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Abstract. This paper proposes functional cryptanalysis, a flexible and versatile
approach to analyse symmetric-key primitives with two primary features. Firstly,
it is a generalization of multiple attacks including (but not limited to) differential,
rotational and rotational-xor cryptanalysis. Secondly, it is a theoretical framework
that unifies all of the aforementioned cryptanalysis techniques and at the same time
opens up possibilities for the development of new cryptanalytic approaches. The
main idea of functional cryptanalysis is the usage of binary relations in the form of
functions, hence the name functional, instead of binary operations like in a classical
settings of “differential”-like cryptanalysis. We establish the theoretical foundations
of functional cryptanalysis from standard terminologies. This work also presents
an interpretation of functional cryptanalysis from the point of view of commutative
algebra. In particular, we exhibit an algorithm to compute the functional probability
(hence differential, rotational, and rotational-xor probability) using Gröbner bases.
We demonstrate the applicability of functional cryptanalysis against reduced-round
Xoodoo and compare it against the best differential. To avoid dealing with invalid
differential trails, we propose a method to construct a valid differential trail using
Satisfiability Modulo Theory (SMT). To the best of our knowledge, this is the first
time the SMT model is used to construct a valid differential while previous approaches
rely on Mixed-Integer Linear Programming (MILP) model. Lastly, we remark that
the use of non-translation functionals shares analogous advantages and limitations
with the use of nonlinear approximations in linear cryptanalysis.
Keywords: Functional Cryptanalysis · Differential Cryptanalysis · Rotational Crypt-
analysis · Rotational-XOR Cryptanalysis · Xoodoo · SMT · Gröbner bases

1 Introduction
Nowadays, the security of a symmetric cipher is established by extensive analysis from the
research community, by first applying standard cryptanalytic techniques and then more
tailored approaches depending on the specific design of the cipher. It is often the case that
new designs require a variation of a standard technique to be developed in order to mount
an attack. For example, the introduction of ARX (Addition-Rotation-XOR) constructions
pushed the rise of differential cryptanalysis where the difference is taken with respect to
either modular arithmetic or rotation and XOR combined together.

Intuitively, for the case of differential cryptanalysis, the difference is usually chosen
with respect to the binary operation that is used to inject the key into the cipher, so to be
able to cancel the effect of the key during the propagation of differences. In fact, especially
in the related-key scenario, this choice is not as trivial as it might seem. For example,
as in the case of Speck [LWRA17], rotational-xor differences yield lower weight trails
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than standard XOR differences. One might wonder if even other type of non-standard
differences could be exploited, and one of the goal of this work is to explore this direction.

One other interesting problem is to unify the description of several differential attacks
under a common framework, with the hope that by abstracting the problem, one could
derive new forms of cryptanalysis. While elegant generalizations might be of theoretical
interests per se, not all of them are suited to improve existing results in practice. In this
work, we focus on the theory of first order differential cryptanalysis, and we try to achieve
both goals of an elegant generalization and a practical application of our theory.

The most challenging part to mount a differential attack on a symmetric-key primitive
is to find high probability differential trails. One approach is to construct it manually
by hand which requires extensive analytical effort [WY05]. In a separate trend, there
have been multiple works that utilizes constraint-based solving such as Mixed-Integer
Linear Programming (MILP) [MWGP11], SAT [MP13], and Satisfiability Modulo Theory
(SMT) [AJN14], to find differential trails. However, most of these works only models the
propagation of differentials which are treated independently for each round. The drawback
of this approach is that the trail may turn out to be invalid due to contradictions in the
set of conditions implied from the differential trail [LIM20, SRB20].

1.1 Related Work
Differential cryptanalysis [BS93] is arguably one of the most fundamental techniques
to analyze the security of symmetric-key primitives. Let F : Fn2 → Fm2 be a vectorial
Boolean function. Given a group operation + over Fn2 and Fm2 , differential cryptanalysis
studies the propagation of a difference α = x′ − x in the input that leads to a difference
β = F (x′)− F (x) in the output with nonzero probability.1 The goal of an adversary is to
find α, β yielding to a high probability, ideally the highest possible.

Since its first introduction, differential cryptanalysis has been extended and generalized
in multiple directions. One direction is truncated differential [Knu94], where several
differentials with many output differences that forms a linear space are clustered together.
Multiple differential cryptanalysis [BG11] follows the same line of idea without imposing
any restriction on the set of the output differences. Another direction is higher-order
differential [Knu94, Lai94] which considers the propagation of a vector space of input
differences, hence requiring more than a pair of inputs. It is also possible to consider other
types of differences, such as mod n cryptanalysis [KSW99] or rotational-xor cryptanalysis
[AL16], or cryptanalysis based on differences derived from ad-hoc operations [CBS19].
In [HO99], Hawkes and O’Connor showed that the differential probability is maximized
with high probability when differences are defined with respect to the XOR operation.
Finally, researchers have combined different forms of differential cryptanalysis with linear
cryptanalysis as suggested for the first time by Langford and Hellman [CV94], who
introduced the differential-linear cryptanalysis technique, or more recently by Liu et al.
[LSL21] for the case of rotational-xor cryptanalysis.

There have been several attempts in the past aiming at expressing cryptanalysis
techniques under a unified framework. A notable example, building on the frameworks
of Vaudenay’s chi-squared cryptanalysis [Vau96] and Harpes and Massey’s partitioning
cryptanalysis [HM97], is due to Wagner, who introduced the concept of commutative
diagram cryptanalysis [Wag04]. Under this framework, the following attacks can be
described: linear cryptanalysis, differential cryptanalysis, differential-linear cryptanalysis,
mod n attacks, truncated differential cryptanalysis, impossible differential cryptanalysis,
higher-order differential cryptanalysis, and interpolation attacks. Thanks to this framework,
Wagner was able to generalize truncated differential cryptanalysis to generalized truncated
differential cryptanalysis and interpolation attacks to bivariate interpolation attacks. So

1An adversary can also consider other binary operations.
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far, we are not aware of any cryptanalytic result that has been improved by the application
of these two attacks. The main idea of Wagner is to use commutative diagrams to model
local properties of the round functions of a cipher, and to connect these local properties to
determine a global property for the full cipher.

In the numerous works mentioned above, differential cryptanalysis and its generaliza-
tions tend to rely on defining a difference with a chosen binary operation in both input and
output of the function. In this paper, we introduce a new paradigm to generalize differential
cryptanalysis using a binary relation in a form of functions, hence the name functional crypt-
analysis. We also remark that our work is not limited only to a generalization of differential
cryptanalysis, but it is also a theoretical framework to describe multiple “differential-like”
cryptanalysis technique (e.g. related-key differential [KSW96], rotational [KN10], and
rotational-xor cryptanalysis [AL16]) in a unified manner. Most importantly, we show that
functional cryptanalysis can be used to improve existing cryptanalysis results.

1.2 Contributions
The primary contributions of this work are fourfold which are summarized in each of the
following points:

1. This paper proposes and establishes the theoretical foundation of functional crypt-
analysis, a flexible and versatile approach for the cryptanalysis of symmetric-key
primitives. Its primary feature is it generalizes multiple existing cryptanalysis
techniques including, but not limited to, (related-key) differential, rotational and
rotational-xor cryptanalysis. The versatility of functional cryptanalysis does not only
serve as a generalization of all the aforementioned cryptanalysis techniques, but it
also opens up other possible new constructions of cryptanalysis approaches that can
not be captured by existing techniques in the literature. The key idea of functional
cryptanalysis is the use of binary relations in the form of functions, hence the name
functional, in order to express the relations of two inputs/outputs instead of binary
operations. This idea allows the unification of cryptanalysis techniques that rely
on the notion of “difference” (such as differential and rotational-xor cryptanalysis)
with other techniques where the notion of “difference” can not be defined (such as
rotational cryptanalysis).

2. In addition to the theoretical foundation, this work also provides a way to look
at functional cryptanalysis (hence differential, rotational, and rotational-xor crypt-
analysis) from an algebraic point of view. On this part, the main result is the
following.

Theorem 1. Consider a function F : Fn2 7→ Fm2 and let R be a multivariate
polynomial ring over F2 with 2(n + m) variables. For any σ : Fn2 7→ Fn2 and
ϕ : Fm2 7→ Fm2 , there exists an ideal I ⊆ R such that the functional probability2 of
(σ, ϕ) on F is equal to

2−n · dimF2(R/I)

where dimF2(R/I) is the dimension of the factor ring R/I as an F2-vector space.

The result above may reveal non-trivial algebraic implications of functional crypt-
analysis by studying the structure of the ideal I. A follow-up result on this is an
algorithm to compute the functional probability using tools from computational
commutative algebra, mainly Gröbner bases algorithms.

2See Definition 11 for the definition of functional probability.
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3. An advantage of functional cryptanalysis is demonstrated in this paper against
the best known differential for a particular cipher3. To avoid dealing with invalid
differential trails, such as in [LIM20], we introduce a way to automatically construct
and verify differential trail using Satisfiability Modulo Theory (SMT). The main
contribution on this part is an SMT model that returns a differential characteristic
for a given probability (assuming it exists) and a pair of inputs that satisfy the
characteristic. To the best of our knowledge, this is the first time an SMT model is
used to verify the validity of a differential trail for a cipher. We have implemented this
model for Xoodoo [DHAK18b] and verified its correctness. Thus, the proposed SMT
model also serves as an alternative computational proof, in addition to trail-search
approach [DHAK18a], on the bound of the best differential of Xoodoo.

4. This work also explains the strategy to build a functional distinguisher from existing
differential trail. The resulting distinguisher improves upon the best differential,
often by a significant factor. We experimentally verify it against round-reduced
Xoodoo and show that a statistical assumption on the probability of functionals
also holds in practice.4

1.3 Outline
Section 2 describes the notations and terminologies used throughout this paper. Sec-
tion 3 introduces functional cryptanalysis. It starts by recalling differential, rotational, and
rotational-xor cryptanalysis followed by the formalization of functional cryptanalysis. Then
we discuss the propagation and the representation of the notion of functionals. Section 4
describes functional cryptanalysis from an algebraic point of view, where it provides the
proof of Theorem 1. The algorithm to compute the functional probability using Gröbner
bases and its complexity is also discussed. Section 5 presents the application of functional
cryptanalysis on Xoodoo. It begins with an overview of Xoodoo, followed by the descrip-
tion of the SMT model to construct a valid differential characteristic for Xoodoo. We
compare in practice the distinguishing attacks on round-reduced Xoodoo using functional
and differential distinguisher. We discuss the limitation of functional cryptanalysis in
Section 6 followed by some remark on its relation with nonlinear cryptanalysis. Finally,
Section 7 concludes this paper by pointing to some possible future developments.

2 Preliminaries and Notations
For any set S, the notation |S| denotes its cardinality. The notations F2,Fn2 denote the
binary field and the n-dimensional vector space over F2 respectively. Addition in Fn2 is
denoted by + whereas addition modulo 2n is denoted by �. For any α ∈ Fn2 , we define
Tα to be the translation Tα(x) = x+ α. We index elements starting from 1. The set of
all polynomials in variables x1, . . . , xn with coefficients in F2 is denoted by F2[x1, . . . , xn].
For any v ∈ Fn2 and w ∈ Fm2 we define by v ‖ w ∈ Fn+m

2 the vector constructed by
concatenating v and w.

Definition 1 (Concatenated Function). Let s, t, n be positive integers. For any function
F ,

F : (Fn2 )s 7→ (Fn2 )t (1)
(x1, . . . , xs) 7→ (y1, . . . , yt)

3The reason the comparison is focused on differential cryptanalysis rather than rotational-(xor) since
the former is generically applicable on any ciphers and the latter is a dedicated technique towards ARX
(Addition-Rotation-XOR) based ciphers.

4The implementation is available under an open-source license in https://github.com/Crypto-TII/
functional_cryptanalysis/.

https://github.com/Crypto-TII/functional_cryptanalysis/
https://github.com/Crypto-TII/functional_cryptanalysis/
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where yj = Fj(x1, . . . , xs), j = 1, . . . , t with Fj : (Fn2 )s 7→ Fn2 be the coordinate function of
F , we define the concatenated function C[F ] : Fns2 7→ Fnt2 of F as C[F ](x1 ‖ · · · ‖ xs) =
(y1 ‖ · · · ‖ yt).

For any binary operation ∗ on Fn2 we often write ∗(x, y) = x ∗ y for any x, y ∈ Fn2 . We
also define the following to denote bitwise rotation.

Definition 2. For any positive integer n and 0 ≤ r < n, we define the function ρr : Fn2 7→
Fn2 to be the following

ρr(x1, . . . , xn) = (xr+1, xr+2, . . . , xn, x1, x2, . . . , xr). (2)

We remark that the generalization of all results in this paper, which are discussed over
F2, to other finite fields Fq is immediate to derive.

3 Overview of Functional Cryptanalysis
3.1 Differential Cryptanalysis
Differential cryptanalysis exploits a non-random probabilistic occurrence of a difference in
the input and in the output of F : Fn2 7→ Fm2 . Concretely, it tries to find an input difference
α and output difference β such that for any input pair x′, x ∈ Fn2 to F where x′ − x = α,
the output difference F (x′)− F (x) = β occurs with high probability.

Definition 3. A differential on F : Fn2 7→ Fm2 is a pair (α, β) ∈ Fn2 ×Fm2 and its probability
is defined as

DPF (α, β) = Pr
X

[F (X + α) = F (X) + β] (3)

where the probability is taken from the distribution of X. This work assumes that X is
uniformly distributed in Fn2 in which case

DPF (α, β) = 2−n · |{x ∈ Fn2 | F (x+ α) = F (x) + β}|. (4)

In a setting where n,m are small (such as substitution boxes), a straighforward approach
to obtain high probability differentials is to compute the probability of all differentials on
F . A convenient tool that achieves this is the difference distribution table.

Definition 4 (Difference Distribution Table (DDT)). For any function F : Fn2 7→ Fm2 , the
difference distribution table DDTF (α, β) of F is a 2n × 2m table where the entry at row
α ∈ Fn2 and column β ∈ Fm2 is defined as

DDTF (α, β) = |{x ∈ Fn2 | F (x+ α) = F (x) + β}|.

Clearly, finding high probability differentials on F by computing its DDT quickly
becomes infeasible as n and m grows. However, in practice F = Fr ◦ Fr−1 ◦ · · · ◦ F1 is an
r-round iterative permutation5, denoted by F r, constructed with finite iteration of the
round functions F1, . . . , Fr. In such setting, the notion of trail is introduced which will
be used to approximate the probability of an r-round differential, i.e. differential on an
r-round iterative permutation.

Definition 5 (Differential Trail). Let F = Fr ◦ Fr−1 ◦ · · · ◦ F1 be an r-round iterative
cipher. An r-round differential trail on F is a sequence α1, α2, . . . , αr+1 ∈ Fn2 where
(αi, αi+1) is a differential of Fi for i ∈ {1, 2, . . . , r} and its probability is defined as

DTPF (α1, α2, . . . , αr+1) =
r∏
i=1

DPFi
(αi, αi+1). (5)

5Such as a block cipher with a fixed-key or the permutation used in the sponge construction.
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3.2 Rotational Cryptanalysis
Rotational cryptanalysis is a probabilistic attack introduced in [KN10] targeting mainly
ARX ciphers. The goal of the attack is to fix a positive integer k such that for any pair
of input (x1, . . . , xs), (x′1, . . . , x′s) to F : (Fn2 )s 7→ (Fn2 )t where x′i = ρk(xi), i = 1, . . . , s, the
condition y′j = ρk(yj), j = 1, . . . , t on their respective output (y1, . . . , yt), (y′1, . . . , y′t) also
holds with high probability. In the following, we introduce the notion of rotational and
formalize rotational cryptanalysis in a more generic setting than the one in [KN10].

Definition 6. A rotational on F : (Fn2 )s 7→ (Fn2 )t is a pair ((ki)si=1, (k′j)tj=1) where
0 ≤ ki, k′j < n and its probability, denoted by RPF ((ki)si=1, (k′j)tj=1), is defined as

Pr
X1,...,Xs

[F ((ρki
(Xi))si=1) = (ρk′

j
(Fj(X1, . . . ,Xs)))tj=1].

where the probability is taken from the distribution of Xi, i = 1, . . . , s, which are uniformly
distributed in Fn2 .

Definition 7. Let F : (Fn2 )s 7→ (Fn2 )s be an r-round iterative permutation where F =
Fr ◦ Fr−1 ◦ · · · ◦ F1 and Fi : (Fn2 )s 7→ (Fn2 )s. An r-round rotational trail on F is a
sequence (k1,j)sj=1, (k2,j)sj=1, . . . , (kr+1,j)sj=1 where ((ki,j)sj=1, (ki+1,j)sj=1) is a rotational
on Fi, i = 1, . . . , r, and its probability is defined as

r∏
i=1

RPFi
((ki,j)sj=1, (ki+1,j)sj=1).

The existing results on the rotational probability consider the values ki, k′j in a rotational
((ki)si=1, (k′j)tj=1) to be equal to a fix value, say k. Such rotational has probability 1 for
addition in Fn2 (bitwise XOR) since ρk is F2-linear,

ρk(+(x, y)) = +(ρk(x), ρk(y)). (6)

The same probability also holds for the rotational (k, k+k′ (mod n)) on the bitwise rotation
ρk′ since the composition of rotation is commutative, i.e. ρk′(ρk(x)) = ρk(ρk′(x)) =
ρ(k+k′) (mod n)(x). On the other hand, the rotational probability for addition modulo 2n
varies depending on the rotation amount k, which is equal to 2−2 · (1 + 2k−n + 2−k +
2−n) [Dau05, Chapter 4]. The lower and the upper bound are reached with k = n/2 and
k = 1 respectively. We remark that rotational cryptanalysis also works if an adversary
defines ρr in the opposite orientation than the one in (2).

In order for a rotational to propagate deterministically through a translation, such as
key addition or constant addition, it is necessary that the following holds

ρr(x) + c = ρr(x+ c) ⇐⇒ c = ρr(c). (7)

This implies that if F is a keyed-permutation (e.g. a block cipher) then rotational
cryptanalysis works in a related-key settings. Thus, the overall probability should also
take into account the propagation of rotationals in the key schedule.

3.3 Rotational-XOR Cryptanalysis
A particular issue that was not extensively discussed in [KN10] and its subsequent works
is the propagation of rotational through the translation (i.e., the injection of constants)
where the condition in (7) does not hold. This is often used to assert the security of a
cipher against rotational cryptanalysis, such as in SEA [SPGQ06] and ChaCha [Ber].

To overcome the above countermeasure, in [AL16], Ashur and Liu introduced Rotational-
XOR (RX) cryptanalysis. The technique can be seen as a generalization of both rotational
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and differential cryptanalysis. The main idea is to compose a bitwise rotation followed
by a translation to construct a pair of input. This allows the notion of “difference” to be
introduced for the case of rotational-xor.

Definition 8 (RX-difference). The RX-difference ∆γ(x, x′) of (x, x′) ∈ Fn2 × Fn2 w.r.t. γ
is defined as

∆γ(x, x′) = x+ ργ(x′).

Definition 9. A rotational-xor (RX) on a function F : (Fn2 )s 7→ (Fn2 )t is a pair ((ki, αi)si=1, (k′j , α′j)tj=1)
where 0 ≤ ki, k′j < n and αi, α′j ∈ Fn2 and its probability, denoted by RXPF ((ki, αi)si=1, (k′j , α′j)tj=1),
is defined as

Pr
X1,...,Xs

[F ((ρki
(Xi) + αi)si=1) = (ρk′

j
(Fj(X1, . . . ,Xs)) + α′j)tj=1].

Definition 10. Let F : (Fn2 )s 7→ (Fn2 )s be an r-round iterative permutation where F =
Fr◦Fr−1◦· · ·◦F1 and Fi : (Fn2 )s 7→ (Fn2 )s. An r-round rotational-xor (RX) trail on F is a se-
quence (k1,j , α1,j)sj=1, (k2,j , α2,j)sj=1, . . . , (kr+1,j , αr+1,j)sj=1 where ((ki,j , αi,j)sj=1, (ki+1,j , αi+1,j)sj=1)
is an RX on Fi, i = 1, . . . , r, and its probability is defined as

r∏
i=1

RXPFi
((ki,j , αi,j)sj=1, (ki+1,j , αi+1,j)sj=1).

RX cryptanalysis is the study of the propagation of RX-differences throughout different
operations of a cipher. Let z = x+ y and z′ = x′ + y′, then

∆γ(z, z′) = z + ργ(z′) = (x+ y) + ργ(x′ + y′) = ∆γ(x, x′) + ∆γ(y, y′)

which shows that RX-difference propagates deterministically through addition in Fn2 .
Similarly, if we let y = ρr(x) and y′ = ρr(x′), then

∆γ(y, y′) = ρr(x) + ργ(ρr(x′)) = ρr(x) + ρr(ργ(x′)) = ρr(∆γ(x, x′))

which proves that RX-difference also propagates with probability 1 through bitwise rotation.
The only probabilistic propagation of RX-difference in an ARX cipher is via modular
addition. In [AL16], the authors provided the formula to compute the probability of
propagation of RX-difference with γ = 1.

3.4 Functional Cryptanalysis
At this point we have seen how the terminologies in differential, rotational, and rotational-
xor cryptanalysis are interrelated, except for one case: there is no counterpart for the
notion of “difference” in rotational cryptanalysis. This is one of the primary motivations
for the introduction of functional cryptanalysis, i.e. to work in a cryptanalysis setting
without having the need to define a “difference” between two inputs/outputs.

F F

Fn
2 Fn

2
σ

ϕ Fm
2Fm

2

FPF (σ, ϕ)

Figure 1: Probabilistic commutative diagram of a functional (σ, ϕ).
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· · ·

· · ·

Fn
2

Fn
2

Fn
2

Fn
2

p1σ1 σ2

F1

F1

Fn
2

Fn
2

F2

F2

σ3p2

F3

F3

Fr−1

Fr−1
Fn
2

Fn
2

Fr

Fr

Fn
2

Fn
2

σr σr+1prp3 pr−1

Figure 2: Probabilistic commutative diagram of a functional trail on r-round iterative
permutation with FPFi(σi, σi+1) = pi for i = 1, 2, . . . , r.

Definition 11 (Functional and Functional Probability). A functional on F : Fn2 7→ Fm2 is
a pair (σ, ϕ) where σ : Fn2 7→ Fn2 and ϕ : Fm2 7→ Fm2 and its probability is defined as

FPF (σ, ϕ) = Pr
X

[F (σ(X)) = ϕ(F (X))]

where X is uniformly distributed in Fn2 in which case

FPF (σ, ϕ) = 2−n · |{x ∈ Fn2 | F (σ(x)) = ϕ(F (x))}|.

We refer to σ and ϕ as the input and output functions to F respectively.

Figure 1 illustrates the concept of a functional using a probabilistic commutative
diagram. For the rest of this paper, we are interested to find a high probability functional
on an r-round iterative permutation. Our approach to find a high probability functional
for an iterative permutation is done by constructing a high probability functional on each
round function and connecting them together. This approach is similar to other techniques
such as linear and differential cryptanalysis on an iterative permutation. It is then natural
to define the following notion.

Definition 12 (Functional Trail). Let F r = Fr ◦ Fr−1 ◦ · · · ◦ F1 be an r-round iterative
permutation. An r-round functional trail of F is a sequence of mapping σ1, σ2, . . . , σr+1
where (σi, σi+1) is a functional on Fi with FPFi

(σi, σi+1) = pi for i = 1, 2, . . . , r. We often
write it as

σ1
F1−→
p1

σ2
F2−→
p2
· · · Fr−→

pr

σr+1

and the probability is defined as
r∏
i=1

FPFi
(σi, σi+1).

Figure 2 gives a probabilistic commutative diagram of a functional trail on an iterative
cipher. We will now discuss how differential, rotational, and rotational-xor cryptanalysis
are described in terms of functional cryptanalysis.

Differential Cryptanalysis as Functional Cryptanalysis It is immediate to see that dif-
ferential cryptanalysis is a special case of functional cryptanalysis. Indeed, a
differential (α, β) on F : Fn2 7→ Fm2 is a functional (Tα, Tβ) on F and hence
DPF (α, β) = FPF (Tα, Tβ). If F r = Fr ◦ Fr−1 ◦ · · · ◦ F1 is an r-round iterative
cipher, then any differential trail α1, α2, . . . , αr+1 with pi = DPFi

(αi, αi+1) for
i = 1, 2, . . . , r is equal to the following functional trail

Tα1
F1−→
p1

Tα2
F2−→
p2
· · · Fr−→

pr

Tαr+1 .

In order to put differential cryptanalysis in the framework of functional cryptanalysis,
we define the following class of functionals.
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Definition 13 (Translation-Functional). A functional (σ, ϕ) on F : Fn2 7→ Fm2 is a
translation-functional if both σ and ϕ are translations in Fn2 and Fm2 respectively.

Rotational Cryptanalysis as Functional Cryptanalysis For a positive integer s and for
k1, . . . , ks we define the following function

P(ki)s
i=1

: (Fn2 )s 7→ (Fn2 )s

(xi)si=1 7→ (ρki
(xi))si=1.

A rotational ((ki)si=1, (k′j)tj=1) on F : (Fn2 )s 7→ (Fn2 )t corresponds to the func-
tional (C[P(ki)s

i=1
], (C[P(k′

j
)t

j=1
])) on the concatenated function C[F ] of F . Similarly

RPF ((ki)si=1, (k′j)tj=1) = FPC[F ](C[P(ki)s
i=1

], C[P(k′
j
)t

j=1
]). Also for an r-round iter-

ative cipher F = F r : (Fn2 )s 7→ (Fn2 )s where F r = Fr ◦ · · · ◦ F1, a rotational trail
((k1,i)si=1, . . . , (kr+1,i)si=1) is equivalent to the following functional trail

C[P(k1,i)s
i=1

] C[F1]−−−→
p1

C[P(k2,i)s
i=1

] C[F2]−−−→
p2

· · · C[Fr]−−−→
pr

C[P(kr+1,i)s
i=1

]

on the concatenated function C[F r] of F r.
Note that since ρk is F2-linear for any k ∈ {0, 1, . . . , n − 1}, then C[P(ki)s

i=1
] is

also F2-linear. Thus, we define the following particular class of functionals, which
generalizes rotationals.

Definition 14 (Linear-Functional). A functional (σ, ϕ) on F : Fn2 7→ Fm2 is said to
be a linear-functional if both σ and ϕ are F2-linear.

Rotational-XOR Cryptanalysis as Functional Cryptanalysis For a positive integer s and
(k1, α1), . . . , (ks, αs) ∈ Z≥0 × Fn2 , we define the following function

X(ki,αi)s
i=1

: (Fn2 )s 7→ (Fn2 )s

(xi)si=1 7→ (ρki
(xi) + αi)si=1.

It is immediate to see that a rotational-xor ((ki, αi)si=1, (k′j , α′j)tj=1) on F : (Fn2 )s 7→
(Fn2 )t is a functional (C[X(ki,αi)s

i=1
], C[X(k′

j
,α′

j
)t

j=1
]) on the concatenated function C[F ]

of F . Also the rotational-xor probability can be expressed in terms of functional
probability as RXPF ((ki, αi)si=1, (k′j , α′j)tj=1) = FPC[F ](C[X(ki,αi)s

i=1
], C[X(k′

j
,α′

j
)t

j=1
]).

Moreover, for the iterative cipher F = F r : (Fn2 )s 7→ (Fn2 )s, where F r = Fr ◦ Fr−1 ◦
· · · ◦ F1, a rotational-xor trail ((k1,i, α1,i)si=1, . . . , (kr+1,i, αr+1,i)si=1) is equivalent to
the following functional trail

C[X(k1,i,α1,i)s
i=1

] C[F1]−−−→
p1

C[X(k2,i,α2,i)s
i=1

] C[F2]−−−→
p2

· · · C[Fr]−−−→
pr

C[X(kr+1,i,αr+1,i)s
i=1

]

on the concatenated function C[F r] of F r.
Note that since the function ρr(x) + α is F2-affine for any r ∈ {0, 1, . . . , n− 1} and
α ∈ Fn2 , this implies that C[X(ki,αi)s

i=1
] is also F2-affine. This observation motivates

the following definition of a class of functionals.

Definition 15 (Affine-Functional). A functional (σ, ϕ) on F : Fn2 7→ Fm2 is said to
be an affine-functional if both σ and ϕ are F2-affine.

In Figure 3 we give an overall classification of the set of all functionals together with
other techniques that can be expressed in terms of functionals. Note that an intersection
among the set of all translation-functionals (differentials), rotationals, rotational-xor,
and linear functionals contains only a functional (σ, ϕ) where both σ, ϕ are the identity
mapping.
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Functionals

Affine
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Linear
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Figure 3: Classification of cryptanalysis techniques that belong to functional cryptanalysis.

3.5 Propagation of Functionals
In this subsection, we discuss the propagation property of functionals in the context of
iterative permutations. We shall work in a setting where F, σ, ϕ are permutations in Fn2 .

While cryptanalytic attacks deal with probabilistic propagation, an adversary is ideally
interested to have a deterministic propagation. Given an input function σ to F , one
immediately has a deterministic functional (σ, ϕ) on F where ϕ = F ◦ σ ◦ F−1. It is
interesting to note that if σ and F are elements of a group under a composition, then ϕ is
also an element of the same group. We have observed this phenomena in the propagation
of rotational through bitwise rotation as well as differential (translation-functional) via a
translation.

For non-deterministic propagation of functionals, it is not immediately clear how to
derive the set of all possible output functions corresponding to an input function σ and
their functional probabilities. However, for relatively small n we introduce the functional
distribution table.

Definition 16 (Functional Distribution Table). The functional distribution table (FDT)
of F : Fn2 7→ Fm2 is a 2n·2n · 2m·2m table FDTF (σ, ϕ) where each row σ and each column ϕ
of FDTF (σ, ϕ) is defined as

FDTF (σ, ϕ) = |{x ∈ Fn2 | F (σ(x)) = ϕ(F (x))}|. (8)

FDT is a generalization of DDT since DDTF (α, β) = FDTF (Tα, Tβ) for any (α, β) ∈
Fn2 × Fm2 and we also have FPF (σ, ϕ) = 2−n · FDTF (σ, ϕ). However, it is defined for all
mappings σ, ϕ only for the sake of completeness. In practice, FDT is not intended to be a
tool that exhaustively describes the probability of all functionals on F since its size and
the complexity to compute it quickly become infeasible even for n = m = 4. Rather, one
can compute the FDT of a function F only for a particular subset of functionals.

3.6 Representation of Functionals and Functional Trails
Previously we saw in the definition of differential, rotational, and rotational-xor that they
intrinsically provide representations for those notions. This, however, is not the case
for functionals, in the sense that Definition 11 gives no immediate clue on an efficient
representation. This section will address this issue and discuss several ideas to represent
functional and functional trail. We shall begin by discussing generic representations that
work for any functional (σ, ϕ) on F : Fn2 7→ Fm2 .
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The first observation to make is that each function σ, ϕ in a functional (σ, ϕ) on F can
be seen as a vectorial Boolean function. One can then represent σ and ϕ as lookup table.
However, this is useful only if n,m are small such as when F is a substitution box.

For large n,m we propose to use system of multivariate polynomials to represent σ
and ϕ. Suppose that x1, . . . , xn and x′1, . . . , x′n be variables that represent two inputs to
F and let y1, . . . , ym and y′1, . . . , y′m be their corresponding output variables. Then σ and
ϕ are represented by system of multivariate polynomials in variables x1, . . . , xn, x

′
1, . . . , x

′
n

and y1, . . . , ym, y
′
1, . . . , y

′
m respectively with coefficients in F2. Concretely, σ is a system

with 2n variables and n polynomials with input variables x1, . . . , xn and output variables
x′1, . . . , x

′
n (or vice versa). Similarly ϕ is a system with 2m variables and m polynomials

with input variables y1, . . . , ym and output variables y′1, . . . , y′m (or vice versa). This is
naturally extended for the case of an r-round functional trail, which is represented by a
sequence of r systems of multivariate polynomials with coefficients in F2.
Remark 1. From this point onwards, there are no distinction between the functions from
Fn2 to Fm2 and their representations as system of multivariate polynomials.

While such representation are useful for general cases, possible improvements can be
done for specific functionals. For instance, a linear-functional (σ, ϕ) where σ and ϕ are
bijective can be represented using n×n andm×mmatrix with coefficients in Fn2 respectively.
Also, a translation-functional can be represented like a differential (using an element of
Fn2 × Fm2 ) and similarly for the case of functionals that correspond to rotationals and
rotational-xors. Hence, functional cryptanalysis views the notion of differential, rotational,
and rotational-xor as representations for their corresponding functionals.

4 Algebraic Perspective of Functional Cryptanalysis
This section presents functional cryptanalysis from an algebraic point of view. The central
subjects here are the polynomial ring R = F[x1, . . . , xn] over a field F and ideals in R.
This turns to be a natural approach, due to the representation of functionals discussed in
Subsection 3.6. Note that the generic nature of functional cryptanalysis also means that
the results from this section are applicable for differential, rotational, and rotational-xor
cryptanalysis. We shall begin by introducing notations used specifically in this section.

The ideal generated by f1, . . . , fm ∈ R will be denoted by 〈f1, . . . , fm〉 = {
∑m
i=1 hifi |

hi ∈ R}. For any F ⊆ R and f ∈ R we allow a mixed notation and write 〈F, f〉 for the
ideal generated by the elements in F ∪ f . Whenever R is defined, we adopt a monomial
ordering < on the set M(x1, . . . , xn) of all monomials6 in variables x1, . . . , xn. Examples of
such orderings include lexicographic (lex), degree lexicographic (deglex) and degree-reverse
lexicographic (degrevlex). Interested readers are referred to [CLO15, §2, Chapter 2] for
their formal definitions. However, the results on this section are independent from the
choice of variable ordering and the monomial ordering of R. For any 0 6= f ∈ R we denote
by LM(f) the leading monomial of f (i.e. the largest monomial in f according to the term
ordering <) and similarly for any subset F ⊆ R we define LM(F ) = {LM(f) | 0 6= f ∈ F}.
The residue class ring of R modulo an ideal I is denoted by R/I, which is also an F-vector
space and its dimension is denoted by dimF(R/I).

We now recall some relevant notions from computational commutative algebra.

Proposition 1 (Zero-Dimensional Ideal). Let F be the algebraic closure of the field F and
let I = 〈f1, . . . , fm〉 be an ideal of R. The following conditions are equivalent.

1. The system of equations {f1 = 0, . . . , fm = 0} has only finitely many solutions in Fn.

2. For i = 1, 2, . . . , n we have I ∩ F[xi] 6= {0}.
6By monomial we mean a polynomial which has only one term.
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3. The F-vector space R/I is finite-dimensional.

4. The set M(x1, . . . , xn) \ LM(I) is finite.

5. For every i ∈ {1, . . . , n}, there exists a non-negative integer ai such that xai
i ∈ LM(I).

An ideal of R that satisfies one of the conditions above is called a zero-dimensional ideal.

Proof. See the proof of Proposition 3.7.1 in Section §3.7 of [KR00, pg. 243].

Definition 17 (Radical Ideal). An ideal I of R is radical if fm ∈ I for some positive
integer m implies that f ∈ I.

Proposition 2 (Seidenberg’s Lemma). Let I be a zero-dimensional ideal of R. Suppose
that for every i ∈ {1, . . . , n} there exists a nonzero univariate polynomial gi ∈ I ∩ F[xi]
such that the greatest common divisor of gi and its derivative is equal to 1. Then I is
radical ideal

Proof. See the proof of Proposition 3.7.15 in Section §3.7 of [KR00, pg. 250].

Definition 18 (Gröbner basis). A finite subset G = {g1, . . . , gt} of an ideal {0} 6= I ⊆ R
is a Gröbner basis of I if 〈LM(g1), . . . , LM(gt)〉 = 〈LM(I)〉.

Note that a Gröbner basis G generates its ideal, i.e., it is a basis of it.

Proposition 3. For any ideal {0} 6= I ⊆ R we define RM(I) = M(x1, . . . , xn) \ LM(I) the
set of reduced monomials w.r.t. I. Then

RM(I) = {m ∈ M(x1, . . . , xn) | m′ - m,∀m′ ∈ LM(I)}
= {m ∈ M(x1, . . . , xn) | m′ - m,∀m′ ∈ LM(G)}

where G is a Gröbner basis of I.

Proof. See the proof of Lemma 6.51 in [BWK93, pg. 272].

Proposition 4. Let {0} 6= I ⊆ R be an ideal of R. The set {m + I | m ∈ RM(I)} is a
basis of the F-vector space R/I

Proof. See the proof of Proposition 6.52 in [BWK93, pg. 273].

Proposition 5. Let I be a zero-dimensional ideal of R and let F be the algebraic closure
of F. Then the number of zeroes of I in Fn is less than or equal to the dimF(R/I). If F
has characteristic zero or is a finite field and I is a radical ideal, then the equality holds.

Proof. See the proof of Proposition 8.32 in [BWK93, pg. 348].

Definition 19. For any polynomial ring R = Fq[x1, . . . , xn] defined over a finite field Fq,
we define the field polynomials of R as

P(R) = {xqi − xi | ∀i = 1, . . . , n}.
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4.1 Functional Ideal
The primary aim of having an algebraic interpretation of a functional on F : Fn2 7→ Fm2 is
to help understanding the algebraic implication of the functional itself. From the setting
of a polynomial ring and the representation of a functional proposed in Subsection 3.6,
this is achieved by having an ideal in the polynomial ring that corresponds to a functional
on F . For that we will work on the following ring

R = F2[x1, . . . , xn, y1, . . . , ym, x
′
1, . . . , x

′
n, y
′
1, . . . , y

′
m]. (9)

The variables that represent two inputs to F and their respective outputs as well as
a functional (σ, ϕ) are the same as described in Subsection 3.6. We will now formally
introduce the functional ideal. Note that, with abuse of notation and to avoid heavier
notation, we indicate with F both a function and a set of polynomials representing the
function.

Definition 20 (Functional Ideal). Let F : Fn2 7→ Fm2 and let R be a polynomial ring
defined in (9). For any functional (σ, ϕ) on F we define the functional ideal FIF (σ, ϕ) ⊆ R
of F w.r.t (σ, ϕ) as

FIF (σ, ϕ) = 〈F, F ′, σ, ϕ,P(R)〉

where F ′ is a set of polynomials representing F in variables x′1, . . . , x′n, y′1, . . . , y′m.

One can also define other ideals for linear and differential-linear cryptanalysis. We give
their definitions in Appendix E for additional reference.

In principle the set F ∪ F ′ ∪ σ ∪ ϕ is sufficient to algebraically describe a functional
(σ, ϕ) on F . However, the corresponding system of equations would have solutions that lie
strictly in the algebraic closure of F2 but not in F2. Hence it is necessary to include P(R) in
the basis of the ideal to remove such superfluous solutions. However, the field polynomials
P(R) also serves other purposes which will be explained in the next subsection.

4.2 Computing Functional Probability using Gröbner Bases
Apart from removing the zeros of F ∪ F ′ ∪ σ ∪ ϕ that lie in a proper extension of F2, the
inclusion of the field polynomials in the functional ideal has two more implications: it
makes the ideal zero-dimensional (by Proposition 1) and radical (by Proposition 2). Hence,
Proposition 5 implies that the dimension of R/FIF (σ, ϕ) determines the probability of the
functional (σ, ϕ) on F . This proves Theorem 1 where I = FIF (σ, ϕ). We formally restate
it in the following theorem by giving the explicit construction of the ideal.

Theorem 2. Let F : Fn2 7→ Fm2 and let R be a polynomial ring defined in (9). The
probability of a functional (σ, ϕ) on F is equal to

FPF (σ, ϕ) = 2−n · dimF2(R/FIF (σ, ϕ)).

The construction of the functional ideal inherently does not give any information about
its structure, including the dimension of R/FIF (σ, ϕ). One way to overcome this is to
compute a Gröbner basis of FIF (σ, ϕ). Some of the algorithms to compute a Gröbner
basis of an ideal in R include the Buchberger [Buc06], F4 [Fau99], F5 [Fau02], and M4GB
algorithm [MS17]. By Proposition 3 and Proposition 4, a Gröbner basis of FIF (σ, ϕ)
enables the construction of a basis of R/FIF (σ, ϕ). This implies that one can compute a
functional probability (hence differential, rotational, and rotational-xor probability) using
a Gröbner basis algorithm.

Theorem 3. Given a functional (σ, ϕ) on F : Fn2 7→ Fm2 , Algorithm 4.1 computes the
functional probability of (σ, ϕ).
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Input: A function F : Fn2 7→ Fm2
Input: A functional (σ, ϕ) on F
Output: The functional probability FPF (σ, ϕ)

1 R ← F2[x1, . . . , xn, y1, . . . , ym, x
′
1, . . . , x

′
n, y
′
1, . . . , y

′
m]

2 G← GröbnerBasis(FIF (σ, ϕ))
3 RM(FIF (σ, ϕ))← ReducedMonomials(G)
4 return 2−n · |RM(FIF (σ, ϕ))|
Algorithm 4.1: Algorithm to compute functional probability using a Gröbner
basis.

Proof. Termination: The termination Algorithm 4.1 is obvious since the computation of
Gröbner basis in line 2 and ReducedMonomials (see the description in Appendix F) in
line 3 end after finite number of steps7.
Correctness: Proposition 4 states that the set {m + FIF (σ, ϕ) | m ∈ RM(FIF (σ, ϕ))} is a
basis of the F2-vector space R/FIF (σ, ϕ). Therefore by Theorem 2 we have FPF (σ, ϕ) =
2−n · |RM(FIF (σ, ϕ))|.

Example 1. In order to illustrate the result in Theorem 3, we will demonstrate it using
the function F : F3

2 7→ F3
2 defined by the following polynomials

x2x3 + x1 + x3 + y1,

x1x3 + x1 + x2 + y2,

x1x2 + x2 + x3 + y3.

Let (σ, ϕ) be the following functional on F

σ ϕ
x′1 + x1x2 + x1 + x3 + 1 y′1 + y1 + 1,
x′2 + x1x3 + x2x3 + x2 + x3 + 1, y′2 + y2,
x′3 + x1x3 + x1 + x2 + x3 + 1, y′3 + y3 + 1.

The reduced Gröbner basis of FIF (σ, ϕ) w.r.t. the degree-reverse lexicographic ordering
consists of the following polynomials

x′21 + x′1, y′1y
′
2 + x′3 + y′2 + y′3, x2 + y′2 + y′3,

x′1x
′
3 + x′1 + y′1, y′22 + y′2, x3 + x′3 + y′2 + 1,

x′23 + x′3, x′1y
′
3 + x′1 + y′1, y1 + y′1 + 1,

x′1y
′
1 + y′1, x′3y

′
3 + x′1 + y′1, y2 + y′2,

x′3y
′
1, y′1y

′
3, y3 + y′3 + 1,

y′21 + y′1, y′2y
′
3 + x′1 + y′1 + y′3, x′2 + y′1 + y′2,

x′1y
′
2 + x′3 + y′2 + y′3, y′23 + y′3,

x′3y
′
2 + x′1 + x′3 + y′1, x1 + x′1 + y′2.

One can verify that dimF2(R/FIF (σ, ϕ)) = 6 and therefore FPF (σ, ϕ) = 0.75.

The complexity of Algorithm 4.1 is clearly upper-bounded by the computation of a
Gröbner basis of FIF (σ, ϕ). The following theorem states the theoretical complexity of
computing a functional probability using Algorithm 4.1.

7See Theorem 2 of [CLO15, pg. 91] for the proof of the termination of Buchberger algorithm or Theorem
2.2 of [Fau99] for the termination of F4 algorithm. The termination of ReducedMonomials is due to the
fact that FIF (σ, ϕ) is a zero-dimensional ideal.
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Table 1: The probability of the best known differential of Xoodoo [DHAK18a].

# rounds 1 2 3 4 5 6
probability 2−2 2−8 2−36 ≥ 2−54 ≥ 2−56 ≥ 2−104

Theorem 4. Assuming the semi-regularity of the system [BFSY05], the complexity of
Algorithm 4.1 to compute the functional probability of (σ, ϕ) on F : Fn2 7→ Fm2 using the F5
algorithm is equal to

O
((

2(n+m) + dreg

dreg

)ω)
(10)

where 2 ≤ ω ≤ 3 and dreg is the index of the first non-positive coefficient of

∑
k≥0

ckz
k =

∏5m+3n
i=1 (1− zdi)
(1− z)2(m+n) (11)

with di being the degree of each polynomial fi in F ∪ F ′ ∪ σ ∪ ϕ ∪ P(R).

Proof. The complexity of computing a Gröbner basis of a semi-regular zero-dimensional
ideal in n variables and m equations using F5 algorithm is equal to O(

(
n+dreg
dreg

)ω
) where

dreg is the index of the first non-positive coefficient of
∏m
i=1(1 − zdi)/(1 − z)n [BFP09,

BFSY05, BFS04]. Since the system of equations representing the functional ideal FIF (σ, ϕ)
consists of 2(n+m) variables and 5m+ 3n equations then (10) and (11) hold.

The complexity formula in Equation 10 grows exponentially with m and n, meaning
that the application of Algorithm 4.1 becomes quickly impractical for large sboxes.

5 Functional Cryptanalysis of Xoodoo
In this section we shall demonstrate the usefulness of functional cryptanalysis and compare
it against the best differential of Xoodoo [DHAK18a]. We focus primarily on Xoodoo
due to it being the underlying permutation of one of the finalists in the NIST lightweight
standardization process. The security of Xoodoo against differential cryptanalysis was
proven using a tree-search approach. Table 1 presents the probabilities of the best
differentials found for its reduced-round variant. For practical purpose, we targeted the
number of rounds where the complexity to mount distinguishing attack on Xoodoo using
differential cryptanalysis is computationally feasible with our resources.

5.1 Description of Xoodoo
Xoodoo is a family of 384-bit permutation parameterized by the number of rounds nr and
denoted by Xoodoo[nr]. It iteratively applies a round function on a state that can be seen
as a 3×4 array of 32-bit words. The round function consists of 5 (five) steps: a mixing layer
θ (theta), a composition of word-wise and bitwise rotation ρwest (rho west), addition
of round constants ι (iota), a nonlinear function χ (chi), and another composition of
word-wise and bitwise rotation ρeast (rho east). The complete description of Xoodoo[nr]
is given in Algorithm 5.1 and the value of the round constants are specified in Table 5.
In the description of the algorithm, the symbols ¬,∧,⊕ denote the bitwise NOT, bitwise
AND, and bitwise XOR respectively. For any W ∈ {0, 1}32 and r ∈ {1, 2, . . . , 32}, W ≪ r
denotes the bitwise left rotation of W by r bits with the rightmost bit of W as the least
significant bit.
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Input:
- Number of rounds nr
- Ai,j ∈ {0, 1}32 for i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}

1 for r = 1− nr to 0 do
/* theta */

2 Pj ← A1,j ⊕A2,j ⊕A3,j for j ∈ {1, 2, 3, 4}
3 Ej ← (P((j−2) mod 4)+1 ≪ 5)⊕ (P((j−2) mod 4)+1 ≪ 14) for j ∈ {1, 2, 3, 4}
4 Ai,j ← Ai,j ⊕ Ej for i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}

/* rho west */
5 A2,1, A2,2, A2,3, A2,4 ← A2,4, A2,1, A2,2, A2,3
6 A3,j ← A3,j≪ 11 for j ∈ {1, 2, 3, 4}

/* iota */
7 A1,1 ← A1,1 ⊕ cr

/* chi */
8 B1,j ← ¬A2,j ∧A3,j for j ∈ {1, 2, 3, 4}
9 B2,j ← ¬A3,j ∧A1,j for j ∈ {1, 2, 3, 4}

10 B3,j ← ¬A1,j ∧A2,j for j ∈ {1, 2, 3, 4}
11 Ai,j ← Ai,j ⊕Bi,j for i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}

/* rho east */
12 A2,j ← A2,j≪ 1 for j ∈ {1, 2, 3, 4}
13 A3,1, A3,3 ← A3,3 ≪ 8, A3,1 ≪ 8
14 A3,2, A3,4 ← A3,4 ≪ 8, A3,2 ≪ 8
15 return Ai,j for i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}

Algorithm 5.1: Definition of Xoodoo[nr].

5.2 Automated Search and Verification of Differential Trail using SMT
In order to compare the effectiveness of a functional distinguisher against a differential
distinguisher, one has to avoid dealing with an invalid differential trail. While this seems
to be unlikely for a keyed-permutation such as a block ciphers, this situation has been
appearing in several previous works such as in [LIM20] or [SRB20] (see also references
therein).

In CRYPTO 2020, Liu, Isobe, and Meier introduced a new MILP-based model to
search for high probability differential trail [LIM20]. The novelty of their model consists
in ensuring that the constructed differential trail is valid, i.e. there exists a pair of input
that satisfies the trail. In a nutshell, the main idea is to construct two sets of constraints:
one set defines the propagation of the differential on each round and the other defines the
propagation of the input to the permutation. Both sets of constraints are then connected
in the probabilistic step of the differential propagation, i.e. in the nonlinear function. This
technique yields a valid differential trail for 6-round of Gimli [BKL+17] and at the same
time it shows that the 12-round trail in [BKL+17] is invalid.

This work adapts a similar strategy as in [LIM20] to build an SMT model. To the
best of our knowledge, this is the first time an SMT model is used to construct a valid
differential trail for a symmetric-key primitive, more specifically for Xoodoo.

For the set of constraints that describes the Xoodoo permutation, we introduce
Boolean variables in the input and output of each of the five (5) steps together with the
Boolean constraints that represent the operations, which are relatively straightforward to
derive from Algorithm 5.1. For the second set of constraints representing the propagation of
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differences, we also introduce Boolean variables representing the input and output difference
for all steps except for iota. The Boolean constraints that represent the propagation of
the differences via the linear functions (theta, rho west, and rho east) are immediate
to derive from their definitions. The only non-trivial part is to construct the constraints
for the nonlinear step chi that not only represent the propagation of the differences, but
also connects the value propagation as well as giving a straightforward way to compute
the differential probability.

In order to derive the constraints, our approach is to first look at the coordinate functions
of chi as a 3-bit permutation χ : {0, 1}3 7→ {0, 1}3. The constraints that described the
propagation of differences through χ are derived by examining all differentials on χ. The
constraints that connect differential propagation and value propagation are immediate to
derive from the algebraic expression of the first-order derivative of χ. We formally state it
in the following theorem which can be proved exhaustively.

Theorem 5. Let χ : {0, 1}3 7→ {0, 1}3 be the function defined as χ(x1, x2, x3) = (y1, y2, y3)
where

y1 = x1 ⊕ (¬x2 ∧ x3)
y2 = x2 ⊕ (¬x3 ∧ x1)
y3 = x3 ⊕ (¬x1 ∧ x2)

For any differential ((∆X1,∆X2,∆X3), (∆Y1,∆Y2,∆Y3)) on χ, it holds that

(¬∆X1 ∧ ¬∆X2 ∧ ¬∆X3) ∧ (∆Y1 ∨∆Y2 ∨∆Y3) = 0,
(¬∆X1 ∧ ¬∆X2 ∧∆X3) ∧ ¬∆Y3 = 0,
(¬∆X1 ∧∆X2 ∧ ¬∆X3) ∧ ¬∆Y2 = 0,
(∆X1 ∧ ¬∆X2 ∧ ¬∆X3) ∧ ¬∆Y1 = 0,

(¬∆X1 ∧∆X2 ∧∆X3) ∧ ¬(∆Y2 ⊕∆Y3) = 0,
(∆X1 ∧ ¬∆X2 ∧∆X3) ∧ ¬(∆Y1 ⊕∆Y3) = 0,
(∆X1 ∧∆X2 ∧ ¬∆X3) ∧ ¬(∆Y1 ⊕∆Y2) = 0,

(∆X1 ∧∆X2 ∧∆X3) ∧ ¬(∆Y1 ⊕∆Y2 ⊕∆Y3) = 0,
((x1 ⊕∆X1)⊕ (¬(x2 ⊕∆X2) ∧ (x3 ⊕∆X3)))⊕ (y1 ⊕∆Y1) = 0,
((x2 ⊕∆X2)⊕ (¬(x3 ⊕∆X3) ∧ (x1 ⊕∆X1)))⊕ (y2 ⊕∆Y2) = 0,
((x3 ⊕∆X3)⊕ (¬(x1 ⊕∆X1) ∧ (x2 ⊕∆X2)))⊕ (y3 ⊕∆Y3) = 0

and DPχ((∆X1,∆X2,∆X3), (∆Y1,∆Y2,∆Y3)) = 2−2·(∆X1∨∆X2∨∆X3).

In order to compute the probability of the trail over multiple rounds, we assume that
the rounds are independent. Based on our model, an SMT solver then searches for a
valid differential trail from the user-specified probability. If there exists no trail with the
given probability, the SMT solver simply states that the Boolean formula is unsatisfiable.
Otherwise, the solver returns a differential trail together with an input to the permutation
such that when the second input is constructed, the difference of the pair for each step of
the permutation satisfies the differential trail.

There are two more usages of our SMT model. First, it can be used to check the
validity of a differential trail. This is done by fixing the value of variables representing
the differential trail and its probability. If the solver says the model is unsatisfiable, it
implies that the provided trail is invalid, i.e. there exists no pair of input that satisfies the
trail. The second usage of our model is to find the highest probability differential. This is
achieved by searching for a trail with high probability and then iteratively reducing the
probability until the SMT model is satisfiable. Thus our SMT model also serves as an
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Figure 4: The success probability to mount the distinguishing attacks for 3-rounds of
Xoodoo using differential and functional distinguisher with 100 trials.

alternative computational proof, in addition to the tree-search approach in [DHAK18a],
on the bound of the best differential of Xoodoo. An example of the constructed valid
differential trail is given in Appendix A.

5.3 Experimental Results
In order to show the advantage of a functional distinguisher in practice over a differential
distinguisher, we implemented a distinguishing attack against three (3) rounds of Xoodoo.
We use the functional described in Appendix D and compare it against the differential
described in Appendix A. The distinguishing attack is repeated for 100 times and we
measure the success probability over a different number of input pairs. The result is
described in Figure 4.

Theoretically, our functional in this experiment has a probability of 2−8, since we
constructed it from the differential in Appendix A by replacing each translation-functional
(differential) on 3-bit χ function in the last round to a deterministic functional. The list of
the relevant deterministic functionals are given in Appendix B. This is certainly not the
best functional that one could get for three rounds of Xoodoo but it helps to illustrate
the usefulness and how to construct it in practice.

Since the cost to check the satisfiability of output pairs in the case of our functional is
more costly than for differential, we also compare the timing to mount the distinguishing
attack with the number of input pairs that has a comparable success probability. From
Figure 4, we see that our functional distinguisher with 211 input pairs and the differential
distinguisher with 239 input pairs have success probability approximately close to one. The
implemented distinguishing attack for differential took 7 hours 48 minutes to finish while
the implemented attack for functional was completed within milliseconds.8

6 Limitations of Functional Cryptanalysis
This section shall discuss the main limitation of functional cryptanalysis in the context
of iterative permutations, specifically in the usage and construction of non-translation
functionals.

8The comparison was done on a machine with Intel Xeon 8280 with 2.70 GHz processor using a
single-thread.
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A round function of an iterative permutation is generally constructed as a composition
of a nonlinear map, a linear map, and a translation in Fn2 . If we aimed to have a functional
with probability one through a linear map and through a translation by a fix constant for
all intermediate rounds, then we are restricted to use a translation-functional. Indeed, a
translation-functional (Tα, TF (α)) on an invertible F2-linear map F : Fn2 7→ Fn2 and (Tα, Tα)
on any translation have probability one for any α ∈ Fn2 . Therefore, a generic strategy to
construct a functional for an r-round iterative permutation is based on an (r − 2)-round
translation-functional (differential), which is then expanded in the first and the last round
using non-translation functional.

6.1 Relation with Nonlinear Cryptanalysis
In [KR96] Knudsen and Robshaw introduced nonlinear cryptanalysis as a generalization
of linear cryptanalysis [Mat93]. In order to distinguish F : Fn2 7→ Fn2 from a random
permutation, linear cryptanalysis tries to find ci, di ∈ Fn2 for 1 ≤ i ≤ n such that the
following linear approximation

n∑
i=1

cixi =
n∑
i=1

diyi

holds with a high absolute bias |p− 1/2| where p is the probability of the approximation to
hold. Such approximation is expected to have a probability 1/2 for a random permutation.
When F is an iterative permutation, the construction of a linear approximation for F is
done by joining the compatible linear approximation for each round. Compatible means
that the output approximation of round i of F acts as an input approximation for the
round i+ 1 of F . The nontrivial part to find a high or low probability linear approximation
for a single round is on its nonlinear function. When the nonlinear function is small,
such as substitution boxes, one could generate the bias for all linear approximation of the
nonlinear function known as linear approximation table [Mat93].

Nonlinear cryptanalysis generalizes this approach by using nonlinear approximations
instead of the linear ones. This is a natural extension since there are many more nonlinear
approximations than linear approximations. However, the construction of a nonlinear
approximation for an iterative permutation has one challenge: the convenience of joining
compatible linear approximations for each round function does not translate directly for
the case of nonlinear approximations. The suggested approach to construct a nonlinear
approximation is to find a linear approximation with a high absolute bias and replace the
linear approximations in the outer round by nonlinear approximations.

In that respect, the construction of nonlinear approximations and non-translation
functionals for an iterative permutation share an analogous approach. The former uses a
linear trail with a high absolute bias and replaces the outer round linear approximations
into a nonlinear one. The latter uses a differential (translation) trail with a high probability
and replaces the outer round differential (translation-functional) into a non-translation
one.

7 Conclusions and Future Work
In this work we have proposed functional cryptanalysis, a flexible and versatile cryptanalysis
technique that generalizes differential, rotational, and rotational-xor cryptanalysis. We
established the necessary notions together with the three primary aspects of the technique:
the propagations, the representations, and the limitations. Functional cryptanalysis allows
a unification of cryptanalysis techniques that rely on the notion of “difference”, based
on a binary operation, together with other cryptanalysis techniques where the notion
of “difference” can not be defined. We proposed an algebraic framework to describe



20 Functional Cryptanalysis

functional cryptanalysis, which includes an algorithm based on Gröbner bases to compute
the probability of a functional. The generic nature of functional cryptanalysis means that
our algebraic framework is also applicable for differential, rotational, and rotational-xor
cryptanalysis.

The high degree of flexibility of functional cryptanalysis allows it to express some
functionals (σ, ϕ) where the cost of the evaluation map of σ and ϕ are non-negligible.9
For instance, when both σ and ϕ are defined as F−1 applied on an r-round iterative
permutation with identical round function F . However, the question whether the use
of functionals with non-negligible evaluation cost constitute a meaningful distinguishing
attack is a subject that deserves a dedicated discussion.

On the other hand, we believe that functional cryptanalysis has a potential to open up
multiple new research questions. One question to ask is how the concept of functional trans-
lates to other variants of differential cryptanalysis such as truncated differential [Knu94],
higher-order differential [Knu94], multiple-differential cryptanalysis [BG11], etc. Another
possible future work is to explore other applications of functional ideal defined in Defini-
tion 20. Also the applications of functional cryptanalysis to other permutations or block
ciphers, including other primitives such as hash functions, are still not covered in this
paper. Other direction of work is how to address the limitations described in Section 6
and whether there exists a cipher where the construction of a functional is not limited to
the strategy explained in the same section.
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A Example of a Valid 3-Round Differential Trail for Xoodoo

Table 2: An example of valid input to Xoodoo for the differential trail in Table 3.

0x7FA5D96A 0x00982B9E 0xDF2A87F4 0x7DE2D5F2
0xB13D5A99 0xE7D4F65A 0x88EF158F 0x18F7CEEC
0x31F3D6E6 0xE9BD6412 0xBF28B377 0x6E22D231

Table 3: An example of a valid three (3) round differential trail of Xoodoo with theoretical
probability 2−36.

0x1D28B03E 0x09199081 0x46125265 0x56D31D2C

θ

0x5D28B03E 0x89199081 0x46125265 0x56D31D2C
0x1D28B03E 0x89119081 0x46125265 0x56D31D2C
0x00000000 0x80000000 0x00000000 0x00000000

ρwest

0x40000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00080000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

χ

0x00000000 0x40000000 0x00000000 0x00000000
0x00000000 0x40000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

ρeast

0x00000000 0x40000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

θ

0x00000000 0x80000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

ρwest

0x00000000 0x80000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

χ

0x00000000 0x00000000 0x80000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

ρeast

0x00000000 0x00000000 0x80000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00000000 0x00000000

θ

0x00000000 0x00000000 0x00000001 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x80000000 0x00002010 0x00004020

ρwest

0x00000000 0x00000000 0x00002011 0x00004020
0x00000000 0x00000000 0x00002010 0x00004020
0x00000000 0x80000000 0x00002010 0x00004020

χ

0x00004020 0x00000000 0x00000000 0x00002011
0x00000000 0x00000000 0x01008000 0x02010000
0x00000000 0x80000000 0x01002010 0x02006031

ρeast

0x00004020 0x00000000 0x0000A010 0x00012011
0x00004020 0x80000000 0x01008000 0x02014020
0x00000000 0x80000000 0x01002010 0x02006031
0x00008040 0x00000000 0x00014020 0x00024022
0x00800001 0x01402002 0x00402000 0x00000080
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B Deterministic Functional for 3-bit χ

Table 4: Deterministic functional for coordinate-wise 3-bit χ at the last round of Table 3

σ(x1, x2, x3) = (x′1, x′2, x′3) ϕ(y1, y2, y3) = (y′1, y′2, y′3)
x′1 = x1, y′1 = y1y2 + y1 + y2 + y3,
x′2 = x2 + 1, y′2 = y2 + 1,
x′3 = x3. y′3 = y1 + y2y3 + 1.
x′1 = x1 + 1, y′1 = y1 + 1,
x′2 = x2, y′2 = y1y2 + y3 + 1,
x′3 = x3. y′3 = y1y3 + y1 + y2 + y3.
x′1 = x1, y′1 = y1y3 + y2 + 1,
x′2 = x2, y′2 = y1 + y2y3 + y2 + y3,
x′3 = x3 + 1. y′3 = y3 + 1.

C Round Constants of Xoodoo

Table 5: The round constants cr of Xoodoo with −11 ≤ r ≤ 0 in hexadecimal notation.

r cr r cr r cr r cr
−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

D Functional Distinguisher for 3-round of Xoodoo
The experimental result presented in Subsection 5.3 is based on the functional (Tα, ϕ)
where α is the input difference of the differential trail in Appendix A and ϕ is the output
function described in Table 6. The description of ϕ in Table 6 only shows the polynomial
that is not of the form y′i,j,k = yi,j,k where i, j, k denotes the k-th bit of the 32-bit word
at row i and column j. We use 0-based indexing for the variables to make it easy to
programmatically verify the result.

E Ideals for Other Cryptanalysis Techniques
In addition to the functional ideal defined in Section 4, one can also construct ideals for
other cryptanalysis techniques. One examples is differential ideal.

Definition 21. Let R be a polynomial ring defined in (9). For any differential (α, β) on
F : Fn2 7→ Fm2 , where α = (α1, . . . , αn), β = (β1, . . . , βm), we define the differential ideal
DIF (α, β) w.r.t the differential (α, β) as

DIF (α, β) = 〈F, F ′, {xi + x′i + αi | i = 1, . . . , n}, {yj + y′j + βj | j = 1, . . . ,m},P(R)〉.

Clearly differential ideal is a special case of functional ideal and the result of Theorem 2
holds. This means that the Algorithm 4.1 can be used to compute the probability of a
differential.

Another ideal of a particular interest is the one that can be used in linear cryptanalysis.
We refer to this as linear ideal.
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Definition 22. Let R = F2[x1, . . . , xn, y1, . . . , ym]. For any a = (a1, . . . , an) ∈ Fn2 and
(b1, . . . , bm) ∈ Fm2 , with a, b 6= 0, we define the linear ideal LIF (a, b) of F : Fn2 7→ Fm2 with
input mask a and output mask b as

LIF (a, b) = 〈F,
n∑
i=1

aixi +
m∑
j=1

bjyj ,P(R)〉.

Clearly LIF (a, b) is zero-dimensional and radical since P(R) ⊂ LIF (a, b). Hence, the
following proposition holds.

Proposition 6. Let R = F2[x1, . . . , xn, y1, . . . , ym]. The bias of a linear approximation
on F : Fn2 7→ Fm2 with input mask a ∈ Fn2 and output mask b ∈ Fm2 is equal to

2−n · (dimF2(R/LIF (a, b))− 2n−1).

By replacing FIF (σ, ϕ) to LIF (a, b) in line 2 and set the return value of Algorithm 4.1
to be 2−n · (|RM(LIF (a, b))| − 2n−1), then we have an way to compute the bias of a linear
approximation using Gröbner bases.

Also one can have an ideal for the autocorrelation of component function of F : Fn2 7→
Fm2 , which is closely related with the differential-linear cryptanalysis.

Definition 23 (Autocorrelation). Let F : Fn2 7→ Fm2 . The autocorrelation of a component
function Fb(x) = b · F (x) at α ∈ Fn2 , where · here denotes a dot-product vector, is defined
as τF (α, b) =

∑
x∈Fn

2
(−1)Fb(x)+Fb(x+α).

Definition 24. Let R be a polynomial ring defined in (9). For any α = (α1, . . . , αn) ∈ Fn2
and b = (b1, . . . , bm) ∈ Fm2 , we define the autocorrelation ideal AIF (α, b) of F with input
difference α and output mask b as

AIF (α, b) = 〈F, F ′, {xi + x′i + αi | i = 1, . . . , n},
m∑
j=1

bj(yj + y′j) + 1,P(R)〉. (12)

Note that the Hamming weight of Fb(x) + Fb(x+ α) as an n-variable Boolean function
is equal to the number of solutions of (12), which is equal to dimF2(R/AIF (α, b)) due
the ideal being zero-dimensional and radical. Since for any n-variable Boolean function
f we have 2n − 2 · wt(f) =

∑
x∈Fn

2
(−1)f(x) then τF (α, b) = 2n − 2 · dimF2(R/AIF (α, b)).

Following the same approach as previously done, we can compute the autocorrelation
τF (α, b) by first computing a Gröbner basis of AIF (α, b) followed by the computation
of dimF2(R/AIF (α, b)) = |RM(AIF (α, b))| using the algorithm ReducedMonomials ex-
plained in Appendix F.
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F Algorithm ReducedMonomials

Input: A Gröbner basis G of a zero-dimensional ideal {0} 6= I ⊆ F[x1, . . . , xn]
Output: The set RM(I) of reduced monomials of I

1 R← {1}
2 for i = 1 to n do
3 M ← R
4 ki ← max({ei | xe1

1 · · ·x
ei
i · · ·xen

n ∈ LM(G)})
5 while M 6= {} do
6 Select a monomial m from M
7 M ←M \ {m}
8 for l = 1 to ki do
9 m← m · xi

10 if LM(g) - m,∀g ∈ G then
11 R← R ∪ {m}

12 return R
Algorithm F.1: The algorithm ReducedMonomials(G) (adapted from
RedTerms algorithm in [BWK93, pg. 424]).
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Table 6: Output function ϕ for the functional used in Subsection 5.3.

(row, column)
(0, 0) y′0,0,5 = y0,0,5y1,0,6 + y0,0,5 + y1,0,6 + y2,2,13,

y′0,0,14 = y0,0,14y1,0,15 + y0,0,14 + y1,0,15 + y2,2,22.

(0, 1) y′0,1,31 = y0,1,31 + 1
(0, 2) y′0,2,4 = y0,2,4 + 1

y′0,2,13 = y0,2,13 + 1
y′0,2,15 = y0,2,15y2,0,23 + y1,2,16 + 1,
y′0,2,24 = y0,2,24y2,0,0 + y1,2,25 + 1

(0, 3) y′0,3,0 = y0,3,0y1,3,1 + y0,3,0 + y1,3,1 + y2,1,8
y′0,3,4 = y0,3,4y1,3,5 + y0,3,4 + y1,3,5 + y2,1,12
y′0,3,5 = y0,3,5 + 1
y′0,3,13 = y0,3,13y1,3,14 + y0,3,13 + y1,3,14 + y2,1,21
y′0,3,14 = y0,3,14 + 1
y′0,3,16 = y0,3,16y2,1,24 + y1,3,17 + 1
y′0,3,25 = y0,3,25y2,1,1 + y1,3,26 + 1

(1, 0) y′1,0,6 = y1,0,6 + 1
y′1,0,15 = y1,0,15 + 1

(1, 1) y′1,1,0 = y0,1,31y1,1,0 + y2,3,7 + 1
(1, 2) y′1,2,5 = y0,2,4y1,2,5 + y2,0,12 + 1

y′1,2,14 = y0,2,13y1,2,14 + y2,0,21 + 1
y′1,2,16 = y0,2,15 + y1,2,16y2,0,23 + y1,2,16 + y2,0,23
y′1,2,25 = y0,2,24 + y1,2,25y2,0,0 + y1,2,25 + y2,0,0

(1, 3) y′1,3,1 = y1,3,1 + 1
y′1,3,5 = y1,3,5 + 1
y′1,3,6 = y0,3,5y1,3,6 + y2,1,13 + 1
y′1,3,14 = y1,3,14 + 1
y′1,3,15 = y0,3,14y1,3,15 + y2,1,22 + 1
y′1,3,17 = y0,3,16 + y1,3,17y2,1,24 + x1,3,17 + y2,1,24
y′1,3,26 = y0,3,25 + y1,3,26y2,1,1 + y1,3,26 + y2,1,1

(2, 0) y′2,0,0 = y2,0,0 + 1
y′2,0,12 = y0,2,4y2,0,12 + y0,2,4 + y1,2,5 + y2,0,12
y′2,0,21 = y0,2,13y2,0,21 + y0,2,13 + y1,2,14 + y2,0,21
y′2,0,23 = y2,0,23 + 1

(2, 1) y′2,1,1 = y2,1,1 + 1
y′2,1,8 = y0,3,0 + y1,3,1y2,1,8 + 1
y′2,1,12 = y0,3,4 + y1,3,5y2,1,12 + 1
y′2,1,13 = y0,3,5y2,1,13 + y0,3,5 + y1,3,6 + y2,1,13
y′2,1,21 = y0,3,13 + y1,3,14y2,1,21 + 1
y′2,1,22 = y0,3,14y2,1,22 + y0,3,14 + y +1,3,15 +y2,1,22
y′2,1,24 = y2,1,24 + 1

(2, 2) y′2,2,13 = y0,0,5 + y1,0,6y2,2,13 + 1
y′2,2,22 = y0,0,14 + y1,0,15y2,2,22 + 1

(2, 3) y′2,3,7 = y0,1,31y2,3,7 + y0,1,31 + y1,1,00 + y2,3,7
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