
Privacy-Preserving Authenticated Key Exchange:
Stronger Privacy and Generic Constructions⋆

Sebastian Ramacher1, Daniel Slamanig1, and Andreas Weninger2

1 AIT Austrian Institute of Technology, Vienna, Austria
firstname.lastname@ait.ac.at

2 TU Wien, Vienna, Austria
firstname.lastname@tuwien.ac.at

Abstract. Authenticated key-exchange (AKE) protocols are an important class
of protocols that allow two parties to establish a common session key over an in-
secure channel such as the Internet to then protect their communication. They are
widely deployed in security protocols such as TLS, IPsec and SSH. Besides the
confidentiality of the communicated data, an orthogonal but increasingly impor-
tant goal is the protection of the confidentiality of the identities of the involved
parties (aka privacy). For instance, the Encrypted Client Hello (ECH) mechanism
for TLS 1.3 has been designed for exactly this reason. Recently, a series of works
(Zhao CCS’16, Arfaoui et al. PoPETS’19, Schäge et al. PKC’20) studied privacy
guarantees of (existing) AKE protocols by integrating privacy into AKE models.
We observe that these so called privacy-preserving AKE (PPAKE) models are
typically strongly tailored to the specific setting, i.e., concrete protocols they in-
vestigate. Moreover, the privacy guarantees in these models might be too weak
(or even are non-existent) when facing active adversaries.
In this work we set the goal to provide a single PPAKE model that captures pri-
vacy guarantees against different types of attacks, thereby covering previously
proposed notions as well as so far not achieved privacy guarantees. In doing
so, we obtain different “degrees” of privacy within a single model, which, in
its strongest forms also capture privacy guarantees against powerful active adver-
saries. We then proceed to investigate (generic) constructions of AKE protocols
that provide strong privacy guarantees in our PPAKE model. This includes classi-
cal Diffie-Hellman type protocols as well as protocols based on generic building
blocks, thus covering post-quantum instantiations.

1 Introduction

Authenticated key exchange (AKE) protocols are among the most important crypto-
graphic building blocks to enable secure communication over insecure networks. Es-
sentially, an AKE allows two parties A and B, in possession of long term key pairs
(pkA, skA) and (pkB , skB) respectively, to authenticate each other and securely es-
tablish a common session key. Security should thereby even hold in the presence of

⋆ This is the full version of a paper which appears in Computer Security - ESORICS 2021,
Lecture Notes in Computer Science, Springer. The proceedings version is available online at:
https://doi.org/10.1007/978-3-030-88428-4_33.

https://doi.org/10.1007/978-3-030-88428-4_33


active attackers, which may intercept, read, alter, replay, or drop any message trans-
mitted between these parties. Moreover, in state-of-the-art protocols one requires se-
curity of the session key (i.e., confidentiality) of past interactions of A and B, even
if attackers are able to compromise the long term secrets skA and skB . This is typi-
cally denoted as perfect forward secrecy (PFS). In current real world applications, such
AKE protocols typically rely on the Diffie-Hellman (DH) protocol and digital signa-
tures and are widely deployed in security protocols such as TLS, IPsec and SSH. The
emerging threat of the feasibility of powerful quantum computers additionally revived
the interest in AKE protocols that do not rely on DH key exchange, but instead are
based generically on public key encryption (PKE) or key encapsulation mechanisms
(KEMs) [HKSU20, HNS+21, SSW20].

Privacy in AKE. While confidentiality of communicated data is the prime target for a
security protocol, another important property is the confidentiality of the identities of
the parties involved in the AKE. We will call this goal of hiding the identities from exter-
nal parties privacy.3 Schäge et al. [SSL20] recently coined the term privacy-preserving
authenticated key exchange (PPAKE) for AKE protocols with such privacy guarantees.
While the study of PPAKE is an interesting subject on its own right, we currently can
observe an increasing interest in such features in real world protocols. For instance, TLS
1.3 [Res18] aims to protect the identities of the server and client by encrypting messages
as soon as possible during the authentication and in particular hiding the certificate sent
by the server. Besides, many other protocols such as QUIC, IPsec IKE, SSH and cer-
tain patterns of the Noise protocol framework [Per17] aim to protect identity-related
information such as identities, public keys or digital signatures. This is usually done by
running an anonymous DH handshake where the derived keying material is then used to
encrypt all subsequent messages (essentially the SIGMA-R template [Kra03]). More-
over, the recent proposal of Encrypted Client Hello (ECH) mechanism for TLS encrypts
the initial client message (the ClientHello) [ROSW20] with the aim of hiding the target
domain for a given connection from attackers listening on the network. We also want to
note that over the years various protocols have been designed to provide some intuitive
identity protection measures, such as SKEME [Kra96] or the SIGMA-I and SIGMA-R
variants of the SIGMA protocol family [Kra03]. The work of Schäge et al. [SSL20],
for instance, formally analyzes the privacy guarantees of SIGMA-R as used in IKEv2
within IPSec.

Relevance of PPAKE in practice. From the above mentioned protocols that try to con-
ceal identifying information, in particular encrypted Server Name Indication (ESNI)
and its successor ECH have demonstrated its usefulness in practice. Especially when
considering network censorship, ESNI/ECH can help to thwart censorship [CGH19].
Consequently, all ESNI protected TLS connections have been blocked in China.4 In
general, one can observe a push towards an Internet infrastructure that reduces the
amount of identifiable information. DNS over HTTPS/TLS [HM18, HZH+16] for in-

3 We note that key-exchange protocols that hide the identity of one party even from the peer in
the key exchange (e.g., as in [ØS07, GSU13]) are outside the scope of this work.

4 https://www.zdnet.com/article/china-is-now-blocking-all-
encrypted-https-traffic-using-tls-1-3-and-esni/

2

https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/
https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/


stance helps in hiding identifying information associated to a connection from an ad-
versary listening to public network traffic.

While in the above cases typically only one party, i.e., the server, is authenticated,
with the Internet-of-Things (IoT) [dSGdCR+15, GHSS15] or FIDO2 [BBCW21, FLJ+17]
we see an adoption of mutually authenticated AKE protocols and interest towards iden-
tity privacy. For instance, Wu et al. [WTSB16] study protocols for private service dis-
covery and private mutual authentication in both the IoT and the mobile landscape (with
a case study on Apple AirDrop). Similarly, many VPN implementations also offer the
ability to configure certificate-based client authentications during the initial handshake
which is also the only option in WireGuard [Don17, DP18] to establish connections.

Previous work on PPAKE. To the best of our knowledge, the first work that specifi-
cally addresses privacy in key agreement is by Aiello et al. [ABB+04]. Informally, their
privacy property wants to achieve that protocols must not reveal the identity of a par-
ticipant to any unauthorized party, including an active attacker that attempts to act as
the peer. They concretely propose two protocols, where one protects the identity of the
initiator from an active attacker and the second one that of the responder. However, we
note that this privacy property is neither modeled nor rigorously analyzed. Another in-
formal discussion of how to achieve “identity concealment” by encrypting the identities
was even earlier mentioned by Canetti and Krawczyk in [CK02]. Later Zhao in [Zha16]
introduced the notion of identity-concealed authenticated key exchange (CAKE), which
enforces the notion of forward identity-privacy (which we simply call forward privacy)
and some form of man-in-the-middle (MITM) privacy for completed sessions.

Recently, Schäge et al. [SSL20] provided a PPAKE model, which similarly to the
one by Zhao [Zha16] incorporates forward privacy and some form of MITM privacy for
completed sessions, but considers a different setting. In their model, the identity of any
two communicating parties are known (so it is visible who communicates with whom),
but each party has two additional identities associated to it and it should be hard to fig-
ure out which identities the parties are using. Consequently, this model is tailored to a
specific setting, e.g., where one server hosts multiple virtual machines or services and
these identities need to be protected. Schäge et al. then use their model to analyze the
privacy of the IKEv2 protocol [KHN+14]. Also recently Arfaoui et al. [ABF+19] inves-
tigate privacy in TLS 1.3 including session resumption. They capture a weaker notion of
privacy than what is required by forward privacy, as they do not allow any corruptions.
Their model also only considers uni-lateral authentication and models privacy as a sep-
arate property using the concept of a virtual identifier known from privacy analysis of
RFID protocols (cf. [SSL20] for a discussion why this is not desirable). Interestingly,
none of the previously proposed formal models (including [Zha16]) considers strong
active adversaries against the privacy of the AKE protocols. To be more precise, while
they actually allow active attacks, they only allow the adversaries to attack accepted
sessions. And for any reasonable AKE, this essentially boils down to passive attacks
(we will discuss this in more detail in Section 2).

Our contribution. Subsequently, we briefly summarize our contributions:

– We revisit privacy in context of AKE and introduce a comprehensive PPAKE model
building upon and extending the recent AKE model in [CCG+19]. It is more gen-

3



eral than the recent PPAKE by Schäge et al. [SSL20] and among variants of pri-
vacy notions known from previous works [Zha16, SSL20] supports stronger notions
against active adversaries.

– The main contribution of this work is that we deal with incomplete session attacks,
i.e., active MITM adversaries that learn the identity of one party but are unable to
then complete the protocol run. This is typically due to the inability to authenticate
themselves, which is caused by a lack of secret key material. The models and pro-
tocols of Schäge et al. [SSL20] and Zhao [Zha16], as noted by the authors, do not
prevent such attacks. In each case the adversary can create the first message(s) of
either the initiator or the responder without having access to the user’s long-term
secret key. This is due to the fact that the first messages only serve the purpose
of exchanging ephemeral randomness, e.g., via an anonymous DH key exchange.
Then the other side will authenticate itself, allowing the adversary to trivially learn
the identity. We stress that this attack can be done by any MITM adversary without
corrupting any user.

– We present generic constructions of PPAKE protocols with strong privacy guaran-
tees. Our constructions rely on standard primitives such as public-key encryption or
key-encapsulation mechanisms, signature schemes and unauthenticated two-move
key exchange protocols. Thus, our constructions can be instantiated with post-
quantum secure building blocks. In contrast, previous works exclusively focused
on DH based protocols.

Follow-up work. In a recent work by Lyu et al. [LLHG22], the authors introduce the
concept of robustness in PPAKE and present generic construction without the need to
rely on random oracles. The authors also present a strategy to attack our four move pro-
tocol Π4

PKE. In particular, the attack is targeted at forward privacy for identities of both
the initiator and the responder when the responder is corrupted. Here it is important to
note, that this strategy assumes broadcasting channels and that every potential receiver
answers to every received message which is different from our model. Furthermore, our
model considers forward privacy for past sessions (without adversarial interference)
on compromise of long-term keys, whereas the adversaries in the attack of Lyu et al.
needs to actively modify the session by responding to the first message of the initiator
and thereby has knowledge of the ephemeral keys. Thus, the setting is outside of our
security model and not considered in our paper.

2 On Modeling Privacy in AKE

There are different privacy properties that are considered to be relevant, some of which
that can and others that cannot be covered within PPAKE. In this section we discuss
these issues, highlight aspects that have not been considered so far in PPAKE mod-
els and present a comprehensive overview of the different privacy properties and their
relations.

2.1 What Can(not) be Handled by PPAKE

Identity-related information such as client specific identifiers, public keys (certificates
in particular) and digital signatures can be used by an adversary to break privacy. All

4



these information are available on the layer of the AKE protocol, but there are clearly
other network dependent information outside the AKE layer and our model, e.g., net-
work addresses such as IP or MAC addresses, that allow adversaries to break privacy.
Consequently, as discussed in [SSL20] for PPAKE, the assumptions on the network are
stronger than those required by network anonymization protocols like Tor [DMS04].
Latter implement an overlay network and provide privacy against an adversary who
controls large parts of the underlying network (i.e., the Internet) but not the complete
network, as well as parts of the overlay network (e.g., Tor) itself.

PPAKE considers an adversary that is weaker and in particular assumes an active
MITM attacker that controls a large, but well-defined part of the network. Consequently,
one omits the consideration of network identifiers like IP or MAC addresses in PPAKE.
This firstly allows to make the model simpler and independent of any network tech-
nology and topology. Secondly, as argued in [SSL20], by using trustworthy proxies at
the entry points of the adversary controlled network the usefulness of these informa-
tion to an adversary can be significantly reduced. Nevertheless, we argue that even in
case of absence of such proxies PPAKE still provides a meaningful countermeasure to
large scale privacy attacks. In particular, it is easily possible to record identity-related
information such as certificates (which can simply be parsed locally) on the AKE layer.
Consequently, compared to basing the analysis on network address information, which
might be additionally complicated by Network Address Translation (NAT), this is much
more efficient and easily leads to a unique identification of the entities.

While it is clear that fully hiding all identity information is not possible in practice,
privacy can only be lost. Consequently, guaranteeing an adequate level of privacy via
PPAKE is a first step to reduce privacy risks.

2.2 Privacy Goals in PPAKE

Now we are going to discuss privacy goals relevant to PPAKE and distill a set of privacy
properties from that. Unlike previous works [Zha16, ABF+19, SSL20], which basically
design PPAKE models in a way that they allow to analyze a specific AKE protocol
(family) such as used in TLS 1.3 or IKEv2, in this work we ask what are desirable
properties and how to design PPAKE protocols providing strong privacy guarantees.
In doing so we do not consider a single privacy notion (as done in previous work),
but propose a set of privacy notions that allow to cover properties relevant to diverse
use-cases.

Roughly, we can classify privacy attacks in either passive or active attacks and
whether we either consider only completed sessions or we allow even incomplete ses-
sions to be the target of an attack. Thereby, a passive adversary only behaves passive
during the session establishment but can corrupt parties after the session-establishment.
Note that for incomplete sessions, a purely passive adversary is not reasonable and is
thus not considered. Active adversaries and incomplete sessions are however reason-
able, i.e., actively trying to identify peers that are establishing a session which might
already provide a sufficient amount of compromising information. Nevertheless, such
notions have not been considered in previous models. See Table 1 for an overview.
Passive adversaries. We start with a property that is implicitly covered by the privacy
notion in previous PPAKE [Zha16, SSL20]. We call it forward privacy and it can be seen

5



Table 1. Type of adversary A and state of the attacked session. (×) denotes no corruption; (✓)
denotes corruption of all but the users in the target session (i.e., the session to be attacked); (✓✓)
denotes corruption of all users. Corruption always refers to the long-term secrets.

completed session incomplete session

passive A forward privacy (✓✓) —

active A completed-session privacy (✓)
(weak) 2-way MITM privacy (×)
strong 2-way MITM privacy (✓)

as the privacy analogue of forward secrecy. Namely, it requires that for any completed
session even if an adversary can later on corrupt the long term secrets of all parties, the
identities of the actual parties that were involved in the session are not revealed.

For instance, the signed DH protocol does not provide any privacy, but one could
imagine to add public-key encryption (PKE), i.e., party A sends gx in plain but the value
SigskA(g

x∥idB) is encrypted under the public key of B and vice versa (this pattern is
similar to what is done to achieve identity protection in SKEME [Kra96]). This will
conceal the identities from any eavesdropper as long as no corruptions happen. If, how-
ever, the long-term secret keys of A and B corresponding to their PKE public keys are
leaked, their identities are clearly revealed from a recorded transcript. The same holds
for other protocols such as KEA or KEA+ [LM06] when in addition all messages are
encrypted with a PKE.

Note that with such a fix (that unfortunately does not give forward privacy), the ini-
tiator, besides needing to know the responders identity, would also needs to know its
public key. However, we want to stress that this is a quite reasonable assumption as in
many scenarios the public keys can already be deployed on the devices or can be fetched
from key repositories. Clearly, in the latter case it is not advisable to do this immedi-
ately before running the AKE as this yields another channel that leaks privacy relevant
information. But in many real world settings, e.g., Encrypted Client Hello (ECH) in
TLS 1.3, responder’s public keys are assumed to be fetched out-of-band.
Active adversaries. First, we note that several works [Kra03, ABB+04, ABF+19] state
that active adversaries against privacy are hard to handle:

“...it is not possible for a protocol to protect both the initiator and the responder
against an active attacker; one of the participants must always go first.” [ABB+04]

However, this statement seems to implicitly assume that the parties do not know public
keys of the other parties beforehand or have no means to detect whether the public keys
are revoked. Recent PPAKE models [Zha16, SSL20] indeed achieve privacy against
active adversaries, though in only a limited setting. In particular, they consider active
man-in-the-middle (MITM) adversaries but restrict them to completed sessions and thus
requiring the involved entities have not been corrupted, i.e., the respective long term
secret keys are not compromised/revoked.

To illustrate this, we consider a template analyzed in [SSL20] representing a vari-
ant of the SIGMA protocol family [Kra03] covering protocols such as TLS 1.3, QUIC,
IPsec IKE or SSH. In particular, the SIGMA-R protocol that is designed to provide

6



forward privacy completed-session privacy

w-MITM privacy s-MITM privacy

+EEA

\

Fig. 1. Overview of implications and separations between privacy notions. ↭ denotes two in-
comparable properties and EEA denotes explicit entity authentication.

receiver identity protection is investigated. This template uses an anonymous DH key
exchange, i.e., party A sends gx for ephemeral x and party B responds with gy for
ephemeral y. Subsequently, parties authenticate using digital signatures, where these
authentication messages are encrypted using a symmetric key derived from the shared
secret gxy . This protocol can provide privacy against active MITM attackers, but only
if the session completes (requiring that the involved entities are not corrupted). So this
only can happen “after the fact”. Nevertheless, it is easy to see that for incomplete ses-
sions there is no privacy guarantee as the initiator “goes first” and thus anyone can iden-
tify the initiator. Schäge et al. in [SSL20] explicitly discuss this limitation of their model
which allows to always reveal the server identity in TLS or QUIC or the client identity
in IPsec IKE and mention that “It is therefore conceivable to formalize a stronger prop-
erty for the secrecy of identities selected by the responder which does not rely on session
acceptance.” Indeed, this is a setting we want to cover with our privacy notion. Con-
sequently, we will formalize adequate properties for privacy against active adversaries
even if sessions are not completed.

Summarizing, such a stronger notion cannot work in the PPAKE model by Schäge
et al. in [SSL20]. Also the model and the protocols by Zhao [Zha16] do not consider
adversaries that do not need to know the long-term secret key to perform the attack (and
thus only consider completed sessions). Note there are simple attack strategies against
these protocols that do not require the attacker to obtain any long-term keys or otherwise
compromise any party and can be performed by anyone. But we stress that such attacks
are outside the model of [Zha16].

Previous PPAKE models only achieve the notion of active MITM attacks against
completed sessions (which implicitly covers forward privacy), but not against incom-
plete sessions. In order to also capture such attacks, we introduce the notion of MITM
privacy in two flavors. The first and easier to achieve variant allows adversaries to also
attack incomplete sessions but require that no user corruption happens. The second and
stronger notion removes this requirement and also allows corruption of users (clearly
with exception of the attacked ones). Looking ahead, to achieve MITM privacy requires
that even in case of failure protocol messages that look like real protocol messages needs
to be send. Whether this notion is meaningful consequently depends on the context of

7



the use of the protocol and might not be meaningful if used within some higher level
protocols where the required behavior cannot be realized.

In Figure 1 we provide an overview of the privacy notions captured in this pa-
per and how they relate to each other (cf. Section 3.2 for a formal treatment). We
note that completed-session privacy essentially reflects the privacy notions proposed
by Zhao [Zha16] as well as Schäge et al. [SSL20].
Initiator and responder privacy. Another aspect, which typically depends on the
structure of the protocol as well as the application, is whether privacy only holds for
either the initiator or the responder or both of them. For instance, in the most common
TLS application scenario clients do not authenticate and thus, unless client authenti-
cation is used, only responder privacy is important. Schäge et al. in [SSL20] model
privacy in a way that the adversary can explicitly trigger (via a bit) whether to attack
the initiator or the responder. In our model, we also consider both aspects simultane-
ously (which we denote as 2-way privacy), but the adversary controls whom to attack
by means of how it engages with the respective oracles. We discuss how to restrict the
adversary in our model to model either initiator or responder privacy in the next section.

3 Our PPAKE Model

3.1 Security Model

Our formal security model builds upon the model in [CCG+19] which we extend to
cover privacy features. Like [CCG+19], our model accounts for key impersonation
(KCI) security and weak forward secrecy and we use their notion of origin-oracle part-
nering. We note that [CCG+19] avoid no-match attacks [LS17] as their concrete pro-
tocol’s messages only contain group elements and deterministic functions of them. We
consider the generic countermeasure from [LS17] by including all exchanged messages
(the context) in the final key derivation.

Execution Environment. We consider µ parties 1, . . . , µ. Each party Pi is represented
by a set of oracles, {π1

i , . . . , π
ℓ
i}, where each oracle corresponds to a session, i.e., a sin-

gle execution of a protocol role, and where ℓ ∈ N is the maximum number of protocol
sessions per party. Each oracle πs

i is equipped with a randomness tape rsi containing
random bits, but is otherwise deterministic. Each oracle πs

i has access to the long-term
key pair (ski, pki) of party Pi

5 and to the public keys of all other parties, and maintains
a list of internal state variables that are described in the following:

– Pidsi (“peer id”) stores the identity of the intended communication partner. We as-
sume the initiator of a protocol to know who she contacts, hence for the initiator
this value is set immediately. Due to the nature of PPAKE the responder might not
immediately know the identity of the initiator, hence for the responder this value is
initialized to ⊥ and only set once he receives a message containing the initiator’s
identity.

– Ψs
i ∈ {∅,Accept,Reject} indicates whether πs

i has successfully completed the
protocol execution and “accepted” the resulting key.

5 This might contain various private and public keys for signatures and encryption.

8



– ksi stores the session key computed by πs
i

– rolesi ∈ {∅, Initiator,Responder} indicates πs
i ’s role during the protocol execution.

For each oracle πs
i these variables are initialized to the empty string ∅. The computed

session key is assigned to the variable ksi if and only if πs
i reaches the Accept state,

that is we have ksi ̸= ∅ ⇔ Ψs
i = Accept. Furthermore the environment maintains three

initially empty lists lists Lcorr, LSend and LSessKey of all corrupted parties, sent messages
and session keys respectively.

Partnering. We use the following partnering definitions (cf. [CCG+19]).

Definition 1 (Origin-oracle). An oracle πt
j is an origin-oracle for an oracle πs

i if Ψ t
j ̸=

∅, Ψs
i = Accept and the messages sent by πt

j equal the messages received by πs
i , i.e., if

senttj = recvsi .

Definition 2 (Partner oracles). We say that two oracles πs
i and πt

j are partners if (1)
each is an origin-oracle for the other; (2) each one’s identity is the other one’s peer
identity, i.e., Pidsi = j and Pidtj = i; and (3) they do not have the same role, i.e.,
rolesi ̸= roletj .

Oracles and Attacker Model. The adversary A interacts with the oracles through
queries. It is assumed to have full control over the communication network, modeled
by a Send(i, s,m) query which allows it to send arbitrary messages to any oracle. The
adversary is also granted a number of additional queries that model the fact that various
secrets might get lost or leaked. The queries are described in detail below.

– Send(i, s,m): This query allows A to send an arbitrary message m to oracle πs
i .

The oracle will respond according to the protocol specification and its current in-
ternal state. To start a new oracle, the message m takes the form:
(START : role, j) : If πs

i was already initialized before, return ⊥. Otherwise this
initializes πs

i in the role role, having party Pj as its intended peer. Thus, it
sets Pidsi := j and rolesi := role. If πs

i is started in the initiator role (role =
Initiator), then it outputs the first message of the protocol.

All Send(i, s,m) calls are recorded in the list LSend.
– RevLTK(i): For i ≤ µ, this query returns the long-term private key ski of party
Pi. After this query, Pi and all its protocol instances πs

i (for any s) are said to be
corrupted and Pi is added to Lcorr.

– RegisterLTK(i, pki): For i > µ, this query allows the adversary to register a new
party Pi with the public key pki. The adversary is not required to know the cor-
responding private key. After the query, the pair (i, pki) is distributed to all other
parties. Parties registered by RegisterLTK(i, pki) (and their protocol instances) are
corrupted by definition and are added to Lcorr.

– RevSessKey(i, s): This query allows the adversary to learn the session key derived
by an oracle. If Ψs

i = Accept, return ksi . Otherwise return a random key k∗ and add
(πs

i , k
∗) to LSessKey. After this query, πs

i is said to be revealed.
If this query is called for an oracle πs

i , while there is an entry (πt
j , k
∗) in LSessKey,

so that πs
i and πt

j have matching conversations, then k∗ is returned.6

6 Note that the bookkeeping and consistent answers for matched sessions are required to avoid
trivial distinguishers in case of cross tunnel attacks (cf. Section 3.3).

9



Security. Formally, we have a security game, played between an adversary A and a
challenger C, where A can issue the queries defined above. Additionally, it is given
access to a special query Test(m), which, depending on a secret bit b chosen by the
challenger, either returns real or random keys (for key indistinguishability) or an oracle
to communicate with one of two specified parties in the sense of a left-or-right oracle
for the privacy notions. The goal of the adversary is to guess the bit b. The adversary is
only allowed to call Test(m) once and we distinguish the following two cases:

– Case m = (TestKeyIndist, i, s): If Ψs
i ̸= Accept, return ⊥. Else, return kb where

k0 = ksi and k1
$← K is a random key. After this query, oracle πs

i is said to be
tested.

– Case m = (Y, i, j), Y ∈ {Test-w-MITMPriv,Test-s-MITMPriv,TestForwardPriv,
TestCompletedSessionPriv}, i, j ≤ µ: Create a new Party Pi|j with identifier i|j.
This party has all properties of Pi (if b = 0) or Pj (if b = 1), but no active sessions.
The public key of Pi|j is not announced to the adversary and the query RevLTK(i|j)
always returns⊥. Furthermore create exactly one session π1

i|j . Return the new han-
dle i|j.

One-way privacy. The second case in Test(m) above models two-way privacy, i.e., we
are considering that privacy needs to hold for the initiator and the responder. In case
of one-way privacy, i.e., the privacy only holds either for the initiator or the responder
(depending on the protocol), we need to restrict the adversary in a way such that the
first message sent to π1

i|j via Send(i|j, 1,m) must be a START command. Analogously,
we can model scenarios where we only consider privacy of the responder involved in a
session.

Security Experiment. The experiment ExpX
PPAKE,A is defined as follows.

1. Let µ be the number of parties in the game and ℓ the number of sessions per
user. C begins by drawing a random bit b

$← {0, 1} and generating key pairs
{(ski, pki) | 1 ≤ i ≤ µ} as well as oracles {πs

i | 1 ≤ i ≤ µ, 1 ≤ s ≤ ℓ}.
2. C now runs A, providing all the public keys as input. During its execution, A may

adaptively issue Send(i, s,m), RevLTK(i), RevSessKey(i, s) and RegisterLTK(i, pki)
queries any number of times and the Test(m) query once.

3. Depending on what argument Y the Test(m) oracle was called with, we require the
corresponding property below to hold through the entire game.
(a) TestKeyIndist: The tested oracle remains fresh (cf. Definition 3).
(b) Test-w-MITMPriv: No oracle is ever corrupted.
(c) Test-s-MITMPriv: Pi and Pj are never corrupted. Furthermore we require that

Pid1i|j = ⊥ or Pid1i|j = k for some k, while Pk is never corrupted.
(d) TestForwardPriv: The returned oracle π1

i|j has a partner oracle πr
k at the end

of the game. Furthermore no oracle besides πr
k may be instructed to start a

protocol run with intended partner Pi|j .
(e) TestCompletedSessionPriv: The returned oracle π1

i|j’s state is Accept at the
end of the game. Let k = Pid1i|j. Pk are not corrupted, RevSessKey(i|j, 1) was
never queried and RevSessKey(k, r) (for any πr

k that has matching conversa-
tions) was never queried.

10



Furthermore no oracle besides πr
k may be instructed to start a protocol run with

intended partner Pi|j .
4. The game ends when A terminates with output b′, representing the guess of the

secret bit b. If b′ = b, output 1. Otherwise output 0.

Definition 3 (Freshness). An oracle πs
i is fresh if

1. RevSessKey(i, s) has not been issued
2. no query RevSessKey(j, t) has been issued, where πt

j is a partner of πs
i .

3. Pidsi was:
(a) not corrupted before πs

i accepted if πs
i has an origin-oracle, and

(b) not corrupted at all if πs
i has no origin-oracle.

PPAKE Security. The above model can be parameterized by allowing or prohibiting
the different types of Test(m) queries. This leads to the following:

Definition 4. A key-exchange protocol Γ is called X for if for any PPT adversary A
with access to the oracle Test(m) with queries of the form defined below, the advantage
function

AdvX
Γ (λ) :=

∣∣∣∣Pr [ExpX
PPAKE,A(λ) = 1

]
− 1

2

∣∣∣∣
is negligible in λ, where

– A queries TestKeyIndist: X = secure.
– A queries Test-w-MITMPriv: X = 2-way MITM private.
– A queries Test-s-MITMPriv: X = strongly 2-way MITM private.
– A queries TestForwardPriv: X = forward private.
– A queries TestCompletedSessionPriv: X = completed-session private.

In the above definition, secure corresponds to having indistinguishable session keys,
weak forward secrecy and security against key compromise impersonation (KCI). We
now show how to integrate explicit entity authentication in our model, which allows to
simplify the proofs of the protocols in Section 4. Therefore, we require the following:

Definition 5 (Matching Conversation). Let Π be an N -message two-party protocol
in which all messages are sent sequentially.

– If a session oracle πs
i sent the last message of the protocol, then πt

j is said to have
matching conversations to πs

i if the first N − 1 messages of πs
i ’s transcript agrees

with the first N − 1 messages of πt
j’s transcript.

– If a session oracle πs
i received the last message of the protocol, then πt

j is said to
have matching conversations to πs

i if all N messages of πs
i ’s transcript agrees with

πt
j’s transcript.

We define implicit authentication through the fact that even a MITM adversary
would not be able to derive the session key. This can be done in two moves. Explicit
authentication is characterized by the fact that, additionally to providing implicit au-
thentication, the protocol fails if a party does not possess a valid secret key, i.e., an
active MITM adversary.

11



Definition 6 (Explicit entity authentication). On game PPAKE2-way-priv
A define breakEA

to be the event that there exists an oracle πs
i for which all the following conditions are

satisfied.

1. πs
i has accepted, that is, Ψs

i = Accept.
2. Pidsi = j and party j is not corrupted.
3. There is no oracle πt

j having:
(a) matching conversations to πs

i and
(b) Pidtj = i and
(c) roletj ̸= rolesi

Definition 7. A key-exchange protocol Γ has explicit authentication, if, for any PPT
adversary A, the event breakEA (see Definition 6) occurs with at most negl(λ) proba-
bility.

3.2 Relation between Privacy Notions

Subsequently, we investigate the relations between the different privacy notions (as in-
formally shown in Figure 1).

Lemma 1. Strong 2-way MITM privacy is strictly stronger than (weak) 2-way MITM
privacy.

Proof. This immediately follows from the tighter restrictions put on the attacker in the
(weak) 2-way MITM privacy test. Furthermore, there are protocols that are (weak) 2-
way MITM anonymous but not strongly 2-way MITM anonymous (see, e.g., Πss in
Protocol 1). ⊓⊔

Lemma 2. The 2-way MITM privacy notions are independent of forward privacy.

Proof. Note that the privacy notions do not allow corruptions of the test oracle and for-
ward privacy does not allow the attacker modify any sent messages (i.e. does not allow
the attack to act as an active MITM). Π2

PKE (see Protocol 3) for instance is strongly 2-
way MITM private (see Theorem 4) and hence also (weakly) 2-way MITM private, but
it is not forward private as the identities are only encrypted using long term keys. On
the other hand a protocol that runs the classic Diffie-Helman key exchange followed by
transmitting their identities symmetrically encrypted would reach forward privacy, but
no 2-way MITM privacy, as any MITM adversary could simply run the protocol. ⊓⊔

Completed-session privacy is implied by the other privacy notions: if a protocol is
strong MITM private or has explicit authentication and is forward private, then it also
provides completed session-privacy. The following lemma shows the implication start-
ing from strong MITM privacy.

Lemma 3. Let Γ be a PPAKE protocol. If Γ is strong MITM private, then it is completed-
session private.

Proof. Strong 2-way MITM privacy test puts less restrictions on the attacker. ⊓⊔

12



Finally, the following Theorem covers completed-session privacy from explicit authen-
tication and forward privacy.

Theorem 1. Let Γ be a PPAKE protocol. If Γ has explicit authentication and is for-
ward private, then it is completed-session private.

Proof. Assume for contradiction that some Γ has explicit authentication and is forward
private, but is not completed-session private. This means a PPT-adversary A is able to
call TestCompletedSessionPriv and not violate the imposed restrictions, while also cor-
rectly guessing the challenge bit b with non-negligible probability. Since Γ is forward
private, the adversary violates a necessary restriction for calling TestForwardPriv while
correctly guessing the challenge bit b. (Note that otherwise the exact same adversary A
breaks forward privacy by simply using the argument TestForwardPriv instead).

It follows that afterA is done, π1
i|j does not have a partner oracle with non-negligible

probability. As per requirement of winning TestCompletedSessionPriv, there is the or-
acle π1

i|j which has accepted and party Pk, where k = Pid1i|j, is not corrupted. Due to
Γ providing explicit authentication, there is an oracle πr

k s.t. πr
k has matching conver-

sations to π1
i|j , Pidrk = i|j and rolerk ̸= role1i|j (see Definition 6 detailing explicit entity

authentication). ThenA could simply not drop the last message (if it did before) thereby
making π1

i|j and πr
k have matching conversations to each other. This also makes π1

i|j and
πr
k be partnered to each other, without making it less likely for A to correctly guess the

challenge bit b. Hence A is able to break forward privacy, which is a contradiction. ⊓⊔

3.3 Discussion and Limitations of Our PPAKE Model

Completed Session Privacy. TestCompletedSessionPriv is intended to represent the
privacy notions of the literature, specifically Schäge et al. [SSL20] and Zhao [Zha16].
The only addition we made is the requirement that “no oracle besides πr

k may be in-
structed to start a protocol run with intended partner Pi|j”. This is a necessary addition
since due to the nature of our model there are otherwise trivial attacks against a large
class of protocols: First of all the adversary makes the test oracle complete its session
without interfering and hence fulfills the experiment’s requirements. It then corrupts
both of the test oracle’s possible identities. Finally it instructs a new oracle to initiate
the protocol with the test oracle being the intended recipient, but answers all messages
itself using the information obtained with the corruptions. If the imitator at any point
uses the intended recipient’s public key, e.g. for PKE, then the adversary learns the test
oracle’s identity.

This problem does not exist in the model of [SSL20], since they let each initiator
determine the identity of the test oracle (if configured correspondingly), instead of hav-
ing the identity of the test oracle fixed throughout the entire experiment. We note that
while [SSL20] always model two identities per party, in our model every party only has
a single identity.7

7 Clearly, one could however group parties to generate virtual parties with more identities in our
model though.

13



Revocation. In our model, corruptions are immediately publicly known. While this is
an idealization, defending against secret corruptions is infeasible, since an adversary
could perfectly impersonate the corrupted user.

As typically done in AKE, we do not formally cover revocation of long term keys
in our model. There is previous work that explicitly models revocation for AKE pro-
tocols [BCF+13], but we want to avoid this added complexity since at this point we
are not interested in the specifics of the respective revocation mechanism. Nevertheless,
we note that for any revocation mechanism, the revocation status of a communication
partner can only be checked after they revealed their identity. For this reason, we model
strong MITM privacy so that the adversary can corrupt users as long as it does not
openly identify itself as that user.

MITM Cross Tunnel Attack. We now discuss a generic MITM attack on privacy that
does not require the corruption of any party, dubbed MITM cross tunnel attack. The
goal of the attack is to de-anonymize a party that acts as a responder in the protocol.
Specifically, the attack targets MITM privacy (both weak and strong). Let the responder
be called Pi|j and π1

i|j its corresponding session. Assume πr
k is trying to communicate

with π1
i|j , but the adversary is a MITM in that communication channel. Assume at the

same time, the adversary is MITM on another channel, where it knows that some πz
y

is trying to communicate with πs
i . The adversary now relays all messages of πz

y (of
the second channel) to π1

i|j (of the first channel) and vice versa. Clearly, if either party
produces an error or otherwise noticeably changes its behavior (e.g. by initiating the
protocol again), then the adversary knows that π1

i|j cannot be the intended partner of
πz
y . Therefore Pi|j must be Pj .

Defining protocols such that the parties – from an eavesdropper’s view – do not
behave noticeably different on errors (e.g. a party cannot decrypt a received ciphertext)
prevents this attack as well as trivial distinguishers in case a party is revoked. Specif-
ically, protocols need to continue similar to a normal execution, but with randomly
sampled messages and the sessions are internally marked as invalid. Our protocols in
Section 4 are designed to counter these attacks. As noted before, fully preventing this
attack in practice is only possible if higher level protocols do not reveal the session
status, e.g. by restarting the AKE protocol.

4 Constructing PPAKE with Strong Privacy

In this section we discuss generic construction methodologies to achieve weak and
strong MITM privacy, respectively. While not made explicit, all protocols are assumed
to behave indistinguishable to real executions (from an eavesdropper’s view) even if
some verification (indicated using boxes) fails, i.e., either a random bitstring or
encryption of a random message is returned. Also, we assume that communication part-
ners check the revocation status of the respective peers prior to engaging in a session
initiation. All used encryption schemes are required to be length-hiding (cf. [TV11]),
which we make explicit in the theorems.

User Certification and PKIs. In our protocols CertA indicates a certificate that binds
the identity of A to the long term public key(s). We assume all users have their keys

14



Alice: CertA = (A = g
a
, . . .) Bob: CertB = (B = g

b
, . . .)

skA = (a, s) skB = (b, s)

x
$← Zp

m1 = gx
y

$← Zp

k
′ ← H(g

xy
, g

x
, g

y
, s)

c2 ← Ek′ (CertB)

k
′ ← H(g

xy
, g

x
, g

y
, s) m2 = (gy, c2, U) U ← H(g

xb
, g

xy
, g

x
, g

y
, c2, s)

verify B,CertB , U

c3 ← Ek′ (CertA)

V ← H(g
ya

, g
xy

, g
x
, g

y
,m2, s)

m3 = (c3, V ) verify CertA, V

k ← H(g
xy

, g
xb

, g
ya

, s, (mi)
3
i=1) k ← H(g

xy
, g

xb
, g

ya
, s, (mi)

3
i=1)

Protocol 1: Protocol Πss with shared secret s, using symmetric encryption Ω =
(E,D).

certified by some certification authority (CA) and that there is a mechanism in place for
checking the revocation status of certificates. All these features are typically realized
via a public-key infrastructure (PKI), i.e., PKIX. As already mentioned, we do not make
such a mechanism explicit in our model.

4.1 Achieving Weak MITM Private PPAKE using Shared Secrets

For the first protocol, we assume all honest parties belong to the same group and have
a shared secret s only known to the members of the group. In terms of our model, the
shared secret s is part of the secret keys and can hence be compromised by corrupting
any party. With this shared secret, we can preserve anonymity against an active MITM
adversary, that does not have access to s. But compromise of s does not endanger the
usual key indistinguishability. The idea is to derive all session keys by additionally
including this shared secret. So, even an active MITM attacker will be unable to use
its knowledge of its share of the ephemeral keys due to the lack of knowledge of s.
The scheme extending anonymous Diffie-Hellman with a shared secret and encrypted
transfer of the peer’s certificates is presented in Protocol 1. Similar to the protocols
we discuss later, this protocol can also be rewritten in terms of any unauthenticated
KE replacing the ephemeral DH shares and a signature scheme replacing the long term
keys. We can show the following:

Theorem 2. If the Oracle Diffie-Hellman (ODH) assumption holds and symmetric en-
cryption scheme Ω is SE-LH-IND-CCA-secure, then Πss in Protocol 1 provides explicit
entity authentication, is secure, weakly 2-way MITM private and forward private.

For the proof of this theorem we refer to Appendix B.1. Similar to the protocols
from Wu et al. [WTSB16], the protocol in Protocol 1 is useful for managed groups.
While their approach based on prefix encryption (PE) built from identity-based en-
cryption (IBE) is more expressive, only their second protocol is able to provide weak
MITM privacy. Our protocol highlights that weak MITM privacy can be obtained using

15



less heavy tools than IBE. Note that Wu et al. [WTSB16] also require a trusted party
(e.g., the CA) to generate and hand out secret keys to users. So this can be regarded as
being similar to having a shared secret as in our approach.

4.2 Generic Construction of Strongly MITM Private PPAKE

Next, we introduce a protocol that achieves MITM privacy, in this case even strong
MITM privacy, without relying on a shared secret. For this protocol and the protocol
in Section 4.3, we consider a setting where the public keys (certificates) of responders
are known a priori. Therefore, the initiator has all the information including all public
keys of the responder available. Note however, that the first message cannot contain the
initiator’s certificate. Otherwise, if the long-term key of the responder is compromised,
privacy of the initiator cannot be guaranteed (a trade-off that we make in Section 4.3).
So, authentication of the initiator can only be performed after establishing an initial
session key.

Similar to Πss we run a two-move KE and let the initiator sample a nonce which
takes over the role of the shared secret of Πss, i.e., the (temporary) session keys are
derived from the nonces and the result of the two-move KE. However, we now encrypt
the nonce under the receivers public key. Moreover, after the initial shared key has been
computed, the initiator is able to send its certificate to the responder and authenticate
itself using a signature (which is encrypted together with the senders certificate). The
protocol is depicted in Protocol 2.

We note that due to active attacks the PKE is required to provide key-privacy, i.e., be
PKE-IK-CCA-secure. Otherwise, an active attacker may determine the senders identity
purely by means of the PKE ciphertext. This additional requirement on the PKE is
fulfilled by many natural schemes (cf. [BBDP01, PS09]). Moreover, to obtain forward
privacy the PKE ciphertext needs to be encrypted using the key from the anonymous
two-move KE.8

Theorem 3. If KE Γ is unauthenticated and secure, the PKE PKE is PKE-IND-CCA-
and PKE-IK-CCA-secure, symmetric encryption scheme Ω is SE-LH-IND-CCA-secure,
and the signature scheme Σ is EUF-CMA-secure, then Π4

PKE provides explicit entity
authentication, is secure, strongly MITM private and forward private.

The proofs are provided in Appendix B.2.

4.3 Two-Move PPAKE Protocol Without Forward Privacy

Finally, let us now present a two move variant of Π4
PKE. Here, the initiator already

includes the certificate in the first message and thus allows the responder to respond
with a message encrypted with respect to the initiators public key and thus the protocol
is authenticated after two moves. The resulting protocol, Π2

PKE, is depicted in Protocol 3

8 Otherwise an adversary obtaining all long-term PKE keys could simply try to test-decrypt.
Omitting this countermeasure would require non-standard properties from the PKE, i.e,. de-
cryptions of ciphertexts under a key can also be decrypted with other keys and yield meaningful
messages.

16



Alice Bob
m1 = Γ (0)

x
$← {0, 1}λ m2 = Γ (1,m1)

k
′ ← H(Γ.key, x, ctxt)

c0 ← EΓ.key(PEncB(x))

σA ← SignA(A||B||c0||ctxt)

c1 ← Ek′ (CertA, σA) m3 = (c0, c1), decrypt c0, c1

m4 = H(x, ctxt2) verify CertA, σA

k ← H(Γ.key, x, ctxt3) k ← H(Γ.key, x, ctxt3)

Protocol 2: Protocol Π4
PKE, using an unauthenticated KE Γ , PKE PKE =

(PEnc,PDec), symmetric encryption Ω = (E,D), signature scheme Σ =
(Sign,Verify), ctxt = m1∥m2, ctxt2 = A∥B∥ctxt∥m3, and ctxt3 = ctxt2∥m4.

Alice Bob
x← Γ (0)

σA ← SignA(x,CertB) m1 = PEncB(x,CertA, σA) decrypt m1 and verify σA

y ← Γ (1, x)

decrypt m2 and verify σB
m2 = PEncA(y, σB) σB ← SignB(x, y)

k ← H(Γ.key,m1,m2) k ← H(Γ.key,m1,m2)

Protocol 3: Protocol Π2
PKE using a PKE PKE, an unauthenticated KE Γ , and a signature

scheme Σ. where Certs contain Σ and PKE public keys.

and achieves strong MITM privacy, but obviously forward privacy can not be satisfied
by this construction. In comparison to Π4

PKE, the construction also requires the PKE to
be length-hiding. Note though, when using anonymous DH as in Πss one can avoid the
signatures.

Theorem 4. If KE Γ is secure, the PKE PKE is length-hiding, PKE-IND-CCA- and
PKE-IK-CCA-secure, and the signature scheme Σ is EUF-CMA-secure, then Π2

PKE

provides explicit entity authentication, is secure, strongly MITM private and completed-
session private.

For the proof of this theorem, we refer to Appendix B.3.

5 Discussion and Future Work

In Table 2, we present an overview of the protocols presented in Section 4. All protocols
provide completed-session privacy as well as weak MITM privacy, but for forward pri-
vacy and strong MITM privacy the picture looks different. Due the use of shared secret
in Πss, strong MITM privacy does not hold. Yet this approach can be viewed as mitiga-
tion strategy for existing protocols to at least guarantee weak MITM privacy guarantees

17



(e.g., for the IoT setting as targeted in [WTSB16]). For the PKE-based approach Π4
PKE

we require more than two moves to achieve forward privacy, but all other notions can
already be achieved with the two move protocol Π2

PKE.

Table 2. Comparison of our protocols. “ss” denotes the requirement of a shared secret and “pk”
the requirement to know the public key of the intended responder upfront.

ss pk forward priv. comp.-ses. priv. w.-MITM s.-MITM # moves

Πss ✓ × ✓ ✓ ✓ × 3
Π2

PKE × ✓ × ✓ ✓ ✓ 2
Π4

PKE × ✓ ✓ ✓ ✓ ✓ 4

Our motivation in this work was primarily to investigate the space of meaningful
privacy notions and whether there are protocols that satisfy strong notions of privacy.
An interesting question is the efficiency and privacy trade-off of concretely instantiated
protocols as well as a strengthening of the model to support session state reveal queries.
Currently only trivial ones would be supported and thus we decided to omit this feature.
Another interesting direction, as done for IKE v2 in [SSL20], is to study which privacy
properties deployed AKE protocols satisfy or how they can be modified in a way that
they provide strong privacy guarantees.

Acknowledgements. This work was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement n◦826610 (COMP4DRONES)
and n◦861696 (LABYRINTH) and by the Austrian Science Fund (FWF) and netidee SCI-
ENCE under grant agreement P31621-N38 (PROFET). The work of the third author was
done in the course of his master thesis at AIT Austrian Institute of Technology.

References

ABB+04. William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis,
Angelos D. Keromytis, and Omer Reingold. Just fast keying: Key agreement in a
hostile internet. ACM Trans. Inf. Syst. Secur., 7(2):242–273, 2004.

ABF+19. Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and Cristina
Onete. The privacy of the TLS 1.3 protocol. PoPETs, 2019(4):190–210, October
2019.

BBCW21. Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Prov-
able security analysis of FIDO2. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 125–156, Virtual Event,
August 2021. Springer, Heidelberg.

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, vol-
ume 2248 of LNCS, pages 566–582. Springer, Heidelberg, December 2001.

BBM00. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, Heidelberg,
May 2000.

18



BCF+13. Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram Poetter-
ing, and Douglas Stebila. ASICS: Authenticated key exchange security incorpo-
rating certification systems. In Jason Crampton, Sushil Jajodia, and Keith Mayes,
editors, ESORICS 2013, volume 8134 of LNCS, pages 381–399. Springer, Heidel-
berg, September 2013.

BFGJ17. Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-
ODH: Relations, instantiations, and impossibility results. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
651–681. Springer, Heidelberg, August 2017.

CCG+19. Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and Ti-
bor Jager. Highly efficient key exchange protocols with optimal tightness. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 767–797. Springer, Heidelberg, August 2019.

CGH19. Zimo Chai, Amirhossein Ghafari, and Amir Houmansadr. On the importance
of encrypted-sni (ESNI) to censorship circumvention. In FOCI @ USENIX.
USENIX Association, 2019.

CK02. Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based
key-exchange protocol. In Moti Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 143–161. Springer, Heidelberg, August 2002. https://
eprint.iacr.org/2002/120/.

DMS04. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In Matt Blaze, editor, USENIX Security 2004, pages
303–320. USENIX Association, August 2004.

Don17. Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In
NDSS 2017. The Internet Society, February / March 2017.

DP18. Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the
WireGuard protocol. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18,
volume 10892 of LNCS, pages 3–21. Springer, Heidelberg, July 2018.

dSGdCR+15. Glederson Lessa dos Santos, Vinicius Tavares Guimaraes, Guilherme
da Cunha Rodrigues, Lisandro Zambenedetti Granville, and Liane Mar-
garida Rockenbach Tarouco. A dtls-based security architecture for the internet of
things. In ISCC, pages 809–815. IEEE, 2015.

FLJ+17. Kai Fan, Hui Li, Wei Jiang, Chengsheng Xiao, and Yintang Yang. U2F based
secure mutual authentication protocol for mobile payment. In ACM TUR-C, pages
27:1–27:6. ACM, 2017.

GHSS15. Hannes Gross, Marko Hölbl, Daniel Slamanig, and Raphael Spreitzer. Privacy-
aware authentication in the internet of things. In Michael Reiter and David Nac-
cache, editors, CANS 15, LNCS, pages 32–39. Springer, Heidelberg, December
2015.

GSU13. Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-way
authentication in key exchange protocols. Des. Codes Cryptogr., 67(2):245–269,
2013.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic
authenticated key exchange in the quantum random oracle model. In Aggelos Ki-
ayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 389–422. Springer, Heidelberg, May 2020.

HM18. Paul E. Hoffman and Patrick McManus. DNS queries over HTTPS (doh). RFC,
8484:1–21, 2018.

HNS+21. Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R.
Zimmermann. Post-quantum WireGuard. In 2021 IEEE Symposium on Security
and Privacy, pages 304–321. IEEE Computer Society Press, May 2021.

19

https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2002/120/


HZH+16. Zi Hu, Liang Zhu, John S. Heidemann, Allison Mankin, Duane Wessels, and
Paul E. Hoffman. Specification for DNS over transport layer security (TLS). RFC,
7858:1–19, 2016.

KHN+14. Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen.
Internet key exchange protocol version 2 (ikev2). RFC, 7296:1–142, 2014.

Kra96. Hugo Krawczyk. SKEME: a versatile secure key exchange mechanism for in-
ternet. In James T. Ellis, B. Clifford Neuman, and David M. Balenson, editors,
NDSS’96, pages 114–127. IEEE Computer Society, February 1996.

Kra03. Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 400–425. Springer, Heidelberg, Au-
gust 2003.

LLHG22. You Lyu, Shengli Liu, Shuai Han, and Dawu Gu. Privacy-preserving authenticated
key exchange in the standard model. IACR Cryptol. ePrint Arch., page 1217, 2022.

LM06. Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated key
exchange protocol. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 378–394. Springer, Hei-
delberg, April 2006.

LS17. Yong Li and Sven Schäge. No-match attacks and robust partnering definitions:
Defining trivial attacks for security protocols is not trivial. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1343–1360. ACM Press, October / November 2017.

ØS07. Lasse Øverlier and Paul F. Syverson. Improving efficiency and simplicity of tor
circuit establishment and hidden services. In Nikita Borisov and Philippe Golle,
editors, PET 2007, volume 4776 of LNCS, pages 134–152. Springer, Heidelberg,
June 2007.

Per17. Trevor Perrin. The noise protocol framework, 2017. https://
noiseprotocol.org.

PS09. Kenneth G. Paterson and Sriramkrishnan Srinivasan. Building key-private public-
key encryption schemes. In Colin Boyd and Juan Manuel González Nieto, edi-
tors, ACISP 09, volume 5594 of LNCS, pages 276–292. Springer, Heidelberg, July
2009.

Res18. Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC,
8446:1–160, 2018.

ROSW20. Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS En-
crypted Client Hello. Internet-Draft draft-ietf-tls-esni-07, Internet Engineering
Task Force, June 2020. Work in Progress.

SSL20. Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authen-
ticated key exchange and the case of IKEv2. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, vol-
ume 12111 of LNCS, pages 567–596. Springer, Heidelberg, May 2020.

SSW20. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without
handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1461–1480. ACM Press, November 2020.

TV11. Cihangir Tezcan and Serge Vaudenay. On hiding a plaintext length by preencryp-
tion. In Javier Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS,
pages 345–358. Springer, Heidelberg, June 2011.

WTSB16. David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. Privacy, discovery, and
authentication for the internet of things. In Ioannis G. Askoxylakis, Sotiris Ioan-
nidis, Sokratis K. Katsikas, and Catherine A. Meadows, editors, ESORICS 2016,

20

https://noiseprotocol.org
https://noiseprotocol.org


Part II, volume 9879 of LNCS, pages 301–319. Springer, Heidelberg, September
2016.

Zha16. Yunlei Zhao. Identity-concealed authenticated encryption and key exchange. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 1464–1479. ACM Press, October
2016.

A Additional Definitions

Subsequently, we recall the strong Diffie-Hellman (SDH) assumption and the oracle
Diffie-Hellman assumption (ODH) where the hash function is modeled as a random
oracle which is implied by SDH in the ROM [BFGJ17]. Specifically, we consider the
mmPRF-ODH assumption where the PRF is instantiated with a random oracle.

Definition 8 (SDH). The strong Diffie-Hellman assumptions holds relative to G =
(G, q, g) and an oracle stDHx(g

y, gz) that returns 1 if and only if xy = z, if for all
PPT adversaries A, there is a negligible function ε such that

Pr

[
x, y

$← Zq

h∗ ← AstDHx(·,·) (gx, gy)
: h∗ = gxy

]
≤ ε(κ).

Definition 9 (ODH). The ODH assumptions holds relative to G = (G, q, g) and an
oracle H : G → {0, 1}λ, if for all PPT adversaries A, there is a negligible function ε
such that ∣∣∣∣∣∣∣∣∣∣∣

Pr


x, y

$← Zq, b
$← {0, 1}

t∗ ← AHx (gx){
w

$← {0, 1}λ if b = 0

w ← H(gxy, t∗) otherwise
b∗ ← AHx,Hy (gx, gy, w)

: b = b∗

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
≤ ε(κ)

where Hx(h, t) = H(hx, t) and Hy(h, t) = H(hy, t) and the adversary may not query
Hx on (gy, t∗) and Hy on (gx, t∗), respectively.

Public-key encryption. We briefly recall the definition and security notions of public-
key encryption including the notion of key-privacy introduced by Bellare et al [BBDP01].
A public-key encryption (PKE) scheme PKE with message space M consists of the
three PPT algorithms (PSetup,PGen,PEnc,PDec) defined as follows:

PSetup(λ) : On input security parameter λ, outputs public parameters pp.
PGen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).
PEncpk(M) : On input pk and message M ∈M, outputs a ciphertext ctxt.
PDecsk(ctxt) : On input sk and ctxt, outputs M ∈M∪ {⊥}.

We note that we make the generation of shared public parameters, e.g., the choice of
groups, explicit as separate algorithm PSetup. This is necessary for key privacy that we
will discuss below.

21



A PKE scheme is correct if for all pp ← PSetup(λ) and (pk, sk) ← PGen(pp),
then

Pr[c← PEncpk(M) : PDecsk(ctxt) = M ] = 1.

We say a PKE is PKE-IND-CCA-secure if and only if any PPT adversaryA has only
negligible advantage in the following security experiment. First, A gets an honestly
generated public key pk. A outputs equal-length messages (M0,M1) and, in return,
gets ctxt∗b ← PEncpk(Mb), for b←$ {0, 1}. Eventually, A outputs a guess b′. If b = b′,
then the experiment outputs 1. During the experiment A has access to a decryption
oracle PDecsk where the adversary can query decryptions of ciphertexts distinct from
ctxt∗. If the adversary is not given access to the decryption oracle, then the scheme is
PKE-IND-CPA-secure.

Definition 10. For any PPT adversary A the advantage function

Advpke-ind-cca
Π,A (λ) :=

∣∣∣∣Pr[Exppke-ind-cca
PKE,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Exppke-ind-cca

PKE,A (λ) is given in Figure 2 and PKE
is a PKE as above.

Exp. Exppke-ind-cca
PKE,A (λ)

pp← PSetup(λ)
(pk, sk)← PGen(pp)
(M0,M1)← APDecsk(pk)
b←$ {0, 1}
ctxt∗ ← PEncpk(Mb)
b′ ← APDecsk(ctxt∗)
if b = b′ then return 1 else return 0

Fig. 2. PKE-IND-CCA security for PKE PKE.

We say a PKE PKE is PKE-IK-CCA-secure if and only if any PPT adversary A
has only negligible advantage in the following security experiment. First, A gets two
honestly generated public keys pk0, pk1. A outputs a message M and, in return, gets
ctxt∗b ← PEncpkb(M), for b←$ {0, 1}. Eventually,A outputs a guess b′. If b = b′, then
the experiment outputs 1. During the experiment A has access to a decryption oracles
PDecsk0 and PDecsk1 where the adversary can query decryptions of ciphertexts distinct
from ctxt∗.

Definition 11. For any PPT adversary A the advantage function

Advpke-ik-cca
PKE,A (λ) :=

∣∣∣∣Pr[Exppke-ik-cca
PKE,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Exppke-ik-cca

PKE,A (λ) is given in Figure 3 and PKE is
a PKE as above.

22



Exp. Exppke-ik-cca
PKE,A (λ)

pp← PSetup(λ)
(pk0, sk0)← PGen(pp), (pk1, sk1)← PGen(pp)
M ← APDecsk0 ,PDecsk1 (pk)
b←$ {0, 1}
ctxt∗ ← PEncpkb(M)
b′ ← APDecsk0 ,PDecsk1 (ctxt∗)
if b = b′ then return 1 else return 0

Fig. 3. PKE-IK-CCA security for PKE PKE.

Exp. Exppke-ik-cca
PKE,A (λ)

pp← PSetup(λ)
(pk0, sk0)← PGen(pp), (pk1, sk1)← PGen(pp)
b←$ {0, 1}
b′ ← APEncpkb

,PDecsk0 ,PDecsk1 (pk0, pk1)
if b = b′ then return 1 else return 0

Fig. 4. PKE-IK-CCA security for PKE PKE with multiple queries.

We note that for both notions we presented the single-challenge notions. Using a hybrid
argument, both can be extended to multi-challenge notions, e.g., see [BBM00].

Digital signatures. A signature scheme Σ consists of the PPT algorithms (Gen,Sign,
Verify), which are defined as follows:

Gen(1λ) : On input security parameter λ outputs a signing key sk and a verification
key pk with associated message spaceM.

Signsk(M) : On input, a secret key sk and a message M ∈M, outputs a signature σ.
Verifypk(M,σ) : On input a public key pk, a message M ∈ M and a signature σ,

outputs a bit b.

We assume that a signature scheme satisfies the usual (perfect) correctness notion,
i.e. for all security parameters λ ∈ N, for all (pk, sk) ← Gen(1λ), for all m ∈ M, we
have that

Pr
[
Verifypk(M, Signsk(M)) = 1

]
= 1.

We say a signature Σ is EUF-CMA-secure if and only if any PPT adversary A has
only negligible advantage in the following security experiment. First,A gets a honestly
generated public key and outputs a message M∗ and signature σ∗. During the experi-
mentA has access to an singing oracle Signsk where the adversary can query signatures
for arbitrary messages. The experiment outputs 1 if and only if Verifypk(M

∗, σ∗) = 1
and M∗ was not queried to the signing oracle.

Definition 12. For any PPT adversary A, we define the advantage in the EUF-CMA
experiment Expeuf−cma

Σ,A (cf. Figure 5) as

Adveuf−cma
Σ,A (λ) := Pr

[
Expeuf−cma

Σ,A (λ) = 1
]

.

23



Exp. Expeuf−cma
Σ,A (λ)

(pk, sk)← Gen(1λ)
(M∗, σ∗)← ASignsk(pk)
if Verify(pk,M∗, σ∗) = 1 then return 1 else return 0

Fig. 5. The EUF-CMA experiment for a signature scheme Σ.

A signature scheme Σ is EUF-CMA-secure, if Adveuf−cma
Σ,A (λ) is a negligible function in

λ for all PPT adversaries A.

Two-move key-exchange. We denote by Γ a two-move key exchange protocol between
two PPT algorithms A and B running in three steps: (stA, outA)← Γ

(1)
A (1λ) produces

A’s state and output; (kB , outB)← Γ
(1)
B (1λ, outA) on input A’s output produces a key

kB ∈ K and finally on input B’s output kA ← Γ
(2)
A (1λ, outB , stA) produces a key kA ∈

K. Note that Γ (1)
A (·) and Γ

(1)
B (·, ·) are stateless functions that only take the specified

inputs. Specifically, they do not have access to any long-term keys. Correctness requires
that for all λ ∈ N and all random tapes of A and B we have that kA = kB , except for
a negligible error probability. We use the shorthand (k, trans)← ΓA,B(1

λ) to denote a
run of the protocol where trans = (outA, outB). We say that a two-move key exchange
protocol is secure against eavesdroppers if and only if any PPT adversary A has only
negligible advantage in the following security experiment.

Exp. ExpeavΓ,A(λ)
k0 ←$ K
b←$ {0, 1}
(k1, trans)← Γ (1λ)
b′ ← A(kb, trans)
if b = b′ then return 1 else return 0

Fig. 6. The EAV experiment for a two-move key exchange protocol Γ .

Definition 13. For any PPT adversary A the advantage function

AdveavΓ,A(λ) :=

∣∣∣∣Pr[ExpeavΓ,A(λ) = 1
]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment ExpeavΓ,A(λ) is given in Figure 6 and Γ is a
two-move key exchange protocol as above.

For brevity, we will call Γ secure if it is EAV-secure and we will write outA ← Γ (0)
for A’s first message and outB ← Γ (1, outA) for B’s message and denote with Γ.key
the resulting key if everything is clear from the context.

Lemma 4. Let Γ be an EAV-secure two-move key exchange protocol Γ , then it holds
that:

Pr[outA = out′A] ≤ negl(λ) and Pr[outB = out′B ] ≤ negl(λ)

24



where outA, out
′
A and outB , out

′
B are results of independent calls to Γ (0) and Γ (1,

outA), respectively.

Proof. Note that correctness demands that a specific transcript fully determines a single
key. If one pair (outA, outB) could be produced in multiple runs with different resulting
keys, then A and B would have no way to tell which key to agree on in a specific run,
since they have no common information besides the transcript.

Assume the lemma does not hold, and view the case that Pr[outA = out′A] is non-
negligible (the other case can be treated analogously). Construct an adversaryA against
the security of Γ as follows:

1. Upon receiving k, (outA, outB), simply call (st′A, out
′
A)← Γ

(1)
A (1λ).

2. Case 1. out′A ̸= outA.
Output a random bit b′.

3. Case 2. out′A = outA.
Call kA ← Γ

(2)
A (1λ, outB , st

′
A). As discussed before, kA must be identical to the

actual key that was derived in the challenger’s protocol run. Hence output b′ ac-
cording to whether kA equals k.

Since Case 2 has non-negligible probability of happening, this givesA a non-negligible
advantage.

Symmetric encryption. A symmetric encryption with padding (SE) scheme Ω with
key space K and message spaceM consists of the PPT algorithms (E,D) defined as
follows:

Ek(M, l) : On input secret key k, message M ∈ M and length l (l ≥ |M |), outputs a
ciphertext ctxt.

Dk(ctxt) : On input secret key k and ctxt, outputs M ∈M∪ {⊥}.

A SE Ω is correct if for all k ←$ K,M ←$M, l ≥ |M | it holds that

Pr[ctxt← Ek(M, l) : Dk(ctxt) = M ] = 1.

We say a SE Ω is SE-LH-IND-CCA-secure (length-hiding indistinguishable under
chosen ciphertext attacks) if and only if any PPT adversary A has only negligible ad-
vantage in the following security experiment.A outputs messages (M0,M1) and length
ℓ with ℓ ≥ max{M0,M1} and, in return, gets ctxt∗ ← Ek(Mb, ℓ), for b ←$ {0, 1}.
Eventually, A outputs a guess b′. If b = b′, then the experiment outputs 1. During the
experiment A has access to an encryption oracle Ek and decryption oracle Dk where
the adversary can query decryptions of ciphertexts distinct from ctxt∗.

Definition 14. For any PPT adversary A the advantage function

Advse-ind-cca
Ω,A (λ) :=

∣∣∣∣Pr[Expse-ind-cca
Ω,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Expse-ind-cca

Ω,A (λ) is given in Figure 7 and Ω is a
SE as above.

In our protocols we write Ek(M) instead of Ek(M, ℓ) if we assume there to be a suit-
able publicly known maximum length ℓ.

25



Exp. Expse-ind-cca
Ω,A (λ)

k ←$ K
(M0,M1, ℓ)← AEk,Dk (pk)
b←$ {0, 1}
ctxt∗ ← Ek(Mb, ℓ)
b′ ← AEk,Dk (ctxt∗)
if b = b′ then return 1 else return 0

Fig. 7. SE-LH-IND-CCA security for SE Ω.

B Proofs

B.1 Proofs for Protocol Πss

In this section we prove the security of Πss:

Theorem 2. If the Oracle Diffie-Hellman (ODH) assumption holds and symmetric en-
cryption scheme Ω is SE-LH-IND-CCA-secure, then Πss in Protocol 1 provides explicit
entity authentication, is secure, weakly 2-way MITM private and forward private.

We prove this theorem in two parts as Lemmas 5 and 6.
For the proof of Lemma 5, we require the following definition:

Definition 15 (LookupOrRandom(∃X1, . . . , Xk : H(V1, . . . , Vm), ϕ)). Let X1, . . . , Xk

denote variables. Let V1, . . . , Vm denote expressions, containing the variables X1, . . . ,
Xk. Let ϕ be a logical formula, containing the variables X1, . . . , Xk. The proof short-
cut LookupOrRandom(∃X1, . . . , Xk : H(V1, . . . , Vm)ϕ) is evaluated as follows.

1. If there are some X1, . . . , Xk s.t. ϕ is true and the RO was queried before for
H(V1, . . . , Vm), then return this result H(V1, . . . , Vm).

2. Else, draw Z randomly. Program the RO s.t. when it receives a query of the form
H(V1, . . . , Vm) for any X1, . . . , Xk s.t. ϕ is true, answer Z. Return Z.

Lemma 5. If the ODH assumptions holds, then Πss in Protocol 1 provides explicit
authentication.

Proof. Assume A breaks explicit authentication.

– Case 1. πs
i is initiator, let m1 be its first message. Let j = Pidsi and b = skj , B =

pkj . The proof below is based on the following fact. Since πs
i accepted, we know

it received m2 = (Y, c2, U) s.t. Dk′(c2) = B and H(Bx, gxy, gx, gy, c2, s) = U .
We show that gxb is hard to construct for A. Let (X∗, B∗) be an arbitrary ODH-
challenge.
• Game 0: The original game.
• Game 1: Before the start of the game, replace pkj with B∗ (thereby also mod-

ifying Certj). After some πt
j receives X as the first message, let the value

U∗ = LookupOrRandom(∃T : H(T,Xy, X, gy, c2, s), stDHy(X,T ) = 1)).
m2 = (gy, Ek′(Certj), U

∗), where gy and k′ is computed normally. Record
(U∗,m1,m2, k

′). πt
j returns m2.

26



At the end of a protocol run, πt
j determines its session key k as follows: Let a =

Pidtj , A = pka. k = LookupOrRandom(∃T : H(Xy, T, Ay, s), stDHy(X,T ) =
1).

• Game 2: Replace m1 from πs
i with X∗. πs

i , after receiving m2 = (Y, c2, U),
validate U by checking if (a) (U,m1,m2, k

′) for some k′ is in the secret
table or (b) the RO produced U for the call H(T,Z,X∗, Y, c2, s) for any
T,Z such that stDHx(B

∗, T ) = stDHx(Y, Z) = 1 (since B∗ is pkj). In case
(b) set k′ = H(Z,X∗, Y, s) and V ∗ = LookupOrRandom(∃Z2 : H(Y a, Z2,
X∗, Y,m2, s), stDHx(Y, Z2) = 1). πs

i outputs m3 = (Ek′(pki), V
∗).

At the end of a protocol run, πs
i determines its session key k as follows:

Let there be a second secret table. If the second secret table contains an en-
try for (m1,m2,m3, k) for any k, take that k. Otherwise: Let a = ski. k =
LookupOrRandom(∃R,O : H(R,O, Y a, s), stDHx(Y,R) = stDHx(B

∗, O) =
1). Record (m1,m2,m3).9

Indistinguishability of game hops.
• Game 0 → Game 1: The change of pkj cannot be detected from the initial

public key distribution since B∗ is drawn under the same distribution. The
change of U to U∗ cannot be detected, as the RO behaves accordingly. Since
Pidsi must not be corrupted, RevLTK(j) cannot be called.

• Game 1→ Game 2: Replacing the first message cannot be detected, since X∗

is drawn at the same probability distribution. The validation is indeed indistin-
guishable from a normal protocol run. k′ either corresponds to the value of the
other modified oracle or can be computed correctly.

Consequences. Notice in Game 2, πs
i only accepts if it receives U s.t. either (a)

(U,m1,m2) was put into the secret table by some πt
j or (b) the RO was called

for H(T,Z,X∗, Y, c2, s) where stDHx(B
∗, T ) = 1. Since (a) implies that πt

j has
a matching conversation to πs

i , it contradicts the initial assumption. On the other
hand if (b) holds, we can construct an adversary against the ODH-assumption, by
running Game 2 and outputting T .

– Case 2. πs
i is responder, let m1 = X,m3 = (c3, V ) be the messages it receives and

m2 = (gy, c2, U) be the sent message. Let j = Pidsi and a = skj , A = pkj . Since
πs
i accepted, we know that V = H(Ay, Xy, X, gy,m2, s). This time Ay = gay is

difficult to produce for the adversary.
Consider analogous game hops to Case 1, again the long-term key of πt

j (in this
case A) and the random group element of πs

i (in this case gy) are replaced with
the ODH-challenge. The proof that these game hops are indistinguishable to the
adversary is analogous. Again, either πt

j has matching conversations to πs
i or we

can construct an adversary against the ODH-assumption.

Lemma 6. If (Ek, Dk) is a SE-LH-IND-CCA secure symmetric encryption scheme and
the DDH assumptions holds, then Πss in Protocol 1 is secure, (weakly) 2-way MITM
anonymous and forward private.

9 In case both our modified oracles talk, they need to decide on the same random value, hence
the second secret table and the check for (m1,m2,m3, k).

27



Proof. Assume some PPT adversaryA wins PPAKE2-way-priv
A with non-negligible prob-

ability. Without loss of generality, assume that only one type of Test(m) query is issued.
(If not, we can construct an adversaryAX for X ∈ {TestForwardPriv,Test-w-MITMPriv,
TestKeyIndist} that abort if a Test(m) query without i is called. At least one of them
has non-negligible probability to win PPAKE2-way-priv

A .) We view the different types of
Test(m) queries separately.

1. Assume A used TestKeyIndist. Let πs
i be the tested oracle. In the cases that A

wins, πs
i conforms to freshness (see Definition 3). If clause 3a is satisfied, we know

that there is a partner oracle πt
j and in particular that πs

i and πt
j have matching

conversations. If clause 3b is satisfied, we know that j := Pidsi is not corrupted.
Also from the Test(m) query succeeding we know that πs

i has accepted. Since our
protocol provides explicit authentication (see Lemma 5), it follows that there is an
oracle πt

j having matching conversations to πs
i . Therefore in both cases we have

such an oracle πt
j that has matching conversations to πs

i .
– Game 0: The original game.
– Game 1: Guess s, i for the oracle that Test(m) will be called with. If guessed

wrong: abort.
– Game 2: Guess j, t and abort if πt

j does not have matching conversations to πs
i

at the end.
– Game 3: Let X,Y, Z be the challenge of a DDH-Challenger. Instead of ran-

domly drawing x, y and thereby calculating gx, gy , πs
i and πt

j transmit X,Y
(notice that due to the matching conversations, these exact values also reach the
respective other oracle). Whenever gxy should be used, i.e. the key derivation,
instead use Z.

Indistinguishability of game hops.
– Game 0→ Game 1: This guessing leads to a polynomial loss of winning prob-

ability.
– Game 1→ Game 2: This guessing leads to a polynomial loss of winning prob-

ability.
– Game 2→ Game 3: SinceA is not allowed to call RevSessKey(i, s) for πs

i and
πt
j , it is not able to detect the embedding of X and Y , which are also drawn

uniformly at random. In order to distinguish the keys k and k′ from random or
to distinguish them from the correctly calculated ones in Game 2, it needs to
call (1) H(Z, . . .) or (2) H(gxy, . . .), where x and y are the secret exponents
used for X and Y . If Z ̸= gxy , it was drawn at random and hence cannot
be guessed. We conclude A needed to call H(gxy, . . .). Under the assumption
that A is able to distinguish k from random or distinguish games 2 and 3, we
hence guess which of the poly(n) many queries issued to H by A contained
gxy . Thus, if Z is equal to this value gxy , output 0 to the DDH-Challenger,
otherwise output 1.

2. AssumeA used Test-w-MITMPriv and can now interact with π1
i|j . In order to win,

A must not corrupt any oracles. We show that A must be able to break SE-LH-
IND-CCA-security of (E,D).
Case 1: π1

i|j did not send its last message (i.e. m2 or m3, depending on the role of
π1
i|j). If follows A can only base its decision on (a) m1 and (b) the fact that π1

i|j

28



might have rejected the previous message (i.e. m1 or m2, depending on the role
of π1

i|j). Since (a) does not reveal information (m1 is random and independent on
the test bit b), only (b) is possible. Since m1 is only rejected if it is malformed, we
only need to view the case that m2 was rejected, i.e. π1

i|j is Initiator. Since m1, m2

and the corresponding validations are independent on the ID of the initiator, m2’s
acceptance/rejection cannot yield any information to the attacker.
Case 2: π1

i|j did send its last message. In case π1
i|j is initiator, this means π1

i|j has
accepted. Since Πss has explicit authentication, this means that there is some part-
nered oracle πr

k. Refer to the proof of the case “A used TestForwardPriv” below.
Otherwise, π1

i|j is responder and m2 its only output. Since a fitting U cannot be
produced by the adversary due to not knowing s, the adversary cannot modify m2

in a valid way. Oracles that receive m2 behave independent of the test bit b (and
hence the pki|j) except that they might set their state to Reject, which is invisible to
the adversary. Therefore only m2 itself might leak information. We show that this is
not the case by implicitly replacing k′ with a random k∗ (only detectable by solving
CDH, formal proof below) and the ciphertext c2, which depends on the bit b, with a
specific ciphertext c∗2 that is independent of b. We show that this indistinguishable
to the adversary, unless it is able to break CPA-security of (E,D).

– Game 0: The original game.
– Game 1: Choose k∗ randomly. Replace k′ used by π1

i|j with k∗. If any oracle
has sent the m1, which was received by π1

i|j and receives the modified m2 by
π1
i|j , it also replaces its k′ with k∗.

– Game 2: Choose m
$← {Certi,Certj} and replace c′2 with c∗2 = Ek∗(m).

In Game 3 all challenge bit b related ID information of π1
i|j was removed, hence the

adversary only has probability 0.5 of winning the game.
Indistinguishability of game hops.

– Game 0 ⇒ Game 1: Since k′ is the output of a random oracle, it is indis-
tinguishable to the attacker that does not know s, since corruptions are not
allowed.

– Game 1⇒ Game 2: Due to SE-LH-IND-CCA security of E, this change is not
noticeable. To show this, since the used key k∗ is random and only used once,
we can embed the challenge produced by a SE-LH-IND-CCA-challenger for
(m0 = Certi,m1 = Certj) in c2.

3. Assume A used TestForwardPriv. Hence π1
i|j is partnered to some πr

k, i.e. A was
passive during the communication.

– Game 0: Original Game.
– Game 1: Guess i, j, k, r. If wrong, abort.
– Game 2: Sample k∗ randomly. Produce the same transcript, but instead of send-

ing Ek′(certX) where X ∈ {i, j, k}, send Ek∗(certX). Also replace U and V
with random values.

– Game 3: Replace the ciphertext sent by π1
i|j with the result of querying Test(certi,

certj) at the CPA challenger.
Since gx, gy, U, V, k∗ are random, and the ciphertext sent by π1

i|j is identical for
b = 0 and b = 1, the adversary has probability 0.5 of winning Game 3.
Indistinguishability of game hops.

29



– Game 0→ Game 1: This leads to a polynomial loss.
– Game 1→ Game 2: If detectable, then A can solve CDH (gxy).
– Game 2→ Game 3: Clearly, A behaves identical in Game 1 and Game 2 if b

chosen by our game is equal to b′ chosen by the CPA-challenger, since k′. If
A can detect the game hop with non-negligible probability, then b ̸= b′ with
non-negligible probability. Hence send b to the challenger if A did not detect
the game hop and 1− b otherwise.

B.2 Proofs for Protocol Π4
PKE

Lemma 7. Π4
PKE in Protocol 2 provides explicit authentication if PKE is a PKE-IND-

CCA secure public-key encryption scheme, Ω is a SE-LH-IND-CCA secure symmetric
encryption scheme and Σ is an EUF-CMA secure signature scheme.

Proof. Assume for contradiction thatA breaks explicit authentication, i.e. for some πs
i ,

that has accepted and its peer j = Pidsi is not corrupted, there is no πt
j that has matching

conversations. We view the two cases of πs
i ’s role separately.

Case 1. rolesi = Initiator. It follows that πs
i has received a valid m4. Except with

negl(λ) probability, this means that H(x, ctxt2) was queried. Note that m3 is the only
available source to reproduce x.

– Game 0: The original game.
– Game 1: Guess i, s, j. Abort if wrong.
– Game 2: Let x be the value that πs

i computes for sending m3. (This is determined
before the game using πs

i ’s randomness tape.) Pick x∗ randomly so that ||x∗|| =
||x||. Modify πs

i to use c∗ = PEncj(x
∗) instead of PEncj(x) in its message. Modify

all instances πt
j of Pj to not actually decrypt c∗ but instead treat x as the result of

the decryption. (Hence in this game all oracles act as if x was still used everywhere,
except that m3 and hence the ctxts have changed. Note that m3 is now independent
of x.)

Notice that in Game 2, x is only ever used as input to the RO. Hence the adversary
can only guess x. Also the adversary or an oracle must produce m4 = H(x, ctxt2).
If an oracle used the correct ctxt2 this means has matching conversations to πs

i and
agrees on the identities and roles, which contradicts the initial assumption. Therefore
the adversary must have guessed x or m4 and the probability of winning Game 2 is
negl(λ).

Indistinguishability of game hops.

– Game 0→ Game 1: This guessing leads to a polynomial loss of winning probabil-
ity.

– Game 1→Game 2: IfA notices this change, we can break PKE-IND-CCA-security
of the PKE. For this, modify Game 2 as follows: Let pk, PDec be the public key
and oracle provided by the PKE-IND-CCA-challenger. Set pkj = pk. All messages
m3 sent to instances of Pj can be decrypted using PDec. Replace c∗ sent by πs

i

with the ciphertext c obtained from the PKE-IND-CCA-challenger for the messages
a0 = x, a1 = x∗. Notice that PDec(c) is never queried as due to the definition

30



of Game 2. Now if the challengers bit b = 0, this game is behaving identical to
Game 1. If b = 1, then this game behaves like Game 2. Therefore, our constructed
adversary against PKE-IND-CCA-security outputs 1 if A notices the Game Hop
from 1 to 2. Otherwise output a random bit.

Case 2. rolesi = Responder. Then πs
i received a valid m3, which contains σ = Signj(j||

i||c0||ctxt).
Case 2a. Assume some πt

j computed σ at any point. It follows πt
j has matching m1,m2,

c0. Since m1,m2 are matching, Γ.key is also matching. Since c0 is matching, x and
hence k′ is also matching. The only way that πt

j does not have matching conversations
is if πt

j produced a different c1.
We show that this is only possible if A can break SE-LH-IND-CCA security of Ek

or the EUF-CMA security of Sign. Let E,D be the oracles provided by some SE-LH-
IND-CCA-challenger.

– Game 0: The original game.
– Game 1: Guess i, s, j, t. Abort if wrong.
– Game 2: πs

i and πt
j use a random k′.

– Game 3: πt
j , instead of outputting c1, outputs c∗1 which is received from the SE-

LH-IND-CCA-challenger for (a0 = (Certj ,Signj(A||B||c0||ctxt)), a1) where a1
is a random message. πs

i uses D for decryption and treats a1 as veryfing. (a0 will
verify just like any other pair (Certj ,Sign) where Sign is a valid signature by Pj .)

Indistinguishability of game hops.

– Game 0→ Game 1: This guessing leads to a polynomial loss of winning probabil-
ity.

– Game 1 → Game 2: Notice both have matching m1, m2 i.e. honestly generated
Γ (0), Γ (1). Hence we have an indistinguishable-from-random Γ.key and conse-
quently an indistinguishable-from-random k′.

– Game 2 → Game 3: In case m∗3 is the encrypted a0, this change is unobservable.
Hence ifA can detect this change, we again break SE-LH-IND-CCA-security. Our
constructed adversary against SE-LH-IND-CCA-security outputs b′ = 1 if A de-
tects the change and a random bit b′ otherwise.

Since πt
j does not have matching conversations as per assumption, D is never queried

for m∗3.
We now discuss how Game 3 can be translated into an adversary against SE-LH-

IND-CCA security or EUF-CMA security.

– Note that the final game is identical to Game 2 from A’s view, if the SE-LH-IND-
CCA-challenger’s bit bC was 0.

– It follows that (a) the game hop 2 → 3 cannot be detected by A (otherwise this
yields an adversary for the SE-LH-IND-CCA-challenge) and (b)A has non-negligible
advantage if bC = 0 (since it is the same as Game 2).

– Hence A must have non-negligible advantage as well if bC = 1 (otherwise simply
construct an adversary against SE-LH-IND-CCA-security that outputs 0 if A wins
or a random bit otherwise).

31



– View the case that bC = 1. In order to win, A needs to produce some c∗1, c∗1 ̸= c1
(where c1 was produced by πt

j) and c∗1 is decrypted to a1 or the pair (Certj ,Sign)
for some valid Sign of Pj .

– If in this caseA produces some c1 that is decrypted by πs
i to a1 with non-negligible

probability, this allows us to construct an adversary against the SE-LH-IND-CCA
security of the symmetric encryption scheme since a1 was randomly chosen and
can hence only be recovered by the adversary if bC = 1.

– If on the other hand A produces some c1 that is decrypted by πs
i to (Certj ,Sign)

(where Sign is a valid signature) with non-negligible probability, we will show that
this means that A was able to break EUF-CMA.
First of all, start an EUF-CMA challenger to receive pk∗ and gain access to the
oracle Sign. Since we now attack EUF-CMA security, the SE-LH-IND-CCA chal-
lenger is considered part of our game and can be modified.
• Game 3.0: Our current game, including the SE-LH-IND-CCA challenger.
• Game 3.1: The SE-LH-IND-CCA challenger always uses bC = 1.
• Game 3.2: Instead of querying the SE-LH-IND-CCA challenger for (a0, a1) as

defined before, query it for (a∗, a1), where a∗ is a random message.
• Game 3.3: Replace the pk of Pj with pk∗ and all protocol instances of party Pj

use the provided oracle Sign instead of computing signatures themselves.
Indistinguishable Game Hops:
• Game 3.0 → 3.1: If this is noticeable to A, this yields a trivial distinguisher

against the SE-LH-IND-CCA security.
• Game 3.1→ 3.2: This cannot be detected by A, since a0 is never used by the

SE-LH-IND-CCA challenger anyways.
• Game 3.2→ 3.3: Since corruptions of Pj are not allowed,A cannot notice this

change.
Deriving an adversary against EUF-CMA If A wins Game 3.3, it has to provide
a valid signature (as discussed before). The message of this signature was never
queried using the Sign oracle, since πt

j will not have called this query as per game
design and other oracles will never arrive at the same ctxt (recall Lemma 4). Hence
the signature that A provided can be used to win the EUF-CMA game.

Case 2b. If no πt
j produced σj(ctxt): Break EUF-CMA as illustrated below. Let pk,

Sign be given by a EUF-CMA challenger.

– Game 0: The original game.
– Game 1: Guess i, s, j, abort if wrong.
– Game 2: Set pkj ← pk, implicitly setting skj to the sk by the EUF-CMA challenger.

Any signing operations done by instances of Pj are done by calling Sign.

Our constructed adversary against EUF-CMA outputs the received σj(ctxt).
Indistinguishability of game hops.

– Game 0→ Game 1: This guessing leads to a polynomial loss of winning probabil-
ity.

– Game 1→ Game 2: This change is unobservable, since Pj must not be corrupted.

It follows that in all cases some πt
j has matching conversations to πs

i . ⊓⊔

32



We now restate Theorem 3 before proving it.

Theorem 3. If KE Γ is unauthenticated and secure, the PKE PKE is PKE-IND-CCA-
and PKE-IK-CCA-secure, symmetric encryption scheme Ω is SE-LH-IND-CCA-secure,
and the signature scheme Σ is EUF-CMA-secure, then Π4

PKE provides explicit entity
authentication, is secure, strongly MITM private and forward private.

Proof. We divide the proof into separate parts for the different properties.

Π4
PKE provides explicit authentication. Explicit authentication follows from Lemma 7.

Π4
PKE is secure. Let πs

i be the tested oracle. Let j = Pidsi . π
s
i must conform to freshness

(Definition 3). Case (a) Clause 3a was fulfilled, i.e. there is a partner oracle πt
j . It follows

that πt
j has matching conversations to πs

i . Case (b) Clause 3b was fulfilled, which means
j must not be corrupted. Together with the fact that πs

i accepted, from Π4
PKE providing

explicit authentication follows that there is some πt
j that has matching conversations to

πs
i . It follows that in any case there is some πt

j that has matching conversations to πs
i .

To distinguish the session key k from random,A needs to query H(Γ.key, x, ctxt3).
We show that Γ.key cannot be produced by the adversary.

– Game 0: The original game.
– Game 1: Guess i, s, j, t, abort if guessed wrong.
– Game 2: Before the game, query the challenger for the security of Γ and receive a

transcript (m∗1,m
∗
2) and a key k∗. πs

i and πt
j send m∗1,m

∗
2 instead of newly com-

puted m1,m2 and use k∗ instead of Γ.key.
– Game 3: πs

i and πt
j use a random value u instead of k∗.

Indistinguishable Game Hops:

– Game 0→ 1: This results in a polynomial loss of winning probability.
– Game 1→ 2: If this game hop can be detected, it means that k∗ is not the session

key that corresponds to the transcript, and hence A can break Γ ’s security.
– Game 2→ 3: Analogous argument as for Game Hop 1→ 2.

In Game 3,A cannot deduce u since it is only used as input to the RO. HenceA has
negl(λ) chance to win Game 3.

Π4
PKE is strongly MITM-private.

– Case 1. π1
i|j is Initiator. Therefore p := Pid1i|j is immediately set, and Pp must not

be corrupted. Clearly, m1 and m2 are independent of the test bit b (i.e. independent
of pki|j , ski|j).
• Game 0: The original game.
• Game 1: Guess i, j, p. Abort if Test(m) does not return i|j or p ̸= Pid1i|j at the

end of the game.
• Game 2: Replace part of the message m3 by π1

i|j as follows: Instead of sending
c0 = EΓ.key(PEncp(x)) send c∗0 = EΓ.key(PEncp(z)) where z is a random
number of equal length to x. Program all other oracles to treat c∗0 as c0 (i.e. the
decryption is x).

33



• Game 3: Pick k∗ randomly. Program all oracles to use k∗ instead of comput-
ing their original k′, if k′ should be computed using k′ ← H(Γ.key, x, ctxt)
where x is the value computed by π1

i|j (determined before the game using π1
i|j’s

randomness tape) and Γ.key, ctxt are arbitrary values.
• Game 4: Replace part of the message m3 by π1

i|j as follows: Instead of sending
c1 = Ek∗(u) where u = (CertA,SignA(A||B||c0||ctxt)) send c∗1 = Ek∗(w)
for some random w. (Note that E is length hiding.)

Indistinguishability of game hops.
• Game 0⇒ Game 1: This guessing leads to a polynomial loss of winning prob-

ability.
• Game 1⇒ Game 2: The indistinguishability of this game hop follows from the

PKE-IND-CCA security of PKE, see the proof for Lemma 7.
• Game 2 ⇒ Game 3: Since in Game 2, x is only used as input to the RO,

the adversary cannot obtain x and hence not check whether the RO actually
produced this output. It follows that this change is only detectable with negl(λ)
probability as well. (Compare with proof for explicit authentication.)

• Game 3⇒ Game 4: The indistinguishability of this game hop follows from the
SE-LH-IND-CCA security of the symmetric encryption Ω (see the proof for
Π4

PKE having explicit authentication).
Notice that in Game 4, pki|j , ski|j were not used at all. Hence in Game 4 all oracles
behave independent of b. It follows the probability of A winning Game 4 is 1

2 .
– Case 2. π1

i|j is Responder. m1 and m2 do not depend on pki|j , ski|j . Below we ar-
gue why m3 does not reveal the key that was used for encryption. m4 only depends
on the key in the sense that it is only valid if m3 can be decrypted.
Since PKE is PKE-IK-CCA, we can replace pki|j with a random key. To show this,
consider the game hops below. Note that a valid or invalid m4, i.e. π1

i|j being able
to decrypt m1 or not, does not give any information about the secret bit b anymore
if pki|j is replaced with a random key.
• Game 0: The original game.
• Game 1: Whenever any oracle sends m3 with intended recipient π1

i|j , it saves
the message it produced in a secret table together with the data that was en-
crypted. π1

i|j , instead of decrypting incoming messages, will look up the con-
tent in the secret table. If the message is not in the table, it will attempt to
decrypt the message normally.

• Game 2: π1
i|j treats the incoming message m3 as malformed if there is no

matching entry in the secret table. (Note that in this game, under no circum-
stances π1

i|j actually decrypts any messages.)
• Game 3: Instead of using the public key of i or j (depending on the secret bit

b), the party Pi|j’s public key is set to a randomly generated key pk′.
Indistinguishability of game hops.
• Game 0⇒ Game 1: This is only a conceptual change.
• Game 1⇒ Game 2: This change can only be detected, if π1

i|j receives a valid
m3, where m3 is not the (exact) output of some other oracle. π1

i|j would then
wrongfully respond with a randomly generated m4 (since it treats m3 as mal-
formed) whereas in Game 1 it would respond with a valid m4.However in these

34



cases, in which π1
i|j produces a valid response in Game 1, π1

i|j is set to the ac-
cept state. Since Π4

PKE has explicit authentication, it follows that m3 authen-
ticates a corrupted user (since no oracle has matching conversations to π1

i|j),
except with negl(λ) probability. This means that only in a setting in which the
adversary would not have won Game 1 (except with negl(λ) probability), it can
detect the change to Game 2. Hence we only lose a negl(λ) amount of winning
probability in this scenario.

• Game 2⇒Game 3: If this change is detectable with non-negligible probability,
then the adversary can break the PKE-IK-CCA security. To show this, use a
PKE-IK-CCA challenger C and modify our Game 3 so that if C has chosen
secret bit bC = 0 we have Game 2 and if bC = 1 we have Game 3. To do so,
we first have to guess i and j that will be used by the adversary in Test(m)
(resulting in polynomial loss of winning probability).
Before the game starts, obtain pk0 and pk1 from C. Set pki = pk0 or pkj = pk0
(depending on the secret bit b), so that pki|j = pk0. Furthermore, set pk′ (de-
fined in Game 3) to pk1. Now any oracle that starts communications with π1

i|j
does not encrypt its first message on its own, but rather queries the encryp-
tion oracle provided by C. If bC = 0 this encrypted message exactly resembles
Game 2 and if bC = 1 it exactly resembles Game 3. The behaviour of π1

i|j does
not need to be changed as it never actually decrypts the incoming messages.

Π4
PKE is forward private. Consider the following game hops, that end in a game in

which the transcript does not depend on b.

– Game 0: The original game.
– Game 1: Guess i, j, k, r. Abort if π1

i|j is not partnered to πr
k at the end.

– Game 2: π1
i|j and πr

k use a random r instead of the computed Γ.key.
– Game 3: π1

i|j and πr
k use a random k∗ instead of k′.

– Game 4: Instead of m3, the initiator sends m∗3 = (Er(z), Ek∗(v)), where z, v
are random values. (Note that the PKE ciphertext, the certificate and the signature
are removed from the transcript.) The receiver treats m∗3 as if it was the normally
computed m3.

Indistinguishability of game hops.

– Game 0⇒ 1: This leads to a polynomial loss of winning probability.
– Game 1⇒ 2: This change cannot be detected with noticeable probability due to the

security of Γ . To show this, simply embed the messages produced by the challenger
for eavesdropper-security of Γ in the first message of π1

i|j and πr
k. If the attacker is

then able to distinguish the computed key of Γ from a random one, it is able to win
the ExpeavΓ,A(λ) game.

– Game 2⇒ 3: This change cannot be detected, since the input to the RO (specifically
r) is hidden.

– Game 3⇒ 4: This change cannot be detected due to the length-hiding CCA secu-
rity of (E,D) (SE-LH-IND-CCA security). To show this, we show that c0 being
replaced is undetectable (c1 can be treated analogously). Ask some SE-LH-IND-
CCA-challenger C for the normal input for encrypting c0 as M0 and M1 = z,

35



receiving ctxt∗. Set c0 = ctxt∗. If the challengers bit bC = 0 this looks like Game
3 to the adversary. Hence ifA can detect the modification of this game, it can break
SE-LH-IND-CCA-security.

B.3 Proofs for Protocol Π2
PKE

In this section we prove the security of Π2
PKE.

Theorem 4. If KE Γ is secure, the PKE PKE is length-hiding, PKE-IND-CCA- and
PKE-IK-CCA-secure, and the signature scheme Σ is EUF-CMA-secure, then Π2

PKE

provides explicit entity authentication, is secure, strongly MITM private and completed-
session private.

The proofs in this section will be given in Lemmas 8 to 10 and we follow the same
strategy as in Appendix B.2, hence we may skip some details.

Lemma 8. If PKE is a length-hiding and PKE-IND-CCA secure PKE, and Σ is a EUF-
CMA secure signature scheme, then Π2

PKE in Protocol 3 provides explicit authentica-
tion.

Proof. Assume for contradiction that A breaks explicit authentication, i.e., for some
πs
i , that has accepted and its peer j = Pidsi is not corrupted, there is no πt

j that has
matching conversations. We view the two cases of πs

i ’s role separately.
Case 1. rolesi = Initiator. It follows that πs

i has received a valid m2, which contains
σB . This means there are two cases.

The first case is that no oracle computed σB , which means A breaks the EUF −
CMA security of Σ (following a similar argument as the proof of Lemma 7).

The second case is that the adversary used a σB that was produced by some πt
j . We

now show that this yields a contradiction.

– Game 0: The original game.
– Game 1: Guess i, s, j. Abort if wrong.
– Game 2: Let x be the value that πs

i computes for its first message. (This is deter-
mined before the game using πs

i ’s randomness tape.) Pick a random x∗ of equal
length. Modify πs

i to actually send m∗1 = PEncj(x
∗,CertA, σA). Modify all in-

stances of Pj to treat the first argument x∗ as x when receiving m∗1. (Hence in this
game all oracles act as if x was still used everywhere, except that m1, which is now
independent of x, has changed.)
Note that if the adversary wins Game 2, they must have taken σB from a message
m2, which was produced by some πt

j after receiving m1 (since otherwise there is
no way to make πt

j create a signature that contains x).
– Game 3: When πt

j would send a signature of x, y (where x is the value that was read
from the randomness tape in Game 2, not the transmitted value in m1 of πs

i ), it now
instead sends a random value U of equal length to the actual signature. Program all
oracles to now treat U as equivalent to the original signature.

Indistinguishability of game hops.

36



– Game 0→ Game 1: This guessing leads to a polynomial loss of winning probabil-
ity.

– Game 1→ Game 2: Follows from PKE-IND-CCA security of PKE similar to the
proof of Lemma 7.

– Game 2→ Game 3: Follows from PKE-IND-CCA security of PKE similar to the
proof of Lemma 7.

Note that in the final game, there is no trace of σB in the transcript. Hence if the
adversary produces this value, this can be used to attack the EUF − CMA security
of Σ like in the first case. On the other hand, if A sends U to πs

i , this means that the
adversary was able to break PKE-IND-CCA security of PKE (the argument is similar
to the proof of Lemma 7).

Case 2. rolesi = Responder. Then πs
i received a valid m1, which contains σj(ctxt).

Case 2a. If some πt
j produced σj(ctxt), similar to Case 2a. of Lemma 7 we can

build an adversary against PKE-IND-CCA security of PKE or EUF-CMA security of
Σ.

– Game 0: The original game.
– Game 1: Guess i, s, j, t. Abort if wrong.
– Game 2: πt

j , instead of outputting m1, outputs m∗1 which is received from the PKE-
IND-CCA-challenger for a0 = (x,Certj , σj(ctxt)) and a1 being a random string
(note that PKE is length-hiding). πs

i uses the decryption oracle for decryption and
treats both a0 and a1 as verifying.

Since πt
j does not have matching conversations as per assumption, the decryption oracle

is never queried for m∗1. If in the final game, A wins, our constructed adversary against
PKE-IND-CCA-security outputs b′ according to the result of the decryption, i.e. a0 or
a1. Otherwise it outputs a random bit b′.

Indistinguishability of game hops.

– Game 0→ Game 1: Guess this values incurs a polynomial loss.
– Game 1 → Game 2: In case m∗1 is the encrypted a0, this change is unobservable.

Hence if A can detect this change, we again break PKE-IND-CCA-security.

Case 2b. If no πt
j produced σj(ctxt), we construct and adversary against EUF-CMA

of Σ in the same way as in Case 2b of Lemma 7, which we do not repeat here.

Lemma 9. If KE Γ is unauthenticated and secure, and PKE PKE is length-hiding and
PKE-IK-CCA secure, then Π2

PKE in Protocol 3 is secure and strongly MITM-private.

Proof. Π2
PKE is secure. Let πs

i be the tested oracle. Let j = Pidsi . π
s
i must conform to

freshness (Definition 3). Case (a) Clause 3a was fulfilled, i.e. there is a partner oracle πt
j .

It follows that πt
j has matching conversations to πs

i . Case (b) Clause 3b was fulfilled,
which means j must not be corrupted. Together with the fact that πs

i accepted, from
Lemma 8 follows that there is some πt

j that has matching conversations to πs
i . It follows

that in any case there is some πt
j that has matching conversations to πs

i .
To distinguish the session key k from random,A needs to query H(Γ.key, x, ctxt3).

Following the proof of Lemma 8, we can again use game hops that replace c1 with the

37



ciphertext of some random value to show that no information about x is leaked by c1.
Since x is otherwise only used as input for the RO, A only has negl(λ) chance to win
the game (e.g. by guessing x or skj).
Π2

PKE is strongly MITM-private.

– Case 1. π1
i|j is Initiator.

Therefore k := Pid1i|j is immediately set.
• Game 0: The original game.
• Game 1: Guess i, j, k. Abort if Test(m) does not return i|j or k ̸= Pid1i|j at the

end of the game.
• Game 2: Replace m1 by π1

i|j with m∗1 = PEnck(z) where z is random bit
string. Program all other oracles to treat m∗1 as m1 (i.e., the decryption is x).

The transitions are the same as in Lemma 8 hence we skip them here. Notice that
in Game 2 A can only guess, hence the probability of winning Game 2 is 1

2 .
– Case 2. π1

i|j is Responder. m2 does not depend pki|j and is sent even after receiving
messages that are invalid or cannot be decrypted. Below we argue why m1 does not
reveal the key that was used for encryption. Since PKE is PKE-IK-CCA, we can
replace pki|j with a random key. To show this, consider the game hops below. Note
that a valid or invalid m2, i.e. π1

i|j being able to decrypt m1 or not, does not give
any information about the secret bit b anymore if pki|j is replaced with a random
key.
• Game 0: The original game.
• Game 1: Whenever any oracle is instructed to initiate communications with
π1
i|j , it saves the message it produced, i.e. m1, in a secret table together with

the data that was encrypted. π1
i|j , instead of decrypting incoming messages,

will look up the content in the secret table. If the message is not in the table, it
will attempt to decrypt the message normally.

• Game 2: π1
i|j treats the incoming message m1 as malformed if there is no

matching entry in the secret table. (Note that in this game, under no circum-
stances π1

i|j actually decrypts any messages.)
• Game 3: Instead of using the public key of i or j (depending on the secret bit

b), the party Pi|j’s public key is set to a randomly generated key pk′.
The game hopes are based on the same indistinguishable game hops as discussed
in Theorem 3, hence we do not repeat them here.

Lemma 10. If PKE PKE is PKE-IK-CCA secure, then Π2
PKE is completed-session pri-

vate.

Proof. Due to PKE-IND-CCA-security of PKE, m1 and m2 can be replaced with en-
cryptions of random content in this proof (neither party may be corrupted). Due to
PKE-IK-CCA security of PKE the used keys can be replaced with random keys (simi-
lar to proof of Theorem 3). It follows that the full transcript is randomly generated, i.e.
independent of secret bit b.

38


	Privacy-Preserving Authenticated Key Exchange: Stronger Privacy and Generic Constructions

