

βk

]
T

,

[
γjδ

βk

]
T

}
j∈[n],k∈[m]

,

S1,2 :=

{[
αjβiγ

n+1δ

βk

]
T

}
i,k∈[m],j∈[2n]

j 6=n+1

, S1,3 :=

{[
αjβiγ

`δ

βk

]
T

}
i,k∈[m],j,`∈[2n]

`6=n+1

Clearly, [(αγ)n+1δ]T is not among the elements in S1,1 since all of them contain a variable β−1k . For
a similar reason, we can exclude those elements in S1,2 ∪ S1,3 where i 6= k. Let us then focus on the
terms of S1,2 ∪ S1,3 where i = k, in which case the βi variables cancel out. They are:{[

αjγn+1δ
]
T

}
j∈[2n]\{n+1} ,

{[
αjγ`δ

]
T

}
j,`∈[2n],` 6=n+1

However, one can see that both sets do not include [(αγ)n+1δ]T .
Let us consider the products of elements in

{[
αjβiγ

n+1δ
βk

]
2

}
j∈[n],i,k∈[m]

i 6=k
and the elements in the

first row of Ω, which result in the following sets:

S2,1 :=

{[
αj+j

′
βiγ

n+1δ

βk

]
T

,

[
αjβiγ

j′+n+1δ

βk

]
T

}
j,j′∈[n],i,k∈[m]

i 6=k

S2,2 :=

{[
αj+j

′
βiβi′γ

2n+2δ

βk

]
T

}
j∈[n],j′∈[2n],i,i′,k∈[m]

i 6=k

,

S2,3 :=

{[
αj+j

′
βiβi′γ

`+n+1δ

βk

]
T

}
j∈[n],j′,`∈[2n],i,i′,k∈[m]

i 6=k, 6̀=n+1

The monomial [(αγ)n+1δ]T is not in S2,1 since each of them contains the variables βi/βk for i 6= k;
it is not in S2,2 and S2,3 as elements in these sets have the term γ2n+2 and γ`+n+1, with ` ≥ 1,
respectively.

Therefore, we consider the last set of products between the elements{[
αjβiγ

`δ
βk

]
2

}
i,k∈[m],j∈[n]
`∈[2n]\{n+1}

and the elements in the first row of Ω, which result in the following sets:

S3,1 :=

{[
αj+j

′
βiγ

`δ

βk

]
T

,

}
i,k∈[m],j,j′∈[n]
`∈[2n]\{n+1}

, S3,2 :=

{[
αjβiγ

`+j′δ

βk

]
T

}
i,k∈[m],j,j′∈[n]
`∈[2n]\{n+1}

,

S3,3 :=

{[
αj+j

′
βiβi′γ

`+n+1δ

βk

]
T

,

}
i,i′,k∈[m],j∈[n],j′∈[2n]\{n+1}

`∈[2n]\{n+1}

,

S3,4 :=

{[
αj+j

′
βiβi′γ

`+`′δ

βk

]
T

,

}
i,i′,k∈[m],j,j′∈[n]
`,`′∈[2n]\{n+1}

43

Among the elements in S3,1 ∪ S3,2 let us consider the subsets with i = k as the terms with i 6= k
contain the variables βi/βk and thus cannot include [(αγ)n+1δ]T . However, [(αγ)n+1δ]T is not in
the subset of S3,1 with i = k as none of the terms have γn+1; analogously, it is not in the subset of
S3,2 with i = k as all the terms include αj only for j ≤ n. Finally, [(αγ)n+1δ]T is not in S3,3 ∪ S3,4
as in these sets each term has at least a variable βi.

D Strongly evaluation binding FC for linear maps from falsifiable assumptions

In this section we prove that the FC for linear maps by Lai and Malavolta [LM19] satisfies strong
evaluation binding under a falsifiable assumption.

We recall the scheme in Fig. 3.

Setup(1λ, n,m)→ ck

α←$F,β←$Fm

ck :=

(
{[αj]1}j∈[n], [αn]2, {[βi · αj]2}i∈[m],j∈[n]
{[αβi]1}i∈[m], {[αjβi]1}i∈[m],j∈[2n]\{n+1}

)
Com(ck,x)→ (C, aux)

C :=
∑n
j=1 xj · [α

j]1

aux := x

Open(ck, aux,F)→ πF
πF :=

∑
i∈[m],j,k∈[n],j 6=k Fi,j · xk · [α

n+1−j+kβi]1

Ver(ck, C, πF,F,y)

e
(
C,
∑
i∈[m],j∈[n] Fi,j · [α

n+1−jβi]2
)

?
= e (πF, [1]2) · e

(∑m
i=1 yi · [αβi]1, [α

n]2
)

Fig. 3: FC for linear maps f : Fn → Fm from [LM19].

Below we state the (m,n)-parallel bilinear Diffie-Hellman exponent assumption, which is es-
sentially the computational version of the assumption defined by Waters in [Wat11], that was for
m = n and for symmetric bilinear groups.

Definition 18 ((n,m)-PBDHE assumption). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear
group setting. The (n,m)-PBDHE holds if for every n,m = poly(λ) and any PPT A, the advantage
Adv

(n,m)-PBDHE
A (λ) = Pr[A(bgp, Ω) = [αm+1δ]T] is negligible, where

Ω :=

(
{[αj]1}j∈[n], {[αjβi]1}i∈[m],j∈[2n]\{n+1}, {[βi · αj]2}i∈[m],j∈[n], [αn]2

{[δ/βk]2}k∈[m], {
[
(αjβiδ)/βk

]
2
}j∈[n],i,k∈[m],i 6=k

)

and the probability is over the random choices of α, δ←$Zq, β←$Zmq and A’s random coins.

We state and give the proof of the following theorem. This proof follows closely the security
proof of our FC scheme for sQAPs (Theorem 3), with some simplifications due to the fact that here
the language is only linear.

Theorem 9. If the (n,m)-PBDHE assumption holds then the FC scheme of Figure 3 has strong
evaluation binding.

44

Proof. Let A be a PPT adversary against the strong evaluation binding of the FC scheme. We use
A to build a PPT adversary B against the (n,m)-PBDHE assumption. B runs on input the bilinear
group description and the list of group elements Ω. B takes a subset of the elements in Ω, sets

ck :=

(
{[αj]1}j∈[n], [αn]2, {[βi · αj]2}i∈[m],j∈[n]
{[αβi]1}i∈[m], {[αjβi]1}i∈[m],j∈[2n]\{n+1}

)
and runs A(ck).

Let A’s output be (C, {F(`),y(`), π`}Qi=1), where for every `, F(`) ∈ Fn×m and y(`) ∈ Fn. If A is
successful we have that (i) each proof is valid, i.e.,

∀` ∈ [Q] : e

C, ∑
i∈[m],j∈[n]

F
(`)
i,j · [α

jβi]2

 = e (π`, [1]2) · e

(
m∑
i=1

y
(`)
i · [αβi]1, [αn]2

)

and (ii) @x ∈ Fn : ∀i ∈ [Q] : Fi · x = yi.

Define F ∈ FmQ×n and the vector y ∈ FmQ as the “concatenation” of these linear systems, i.e.,

F :=

F
(1)

...
F(Q)

 , y :=

y
(1)

...
y(Q)

 .

The winning condition (ii) of strong evaluation binding means that (F | y) is an inconsistent
system of equations which means there exists an c ∈ FmQ such that c> ·F = 0> and c> ·y = δ 6= 0.
Let V := {v · c : v ∈ F}. Then any vector v ∈ V is such that

v> · F = (0, . . . , 0) ∧ v> · y 6= 0

In particular, one of them, u = δ−1 · c is such that u> · y = 1.
B finds u such that

u> · (F | y) = (0, · · · , 0, 1) (11)

(e.g., by Gaussian elimination) and then proceeds as follows.
Parse u = (u(1), . . . ,u(Q)) where each u(`) = (u

(`)
1 , . . . , u

(`)
m)> ∈ Fm.

For every ` ∈ [Q] and k ∈ [m], B computes

π′`,k := e

(
π`,

[
δ

βk

]
2

)

= e

C, ∑
i∈[m],j∈[n]

F
(`)
i,j ·

[
αn+1−jβiδ

βk

]
2

 · [− m∑
i=1

y
(`)
i ·

αn+1βiδ

βk

]
T

= e

C, ∑
j∈[n]

F
(`)
k,j ·

[
αn+1−jδ

]
2

 · e
C, ∑

i∈[m]\{k}
j∈[n]

F
(`)
i,j ·

[
αn+1−jβiδ

βk

]
2

 ·
[
−y(`)k αn+1δ

]
T
·

− ∑
i∈[m]\{k}

y
(`)
i ·

αn+1βiδ

βk

T

45

and

π∗`,k := π′`,k · e

C, ∑
i∈[m]\{k}
j∈[n]

F
(`)
i,j ·

[
αn+1−jβiδ

βk

]
2

−1

·
∏

i∈[m]\{k}

e

(
[αn]1 ,

[
αδβi
βk

]
2

)y(`)i

= e

C, ∑
j∈[n]

F
(`)
k,j ·

[
αn+1−jδ

]
2

 · [−y(`)k αn+1δ
]
T

Finally, B computes and returns

∆∗ =
∏

`∈[Q],i∈[m]

(π∗`,k)
−u(`)i

We show below that, conditioned on A being successful, we have ∆∗ = [αn+1δ]T , and thus B
succeeds in breaking the (n,m)-PBDHE assumption.

Expanding each term π∗`,k we have

∆∗ = e

C, −∑
j∈[n]

∑
`∈Q,k∈[m]

u
(`)
k · F

(`)
k,j ·

[
αn+1−jδ

]
2

 ·
αn+1δ

∑
`∈[Q],k∈[m]

u
(`)
k · y

(`)
k

T

The equality ∆∗ = [αn+1δ]T follows from the fact that, by equation (11), we have that for every
j ∈ [n],

∑
`∈Q,k∈[m] u

(`)
k · F

(`)
k,j = 0 and that

∑
k∈[m] u

(`)
k · y

(`)
k = 1. ut

E An efficient instantiation of the LHS scheme

We stress that the scheme does not allow one to sign messages expressed as vectors of group ele-
ments (as most currently known linearly homomorphic structure preserving signature schemes do)
but rather single group elements. This is not a problem in our context as the (few) group elements
composing our commitments can be signed separately. For compatibility with our schemes we port
the LHS of [CMP14] to the setting of asymmetric pairings (the original scheme is described for sym-
metric ones). Also, while the scheme described below works for messages in G1, it is straightforward
to obtain the “dual” version of it for messages in G2.

LHS.KeyGen(1λ, n) Run the KeyGen(1λ) algorithm of a (standard) digital signature scheme, to
obtain signing keys (sk, pk). Also run a (symmetric) bilinear group generator BG(1λ) to get
bgp := (p,G1,G2,GT , e, g1, g2), where G1, G1, GT are groups of prime order p and g1 ∈ G1, g2 ∈ G2

are fixed generators. The algorithm proceeds by sampling ω1, ω2 ∈ Z∗p and setsW1 = gω1
2 ,W2 = gω2

2 .
Also it picks random group elements (in G1)

h1, . . . , hn; k1, . . . , kn

and sets pkLHS = (vk, g1, g2, h1, . . . , hn, k1, . . . , kn,W1,W2) skLHS = (sk, ω1, ω2)

The message space is G1.

46

LHS.Sign(skLHS, ∆, τi,m) First it (randomly) chooses m′ in G1. The algorithm maintains a list T
for previously returned dataset identifiers ∆, labels τi and related information.
If ∆ 6∈ T
– r, s←$Zp, σ1 ← gr2, σ2 ← gs2
– γ ← Sign(sk, ∆, σ1, σ2)
else retrieve associated r, s, σ1, σ2, γ from memory.
Set

M ′ ← m′
ω1 ,M ′′ ← (m/m′)ω2 , V ′ ← (hiM

′)r, V ′′ ← (kiM
′′)s

Output π ← (σ1, σ2, γ, V
′, V ′′,M ′,M ′′,m′) as the signature for m with respect to the function ei

(where ei is the i-th vector of the canonical basis of Zn).
LHS.Eval(pkLHS, f, π1, . . . , πt) if the γi are not all equal output ⊥, else let γ = γi and compute

V ′ ←
n∏
i=1

(V ′i)αi ;V ′′ ←
n∏
i=1

(V ′′i)αi ;M ′ ←
n∏
i=1

(M ′i)
αi ;M ′′ ←

n∏
i=1

(M ′′i)αi ;m′ ←
n∏
i=1

(m′i)
αi ;

Output π ← (σ1, σ2, γ, V
′, V ′′,M ′,M ′′,m′)

LHS.Ver(pkLHS,P, ∆,m, π) Let P = (f, τ) and f = (α1, . . . , αn). Check that
– Ver(pk, γ, (∆,σ1, σ2)) = 1

– e(M ′, g2) = e(m′,W1)

– e(M ′′, g2) = e(m/m′,W2)

– e(V ′, g2) = e(
∏n
i=1 h

αi
i M

′, σ1)

– e(V ′′, g2) = e(
∏n
i=1 k

αi
i M

′′, σ2)
if any of the checks above fails output 0, else output 1.

We now prove the following theorem

Theorem 10 (informal). If the 2-3CDH assumption [CMP14] holds and the underlying signature
scheme guarantees unforgeability against adaptive chosen message attack then the scheme described
above is a LHS scheme secure providing strong adaptive security (in the sense discussed above).

Proof. We split the proof in 3 different cases. In each of them, we will show how an adver-
sary that breaks the security of the scheme can be used to build a simulator that breaks the
2-3CDH assumption (or the security of the underlying signature scheme S). In particular, let
m∗,P∗ = (∆∗, f∗, τ∗1 , . . . , τ

∗
t), π = (σ∗1, σ

∗
2, γ
∗, V ′∗, V ′′∗,M ′∗,M ′′∗,m′∗) be the forgery produced

by the adversary A, Then (at least) one of the following conditions hold:

Type I The list T (defined as in the description of the scheme) is empty or ∆∗ 6∈ T
Type II For all i ∈ [n], ∃ (∆∗, τi,mi) ∈ T and m∗ 6= f∗(m1, . . . ,mn), where mi are the messages
queried as part of the ∆∗ dataset.
Type III Strong: there exists j ∈ {1, . . . , n} such that (τ∗j , ·) /∈ T , even though ∆∗ is in the list.

Type I forgeries. In this case it is easy to reduce security to the unforgeability of the underlying
signature scheme S. The simulator is very simple: it uses its signing oracle for S to compute the
component of each signature authenticating the dataset identifier, and can easily compute the
remaining parts of each signature by creating the rest of the secret and public key as in the real
case. When adversary A outputs a forgery, by definition of this case the simulator can output
(∆∗, σ∗1, σ

∗
2), γ∗ as a forgery for S.

47

Type II forgeries. Notice that, by construction, the forgery condition implies that either

m′∗ 6= f∗(m′1, . . . ,m
′
n) (12)

or
m∗/m′∗ 6= f∗(m1/m

′
1, . . . ,mn/m

′
n) (13)

The simulator guesses which one of the two cases occurs and it will be correct with 1/2 prob-
ability. Without loss of generality, in the remaining of the proof we will assume that condition 12
occurs. The reduction for the other case works analogously.

Notice also that because of the signature verification equations it must be the case that

V ′∗ ←

(
n∏
i=1

(hi)
α∗iM ′∗

)r
; M ′∗ = (m′∗)ω1 (14)

Letting

V ′ ←

(
n∏
i=1

(hi)
α∗iM

′α∗i
i

)r
;

n∏
i=1

M
′α∗i
i = (

n∏
i=1

m′α
∗
i)ω1 (15)

the equations by computing f∗ on the input originally queried for dataset ∆∗, we have

V ′∗/V ′ =

(
M ′∗/

n∏
i=1

M
′α∗i
i

)r
(16)

we show how to use this to solve the 2-3 CDH. In particular we construct the solver B as follows.
B takes as input the 2-3 CDH challenge (g1, g2, g

ω
1 , g

r
1, g

ω
2 , g

r
2) and guesses both the dataset

identifier ∆i and the case (12 or 13 above) for which it will receive a forgery. Again, w.l.o.g, let us
assume that case 12 occurs.
B sets W1 ← gω2 , it selects bi, δi←$Zp, for i = 1, . . . , n and computes m̄i ← gbi1 as part of its

answers for signing queries regarding dataset ∆i and hi ← gδi1 m̄
−ω
i = gδi(gω1)−bi . The rest of the

public key/secret key material is produced as prescribed by key generation.
Signing queries are dealt with as follows. On input the query (∆, τj ,m), if ∆ = ∆i, i.e. the target

dataset, it proceeds as follows
if ∆ 6∈ T it sets

– σ1 ← gr2
– Sample s←$Zp and set σ2 ← gs2
– γ ← Sign(sk, ∆, σ1, σ2)

else B retrieves (γ, σ1, σ2) from memory. In any case it sets m′j ← m̄j , M ′j ← (gω1)bj , V ′ ← (gr1)δj =
(hjM

′
j)
r and m′′j ← m/m′j , M

′′
j ← m′′ω2

j , V ′′ ← (kjM
′′
j)s

Queries for ∆ 6= ∆i are answered as follows.
Sample rj , aj←$Zp, m′j ← g

aj
1 , M ′j ← (gω1)aj , V ′ ← (hjM

′
j)
rj . The rest is computed as the real

signer would do.
WhenA produces a type II forgerym∗,P∗ = (∆∗, f∗, τ∗1 , . . . , τ

∗
t), π = (σ∗1, σ

∗
2, γ
∗, V ′∗, V ′′∗,M ′∗,M ′′∗,m′∗),

B outputs

48

(H,T) =

m′∗/ n∏
j=1

(m′j)
α∗i , V ′∗/V ′

where V ′ ←

(∏n
j=1(hi)

α∗iM ′j

)r
. Thus, since by definition of type II forgeriesH = m′∗/

∏n
j=1(m

′
j)
α∗i 6=

1, by combining the results of equations (14)–(15)–(16), we obtain that (H,T) is a valid solution of
the 2-3 CDH problem, i.e., H 6= 1 and T = Hrω.

Type III forgeries. Here we assume that in the forgery produced by A there is some index j such
that τ∗j is not in T even though ∆∗ is not a novel dataset identifier. We show that, in the restricted
case highlighted above, given an adversary A that produces such a type 3 forgery we can use it to
build a B adversary that produces a type two forgery. B runs A on the same pk material it receives.
When A asks for a signing query B asks the same query to its oracle and sends it to A. When A
produces its type 3 forgery

m∗,P∗ = (∆∗, f∗, τ∗1 , . . . , τ
∗
t), π = (σ∗1, σ

∗
2, γ
∗, V ′

∗
, V ′′

∗
,M ′

∗
,M ′′

∗
,m′

∗
)

we denote with J the (non empty) set of indexes for which τ∗j is not in T and B proceeds
sampling random messages mj (for all j ∈ J) and by querying its signing oracle on (∆∗, τ∗j ,mj)
for each j ∈ J . B outputs what received from A as the required type II forgery. Notice that this
is, indeed, a type II forgery as B made signing queries for all labels. Moreover, letting y the output
obtained by computing f∗ on all the msgs queried by B, we have that y 6= m∗ with overwhelming
probability. Indeed, since all α∗i are assumed to be non zero, and the queries of A (information
theoretically) independent from the randomly sampled messages later queried by B, y = m∗ only
with probability 1/p.

49

	Additive-Homomorphic Functional Commitments and Applications to Homomorphic Signatures
	Introduction
	Our results
	Related work
	Technical overview

	Preliminaries
	Functional Commitments
	Binding notions of FCs
	Hiding and Zero-Knowledge
	Additional properties of FCs

	Additive-Homomorphic FC for Polynomials
	Additive-homomorphic FC for Homogeneous Polynomials
	Proof of Correctness
	Proof of Security
	Additive homomorphism, aggregation, and efficient verification
	Extension to hiding and zero-knowledge
	From Homogeneous to Generic Polynomials

	Additive-Homomorphic FC for Semi-Quadratic Arithmetic Programs
	Our FC for sQAPs
	Correctness
	Proof of Security
	From FC for sQAPs to an FC for monotone span programs
	Extension to hiding and zero-knowledge

	Homomorphic signatures from additive-homomorphic functional commitments
	Homomorphic Signatures
	From FCs to HS
	Context-Hiding
	Efficient Verification
	Instantiating LHS

	More on FCs definitions
	Evaluation binding implication
	From Linear Aggregation to Strong Evaluation Binding
	From Strong Evaluation Binding to SNARGs
	Further applications of additive-homomorphic FCs

	A stronger transformation from FC for homogeneous polynomials to FC for generic polynomials
	Analysis of the DP-BDHE assumption in the generic bilinear group model
	Strongly evaluation binding FC for linear maps from falsifiable assumptions
	An efficient instantiation of the LHS scheme

