
Functional Commitments for Circuits from Falsifiable Assumptions

David Balbás1,2, Dario Catalano3, Dario Fiore1, and Russell W. F. Lai4

1 IMDEA Software Institute, Madrid, Spain.
david.balbas@imdea.org
dario.fiore@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain.
3 University of Catania, Catania, Italy.

catalano@dmi.unict.it
4 Aalto University, Espoo, Finland.

russell.lai@aalto.fi

Abstract. A functional commitment (FC) scheme allows one to commit to a vector x and later
produce a short opening proof of (f, f(x)) for any admissible function f . The security of FC schemes,
called evaluation binding, ensures that it is hard to open the commitment to the same function f
and different outputs y 6= y′. Unlike succinct non-interactive arguments (SNARG) which provide a
stronger soundness guarantee but typically require non-falsifiable assumptions, the evaluation binding
of FC schemes can often be based on falsifiable assumptions and is sufficient for certain applications
such as constructing homomorphic signatures (HS). Since their inception, FC schemes supporting ever
more expressive classes of functions have been proposed, with the state-of-the-art supporting low-degree
polynomial maps.
In this work we construct the first FC schemes for circuits, based on either pairing-based or lattice-
based falsifiable assumptions. Our FCs require to fix a-priori only the maximal width of the circuit to
be evaluated, and have opening proofs whose size only depends on the depth of the circuit. We obtain
our results in two steps. First, we introduce a new tool which we call chainable functional commitment
(CFC), and show that CFCs for quadratic polynomial maps generically imply an FC for bounded-width
circuits. Then, we show how to efficiently instantiate CFCs for quadratic polynomial maps over either
pairing groups or lattices.
Using a recent transformation from FC to HS, we obtain the first pairing- and lattice-based constructions
of HS for bounded-width, but unbounded-depth, circuits. Prior to this work, the only HS for general
circuits is lattice-based and requires bounding the circuit depth at setup time.

1 Introduction

Commitment schemes allow a sender to commit to a message x in such a way that the message
remains secret until the moment she decides to open the commitment and reveal it (hiding), and
they allow the receiver to get convinced that the opened message is the same x originally used at
commitment time (binding).

Today, commitments are a ubiquitous building block in cryptographic protocols, including digital
signatures, zero-knowledge proofs and multiparty computation, to name a few. As applications
become more and more sophisticated, the basic commitment functionality may fall short. One
particular limitation is that the opening mechanism is all-or-nothing: either the sender opens in full
the commitment and the receiver learns the whole message, or the receiver gets nothing. A more
flexible and useful functionality would be to open the commitment to a function of the committed
message, that is to reveal f(x) for some function f .

This advanced commitment notion has been formalized by Libert, Ramanna and Yung who
called this primitive Functional Commitments (FC) [LRY16]. The property that makes functional
commitments unique (and nontrivial to realize) is succinctness: assuming that the message is a

large vector x, then both the commitment and the openings should be short, e.g., polylogarithmic
or constant in the size of x. The main security requirement of functional commitments is evaluation
binding: no polynomially bounded adversary should be able to, validly, open the commitment to
two different values y 6= y′ for the same f . Additionally, FCs can also be hiding and zero-knowledge
(a commitment and possibly several openings should not reveal additional information about x).

Functional commitments are essentially a class of (commit-and-prove) succinct non-interactive
arguments with a weaker security property, that is evaluation binding instead of soundness. The
notion of evaluation binding is not necessarily a weakness but can also be a feature: it is a fal-
sifiable security notion that makes FCs potentially realizable from falsifiable assumptions in the
standard model (i.e., without random oracles), without contradicting the celebrated result of Gen-
try and Wichs about impossibility of SNARGs from falsifiable assumptions [GW11]. For this reason,
functional commitments can be an attractive alternative to SNARGs for implementing succinct ar-
guments in cryptographic protocols where evaluation binding is sufficient (notably, without carrying
the need of non-falsifiable assumptions). Examples of this case include homomorphic signatures and
verifiable databases as shown in [CFT22], as well as the numerous applications that employ vector
commitments [CFM08, LY10, CF13] or polynomial commitments [KZG10] (two primitives that are
a special case of the FC notion). An additional motivation for studying evaluation binding FCs is
that they can provide a different approach to construct SNARKs since any evaluation binding FC
can be compiled into a SNARK by adding a simpler SNARK proof of “I know x that opens the
commitment”.

Turning our focus to realizations of functional commitments, it is easy to construct an FC for
arbitrary computations based on non-falsifiable assumptions by generating a succinct commitment
to the input x and a SNARK proof for the statement “f(x) = y and x opens the commitment
correctly”. However, as discussed above, non-falsifiable assumptions are not known to be required
for functional commitments and thus this solution is not satisfactory.

On the other hand, the state-of-the-art realizations of FCs from falsifiable assumptions encom-
pass a limited set of functionalities that (besides the special cases of vector and polynomial commit-
ments) include linear maps [LRY16, LM19], semi-sparse polynomials [LP20] and constant-degree
polynomials [ACL+22, CFT22] (see Section 1.2 for a discussion on related work).

1.1 Our Contribution

In this paper, we propose the first constructions of Functional Commitments that support the eval-
uation of arbitrary arithmetic circuits5 and are based on falsifiable assumptions. In our FC schemes
only the maximal width of the circuits has to be fixed at setup time. The size of the commitments
is fully succinct in the input size; the size of opening proofs grows with the multiplicative depth
dC of the evaluated circuit C, but is otherwise independent of the circuit’s size or the input length.
Notably, our FC schemes provide an exponential improvement compared to previous FCs that could
only support polynomials of degree δ = O(1) with an efficiency degrading exponentially in δ (as
O(nδ))6 [ACL+22, CFT22].

We design our FCs for circuits in two steps: (1) a generic construction of an FC for circuits
based on a novel primitive that we call Chainable Functional Commitment (CFC), and (2) two
5 Looking ahead, our lattice-based instantiation supports arithmetic circuits over rings where wires carry values of
bounded norm.

6 Note, when used for a circuit of depth d these solutions may have efficiency doubly exponential in d since in general
δ ≈ 2d.

2

FC scheme Functions |pp| |com| |π| AH

[LRY16] (pair.) linear maps λn λ λ` X
[LM19] (pair.) linear maps λ`n λ λ X
[LP20] (pair.) semi-sparse poly λµ λ` λ –
[ACL+22] (latt.) const. deg. poly p(λ)(n2δ+`) p(λ) log n p(λ) log2 `n X
[CFT22] (pair.) const. deg. poly λ`n2δ λδf λδf X

This work:
Corol. 1.1 (pair.) AC of width ≤ w λw5 λ λd2

C X
Corol. 1.3 (pair.) AC of size ≤ S λS5 λ λdC X
Corol. 2.2 (latt.) AC of width ≤ w p(λ)w5 p(λ) logw p(λ)dC log2w X

Table 1: Comparison of FC schemes from falsifiable assumptions for functions with n inputs and ` outputs. Constants
are omitted, e.g., λn means O(λn). For semi-sparse polynomials µ ≥ n is a sparsity-dependent parameter (cf. [LP20]).
For constant-degree polynomials δf is the degree of the polynomial f used in opening while δ is the maximum degree
fixed at setup. AC means arithmetic circuits, dC the depth of the circuit C used in opening, and note that w ≥ n, `.
AH means ‘additively homomorphic’; schemes meeting this property can be turned into multi-input homomorphic
signatures.

realizations of CFCs, one based on bilinear pairings and one based on lattices. The pairing-based
CFC relies on a new falsifiable assumption that we justify in the bilinear generic group model, while
the lattice-based CFC relies on a slight extension of the k-MISIS assumption recently introduced
in [ACL+22]. Using either one of these two CFC constructions (and considering a few tradeoffs of
our generic construction), we obtain a variety of FC schemes; we summarize in Table 1 the most
representative ones.

Our FC schemes enjoy additional properties that have useful applications. First, they are addi-
tively homomorphic, which as shown in [CFT22] makes the FC updatable and allows for building
multi-input homomorphic signatures. Notably, using our new FC for circuits we obtain new real-
izations of homomorphic signatures that advance the state of the art (see slightly below for more
details). Second, they present amortized efficient verification, which means that the verifier can
precompute a verification key vkC associated to a circuit C and use this key (an unbounded number
of times) to verify openings for C in time (asymptotically) faster than evaluating C. Third, our FC
schemes can be trivially modified to have perfectly hiding commitments and they can be efficiently
compiled into FCs that have zero-knowledge openings (i.e., an opening proof for f(x) reveals no
information about the committed x beyond what is trivially leaked by the result). Both efficient
verification and zero-knowledge openings are relevant in the construction of HS from FCs since, as
showed in [CFT22], they imply the analogous properties of efficient verification [CFW14, GVW15]
and context hiding [BF11] in the resulting HS schemes.

Finally, both our pairing-based and lattice-based FCs for circuits can yield a SNARK for arith-
metic circuit satisfiability if one additionally makes an appropriate knowledge-type assumption. For
the pairing-based FC the very same scheme (without any change) can be proven to be a SNARK
for NP under a knowledge of exponent assumption. We find this “dual-mode” feature interesting
as it is an example of a scheme where according to the strength of the taken assumption one ob-
tains an accordingly strong level of security (i.e., non-falsifiable soundness under a non-falsifiable
assumption, and (falsifiable) evaluation binding under a falsifiable assumption).

3

Application to Homomorphic Signatures. Homomorphic signatures (HS) [JMSW02, BF11]
allow a signer to sign a large dataset x in such a way that anyone, holding a signature on x, can
perform a computation f on this data and derive a signature σf,y on the output y = f(x). This
signature vouches for the correctness of y as output of f on some legitimately signed data and is
publicly verifiable given a verification key, a description of f , and the result y. The most expressive
HS in the state of the art is the scheme of Gorbunov, Vaikuntanathan and Wichs [GVW15] that is
based on lattices and supports circuits with bounded number of inputs n and bounded (polynomial)
depth d. In their scheme, the signature size grows polynomially with the depth of the evaluated
circuit (precisely, as d3 · poly(λ)).

By applying a recently proposed transformation [CFT22], our new FCs for circuits yield new
homomorphic signature schemes that support the same class of functions and succinctness as sup-
ported by the FC. Our new HS advance the state of the art; notably, we obtain:

– The first HS for circuits based on pairings. Previously existing HS based on pairings can capture
at most circuits in NC1 [KNYY19, CFT22] and need a bound on the circuit size. In contrast, our
HS can evaluate circuits of any polynomial depth, achieving virtually the same capability of the
lattice-based HS of [GVW15] and with better succinctness. We believe this result is interesting
as it shows for the first time that we can build HS for circuits without the need of algebraic
structures, such as lattices, that are notoriously powerful.

– The first HS that do not require an a-priori bound on the depth. The work of Gorbunov, Vaikun-
tanathan and Wichs [GVW15] left open the problem of constructing fully-homomorphic signa-
tures, i.e., HS that can evaluate any computation in the class P without having to fix any bound
at key generation time. In our new HS we do not need to fix a bound on the depth but we
rather need a bound on the width of the circuits at key generation time. Although this result
does not fully solve the open problem of realizing fully-homomorphic signatures, we believe that
our schemes make one step ahead in this direction. Our observation is that dealing with a bound
on the circuit’s depth is more difficult than dealing with a bound on the width. As evidence for
this, we show a variant of our FC scheme (see Section 5.2) for which one can fix a bound n and
support circuits of larger width O(n) with an O(1) increase in proof size. Therefore, while our
solution needs a bound on the width, this is not strict, as opposed to the depth bound in the HS
of [GVW15].

Like the scheme of [GVW15], our HS constructions support multi-input signing, have efficient
(offline/online) verification and are context-hiding. As a drawback, our HS allow only a limited
form of multi-hop evaluation, that is the ability of computing on already evaluated signatures. In
our case, we can compose computations sequentially (i.e., given a signature σf,y for y = f(x) we
can generate one for z = g(y) = g(f(x))), while [GVW15] supports arbitrary compositions (e.g.,
given signatures for {yi = fi(x)}i, one can generate one for z = g(f1(x), . . . , fn(x))). On the other
hand, for circuits with multiple outputs, the size of our signatures is independent of the output size,
whereas in [GVW15] signatures grow linearly with the number of outputs.

Our Novel Tool: Chainable Functional Commitments. The key novelty that allows us to
overcome the barrier in the state of the art and build the first FCs for circuit is the introduction and
realization of chainable functional commitments (CFC) – a new primitive of potentially independent
interest. In brief, a CFC is a functional commitment where one can “open” to committed outputs.
More concretely, while a (basic) FC allows proving statements of the form “f(x) = y” for committed
x and publicly known y, a CFC allows generating a proof πf that comy is a commitment to

4

y = f(x1, . . .xm) for vectors x1, . . .xm, each independently committed in com1, . . . , comm. In terms
of security, CFCs must satisfy the analogue of evaluation binding, that is one cannot open the same
input commitments (com1, . . . , comm) to two distinct output commitments comy 6= com′y for the
same f . Keeping outputs committed is what makes CFCs “chainable”, in the sense that committed
outputs can serve as (committed) inputs for other openings. For instance, using the syntax above,
one can compute an opening πg proving that comz is a commitment to z = g(y). This way, the
concatenation of comy, πf , πg yields a proof that z = g(f(x1, . . .xm)).

The introduction and realization of CFCs are in our opinion the main conceptual and technical
contributions of this paper. From a conceptual point of view, the chaining functionality turns out
to be a fundamental feature to tackle the challenge of supporting a computation as expressive as an
arithmetic circuit. Indeed, we show that from a CFC for quadratic polynomial maps it is possible
to construct a (C)FC for arithmetic circuits. From the technical point of view, we propose new
techniques that depart from the ones of existing FCs for polynomials [ACL+22, CFT22] in that
the latter only work when the output vector is known to the verifier and there is a single input
commitment. We refer to Section 2 for an informal explanation of our techniques.

1.2 Related work

The idea of a commitment scheme where one can open to functions of the committed data was
implicitly suggested by Gorbunov, Vaikuntanathan and Wichs [GVW15], though their construction
is not succinct as the commitment size is linear in the length of the vector. Libert, Ramanna
and Yung [LRY16] were the first to formalize succinct functional commitments. They proposed a
succinct FC for linear forms and showed applications of this primitive to polynomial commitments
[KZG10] and accumulators. Recent works have extended FCs to support more expressive functions,
including linear maps [LM19], semi-sparse polynomials [LP20], and constant-degree polynomials
[ACL+22, CFT22]. Table 1 presents a comparison of these works with our results. Catalano, Fiore
and Tucker [CFT22] also proposed an FC for monotone span programs, which only achieves a weaker
notion of evaluation binding where the adversary must reveal the committed vector. Compared to
these prior works, ours addresses the main question left open in the state of the art, which is to
construct FCs from falsifiable assumptions for arbitrary computation.

A recent work close to this goal is that of Peikert, Pepin, and Sharp [PPS21] who proposed a
lattice-based vector commitment and a companion scheme where one can open to circuit evaluations
of the committed input. Their solution, however, is not a full-fledged FC as it works in a significantly
weaker model where a trusted authority is assumed to generate, using a secret key, an opening key
for each function for which the prover wants to release an opening. In contrast, our solutions only
assume a one-time trusted setup after which anyone can compute commitments and openings to
any admissible function.

2 A Technical Overview of Our Work

We construct our FCs for circuits in two main steps: (1) a generic construction of FC for circuits
from CFCs for quadratic polynomial maps (Section 5), and (2) the realization of these CFCs based
on either pairings (Section 6) or lattices (Section 7). Below we give an informal overview of these
constructions.

5

FC for circuits from CFCs for quadratic functions. Our transform starts from the obser-
vation that the gates of an arithmetic circuit7 can be partitioned into “levels” according to their
multiplicative depth, i.e., level h contains all the gates of multiplicative depth h and level 0 contains
the inputs. So, each output of level h, denoted by x(h), is computed by a quadratic polynomial
taking inputs from previous levels < h, and the evaluation of a circuit C of width ≤ n and depth
d can be described as the sequential evaluation of quadratic polynomial maps f (h) : X nh → X n for
h = 1 to d.

The basic idea of our generic FC is that, starting with a commitment com0 to the inputs x(0),
we can open it to y = C(x(0)) in two steps. First, we commit to the outputs of every level. Second,
we use the CFC opening functionality to prove that these values are computed correctly from values
committed in previous levels. Slightly more in detail, at level h we create a commitment comh to
the outputs x(h) = f (h)(x(0), . . . ,x(h−1)) and generate a CFC opening proof πh to show consistency
w.r.t. commitments com0, . . . , comh−1. Eventually, this strategy reaches the commitment comd of
the last level that includes the outputs, which can be opened to y.

As one can see, this strategy makes our opening proofs grow with the depth of the circuit.
However, if the CFC commitments and opening proofs are short (e.g., constant/logarithmic in their
input size, that is the circuit’s width), then the FC openings keep only such dependence on the
depth.

Our CFCs for Quadratic Functions. To build our CFCs we devise new commitment and
opening techniques that capture a quadratic polynomial map y = f(x1, . . . ,xm) where each input is
committed in comi, and the output is committed too in comy. Our techniques use similar ideas in the
pairings and lattice setting. For the pairing setting we adopt the implicit notation for bilinear groups
G1,G2,GT of prime order q by which [x]s denotes the vector of group elements (gx1s , . . . , g

xn
s) ∈ Gn

s

for a fixed generator gs. For the lattice setting, we let R be a cyclotomic ring and q be a large
enough rational prime such that a random element in Rq := R/qR is invertible with non-negligible
probability.

Abstract functionality. In our pairing-based CFC we define three commitment keys [α]1,
[β]1, and [γ]1 in Gn

1 . A commitment of type α to a vector x ∈ Znq is computed à la Pedersen as
a group element X(α) = [〈x,α〉]1, commitments of type β and γ are defined analogously. In the
lattice-based CFC the keys are random elements in Rnq and commitments (of vectors x with small
entries) are similarly computed as 〈x,α〉 ∈ Rq.

In our CFCs the commitments generated by Com and used by Open are only those of type α,
whereas commitments of type β and γ are used as auxiliary values in the opening proofs. In order to
create a CFC opening to a quadratic polynomial, our main tool is a technique realizing the following
functionality:

– [(α, β) → γ]-Quadratic opening: given m pairs of commitments {X(α)
i = [〈xi,α〉]1, X(β)

i =

[〈xi,β〉]1}i=1...m and a commitment Y (γ) = [〈y,γ〉]1 generate a succinct opening proof π(γ)
f that

y = f(x1, . . . ,xm).

Before seeing how we generate this opening, we observe that π(γ)
f does not yet achieve our goal since

it assumes the availability of both type-α and type-β commitments on the inputs, and it only allows
us to “move” to a type-γ commitment of the output, preventing us from achieving chainability.

We solve both issues by designing two special cases of the functionality above:
7 In our model we assume wlog arithmetic circuits where every gate is a quadratic polynomial of unbounded fan-in.

6

– [α → β]-Identity opening: given a type-α commitment X(α) = [〈x,α〉] show that a type-β com-
mitment X(β) commits to the same x, i.e., X(β) = [〈x,β〉];

– [γ → α]-Identity opening: given a type-γ commitment Y (γ) = [〈y,γ〉] show that a type-α com-
mitment Y (α) commits to the same y, i.e., Y (α) = [〈y,α〉].

We use the identity opening mechanisms to “close the circle” in such a way to obtain a quadratic
opening mechanism where all inputs and outputs are only type-α commitments. To summarize,
our CFC Open algorithm consists of the following steps: (i) Compute a type-β commitment X(β)

i

to each input along with an [α → β]-Identity opening proof that X(β)
i commits to the same xi in

X
(α)
i ; (ii) Compute a type-γ commitment Y (γ) to the result y = f(x1, . . . ,xm) and a [(α, β)→ γ]-

Quadratic opening proof attesting the validity of y w.r.t. the input commitment pairs (X
(α)
i , X

(β)
i);

(iii) Finally, use the [γ → α]-identity opening to ensure that Y (α) is a commitment to the same y
in the Y (γ) computed in (ii).

Our [(α, β) → γ]-quadratic opening method. We use the fact that a quadratic polynomial
map f : X nm → X n can be linearized via appropriately defined vector e and matrices Fi and Gi,j

such that
y = f(x1, . . . ,xm) = e+

∑
i

Fi · xi +
∑
i,j≥i

Gi,j · (xi ⊗ xj).

In this overview, we only show how to produce an opening proof for a single quadratic term, i.e.,
to show that yi,j = Gi,j · (xi ⊗ xj) given input commitments X(α)

i , X
(β)
i , X

(α)
j , X

(β)
j and output

Y
(γ)
i,j . This is the core of our technique since the full opening for f is obtained by doing an additive

aggregation of openings for all the terms in the sum. Opening to Gi,j is done in two main steps.
First, we compute a commitment to the tensor product xi ⊗ xj . In the lattice-based CFC,

this easily follows from the ring structure of Rq, and thus both prover and verifier can compute
Zi,j = X

(α)
i ·X

(β)
j = 〈xi⊗xj ,α⊗β〉. In the pairing-based CFC, the prover computes this commitment

and helps the verifier to check its correctness as follows. She computes the elements Zi,j := [〈xi ⊗
xj ,α⊗ β〉]1 and X(2)

i := [〈xi,α〉]2, and the verifier checks e(X(α)
i , [1]2)

?
= e([1]1, X

(2)
i) to test that

X
(2)
i ∈ G2 encodes the same vector of X(α)

i ∈ G1, and e(Zi,j , [1]2)
?
= e(X

(β)
j , X

(2)
i) to test that

Zi,j = [〈xi⊗xj ,α⊗β〉]1. To let the prover compute this, we add elements [α]2 and [α⊗β]1 to the
public parameters.

The second step is the generation of a linear map opening that the vector yi,j in the type-γ
commitment Y (γ)

i,j is the result of applying Gi,j to the vector committed in Zi,j . We compute this
proof as follows. Let Γi,j =

∑n
k=1 Gi,j,k · γk

α⊗β be an encoding of the matrix Gi,j that should be
computable by the verifier. Then we rely on the fact that

〈xi ⊗ xj ,α⊗ β〉 · Γi,j = 〈Gi,j · (xi ⊗ xj),γ〉+
∑

k,(h,l) 6=(h′,`′)

ck,h,l,h′,l′ ·
γkαh′βl′

αhβl
(1)

Namely 〈xi⊗xj ,α⊗β〉 ·Γi,j can be split into the sum of a non-rational term that actually encodes
the (commitment to the) result 〈yi,j ,γ〉, and a linear combination of rational monomials whose
coefficients can be efficiently computed given Gi,j ,xi and xj . So, we add to the public parameters
information that allows the prover to prove such splitting.

In the pairings setting, we do this by including in the public parameters: elements {[ηγγkα⊗β]2}k in

the groupG2 that allow the verifier to compute the encoding [Γi,j]2, and the elements {[ηγγkαh′βl′αhβl
]1}k,(h,l)6=(h′,l′)

7

thanks to which the prover computes π(γ)
i,j =

∑
k,(h,l)6=(h′,`′) ck,h,l,h′,l′ · [

ηγγkαh′βl′
αhβl

]1. This way, the ver-
ifier can test equation (1) using pairings as

e (Zi,j , [Γi,j]2)
?
= e

(
Y

(γ)
i,j , [ηγ]2

)
e
(
π

(γ)
i,j , [1]2

)
. (2)

The security relies on the fact that the public parameters do not include any term [ηγγk]1 in the
group G1. We define a falsifiable assumption distilling this property and prove the evaluation binding
property of the CFC under this assumption.

In the lattice setting, we need to make an additional restriction that both the vectors x1, . . . ,xm
and the coefficients of the polynomial map f are short. This implies that the coefficients ck,h,l,h′,l′ in
equation (1) are also short. With this restriction, we enable the proof of the split by adding to the
public parameters short preimages of each ring element γkαh′βl′

αhβl
and, crucially, no short preimage

for ring elements γk. This allows the prover to compute a short preimage π(γ)
i,j for the element

〈xi ⊗ xj ,α⊗ β〉 · Γi,j − Y γ
i,j , which the verifier can test.

3 Preliminaries

Notation. We denote by N the set of natural numbers > 0. We denote the security parameter
by λ ∈ N. We call a function ε negligible, denoted ε(λ) = negl(λ), if ε(λ) = O(λ−c) for every
constant c > 0, and call a function p(λ) polynomial if p(λ) = O(λc) for some constant c > 0. We
say that an algorithm is probabilistic polynomial time (PPT) if its running time is bounded by some
p(λ) = poly(λ). For a finite set S, x←$S denotes sampling x uniformly at random in S. For an
algorithm A, we write y ← A(x) for the output of A on input x. For a positive n ∈ N, [n] is the set
{1, . . . , n}. We denote vectors x and matrices M using bold fonts. For a ring R, given two vectors
x,y ∈ Rn, z := (x⊗y) ∈ Rn2 denotes their Kronecker product (that is a vectorization of the outer
product), i.e., ∀i, j ∈ [n] : zi+(j−1)n = xiyj .

3.1 Functional Commitments

In this section we give the definition of functional commitments (FC) for generic classes of functions,
by generalizing the one given in [LRY16] for linear functions. For notational simplicity and without
loss of generality, we give our definitions for functions that have n inputs and n outputs.

Definition 1 (Functional Commitments). Let X be some domain and let F ⊆ {f : X n → X n}
be a family of functions over X , with n inputs and n outputs. A functional commitment scheme
for F is a tuple of algorithms FC = (Setup,Com,Open,Ver) that work as follows and that satisfy
correctness and succinctness defined below.

Setup(1λ, 1n)→ ck on input the security parameter λ and the functions parameters n, outputs a
commitment key ck.

Com(ck,x; r)→ (com, aux) on input a vector x ∈ X n and (possibly) randomness r, outputs a com-
mitment com and related auxiliary information aux.8

8 In our constructions, we often omit r from the inputs; in such a case we assume either that r is randomly sampled
or that the commitment algorithm is deterministic.

8

Open(ck, aux, f)→ π on input an auxiliary information aux and a function f ∈ F , outputs an
opening proof π.

Ver(ck, com, f,y, π)→ b ∈ {0, 1} on input a commitment com, an opening proof π, a function f ∈ F
and a value y ∈ X n, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n ∈ N, all ck←$ Setup(1λ, 1n), any f : X n → X n in the
class F , and any x ∈ X n, if (com, aux)← Com(ck,x), then

Pr[Ver(ck, com, f, f(x),Open(ck, aux, f)) = 1] = 1.

Succinctness. Let us assume that the admissible functions can be partitioned as F = {Fκ}κ∈K
for some set K, and let s : N × K → N be a function. A functional commitment FC for F is said
to be s(n, κ)-succinct if there exists a polynomial p(λ) = poly(λ) such that for any κ ∈ K, function
f : X n → X n s.t. f ∈ Fκ, honestly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n,
commitment (com, aux)← Com(ck,x) and opening π ← Open(ck, aux, f), it holds that |com| ≤ p(λ)
and |π| ≤ p(λ) · s(n, κ).

In order to model and compare different constructions, the notion of succinctness that we in-
troduce is parametric with respect to a function s(n, κ) that depends on the input-output length n
and some parameter κ of the evaluated function. In some cases we will express the function s using
asymptotic notation. To give some examples, κ could be an integer expressing the depth/size of a
circuit (and thus Fκ are all circuits of depth/size κ), the degree of a polynomial, or the running
time of a Turing machine. Accordingly, K is a set that partitions the class of admissible functions,
e.g., K = [D] if the admissible functions are all circuits of depth ≤ D, or K = N if one wants to
capture circuits of any depth.

Generally, to make FC a nontrivial primitive, we are interested in s(n, κ)-succinct FCs where
s(n, κ) is sublinear or constant in the input length n; in this case we call the FC succinct. On
the other hand, we leave the possibility that s depends on the evaluated function, e.g., in our
constructions for arithmetic circuits s depends on the depth of the evaluated circuit but not on its
size and input/output length.

The security definition of FCs proposed in [LRY16] is called evaluation binding and says that a
PPT adversary cannot open a commitment to two distinct outputs for the same function.

Definition 2 (Evaluation Binding). For any PPT adversary A, the following probability is
negl(λ):

AdvEvBind
A,FC (λ) = Pr

Ver(ck, com, f,y, π) = 1

∧ y 6= y′ ∧
Ver(ck, com, f,y′, π′) = 1

:
ck← Setup(1λ, 1n)

(com, f,y, π,y′, π′)← A(ck)

For simplicity of presentation, in all our security definitions, we omit checking the domains of the
elements returned by the adversary, e.g., that f ∈ F and y ∈ X n etc.

In the following proposition we note that evaluation binding implies the classical binding notion.

Proposition 1. Let FC be an FC scheme satisfying evaluation binding. Then FC.Com is a compu-
tationally binding commitment scheme, namely any PPT adversary has probability negl(λ) of finding
a tuple (x, r,x′, r′) such that x 6= x′ and Com(ck,x; r) = Com(ck,x′; r′).

9

Proof. The proof is rather simple and works as follows. Consider an adversary A that returns
(x, r,x′, r′) such that x 6= x′ and Com(ck,x; r) = Com(ck,x′; r′) with non-negligible probability.
Then we can use it to build an adversary B that returns (com, f,y, π,y′, π′) such that Ver(ck, com, f,y, π) =
Ver(ck, com, f,y′, π′) = 1 and y 6= y′. To do so, B runs A and then looks for a function f such that
y = f(x) 6= f(x′) = y′, and computes (com, aux) ← Com(ck,x; r), (com′, aux′) ← Com(ck,x′; r′),
π ← Open(ck, aux, f), π′ ← Open(ck, aux′, f). By the correctness of FC, π and π′ must verify for y
and y′ respectively, and for the same commitment com = com′ (due to the break of binding by A).
Therefore, B’s output is a valid attack against evaluation binding.

We also recall two security notions that are strictly stronger than evaluation binding. The first is
strong evaluation binding, introduced in [LM19]. In this notion, the adversary outputs a commitment
com and a collection of openings to one or several function-output pairs {fi,yi}, and we say that it
wins if these define an inconsistent system of equations (i.e., there is no valid x such that fi(x) = yi
for all i). Then, we introduce the notion of knowledge extractability and prove that if an FC is
knowledge extractable, then it also satisfies strong evaluation binding.

Definition 3 (Strong Evaluation Binding). For any PPT adversary A, the following advantage
is negl(λ):

AdvsEvBind
A,FC (λ) = Pr

 ∀i ∈ [Q],

Ver(ck, com, fi,yi, πi) = 1

∧ 6 ∃x ∈ X : fi(x) = yi

:
ck← Setup(1λ, 1n)

(com, {fi,yi, πi}
Q
i=1)← A(ck)

Definition 4 (FC Extractability). FC is knowledge extractable for an auxiliary input distribution
Z if for any polynomial time adversary A there exists a PPT extractor E such that the following
advantage is negl(λ):

Advextr
A,FC(λ) = Pr

Ver(ck, com, f,y, π) = 1

∧ (com 6= com′

∨ f(x) 6= y)

:

ck← Setup(1λ, 1n)

auxZ ← Z(1λ)

(com, f,y, π)← (A)(ck, auxZ)

(x; r)← E(ck, auxZ)

(com′, aux′)← Com(ck,x; r)

Proposition 2. Let FC be a knowledge extractable FC. Then, FC satisfies strong evaluation binding.

Proof. Let A be an adversary against strong evaluation binding that on input (ck, auxZ) returns
(com, {fi,yi, πi}

Q
i=1) such that ∀i ∈ [Q],Ver(ck, com, fi,yi, πi) = 1 ∧ 6 ∃x ∈ X : fi(x) = yi. We will

show that if A is a succesful adversary then FC is not knowledge extractable.
We proceed by contradiction; assume that FC is knowledge extractable. We define Q adversaries

B1(ck, auxZ), . . . ,BQ(ck, auxZ) against FC extractability as follows: Bi runs A(ck, auxZ) and returns
the i-th tuple (com, fi,yi, πi) fromA’s output. Notice thatA is a deterministic machine; nevertheless
A can take input randomness in auxZ . As FC is knowledge extractable, for every Bi there exists an
extractor Ei(ck, auxZ) that returns xi; ri such that (abusing notation) com ← Com(ck,xi; ri) and
fi(xi) = yi.

We now distinguish two cases. First, suppose that xi 6= xj for some i, j ∈ [Q]. Then, we have
that com = Com(ck,xi; ri) = Com(ck,xj ; rj), which is a contradiction as this breaks commitment

10

binding. Otherwise, let x be the vector such that x = xi for all i ∈ [Q]. Then, by correctness of the
extractors Ei we have that fi(x) = yi for every i ∈ [Q], which is a contradiction with respect to A
breaking evaluation binding.

3.2 Additional properties of FCs

Here we define three extra properties of functional commitments that can be useful in applications.

Additive-homomorphic FCs. These are functional commitments where, given two commitments
com1 and com2 to vectors x1 and x2 respectively, one can compute a commitment to x1 + x2.

Definition 5 (Additive-homomorphic FCs [CFT22]). Let FC be a functional commitment
scheme where X is a ring. Then FC is additive homomorphic if there exist deterministic algorithms
FC.Add(ck, com1, . . . , comn)→ com, FC.Addaux(ck, aux1, . . . , auxn)→ aux and FC.Addr(ck, r1, . . . , rn)→
r such that for any xi ∈ X and (comi, auxi) ← Com(ck,xi; ri), if com ← FC.Add(ck, com1, . . . ,
comn), aux ← FC.Addaux(ck, aux1, . . . , auxn), and r ← FC.Addr(ck, r1, . . . , rn), then (com, aux) =
Com(ck,

∑n
i=1 xi; r).

As shown in [CFT22], an additive-homomorphic FC can be used to construct multi-input ho-
momorphic signatures, and it is also updatable.

Efficient Amortized Verification. A FC satisfying this property enables the verifier to pre-
compute a verification key vkf associated to the function f , with which the verifier can check any
opening for f in time asymptotically faster than executing f . We introduce a general notion in
which the efficient verification algorithm must be asymptotically faster than the standard verifica-
tion algorithm.

Definition 6 (Amortized efficient verification). A functional commitment scheme FC for F
has amortized efficient verification if there exist two additional algorithms vkf ← VerPrep(ck, f) and
b ← EffVer(vkf , com,y, π) such that for any n = poly(λ), function f : X n → X n s.t. f ∈ F , any
honestly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n, commitment (com, aux) ←
Com(ck,x) and opening π ← Open(ck, aux, f), it holds: (a) EffVer(VerPrep(ck, f), com,y, π) =
Ver(ck, com, f,y, π), and (b) the running time of EffVer is o(T) where T = T (λ) is the running
time of Ver(ck, com, f,y, π).

Hiding and Zero Knowledge. Intuitively, an FC is hiding if the commitments produced through
Com are hiding, in the classical sense. For zero-knowledge, the goal is that the openings produced by
Open should not reveal more information about the committed vector beyond what can be deduced
from the output, i.e., that x is such that y = f(x).

We use the formal definitions introduced in [CFT22].

Definition 7 (Com-Hiding [CFT22]). A FC has perfectly (resp. statistically, computationally)
hiding commitments if there are simulator algorithms Sim = (SimSetup,SimCom, SimEquiv) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck← Setup(1λ, 1n)} and {ck : (ck, td)← SimSetup(1λ, n)} are identical (resp. statistically, compu-
tationally indistinguishable).

11

– (ii) for any vector x ∈ X n, keys (ck, td)← SimSetup(1λ, n), the following distributions are identical
(resp. statistically, computationally indistinguishable):

{Com(ck,x)} ≈ {(com, aux) : (com, ãux)← SimCom(td), aux← SimEquiv(td, com, ãux,x)}

Definition 8 (Zero-knowledge openings). An FC has perfect (resp. statistical, computational)
zero-knowledge openings if there is a simulator Sim = (SimSetup,SimCom, SimEquiv,SimOpen) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck← Setup(1λ, 1n)} and {ck : (ck, td)← SimSetup(1λ, n)} are identical (resp. statistically, compu-
tationally indistinguishable).

– (ii) for any vector x ∈ X n, keys (ck, td) ← SimSetup(1λ, n), functions f1, . . . , fQ ∈ F , and com-
mitments (com, aux)← Com(ck,x) and (c̃om, ãux)← SimCom(ck), the following two distributions
are identical (resp. statistically, computationally indistinguishable):

(c̃om, {SimOpen(td, ãux, c̃om, fj , fj(x))}Qj=1) ≈ (com, {Open(ck, aux, fj)}Qj=1)

In the following theorem we state a simple result showing that an FC with hiding commitments
(but not necessarily zero-knowledge openings) can be converted, via the use of a NIZK scheme, into
one that also achieves zero-knowledge openings. The proof is straightforward and is omitted.

Theorem 1. Let FC be an FC scheme that satisfies com-hiding (Definition 7), and let Π be a NIZK
for the NP relation RFC = {((ck, C, f,y);π) : Ver(ck, com, f,y, π) = 1}. Then there exists an FC
scheme FC∗ for the same class of functions supported by FC that has com-hiding and zero-knowledge
openings. Furthermore, if FC is additive-homomorphic, so is FC∗; if FC has efficient verification
and Π supports R′FC = {(vkf , C,y;π) : EffVer(vkf , com,y, π) = 1}, then FC∗ has also efficient
verification.

4 Chainable Functional Commitments

In this work, we introduce the notion of Chainable Functional Commitments (CFC), which is an
extension of the FC primitive that allows one to “chain” multiple openings to different functions.
Whereas a FC scheme can be used to prove that y = f(x) for a committed x, a CFC scheme can
be used to prove that comy is a commitment to y = f(x1, . . . ,xm) for independently committed
x1, . . . ,xm. In particular, the fact that the output is also committed is what allows one to chain
another opening. For example, one can prove that comz commits to z = g(y), and thus the con-
catenation of the two openings constitutes a proof that comz commits to z = g(f(x1, . . . ,xm)).
Furthermore, since Com is binding (see Proposition 1), one can reveal the output z and check that
comz commits to z, recovering the notion of functional commitments.

Definition 9 (Chainable Functional Commitments). Let X be some domain, n = poly(λ) and
let F ⊆ {f : X nm → X n} be a family of functions over X for any integer m = poly(λ). A chainable
functional commitment scheme for F is a tuple of algorithms CFC = (Setup,Com,Open,Ver) that
works as follows and that satisfies correctness and succinctness.

Setup(1λ, 1n)→ ck on input the security parameter λ and the vector length n, outputs a commitment
key ck.

12

Com(ck,x; r)→ (com, aux) on input a vector x ∈ X n and (possibly) randomness r, outputs a com-
mitment com and related auxiliary information aux.

Open(ck, (auxi)i∈[m], auxy, f)→ π given auxiliary informations (auxi)i∈[m], one for every committed
input, and a function f ∈ F , returns an opening proof π.

Ver(ck, (comi)i∈[m], comy, f, π)→ b ∈ {0, 1} on input commitments (comi)i∈[m] to the m inputs and
comy to the output, an opening proof π, and a function f ∈ F , accepts (b = 1) or rejects (b = 0).

Correctness. CFC is correct if for any n,m ∈ N, all ck←$ Setup(1λ, 1n), any f : X nm → X n in
the class F , and any set of vectors {xi}i∈[m] such that xi ∈ X n, if (comi, auxi) ← Com(ck,xi) for
every i ∈ [m] and (comy, auxy)← Com(ck, f(x1, . . . ,xm)),

Pr
[
Ver(ck, (comi)i∈[m], comy, f,Open(ck, (auxi)i∈[m], auxy, f)) = 1

]
= 1.

Succinctness. Let F = {Fκ}κ∈K for some set K and let s : N×N×K be a function. A chainable
functional commitment CFC is s(n,m, κ)-succinct if there exists a polynomial p(λ) = poly(λ) such
that for any n,m and κ ∈ K, function f : Xmn → X n, f ∈ Fκ, honestly generated commitment
key ck← Setup(1λ, 1n), vectors xi ∈ X n and commitments (comi, auxi)← Com(ck,xi) for i ∈ [m],
(comy, auxy) ← Com(ck, f(x1, . . . ,xm)), and opening π ← Open(ck, (auxi)i∈[m], auxy, f), it holds
that |comi| ≤ p(λ) for every i ∈ [m] and |π| ≤ p(λ) · s(n,m, κ).

As in the case of FCs (Definition 1) we define succinctness in a parametric way, and we are
interested in CFC constructions supporting non-trivial functions s(n,m, κ) that are sublinear or
constant in n,m. We remark that in our definition of CFC the number of inputs m is not fixed at
setup time.

Additive homomorphism and efficient verification. As for functional commitments, a CFC
can also be additively homomorphic and have amortized efficient verification. We omit the formal
definitions of these properties as they are analogous to Definition 5 and Definition 6 , respectively.

Definition 10 (Evaluation Binding). For any PPT adversary A, the following probability is
negl(λ):

Pr

Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ comy 6= com′y ∧
Ver(ck, (comi)i∈[m], com′y, f, π

′) = 1

:

ck← Setup(1λ, 1n)(
(comi)i∈[m], f,

comy, π,
com′y, π

′

)
← A(ck)

As one can notice, the above notion of evaluation binding can only hold in the case when the

output commitments comy are generated deterministically. This is still enough for using CFCs to
construct FCs with hiding commitments to inputs and zero-knowledge openings (thanks to Theorem
1). We leave the definition of CFCs with hiding output commitments for future work.

Below we introduce the definition of a knowledge extractable CFC.

Definition 11 (CFC Extractability). CFC is knowledge extractable for an auxiliary input distri-
bution Z if for any polynomial time adversary A there exists an extractor E such that the following

13

probability is negl(λ):

Pr

Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ (∃i ∈ [m] : comi 6= com′i

∨ comy 6= com′y

∨ f(x1, . . . ,xm) 6= y)

:

ck← Setup(1λ, 1n)

auxZ ← Z(1λ)

((comi)i∈[m], f, comy, π)← A(ck, auxZ)

((xi; ri)i∈[m], (y; ry))← E(ck, auxZ)

(com′i, aux′i)← Com(ck,xi; ri)

(com′y, aux′y)← Com(ck,y; ry)

5 FC for Circuits from CFC for Quadratic Polynomials

In this section we introduce a generic construction of a Functional Commitment scheme for arith-
metic circuits of bounded width n, from any Chainable Functional Commitment for quadratic
functions over inputs of length n.

Our construction relies on the observation that the gates of an arithmetic circuit can be parti-
tioned in levels, so that the input wires of a gate at depth h are outputs from any previous level < h.
This way, the evaluation of the arithmetic circuit can be expressed as the sequential computation
of several arithmetic circuits of multiplicative depth 1 (i.e., several quadratic polynomials), one for
every level. The basic idea of our FC construction is to commit to the outputs of each level and then
use the CFC opening functionality to certify that the committed outputs of level h are correctly
computed from values in the commitments of previous levels, including the commitment of level 0
that is the commitment to the input. This step in which we connect the values from different levels
is the one where we take advantage of the chaining feature of the CFC primitive.

Following the strategy outlined above, an opening proof for the resulting FC scheme must include
one commitment to each level of the circuit, alongside a CFC opening for the quadratic polynomial
corresponding to the level. In total, a proof is (roughly) composed by the aggregation of d CFC
proofs, where d is the circuit depth. Thus, the proof size of our FC construction is at least linear in
d.

Circuit model and notation. Let R be a commutative ring. We consider arithmetic circuits
C : Rn → Rn where every gate is a quadratic polynomial with bounded coefficients. It is not hard
to see that such a model captures the more common model of arithmetic circuits consisting of fan-
in-2 gates that compute either addition or multiplication. More in detail, we model C as a directed
acyclic graph (DAG) where every node is either an input, an output or a gate, and input (resp.
output) nodes have in-degree (resp. out-degree) 0. We partition the nodes in the DAG defined by
C in levels as follows. Level 0 contains all the input nodes. Let the depth of a gate g be the length
of the longest path from any input to g, in the DAG defined by the circuit. Then, for h ≥ 1, we
define level h as the subset of gates of depth h. Note that any gate in level h has at least one input
coming from a gate at level h − 1 (while other inputs may come from gates at any other previous
level 0, . . . , h−2). The depth of the circuit C, denoted dC (or simply d when clear from the context),
is the number of levels of C. Finally, we assume that the last level dC also contains output nodes.9

In this model, we define the width of C, denoted by n, as the maximum number of nodes in any

9 This can be assumed without loss of generality. If we have an output x(h)i at level h < d, we can introduce a linear
gate at level d that takes x(h)i and some arbitrary x(d−1)

j as input, and outputs x(d)k = x
(h)
i + 0 · x(d−1)

j .

14

level h = 0 to dC . Note that the width upper bounds the input length. For simplicity, we assume
without loss of generality circuits with maximal n inputs and n gates in every level.

When we evaluate C on an input x, we denote the input values by x(0), and the outputs of
the gates in level h by the vector x(h). We note that, for every k ∈ [n], the output of the k-th
gate in level h can be defined as x(h)

k = f
(h)
k (x(0), . . . ,x(h−1)) where f (h)

k : Rnh → R is a quadratic
polynomial. We group all these n polynomials f (h)

1 , . . . , f
(h)
n into the quadratic polynomial map

f (h) : Rnh → Rn such that x(h) = f (h)(x(0), . . . ,x(h−1)). We denote the operation that extracts
these functions {f (h)} from C by (f (1), . . . , f (d))← Parse(C).

Quadratic functions. As we mentioned above, a gate in our circuit model computes a quadratic
polynomial. Thus all the gates at a given level form a vector of n quadratic polynomials that take
up to m vectors and output a single vector. We define this class of functions as

Fquad = {f : Rnm → Rn : f = (f1, . . . , fn) ∧ ∀k ∈ [n] fk ∈ R[X
(1)
1 , . . . , X(m)

n]≤2 ∧ m = poly(λ)}.

A vector of quadratic polynomials f ∈ Fquad, f : Fmn → Fn, such as those that represent the
computation done at a given level of a circuit can be expressed in a compact form as follows. Let
f(x(1), . . . ,x(m)) = y. First, note that we can express each fk in f = (f1, . . . , fn) as an affine
function

fk(x
(1), . . . ,x(m)) = ek +

∑
h∈[m]

〈f (h)
k ,x(h)〉+

∑
(h,h′)∈[m]×[m],

h≤h′

〈g(h,h′)
k ,x(h) ⊗ x(h′)〉

where each f (h)
k ∈ Rn for h ∈ [m] and g(h,h′)

k ∈ Rn2 for (h, h′) ∈ [m] × [m], h ≤ h′. Note that this
representation is not unique as x(h)⊗x(h′) contains repeated entries but the parties involved in the
scheme can make it unique by agreeing on placing zeros in appropriate entries of the g(h,h′)

k vector.
Then, we define d matrices F(h) ∈ Rn×n, d(d + 1)/2 matrices G(h,h′) ∈ Rn×n2 , and a vector

e ∈ Fn as follows:

e =

e1
...
en

 , F(h) =

f

(h)
1

>

...

f
(h)
n

>

 , G(h,h′) =

g

(h,h′)
1

>

...

g
(h,h′)
n

>

hence, we can represent our quadratic function as

f(x(1), . . . ,x(m)) = e+
∑
h∈[m]

F(h) · x(h) +
∑

(h,h′)∈[m]×[m],
h≤h′

G(h,h′) · (x(h) ⊗ x(h′)). (3)

In an arbitrary circuit, the quadratic function f (h) at each level may depend on values from any
previous level, i.e., all of x(0),x(1), . . . ,x(h−1). In many cases, however, the nodes at a given level
may not have incoming edges from all levels above. In what follows we provide a few definitions
useful to express such connectivity in a more precise way. This shall be useful later as the efficiency
of our construction may depend on the actual degree of connection between levels in C. We start
by defining the notion of support for quadratic polynomials aiming to express on which (groups of)
variables a polynomial depend, based on the compact representation in equation (3).

15

We define the linear support of f ∈ Fquad, denoted S1(f) ⊆ [m], as the set of indices h where
the linear part of f is nonzero with respect to any term X

(h)
i . Formally,

S1(f) := {h ∈ [m] : F(h) 6= 0}.

Analogously, we define the quadratic support of f , denoted S2(f) ⊆ [m], as the indices h where f is
nonzero with respect to any term X

(h)
i ·X(h′)

j for one or more h′ ∈ [m]. Formally,

S2(f) := {h ∈ [m] : ∃h′ G(h,h′) 6= 0}.

We will also express the quadratic support using pairs of indices,

S⊗2 (f) := {(h, h′) ∈ [m]× [m] : h ≤ h′ ∧G(h,h) 6= 0}.

Finally, we define the support of f as the union of its linear and quadratic supports, namely S(f) =
S1(f) ∪ S2(f). By using the linear and quadratic supports, we can express polynomial functions in
Fquad as follows:

f(x(1), . . . ,x(m)) = e+
∑

h∈S1(f)

F(h) · x(h) +
∑

(h,h′)∈S⊗2 (f)

G(h,h′) · (x(h) ⊗ x(h′)). (4)

Consider a circuit C and let (f (1), . . . , f (d)) ← Parse(C). Then every function f (h) can be ex-
pressed and computed using only the inputs in S(f (h)), namely f (h)((x(h′))h′∈S(f (h))) = f (h)(x(0), . . . ,x(h−1)).

We call the number of inputs in the support of f (h), namely |S(f (h))|, the in-degree of level h. We
say that a circuit C has in-degree tC if tC = maxh∈[dC] |S(f (h))|. We call C a layered circuit if it has
in-degree 1. Notice that for a layered circuit it holds that x(d) = C(x(0)) where x(h) = f (h)(x(h−1))
for all h = 1 to d.

Classes of circuits. To properly define the succinctness and the functions supported by our FC
construction, we parametrize the circuits according to three parameters, the depth, the in-degree,
and the width. Let F(d,t,w) = {C : Rn → Rn : dC = d, tC = t, wC = w}, where dC ∈ N, tC ≤ d,
wC ≤ w are the depth, in-degree, and width of C, respectively. Then our FC scheme supports
any arithmetic circuit of width at most n, in the model described above. We denote this class by
Fn := {F(d,t,w)}d∈N,t≤d,w≤n.

Construction. In Figure 1 we present our FC construction for Fn. We assume, without loss of
generality, that the auxiliary input aux generated by CFC.Com contains the committed input x. In
the protocol, we retrieve x from aux via a Parse function.

Our goal in this section is to prove the following theorem.

Theorem 2. Let CFC = (Setup,Com,Open,Ver) be a chainable functional commitment scheme for
the class of functions Fquad. Then, the scheme FC in Figure 1 is an FC for the class Fn of arithmetic
circuits C : Rn → Rn of width ≤ n.

Let K be a partitioning of Fquad such that CFC is s(n,m, κ)-succinct for Fquad = {Fquad,κ}.
Then FC is d · (smax(n, t) + 1)-succinct for the class Fn = {F(d,t,w)}d∈N,t≤d,w≤n, where smax(n, t) :=
maxκ∈K s(n, t, κ). Moreover, given an additively homomorphic and/or efficiently verifiable CFC, so
is FC.

16

FC.Setup(1λ, 1n)

1 : return CFC.Setup(1λ, 1n)

FC.Com(ck,x)

1 : return CFC.Com(ck,x)

FC.Open(ck, aux, C)
1 : (f (1), . . . , f (d))← Parse(C)

2 : x(0) ← Parse(aux)

3 : for h ∈ [d] :

// Evaluate and commit to each level

4 : x(h) ← f (h)(x(0),x(1), . . . ,x(h−1))

5 : (comh, auxh)← CFC.Com(ck,x(h))

// Compute the opening for the level

6 : πh ← CFC.Open(ck, (auxh′)h′∈S(f(h)), f
(h))

7 : return (π1, . . . , πd, com1, . . . , comd−1)

FC.Ver(ck, com, C,y, π)

1 : (f (1), . . . , f (d))← Parse(C), com0 ← com

2 : (π1, . . . , πd, com1, . . . , comd−1)← π

// Recompute commitment to output

3 : comd ← CFC.Com(ck,y)

4 : for h ∈ [d] :

// Verify all proofs

5 : bh ← CFC.Ver(ck, (comh′)h′∈S(f(h)), comh, f
(h), πh)

6 : return b1 ∧ · · · ∧ bd

Fig. 1: Construction of our FC for circuits from a CFC for the class Fquad.

Proof. Correctness and additive homomorphism of FC follow immediately from the respective prop-
erties of CFC.

Succinctness. If CFC is s(n,m, κ)-succinct for the class of quadratic polynomials in Fquad =
{Fquad,κ}, then FC is s′(n, (d, t))-succinct for Fn = {F(d,t,n)} where s′(n, (d, t)) = d · (smax(n, t)+1).
Indeed, FC.Open produces d−1 commitments comh for h ∈ [d−1], each of them having size bounded
by a fixed polynomial p(λ) = poly(λ). Besides, it generates d CFC evaluation proofs πh, each of
them involving |S(f (h))| ≤ t input commitments, and thus having size ≤ p(λ) · s(n, |S(f (h))|, κ) ≤
p(λ) ·smax(n, t). Hence, we can bound the size of an FC.Open proof by |π| ≤ p(λ) ·d · (smax(n, t)+1).
A particularly relevant case is that for layered circuits we obtain |π| ≤ p(λ) · d · (smax(n, 1) + 1).

Efficient verification. If CFC has amortized efficient verification (Definition 6), we can set
FC.VerPrep(ck, f) to obtain vkh ← CFC.VerPrep(ck, f (h)) for h ∈ [d] and output vkf := (vk1, . . . , vkd).
Then, FC.EffVer simply recomputes the commitment to the output comd and runs CFC.EffVer for
each circuit level. Let TCFC be largest of the running times of CFC.Ver for all CFC instances in the
FC construction, and let TCom be the running time of CFC.Com. Then, the running time of FC.Ver is
TFC ≤ d · TCFC + TCom. As the running time of CFC.EffVer is o(TCFC), the running time of FC.EffVer
is d · o(TCFC) + Tcom, which is o(TFC) whenever TCom = o(d · TCFC). Usually, Tcom = O(|y|) (and in
fact Tcom = Ω(|y|)) where |y| ≤ n is the length of the committed vector. Hence, in practice FC has
amortized efficient verification unless d = O(|C|), a case in which the proof size also becomes very
large. We remark that for both our pairing-based and lattice-based CFC instances, the running time
of FC.EffVer is actually bounded by p(λ)(|y|+ |π|) where p(λ) = poly(λ), which is optimal since the
verifier at least needs to parse the proof and the output.

Security. In Lemma 1, we prove that if CFC is evaluation binding, then FC is evaluation binding.
In Lemma 3, we show an analogous result for knowledge extractability (and therefore also for strong
evaluation binding by Proposition 2). ut

We obtain a better succinctness by using a slightly different, yet general, circuit model. To keep
the presentation of the main scheme more understandable, we present this optimization in Section

17

5.2. The proof size reduction is specific to our CFC construction from pairings (see Section 6.5 for
the resulting efficiency).

5.1 Proof of security

Lemma 1. If CFC is evaluation binding (Definition 10), then our FC construction for arbitrary
circuits is also evaluation binding.

Proof. Consider an adversary A who returns a tuple (com, C,y, π,y′, π′) that breaks evaluation
binding, and parse the proofs as follows

π := (π1, . . . , πd, com1, . . . , comd−1)

π′ := (π′1, . . . , π
′
d, com′1, . . . , com′d−1)

We will show that, if both proofs π and π′ verify for y and y′ respectively, with y 6= y′, then we
can construct an adversary B against the evaluation binding of the CFC. We construct B as follows.

First, B is given a commitment key ck and calls A(ck) to obtain the output (com, C,y, π,y′, π′).
Then, B obtains the commitments to the outputs comy ← Com(ck,y) and comy′ ← Com(ck,y′).

If comy = comy′ , then B can break the binding property of the commitment (and hence evalua-
tion binding due to Proposition 1), since comy opens to different y 6= y′.

Hence, let us assume comy 6= com′y, and denote com0 = com′0 = com. Then, look at both
proofs produced by A and set 1 ≤ h∗ ≤ d to be the smallest index such that comh∗ 6= com′h∗ and
comh = com′h for all h = 0 to h∗ − 1. Notice that such index must exist since, at least, we have
com0 = com′0 and comd = comy 6= comy′ = com′d.

Then, B breaks evaluation binding of CFC by outputting ((comh)h∈S(f (h
∗)), f

(h∗), comh∗ , πh∗ , com′h∗ , π
′
h∗).

5.2 Efficiency tradeoffs

In this section we describe optimization strategies for our FC construction. Our main goals are to
reduce the proof size in many cases, and to support circuits of larger width than initially specified
at setup time.

A refined circuit model. Our first optimization strategy consists of introducing a variant of our
circuit model which leads to an important reduction of the proof size when our pairing-based CFC
from Section 5 is applied. The new circuit model differs from the previous model in that here every
quadratic monomial of every polynomial gate f (h)

k at level h is assumed to take at least one of its
inputs from level h − 1. In particular, the quadratic term of functions f (h)

k (x(0), . . . ,x(h−1)) is a
linear combination of all products of variables x(h−1)

i · x(h′)
j , ∀i, j ∈ [n], at levels h − 1 and h′ such

that 0 ≤ h′ ≤ h− 1.
It is not hard to see that this circuit model also generalizes the standard arithmetic circuit

model with fan-in 2 additive or multiplicative gates. Note that unbounded fan-in additions can still
be done at a single gate. Multiplicative gates at level h always take one of their inputs from level
h − 1 due to how levels are defined, hence the gates in the new model also generalize these. We
denote the class of functions in the levels of the new circuit model by Flevel ⊂ Fquad, that we define
as

Flevel = {f ∈ Fquad : S⊗2 (f) ⊆ {(h′,m) ∈ [m]× {m}}}.

18

Note that we can extend any parametrization Fquad = {Fquad,κ} to Flevel = {Flevel,κ} by set-
ting Flevel,κ := Flevel ∩ Fquad,κ. The main advantage of this new model is that for any f ∈ Flevel,∣∣S⊗2 (f)

∣∣ ≤ m, instead of being ≤ m2 in the more general case in which gates are arbitrary quadratic
polynomials. When switching to this model, it is sufficient to instantiate our FC construction with
a CFC scheme that only supports quadratic functions in Flevel and not all Fquad. We will see that
this results in a notable reduction of the proof size of our pairing-based CFC in Section 6.

Reducing proof size. Assume that we want to evaluate a circuit C of width w and depth d that is
densely interconnected (i.e. the in-degree t = O(d)) when our commitment key ck supports circuits
of width up to n > w. We present an optimization that reduces the proof size of our FC scheme.

Proposition 3. Let CFC be a s(n,m, κ)-succinct CFC for Flevel = {Flevel,κ} (resp. for Fquad =
{Fquad,κ}), and let Fn = {F(d,t,w)} be the class of circuits parametrized by depth d, in-degree t, and
width w ≤ n. Then, we can construct a s′(n, (d, t, w))-succinct FC scheme FC where s′(n, (d, t, w)) =
d · (smax(n, ddw/ne) + 1).

In particular, for circuits of bounded size |C| = d ·w ≤ n, the proof size is the same as for layered
circuits, namely s′(n, (d, t, w)) = d · (smax(n, 1) + 1).

Proof. The construction of the optimized FC scheme consists in reshaping the original input circuit
C into an equivalent semi-layered (i.e., t � d) circuit C′ of depth d and width bounded by n. The
FC scheme is then identical to the scheme in Figure 1. In fact, as FC needs to support circuits of
any width w ≤ n, FC.Setup(1λ, n) outputs ck← CFC.Setup(1λ, 1n).

Let r = bn/wc. For each level h of C with values x(h), we construct level h in circuit C′ with
values z(h) as described below.

– Let z(0) := x. For h = 1, . . . , r−1, set z(h) := x(0)||x(1)|| · · · ||x(h) as the concatenation of variables
from previous levels. Then, define the wiring in C′ by introducing relay gates between levels, such
that x(0) is copied to levels h = 1, . . . , r − 1, x(1) is copied to levels h = 2, . . . , r − 1, etc. Note
that, up to level r, C′ is the equivalent of C as a layered circuit.

– At level r, set z(r) := x(r). Note that z(r) only depends on inputs at level r − 1 in C′, since all
x(0), . . . ,x(r−1) are duplicated at level z(r−1).

– For levels h = r + 1, . . . , 2r − 1, expand again as z(h) := x(r)||x(r+1)|| · · · ||x(h). Note that values
at level h depend only on levels r− 1 and h− 1, as z(r−1) contains all values from levels 0 to r− 1
in C.

– Repeat the steps above, bootstrapping the circuit at levels 2r, 3r, . . . , d.

The functions f (1), . . . , f (d) that describe the levels of C′ are such that level h has in-degree
|S(f (h))| = dh/re. Hence, if the CFC is s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. for Fquad =
{Fquad,κ}) then the proof size of the FC scheme for C′ becomes

|π| =
d−1∑
h=0

s(n, dh/re, κ) + 1 ≤ d · (smax(n, dd/re) + 1).

Note that the parameters can be tuned in a per-level basis, allowing for more succinct proofs in
practice or when the initial in-degree is low.

Supporting circuits of arbitrary width. Suppose that the parameters of the FC scheme are
set up for circuits of bounded width n, and that we want to evaluate a circuit C of width w > n.
The following result shows that this is possible at the cost of increasing the proof size.

19

Proposition 4. Let CFC be a s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. for Fquad = {Fquad,κ}).
Let FC be our construction in Figure 1 for the class of circuits Fn = {F(d,t,w)} of bounded width
w ≤ n. Then, we can construct an FC scheme F̃C for F = {F(d,t,w)} for any w ∈ N such that
F̃C.Setup(1λ) = FC.Setup(1λ, n) where the proof size is |π| ≤ d · dw/ne · (smax(n, t · dw/ne) + 1).

Proof. We describe F̃C in two steps. First, we introduce a circuit transformation from the original
C to an equivalent C′ of width n and larger depth. Then, we describe the F̃C.Com, F̃C.Open and
F̃C.Ver algorithms. We can construct C′ as follows:

– Let r = dw/ne. For each level x(h), h = 0, . . . , d of C, define sub-levels z(h,s) with indices
(h, 1), . . . , (h, r) in C′ as the natural split of x(h) in r blocks, i.e., z(h,s) = (x

(h)
(s−1)n, x

(h)
(s−1)n+1, . . . , x

(h)
sn−1)

for s ∈ [r].
– For each level function f (h) : Rmw → Rw corresponding to C, let m′ = m ·r and define r functions
g(h,s) : Rm′n → Rn for s ∈ [r] such that g(h,s)(z(0,1), . . . ,z(h−1,r)) = z(h,s). Note that these
functions can be built from a restriction of f (h) to a subset of its outputs.

The commit algorithm F̃C.Com(ck,x) partitions the input x ∈ Rw in r blocks x(1), . . . ,x(r) of
size n as described above, obtains (com(s), aux(s))← Com(ck,x(s)). It outputs ˜com = (com(1), . . . , com(r))
and ˜aux = (aux(1), . . . , aux(r)).

The opening algorithm F̃C.Open(ck, ˜aux, C) works as follows:

– Obtain C′ from C as presented above, parse (z(0,1), . . . ,z(0,r))← Parse(˜aux), and compute C′(z(0,1), . . . ,z(0,r))
and all the intermediate values z(h,s) for h ∈ [d] and s ∈ [r].

– Commit to each z(h,s) as (com(h,s), aux(h,s))← CFC.Com(ck, z(h,s)) for h ∈ [d− 1] and s ∈ [r].
– Compute the opening proofs for all functions,

∀h ∈ [d], s ∈ [r] : π(h,s) ← CFC.Open(ck, (aux(h′,s′))h′∈S(f (h)),s′∈[r], g
(h,s)).

– Return π̃ = (π(h,s), com(h,s))h∈[d],s∈[r].

The verification algorithm F̃C.Ver(ck, ˜com, f,y, π̃) first computes r commitments to the output
z(d,s) ← Com(y(s)) for s ∈ [r] and then verifies all opening proofs.

Overall, if the CFC is s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. Fquad = {Fquad,κ}), and the
original circuit C ∈ F(d,t,w) (i.e., the in-degree of C is bounded by t), then the proof size of the FC
scheme for C′ becomes

|π| = (d− 1)r + r ·
d−1∑
h=0

s(n, hr, κ) ≤ dr · (smax(n, tr) + 1).

5.3 Extractability

Theorem 3. If CFC is a knowledge extractable CFC, then our FC in Figure 1 is knowledge ex-
tractable.

Proof. LetA be an adversary against FC extractability (Definition 4) with respect to an auxiliary in-
put distribution Z. On input ck,A returns (com, f,y, π)← A(ck) such that FC.Ver(ck, com, f,y, π) =

20

1. Our goal is to construct an extractor EA for FC and argue that it is successful with overwhelm-
ing probability. The intuition of the proof is that we can use A to create an adversary B against
CFC extractability (Definition 11) with respect to the same input distribution Z. Then, we use the
extractor EB for CFC to build EA. We describe B and EA in Figure 2.

Let (com, com1, π1, f
(1)) be the output of B. It follows that B is a valid adversary against CFC

extractability and that Ver(ck, com, f (1), com1, π1) = 1. As CFC is knowledge extractable, there
exists an extractor EB that returns x,x(1) such that

Pr[com = Com(ck,x) ∧ com1 = Com(ck,x(1)) ∧ f (1)(x) = x(1)] = 1− negl(λ).

Next, we show that the extractor EA for FC succeeds with overwhelming probability, i.e., that

Pr[com 6= Com(ck,x) ∨ f(x) 6= y] = negl(λ).

For the first clause, we have that Pr[com 6= Com(ck,x)] = negl(λ) as otherwise the extractor EB is
not successful (and B wins with non-negligible probability). For the second clause, we can recompute
y′ := f(x). If f(x) 6= y, then we can break evaluation binding of FC by creating an honest proof
π′ ← FC.Open(ck,x, f) and outputting (com, f, π,y, π′,y′). Hence, Pr[f(x) 6= y] = negl(λ) and the
result follows by the union bound.

B(ck, auxZ)

1 : (com, f,y, π)← A(ck, auxZ)

2 : (f (1), . . . , f (d))← Parse(f)

3 : (π1, . . . , πd, com1, . . . , comd−1)← Parse(π)

4 : return (com, com1, π1, f
(1))

EA(ck, auxZ)

1 : (x,x(1))← EB(ck, auxZ)
2 : return x

Fig. 2: Adversary B and extractor EA for the proof of Theorem 3.

6 Paring-based CFC for Quadratic Functions

We present our construction of a chainable functional commitment for quadratic functions based on
pairings. With our CFC, one can commit to a set of vectors x1, . . .xm of length n and then open
the commitment to a quadratic function f : Fmn → Fn, for any m = poly(λ). The opening proofs of
our scheme are quadratic in the number m of input vectors, but constant in the (possibly padded)
length n of each input vector and of the output. Security is proven in the standard model based on
a new falsifiable assumption that we justify in the generic bilinear group model. In Section 6.5 we
discuss the FCs for circuits that we obtain by applying the generic transform of Section 5 to this
pairing-based CFC.

We present our CFC with deterministic commitments and openings. We detail how to make
our commitments perfectly com-hiding in Section 6.8. We note that the FCs for circuits obtained
from the com-hiding CFC are also com-hiding, and their openings can be made zero-knowledge by
applying Theorem 1, which we can efficiently instantiate using, e.g., the Groth-Sahai [GS08] NIZK.

21

6.1 Preliminaries on Bilinear Groups and Assumption

A bilinear group generator BG(1λ) is an algorithm that returns bgp := (q,G1,G2,GT , e, g1, g2),
where G1, G2, GT are groups of prime order q, g1 ∈ G1 and g2 ∈ G2 are fixed generators, and
e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear map. In our work we use
Type-3 groups in which it is assumed that there is no efficiently computable isomorphism between
G1 and G2. We use the bracket notation of [EHK+13] for group elements: for s ∈ {1, 2, T} and
x ∈ Zq, [x]s denotes gxs ∈ Gs. We use additive notation for G1 and G2 and multiplicative notation
for GT . We note that given an element [x]s ∈ Gs, for s = 1, 2, and a scalar a, one can efficiently
compute a · [x] = [ax] = gaxs ∈ Gs; given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently
compute [ab]T = e([a]1, [b]2).

We prove that our construction satisfies evaluation binding under a new falsifiable assumption,
called HintedKernel (HiKer), that we justify in the generic group model (see Appendix A). The
name of the assumption comes from its similarity with the KerMDH assumption of [MRV16] which
for matrices [A]2 from certain (random) distributions asks the adversary to find a nonzero vector
[z]1 such that Az = 0. In our case the adversary is challenged to find a nonzero [u, v]1 such that
uη + v = 0, when given [1, η]2 but also other group elements, the “hints”, that depend on η and
other random variables.

Definition 12 (n-HiKer Assumption). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group
setting, let n ∈ N and let G1,G2 be the following two sets of Laurent monomials in Zq[S1, T1, . . . , Sn, Tn, H]:

G1(S,T , H) :={Si, Ti}i∈[n]∪{Si · Tj}i,j∈[n] ∪
{
H·Ti·Si′

Si

}
i,i′∈[n]
i 6=i′

∪
{
H·Si′ ·Tj′
Si·Tj

}
i,j,i′,j′∈[n]
(i,j)6=(i′,j′)

G2(S,T , H) :={H} ∪ {Si}i∈[n] ∪
{
H·Ti
Si

, HSi

}
i∈[n]
∪
{

H
SiTj

}
i,j∈[n]

The n-HintedKernel (n-HiKer) assumption holds if for every n = poly(λ) and any PPT A, the
following advantage is negligible

Advn-HiKerA (λ) = Pr

[
(U, V) 6= (1, 1)G1∧
e(U, [η]2) = e(V, [1]2)

∣∣ (U, V)← A(bgp, [G1(σ, τ , η)]1,
[G2(σ, τ , η)]2)

]
where the probability is over the random choices of σ, τ , η and A’s random coins.

6.2 Our CFC Construction

As defined in the previous section we express f ∈ Fquad through a set of matrices F(h) ∈ Fn×n and
G(h,h′) ∈ Fn×n2 , and a vector e ∈ Fn such that

f(x(1), . . . ,x(m)) = e+
∑

h∈S1(f)

F(h) · x(h) +
∑

(h,h′)∈S⊗2 (f)

G(h,h′) · (x(h) ⊗ x(h′)) (5)

For the sake of defining the succinctness of our CFC we parametrize the class Fquad by the size
of the quadratic support of f . Formally, let K = {0, 1, . . . ,m(m + 1)/2}. Then we partition Fquad

as {Fquad,κ}κ∈K where each Fquad,κ = {f ∈ Fquad : S⊗2 (f) = κ}. Note that the parametrization
extends naturally to the class Flevel as described in Section 5. Due to the definition of Flevel, in that
case we have at most m partitions, i.e,. Flevel = {Flevel,κ}mκ=0.

22

Setup(1λ, n) Let n ≥ 1 be an integer representing the width of each of the inputs of the functions to
be computed at opening time. Generate a bilinear group description bgp := (q,G1,G2,GT , e, g1, g2)←
BG(1λ), and let F := Zq.
Next, sample random α,β,γ←$Fn, ηα, ηβ, ηγ←$F, and output

ck :=

[α]1 , [α]2 , [β]1 , [γ]1 , [α⊗ β]1 , [ηα]2 , [ηβ]2 , [ηγ]2{[
ηααiγi′
γi

]
1
,
[
ηββiαi′
αi

]
1

}
i,i′∈[n]
i 6=i′

{[
ηγγkαi′βj′

αiβj

]
1

}
i,j,i′,j′,k∈[n]
(i,j)6=(i′,j′){[

ηααi
γi

]
2
,
[
ηββi
αi

]
2

}
i∈[n]

,
{[

ηγγk
αi

]
2

}
i,k∈[n]

{
,
[
ηγγk
αiβj

]
2

}
i,j,k∈[n]

 .

Com(ck,x) output com := [〈x,α〉]1 and aux = x.
Open(ck, (auxi)i∈[m], f)→ π Let F(h) ∈ Fn×n for h ∈ S1(f), G(h,h′) ∈ Fn×n2 for (h, h′) ∈ S⊗2 (f),
and e ∈ Fn be the matrices and vectors associated to f : Fmn → Fn. The opening algorithm
computes the output y = f(x(1), . . . ,x(m)) and proceeds as follows.
– For every h ∈ S2(f): compute X(2)

h := [〈x(h),α〉]2, X(β)
h := [〈x(h),β〉]1, which are commitments

to x(h) under α in G2 and under β in G1, resp.
– For every h ∈ S2(f): compute a linear map opening proof for the identity function, to show that
Xh and X(β)

h open to the same value:

π
(β)
h :=

∑
i,i′∈[n]
i 6=i′

x
(h)
i′ ·

[
ηββiαi′

αi

]
1

– For every pair of inputs x(h),x(h′) such that (h, h′) ∈ S⊗2 (f), compute a commitment to their
tensor products as follows:

Zh,h′ :=
∑
i,j∈[n]

x
(h)
i x

(h′)
j · [αiβj]1 = [〈x(h) ⊗ x(h′),α⊗ β〉]1.

– Compute a linear map opening proof to show that the vector y satisfies equation (5), with
respect to all the inputs x(h) committed in Xh and the inputs x(h) ⊗ x(h′) committed in Zh,h′ :

π(γ) :=
∑

h∈S1(f)

∑
i,i′,k∈[n]
i 6=i′

F
(h)
k,i · x

(h)
i′ ·

[
ηγγkαi′

αi

]
1

+

∑
(h,h′)∈S⊗2 (f)

∑
i,j,i′,j′,k∈[n]
(i,j) 6=(i′,j′)

G
(h,h′)
k,(i,j) · x

(h)
i′ x

(h′)
j′ ·

[
ηγγkαi′βj′

αiβj

]
1

Note that π(γ) is in fact a proof for the vector y − t; the linear shift will be addressed by the
verifier in equation (11).

– Commit to the output y under γ by computing Y (γ) := [〈y,γ〉]1. Then, compute a linear map
opening proof for the identity function, to show that Y (γ) and the commitment to the output
comy ← Com(ck,y) (which is under α) open to the same value:

π(α) :=
∑
i,i′∈[n]
i 6=i′

yi′ ·
[
ηααiγi′

γi

]
1

23

– Return π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗2 (f), Y

(γ), π(α), π(γ)
)
.

Ver(ck, (comi)i∈[m], comy, f, π)→ b ∈ {0, 1} Parse the proof π as above and set Xh := comh. Output
1 if all the following checks pass and 0 otherwise:
– Verify the consistency of all the commitments:

∀h ∈ S2(f) : e (Xh, [1]2)
?
= e

(
[1]1, X

(2)
h

)
(6)

– Verify the linear map commitment proofs that both X
(β)
h , Xh commit to the same value in

different sets of parameters:

∀h ∈ S2(f) : e

Xh,
∑
i∈[n]

[
ηββi
αi

]
2

 ?
= e

(
π

(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
(7)

– Verify the consistency of the commitments to the tensor products:

∀(h, h′) ∈ S⊗2 (f) : e
(
Zh,h′ , [1]2

) ?
= e

(
X

(β)
h′ , X

(2)
h

)
(8)

– Verify the linear map commitment proof that both comy, Y
(γ) commit to the same value in

different sets of parameters:

e

Y (γ),
∑
i∈[n]

[
ηααi
γi

]
2

 ?
= e

(
π(α), [1]2

)
e (comy, [ηα]2) (9)

– Verify the linear map commitment proof to check that, intuitively, Y (γ) is a commitment under γ
to the output of f , computed from the inputs committed in Xh and Zh,h′ . To this end, compute
the encoding of the matrices F(h) for h ∈ S1(f), G(h,h′) for (h, h′) ∈ S⊗2 (f) and the vector e as
follows. Let Θ = [〈e,β〉]1 and

Φh :=
∑
i,k∈[n]

F
(h)
k,i ·

[
ηγγk
αi

]
2

, Γh,h′ :=
∑

i,j,k∈[n]

G
(h,h′)
k,(i,j) ·

[
ηγγk
αiβj

]
2

(10)

and then verify that∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗2 (f)

e
(
Zh,h′ , Γh,h′

) ?
= e

(
π(γ), [1]2

)
e
(
Y (γ) ·Θ−1, [ηγ]2

)
. (11)

Theorem 4. Assume that the n-HiKer assumption holds for a bilinear group setting generated by
BG. Then the construction CFC described above is an evaluation binding CFC scheme for the class
Fquad of quadratic functions over any m = poly(λ) vectors of length ≤ n, that has efficient verifi-
cation and is additively homomorphic. Considering the partitioning of Fquad = {Fquad,κ}

m(m+1)/2
κ=0 ,

CFC is s(n,m, κ)-succinct for s(n,m, κ) = (κ + 3m + 3). Furthermore, when executed on the class
of functions Flevel ⊂ Fquad introduced in Section 5.2 and partitioned as Flevel = {Flevel,κ}mκ=0, then
CFC is (4κ+ 3)-succinct.

In the following sections we prove the theorem.

24

6.3 Correctness

To prove correctness, consider honestly generated input commitments Xh =
[
〈x(h),α〉

]
1
for h ∈ [m]

and an honestly generated opening

π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗2 (f), Y

(γ), π(α), π(γ)
)

for a quadratic function f represented by the matrices e,F(h),G(h,h′) for h ∈ S1(f) and (h, h′) ∈
S⊗2 (f).

The correctness of equations (6) and (8) follows easily by construction since

e (Xh, [1]2) = e
([
〈x(h),α〉

]
1
, [1]2

)
= e

(
[1]1 ,

[
〈x(h),α〉

]
2

)
= e

(
[1]1 , X

(2)
h

)
,

e
(
Zh,h′ , [1]2

)
= e

([
〈x(h) ⊗ x(h′),α⊗ β〉

]
1
, [1]2

)
= e

 ∑
i,j∈[n]

x
(h)
i x

(h′)
j αiβj

1

, [1]2

= e

([
〈x(h′),β〉

]
1
,
[
〈x(h),α〉

]
2

)
= e

(
X

(β)
h′ , X

(2)
h

)
.

The correctness of equation (7) can be seen as follows. Given h ∈ S2(f), we have that

e

Xh,
∑
i∈[n]

[
ηββi
αi

]
2

 =

∑
i∈[n]

x
(h)
i αi

 ·
∑
i∈[n]

ηββi
αi

T

=

 ∑
i,i′∈[n]

x
(h)
i′ αi′

ηββi
αi

T

=

 ∑
i,i′∈[n]
i 6=i′

x
(h)
i′
ηββiαi′

αi
+
∑
i∈[n]

x
(h)
i βiηβ

T

= e
(
π

(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
.

Similarly, for equation (9) we have that

e

Y (γ),
∑
i∈[n]

[
ηααi
γi

]
2

 =

∑
i∈[n]

yiγi

 ·
∑
i∈[n]

ηααi
γi

T

=

 ∑
i,i′∈[n]

yi′γi′
ηααi
γi

T

=

 ∑
i,i′∈[n]
i 6=i′

yi′
ηααiγi′

γi
+
∑
i∈[n]

yiαiηα

T

= e
(
π(α), [1]2

)
e (comy, [ηα]2) .

Finally, the correctness of equation (11) can be proven in an analogous way. First of all, we expand
the pairing coefficients on the LHS in GT ,

25

e (Xh, Φh) =

∑
k∈[n]

∑
i∈[n]

F
(h)
k,i · x

(h)
i

 ηγγk +

n∑
i,i′,k=1
i 6=i′

F
(h)
k,i · x

(h)
i′ ·

ηγγkαi′

αi

T

e
(
Zh,h′ , Γh,h′

)
=

∑
k∈[n]

 ∑
i,j∈[n]

G
(h,h′)
k,(i,j) · x

(h)
i x

(h′)
j ·

 ηγγk

+
∑

i,j,i′,j′,k∈[n]
(i,j) 6=(i′,j′)

G
(h,h′)
k,(i,j) · x

(h)
i′ x

(h′)
j′ ·

ηγγkαi′βj′

αiβj

T

.

By using the identities above and equation (5), we have∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗2 (f)

e
(
Zh,h′ , Γh,h′

)
=

=

 ∑
h∈S1(f)
i,k∈[n]

F
(h)
k,i · x

(h)
i · ηγγk +

∑
(h,h′)∈S⊗2 (f)
i,j,k∈[n]

G
(h,h′)
k,(i,j) · x

(h)
i x

(h′)
j · ηγγk

T

e
(
π(γ), [1]2

)

=

∑
k∈[n]

(yk − ek)ηγγk

T

e
(
π(γ), [1]2

)
= e

(
comy ·Θ−1, [ηγ]2

)
e
(
π(γ), [1]2

)
.

Note that from the equations above it also follows that CFC is additively homomorphic.

6.4 Succinctness

An opening proof π to a given function f ∈ Fquad,κ includes
∣∣S⊗2 (f)

∣∣ = κ commitments to tensored
inputs X̃h,h′ , and the triples of elements {X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), which are 3|S2(f)| group elements.

Finally, π includes three additional group elements Y (γ), π(α), π(γ). Hence, the proof consists of
κ+ 3|S2(f)|+ 3 group elements, and essentially ranges from O(1) (in fact π has only 3 elements if
f is a linear function) to O

(
m2
)
depending on the quadratic support of f . Precisely, considering a

fixed polynomial p(λ) that upper bounds the size of a group element from G1 or G2, our CFC is
O(κ)-succinct.

When the CFC is executed on functions from the class Flevel = {Flevel,κ} introduced in Section
5.2 we have that |S2(f)| = κ ≤ m. In this case a CFC opening contains 4κ+ 3 group elements and
our CFC is also O(m)-succinct.

6.5 Resulting Instantiations of FC for circuits

We summarize the FC schemes that result from instantiating our generic construction of Section 5
with our pairing-based CFC.

26

Corollary 1. Assume that the n-HiKer assumption holds for BG. Then the following statements
hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w ≤ n that
is O(d · t)-succinct. In particular, the FC is O(d2)-succinct for an arbitrary arithmetic circuit of
multiplicative depth d, and is O(d)-succinct for a layered arithmetic circuit of multiplicative depth
d.

2. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w ≤ n
that is O

(
d2 · w · n−1

)
-succinct.

3. There exists an FC scheme for the class of arithmetic circuits of size ≤ S, that is O(d)-succinct
where d is the multiplicative depth of the circuit.

4. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of circuits of arbitrary
width w > w0 that is O

(
d · t · (w/w0)2

)
-succinct.

Proof. Consider the FC construction in Section 5 instantiated with our pairing-based CFC for
quadratic functions. More precisely, we consider arithmetic circuits following the model described
in Section 5.2 which allows us to use CFC only with quadratic functions in Flevel. The statements
of the corollary can be obtained by combining the following observations.

1. For arbitrary circuits, note that the in-degree t of the circuit upper bounds the numberm of inputs
used in the CFC, and thus an FC proof consists of d CFC proofs, which makes a total of 4dt+ 3d
group elements. O(d2)-succinctness for arbitrary arithmetic circuits follows from the fact that an
arbitrary arithmetic circuit of depth d may have in-degree up to d, while O(d)-succinctness for
layered circuits follows from the in-degree being 1 in such circuits.

2. The statement follows from the transformation that we present in Proposition 3.
3. To see this statement, let us consider the folklore transformation from arbitrary to layered arith-

metic circuits (which is a special case of the transformation in Proposition 3). If one starts from
a circuit C of width n and depth d, the circuit C′ resulting from this transformation has the same
depth, but width ≤ n · d, which is upper bounded by the circuit size S.

4. The statement follows directly from Proposition 4, where w0 is the maximum width supported
by the parameters of the given FC.

6.6 Proof of security

Consider an adversary A who returns a tuple ((comh)h∈[m], comy, f, π, ˜comy, π̃) that breaks evalua-
tion binding, set Xh := comh, and parse the proofs as follows

π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗2 (f), Y

(γ), π(α), π(γ)
)

π̃ :=
(
{X̃(2)

h , X̃
(2)
h , π̃

(β)
h }h∈S2(f), {Z̃h,h′}(h,h′)∈S⊗2 (f), Ỹ

(γ), π̃(α), π̃(γ)
)

Recall that by definition of evaluation binding, if A’s attack is successful, both proofs must verify
for the same function f , the same input commitments Xh for h ∈ [m], and for different output
commitments comy 6= ˜comy.

The intuition of the proof is that A can cheat in three possible ways, for which we define three
events E1, E2, E3 as follows:

27

– E1 is the event that Y (γ) = Ỹ (γ). As comy 6= ˜comy, this implies an evaluation binding break in
the linear map commitment proof in equation (9).

– E2 is the event that E1 does not happen (i.e., Y (γ) 6= Ỹ (γ)) and that X(β)
h∗ 6= X̃

(β)
h∗ for some

h∗ ∈ S2(f). This means that the proofs π(β)
h∗ , π̃

(β)
h∗ open the commitment comh∗ to two different

output commitments for the identity function, which breaks evaluation binding in equation (7).
– E3 is the event that neither E1 nor E2 occur. In this case, we will show that evaluation binding

breaks in equation (11).

For any of these events, we will use A’s output to break the n-HiKer assumption if this is
embedded into ck. For this embedding, B makes a guess ŝ ∈ {0, 1} such that ŝ = 0 corresponds to a
guess that event E1 occurs while ŝ = 1 corresponds to a guess that either E2 or E3 will occur. This
ŝ is perfectly hidden to A.

Next we describe how to build B out of A.

Commitment key generation. Let B be an adversary against the n-HiKer assumption. B uni-
formly samples a value ŝ←$ {0, 1} and simulates ck as follows.

Case ŝ = 0. B samples α,β←$Fn, ηβ, ηγ←$F and implicitly sets γ := σ and ηα := η from the input
of the assumption. It is easy to see that this implicit setting allows B to compute all the elements
in the first row of ck, namely:

[α,β,γ,α⊗ β]1 , [α, ηα, ηβ, ηγ]2

We show how B can simulate the remaining elements in the second and third rows of ck starting
from the inputs from the n-HiKer assumption as follows:

∀i, i′ ∈ [n], i 6= i′ : αi

[
ησi′
σi

]
1

=

[
ηααiγi′

γi

]
1

ηββiαi′
αi

[1]1 =

[
ηββiαi′

αi

]
1

∀i, j, i′, j′, k ∈ [n] : (i, j) 6= (i′, j′) :
ηγαi′βj′
αiβj

[σk]1 =

[
ηγγkαi′βj′

αiβj

]
1

∀i ∈ [n] : αi

[
η
σi

]
2

=

[
ηααi
γi

]
2

ηββi
αi

[1]2 =

[
ηββi
αi

]
2

∀i, k ∈ [n] :
ηγ
αi

[σk]2 =

[
ηγγk
αi

]
2

∀i, j, k ∈ [n] :
ηγ
αiβj

[σk]2 =

[
ηγγk
αiβj

]
2

As one can notice, in this case of ŝ = 0 we embed in the commitment key only a subset of the
elements of the assumption. This means that the reduction for adversaries causing event E1 can
actually be done based on a weaker version of the assumption which includes only the subset of the
elements that we need for this case.

28

Case ŝ = 1. B samples ηα, rβ, rγ←$F and γ←$Fn and implicitly sets α := σ,β := τ , ηβ := rβ ·
η, ηγ := rγ ·η. As for the case of ŝ = 0, it is easy to see that this implicit setting allows B to compute
all the elements in the first row of ck, namely [α,β,γ,α⊗ β]1 , [α, ηα, ηβ, ηγ]2.

Next, we show how B can simulate the remaining elements in the second and third rows of ck
starting from the inputs from the n-HiKer assumption as follows:

∀i, i′ ∈ [n], i 6= i′ :
ηαγi′
γi

[σi]1 =

[
ηααiγi′

γi

]
1

rβ

[
ητiσi′
σi

]
1

=

[
ηββiαi′

αi

]
1

∀i, j, i′, j′, k ∈ [n] : (i, j) 6= (i′, j′) : rγγk

[
ησi′τj′
σiτj

]
1

=

[
ηγγkαi′βj′

αiβj

]
1

∀i ∈ [n] : ηα
γi

[σi]2 =

[
ηααi
γi

]
2

rβ

[
ητi
σi

]
2

=

[
ηββi
αi

]
2

∀i, k ∈ [n] : rγγk

[
η
σi

]
2

=

[
ηγγk
αi

]
2

∀i, j, k ∈ [n] : rγγk

[
η

σiτj

]
2

=

[
ηγγk
αiβj

]
2

Execution of A. Once having generated ck as described above, B runs A(ck), receives the out-
put ((comh)h∈[m], comy, f, π, ˜comy, π̃) and parses the proofs as before. Notice that ck is perfectly
distributed as the one generated by Setup and thus the value ŝ is perfectly hidden to A.

The reduction proceeds differently according to the output produced by A, that we split in the
events E1, E2, E3 as defined above.

E1 occurs: If ŝ 6= 0, then B aborts. Otherwise it proceeds as follows. Recall that in this case we
have that as Y (γ) = Ỹ (γ), then π(α), π̃(α) open to different comy, ˜comy. Therefore, by equation (9)
we have that

e
(
π(α), [1]2

)
e (comy, [ηα]2) = e

Y (γ),
∑
i∈[n]

[
ηααi
γi

]
2

 = e
(
π̃(α), [1]2

)
e (˜comy, [ηα]2)

Then, B returns (U, V) such that

U := ˜comy/comy, V := π(α), /π̃(α).

If B did not abort, then ŝ = 0. Thus, ηα = η and e (U, [η]2) = e (V, [1]2).

E2 occurs: If ŝ 6= 1, then B aborts. Otherwise, let h∗ be some index such that X(β)
h∗ 6= X̃

(β)
h∗ ; note

that h∗ must exist by definition of event E2. Similarly as before, from equation (7) we have that

e
(
π

(β)
h∗ , [1]2

)
e
(
X

(β)
h∗ , [ηβ]2

)
= e

Xh∗ ,
∑
i∈[n]

[
ηββi
αi

]
2

 = e
(
π̃

(β)
h∗ , [1]2

)
e
(
X̃

(β)
h∗ , [ηβ]2

)
.

29

Then, B returns (U, V) such that

U := (X̃
(β)
h∗ /X

(β)
h∗)rβ , V := π

(β)
h∗ /π̃

(β)
h∗ .

If B did not abort, then ŝ = 1. Thus, ηβ = rβ · η and e (U, [η]2) = e (V, [1]2).

E3 occurs: If ŝ 6= 1, then B aborts. Otherwise, B proceeds as follows. First, note that since E1

and E2 did not occur, then Y (γ) = Ỹ (γ) and X(β)
h = X̃

(2)
h for every h ∈ S2(f). Also, by equation (6)

and by the non-degeneracy of the pairing, we have

e (Xh, [1]2) = e
(

[1]1 , X
(2)
h

)
= e

(
[1]1 , X̃

(2)
h

)
which implies that X

(2)
h = X̃

(2)
h .

From the equality above we can use equation (8) to also conclude that Zh,h′ = Z̃h,h′ for all (h, h′) ∈
S⊗2 (f). Then, since both proofs satisfy equation (11), we have

e
(
π(γ), [1]2

)
e
(
Y (γ) ·Θ−1, [ηγ]2

)
=

∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗2 (f)

e
(
Zh,h′ , Γh,h′

)
= e

(
π̃(γ), [1]2

)
e
(
Ỹ (γ) ·Θ−1, [ηγ]2

)
.

The reduction returns (U, V) computed as follows:

U := (Ỹ (γ)/Y (γ))rγ , V := π(γ)/π̃(γ).

If B did not abort, then ŝ = 1 and ηγ = rγ · η. Thus, e (U, [η]2) = e (V, [1]2). Since ŝ is perfectly

hidden B aborts with probability 1/2. Hence, if A is successful with probability ε, then B breaks
the assumption with probability ε/2.

6.7 Efficient verification

Our chainable functional commitment scheme CFC supports amortized efficient verification. We
define the algorithms VerPrep and EffVer below, following Definition 6.

VerPrep(ck, f) Parse ck and compute the encodings Θ,Φh, Γh,h′ of f as done in the CFC.Ver al-
gorithm following equation (10). Also, compute the encodings in equations (7) and (9), Ψ (β) =∑

i∈[n]

[
ηββi
αi

]
2
and Ψ (α) =

∑
i∈[n]

[
ηααi
γi

]
2
.

Output vkf := ({Θ,Φh, Γh,h′}(h,h′)∈S⊗2 (f), Ψ
(α), Ψ (β)).

EffVer(vkf , (comh)h∈[m], comy, π) Parse vkf , π and carry out all the pairing checks in the Ver algo-
rithm, i.e., verify equations (6), (7), (8), (9), (11).

Following the description of succinctness in Section 6.4, given any f ∈ Fquad,κ then EffVer needs
to parse a proof that has O(κ) group elements. Then, it verifies ω ≤ κ pairing checks in equations
(6) and (7), κ checks in equation (8), a single check in equation (7), and a single check involving
κ + ω products in equation (11). Assuming that the running time of each pairing computation is
bounded by some polynomial p(λ) = poly(λ), the running time of EffVer is therefore O(p(λ) · |κ|) =
O(p(λ) · |π|), which is essentially optimal.

30

6.8 Commitment hiding

Our CFC construction can be made perfectly com-hiding (Definition 7) by adding randomness to
the commitment. We describe the transformation C̃FC = (S̃etup, C̃om, Õpen, Ṽer) below.

S̃etup(1λ, 1n) Output c̃k← Setup(1λ, 1n+1).

C̃om(c̃k,x) Let r←$F. Output (com, aux) where com← Com(c̃k,x) + r · [αi+1]1 and aux = (x, r).

Õpen(c̃k, (auxi)i∈[m], f) Let auxi = (x(i), r(i)). Output Open(c̃k, (aux)i∈[m], f
′) where f ′ = (f, 0).

Ṽer(c̃k, (comi)i∈[m], comy, f, π) Output Ver(c̃k, (comi)i∈[m], comy, f, π).

For the above scheme, it is easy to construct a simulator Sim as follows.

SimSetup(1λ, n) Sample α←$Fn+1 and generate c̃k as in Setup(1λ, n+ 1), sampling additional field
elements when necessary. Output (c̃k, td) where td = α.

SimCom(td) Sample r←$F and output (com, aux) where com = r · [αn+1]1 and aux = (0, r).
SimEquiv(td, com, aux,x) The algorithm uses the field elements in α to find a value r′ ∈ F such that

com = C̃om(x, r′). It simply obtains the solution r′ of the linear equation 〈x,α〉+αn+1r
′ = αn+1r

and outputs aux = (x, r′).

7 Lattice-based CFC for Quadratic Functions

In this section, we present a lattice-based construction of a CFC for quadratic functions. Our
construction can be seen as a lattice-analogue of the pairing-based scheme presented in Section 6
obtained via a slight generalisation of the translation technique in [ACL+22].

7.1 Lattice Preliminaries

Let R = Z[ζ], where ζ is a fixed primitive m-th root of unity, be the ring of integers of the m-th
cyclotomic field of degree d = ϕ(m), where elements are represented by their coefficient embedding
x =

∑d−1
i=0 xi · ζi. If m is a prime-power (resp. power of 2), we call R a prime-power (resp. power-

of-two) cyclotomic ring. For the rest of this section we will assume that m = poly(λ).
For x ∈ R, write ‖x‖ := maxd−1

i=0 |xi| for the infinity norm induced on R by Z. The norm
generalises naturally to vectors u = (u1, . . . , un) ∈ Rn, with ‖u‖ := maxni=1‖ui‖. For q ∈ N, write
Rq := R/qR. We always assume that q is a (rational) prime. By a slight abuse of notation, we
identity Rq with its balanced representation, i.e. if x =

∑d−1
i=0 xi · ζi ∈ Rq then |xi| ≤ q/2 for all i.

The ring expansion factor γR of R is defined as γR := maxa,b∈R
‖a·b‖
‖a‖·‖b‖ . It is known [AL21] that

if R is a prime-power cyclotomic ring then γR ≤ 2 · d, and if R is a power-of-two cyclotomic ring
then γR ≤ d.

Lattice Trapdoors. We will make use of the following standard algorithms (e.g. [GPV08, MP12,
GM18]) associated to lattice trapdoors and their properties for sufficiently large “leftover hash lemma
parameter” lhl(R, η, q, β) = O(η logβ q):

31

– (A, tdA) ← TrapGen(R, 1η, 1`, q, β): The trapdoor generation algorithm generates a matrix A ∈
Rη×`q along with a trapdoor td. It is assumed that (η, `, q, β) are implicitly specified by tdA. When
` ≥ lhl(R, η, q, β), the distribution of A is within negl(λ) statistical distance of U(Rη×`q).

– u← SampD(R, 1η, 1`, q, β′): The domain sampling algorithm samples a vector u ∈ R` with norm
‖u‖ ≤ β′. When β′ ≥ β and ` ≥ lhl(R, η, q, β), then the distribution of (A,A · u mod q) for a
uniformly random A←$Rη×`q is within negl(λ) statistical distance of U(Rη×`q ×Rηq).

– u← SampPre(tdA,v, β
′): The preimage sampling algorithm inputs a vector v ∈ Rnq and outputs

a vector u ∈ R`. If the parameters (η, `, q, β) of tdA satisfy β′ ≥ β and ` ≥ lhl(R, η, q, β), then u
and v satisfy A ·u = v mod q and ‖u‖ ≤ β′. Furthermore, u is within negl(λ) statistical distance
to u← SampD(R, 1n, 1`, q, β′) conditioned on A · u = v mod q.

Hardness Assumptions. The k-M -ISIS assumption family was recently introduced in [ACL+22]
as a natural extention of the standard short integer solution (SIS) assumption and a natural lattice-
analogue of a certain class of pairing-based assumptions. The k-M -ISIS assumption family was
accompanied by a translation technique outlined in [ACL+22] for translating pairing-based schemes
and assumptions to their lattice-analogues.

For instance, a certain k-M -ISIS assumption could be parametrised by a set G of monomials. It
states that even when given short preimages ug satisfying A · ug = t · g(v) mod q for all g ∈ G, it
is hard to find a short non-zero preimage u∗ satisfying A · u∗ = 0 mod q.

Applying the translation technique in [ACL+22] to the pairing-based assumption (Definition 12)
which underlies the security of the pairing-based CFC construction, we encounter an obstacle that
there is no translation for the term [η]2 in the challenge relation e(U, [η]2) = e(V, [1]2).

To overcome the above obstacle, in the following, we introduce (a special case of) a generalisation
of the k-M -ISIS assumption which we call the twin-k-M -ISIS assumption. In a nutshell, instead
of a single set G of monomials, we now have two (or in general more) sets GA and GB of non-
overlapping monomials. The twin-k-M -ISIS assumption states that even when given short preimages
ug satisfying A · ug = t · g(v) mod q for all g ∈ GA and short preimages wg satisfying B · ug =
t · g(v) mod q for all g ∈ GB, it is hard to find a short non-zero preimage (u∗,w∗) satisfying
A ·u∗+B ·w∗ = 0 mod q. We stress that the non-overlapping requirement of GA and GB is crucial,
for otherwise (ug,−wg) would be a trivial solution for any g ∈ GA∩GB. Other than this trivial attack
(which is ruled out), it could be verified that the (failed) attack strategies discussed in [ACL+22]
against the k-M -ISIS assumption also fail against the twin-k-M -ISIS assumption.

Definition 13 (Twin-k-M-ISIS Assumption). Let `, η ∈ N, q be a rational prime, β, β∗ ∈ R+,

GA :=

{
Xj

Xi
· X̄k

}
i,j,k∈[n],i 6=j

∪
{
Xj

Xi
· X̌k

}
i,j,k∈[n],i 6=j

∪
{
Xj · X̌j′

Xi · X̌i′
· X̄k

}
i,i′,j,j′,k∈[n]
i 6=j,i′ 6=j′

,

GB :=
{
X̄k, X̌k

}
k∈[n]

, and G := GA ∪ GB. For η, ` ∈ N, g ∈ G, A ∈ Rη×`q , B ∈ Rη×`q , t ∈ (R×q)η,
and v, v̄, v̌ ∈ (R×)n, let Dg,A,t,v,v̄,v̌ and Dg,B,t,v,v̄,v̌ be distributions over{

ug ∈ R` : A · ug ≡ t · g(v, v̄, v̌) mod q, ‖ug‖ ≤ β
}

and{
wg ∈ R` : B ·wg ≡ t · g(v, v̄, v̌) mod q, ‖wg‖ ≤ β

}
32

respectively. Let

DA :=
{
Dg,A,t,v,v̄,v̌ : η, ` ∈ N, g ∈ GA,A ∈ Rη×`q ,v, v̄, v̌ ∈ (R×)n

}
and

DB :=
{
Dg,B,t,v,v̄,v̌ : η, ` ∈ N, g ∈ GB,B ∈ Rη×`q ,v, v̄, v̌ ∈ (R×)n

}
be the families of these distributions. Write pp := (Rq, η, `, n,GA,GB,DA,DB, β, β∗). The k-M -ISISpp

assumption states that for any PPT adversary A we have Advk-m-isis
pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr

A · u∗ + B ·w∗ ≡ 0 mod q

∧ 0 < ‖(u∗,w∗)‖ ≤ β∗

∣∣∣∣∣∣∣∣∣∣∣∣

A←$Rη×`q mod q; B←$Rη×`q mod q

t←$ (R×q)η; v, v̄, v̌←$ (R×)
n

ug←$Dg,A,t,v,v̄,v̌, ∀ g ∈ GA
wg←$Dg,B,t,v,v̄,v̌, ∀ g ∈ GB
(u∗,v∗)← A (A,B, t, {uGA ,wGB},v, v̄, v̌)

.

Next, we recall (a special case) of the knowledge k-M -ISIS assumption introduced in [ACL+22].

Definition 14 (Knowledge k-M-ISIS Assumption). Adopt the notation from Definition 13, but
let G := {Xi : i ∈ [n]} and pp := (Rq, η, `, n,G,D, α∗, β, β∗) where α∗ ∈ R+ and η > 1. The knowl-
edge k-M -ISISpp assumption for an auxiliary input distribution Z states that for any polynomial-time
adversary A there exists a PPT extractor EA such that Advk-m-isis

pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr

A · u ≡ t · c mod q

∧ ‖u‖ ≤ β∗

∧ ¬

c ≡

∑
g∈G

xg · g(v) mod q

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A←$Rη×`q

t←$ (R×q)η; v←$ (R×)n

ug←$Dg,A,t,v, ∀ g ∈ G
auxZ ← Z(1λ)(

(c,u), (xg)g∈G

)
← (A‖EA) (A, t, {uG},v, auxZ)

where the notation (A‖EA) means that A and EA are run on the same input including the random-
ness, and (c,u) and (xg)g∈G are the outputs of A and EA respectively.

7.2 Construction

In the following, we construct a lattice-based chainable functional commitment scheme. Our con-
struction is parametrised by a ring R, dimensions η, `, modulus q, norm bound β, an input length
n, and the number of inputs m. Before describing the construction, we first introduce the following
shorthands and notation.

For a quadratic polynomial map f : (Rn)m → Rn, we express f(x1, . . . ,xm) similarly to previous
sections,

f(x1, . . . ,xm) = e+
∑

h∈S1(f)

Fh · xh +
∑

(h,h′)∈S⊗2 (f)

Gh,h′ · (xh ⊗ xh′)

for some Gh,h′ ∈ Rn×n
2 , Fh ∈ Rn×n, and e ∈ Rn.

33

Different from the pairing-based construction, our lattice-based construction is additionally
parametrised by a norm bound α ∈ R+. We assume that messages x and each coefficient of any
quadratic polynomial map f to be opened have norm at most α, and f is such that for any x1, . . . ,xm
of norm at most α, it holds that ‖f(x1, . . . ,xm)‖ ≤ α.

For a vector v ∈ (R×q)n, denote its component-wise inverse by v† := (v−1
i)ni=1. Define Zv :=

v† · vT − I = (zi,j)i,j where

zi,j =

{
0 i = j

v−1
i · vj i 6= j

.

We are now ready to describe the construction as follows.

Setup(1λ, 1n)

– Sample trapdoored matrices (A, tdA), (B, tdB)← TrapGen(R, 1η, 1`, q, β).
– Sample submodule generator t←$ (R×q)η.
– Sample commitment key vectors v, v̄, v̌←$Rnq .
– Sample a short preimage ug ← SampPre(tdA, t · g(v, v̄, v̌) mod q) for each g ∈ GA, where

GA :=

{
Xj

Xi
· X̄k

}
i,j,k∈[n],i 6=j

∪
{
Xj

Xi
· X̌k

}
i,j,k∈[n],i 6=j

∪
{
Xj · X̌j′

Xi · X̌i′
· X̄k

}
i,i′,j,j′,k∈[n]
i 6=j,i′ 6=j′

.

– Sample a short preimage wg ← SampPre(tdB, t · g(v, v̄, v̌) mod q) for each g ∈ GB, where

GB :=
{
X̄k, X̌k

}
k∈[n]

.

– Output ck := (A,B, t,v, v̄, v̌, (ug)g∈GA , (wg)g∈GB) .

Com(ck,x)
– Compute c := 〈v,x〉 mod q.
– Output com = c and aux = x.

Open(ck, (auxh)h∈[m], f)

– Parse auxh as xh for all h ∈ [m] and let y := f(x1, . . . ,xm).
– Compute v1 := vec(Zv)⊗ v̄ and v2 := vec((I + Zv)⊗ (I + Zv̌)− I)⊗ v̄.
– Pack the preimages vectors given in the public parameters as columns of the following matrices:
• Ui such that A ·Ui = t · vTi mod q for i ∈ [2].

For example, for i = 1, the first few columns of the R.H.S. of the equation are of the form

t · vT1 = t ·
(
0 v1

v2
· v̄1

v1
v3
· v̄1 . . .

)
.

Notice that each column is either 0 ∈ Rηq , for which 0 ∈ R` is a trivial preimage, or of the
form t · vjvi · v̄k for some i, j, k ∈ [n] with i 6= j, for which a preimage is given in ck.
• Ū such that A · Ū = t · v̄T · Zv mod q.
• Ǔ such that A · Ǔ = t · v̌T · Zv mod q.
• W̄ such that B · W̄ = t · v̄T mod q.
• W̌ such that B · W̌ = t · v̌T mod q.

– Compute u :=
∑

h∈S1(f) U1 · vec(xTh ⊗ Fh) +
∑

(h,h′)∈S⊗2 (f) U2 · vec((xTh ⊗ xTh′)⊗Gh,h′).
– Compute ū0 := Ū · y and w̄0 := W̄ · y.

34

– Compute ǔh := Ǔ · xh and w̌h := W̌ · xh for h ∈ S2(f).
– Output (u, ū0, w̄0, (ǔh, w̌h)h∈S2(f)).

Ver(ck, (comh)h∈[m], com0, f, π)

– Define f̂(C1, . . . , Cm, Č1, . . . , Čm)

:= v̄T ·

 ∑
(h,h′)∈S2(f)

Gh,h′ · (v† ⊗ v̌†) · Ch · Čh′ +
∑

h∈S1(f)

Fh · v† · Ch + eT

 .

– Define īd(C) := v̄T · v† · C and ǐd(C) := v̌T · v† · C.
– For h ∈ [m] \ S2(f), set čh = 0.
– Check if there exists (unique) c̄0 such that B · w̄0 = t · c̄0 mod q.
– Check if there exists (unique) čh such that B · w̌h = t · čh mod q for h ∈ S2(f).
– Check if A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q and ‖u‖ ≤ β∗.
– Check if A · ū0 = t · (īd(c0)− c̄0) mod q and ‖ū0‖ ≤ β∗.
– Check if A · ǔh = t · (ǐd(ch)− čh) mod q and ‖ǔh‖ ≤ β∗ for h ∈ S2(f).
– Accept, i.e. output 1, if all checks pass. Otherwise, output 0.

Theorem 5. Let ` ≥ lhl(R, η, q, β) and β∗ ≥ 2 · n4 · m̂2 · α3 · β · γ3
R, and assume that the twin-

k-M -ISISRq ,η,`,n,GA,GB ,DA,DB ,β,β∗ assumption holds, where DA and DB are distributions such that

Dg,A,t,v,v̄,v̌ =
{
ug ← SampD(R, 1η, 1`, q, β)

∣∣∣A · ug = t · g(v, v̄, v̌) mod q
}

for all g ∈ GA, A ∈ Rη×`q , t ∈ (R×q)η, v, v̄, v̌ ∈ Rnq and

Dg,B,t,v,v̄,v̌ =
{
wg ← SampD(R, 1η, 1`, q, β)

∣∣∣B ·wg = t · g(v, v̄, v̌) mod q
}

for all g ∈ GB, B ∈ Rη×`q , t ∈ (R×q)η, v, v̄, v̌ ∈ Rnq . Then, the construction CFC described above is an
evaluation binding CFC for the class Fquad of quadratic functions over any m ≤ m̂ vectors of length
≤ n, has efficient verification, and is (almost) additively homomorphic. For a function f ∈ Fquad,
the proof size of CFC is |π| = |S2(f)| · log2(m · n) · poly(λ), and for the class Flevel = {Flevel,κ}, our
CFC is s(n,m, κ)-succinct where s(n,m, κ) = κ · log2(m · n). Furthermore, by setting m̂ = λω(1) the
CFC supports quadratic functions over any m = poly(λ) vectors and is κ · log2(n)-succinct.

In the following sections we prove the theorem.

7.3 Correctness

To prove correctness, we first state a claim which abstracts away most of the tedious calculations.
The claim is proven in Appendix C.

Claim. Let f(x1, . . . ,xm) = y. For h ∈ S(f), let ch = 〈v,xh〉 mod q. For h ∈ S2(f), let čh =
〈v̌,xh〉 mod q. For h ∈ [m] \ S2(f), let čh = 0. Let c0 = 〈v,y〉 mod q and c̄0 = 〈v̄,y〉 mod q. Let
v2 = vec((I + Zv)⊗ (I + Zv̌)− I)⊗ v̄ and v1 = vec(Zv)⊗ v̄. It holds that

f̂(c1, . . . , cm, č1, . . . , čm)− c̄0 =
∑

(h,h′)∈S⊗2 (f)

vT2 · vec(xTh ⊗ xTh′ ⊗Gh,h′) +
∑

h∈S1(f)

vT1 · vec(xTh ⊗ Fh),

īd(c0)− c̄0 = v̄T · Zv · y, and
ǐd(ch)− čh = v̌T · Zv · y for all h ∈ S2(f).

35

Recall that

u =
∑

(h,h′)∈S⊗2 (f)

U2 · vec(xTh ⊗ xTh′ ⊗Gh,h′) +
∑

h∈S1(f)

U1 · vec(xTh ⊗ Fh),

ū0 = Ū · y, and
ǔh = Ǔ · xh for h ∈ S2(f)

are computed using (U2,U1, Ū, Ǔ) satisfying

A ·Uh = t · vTh mod q,

A · Ū = t · v̄T · Zv mod q, and

A · Ǔ = t · v̄T · Zv mod q.

It follows that

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q,

A · ū0 = t · (īd(c0)− c̄0) mod q, and

A · ǔh = t · (ǐd(ch)− čh) mod q for all h ∈ S2(f).

It remains to analyse the norms of the preimages. By the properties discussed in Section 7.1, each
column in the matrices U2, U1, Ū, and Ǔ has norm as most β. By our choice of parameters, each
entry in Gh,h′ , Fh, x1, . . . ,xm and y has norm at most α. It follows that

‖u‖ ≤ n4 · S⊗2 (f) · α3 · β · γ3
R + n3 · S1(f) · α2 · β · γ2

R < β∗,

‖ū‖0 ≤ n · α · β · γR < β∗, and
‖ǔ‖h ≤ n · α · β · γR < β∗ ∀ h ∈ S2(f)

Additive homomorphism. As is common in the lattice setting, our construction is almost addi-
tively homomorphic in the following sense: Although the commitment function x 7→ 〈v,x〉 mod q
is a linear function, the bounded-norm restriction on messages could be violated since ‖x‖ ≤ α
and ‖x′‖ ≤ α in general do not imply ‖x+ x′‖ ≤ α. As such, correctness is only guaranteed after
homomorphic evaluation if ‖x+ x′‖ ≤ α.

7.4 Succinctness

We measure the succinctness of our construction. A commitment consists of a single Rq element.
An opening proof consists of 2S2(f) + 3 vectors in R` each of norm at most β∗. Setting ` =
lhl(R, η, q, β) = log q · poly(λ) for the guarantees of lattice trapdoor algorithms, β∗ = 2 ·n4 ·m2 ·α3 ·
β ·γ3

R = n4 ·m2 ·poly(λ) so that correctness holds, and q = β∗ ·poly(λ) to be large enough so that the
twin-k-M -ISIS assumption plausibly holds, a commitment can be described with log q · poly(λ) =
(log n+ logm) · poly(λ) bits, while an opening proof for a function f ∈ Fquad can be described with
(2 |S2(f)|+ 3) · ` · log β∗ · poly(λ) = |S2(f)| · log2(m · n) · poly(λ) bits. Note that for f ∈ Flevel, then
|S2(f)| = |S⊗2 (f)| = κ. Hence, our CFC is s(n,m, κ)-succinct for the class Flevel = {Flevel,κ}, where
s(n,m, κ) = κ · log2(m · n).

36

Remark 1 (Removing the dependence on m). According to the choice of parameters above, com-
mitments and openings have a logarithmic dependence on the number of inputs m (in addition to
the input length n). More importantly, for correctness to hold, one should fix q depending on the
largest m to be supported. This is a limitation, especially when plugging this CFC in the FC trans-
formation as there m is in the worst case the depth of the circuit. However, since the dependence is
only logarithmic we can actually set β∗ = 2 ·n4 · m̂2 ·α3 ·β · γ3

R where m̂ = λω(1) is superpolynomial
in the security parameter, in such a way that correctness holds for any m = poly(λ). This change
makes q = λω(1) (a choice that does not affect the plausibility of the assumption according to the
analysis of [ACL+22]) and makes the CFC scheme κ · log2(n)-succinct.

7.5 Resulting Instantiations of FC for Circuits

As in the previous section, we summarize the concrete FC schemes that result from instantiating
our generic construction of Section 5 with our lattice-based CFC.

Corollary 2. Assume that all the conditions of Theorem 5 are satisfied. Then the following state-
ments hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w bounded
by ≤ n and in-degree bounded by ≤ tmax that is O(d · log2(tmax · n))-succinct.

2. Using the choice of parameters of Remark 1, there exists an FC scheme for Fn = {F(d,t,w)} of
width w ≤ n that is O(d)-succinct.

3. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of circuits of arbitrary
width w > w0 that is O

(
d · (w/w0)2

)
-succinct.

Case (1) follows by observing that in the FC construction from CFCs the number of CFC inputs
is bounded by the in-degree of the admissible circuits. In case (1) we fix a concrete m = tmax in
the choice of q = β∗ · poly(λ) while in points (2)–(3) we consider the parameters choice of Remark
1 that let us support any in-degree t = poly(λ).

As opposed to our pairing-based construction, the linear dependency on the depth does not follow
from a black-box application of our FC from CFC construction. In fact, Theorem 2 gives a proof
size of O

(
d · t · log2(tmax · n)

)
. We can supress the t factor by noticing that, for each circuit layer

h, the same vectors (ǔh, w̌h) are included in the openings at every layer h′ such that h ∈ S2(f (h′)).
The result follows by including them only once in the FC opening proof.

We observe that the resulting lattice-based FC schemes yield shorter proofs (with respect to cir-
cuit depth) than their pairing-based counterparts. This feature can be seen as a natural consequence
of the additional capability to perform computations over encrypted (in this case, committed) data
that lattices provide. Indeed, in our pairing-based construction, the prover needs to provide O(d · t)
commitments Xh,h′ to the tensor product of every pair of layers in the circuit. This is avoided in
our lattice-based scheme, as the verifier can multiply commitments Ch · Čh′ by herself.

7.6 Proof of Security

Suppose there exists a PPT adversary A against evaluation binding of the CFC construction, we
construct a PPT algorithm B for the twin-k-M -ISIS problem as follows.

Given a twin-k-M -ISIS instance ck, B passes ck to A. The adversary A returns some input
commitments (ch)h∈[m], a quadratic function f , two output commitments c0 and c′0, and two opening

37

proofs π and π′, where π = (u, ū0, w̄0, (ǔh, w̌h)h∈S(f)) and π′ = (u′, ū′0, w̄
′
0, (ǔ

′
h, w̌

′
h)h∈S2(f)). By

our assumption on A, with non-negligible probability, π (and analogously π′) satisfies the following

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q,

A · ū0 = t · (īd(c0)− c̄0) mod q, and

A · ǔh = t · (ǐd(ch)− čh) mod q for all h ∈ S2(f),

where B · w̄0 = t · c̄0 mod q and B · w̌h = t · čh mod q.
Suppose (ū0, w̄0) 6= (ū′0, w̄

′
0), then (ū0 − ū′0, w̄0 − w̄′0) would be a non-zero vector satisfying

A · (ū0 − ū′0) + B · (w̄0 − w̄′0) = 0 mod q and
∥∥(ū0 − ū′0, w̄0 − w̄′0)

∥∥ ≤ 2β∗.

Our algorithm B can therefore output (ū0−ū′0, w̄0−w̄′0) as a solution to the twin-k-M -ISIS instance.
A similar conclusion holds when (ǔh, w̌h) 6= (ǔ′h, w̌

′
h) for any h ∈ S2(f).

Next, suppose (ū0, w̄0) = (ū′0, w̄
′
0) and (ǔh, w̌h) = (ǔ′h, w̌

′
h) for all h ∈ S2(f). It follows that

c̄0 = c̄′0 and čh = č′h for all h ∈ S2(f), which implies that u− u′ is a non-zero vector satisfying

A · (u− u′) = 0 mod q and
∥∥u− u′∥∥ ≤ 2β∗.

Our algorithm B can therefore output (u− u′,0) as a solution to the twin-k-M -ISIS instance.

7.7 Extractability

To achieve extractability, the transformation introduced in [ACL+22] based on the knowledge
k-M -ISIS assumption can be applied. In the following, we briefly recall the transformation.

We define a new setup algorithm which additionally samples a knowledge k-M -ISIS instance
with a common v. More concretely, the new setup samples an extra trapdoored matrix Ã, an extra
submodule generator t̃, along with short preimages ũi satisfying Ãũi = t̃ · vi mod q for i ∈ [n]. As
in the original setup, the trapdoor for Ã is discarded while all other materials are published as part
of the commitment key.

Next, we modify the opening and verification algorithms accordingly, i.e. an opening proof now
additionally consists of the short preimages ũ′i satisfying Ã · ũ′i = t̃ · ci mod q, which will be checked
by the new verification algorithm.

The extractability of the modified scheme follows from the evaluation binding property of the
base scheme and the knowledge k-M -ISIS assumption. The proof strategy is as follows. Suppose an
adversary outputs some commitments c0, c1, . . . , cm and a valid opening proof π for a function f .
We construct an extractor which runs the knowledge k-M -ISIS extractor to extract the messages
x1, . . . ,xm committed under c1, . . . , cm and then outputs x1, . . . ,xm along with y := f(x1, . . . ,xm).

By construction, we have Com(xh) = ch for all i ∈ [m] and f(x1, . . . ,xm) = y. It remains to
show that Com(y) = c0. Suppose not, then Com(y) = c′0 6= c0. Then for π′ ← Open(ck, (xh)h∈[m], f),
by the correctness of the CFC, it should hold that Ver(ck, (ch)h∈[m], c

′
0, f, π

′) = 1. This, however,
violates the evaluation binding of the base CFC scheme.

7.8 Efficient Verification

Our CFC construction also supports amortized efficient verification. We observe that in our con-
struction the Vf algorithm can be split into an offline preprocessing step and an online verification
step:

38

– VerPrep(ck, f): Compute the polynomials f̂ , īd, and ǐd, and output vkf := (A,B, t, f̂ , īd, ǐd).
– EffVer(vkf , (comh)h∈[m], com0, π): Perform all the checks described in Vf.

Clearly, the runtime of EffVer is (S⊗2 (f) + S1(f)) · log q · poly ≤ m2 · log(m · n) · poly(λ), which is
logarithmic in n.

7.9 Commitment Hiding

Commitment hiding can be achieved by extending the dimension of the input vector and dedicating
some entries for commitment randomness. We outline such a transformation in the following.

First, we modify the setup so that the vectors v, v̄, v̌ are now sampled from Rn+`
q . The sets GA

and GB of monomials are adjusted accordingly. To commit to x ∈ Rn, sample a uniformly random

vector r←$R` with ‖r‖ ≤ α, and compute c :=

〈
v,

(
x
r

)〉
mod q. Opening and verifying are almost

identical as in the base scheme, except that f is treated as a polynomial on (x1, r1, . . . ,xm, rm)
but with zero coefficients for all terms involving any entry of (r1, . . . , rm). It can be verified that
the modified scheme retains correctness and evaluation binding. For ` ≥ lhl(R, η, q, β), which we
anyway need for correctness, commitment hiding is immediate from the leftover hash lemma.

To make the verification more friendly to zero-knowledge arguments, we need to make one
more minor change to the scheme: The opening algorithm additionally includes the commitments
(c̄0, (čh)h∈S2(f)) in an opening proof. This makes the verification NIZK-friendly, since it boils down
to proving the following SIS relations in zero-knowledge: There exists (u, ū0, w̄0, (ǔh, w̌h)h∈S2(f)) ∈
(R`)2S2(f)+3 such that

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q ∧ ‖u‖ ≤ β∗

A · ū0 = t · (īd(c0)− c̄0) mod q ∧ ‖ū0‖ ≤ β∗

A · ǔh = t · (ǐd(ch)− čh) mod q ∧ ‖ǔh‖ ≤ β∗ ∀ h ∈ S2(f)

B · w̄0 = t · c̄0 ∧ ‖w̄0‖ ≤ β∗

B · w̌h = t · čh mod q ∧ ‖w̌h‖ ≤ β∗ ∀ h ∈ S2(f).

By slightly adjusting the parameters of the k-M -ISIS assumption, the scheme remains evaluation
binding even if the NIZK argument can only guarantee that the norm of the witness is bounded
by some β∗∗ > β∗ (although the prover has a witness of norm bounded by β∗). This allows to use
efficient NIZK (e.g. [Lyu09]) for proving SIS relations with relaxed soundness.

8 Conclusions

In this work, we present the first constructions of functional commitments for circuits based on
falsifiable assumptions. Our results leave some open questions for future work. The first one concerns
the current need of fixing a bound on the maximal width of the circuits at setup time. Constructing
an FC whose setup procedure only depends on the input size, or ideally on no bound, would be a
remarkable result that would also imply fully-homomorphic signatures. Another interesting direction
is to construct functional commitments with more succinct opening proofs, e.g., sublinear in the
circuit depth. Finally, we believe that there is room for improvement towards the design of FC
schemes that rely on simpler, or more standard, cryptographic assumptions.

39

References

ACL+22. M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. Thyagarajan. Lattice-Based SNARKs:
Publicly Verifiable, Preprocessing, and Recursively Composable. In CRYPTO 2022, 2022. https://
eprint.iacr.org/2022/941.

AL21. M. R. Albrecht and R. W. F. Lai. Subtractive Sets over Cyclotomic Rings - Limits of Schnorr-Like
Arguments over Lattices. In CRYPTO 2021, Part II, volume 12826 of LNCS, pages 519–548, Virtual
Event, August 2021. Springer, Heidelberg.

BF11. D. Boneh and D. M. Freeman. Homomorphic Signatures for Polynomial Functions. In EUROCRYPT 2011,
volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May 2011.

CF13. D. Catalano and D. Fiore. Vector Commitments and Their Applications. In PKC 2013, volume 7778 of
LNCS, pages 55–72. Springer, Heidelberg, February / March 2013.

CFM08. D. Catalano, D. Fiore, and M. Messina. Zero-Knowledge Sets with Short Proofs. In EUROCRYPT 2008,
volume 4965 of LNCS, pages 433–450. Springer, Heidelberg, April 2008.

CFT22. D. Catalano, D. Fiore, and I. Tucker. Additive-Homomorphic Functional Commitments and Applications
to Homomorphic Signatures. In ASIACRYPT 2022, 2022. To appear.

CFW14. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic Signatures with Efficient Verification for Polyno-
mial Functions. In CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–389. Springer, Heidelberg,
August 2014.

EHK+13. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An Algebraic Framework for Diffie-Hellman
Assumptions. In CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg,
August 2013.

GM18. N. Genise and D. Micciancio. Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus.
In EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 174–203. Springer, Heidelberg, April / May
2018.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In 40th ACM STOC, pages 197–206. ACM Press, May 2008.

GS08. J. Groth and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In EURO-
CRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

GVW15. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled Fully Homomorphic Signatures from Standard
Lattices. In 47th ACM STOC, pages 469–477. ACM Press, June 2015.

GW11. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

JMSW02. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic Signature Schemes. In CT-RSA 2002,
volume 2271 of LNCS, pages 244–262. Springer, Heidelberg, February 2002.

KNYY19. S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated Verifier/Prover and Preprocessing
NIZKs from Diffie-Hellman Assumptions. In EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
622–651. Springer, Heidelberg, May 2019.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and Their
Applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, December
2010.

LM19. R. W. F. Lai and G. Malavolta. Subvector Commitments with Application to Succinct Arguments. In
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019.

LP20. H. Lipmaa and K. Pavlyk. Succinct Functional Commitment for a Large Class of Arithmetic Circuits.
In ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 686–716. Springer, Heidelberg, December
2020.

LRY16. B. Libert, S. C. Ramanna, and M. Yung. Functional Commitment Schemes: From Polynomial Commit-
ments to Pairing-Based Accumulators from Simple Assumptions. In ICALP 2016, volume 55 of LIPIcs,
pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LY10. B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets
with Short Proofs. In TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidelberg, February
2010.

Lyu09. V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In
ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

MP12. D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

40

https://eprint.iacr.org/2022/941
https://eprint.iacr.org/2022/941

MRV16. P. Morillo, C. Ràfols, and J. L. Villar. The Kernel Matrix Diffie-Hellman Assumption. In ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–758. Springer, Heidelberg, December 2016.

PPS21. C. Peikert, Z. Pepin, and C. Sharp. Vector and Functional Commitments from Lattices. In TCC 2021,
Part III, volume 13044 of LNCS, pages 480–511. Springer, Heidelberg, November 2021.

A Analysis of the HiKer assumption in the generic bilinear group model

Lemma 2. The n-HiKer assumption holds in the generic bilinear group model.

Proof. First of all, note that the assumption is equivalent to an assumption without rational terms.
Indeed, for a uniformly sampled η′, consider the assumption above where η = η′

∏
i,j∈[n] σiτj .

The intuition is that since the solution (U, V) satisfies the equation e(U, [η]2) = e(V, [1]2) then it
must be of the form (U, V) = [u, ηu]1 for some u. However, if we look at the input of the adversary
in G1, there is no pair of elements in the linear span of [1, η]1. Note also that elements in G2 cannot
be used by a GGM extractor as bgp is a Type-III bilinear group setting. A detailed proof follows.

More formally, let A be an adversary that on input (bgp, Ω) outputs two elements
U, V ∈ G1 such that e(U, [η]2) = e(V, [1]2). Then, the GGM extractor must out-
put two polynomials pu(S,T , H), pv(S,T , H) with coefficients u0, uσ,i, uτ,i, ui,j , ui,i′ , ui,j,i′,j′ and
v0, vσ,i, vτ,i, vi,j , vi,i′ , vi,j,i′,j′ such that:

0 = pu(S,T , H)H + pv(S,T , H) =

u0H + v0 +
∑
i

[(uσ,iSi + uτ,iTi)H + vσ,iSi + vτ,iTi] +
∑
i,j

[ui,jSiTjH + vi,jSiTj]

+
∑
i,i′∈[n]
i 6=i′

[
ui,i′

H2TiSi′

Si
+ vi,i′

HTiSi′

Si

]
+

∑
i,j,i′,j′∈[n]
(i,j) 6=(i′,j′)

[
ui,j,i′,j′

H2Si′Tj′

SiTj
+ vi,j,i′,j′

HSi′Tj′

SiTj

]
.

Due to the equivalence mentioned above, we can effectively do a change of variable H 7→ HA where
A =

∏
i,j∈[n] SiTj and reorganize the expression as a polynomial in H,v0 +

∑
i∈[n]

(vσ,iSi + vτ,iTi) +
∑
i,j∈[n]

vi,jSiSj

+

u0 +
∑
i∈[n]

(uσ,iSi + uτ,iTi) +
∑
i,j∈[n]

ui,jSiTj +
∑
i,i′∈[n]
i 6=i′

vi,i′
TiSi′

Si
+

∑
i,j,i′,j′∈[n]
(i,j)6=(i′,j′)

vi,j,i′,j′
Si′Tj′

SiTj

AH

+

 ∑
i,j,i′,j′∈[n]
(i,j)6=(i′,j′)

ui,j,i′,j′
Si′Tj′

SiTj
+
∑
i,i′∈[n]
i 6=i′

ui,i′
TiSi′

Si

A2H2.

For the above to equal the zero polynomial in H, all terms must cancel. We analyze the constant,
linear, and quadratic terms separately. Note that as all fractions are multiplied by A =

∏
i,j∈[n] SiTj ,

all denominators vanish.

41

– The constant term does not include cross-terms, so all monomials are linearly independent and
the expression cancels only if v0 = vσ,i = vτ,i = vi,j = 0.

– The linear term is formed by pairwise distinct monomials which are all independent; no allowed
choice of indices i, j, i′, j′ or i, i′ produces a monomial in the linear span of any others. In particular,
note that variables in TiSi′/Si only cancel for i = i′ which is not in the sum. Also, the denominator
of Si′Tj′/SiTj only cancels if (i, j) = (i′, j′) which is also not in the sum.

– For the quadratic term, we reason analogously to conclude that all terms are independent.

It follows that all coefficients of pu(S,T , H) and pv(S,T , H) must be zero, so pu = pv = 0 and
the assumption holds.

B Knowledge Extractability of the pairing-based CFC for Quadratic Functions

In this section, we prove that the pairing-based CFC for quadratic functions of Section 6 is knowl-
edge extractable (hence strong evaluation binding by Proposition 2) under an extractability (non-
falsifiable) assumption that we define below. This result implies that CFC can be seen as a SNARK
for quadratic polynomial maps. In particular, its use with a single input can be used to prove arith-
metic circuit satisfiability, and thus it is a (commit-and-prove) SNARK for NP with constant-size
proofs.

Extractability assumption. First of all, we introduce our extractability assumption which is
a slight extension of classical knowledge-of-exponent assumptions in bilinear groups. The intuition
is that if the adversary produces two group elements in G1 and G2 that share the same discrete
logarithm, then it must know coefficients that explain both elements as a linear combination of (a
subset of) its inputs that have the same representation in G1 and G2. Note that our assumption
can only hold in type-III bilinear groups, as for type-I and type-II groups there exists an efficient
map G2 → G1.

Definition 15 (Assumption 1). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group setting and
let Z be a PPT auxiliary input generator. The assumption holds for bgp and Z if, for every n =

poly(λ) and any polynomial-time A, given Ω(σ) :=

(
[σ]1 , [σ]2 ,

{[
σi′
σi

]
1

}
i,i′∈[n

,
{[

1
σi

]
2

}
i∈[n]

)
,

then there exists a polynomial-time extractor E such that

Pr

e(U, [1]2) = e([1]1, V)

∧ U 6= [x0 + 〈x,σ〉]1
:

auxZ ← Z(Ω)

(U, V)← A(bgp, Ω; auxZ)

(x0, {xi}ni=1)← E(bgp, Ω; auxZ)

 = negl(λ)

where the probability is taken over the choice of σ←$Fn and the random coins of Z.

We now describe the auxiliary generators Z for which we can argue (in the generic group model)
that Assumption 1 holds. We say that a PPT input generator Z is admissible if, on input Ω(σ),
outputs a set auxZ of group elements in G1 and G2 such that:

– There exists no pair of elements A ∈ G1, B ∈ G2 in the linear span of Ω ∪ auxZ , except for linear
combinations of [σi]1, [σi]2 and the group generators [1]1, [1]2, such that e(A, [1]2) = e([1]1, B).

– All elements provided in auxZ can be independently generated from the input of the assumption
Ω and from the random coins of Z.

42

Our CFC Auxiliary input generator. In order to show extractability of CFC, we define an
input generator ZCFC that, on input Ω, outputs a set auxZ which has an identical distribution
to a commitment key ck of the CFC. ZCFC proceeds as follows. First, it samples β,γ←$Fn and
ηα, ηβ, ηγ←$F. Then, it generates all parameters as follows, implicitly setting α := σ:

auxZ :=

[σ]1 , [σ]2 , β [1]1 , γ [1]1 , [σ]1 ⊗ β, ηα [1]2 , ηβ [1]2 , ηγ [1]2{
ηαγi′
γi

[σi]1 , ηββi

[
σi′
σi

]
1

}
i,i′∈[n]
i 6=i′

{
ηγγkβj′
βj

[
σi′
σi

]
1

}
i,j,i′,j′,k∈[n]
(i,j)6=(i′,j′){

ηα
γi

[σi]2 , ηββi

[
1
σi

]
2

}
i∈[n]

,
{
ηγγk

[
1
σi

]
2

}
i,k∈[n]

,
{
ηγγk
βj

[
1
σi

]
2

}
i,j,k∈[n]

Clearly, the distribution of auxZ , given a random generation ofΩ, is identical to ck← CFC.Setup(1λ, 1n)

and the conditions specified above on Z hold.

Extending our HiKer assumption. Our extractability proof requires a second assumption which
is an extension of the Hinted Kernel assumption introduced in 12. We define it below.

Definition 16 (Assumption 2). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group setting, let
n ∈ N and let G1,G2 be the following two sets of Laurent monomials in Zq[S1, T1, . . . , Sn, Tn, H]:

G1(S,T , H) := {Si, Ti}i∈[n] ∪ {Si · Tj}i,j∈[n] ∪
{
H·Ti·Si′

Si

}
i,i′∈[n]
i 6=i′

∪
{
H·Si′ ·Tj′
Si·Tj

}
i,j,i′,j′∈[n]
(i,j)6=(i′,j′)

G2(S,T , H) := {H} ∪ {Si}i∈[n] ∪
{
H·Ti
Si

, HSi

}
i∈[n]
∪
{

H
SiTj

}
i,j∈[n]

The assumption holds if for every n = poly(λ) and any PPT A, the following advantage is negligible

Pr

[
(U, V) 6= (1, 1)G1∧
e(U, [η]2) · e(V, [1]2) =

∏
i e(Wi, [

ητi
σi

]2)

∣∣ (U, V, {Wi}i∈[n])← A(bgp,
[G1(σ, τ , η)]1, [G2(σ, τ , η)]2)

]
where the probability is over the random choices of σ, τ , η and A’s random coins.

The HiKer assumption is a special case of Assumption 2 in which every Wi = [0]1. The assump-
tion can be justified in the GGM in an analogous way as the HiKer assumption; note that there are
no terms of the form Ti/Si or H · Ti/Si in G1.

Extractability proof. We are now ready to state and prove the extractability of our pairing-
based CFC for quadratic functions. The broad idea of the proof is that, given a valid CFC proof
π for f , we can use the extractor of Assumption 1 to obtain coefficients x1, . . . ,xm and values
x0,1, . . . , x0,m such that the commitments to the inputs are of the form comi = [〈xi,α〉]1 + [x0,i]1
for every i ∈ [m]. Besides, using Assumption 2, we can assert that all x0,i = 0 with overwhelming
probability. This implies that the commitments comi are correctly distributed as comi = [〈xi,α〉]1
and that we can extract the committed inputs xi. Finally, we show that comy must be a commitment
to y = f(x1, . . . , xm) as otherwise we break evaluation binding.

Theorem 6. Assuming Assumption 1 for the input generator ZCFC described above, and Assump-
tion 2, the pairing-based CFC scheme of Section 6 is knowledge extractable.

43

Proof. Let A be a deterministic, polynomial-time adversary against CFC extractability. On in-
put (ck, auxZ) for some auxiliary input auxZ ← Z, A outputs (comi)i∈[m], f, comy, π) such that
Ver(ck, (comi)i∈[m], comy, f, π) = 1. Our goal is to show that we can construct an extractor EA that
on input (ck, auxZ) returns vectors x1, . . . ,xm,y such that the advantage of A in the extractability
game is

Pr

Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ (∃i ∈ [m] : comi 6= Com(ck,xi)
∨ comy 6= Com(ck,y)
∨ f(x1, . . . ,xm) 6= y)

 = negl(λ).

First of all, we show how to construct EA. We define m adversaries B(j)
0 for j ∈ [m] against

Assumption 1 in Figure 3. B(j)
0 takes Ω, auxZ as input, where auxZ is generated by ZCFC(Ω) as

explained before, and includes all the elements of a valid ck for the CFC scheme that are consistent
with Ω. We define EA in Figure 3.

In the rest of the proof, we show that the extractor succeeds except with negligible probability.
Consider the pair (A, EA) and their outputs, and let Win be the event in which (A, EA) win the
CFC extractability game. We will reduce (A, EA) to an adversary B against Assumption 2 to show
that Pr[Win] ≤ negl(λ). The adversary B will embed the input of the assumption into a simulated
commitment key ck (we detail this procedure below), then run (A||EA)(ck) and parse its output
((comi)i∈[m], f, comy, π) and (x1, . . . ,xm,y). Depending on such output, we distinguish between the
following (nested) events:

– Event BadExt as the event in which comj 6= [〈xj ,α〉]1 + [x0,j]1 for some j ∈ [m] and x0,j .
– Event BadCom as the event in which BadExt does not occur and x0,j 6= 0 for some j ∈ [m].
– Event BadY as the event in which comy 6= Com(ck, f(x1, . . . , xm) and BadCom (and hence also

BadExt) does not occur.

First of all, we bound the probability of the adversary winning given a bad extraction, Pr[Win∧
BadExt].

Event BadExt. The output of each B(j)
0 , which corresponds to the vectors extracted by EA, is

(comj , X
(2)
j) in the proof π. Also, by the pairing checks in the CFC.Ver algorithm, these satisfy

e(comj , [1]2) = e([1]1, X
(2)
j). As ck is perfectly distributed, the output of EA satisfies that comi 6=

[〈xi,α〉]1+[x0,i]1 for some x0,i, and for every i, unless any of the extractors E(j)
B fails. By Assumption

1, this occurs with negligible probability, so by the union bound we have

Pr[Win ∧ BadExt] ≤
m∑
i=1

Pr[comi 6= [〈xi,α〉]1 + [x0,i]1] ≤ m · εAss1 = negl(λ).

Note that
Pr[Win] ≤ Pr[Win ∧ BadExt] + Pr[Win|¬BadExt]

Next, we will bound Pr[Win|¬BadExt] by showing a reduction to Assumption 2.

Commitment key generation. Based on the events above, B makes a secret guess b̂←$ {0, 1}.
Intuitively, b̂ = 1 corresponds to event BadCom, and a subcase of event BadY, whereas b̂ = 0
corresponds to a different subcase of BadY. Then, B simulates ck depending on b̂:

44

– If b̂ = 0, then B receives the input of the assumption and generates ck exactly as in the case
ŝ = 0 of the proof of evaluation binding for CFC. Namely, it samples α,β←$Fn, ηβ, ηγ←$F and
implicitly sets γ := σ and ηα := η from the input of the assumption. Then, it simulates the
remaining terms in ck accordingly.

– If b̂ = 1, then B proceeds as in the case ŝ = 1 of the proof of evaluation binding for CFC. Namely,
B samples ηα, rβ, rγ←$F, γ←$Fn and implicitly sets α := σ,β := τ , ηβ := rβ · η, ηγ := rγ · η.
Later, it simulates ck accordingly.

Next, B runs (A||EA)(ck) and parses the output as detailed before. The reduction proceeds
differently depending on the events above.

Event BadCom. If b̂ 6= 1, then B aborts. We analyze the probability that Win ∧ BadCom occurs
given that BadExt does not occur. By ¬BadExt, there exist values x0,i such that Xi = comi =
[〈xi,α〉]1 + [x0,i]1 for all i ∈ [m]. By the occurrence of BadCom there must be an index h such that
x0,h 6= 0. Using the fact that the proof produced by the adversary correctly verifies, we have that
for such h the following pairing identity (from the α→ β conversion) holds:

e

[〈xh,α〉]1 + [x0,h]1,
∑
i∈[n]

[
ηββi
αi

]
2

 = e
(
π

(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
Let B compute X̃h = [〈xh,α〉]1 and X̃

(β)
h = [〈xh,β〉]1. Furthermore, B computes an honest

identity proof π̃(β)
h to show that X̃h and X̃

(β)
h commit to the same value (i.e., for an α → β

conversion). Then, we can write the pairing identity as follows

e
(
X̃h, S

)
· e ([x0,h]1, S) = e

(
π

(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
e
(
π̃

(β)
h , [1]1

)
· e
(
X̃

(β)
h , [ηβ]2

)
· e ([x0,h]1, S) = e

(
π

(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
where the second equality follows by the correctness of π̃(β)

h . Also, for brevity, we let S =
∑

i∈[n]

[
ηββi
αi

]
2
.

Moving terms to the right-hand side, we have:

e ([x0,h]1, S) = x0,h

∑
i∈[n]

ηββi
αi

T

= e
(
π

(β)
h /π̃

(β)
h , [1]2

)
e
(
X

(β)
h /X̃

(β)
h , [ηβ]2

)
Then, B outputs (U, V, {Wi}i∈[n]) such that U := (X

(β)
h /X̃

(β)
h)rβ , V := π

(β)
h /π̃

(β)
h , and Wi =

rβ · [x0,h]1 for every i ∈ [n]. By the ck simulation procedure ηβ = rβ · η, therefore we have that
e(U, [η]2) · e(V, [1]2) =

∏
i e(Wi, S) breaking Assumption 2.

Event BadY: We will turn A into an adversary against Assumption 2. As an intermediate step, we
define a subroutine B∗ that, on input ck and access to (A||EA) outputs a tuple ((comi)i∈[m, f, comy, π, com′y, π

′)
against evaluation binding.

We build B∗ from A as follows. First, B∗ calls (A||EA)(ck), parses their output as before, and
computes y′ = f(x1, . . . ,xm). Then, B∗ calculates com′y ← Com(ck,y) and outputs

((comi)i∈[m, f, comy, π, com′y, π
′)

45

where π′ is an honestly generated proof π′ ← CFC.Open(ck, (auxi)i∈[m], y, f).
Now, we show that if BadY occurs, then B∗ breaks evaluation binding. First, note that since

BadCom does not occur, we know that comi = Com(ck,xi) for every i ∈ [m]. If y = y′, then as
A wins it must be the case that comy 6= Com(ck,y) = com′y. Otherwise, if y 6= y′, then we have
that comy 6= com′y (as the commitment is binding). In both cases, we break evaluation binding by
opening to two different commitments via a honest opening proof π′ to com′y.

Finally, we define B as follows. After embedding the assumption on ck based on the choice of b̂,
B uses the output of (A||EA) to build B∗(ck) as an adversary against evaluation binding. Then, it
proceeds exactly as in the evaluation binding proof, aborting or not depending whether the output
of B∗(ck) is consistent with the guess b̂. Hence, if B∗ succeeds with probability ε, then B breaks the
HiKer assumption with probability ε/2.

We conclude the proof by noting that, since Assumption 2 implies the HiKer assumption, then

Pr[Win|¬BadExt] ≤ 2 · εAss2 = negl(λ).

B(j)
0 (Ω, auxZ)

1 : ck← auxZ

2 : (comi)i∈[m], f, comy, π)← A(ck, auxZ)

3 : (Xi, X
(2)
i)i∈[m] ← Parse(π)

4 : return (Xj , X
(2)
j)

EA(ck, auxZ)

1 : for j ∈ [m] :

2 : (U, V)← B(j)
0 (Ω, auxZ)

3 : (xj , x0,j)← E(j)B (Ω, auxZ)

4 : y ← f(x1, . . . ,xm)

5 : return (x1, . . . ,xm,y)

Fig. 3: Adversaries B(j)
0 and extractor EA for the proof of Theorem 6. Note that, for auxZ ← ZCFC(Ω),

we have that Ω ⊂ auxZ .

C Proof of Claim in correctness of lattice-based CFC

The proof of the claim relies on the following fact about Kronecker products and vectorisation.

Lemma 3. Let L,Z be matrices and v,x be vectors of compatible dimensions so that the product
vT · L · Z · x is well-defined. It holds that

vT · L · Z · x = (vec(Z)T ⊗ vT) · vec(xT ⊗ L).

Proof. The proof involves repeated applications of the identities vec(ABC) = (CT ⊗ A) · vec(B)
and vec(x) = x. We observe the following:

vT · L · Z · x
= vT · vec(L · Z · x)

= vT · (xT ⊗ L) · vec(Z)

= vec(vT · (xT ⊗ L) · vec(Z))

= (vec(Z)T ⊗ vT) · vec(xT ⊗ L)

ut

46

We are now ready to prove the claim in the correctness proof. We prove it by directly calculating

f̂(c1, . . . , cm, č1, . . . , čm)

= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · (v† ⊗ v̌†) · ch · čh′ +
∑
i∈[m]

Fh · v† · ch + e

= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · (v† ⊗ v̌†) · (vT ⊗ v̌T) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · v† · vT · xh + e

= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · ((v† · vT)⊗ (v̌† · v̌T)) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · v† · vT · xh + e

= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · ((I + Zv)⊗ (I + Zv̌)) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · (I + Zv) · xh + e

= c̄0 + v̄T ·

∑
h,h′∈[m]

Gh,h′ · ((I + Zv)⊗ (I + Zv̌)− I) · (xh ⊗ xh′)

+ v̄T ·
∑
i∈[m]

Fh · Zv · xh

= c̄0 +
∑

h,h′∈[m]

(vec((I + Zv)⊗ (I + Zv̌)− I)T ⊗ v̄T) · vec(xTh ⊗ xTh′ ⊗Gh,h′)

+
∑
i∈[m]

(vec(Zv)T ⊗ v̄T) · vec(xTh ⊗ Fh),

where the last equality follows from Lemma 3,

īd(c0) = v̄T · v† · vT · y = v̄T · (I + Zv) · y = c̄0 + v̄T · Zv · y, and
ǐd(c0) = v̌T · v† · vT · y = v̌T · (I + Zv) · y = č0 + v̌T · Zv · y.

47

	Functional Commitments for Circuits from Falsifiable Assumptions
	Introduction
	Our Contribution
	Related work

	A Technical Overview of Our Work
	Preliminaries
	Functional Commitments
	Additional properties of FCs

	Chainable Functional Commitments
	FC for Circuits from CFC for Quadratic Polynomials
	Proof of security
	Efficiency tradeoffs
	Extractability

	Paring-based CFC for Quadratic Functions
	Preliminaries on Bilinear Groups and Assumption
	Our CFC Construction
	Correctness
	Succinctness
	Resulting Instantiations of FC for circuits
	Proof of security
	Efficient verification
	Commitment hiding

	Lattice-based CFC for Quadratic Functions
	Lattice Preliminaries
	Construction
	Correctness
	Succinctness
	Resulting Instantiations of FC for Circuits
	Proof of Security
	Extractability
	Efficient Verification
	Commitment Hiding

	Conclusions
	Analysis of the HiKer assumption in the generic bilinear group model
	Knowledge Extractability of the pairing-based CFC for Quadratic Functions
	Proof of Claim in correctness of lattice-based CFC

