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Abstract

A functional commitment scheme enables a user to concisely commit to a function from a specified
family, then later concisely and verifiably reveal values of the function at desired inputs. Useful special
cases, which have seen applications across cryptography, include vector commitments and polynomial
commitments.

To date, functional commitments have been constructed (under falsifiable assumptions) only for
functions that are essentially linear, with one recent exception that works for arbitrarily complex functions.
However, that scheme operates in a strong and non-standard model, requiring an online, trusted authority
to generate special keys for any function inputs that may need to be opened.

In this work, we give the first functional commitment scheme for nonlinear functions—indeed, for
all functions of any bounded complexity—under a standard setup and a falsifiable assumption. More
specifically, the setup is “transparent,” requiring only public randomness (and not any trusted entity),
and the assumption is the hardness of the standard Short Integer Solution (SIS) lattice problem. Our
construction also has other attractive features, including: stateless updates via generic composability;
excellent asymptotic efficiency for the verifier, and also for the committer in important special cases
like vector and polynomial commitments, thanks to preprocessing (which can even be outsourced to an
untrusted party); and post-quantum security, since it is based on SIS.

1 Introduction

In a functional commitment scheme, a user first commits to a function f from some specified family. Later, the
user can open the function at one or more desired inputs xi, generating (noninteractive) proofs for the claimed
values yi = f(xi), which a verifier can check for consistency with the original commitment.1 In order to be
nontrivial, commitments and proofs should be concise, i.e., significantly smaller than (i.e., sublinear or better
in) the function’s representation. The primary security property of interest is binding: a (possibly maliciously
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1Some works consider a dual notion, in which the user commits to some data x and then can open various functions f of it. Our
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generated) commitment should fix some underlying function. That is, it should be infeasible for an attacker to
produce a commitment along with valid proofs for two different function values y ̸= y′ at a single input x
(all chosen by the attacker). In this work we will not be too concerned with other security properties like
function hiding or zero-knowledge for proofs, since they are often not needed in applications, and when they
are needed, they can usually be added using standard techniques.

The notion of functional commitments was first formally defined in [LRY16] to encompass prior notions for
specific kinds of functionalities, like vector commitments [LY10, CF13], polynomial commitments [KZG10,
PST13, LRY16], and linear commitments [LRY16]. These kinds of constructions have had a wealth
of applications across cryptography, including verifiable outsourcing of storage [BGV11], authenticated
streaming data structures [PSTY13], updateable zero-knowledge sets and databases [MRK03, Lis05],
cryptographic accumulators [BdM93], pseudonymous credentials [KZG10], stateless transaction validation in
cryptocurrencies [CPSZ18], verifiable secret sharing [CGMA85], content-extraction signatures [SBZ01],
proof-carrying data systems, and zero-knowledge succinct noninteractive arguments (of knowledge), or
SNARGs/SNARKs [BFS20, BDFG21].

An important bonus feature of functional commitments, which is needed for several of the above-cited
applications, is (stateless) updateability. This means that it is possible to concisely update the commitment and
proofs for some function f to ones for a related function f ′, without needing to know f . For example, a user—
who may or may not be the original committer—may wish to define f ′ = f + δ for some “update” function δ,
and distribute corresponding updates to existing proofs. This functionality can enable authentication for
“streaming” data structures and the like.

Beyond linearity. Until quite recently, all known functional commitment schemes from falsifiable assump-
tions were limited to classes of linearizable functions, i.e., ones that can be expressed as linear functions
of a suitably “preprocessed” input.2 For example, a polynomial can be expressed as the (linear) inner
product between the vectors of the polynomial’s coefficients and the powers of the input; the preprocessing
therefore computes these powers. Recent work [PPS21] overcame this linearity barrier for the first time,
obtaining functional commitments for functions of any (bounded) complexity under the standard Short
Integer Solution (SIS) lattice assumption [Ajt96], via techniques from fully homomorphic encryption and
commitments [GSW13, GVW15b]. (These homomorphic schemes are not succinct, so they do not immediately
yield functional commitments.)

However, the construction from [PPS21] has a major drawback: it operates in a non-standard model
that requires an online trusted authority. As in other schemes requiring “structured” public parameters, the
authority generates such parameters together with a secret “trapdoor” (the knowledge of which allows one
to break the scheme’s security). In addition, much like in identity-based encryption, the authority must
remain online to generate opening keys for any inputs at which users wish to open their committed functions.3
These opening keys are public and reusable across commitments, but a user cannot open a commitment at a
particular input without a corresponding opening key. So overall, this model constrains usability and requires
a strong trust assumption.

2As noted in [LRY16], it is possible to generically construct functional commitments for arbitrary functions from an ordinary
concise commitment and a SNARG. And, as shown in [BNO21], this type of approach can be made much more efficient using
specialized properties of the SNARG. However, SNARGs are powerful tools whose known constructions are heuristic, since their
security cannot be based on any falsifiable assumption via a black-box security reduction [GW11].

3The work of [PPS21] actually uses the dual formulation of functional commitments, where data x is committed and then
functions f of the data are opened. However, the construction easily adapts to our present formulation of functional commitments.
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1.1 Our Contributions

Our main contribution resolves the main problem left open by [PPS21]: we construct a functional commitment
scheme for all functions of a-priori bounded complexity, based on the standard SIS lattice problem, whose
setup needs only an “unstructured” uniformly random string (and no trusted authority, online or otherwise).
Such a “transparent” setup of the public parameters is very attractive, because it only requires a public source
of trustworthy randomness (which can even be heuristically expanded to the desired size using a cryptographic
hash function), and because no entity ever knows a trapdoor that would allow it to break the scheme’s security.

In particular, we obtain the first constructions, with a standard setup, of polynomial commitments and
general linear commitments from standard lattice assumptions (or falsifiable post-quantum assumptions more
broadly), and of non-linearizable functional commitments under any falsifiable assumption.4 Moreover, our
construction has several other attractive features:

• It is statelessly updateable in very general ways, via generic composition properties. In particular, a
committed function may be updated additively or multiplicatively, or even generically composed with
another function, i.e., outputs of committed functions can be post-processed. The updated commitment
and proofs are obtained simply by operating on the original ones according to the update function.

• It efficiently specializes to particular functionalities of interest, like vector commitments and polynomial
commitments. In these settings and others, the public parameters can first be preprocessed, even by an
untrusted party. Then, committing to a function and opening it become relatively fast, highly parallel
linear operations (i.e., just one matrix-matrix or even matrix-vector multiplication). Moreover, for
vector commitments, the sizes of our commitments and proofs asymptotically beat or essentially match
those of prior SIS-based constructions [PSTY13, PPS21] (see Table 1), even though our scheme has
simpler opening and verification algorithms (after preprocessing).

• Its verifier is essentially linear: it simply checks a single n-dimensional (inhomogeneous) SIS relation,
i.e., a short integral solution S to a linear equation AS = Y, where the matrices A,Y are constructed
linearly from the public parameters, the commitment, and the claimed input-output pair. This makes
verification highly amenable to recent techniques for proving relations of this kind in zero knowledge,
and even succinctly (e.g., [BBC+18, BLS19, LNP22, ACL+22]).

1.2 Technical Overview

Here we give a summary of our general functional commitment construction and some of its important
instantiations. The full details can be found in Sections 3 and 4, respectively.

1.2.1 Functional Commitment Scheme

At a high level, our functional commitment construction works similarly to the one from [PPS21], but ours
does not require an authority or even any structured public parameters. To set the stage, we briefly recall the
main ideas from the construction of [PPS21] (adapted so that it commits to functions and opens at inputs).

4We caution that some works on polynomial commitment schemes (e.g., [BDFG21]) consider additional requirements, e.g., that
the committed function is indeed a polynomial of some bounded degree, or even that openings are proofs of knowledge of such a
polynomial (which SNARK applications rely upon). These are stronger properties than originally considered in [KZG10] and in
this work, and our construction does not achieve them, except in a trivial way (by revealing the polynomial and having the verifier
recompute the commitment). In addition, many various works like [BBB+18, VP19, BFS20, BDFG21, Lee21, BNO21, AK22] allow
openings to be interactive proofs, then heuristically (and unfalsifiably) make them noninteractive using a random oracle with the
Fiat–Shamir transform [FS86]. Our construction is natively noninteractive without any heuristics.
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Scheme (Assumption) |pp| |c| |π| Setup PQ

[CF13] (RSA, ECDH) D,D2 1 1 Private ✗

[CPSZ18] (q-SBDH) D 1 1 Private ✗

[PSTY13] (SIS) log2 S logS dh log2 S Public ✓
[PPS21] (SIS) d2 logS + d log2 S logS h log2 S Private ✓

Our construction (SIS) logD log2 S logS logD log2 S Public ✓

Table 1: Comparison to prior statelessly updateable vector commitment schemes for bit vectors of dimension
D = dh (where d, h can be set freely), allowing updates to at most S entries (including the initial commitment).
Here |pp| is the public parameter size, |c| is the commitment size, |π| is the proof size, ‘Setup’ is either
private coin (i.e., structured random string) or public coin (i.e., transparent, uniformly random string), and
‘PQ’ indicates post-quantum security. Logarithmic factors in logD = h log d and quasi-linear factors in the
security parameter are omitted throughout.

The public parameters are a uniformly random SIS matrix A, which is generated together with a secret
“trapdoor” as in [MP12], along with another uniformly random matrix C whose width is proportional to the
length of a function input. We view C as a commitment to an as-yet undetermined input x, under the fully
homomorphic encryption/commitment scheme of [GSW13, GVW15b]. To commit to a function f , one just
homomorphically evaluates f on C, resulting in some Cf . Accordingly, we view this as a commitment to the
function value f(x), but for an unspecified x.

Recall that opening a committed function at a desired input x requires an authority-generated “opening key”
for x. This key is some “short” random coins that open C as a commitment to x, which the adversary samples
using its trapdoor for A. Given these coins, and using the properties of the homomorphic commitment
scheme, the committer can track how the coins combine and grow during the homomorphic evaluation of f
on C, which results in some fairly short derived coins that open Cf as a commitment to f(x). These coins
serve as the proof for the function value f(x). For other inputs x′, the authority must generate corresponding
opening keys upon request, which, again, are random coins opening C as a commitment to those x′.

The main challenge in implementing the above strategy is that it is actually insecure to equivocate C as
a commitment to two different values—at least relative to the same “base” matrix A. The solution given
in [PPS21] is as follows: when the authority opens C as a commitment to x, it does so relative to a “tagged”
base matrix Ax that is derived from A using x as the tag. This turns out to be secure to do for essentially
unlimited values of x. Very importantly, the homomorphic evaluations of functions f on C do not depend at
all on the base matrix, so they can still be computed independent of any specific x.

Our approach. As already mentioned, our functional commitment scheme works similarly, but does not use
an authority or any trapdoored public parameters. Interestingly, we achieve this in a remarkably simple way, by
relying on fewer features of the underlying homomorphic commitment scheme from [GSW13, GVW15b]. In
particular, we do not use any notions of “base” matrices, commitment coins, equivocation, or even committed
data at all! We refer to the stripped-down set of features that we do use as a homomorphic computation
scheme, to reflect the fact that it does not operate on any hidden data at all. (See Section 3.1 for full details.)

In our scheme, the public parameter is just a uniformly random matrix C as above; there is no longer
any trapdoored base matrix A. In contrast to [PPS21], we do not view C as a commitment to any data, and
never open it as such. But to commit to a function f , we still homomorphically evaluate f on C, yielding a
commitment Cf . To open the committed function at an input x, we cannot use any opening of C. Instead,
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we track an augmented homomorphic evaluation of f on C, which is “shifted” by x (suitably encoded). By
the properties of homomorphic computation, the result of this evaluation turns out to be Cf shifted by f(x).
Moreover, the tracking process yields a fairly “short” multiplier matrix that links the shifted C and Cf

matrices; this multiplier matrix serves as the proof for the function value f(x).
Overall, our functional commitment scheme significantly simplifies the one from [PPS21], by disposing of

the trapdoored setup, the online generation of opening keys, and the tracing of commitment randomness, but it
otherwise works quite similarly. One additional difference is that in our scheme, the height of a proof is linear
in the size of the input x (because the proof is left-multiplied by the shifted C matrix), whereas in [PPS21] the
proof height is essentially independent of the input size (because the proof is left-multiplied by the trapdoored
matrix Ax). This has some implications for proof size and efficiency, but proofs are still concise when the
input is smaller than the function description, which is almost always the case in applications.

1.2.2 Instantiations: Key-Value Commitments, Polynomial Commitments, and More

In Section 4 we give several concrete instantiations of our general functional commitment scheme, for specific
function families of interest. Most of these instantiations fit the following template: we identify a (potentially
huge) set of (potentially complex) “basis” functions, and show how to express any member of the family
relatively simply in terms of this basis, e.g., as a linear or low-degree combination of not too many basis
functions. Using our functional commitment scheme’s generic composition properties, this immediately
yields a commitment scheme for the family, whose parameters and complexity are mainly determined by the
homomorphic implementation of the basis functions. Moreover, if there are not too many basis functions
(and similarly, function inputs that might be opened), then commitments to all of them (and their associated
openings) can be preprocessed, making the “online” cost of committing (and opening) fairly low. Finally, this
approach naturally supports stateless updates, e.g., by other combinations of the basis functions. We next
mention some specific examples of this template that we work out in detail.

Bounded-support functions. In Section 4.1 we consider arbitrary functions of bounded support over
some potentially huge domain X . We show how bounded-support commitments directly yield commitments
to arbitrary key-value maps (with a bounded number of keys), which generalize and unify both vector
commitments and accumulators. A suitable basis for bounded-support functions is the set of point functions
Eqx̄ : X → {0, 1} for x̄ ∈ X , where Eqx̄(x) is defined to be 1 if x = x̄ and 0 otherwise. Any function f
of support supp(f) can be expressed as a linear combination of |supp(f)| such point functions, as
f(x) =

∑
x̄∈supp(f) f(x̄) · Eqx̄(x).

From the above, we immediately get key-value commitments from any homomorphic implementation
of the Eqx̄ functions. We give a (to our knowledge) new, very simple, and low-expansion implementation,
which just does k = logX homomorphic bit multiplications, scheduled in a certain way. Due to the particular
properties of the homomorphic computation scheme, the associated expansion factor is only linear in k,
which ultimately leads to good SIS parameters.

Polynomials. In Section 4.2 we apply the template to obtain commitments for (univariate or multivariate)
polynomials of bounded degree. Here the “basis” functions are just the powers of the input variable(s), and
each such polynomial can be expressed as a linear combination of these powers (or their products, in the
multivariate case). Here the linearity is over the polynomial’s coefficient ring, so even if commitments to the
powers are precomputed, the “online” commitment procedure does not necessarily consist solely of linear
homomorphic operations. However, we show that if the coefficient ring can be embedded as a suitable matrix
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ring, then the online phase can be made linear, at the expense of sacrificing further multiplicative (but not
linear) compositions.

1.3 Future Work

We believe that our work opens many avenues for interesting further research. One exciting direction is to see
whether our techniques can pave the way for succinct noninteractive arguments (of knowledge) (SNARGs or
SNARKs) from lattice assumptions that are simple to state and analyze. Recent work [ACL+22] took a major
step forward on lattice-based SNARGs, but under rather complicated and ad-hoc (knowledge) assumptions.
Our functional commitments do not directly yield SNARGs because, while a commitment binds the committer
to some function, it does not guarantee anything about the form of that function. In other words, nothing
ties the committed function to the computation or relation for which we seek a SNARG. Indeed, SIS-based
functional commitments cannot yield a complete solution, because SNARGs for NP cannot be constructed
based on any falsifiable assumption, via a black-box security reduction [GW11].

Another direction for future work is to construct subvector commitments from standard lattice assumptions.
Such commitments allow a user to commit to a vector and then later open any subset of its entries, where
for nontriviality the proof size should be sublinear in the size of the subset. Our work does not achieve this
because we simply prove and verify each function output independently. However, it seems likely that, due to
the simple linear nature of our verifier, multiple proofs could be compressed using amortization techniques
for interactive arguments for lattice relations [BBC+18].

Finally, there are a number of technical improvements one could seek for our functional commitment
scheme. As mentioned above, the proof size grows at least linearly with the length of the function input,
and it would be good to reduce this dependence. (On the other extreme, the proof length in the functional
commitment scheme of [PPS21] is essentially independent of the input length, thanks to the online authority.)
Another area of potential improvement is in the notion of security achieved. We prove selective binding,
where the adversary must name the input on which it will attempt to break binding before seeing the public
parameters. While this can be lifted to the more realistic notion of adaptive binding via complexity leveraging,
a tighter method of obtaining such security would be welcome.

2 Preliminaries

For any non-negative integer i, denote [i] = {1, . . . , i}. For a real vector v, let ∥v∥1 :=
∑

i|vi| denote its ℓ1
norm. For a real matrix V, let ∥V∥1 := maxj∥vj∥ denote the maximum ℓ1norm of its column vectors vj .
Observe that for any matrices V,U, we have ∥VU∥1 ≤ ∥V∥1 · ∥U∥1 by the triangle inequality.

The Kronecker product A⊗B, where each of A,B is a vector or a matrix, is obtained by replacing each
entry ai,j of A with the block ai,jB. It obeys the mixed-product property: (A⊗B)(C⊗D) = (AC)⊗(BD)
for any A,B,C,D having compatible dimensions.

2.1 Short Integer Solution

We briefly recall the Short Integer Solution (SIS) and its hardness based on worst-case lattice problems. Due
to the particulars of our constructions and analyses, we define the problem in terms of the ℓ1 norm, not the ℓ2
norm (as is more typical). Because the ℓ1 norm of any vector is at least its ℓ2 norm, the variant of SIS that
uses ℓ1 is no easier than, and is plausibly even harder than, the one that uses ℓ2 (for the same norm bound β).
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Definition 2.1. The normal-form SISn,q,m,β problem in the ℓ1 norm is: given a uniformly random matrix
A ∈ Zn×m

q , find a non-zero integral vector z = (x ∈ Zm, e ∈ Zn) such that Ax = e (mod q) and ∥z∥1 ≤ β.

When q ≥ β · τ(n) for a sufficiently large τ(n) = Õ(
√
n) and m is polynomial in n and log q, solving

normal-form SISn,q,m,β (in ℓ2, and hence also in ℓ1) is at least as hard as approximating certain worst-case
lattice problems on n-dimensional lattices to within a β · Õ(

√
n) factor [Ajt96, MR04, GPV08].

2.2 Functional Commitments

Here we give a general definition of functional commitments and their main security property. In this
definition, one commits to a function and then can open it (with proof) at desired inputs. This is the most
natural formulation for our construction (Section 3) and most of its instantiations (see Section 4), and it
naturally generalizes other notions of concise commitments, such as vector and polynomial commitments.
However, if desired, the roles of the function and the input can be swapped via the standard technique of using
a universal function (see Section 4.3).

Definition 2.2. A functional commitment scheme for a function family F = {f : X → Y}, where X is a set
of opening inputs and Y is the space of outputs (and all of F ,X ,Y may depend on the security parameter), is
a tuple of algorithms with the following interfaces:

• Setup(), given an (implicit) security parameter, outputs public parameters pp.
• Commit(pp, f ∈ F), given public parameters pp and a function description f , outputs a commitment cf

to f .
• Open(pp, f, x ∈ X ), given public parameters pp, function f , and an opening input x, outputs a

proof pf,x attesting to the value of f(x).
• Verify(pp, cf , x ∈ X , y ∈ Y, pf,x), given public parameters pp, some cf that purportedly commits to

some function f , an opening input x, a claimed value y, and a purported proof pf,x that f(x) = y,
either accepts or rejects.

The scheme should satisfy the following correctness property: for any f ∈ F and x ∈ X , and for any
pp ← Setup(), cf ← Commit(pp, f), and pf,x ← Open(pp, f, x), Verify(pp, cf , x, f(x), pf,x) should
accept. For nontriviality, commitments should be concise, i.e., smaller than the representations of functions
from the family F .

Definition 2.3. For a functional commitment scheme FCS (or more precisely, just its Verify algorithm), the
selective-input attack game between an adversary and a challenger is defined as follows:

1. The adversary is given the security parameter and outputs an opening input x∗ ∈ X to the challenger.
2. The challenger lets pp← Setup() and gives pp to the adversary.
3. Finally, the adversary outputs a commitment c∗ and two value-proof pairs (y0, p0) and (y1, p1). It wins

the game if y0 ̸= y1, and if Verify(pp, c∗, x∗, yb, pb) accepts for both b ∈ {0, 1}.

The advantage of an adversary A in the above game, denoted Advsia
FCS(A), is the probability that it wins the

game (as a function of the security parameter).
We say that FCS (or just its Verify algorithm) is selective-input binding if Advsia

FCS(A) = negl(λ) for
every probabilistic polynomial-time adversary A.
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As explained in Section 4, (selective) input binding captures the main security property for prior special
cases of functional commitments, e.g., position binding for vector commitments.

Remark 2.4. One can strengthen Definition 2.3 by changing the attack game so that the adversary does not
specify the target opening input x∗ until Step 3 (rather than in Step 1, before seeing the public parameters);
we call the resulting security notion adaptive, or full, input binding. Generically, any scheme with selective
security also has adaptive security, up to a loose reduction whose advantage is smaller by a factor of |X |,
the size of the input space. This follows by the standard technique of complexity leveraging—i.e., initially
“guessing” the input x∗ that the adversary will eventually choose.

3 Functional Commitments from SIS

In this section we construct a very general functional commitment scheme, supporting rich and complex
function classes, based on the SIS problem.

3.1 Homomorphic Computation

The heart of our functional commitment scheme is what we call a “homomorphic computation” scheme,
which is inherent in the homomorphic encryption scheme of Gentry, Sahai, and Waters (GSW) [GSW13], and
was made more explicit in the works of [BV14, AP14, GVW15b], with other useful properties derived in
related works like [BGG+14, GVW15a, PS19, PPS21].

Here we lay out a somewhat different perspective that focuses on just those limited properties needed for
our purposes, and hence exposes less of the functionality than is used in prior works, making it slightly simpler.
In particular, we do not need any explicit notions of encrypted/committed/hidden data, encryption/commitment
randomness, or decryption/opening.

3.1.1 Overview

The homomorphic computation scheme operates on matrices C ∈ Zn×W
q for some fixed q, n and various W .

Performing homomorphic operations that correspond to a function f yields a matrix Cf ∈ Zn×W ′
q . The key

property is that for any input x to f ,

(C− Rep(x)⊗ gt) · Sf,x = Cf − Rep(f(x))⊗ gt (3.1)

for some “short” (and efficiently computable) matrix Sf,x ∈ ZW×W ′ that can depend on C, f, x. Here Rep
outputs a suitable matrix representation of its argument, and g is a special fixed vector, described next.

The above Kronecker products serve as “robust” matrix encodings using a fixed gadget vector g ∈ Zℓ
q,

which must come with a corresponding decomposition function g−1 : Zq → Zℓ. These are defined so that
g−1(u) ∈ Zℓ is “short” (relative to q) and gt · g−1(u) = u, for all u ∈ Zq. This naturally extends to
(X⊗ gt) · g−1(Y) = XY for any X ∈ Zn×d

q and Y ∈ Zd×d′
q , where g−1(Y) operates entry-wise, replacing

each yi,j with the “short” column vector g−1(yi,j) ∈ Zℓ.
For concreteness, our treatment uses the powers-of-two gadget g := (1, 2, 4, . . . , 2ℓ−1)t for ℓ = ⌈log2 q⌉,

where g−1 : Zq → {0, 1}ℓ simply outputs the binary representation of (the distinguished representative in
{0, 1, . . . , q − 1} of) its argument, least-significant bit first. All of what follows straightforwardly generalizes
to other choices of gadget, with suitable adjustments to the bounds on “short” objects.
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3.1.2 Linear Homomorphisms

We recall the homomorphic operations supporting linear functions. First, for any X1,X2 ∈ Zn×d
q (for any d)

we have (
[X1 | X2]⊗ gt

)
·
[
Idℓ
Idℓ

]
︸ ︷︷ ︸
S+

=
(
[X1 | X2] ·

[
Id
Id

])
⊗ (gt · Iℓ) = (X1 +X2)⊗ gt.

This yields the homomorphic operation for addition: given any C ∈ Zn×2dℓ
q , define C+ := C · S+ ∈ Zn×dℓ

q .
Then for any X1,X2 ∈ Zn×d

q we have

(C− [X1 | X2]⊗ gt) · S+ = C+ − (X1 +X2)⊗ gt. (3.2)

Note that S+ is short: ∥S+∥1 = 2.
Second, recall from above that for any X ∈ Zn×d

q and Y ∈ Zd×d′
q ,

(X⊗ gt) · g−1(Y)︸ ︷︷ ︸
S×Y

= XY ∈ Zn×d′
q .

This yields homomorphic (right-)multiplication by any fixed matrix Y: given any C ∈ Zn×dℓ
q , define

C×Y := C · S×Y. Then for any X ∈ Zn×d
q , we have

(C−X⊗ gt) · S×Y = C×Y − (XY)⊗ gt. (3.3)

Note that S×Y is short: ∥S×Y∥1 ≤ dℓ.

Linear functions over finite fields. For values in the matrix ringR = Zn×n
q , the above yields a linearly

homomorphic scheme, i.e., one that supports addition and (right-)multiplication by knownR-elements. This
in turn yields a linearly homomorphic scheme for the finite field Fpn′ for any prime p that divides q and any
n′ ≤ n, using standard encoding and padding techniques. (In summary: Fpn′ is an n′-dimensional vector
space over Fp, so multiplication by each field element can be represented by a corresponding matrix in Zn′×n′

p ,
which can be scaled and padded to Zn×n

q .)

3.1.3 Multiplicative Homomorphism

To support multiplicative homomorphism, and thereby arbitrary Boolean circuits of bounded size or branching
programs, we restrict all the data values to be bits, and represent any b ∈ {0, 1} by the scaled identity matrix
bIn ∈ Zn×n

q . This leads to the homomorphic operation for multiplication: given any C = [C1 | C2] where
each Ci ∈ Zn×w

q for w = nℓ, define C× := C1 · g−1(C2) ∈ Zn×w
q . Then for any x1, x2 ∈ {0, 1}, we have

(C− [x1In | x2In]⊗ gt) ·
[
g−1(C2)
x1Iw

]
︸ ︷︷ ︸

S×,x1

= C× +C2 · x1Iw − x1In ·C2 − (x2In ⊗ gt) · (x1In ⊗ Iℓ)

= C× − (x1x2)In ⊗ gt. (3.4)

Note that the multiplier matrix S×,x1 is short: ∥S×,x1∥1 ≤ w + 1. Also note that, unlike above, here
the multiplier matrix depends on the initial matrix C2 as well as one of the input values x1 (which is not
determined at the time of the homomorphic multiplication).
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More generally, the asymmetric form of the short multiplier matrix S×,x1 means we can perform
many sequential multiplications with a short multiplier whose norm bound is only linear in the number
of operations. Specifically, given any C = [C1 | · · · | Ck] where each Ci ∈ Zn×w

q , define C× =

C1 · g−1(C2 · g−1(· · ·g−1(Ck))). Then for any x ∈ {0, 1}k, by iteratively applying the above we get a
multiplier matrix

S×,x =


g−1(C2 · g−1(C3 · · ·g−1(Ck)))

x1 · g−1(C3 · · ·g−1(Ck))
...

x1 · · ·xk−2 · g−1(Ck)
x1 · · ·xk−1 · Iw

 ∈ Zkw×w. (3.5)

Note that ∥S×,x∥1 ≤ (k − 1)w + 1.
Using the above, we can homomorphically evaluate any Boolean circuit f on a given matrix C, by

expressing each gate of the circuit algebraically (e.g., x NAND y = 1− xy). Due to Equations (3.2) to (3.4),
the result Cf satisfies Equation (3.1) for any circuit input x, where the multiplier matrix Sf,x is the product
of some short multiplier matrices, and hence is somewhat short itself. Similarly, we can homomorphically
evaluate branching programs, where, as with multiplication of several bits, the asymmetric nature of each
step’s multiplier matrix means that their product has ℓ1 norm proportional to the program length.

3.1.4 Summary

We summarize all of the above in the following.

Definition 3.1. Define the following function families Flinear,Fcircuit,FBP:

• Fk
linear = {fw : Fk → F : w ∈ Fk} is the family of linear functions fw(x) := ⟨w,x⟩ over F, where

F = Fpn′ for any prime p that divides q and any n′ ≤ n.

• Fk
circuit = {f : {0, 1}k → {0, 1}} is the family of functions that are computable by Boolean circuits of

some specified depth D (and fan-in two).
• Fk

BP = {f : {0, 1}k → {0, 1}} is the family of functions that are computable by branching programs
of some specified size S (and some fixed width).

Remark 3.2. In the above-defined families, for simplicity we restrict the functions to output a single value
(i.e., a field element or bit). This is without loss of generality, because any vector-valued (i.e., multi-output)
function of the same complexity can be obtained as the concatenation of the functions that produce each entry
of its output vector, and we can commit to and open each such function in parallel. Indeed, our concrete
instantiations will use vector-valued functions, which are implicitly handled in this way.

Theorem 3.3 (Homomorphic computation scheme). Let n, q ∈ N and D = {0, 1} or D = Fpn′ for a
prime p that divides q and some n′ ≤ n. There is an efficient deterministic robust matrix encoding for
any v⃗ ∈ Dd, denoted v⃗t ⊗ gt ∈ Zn×dw

q where w = nℓ, and a deterministic polynomial-time homomorphic
evaluation algorithm Eval, where for any function family F = {f : Dk → D} from Definition 3.1:5

• Eval’s input in square brackets is optional, and when it is provided, the additional output (also in
square brackets) is also produced. The non-optional output is unaffected by whether or not an optional
input is provided.

5More generally, the scheme works for vector-valued (multi-output) functions, following Remark 3.2.
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• Eval(f ∈ F ,C ∈ Zn×kw
q [, x⃗ ∈ Dk]) outputs a matrix Cf ∈ Zn×w

q [and an integral matrix Sf,x⃗ ∈
Zkw×w], where the additional output Sf,x⃗ satisfies

(C− x⃗t ⊗ gt) · Sf,x⃗ = Cf − f(x⃗)t ⊗ gt, (3.6)

and

1. for F = Fk
linear, ∥Sf,x⃗∥1 ≤ kw; moreover, ∥Sf,x⃗∥1 ≤ k when f is a subset-sum function;

2. for F = Fk
circuit, ∥Sf,x⃗∥1 ≤ O(w)D;

3. for F = Fk
BP, ∥Sf,x⃗∥1 ≤ wO(1) · S.

Remark 3.4. The form of Equation (3.6) means that Eval is composable, i.e., it can be applied to its own
outputs, to homomorphically compute on the results of other homomorphic computations. More specifically,
we can compute (Cf [,Sf,x⃗]) = Eval(f,C [, x⃗]) then (Cg◦f [,Sg,f(x⃗)]) = Eval(g,Cf [, f(x⃗)]), where recall
that f, g can be vector-valued functions. Then Sf,x⃗,Sg,f(x⃗) satisfy the norm bounds corresponding to f, g
(respectively), and

(C− x⃗t ⊗ gt) · Sf,x⃗ · Sg,f(x⃗) = (Cf − f(x⃗)t ⊗ gt) · Sg,f(x⃗)

= Cg◦f − g(f(x⃗))t ⊗ gt.

For notational convenience, we express the above process (hiding the intermediate values) as

(Cg◦f [,Sg◦f,x⃗]) = Eval(g ◦ f,C [, x⃗]),

where Sg◦f,x⃗ = Sf,x⃗ · Sg,f(x⃗).

3.2 Functional Commitment Construction

Our functional commitment scheme is parameterized by a function family F = {f : X → Y} and a
corresponding norm bound κ, which is used only in verification. Recall from Definition 2.2 that a user first
commits to some function f ∈ F . Then, for one or more inputs x ∈ X , the user can generate a proof that
f(x) = y for some claimed y ∈ Y . The main security property is essentially that it should be infeasible
to generate a (possibly malformed) commitment, an input x, and valid proofs for two different purported
function outputs (at x).

Construction 3.5 (SIS-based functional commitment). Let n, q ∈ N. Following Theorem 3.3, let X ,Y be
finite domains where x ∈ X , y ∈ Y have robust matrix encodings denoted xt⊗gt ∈ Zn×W

q , yt⊗gt ∈ Zn×W ′
q

(respectively), and let Eval be the homomorphic evaluation algorithm. Let F = {f : X → Y} be some
function family and κ be a corresponding norm bound.6 Define the following functional commitment scheme
for F .

• Setup(): choose uniformly random C← Zn×W
q and output it as the public parameter. (Note that this

is an “unstructured” random string, so the setup is untrusted.)

6The norm bound κ should be set large enough so that the verifier accepts properly generated proofs for all functions in F (see
Lemma 3.6). Then, n and q should be set so that the SIS problem underlying the scheme’s input-binding property is sufficiently hard
(see Theorem 3.7).
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• Commit(C, f ∈ F): output commitment Cf = Eval(f,C) ∈ Zn×W ′
q .7

[For Boolean functions the commitment can be compressed significantly; see Section 3.2.3 below.]

• Open(C, f ∈ F , x ∈ X ): compute (Cf ,Sf,x) = Eval(f,C, x), and output proof Sf,x ∈ ZW×W ′ .8
[For Boolean functions the proof can be compressed significantly; see Section 3.2.3 below.]

• Verifyκ(C,C∗, x ∈ X , y ∈ Y,S∗): if ∥S∗∥1 ≤ κ and

(C− xt ⊗ gt) · S∗ = C∗ − yt ⊗ gt,

then accept; otherwise, reject.

3.2.1 Complexity

For security (see Theorem 3.7 and the remark following Definition 2.1), the modulus q should satisfy
q ≥ κ · τ(n), or q ≥ k′κ · τ(n) for the compressed variant for k′-bit function outputs, for some large
enough τ(n) that can be Õ(

√
n). Because κ ≥

√
n in any useful instantiation, we can ensure that

log2 q = Θ(log κ). Recall that w = nℓ = n⌈log2 q⌉.
The sizes of the scheme’s various objects are as follows:

• The public parameter C is ≈W · w bits, where W is the width of the robust matrix encoding of any
input x ∈ X . Concretely, W = kw when X = Dk for D = {0, 1} or D = Fpn′ (see Definition 3.1),
so the public parameter is ≈ kw2 bits.

• An (uncompressed) commitment Cf is ≈ W ′ · w bits, where W ′ is the width of the robust matrix
encoding of any output y ∈ Y , which is W ′ = k′w when Y = Dk′ . So, a commitment is ≈ k′w2 bits.
A compressed commitment for k′-bit function outputs (where k′ ≤ n) is just≈ w bits; see Section 3.2.3
below.

• An (uncompressed) proof Sf,x is ≈ W ·W ′ · log2 κ bits (using a naı̈ve encoding); for a Dk → Dk′

function, this is ≈ k · k′ · w2 · log2 κ bits. A compressed proof for k′-bit function outputs (where
k′ ≤ n) is just kw log2(k

′κ) bits.

(We can reduce the sizes of all these objects by about a factor of n, using “algebraically structured” lattices
and the Ring-SIS problem [Mic02, PR06, LM06].)

The running times of Commit and Open are just those of homomorphic evaluation of the committed
function, in the latter case with the known input. The verifier’s running time is dominated by a matrix
multiplication, or a matrix-vector multiplication for a compressed proof.

3.2.2 Composition, Stateless Updates, and (Outsourced) Precomputation

Because both algorithms Commit,Open are simply the homomorphic evaluation algorithm Eval (with the
latter providing the function input x as Eval’s optional input), Construction 3.5 supports function composition
in the same way that the homomorphic computation scheme does, as described in Remark 3.4. We use similar
notation Cg◦f = Commit(C, g ◦ f) and Sg◦f,x = Open(C, g ◦ f, x) to denote this kind of composition.

7We can make the commitment hide the function f by using circuit-private homomorphic computation, such as from [BPMW16],
and retaining the randomness for use in opening.

8In concert with a function-hiding commitment, we can make the opening reveal nothing more than the single input-output pair
(x, f(x)) by giving a zero-knowledge proof (of knowledge) of some Sf,x that satisfies the verifier.
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Note that f and g need not come from the same function family. As usual, for correctness we simply need to
use an appropriate norm bound κ in verification.

This kind of composition has several beneficial consequences: it enables stateless updates, reuse,
and (outsourced) precomputation of commitments and proofs. More specifically, a commitment Cf to a
function f can be updated to a commitment Cg◦f = Commit(Cf , g) to any g ◦ f , using Cf and g alone;
the original function f is not needed. Similarly, for any x, a proof Sf,x that f(x) = y can be updated to a
proof Sg◦f,x = Sf,x · Open(Cf , g, y) that g(f(x)) = z, using just Cf , g, y. In addition, commitments and
proofs for other functions g′ ◦f can be created by reusing Cf and its proofs Sf,x. This enables precomputation,
in case a committer does yet not know which of multiple functions with common structure gi ◦ f it will
commit to, or which inputs it will open. Finally, this precomputation of commitments and proofs can even be
outsourced to an untrusted worker, as long as the client verifies them. Then any commitments and proofs
derived (exclusively) from them will verify as well.

Several of our concrete instantiations in Section 4 rely on a few specific kinds of compositions. Fix some
“base” function f . Then for an “additive update” function δ, the updated function f ′ = f + δ obviously
satisfies f ′(x̄) = f(x̄) + δ(x̄) for all x̄. For a “multiplicative update” function c (which can be, but need not
be, a constant), the updated function f ′ = c · f satisfies f ′(x̄) = c(x̄) · f(x̄) for all x̄. Most generally, for a
“post-processing update” function g, the updated function f ′ = g ◦ f satisfies f ′(x̄) = g(f(x̄)) for all x̄.

3.2.3 Compression for Binary Functions

For concatenations of any k′ ≤ n functions with Boolean (or more generally, small integer) outputs, we can
significantly reduce the sizes of the commitments and proofs, by a factor of W ′ = k′w = k′nℓ.

Let e = (et1, e
t
2, . . . , e

t
k′)

t⊗g−1(1) ∈ {0, 1}k′w, where ei ∈ Zn
q is the ith standard basis vector, and note

that ∥e∥1 = k′. Then any commitmentCf ∈ Zn×W ′
q can be compressed as the single vector cf = Cf ·e ∈ Zn

q ,
and any proof Sf,x ∈ ZW×W ′ can be replaced by a single vector sf,x = Sf,x · e ∈ ZW .9 We then define the
compressed verification algorithm Verify′κ(C, c∗, x,y ∈ {0, 1}k′ , s∗) to accept if ∥s∗∥1 ≤ κ′ := k′κ and

(C− xt ⊗ gt) · s∗ = c∗ −
(
y
0

)
.

In brief, this compressed scheme is correct because the uncompressed scheme is, and because ∥sf,x∥1 ≤
∥Sf,x∥1 · ∥e∥1 ≤ k′κ = κ′ and (yt ⊗ In ⊗ gt) · e = ( y0 ) by construction of e. See Lemma 3.6 below for
details, and for security see Theorem 3.7.

Compressed commitments and proofs are no longer generally composable, i.e., they do not support
arbitrary further homomorphic operations. However, it is straightforward to see that they still are linear
homomorphic via small integer combinations, as long as the norm bound used in verification is set appropriately.

3.2.4 Correctness

Lemma 3.6. For the values of κ given above, Construction 3.5 [and its compressed variant for Boolean
functions] is a correct functional commitment scheme for the corresponding function family.

Proof. Let f ∈ F and x ∈ X be arbitrary, and let C ← Setup() and (Cf ,Sf,x) = Open(C, f, x) =
Eval(f,C, x). Note that Cf = Commit(C, f) = Eval(f,C) by definition of Eval.

9In some contexts, compressed commitments and proofs even be computed directly, without first computing uncompressed ones.
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We show that Verifyκ(C,Cf , x, f(x),Sf,x) accepts. By the correctness of Eval (Equation (3.6)), we have

(C− xt ⊗ gt) · Sf,x = Cf − f(x)t ⊗ gt.

In addition, ∥Sf,x∥1 ≤ κ by Theorem 3.3, so Verifyκ accepts.
For the compressed variant for k′-bit outputs, where W ′ = k′w, the commitment is cf := Cf · e and

proof is sf,x := Sf,x · e, where e ∈ {0, 1}W ′ is as defined in Section 3.2.3. Consider Verify′κ(C, cf , x,y =
f(x) ∈ {0, 1}k′ , sf,x). Because f(x)t ⊗ gt = yt ⊗ In ⊗ gt in this setting, we have that

(C− xt ⊗ gt) · sf,x = (C− xt ⊗ gt) · Sf,x · e =
(
Cf − (yt ⊗ In ⊗ gt)

)
· e = cf −

(
y
0

)
and ∥sf,x∥1 ≤ ∥Sf,x∥1 · ∥e∥1 ≤ k′κ = κ′, so Verify′κ accepts.

3.2.5 Security

Theorem 3.7. For any κ > 0, the Verifyκ algorithm from Construction 3.5 [and its compressed variant
Verify′κ for k′-bit function outputs, from Section 3.2.3] is selective-input binding (Definition 2.3) if normal-form
SISn,q,W,β in the ℓ1 norm is hard, where β = 2wκ+ n for finite-field function outputs, and β = 2κ+ n for
Boolean function outputs [or for the compressed variant, β = 2k′κ+ n].10

More specifically, for any adversary A against the selective-input binding of the scheme, there is a
normal-form SISn,q,W,β adversary B for which

AdvSIS(B) ≥ Advsia(A),

and whose running time is that of A plus a small polynomial in n.

Proof. LetA be any adversary that attacks the selective-input binding (Definition 2.3) of Verifyκ [or Verify′κ].
For the former (non-compressed) version, we assume that the function output is a single finite-field element
or bit, and hence W ′ = w, because breaking binding for multi-output functions requires breaking it at some
single position..

We construct a reduction B which, on input A ∈ Zn×W
q , attempts to output a vector x ∈ ZW such that

Ax ∈ {0,±1}n \ {0} ⊆ Zn
q where ∥x∥1 ≤ β − n; note that such an x is a normal-form SIS solution (in ℓ1)

for A. It operates as follows:

1. Give the security parameter to A and receive x∗ ∈ X in return.
2. Let the public parameterC := A+(x∗)t⊗gt and give it toA. Note that this makesC−(x∗)t⊗gt = A.
3. A outputs some (C∗, y0,S0, y1,S1). If y0 = y1, abort.

[For the compressed variant, A instead outputs some (c∗,y0, s0,y1, s1).]
4. Compute the binary vector e = g−1(Y−1e1) ∈ {0, 1}w, where Y ∈ Zn×n

q is the invertible matrix
representing multiplication by y1 − y0 ̸= 0 (and e1 ∈ Zn

q is the first standard basis vector).
More specifically, for finite-field outputs, y1 − y0 is a nonzero field element, hence it corresponds to an
invertible Y ∈ Zn×n

q , and ∥e∥1 ≤ w. For Boolean functions, y0 − y1 = ±1, and hence corresponds to
the invertible matrix ±In ∈ Zn×n

q , so we can use e = ±e1 and hence ∥e∥1 = 1.
[For the compressed variant, this step is skipped.]

10As mentioned in Section 3.2.3, security for the compressed variant extends to concatenations of k′ functions with small integer
outputs, where the additive n term in β is replaced by the maximum ℓ1 norm of the difference between two such output vectors.
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5. Output x = (S0 − S1)e ∈ ZW .
[For the compressed variant, output x = s0 − s1 ∈ ZW .]

By inspection, it is clear that B runs in the same time as A, plus a small polynomial. In addition, for any
choice of x∗ ∈ X by A, the public parameter C is uniformly random (because A is), as needed.

We now show that if A successfully breaks selective-input binding, then B outputs an x such that
Ax = e1 ∈ Zn

q and ∥x∥1 ≤ 2k′κ. In this case, we have y0 ̸= y1; ∥S0∥1, ∥S1∥1 ≤ κ; and

C∗ = AS0 + yt0 ⊗ gt = AS1 + yt1 ⊗ gt,

so A(S0 − S1) = (y1 − y0)
t ⊗ gt. Therefore,

Ax = A(S0 − S1) · e
= ((y1 − y0)

t ⊗ gt) · e = e1.

Moreover, ∥x∥1 = ∥(S0 − S1)1 · e∥ ≤ ∥S0 − S1∥1 · ∥e∥1, which by the triangle inequality is at most 2wκ
for finite-field outputs, and at most 2κ for Boolean outputs, as needed.

For the compressed variant (for functions with binary outputs of length k′ ≤ n), A instead outputs some
(c∗,y0 ∈ {0, 1}k

′
, s0 ∈ ZW ,y1 ∈ {0, 1}k

′
, s1 ∈ ZW ), and succeeds if y0 ̸= y1; ∥s0∥1, ∥s1∥1 ≤ k′κ; and

c∗ = As0 +

(
y0

0

)
= As1 +

(
y1

0

)
.

Since x = s0 − s1, it immediately follows that

Ax = A(s0 − s1) =

(
y1 − y0

0

)
∈ {0,±1}n \ {0},

and ∥x∥1 ≤ 2k′κ, as needed.

4 Concrete Instantiations

In this section we present and analyze several important instantiations of our functional commitment scheme
from Section 3.2. These include commitments to functions of bounded support (Section 4.1), which
encompass vector commitments (Section 4.1.2), and accumulators (Section 4.1.3); polynomial commitments
(Section 4.2); and commitments to data with openings that reveal functions thereof (Section 4.3).

Each instantiation of is obtained by (1) defining an appropriate function family that captures the
desired functionality, (2) showing how to efficiently implement it homomorphically using Theorem 3.3,
and (3) analyzing the resulting norm bounds to set the verification threshold κ appropriately (to ensure
correctness). Moreover, for all the special-purpose function families, we show how to implement updates
via simple compositions, which means the corresponding commitment schemes are statelessly updateable.
Finally, we show that the forms of certain function families enable certain optimizations in their corresponding
functional commitment schemes.

At a high level, all of our instantiations for specific kinds of functionalities follow a common template.
We first identify a (potentially huge) set of “basis” functions, and show how to express the desired functions
relatively simply in terms of this basis, e.g., as linear or low-degree combinations. Plugging this into
Construction 3.5 (and using its composition properties) then yields a functional commitment scheme for all
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functions that have “bounded weight” in terms of the basis. The scheme’s running time and associated norm
bound is therefore determined mainly by the complexity of the basis functions. Moreover, if there are not too
many basis functions (or function inputs), then their commitments (and proofs) can be precomputed, so that
the “online” running time is determined by the (low) complexity of the combining operation(s).

4.1 Bounded-Support Commitments

Here we instantiate our general functional commitment scheme (Construction 3.5) for the general class of
functions having bounded support over a potentially huge domain. As we show below, vector commitments,
accumulators, and a new generalization of both that we call key-value commitments can be expressed as
special cases of bounded-support commitments. Moreover, all these schemes are statelessly updateable, via
composition.

Representing bounded-support functions. Let f : X → Y be a function for some finite X ,Y , where Y is
without loss of generality an additive group with identity element denoted 0, and let supp(f) := {x ∈ X :
f(x) ̸= 0} ⊆ X denote the support of f . For each x̄ ∈ X , define the “point function” Eqx̄ : X → {0, 1} as

Eqx̄(x) =

{
1 if x = x̄

0 otherwise.
(4.1)

Then f can be expressed as a linear combination of the Eqx̄ functions, as

f(x) =
∑
x̄∈X

Eqx̄(x) · f(x̄) =
∑

x̄∈S:=supp(f)

Eqx̄(x) · f(x̄) = L
f⃗S
(
−→
EqS(x)), (4.2)

where
−→
EqS(x), f⃗S are respectively the vectors of Eqx̄(x), f(x̄) over all x̄ ∈ S, and L

f⃗S
: {0, 1}|S| → Y is the

linear function that outputs the inner product of its argument with f⃗S . In summary, we have expressed f as
the composition of

−→
EqS and L

f⃗S
.

Therefore, by the linear homomorphisms given in Section 3.1.2 and the composition properties of the
generic functional commitment scheme (see Section 3.2.2), we immediately have the following. (A norm
bound κEqX is derived below.) Similar correctness lemmas can easily be obtained for richer forms of updates
(e.g., post-processing of function outputs), with corresponding norm bounds κ.

Lemma 4.1. Let κEqX be a norm bound for which the functional commitment scheme from Construction 3.5
is correct for function family FEqX . Then for any Y = Zn×d

q , any s ≥ 1, and any κ ≥ s · w · κEqX ,
Construction 3.5 is a correct functional commitment scheme for any sum of functions X → Y whose total
support size is at most s. The same also holds for Y = {0, 1}, with the tighter bound κ ≥ s · κEqX .

Remark 4.2 (Optimizations). Note that
−→
EqS depends only on the support S of f (not its specific values),

and L
f⃗S

is linear. Together with composition properties of the functional commitment scheme (see
Section 3.2.2), these properties allow us to commit to f with a running time, and norm bound, proportional to
its support size |S|. Moreover, they enable some substantial optimizations. First, if S (or a small enough
superset thereof) is known before f itself, then the commitment to

−→
EqS can be precomputed, making the

“online” commitment to f just a relatively fast linear operation (see Section 3.1.2). Second, and similarly, if a
subset X ⊆ X of potential opening inputs is known in advance, then the openings of

−→
EqS(x) for all x ∈ X

can also be precomputed, yielding fast, linear “online” openings of f on these inputs. This precomputation
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can even be outsourced to an untrusted party, as long as the user verifies the precomputed proofs. Finally, and
separately, for functions with binary or small-integer outputs, we can compress commitments and proofs as
described in Section 3.2.3.

Instantiating FEqX . We now describe a particularly simple homomorphic implementation of the family
FEqX , for which the short multiplier matrices satisfy a small polynomial norm bound.

Let k ≥ ⌈log2|X |⌉ be the length of an element of X , represented as a bit string. Each function
Eqx̄ : {0, 1}k → {0, 1} for x̄ ∈ X can then be implemented (homomorphically) using bit operations, in
the following way: on input x ∈ {0, 1}k, for each i ∈ [k] let ei = xi if x̄i = 1 and ei = 1 − xi if x̄i = 0;
this represents whether xi equals x̄i. Then output the product

∏
i∈[k] ei. It is clear that this procedure

correctly computes Eqx̄(x). Its homomorphic implementation consists of a fixed pattern of bit flips, which
have no effect on the ultimate norm bound (because x̄ is fixed, not an input to the function), followed by
a homomorphic product of k bits. So, following Equation (3.5), the ℓ1 norm bound associated with the
homomorphic evaluation of any member of FEqX is

κEqX := (k − 1)w + 1 ≤ kw. (4.3)

We remark that the simultaneous (homomorphic) evaluation of all Eqx̄ ∈ FEqX (i.e., the function
−→
EqX )

can be amortized to save about a k/2 factor in the number of (homomorphic) bit multiplications, versus the
naı̈ve evaluation of each function individually, which uses (k − 1) · 2k multiplications. On input x, for each
i ∈ [k] we prepare both possible values xi, 1−xi of the bit ei. Then for j = k−1, . . . , 0, we compute all 2k−j

possible partial products
∏

i>j ei, by multiplying the previous step’s 2k−j−1 partial products by the two
possible values of ej .11 The total number of multiplications used by this method is 4 + 8 + · · ·+ 2k ≈ 2k+1.
A similar amortized improvement can be obtained for computing openings at all inputs x ∈ X , for all the
functions.

Discussion. It is instructive to consider the structure of the bounded-support scheme’s main intermediate
matrices, commitments, and proofs in more detail. As above, let k be the length of the bit-string representation
of an element of X . The public parameter is a uniformly random C ∈ Zn×kw

q , where recall that w = nℓ =
n⌈log2 q⌉. For every x̄ ∈ X , define the commitment Cx̄ = Commit(C,Eqx̄) ∈ Zn×w

q ; together these define
the (potentially enormous) matrix CX = [Cx̄]x̄∈X ∈ Zn×|X |w

q . And for every x, x̄ ∈ X , define the “short”
proof12 Sx,x̄ = Open(C,Eqx̄, x) ∈ Zkw×w, which satisfies

(C− xt ⊗ gt) · Sx,x̄ = Cx̄ − Eqx̄(x)⊗ In ⊗ gt.

All this can be represented concisely by the single matrix equation(
(I|X | ⊗C)− diag

(
xt ⊗ gt

)
x∈X

)
·
(
Sx,x̄

)
x,x̄∈X =

(
1|X | ⊗CX

)
− I|X | ⊗ In ⊗ gt. (4.4)

As discussed above in Remark 4.2, any of the matrices Cx̄,Sx,x̄ can be precomputed (and verified) in advance,
or they can be computed as needed. One can view them as “structured” public parameters for the “online”
phase of commitment that depends on the function f .

Now, for a function f : X → Y , let f⃗ = (f(x̄))x̄∈X ∈ Y |X | be its “value vector,” whose matrix
representation is some F ∈ (Zn×n

q )|X | = Z|X |n×n
q . The commitment to f is simply Cf = CX · S×F for

11We use decreasing j here simply for consistency with the notation in Section 3.1.3, but any order can work.
12For convenience of matrix operations, we have swapped the indices of Sx,x̄ from the usual Sf,x form.
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the “short” matrix S×F = g−1(F ⊗ gt) ∈ Z|X |w×w (see Section 3.1.2). Naturally, any blocks of CX
corresponding to zero outputs of f can be skipped, because the corresponding blocks of S×F are zero; this
enables computing Cf in time roughly proportional to |supp(f)|. Notice that multiplying the right-hand side
of Equation (4.4) by S×F yields 1|X |⊗Cf −F⊗ gt, i.e., the xth block is Cf minus the xth block of F⊗ gt,
i.e., the robust matrix encoding of f(x). Similarly, the (row) blocks of (Sx,x̄) · S×F are proofs for all inputs
x ∈ X . To verify for a particular x, one just checks these xth blocks against each other using the xth row of
the matrix at the left of Equation (4.4), which is possible because that matrix is block diagonal.

4.1.1 Key-Value Commitments

A key-value map for a key space X and a value space Y is a set of pairs in X × Y whose first entries are
mutually distinct, i.e., each key in X has at most one associated value in Y . In a key-value commitment
scheme, a user first commits (concisely) to such a map. Later, the user can (concisely) prove that a given pair
(k, v) ∈ X × Y is in the committed map. The key-binding property says that it is infeasible to prove two
different values v ̸= v′ for the same key. Stateless updateability means that, without needing to know the
current contents of the map, the user can add, remove, or change key-value pairs, along with any existing
proofs.

Instantiation. We obtain key-value commitments as a special case of bounded-support commitments. We
simply represent any key-value map over X × Y as a function f : X → Y (and vice-versa) in the natural way,
i.e., f(x) = y for each key-value pair (x, y) in the map, and f(x′) = 0 for all keys x′ ∈ X that do not have an
associated value.13 Clearly, the support size of f is the number of entries in the map.

We can update (the function representing) a key-value map simply by composing with a suitable update
map (function). For example, to insert a key-value pair (k, v) when k does not already have an associated
value, or to add v to the existing value for k, we simply add the update function δk,v(x) := v · Eqk(x). To
delete (k, v) from the map, we subtract δk,v(x).14 By Lemma 4.1, this instantiation works for any initial map
and sequence of updates having a bounded total number of keys (with multiplicity). In addition, using the
composition properties of the functional commitment scheme, we can perform other kinds of updates on the
map, like arbitrary post-processing of its values.

4.1.2 Vector Commitments

A vector commitment scheme for d-dimensional vectors over a message spaceM is merely a special case of
key-value commitment, where X = [d] and Y =M. That is, a vector m ∈Md corresponds to a key-value
map consisting of the pairs (i,mi) for all i ∈ [d]. (Equivalently, the vector m corresponds to the function
fm : X → Y defined as fm(i) = mi.) Clearly, the support size of any vector is at most the domain size d.
As a special case of key-value commitments, the vector commitment scheme supports all the same stateless
update operations on the vector entries. Finally, because the index i corresponds to the key, (selective) key
binding is equivalent to (selective) position binding for vector commitments, i.e., it should be infeasible to
open a vector commitment to two different values at the same index i.

13Note that this makes 0 the implicit ‘default’ value for all such keys. If we wish to have a distinguished ‘undefined’ value ⊥
for such keys, we can replace Y with a larger group like Y ′ = Y × C for some nontrivial cycle C, representing each y ∈ Y by
(y, 1) ∈ Y ′, and letting ⊥ be represented by the identity element (0, 0) ∈ Y ′. Note that this encoding requires some care regarding
updates, because, for example, representing y − y = 0 by (y, 1)− (y, 1) = (0, 0) yields ⊥, not the encoding of 0 ∈ Y . A simple
solution is for all insertions and deletions to use 1s in their second components, and for all modifications of existing values to use 0s.

14See Footnote 13 for how insertions/deletions can be handled separately from additions/subtractions, when using an encoding that
has a distinguished ‘undefined’ value ⊥ that is separate from 0.
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Precomputation. In vector commitments, the domain size d = |X | is typically considered to be polynomially
bounded, so both optimizations described in Remark 4.2 apply. Specifically, the commitment to

−→
Eq[d] and

its openings at every i ∈ [d] can be precomputed; moreover, this can even be outsourced, as described in
Section 3.2.2. Then committing to a vector, and opening it an any position, is just a relatively fast linear
combination of these precomputed values. The size of the precomputed data is proportional to Õ(d2), which
is asymptotically about the same as several prior vector commitments, but here the setup is untrusted. The
result is a special case of Equation (4.4) with X = [d].

Comparison to other SIS-based vector commitments. We now briefly compare our vector commitment
scheme to prior SIS-based ones [PSTY13, PPS21]. The public parameters for the “base” vector commitment
scheme from [PPS21], for d-dimensional vectors of b-bit messages, consist of: uniformly random Cj ∈ Zn×b

q

for each j ∈ [d], defining C[d] = [C1 | · · · | Cd] ∈ Zn×bd
q ; a single uniformly random A ∈ Zn×m

q that for
each i ∈ [d] defines some Ai ∈ Zn×m

q ; and for all i ̸= j, a “short” random matrix Si,j ∈ Zm×b that satisfies
Ai · Si,j = Cj . Letting Si,i = 0 for all i ∈ [d], all this can be represented concisely by the single matrix
equation

diag(Ai)i∈[d] ·
(
Si,j

)
i,j∈[d] =

(
1d ⊗C[d]

)
− diag(Cj)j∈[d]. (4.5)

This has several similarities to Equation (4.4), but generating these parameters requires a trusted setup that
uses secret randomness (including discrete Gaussian sampling to generate the short Si,j), and the size of the
parameters grows at least as d2, which is prohibitive for even moderate dimensions. By contrast, our setup
uses only public randomness, and the size of the public parameter grows only as poly(log d). Commitments
and proofs in [PPS21] are generated and verified very similarly to what is described following Equation (4.4),
exploiting the repeated structure of 1d ⊗C[d] and the block-diagonal structure of diag(Ai).

Finally, the works of [PSTY13, PPS21] also describe specialized Merkle tree-like vector commitments that,
unlike ordinary Merkle trees, are statelessly updateable. Asymptotically, our scheme matches or outperforms
these in terms of commitment and proof sizes. Moreover, the verifiers from [PSTY13, PPS21] must check a
separate short solution to a linear system for each layer of their trees, whereas our verifier checks a single
short solution (of a correspondingly larger dimension). This is a moderate advantage when proving that
verification accepts in zero knowledge or with a SNARG, because proving short solutions to linear relations is
moderately expensive in these contexts.

4.1.3 Accumulators

A cryptographic accumulator [BdM93] is a scheme to concisely commit to a (polynomial-sized) subset of
some (possibly huge) universe. This is another special case of key-value commitment, where X is taken to be
the universe and Y = {0, 1}. A subset S ⊆ X corresponds to a key-value map consisting of the pairs (x, 1)
for all x ∈ S. (Equivalently, the subset S corresponds to its indicator function fS : X → {0, 1}, defined
as fS(x) = 1 if x ∈ S and fS(x) = 0 otherwise.) Clearly, the number of keys (i.e., support size) is the
cardinality of the set. As a special case of key-value commitments, the accumulator supports stateless updates,
so elements can be “dynamically” [CL02] added and removed from the committed set. Finally, because keys
correspond to universe elements, (selective) key binding is equivalent to set-binding for the accumulator, i.e.,
it should be infeasible to prove that a value is both in, and not in, the committed set.
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4.2 Polynomial Commitments

Here we show how polynomial commitments can be constructed as an instantiation of our general functional
commitment scheme, via an analogous approach as for bounded-support commitments, and with similar
efficiency and updateability properties. Specifically, we view a polynomial as the composition of a linear
function (specified by the coefficients) and a vector of fixed non-linear functions, namely the powers of the
input.

Let R be a finite commutative ring. For an integer i ≥ 0, define Powi : R → R as Powi(x) = xi, and
for a positive integer d, define

−−→
Powd to be the vector of functions Powi over i = 0, . . . , d− 1. For any d ≥ 1

with k = ⌈log2 d⌉, we can evaluate
−−→
Powd by evaluating

−−→
Pow2k recursively, using a depth-k tree of at most 2k

ring multiplications.

Univariate polynomials. A univariate polynomial f(x) =
∑d−1

i=0 fi · xi of degree less than d overR can be
expressed as the composition of

−−→
Powd and theR-linear function L

f⃗
(·) := ⟨f⃗ , ·⟩ for the coefficient vector f⃗

of f , as
f(x) = L

f⃗
(
−−→
Powd(x)).

Therefore, we can evaluate f by evaluating
−−→
Powd in multiplicative depth k, then multiplying the results

component-wise with f⃗ , then adding the results via a depth-k binary tree of addition operations.15
By the composition properties of the generic functional commitment scheme (see Section 3.2.2), we

immediately have the following basic, generic instantiation. Similar correctness lemmas can easily be obtained
for richer forms of composition, like updating, adding, multiplying, or dividing polynomials. All of this also
generalizes to “sparse” polynomials (i.e., ones with a bounded number of nonzero monomials) of potentially
huge degree.

Lemma 4.3. Let κMul, κAdd be norm bounds for which the functional commitment from Construction 3.5 is
correct for the multiplication and addition operations inR, respectively. Let d ≥ 1 be a degree bound and
k = ⌈log2 d⌉. Then for any κ ≥ κk+1

Mul · κ
k
Add, Construction 3.5 is a correct polynomial commitment scheme

for polynomials overR of degree less than d.

For almost all concrete rings of interest, addition and multiplication are not “natively” supported by the
homomorphic operations detailed in Section 3.1. Instead, ring operations typically need to be implemented via
rich combinations of homomorphic operations on the bit representations of ring elements, and this complexity
affects the norm bounds κMul, κAdd (as well as the running times of committing and opening). However, for
suitable rings like finite fields Fpn′ , the linear function L

f⃗
can be implemented “natively” using just the linear

homomorphisms from Section 3.1.2, because the coefficients of f are known. (See Remark 4.4 below for
further details.)

Remark 4.4 (Optimizations). Similarly to bounded-support commitments (see Remark 4.2), the commitment
to
−−→
Powd can be precomputed, making the “online” commitment to f more efficient. Similarly, if a subset

R ⊂ R of potential opening inputs is known in advance, then the openings of
−−→
Powd for x ∈ R can also be

precomputed. However, note that this may not make the online computations linear, because ring addition
and multiplication (with a known element) may not correspond to linear homomorphic operations.

For a ring that can be embedded into the matrix ring Zn×n
q , we can further improve the complexity of

the “online” phase of committing and opening, making them just linear operations, by “flattening” the Powi

15More generally, the treatment is essentially the same for polynomials whose coefficients come from some R-module.
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commitments to use the matrix representations of their outputs. This sacrifices the ability to do further
multiplicative compositions on the powers—but linear combinations, like those needed to commit to a
polynomial, are still supported (because the polynomial coefficients are known).

In brief: suppose that for homomorphic computation, the bit representation bits(x) of any ring element
x ∈ R is such that each entry of its matrix representation R ∈ Zn×n

q is some fixed Zq-linear function of
bits(x). (If not, we can homomorphically convert to such a representation when it is needed.) Then there
exists a matrix M over Zq for which (bits(r)t ⊗ In) ·M = R. So, given a commitment to any function
(e.g., Powi) that outputs the bit representation of a ring element, we can “flatten” it to a commitment of the
same function, but whose output is represented (robustly) in the matrix ring Zn×n

q . This is done simply by
composing the commitment with the linear function given by M⊗ gt, i.e., right-multiplying the commitment
by the short matrix S×M = g−1(M⊗ gt).

Multivariate polynomials. Multivariate polynomials can also be viewed as compositions of Pow functions
and a linear function specified by the polynomial’s coefficients.

Recall that the individual degree of a multivariate polynomial is the maximum degree of any single
variable.16 For a multivariate polynomial withm variables and individual degree less than d, the monomials can
be indexed byD = {0, . . . , d−1}m, where each entry of the index is the exponent of the corresponding variable
in the monomial. That is, the index e ∈ D corresponds to the monomial Powe(x1, . . . , xm) := xe11 · · ·xemm .
Any polynomial f : Rm → R on m variables with individual degree less than d can be written as

f(x1, . . . , xm) =
∑
e∈D

fe
∏
i∈[m]

xeii = L
f⃗S
(
−−→
PowS(x1, . . . , xm)),

where each coefficient fe ∈ R (many of which may be zero), where S = supp(f) := {e ∈ D : fe ̸= 0} is
the support of f ; f⃗S ,

−−→
PowS are the vectors of fe,Powe over all e ∈ S (respectively); and L

f⃗S
(·) := ⟨f⃗S , ·⟩.

We now discuss the computation of the commitment to
−−→
PowS . By definition, each entry of

−−→
PowS can be

written as the product of univariate Powi functions, i.e., it has the form
∏

i∈[m] Powei(xi) for some e ∈ S.
So, we can compute a commitment to

−−→
PowS by multiplicatively composing commitments to the components

of
−−→
Powd. Interestingly, we only need to compute commitments to each Powe up to permutation, i.e., we can

use the same commitment for any e′ that is a permutation of e. This is simply because upon opening, we can
permute the input values appropriately.

4.3 Functional Commitments for Bounded Boolean Functions

In this section, we describe how to commit to input data and then open to various functions of it. This
is the notion of functional commitment originally put forth in [LRY16] and also considered in [PPS21].
The core technique is the standard one of swapping “code” and “data” using a universal evaluator. Let
C := {C : X → Y} be the family of circuits of depth at most D, and let U : C ×X → Y be a depth-universal
circuit for this family, for which U(C, x) = C(x); there exists such a circuit of depth O(D′) [CH85]. Define
Ux(·) := U(·, x). To commit to an input x ∈ X , use Construction 3.5 to commit to the function Ux. We can
then open the commitment for a circuit C (implementing a desired function f ) in the usual way, by treating C
as the input to the committed function. Following Theorem 3.3, we can use a suitable κ = O(w)O(D) for the
verification norm bound.

16Our treatment also adapts straightforwardly to polynomials of bounded total degree. We use individual degree because it follows
more naturally from the univariate case.
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For (constant-width) branching programs of size at most S, we proceed similarly. We first obtain a
universal branching program for programs of this size, by applying Barrington’s theorem [Bar86] to a certain
universal circuit CBP (B, x) that evaluates a given size-S branching program B on a given input x. It can
be constructed to have depth D′ = O(logS), because B can be evaluated using a ⌈log2 S⌉-depth tree of
multiplications of (constant-dimensional) permutation matrices. Applying Barrington’s theorem to CBP then
gives a (constant-width) universal branching program of size 4D

′
= poly(S).

Define Cx(·) := CBP (·, x). To commit to an input x, we simply use Construction 3.5 to commit to the
function Cx. We can then open the commitment for a size-S branching program B (implementing a desired
function f ) in the usual way, but treating B as the input to the committed function. Following Theorem 3.3,
we can use a suitable κ = wO(1) · poly(S) for the verification norm bound.
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