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We demonstrate how to apply some ideas from group theory to quagmire ciphers.
Techniques are shown for amplifying one’s knowledge of the keys. This is useful when
breaking a ciphertext with a crib. The basic idea is that only a small amount of
information goes into building a key table for a quagmire cipher, so we should only
need that much information to reconstruct it.

Introduction

The quagmire ciphers [1, 2] (also known as type 1, 2, 3, and 4 periodic polyalphabetic
substitution ciphers) are generalizations of the Vigenére cipher [3] in which the plaintext alphabet is
deranged, or the ciphertext alphabet which slides against it is deranged, or both. Another way of
thinking about them is as a table of twenty-six monoalphabetic substitution keys. A subset of them is
chosen and applied in repeated sequence to the letters of the plaintext to create the ciphertext.

Our convention is to call the table of repeated alphabet keys the “key table” for the cipher, and
the full list of all possible alphabet keys for a given keyword its “tableau”. Each row of the key table or
of the tableau is an alphabet key for a monoalphabetic substitution and contains each of the twenty-six
letters; i.e., it is a permutation of them. For the quagmire ciphers it is also the case that each column of
the tableau contains each of the twenty-six letters. This ensures that for any ciphertext character, there
exists a key that can decrypt it.

All monoalphabetic substitution keys are members of the permutation group on twenty-six
objects. If you don’t know what that means, do not fret: to learn the techniques described in this paper
does not require that you understand why they work. On the other hand, if you are interested in learning
about groups and their properties, there are plenty of good textbooks on abstract algebra, such as that
one by those two guys [4].

The main goal of this paper is to show how partial knowledge of the key table of a cipher can be
amplified to nearly complete knowledge of it. The idea is that there is a lot of redundancy in quagmire
key tables, but only so much information in the keys. That information is smeared out over the key
table. When we have a sparse knowledge of the key table, namely few characters in it, we can use the
structure of the cipher and the redundancy built into it to fill in more characters. The techniques for
doing so will rely more and more heavily on group theory as we advance from the Vigeneére cipher to
the quagmire 4.

We are going to start off slow, with the Vigenére cipher, and work our way to the more
interesting stuff. If you know the quagmire 1 and 2 ciphers very well, then the tricks we use on those



two may seem familiar. But please bear with us; they lay the foundation for what follows. The good
stuff starts when we get to the quagmire 3.

Permutation group

A key for a monoalphabetic substitution is simply a permutation, or rearrangement, of the
alphabet. All of our examples will use the same keywords. Using OPHELIA, we construct this key:

OPHELIABCDFGJKMNQRSTUVWXYZ

What this means is that a substitution cipher using this key will change A to O, B to P, etc., as we can
tabulate so:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
ciphertextt OPHELIABCDFGJKMNQRSTUVWXYZ

We need a way to combine two keys, when one acts on a plaintext and the other then acts on the
first one’s ciphertext. If S (k, t) denotes a substitution cipher with key k acting on a text, then the
combination of two keys can be found by taking S (ki, k»), i.e., by treating one as a text. In this way we
define a binary operation on key, which we will call “multiplication”:

kl ° kz = S (kl, kz)
Since this merely permutes a permutation of the alphabet, the result still contains all twenty-six letters
and is therefore also a permutation, i.e., a key. That means that the set of keys is closed under this
operation. It also turns out that the operation is associative:
(k1 o kz) oky = kyo (k2 ° k3)
So we can drop parentheses everywhere. However, be aware that in general, the operation is not
commutative. This means that the order in which we multiply them matters; we can’t switch them

around.

Let’s do an example of multiplication. Consider these two keys:

ki = HAMLETBCDFGIJKNOPQRSUVWXYZ
k, = OPHELIABCDFGJKMNQRSTUVWXYZ

The first takes the unscrambled alphabet into k;.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
HAMLETBCDFGIJKNOPQRSUVWXYZ

The second takes the first key and encrypts it.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
OPHELIABCDFGJKMNQRSTUVWXYZ



So the H becomes B, A becomes O, M becomes J, etc. The product is
ky o k; = BOJGLTPHEIACDFKMNQRSUVWXYZ

We will often need to be able to multiply keys when we do not have complete knowledge of
their entries. In that case, our lack of knowledge will propagate. Let’s reconsider our example, but
leave out some letters:

ki
k

HAM-ETBCD: - - JKN-PQR - - VWXYZ
OPHEL - -BCD:G-KMNQ:-STUVW-YZ

When we take the product, H still becomes B, and A becomes O, but M maps to an unknown letter. The
next letter in k; is also unknown, so it remains so. Then E becomes L, etc. The product is

kook; = BO+LTPHE:::D:K:NQ:::-VW-YZ

The unmixed alphabet serves as the identity element of the group, so we will often denote it as
e. The identity element has the property that when it is multiplied by any other key, the result is
unchanged:

eck =koe =k

If we can scramble the alphabet, then we can unscramble it. In other words, every permutation
(key) has an inverse. To find an inverse, we list the key under the unscrambled alphabet, then rearrange
the columns until the lower row is unscrambled. The top row is then the inverse key. For our example,

ABCDEFGHIJKLMNOPQRSTUVWXYZ
OPHELIABCDFGJKMNQRSTUVWXYZ

becomes

GHIJDKLCFMNEOPABQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The inverse, which we denote as k™, is

GHIJDKLCFMNEOPABQRSTUVWXYZ
When we multiply a key by its inverse, from either side, we get the unscrambled alphabet e:
kek'=k'ck=c¢e
Again, we will often need to work with keys with missing information. So we need to know
how to invert a key with missing letters. Again, our ignorance propagates. For example, suppose we

want to invert this key:

OPHEL - -BCD:G-KMNQ:STUVW-YZ



Line it up with the unscrambled alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
OPHEL:-:-BCD-G-KMNQ:-STUVW-YZ

Rearrange so that letters in the lower row are in the positions they would have in the unscrambled
alphabet:

AHIJDFLCIJNEOPABQRSTUVWXYZ
BCDE GH KLMNOPQ STUVW YZ

The letters in the top row that are above a gap become unknown letters in the inverse key, which we
have found to be

*HIJD-LC- -NEOPABQ:STUVW-YZ

Integers modulo 26

It will soon become obvious why we should want to understand the integers modulo 26, Z. For
those of you who do not know the word “modulo,” we will explain. We take the set of numbers {0,
1, ..., 25}, and whenever we do arithmetic on them, if the result is outside that range, we add or subtract
enough 26’s to bring us back inside. The number 26 is called the “modulus.” The only arithmetic we
are going to be doing is addition, and maybe subtraction, so do not worry.

Addition is defined in the obvious way. We add two numbers as usual, then subtract 26 if the

answer is greater or equal to 26. So 11 + 23 =34 — 10. The additive inverse of number n is found as
26 — n, and the identity element is 0. As you can guess, my next statement is that Z,s with addition is a
group.

Now let us talk about the order of its elements. The order of a group element is the smallest
number of that element that need to be added together to get the identity. Sometimes the answer is

obvious, like 13 + 13 =26 — 0, so the order of 13 is 2. But other times it is not so obvious, like 4 + 4

+4+4+4+4+4+4+4+4+4+4+4=52 — 0, sothe order of 4 is 13. Here is a table of all of
the elements of Z,¢ and their orders:



element | order element | order
0 | 1 13 | 2
1| 26 14 | 13
2 | 13 15 | 26
3 | 26 16 | 13
4 | 13 17 | 26
5 | 26 18 | 13
6 | 13 19 | 26
7 26 20 | 13
8 | 13 21 | 26
9 | 26 2 | 13
10 | 13 23 | 26
1| 26 24 | 13
12 | 13 25 | 26

Notice that some elements have order 26, which is the largest that it can be. Such an element is called a
“generator,” since by adding it successively to itself, the sum runs through the entire group. In other
words, we can obtain every element of the group by finding multiples of one generator. Also, notice
that the elements that are generators share no factors with 26; the greatest common denominator in
those cases is gcd (n, 16) = 0. We say that these element are coprime with 26.

You might also notice that there are many generators. And there are many with order 13. It is
possible to shuffle them around and still keep the same group structure. A mapping that takes one set
with a binary operation to another set with its own binary operation in such a way that the structure is
preserved is called an isomorphism. Preserving the structure means that the mapping ¢ has this

property:
px=y) = 0oX=0 (1)

where the little black square represents whatever binary operation is appropriate. When the two sets in
question are actually the same set, then the mapping is called an automorphism. Here is one
automorphism of Z,s, in which we simply multiplied every element by 5 (which is a generator):



0 - 13 - 13
1 - 14 — 18
2 - 10 15 —» 23
3 - 15 16 —

4 - 20 17 - 7
5> 25 18 — 12
6 — 19 - 17
7 - 9 20 - 22
8 - 14 21 —

9 - 19 22 - 6
10 - 24 23 - 11
1 — 24 — 16
12 —» 25 - 21

Notice that 0 maps to 0 and 13 maps to 13; an element must map to one with the same order. Knowing
that there are many ways to map into Z»s can be useful near the end of this paper.

Vigeneére cipher

If you are reading this, and I know you are, then you are already familiar with periodic
polyalphabetic substitution ciphers. However, in anticipation of more interesting things, we begin
slowly and simply with the Vigenere cipher. The key of a Vigenere with period m contains m letters. We
can therefore say that the shift key has m letters of information in it. This shift key is not to be confused
with alphabet keys, which are the permutations. At the risk of being pedantic and even ridiculous
(please bear with me), we can say that the informational content (thinking along the lines of [5]) of the
key is

I = m-logy(26) = m

characters. The 26 inside the logarithm reflects the fact that there are twenty-six choices for each letter
of the key. We need at least this much information to break a Vigenére cipher. From this we conclude
that we can use a crib of length m to reconstruct the key table for a given master key.

To help us in reconstructing a key table, we recall that each of its rows is a rotation of the
unmixed alphabet. If we denote rotation by n steps as R, (x), Then each alphabet key can be thought of
as R, (e), for some n and where e denotes the unmixed alphabet.

At further risk of ridicule, let us present an example of a crib-based attack. We will work the
example in what may appear to be overly drawn out and silly, but it will help get into a way of thinking
that will help with the quagmire ciphers. Here are the first fifty characters of Hamlet’s soliloquy,
encrypted with period of six:



AONPSK UOFESU LTTLXB ZTTPUN LSFTSG DHQELX YTUDRH ILQCMG AH

We need a crib that provides enough information to reconstruct the key table, and so we need six
characters. Take the first six letters of the plaintext:

tobeor

With this crib and the first six letters of the ciphertext, we find this much of the key table:

abcdefghijklmnopgqrstuvwXxyz
A

k1 I
kz | 0
k3 |
ke | P
ks |
I

ke

(Here and throughout this paper we assume that the period is known. We can usually find it from the
Kasiski method [6, 7], index of coincidence [8, 9, 10] by trying various periods until a suitable one is
found [11]. Another option is the twist method [12].) The plaintext alphabet is along the top of the
table, and characters of the individual keys appear in the bulk of the table. We see an A under the t in
the first key to indicate that t is encrypted to A by k;. This also indicates that the first key is R; (e),
since we are taking leftward rotation to be the positive direction. Now, this may seem especially
ridiculous, but let us apply the inverse rotation on the first row of the table to get

Here, - denotes an heretofore unknown character. Since the unrotated key must be the straight
alphabet, we can fill in the missing letters and write

R; " (ki) = ABCDEFGHIJKLMNOPQRSTUVWXYZ
Rotate back to get:

ki = Ry (R/* (k1)) = HIJKLMNOPQRSTUVWXYZABCDEFG

Following the same procedure for the remaining five rows of the table, we obtain the full table:



abcdefaghijklmnopgrstuvwxXxyz
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We have written the unaltered plaintext alphabet across the top. On the left are letters from which the
shift key is made. For each shift we have a rotated alphabet. It should be clear that the possible



monoalphabetic keys for the Vigenére are Ry (e), R: (e), ..., Rss (e), where as usual e denotes the
unmixed alphabet. For convenience, we will write Ry, Ry, ..., Ros. Of course, R, = e.Notice that each
letter occurs exactly once in each column. This is true also for the quagmire ciphers, and we will refer
to this as the “column property.”

Now, the action of the binary operation on two alphabet keys from the Vigeneére cipher is
another member of the set of Vigenére alphabet keys. This should be obvious, since each key is a
rotation R, of the unmixed alphabet, and when two rotations are combined, the result is to add their
numbers of steps:

Rm ° Rn = Rm+n

Of course, we must evaluate the sum m + n modulo 26. Because addition is commutative, so is the
composition of rotations:

So what we have is a commutative (most call it abelian) subgroup of the group of all alphabet keys.
Furthermore, this subgroup is isomorphic to Zs with addition. The most natural isomorphism is

R, —» n
and the group structure is preserved because
R,°R, - m+n
These results may seem trivial, but we will see similar structure in the quagmire 3 cipher, where things
are less obvious.
Quagmire 2

Wait, what? Did we skip something? No, we are going to do the quagmire 2 before the
quagmire 1 because it is much easier.

The quagmire 2 cipher (Q2) uses an unmixed plaintext alphabet sliding against a mixed
ciphertext alphabet [1, 2]. Alternatively, we can build a tableau from the keyword used to mix the
ciphertext alphabet, and select those rows that correspond to letters in the shift key. The key generated
from the keyword we will call the “base key.” For example, using the keyword OPHELIA, our base key
is

kvase = OPHELIABCDFGJKMNQRSTUVWXYZ

From it, the tableau generated is



plaintext letters
abcdefaghijklmnopgrstuvwXxy?z

key
letters |
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kbase ° Rn

n

kV’ = 571 (kbase; kv)
k

Q2 (kv, kbase, t) = S (kbase, V(kv', t))

The quagmire 2 cipher can be factored into a Vigenere cipher followed by a monoalphabetic

substitution [13, 14]:
at the tableau: clearly, shifts are taking place, followed by substitutions. We can therefore write any key

because it has passed through the substitution cipher. This factorization should be obvious from looking
from the table as

Here the alphabet key is the base key, but the shift key k,” here is not the same as the keyword k, for the

Notice that each row is a rotation of the base key, and that we have the “column property.”
Q2 cipher, but rather the m characters given by

If we multiply two Q2 keys we get



km ° kn = kbase ° Rm ° kbase ° Rn

This is not of the same form as the previous relation. So immediately we see that the set of Q2 keys is
not closed under our binary operation. We do not have a group. Instead, what we have is a coset of the
Vigenere subgroup. We call it a left coset because the constant (kpse) is multiplied on the left. The
relation k, = kiase © R, provides a mapping from the Vigenére group into the Q2 coset; however, it is not
an isomorphism, and we have lost the group structure. We don’t even have commutation any more.

How much information is contained in the keys? The shift key contains m independently chosen
characters, providing m characters’ worth of information. The first letter of the base key provides one
character’s information. However, there remain only twenty-five options for the second letter; so the
second carries less information. By the time we reach the end, there is only one choice for the final
letter, so it provides no information. The total is

I=m+ logzs 26 +10g26 25 + 10g26 24 + ... +10g261 = m+log26 26! = m + 18.8

This means that theoretically we need m+19 known entries in the key table in order to fully reconstruct
the table when we are breaking a ciphertext. Practically, however, the characters that we find may
likely have overlapping contributions to the information, so more than m+19 are needed. Furthermore,
due to the redundancy of language, we need an even longer crib. The same equation and same
arguments hold for the quagmire 1, 2, and 3 ciphers.

The procedure for key amplification is simple: Since all keys are rotations of one key (the base
key), we rotate our incomplete keys until they are aligned. Then we can collapse them into one key by
combining all the knowledge we have. Then unrotate each and put them back into the key table.

Let us work through an example. Take Hamlet’s soliloquy once more, and encrypt it with a Q2
cipher using shift key HAMLET and base key OPHELIABCDFGJKMNQRSTUVWXYZ. The full
ciphertext is

VUNCRFNUBXRUAZVLWPUZVCTKAYBJRAYKSXFXTZWWQBERSVGAVKSQGATIZHWX
YBFIXFXURWRDGHTRLUFQHASCBWZILDXQOADRFVOPCRFVUBLKXHXOWEZHMPW
WTUFMSCJTUCIMXUAPBLRQVESVPNJSRAJDFOXRWFFBSVLAFERRIQXSLQWELM
WMXAVBSVTOHSCQWVKSGBTTZMAFXHTRXFXVKHYVTNDPLWKTAZWFBLQAXFTVG
ZCVOFYVCGFVUBJIVTLUPWXIMABJRAIFDSXJKLBSLXYMAGAJQDWCWBURSCSJQ
YZCBCRFIAFTNCSXRWTFMQERVKSVBGVKSVXUBUI JQJDABWMXAVHDAXHZVOFT
VDICEIUSMHIBMFFGBAYFVLYXUKCDCLADHDCJDMAQRFVAZARPKSCWWZFPSYV
CHOACWOAXSWWOAXSWSXLZBGE JMAYCVVHRMQGJOUTWRLQTUNGYAGHVZOQHHY
MWEFMVWOAHVJSGHTRWIBTTASCJFSSXFBRVICVGQXAOUBNJBGBCTUCBNTNYQ
SQIWSSNPJIDFELQZUUTBGGRXWEALQPSXFXKAFWAXKAJXFXFTASMXNCSSCBBG
WABTNDBGBGROIRVJDABTEJFFPXNXTMBSCJDOPORFVKJIXEEAYFGBADFVJINGA
RTQGZDZVJVDWMSXXGMAYCZPVKMIEFABHBKPNHVSZBWRRDEFIFZWLXHXBSDF
WTBLQWUHSLWKNDSVENAAIHMPBFNYWJDABXFXIXSLABBYHQBJDMPFEYVFIBB
TVKBGBKNDWWIBXFICAVQOPXURBXHQZOQYSIRKTTPSWFHPSNMXTXSXXFNYEY
HSKFAXFXYMZNEAISMMBGWY ILWOAXNCEFVKHWBPKRAOBOHPSXFTNGZHWBQZV
CUGVKMXZXJTHOQBVUTXFKUCHRVVFFPABWQZVQEEACHOEFIYHDXGHRZLQWVK
CWWOATMXGMAKCCRYTFASMKVMHRGGUMQMMPADHCUNFZVXFXRAZCITUZHDWOQ



OUGWTNDSRWXTVIJVXUUTFUXHZEJWOHTRQRIATBOGJDZVJIVFAIJMVAJDFWVIK
TXSRWGVOIRENTLMRALQYSXFXNAOCRYHCBJRA

As our crib, take the first 50 characters of the plaintext:

VUNCRF NUBXRU AZVLWP UZVCTK AYBJRA YKSXFX TZWWQB ERSVGA VK
tobeor nottob ethati sthequ estion whethe rtisno blerin th

Comparing the plaintext and ciphertext gives us this much information about the key table:

abcdefghijklmnopgrstuvwXy?z
ki | E A N TUYV Y
k| K R U Y Z
ks | N S VW B
ke | L C J V W X
ks | F G QR T W
ke | U X P A B F K

If we try to finish the decryption with this much information about the key, this is what we get:

TOBEORNOTTOBETHATISTHEQUESTIONWHETHERTISNOBLERINTHE.IN.T.S.
+...THESLI...... AR..... O.T.A.E....ORT..EORTOTA.E...S..... S
T.S..... RO...ES.......... IN.E...... T0...T...E...O...EAN.B..

T..E..S....0..... NW.HA.ESH....E......... ORT...OI...ST...E..
....ET.E.EST.E.ES.E.TT...... E...L..I..0.S0..... I.E..R......
..B..RT.E.HI..... S.OR....... ETHO...E....... ON.T...RO....NS.

L..I..THI....ET..... E.ITH...RE....IN.H..O.L...R...S.E..T..R
.. TAN.S.EATUN.ER. .E....I..B.T...TTHE. .EA.0.S.......... T....
.THT..UN.IS.O...E..... Tooooooat, SE.OUR...TR..E..ER.ET.RNS..

To begin the amplification, take the keys and rotate them until they are aligned. We do this by rotating
until we see that each shares a character in the same column as another. This works uniquely because of
the “column property” (and hopefully we have found enough characters in the table).



VWe o oo oo B:vvvsun N:-S
VWX s o v oo Le+sCrvoJevrnnn
TeoWeeeereee e FG----QR

The numbers of step in the rotations (taking leftward to be positive) are 17, 13, 6, 15, 16, 0. We must
remember them, since we need them later. Now collapse them all into one key:

TUVWXYZ-P-EL-ABC-FGJK-NQRS

Make six copies and unrotate them (remember those numbers?):

abcdefghijklmnopagrsct VWXV Z
ki | E L ABZC FGJK NQRSTUYV XY /Z P
ks | ABZC FGJK NQRSTUVWXYZ P E L
ks | NQRSTUVWXYZ P E L A BZC FGJK
ke | L ABZC FGJK NQRSTUVWXYZ P E
ks | E L ABZC FGJK NQRSTUVWXYZ P
ks | TUVWXY Z P E L ABZC FGJK NQRS

That is quite an improvement. Here is what we get if we decrypt with it:

TOBEORNOTTOBETHATISTHEQUESTIONWHETHERTISNOBLERINTHEMIN.T.SU
FFE.THESLIN.S.NDARRO.SOFOUT.A.EO.S.ORT.NEORTOTAKE.R.SAG. .NS
TASE.OFTROU. .ESANDBYOPPOSINGENDT.E.TODIETOSLEEPNO.OREANDBY .
S.EEPTOSA. .EENDTHEHEART .CHE .NDTHETH . USAN.NATURALSHOCKSTHAT.
LES.ISHEIRTOTISACONSU. .ATION.E.OUTLYTOBEW.SHDTO.IETOSLEEPTO
SLEEPPE.CHANCETODRE .MAYTHERESTHERUBFO.INT.ATS.EEP. .DE.TH.HA
T..EA.SM...0.EWHENWEHAVESHU.FLE...FT..SMORTALCOILMUSTGIVEUS
P..SET.EREST.ERESPECTTHAT.AKESC.L.MIT.OFSOLONGLIFE..RW.O..U
.DBE.RT.E.HIPS.NDS.ORNSOFTIMETHOPP.ESSORS.RONGTHEPROUDMANSC
ONTUMELYT .EPANGSOFDISPRIZDLOVETHELAWSDELAYTHEINSO.ENCEOFOF.
ICEAN.THESP. .NST.ATPATIENTMER.TOFT. .N.ORTHYTAKESWHEN.EHIMSE
LFMIG.THIS.U.ETUS.AKEWITH. .AREB.DKIN.HOWOULD.AR.ELSBE.RTO.R
UNTANDS.EATUN.ERAWEA. . .IFEBUTT.ATTHE.READOFS.MET. .NGAFTE.DE
ATHTHEUN.IS.OVE.EDCO.NTRYFR.MW.OSE.OURNNOTR.VEL.ERRETURNSPU
.ZLESTHEW.LLAN.M. .ESUS.AT.ERBEARTH.SEILLS.E..VETHAN.L.TOOTH
ERSTH.TWEKN. .NOTOFTHUSC.NSCIENCEDOTHMAKEC. .AR.S..US.LLANDTH
UST.EN.TI.EHUEOFRESO.UT..NISS.C..IE..ERWITHTHEPALE.AST..T.0O
.GHTAN.ENTERP.ISESOFGRE.TPIT. .NDMO.ENT.IT.THISREG.RDT.EIR.U
RRENTST . . NAWRY .NDLOSETHENA.EOF.CTION

We are sure that you, dear reader, were already familiar with this technique. But now let’s turn
the the quagmire 1 (Q1) and see a slightly more complicated procedure.



Quagmire 1

In the quagmire 1 cipher (Q1), an unmixed ciphertext alphabet is slid along a deranged plaintext
alphabet [1, 2]. A keyword is used to derange the plaintext alphabet, which we will call the base key
kbase. From this it should be clear that the tableau (above which is an unmixed plaintext alphabet)
contains the inverses of shifted versions of the base key, and that the cipher can be factored into a
monoalphabetic substitution followed by a Vigenere cipher [13, 14]. The substitution is the inverse of
the base key:

Ql (kbase; kv, t) = V(kv; 571 (ka; t))

Here k, denotes the shift key, containing m characters, and k, is a rotation of ks S0 that A is in the first
position. In terms of keys, what we have are keys of the form

kn = Rn ° kbase_1
We see that we have a coset of the Vigenere group, but a different kind, because the multiplier is on the
right instead of the left. We call this set a right coset. But let’s invert it. Since when we invert a product
of permutations, we get inverses of them in reverse order, the inverse of the above is

kn_1 = (Rn ° kbase_l)_1 = kbase oIQ—n

Now we have a coset of the kind we saw in the case of Q1, and we can reuse the technique we have for
amplifying the key table.

Let us see for ourselves with an example. Consider our favorite base key:
kiase = OPHELIABCDFGJKMNQRSTUVWXYZ

From it we build this tableau:



plaintext letters
abcdefaghijklmnopgrstuvwXxy?z

ABCDXEFWZGHYIJUVKLMNDO

key
letters |

FOD>=X
NFEFD>Z=
xounkr>s>
oxnikE>D

P
Q
R

P
DEFGAHIZCJKBLMXYNOPQRS
EFGHBIJADKLCMNYZOPQRST

CDEFZGHYBIJAKLWXMNOPAQ Q
KRSIMTULVWHIXYZABCDEFG

Q
RLSTKNUVMWXTIJYZABCDETFGH
SMTULOVWNXYJKZABCDEFGHTI
STNUVMPWXOYZKLABCDEFGHTIJ
STUOVWNQXYPZALMBCDEFGHTIIJK
STUVPWXORYZQABMNCDEFGHTIUJKL
QXYPSZARBCNODEFGHTIJKLM
RYZQTABSCDOPEFGHTIJIKLMN
VWXYSZARUBCTDEPQFGHIJKLMNDO

P
Q
R

oo o

FGHICJKBELMDNOZAPQRSTUVWXY
GHIJDKLCFMNEOPABQRSTUVWXYZ
HIJKELMDGNOFPQBCRSTUVWXYZA
IJKLFMNEHOPGQRCDSTUVWXYZAB
JKLMGNOFIPQHRSDETUVWXYZABC
KLMNHOPGJQRISTEFUVWXYZABCD
LMNOIPQHKRSITUFGVWXYZABCDE
MNOPJQRILSTKUVGHWXYZABCDETF
WXYZTABSVCDUEFQRGHIJKLMNOP
XYZAUBCTWDEVFGRSHIJKLMNOPAQ Q
YZABVCDUXEFWGHSTIJKLMNOPQR
ZABCWDEVYFGXHITUJKLMNOPQRS

BCDEYFGXAHIZJKVWLMNDO

The inverses are:



WOUOUTOGXZZOHT0W-HCCc<<=ZX<NOUTIMMrHDY
OUOUToOuuXNEZZOHTNWNHC<L=EZIX<NOUTIMMrH>W®W
OT O XRXREZZOOTnNHHCS=ZX<NOUIMMrH>»®WO
TOCXREEZO0O0HwHHCLS=ZIX<NOTUIMMrHX>»WOO
OUXEEZOHTUWHdCLK=ZIX<NOUTUIMMHX>»>WOOT
COCXREZZOOOONWACL=X<NOUTUIMMIrH>»@WOUOT®
AEZ00U0WACK=ZIX<X<NOUIMMrHX>»WOUOTOQ
TEZO00N-HCK=EZIX<NOTUTIMMrH>»®B®OUTOCX
ZO000NHC<=EX<NOUIMIrHY>»TWOUTO®XZX
OITMWHACL=EZIX<NOUTUIMMHY»WOUOUTOCXRZEZ
AN-HCK=EZIX<X<NOUTUIMMIH>»PWOUOUTOLXRNRZEZZO
NHC<=EX<NOUIMMrHI>»WOUTOLXRXEZOX
4IC<=EX<NOUIMMPrHI>»WOUTOHUXRXRZZOIW
CL<=Z=X<NOUIMMrHI>»@WOUOUTOHXIZO0OWnwH
<ETX<XNOUTUIMMrHY>»TWOUOUTOLXEZZOOW-HC
S X<NOUIMMIrHX>»TWOUTOHGXEZZO0O0HT0nWHCLK
X<NOUTUIMMFrH>»@POUOTOXRNIIZ0ITUW-HCL
<NOUTUIMMrHYX>»WOUTOLGXZZODITunu-HC<K = X
NO UTUIMMrHY>»@WOUOUTOLXREZOHO00HCK = X
O UIMIHY>» W OUOUTOGXRIZZOHOTnmHCc<<=X<N
VIMMrH>»WOUOUTOGGXEZZO0O0HO0nW-HHCKS=ZX<X<NO
ITIMMrH>»W@OOOTOGGXIZO0O000W-HCL=X<NOTDT
MrH>»@WOODOTOGCXIZOOTnWHC<=EZX<NOTIT
FrMA>WO0O0TOCXZZO0O0TunwHC<<=ZX<NOTUTIM
H>WOUOTOeXEZZOoOOTn-HCc<=X<NoOUwImMmr
>PWOOOTOCXRXRZZOHOTnW-HCc<=E=X<NOUODIMmMrH

As you can see, we have the same pattern we saw in the quagmire 1, i.e., rotated versions of the base
key. They may be in a different order, but that is no matter.

The strategy for amplifying the key table from limited knowledge of its entries is to first invert
each row, and then, since we know that these inverses are rotated versions of one another, we look for
letters in common so that they can be rotated into alignment. Then, some missing letters from one may
be borrowed from another. We reconstruct as much of the base key as possible. The base key is
unrotated appropriately for each row of the table, and inverses are taken.

Let us work through an example to show how this strategy helps with a crib-based attack. Take
once again Hamlet’s soliloquy, but this time encrypted with a quagmire 1 cipher, again with period six.
Here is the full ciphertext:

UUNIYEQUZYYUENILRSTNIIOHEMZKYCXWJYAQSNLXNNIYJWDCUWJITDCKNGXS
XLXXYAQTYLUJFHJIPLPEBQYFINVNXLJQBOYPYEUOVIYEUUZLLQHLUXEYHZVX
RTTXMFIGSUAMCQTAVOFLBVHFQSQFJUHGDXUYYWGXZFQREXHUYBBL JLNWISM
XCQEVZFQTZQJINWUWIHBTSNMNAQHJIPYAQUWGZQTQDVLRHSAKXANJHYYATUE
KIQPGMIIDEUUZKQTJUVXSBPAZKYCKXBFSGFSZFFQXZYHHGBDLIRNTYJIZGB
MKIBOCXXNATQCJYYWSXMTELUWJWBFUWJIWSULUXKNGDAZXCQEVGPHQHNIBAT
UDXIEBTIMDGNPXCHBCXXILTQTWAPIREDGPIGDZYTYEUAKNYSFIAXRYGPJZQ



OHOYIRPELJXRPELJXZQJINZHEGPATIQVHYMTDGZUQXYRBJRIDXEEGWUPBQGZ
CWIXMWRPEQIKZFHJIPXGNSJYFIGGIJYANCVXIQFBLYBPNQFZHBOSUAOMTQMO
FNGVIJJIWGDXHLNYTUQODFCLLEHRBPJYAQFACXHQFAEYAQGJYFCQQCJIFINLE
LNBTQDZHBFCOXUQGDAZGEGGXVYMQSZZFIGDOVBYEUWEYEAEMCHBCDXIKMFE
YQTDYDNIKQDVZJYSFPATIUSUWMMEEEBGOLSQQIFUNVYPPEEKXKXFQHLZFJE
VJIZLNWTQJLRHQD JWE JEAXDCSLXNZRGDAZYAQKL JLHNLMGTBGDZVQEXUXX0B
TUWZHBHQDLXGNWXXIHVBOVYPLLLGTUPBMJIMYHSJVFREHPJJCQSL JYSEQMHZ
XMFXYYAQXZKJECKIMSBFVMXLRPELNIEEUWGXBSFYYBBPHPJYATQEKDRNBNI
IPFUWMYUQOJGBNNUUQYAHTCGUQVGXVNBWBNITEAECGBEEKMGPSFHYKLNWUW
AXRPE JMYDIEWAIYXSXYFCHUZGUDFTZOSCSEDGIPJGNIYAQCAKIGTTNGPRPB
ORHRTQDJURQSVXKQQTUQQPQHNHKRPHJIPTYBE JZBDGDNIKQEEFMWHGDXLWGH
SLJURFUOXUE JSSMUHRBMJYAQQAUIYXHCZKYC

Once again, the first fifty characters of the plaintext will serve as our crib:

UUNIYE QUZYYU ENILRS TNIIOH EMZKYC XWJYAQ SNLXNN IYJWDC UW
tobeor nottob ethati sthequ estion whethe rtisno blerin th

They give us this knowledge about the key table:

abcdefghijklmnopgrstuvwXy?z
ki | I E Q STU X
k| W Y U M N
ks | N J IL Z
ke | L I K W XY
ks | A D NY O R
ke | U Q S CN E H

Decrypting the full text with this limited knowledge gives this:

TOBEORNOTTOBETHATISTHEQUESTIONWHETHERTISNOBLERINTHE.IN.T.S.

.THESLI...... A.R..... O.T.A.E....ORT..EORTOTA.E...S..... S
T.S..... RO...ES.......... IN.E...... T0...T...E...O0...EAN.B..
S.EE.T..... EEN.THE...RT..HE...THETH....N..ATUR..SHO...TH.T.
.E...SHEIRTOTI...O0.S....TION........ T..EW....... TIETOSLEE. ..
S.E...... H.N.ETO.R..... THER. .THER.B.O.IN...TS.EE....E.TH.H.
T..E..S....0..... NW.HA.ESH....E......... ORT...OI...ST...E..

.ET.E. EST E.ES.E.TT...... E...L..I..O.SO ..... I.E..R......

L..I..THI....ET..... E.ITH...RE....IN.H..O.L...R...S.E..T..R
..TAN.S.EATUN.ER..E....I..B.T.. TTHE .EA.0.S.......... T....
.THT..UN.IS.O...E..... Tooeooat SE.OUR...TR..E..ER.ET. RNS

..... THEW....N.......S.AT.E.BE.RTH.S.I.L......ETH.N...TO.TH
E..TH.T.E....NOTO.THUS............ TH...E....R.S..... L.AN.TH
.ST.E..TI.EH.EO.R....UT...I.S....IE..E...THTHE...E..ST..T..



...T.N.E.TER..I.ESO...E.T.IT..... O.E.T.I..THI.RE..R....IR.U
R.E.T.T..... R...... SETHEN. .EO...TION

EvveBrvnrrens N-RST- -W
------------ ST:»++--0-H-L
........ HE:TB:+++vovnsssT
-------- E-IA-+:-++----RST
He eDovoooenss NQ: +Trvvrro 0
N-R--U:+++=- O--E-I-B:--:-

N-RST: W:e=--- E B:vv:-
..... S Y o Y Y
------ Te+veovverHE-I:B+:: -

RST:«vvervnns E-TA:+«+«-
NQ« Tevrve- O-H: T:evrvrens
N:R:-U:++--- O-E-I:B:::--

The leftward steps are 14, 7, 19, 18, 11, and 0; we must remember these numbers so that later we can
undo the rotations. Now we can reconstruct more than half of the base key, or rather, a rotation of it, by
including any letter that appears in any of the six:

. *NQRSTU-W- - -O-HELIAB: - - - -

We can almost see the keyword. At this point, we might fill in by hand some remaining letters; V and
XYZ are obvious. If our attack is automated, we may not want to do so. Next we reverse the rotations,
using the reconstruction.

0-HELIAB: - -« - NQRSTU -W- -
/.Y P NQRSTU-W- - -0-HELI
U-W-:-O-HELIAB: -« - NQRST
W-++0-HELIAB: -« -« - NQRSTU
HELIAB: -« - - - NQRSTU:W- « -0~
. *NQRSTU-W- - -O-HELIAB: - - - -

Finally, we invert each of them and put them back into the key table:

abcdefghijklmnopgrstuvwXxy?z
ki | HI E D G F QB RSTUYV X
ks | A B X W Z Y J U KLMNDO Q
ks | M N J IL K V G WXYZA C
ke | L M I H K J UF VWXYZ B
ks | E F B AD C N Y OPQRS U
ke | T U Q P S R CN DEFGH J



As we can see, for any letter that appears in our crib, we are now able to decrypt to that letter, no matter
in which slice of the text it appears. As expected, they are the most common letters, which is helpful for
breaking the remainder of the cipher. On the other hand, it is a weakness that we only construct those
parts of the keys for letters that are found in the crib. Notice that we can read off the shift key from the
first column; this is possible because the letter a appears in the crib. Here is a decryption of the full text
with the amplified key table:

TOBEORNOTTOBETHATISTHEQUESTIONWHETHERTISNOBLERINTHE.IN.TOSU
. .ERTHESLIN.SAN.ARROWSO.OUTRA.EOUS.ORTUNEORTOTA.EAR.SA.AINS
TASEAO.TROUBLESAN.B.O..OSIN.EN.THE.TO.IETOSLEE.NO.OREAN.B.A
SLEE.TOSA.WEEN.THEHEARTA.HEAN.THETHOUSAN.NATURALSHO. . STHAT.
LESHISHEIRTOTISA.ONSU. .ATION.E.OUTL.TOBEWISH.TO.IETOSLEE.TO
SLEE. .ER.HAN.ETO.REA.A.THERESTHERUB.ORINTHATSLEE.O. .EATHWHA
T.REA.S.A..O0.EWHENWEHA.ESHU. .LE.O..THIS.ORTAL.OIL.UST.I.EUS
.AUSETHERESTHERES .E.TTHAT.A.ES.ALA.IT.0.SOLON.LI.E.ORWHOWOU
L.BEARTHEWHI.SAN.S.ORNSO.TI.ETHO. .RESSORSWRON.THE.ROU. .ANS.
ONTU.EL.THE.AN.SO..IS.RI..LO.ETHELAWS.ELA.THEINSOLEN.EO.O..
I.EAN.THES.URNSTHAT.ATIENT.ERITO.THUNWORTH.TA.ESWHENHEHI.SE
L..I.HTHISQUIETUS.A.EWITHABAREBO. . INWHOWOUL. .AR.ELSBEARTO.R
UNTAN.SWEATUN.ERAWEAR.LI.EBUTTHATTHE.REA.O0.SO.ETHIN.A.TER.E
ATHTHEUN.IS.O.ERE..OUNTR. .RO.WHOSEBOURNNOTRA.ELLERRETURNS.U
. . LESTHEWILLAN. .A.ESUSRATHERBEARTHOSEILLSWEHA.ETHAN.L.TOOTH
ERSTHATWE . NOWNOTO.THUS.ONS.IEN.E.OTH.A.E.OWAR.SO.USALLAN.TH
USTHENATI.EHUEO.RESOLUTIONISSI..LIE.OERWITHTHE.ALE.ASTO.THO
U.HTAN.ENTER.RISESO. .REAT.ITHAN..O.ENTWITHTHISRE.AR.THEIR.U
RRENTSTURNAWR.AN.LOSETHENA.EO.A.TION

How cool is that, eh?

Quagmire 3
Now for the fun stuff: the quagmire 3 cipher (Q3). In this cipher, both the plaintext alphabet and
the ciphertext alphabet that are slid along each other are deranged, and they are deranged in the same

way. Like Q1 and Q2, we can factor the quagmire 3. In this case, we find a Vigenére sandwiched
between a substitution and its inverse [14]:

Q3 (kbase, kv, t) = S (kbase, V (kV') S_1 (kbase, t)))
Here, k, is the shift key for the Q3, but k" needs to be
kvl = S_l (kbase, kv)

as it was in the Q2 cipher. From this factorization we can see that the keys of the Q3 are related to the
rotations in the Vigenere cipher by

— -1
k - kbase ° Rn ° kbase



This is both a unitary transformation and an isomorphism, since ki is unitary (it’s a permutation) and
the group operation is preserved:

kl ° k2 = (kbase ° Rm ° kbaseil) ° (kbase ° Rn ° kbaseil) = kbase ° (Rm ° Rn) ° kbas;1

Therefore, the keys in the Q3 tableau form a subgroup that is isomorphic to the Vigenére subgroup,
which in turn is isomorphic to Z. So Q3 is isomorphic to Zss.

This is all good news. First of all, it means that the identity element, which is the unmixed
alphabet, is a member of the Q3 tableau. Second, it means that products and powers of Q3 keys are also
Q3 keys. This includes their inverses, which are k™ = k. It also means that we have commutivity
again, so we can multiply keys from the same tableau in any order.

Our strategy for key amplification will be the following. After acquiring a set of incomplete
keys, we will multiply them together in pairs and can take inverses. If the result can be matched to a
key already found, then we can merge any new knowledge from the result into the key. That is to say
that if we find a key that matches one that we have already seen, we can merge their letters into an
improved key. The “column property” that each letter occurs exactly once in each column of the
tableau allows us to match keys if they share at least one letter in the same column. If the result of the
multiplication or inversion does not match a present key, then we add it to the tableau. Furthermore, if
any key has a letter that matches the corresponding plaintext letter, then we know that it is the identity
element, and we can immediately fill it in completely. We continue to multiply and invert keys, old and
new, until it is no longer possible to gain any more knowledge about the tableau. Finally, we select the
keys that belong in the key table (i.e., those that can be matched with the original incomplete keys) and
use them to improve our decryption.

Let us look at an example. We return to our favorite base key:

kvase = OPHELIABCDFGJKMNQRSTUVWXYZ

It generates this tableau for the Q3 cipher:



key
letters

plaintext letters

N<X=E=E<CHOWAXOUVOZErXuHIOTMMUO®m®D>

HFrMI UTUONXXX=TZW®O>r<CcTTHU0DLoOOTXTOUOZXu®
>PHMCMITUTON<XOm=EZT<OCHUWCOWOTOZZXZX[O
WPX>HMCFMITUON<TOUOX=zu<CXXTHU0LOOIOZZX|IDO
OWP>PHMIMITUONTO<XXXXEI<EOCHuwOmWImOZID
T UON<XX=EIZCHIIr mnIIWOZ0O0HTX>uOTOMW
DOOWP>PHMIMITUTVOOTN<X<EX=ZTZua<CX-HWIOO|h
MOOW>X>»HMIIMITUTGCOONZ<XOX=IZ<ZEZCH®W®TE
TONXKX=E<CHOUOMITVOITPZZUrXaoaHOTOO||T
MFMITUJTONXX=E<>PHCHUOOLWOITHOZOXTXuO |
OTMOOW>PHIMIXGUOON<KITEZX=EZZ<CHO.
COTOOW>PHIIMXIUTIXONWZ<XOo=ZI<CHI|X
MIUON<KX=E<CHFHI0VWOXNOQUI>ZWXuoT|H
NRUOUOTUOOWPPHFZMIWNWUOHON<KIX=EZI<C|S
EXUOTOOT>IPHOZrMA I TUTCIOTONNKX=EILZ[D
N<X=E<CHOWIXTO UTVOZErXuoHIOMMOUO®m®>|O
ONXXX=E<CHOWINIUTVOZHTXRX>TPMuWOrrMOUOO ®O
Z2XRXUUOTMUOTITPOOHFCMI<WTUOAN=<XTZ=O
OZEZ2XRXRuUOTOOWMWAOP>PHLSI MEAITUTCONS-=<X|T
TOZEZXRXRCOTOOHMVWITI>P=ESHCPXCMI<K<TUTUONSXKW®W
NMITTOZZRUOTMIOUCHOWIXI>PH<<ITMEZIUTUON|
1 VW ITOZRUCOTIKCOO<KXKWWIPNEIHMCXMITUTOKC
CHOVITOZZXRUWUOEZS<TONOWOXIH<rmMmITTITK
<CHVWHAOZEZRUXEZIOTOUOU<<WIENHMCMIIIZ
SE<CHOVITOZXRXR<LXu®OUTUINOWOIXTHMCMX
XE<K<KCHVITIOCZEN<XKXNUCIOTMOUOUO TWI»HMRK
<X XE<CHOWHITOZONERRMUOACTTOIOWI>H|N

Notice that the tableau is symmetric, i.e., it is its own transpose. We conjecture that this is because it
can be obtained from the Vigenére tableau by a permutation that rearranges both rows and columns.
Permutations can be represented as unitary matrices with exactly one 1 in each row and each column.
We suspect that such a matrix U exists such that this tableau (T) can be obtained from the Vigenére
tableau (V) by

T=UVU"

where the U on the left permutes the rows of the tableau, and its transpose on the right permutes the
columns. The matrix U can be constructed using the base key. Determining how to do so is left as an
exercise for the reader. Also, there are twenty-six ways to arrange the row of the tableau so that it is
symmetric; are these the twenty-six rotations of the base key?

The fact that the tableau is symmetric may encourage you to think that it imposes a constraint
on its member that we can exploit, but it does not. We will find that the columns that are unknown
correspond exactly to the keys whose first letters are also unknown, so there is absolute freedom to
shuffle those rows among them. In other words, this particular symmetry does not force us to choose
any characters in the tableau.



Here again is Hamlet’s soliloquy, encrypted with the Q3 using the base key and shift key
HAMLET:

VAVBEFRABXEOIZQFWYUZQBTKIYBDECYCRXIWTZTWSTDFRVCCVCRSCCGZMWX
EJDIXIWUFTTMGCVXFUFHHALKTWZIFMWHOAMEFVOEBEFVABFQWCXHWDLCGEW
WZUDULKJTACGBWUJEKFRHBNLVYRRRTJJLDHXEHBDBLVXIDNTEBHXRFSHDLU
WBWIBBLVZOHRBSHVCRAAZTZUJIWCVXXIWVCMYVZRNEFWKTISWITFTAXIZVQ
SBVVBYQBCFVABDVZFAEWXBQJBDECGDDLXJALBLFWYGAAJJHNTBWTUFRBLJH
YSBAUEDIJIZRMRXEHTDUSDRVCRVAGVCRVX0OJAIDSJLJBWBWIBMMJIWCZQOIZ
VNIBDBUUUHGTQDFAACYDQFYWUCCMKXINMMKJILGASEFVJISJEYAUCWWLBPRYV
UCOABWVIXRWWVIXRWLWFZBADJQJPBVPCFUSCJOAYWEXHVZCCEIQMVZVHHMY
BHDDUVWVIHQDLGCVXWGTTVALKJIBURXITEBIBVGHXAOUTRRBAAUTACKRZRYW
LSIWURCPJLDNFSLUAYKCGEXTEJXHPRXIWAJFWIWAJIXIWBVALBWRMRLKTJQ
TJAZRNBAAGEOITVJILJIBIDJBDEXRWTGBLKJLOEOEFVCJIXDAIYFAACLDQDRGI
FYSCLLZQDVDWGRXXGQJPBZYVCUGDFIKMKQYRHQLZTWFXMDFGDSWFWCXBLMF
WVBFSHUHRFWKRNRVDNIJIHBYJDVYWJILJIBXIWGXRFJITJYMSAJLGENDEVDIKA
ZVCBAAKRNTWGTXDIBJPHOEXURJIXMSZVHYRGEKTVELWFCPRCBWTXRXXFRYNY
HSADAXIWYGSCDCGUURAGWYIFWVIXVBDFVCMWAYAFAOAVCPRXIZRQSHWTHZQ
BUGVCUXZWNVMOSTVAYXIKUMMTVPBDEJAHHZQSDAIMMODFGYMMXGCFSFSHVC
CWWVIVUXCMICCBEETDALBKVGMTCGUGWRBYINMBUNBZQXIWEJSBGZUZMMWVH
OZAWZRNRTWWTBIDVWUAYNUWCZNDWVCVXSEBIVBOCJLZQDVFIRUVJJLDTVGK
TXRTWGVOITDNTLUTIXHYRXIWRIHBEECMBDEC

Once again, we take the first fifty characters as a crib:

VAVBEF RABXEO IZQFWY UZQBTK IYBDEC YCRXIW TZTWST DFRVCC VC
tobeor nottob ethati sthequ estion whethe rtisno blerin th

This gives us the following incomplete key table:

abcdefghijklmnopgrstuvwXy?z
ki | D I R TUYV Y
k| C F A Y Z
ks |V R QT B
ki | F B D V W X
ks | IC SE T W
ks | O W Y CT F K

We are going to multiply keys together, find new characters and new keys, until we can not long
find any new knowledge about the tableau (not just the key table this time). The process should be
automated, because it is long and tedious. But we will show you a few results, to give you an idea of
how it goes. We might first square ks, for example, to get

We can match the result to ki, since both have V in the t column:



Notice that ks* has a B where k; has a gap. We can now augment k; with this new knowledge:
ki = D:+I:+:B++:+R:+-TUV::Y:::

If we multiply k, and ks, we get something that we cannot match to one of the six keys, so we add a
new key to the list:

But we get a matching result if we multiply in the other order (as we should because of commutivity):
ky = kjoky = »++eDvvennnns Ve oXoononnns

We can merge them together to get

We continue in this manner. Sometimes the list of keys will grow longer than twenty-six, but as more
characters are uncovered, they can be merged. After nearly three thousand multiplications, most of
which yield nothing new, we obtain the following mostly filled tableau. We have removed the labels on
the left for the shift key letters, since we do not know how to assign keys to letters.



plaintext letters
abcdefghijklmnopagrstuvwXy?z

N O T=EW>>AIXOFOoWwn X -
> N O >IDXHZ=EDODnoaouw X
X>NOD - FEAdA>Cxmoaoun
EX>NFOON>WDHCO<COMOAOLW
SEX>ONEDIFdZHLCOMOOLW
OD>=EXx >C0oO+ 0w AH<<CMmOANO
FDOD>=EO0OXZnoxIIXuWdH<CmOoO
NEFEFD>=2= x N o T W dH<<M
XonNnkED ->XO>Z20 T W dH<
ox kXD = X N LW O T wJdH
o -

o T WX JdJ=ENQO>O0D W ¥ =2
Zo0oxwmw — =X >AQONO T w
= -

A H<CO O ouw I X > =Z20oxoumi-
¥ - ZQ0Lxxo ->D =X >NO T
- .

HLCMOMOITAO - - w NZox wnkD>
T W JdHN<> 0o = N4 Z0ox
w . - - -

L XN - LCOXORFJdD>X=X>N
WwaH<COMN I L X ¥ - ZO0Kw
oLw IXHOODWVWWED>ZXEX >
OAWL - H - JdZI<EITNFD>=X
noAawL d -wW< - HY - XxXNEFED>=
<OMOAWULIHY JZ00X WNED>

K -

IQ-ABCDEF
A BCDF
B D

F

E U

SV
TW -
X

oxomd

F
VWXYZO

\ R

W - S
CT
Uil
F

L
I
A X
SD

H U
E V'Y
N B
C zZ

\
HW
C

NQRSTU

K -
WXYZO

X 0

VA - HELTI
Y ZO HELTIAB

F

We pick off the six keys that match our original keys in any column to form our new key table:

abcdefghijklmnopgqrstuvwXxyz

H STUVWXYZO
WXYZO

R

A
F

N

HELTI

vV A
E

T
S

K
E
H

NQRS

LIABCDTF
UuvwXxXy=zZO©o

QT

UVWXRY

H

L
E

R C

D
C

TUVWXYZO

B

I

K

With the amplified key table, we can improve our decryption:

TOBEORNOTTOBETHATISTHEQUESTIONWHETHERTISNOBLERINTHE.IN.T.SU

F.ERTHESLIN. .ANDARROWSOFOUTRA.EOUS.ORTUNEORTOTAKEAR.SA.A.NS

TASEAOF .ROU.LES.NDBYO. .0SIN.EN.

.HE.TODIETOSLEE.NO.OREANDBYA

SLEE.TOSAYWEENDTHEHEARTA.HEANDTHETH . USANDNATUR . LSHOCKSTHATF

. TION.EVOU.LYTOBEW.SH. .ODIETOSLEE. .O

LESHISHEIRTOTISACONSU. .



SLEE. .ER.HAN.ETODREA.AYTHERE.THERUB.ORIN.H.TSLEE. .. .EATHWHA
TDREA.S.AY.0.EWHENWEHAVESHU.FLED. .F.H.S.ORT.L.OIL.UST.I.EUS
.AUSETHERESTHERES.ECTTHA. .. .ES.ALA.I.YOFSOLON.LIFEF.RWHOW.U
LDBEARTHEWHI . . ANDS.ORNSOF.I.ETHO. .RES.ORSWRON.THE.ROUD.ANSC
ON.U.EL..HE.AN.SOFDI..RIZ.LO.ETHEL.WS.EL..THEINSOLEN.EOFO.F
I.EANDTHE. .URNS.H.T.A.IENT.ER.TOF.HUNWORTH.TAKESWHENHEHI. .E
LF.I.HTHISQU.ETU....EWITHA.AREB.DKINWHOWOULD.AR.ELSBEARTO.R
UNTANDSWEATUNDERAWE .RYLI.EBUT.H.TTHE.REA.O0.S..E.H.N.AFTERDE
ATHTHEUNDIS.OVERE. .OUNTRY.R. .WHOSE.OURNNOTRA.ELLERRETURNS.U
ZZLESTHEW. LLAN. .AKE.USRATHERBEARTH .SEILLSWEHA.ETHANFLYTOOTH
ER.THATWEKN.WNOTOFTHUS. .NS.IEN.EDOTH.AKE. .WAR.S..U.ALLANDTH
USTHENATI.EHUEOFRESOLUT..NI.S.CKLIED.ERWITHTHE..LE.AST..THO
U.HTANDENTER.RISESOF.REAT.ITHAND.O.ENTWI.HTHISRE.AR. .HEIR.U
RRENT . TURNAWRYAN . LOSETHEN. . EOFA.TION

Quite an improvement.

We are still working on finding a way to recover the base key from the tableau. We suspect that
it will involve finding a matrix representation of an isomorphism into the Vigenére cipher.
Quagmire 4

Like the other quagmire ciphers, the quagmire 4 (Q4) can be factored [14]. In this case, there
are two substitution keys, k, on the plaintext side, and k. on the ciphertext side, and one shift key (ky):

Qs (kp, ke, kv, t) = S (ke, V (ki', S (kp, 1))
Now, k, is the shift key, but k" is
k= S (ky, k)
Keys in Q4 are related to Vigenere rotations by
k = keoRyoky!

This is not an isomorphism. Actually, we have a coset of a Q3 cipher. To see that, insert e = k, ' © k,,
which doesn’t change the product:

k=keoRyoky ' =keeeoRyoky ' = keo(ky'ok)eRiok,” = (keo k") (ko Roeoky )
The stuff in the first set of parentheses in the last right-hand side of the equation is just a constant
permutation. The stuff in the second set is a Q3 key. So we see that we have a left coset of a Q3 cipher.

But wait! It is also a right coset of a different Q3 cipher:

k=koRook ' = koRpceok™ =koRyo(k'ok)ok ' = (keoRuoke)) o (keo k)



So the Q4 is a left coset of the Q3 generated from k,, and a right coset of the Q3 generated by k..
Mathematicians like to use h to denote the multiplier for a coset. Notice that in our case, the multiplier
on the left is the same as on the right, so we can write

h=keo k!

Now, the identity element always appears in the tableau of a Q3 cipher. Therefore, h is a member of the
Q4 tableau. Suppose we are in possession of a Q4 tableau; can we find h? The good news is that every
member of the Q4 tableau is an h for some Q3. Did we say “some Q3”? It turns out that they are all the
same set of Q3 keys if we multiply on the left, and all the same as another Q3 if we multiply on the
right. The tableaux may be shuffled a bit, but that is just an automorphism. To see why every member
of Q4 is an h, take the inverse of some member of the Q4 and multiply it on the left to another member
of the Q4 (remember that the inversion of a composition of permutations is a composition of the
inverses in reverse order):

(ke Ruoky ) o (ke Roo k) = (k)" o R "o k™) o (ke o Roo ky )
= KkyoRmoklokeoRyok ' = kyoRumek,"

We obtain a member of a Q3 tableau. A similar result holds if we multiply on the right; in that case we
get k. © Ro— © k.”'. The automorphism is reflected in the change in the rotation.

The strategy for key amplification is as follows: choose one of the partial keys from the table
and invert it to get a partial h™'. Multiply this by all other partial keys in the table. The products are now
members of a Q3 tableau. We then apply the method for the quagmire 3 to them. When we have done
that, we take the resulting partial keys and multiply by our chosen h. The results will overlap with the
original key table, and we can merge them to improve our knowledge of the keys. We repeat the
process of translating to the Q3, amplifying it, and translating back, until we gain no further
knowledge.

Because the multiplication of two partial keys results in a product with fewer known letters than
either of the inputs, we need to start with more knowledge than we needed in any of the other
quagmires. This is no surprise, since the information content of a Q4 key is larger that that of a Q1, Q2,
or Q3. In the present case we have, for a shift key of length m and two base keys,

I= m+210g2626! =m+37.6

This means that we need more knowledge about the key table if we are to reconstruct it as we did for
the other quagmires.

Let’s see an example. Start with our favorite base key and add another:

ke
ko

OPHELIABCDFGJKMNQRSTUVWXYZ
LADYMCBETHFGIJKNOPQRSUVWXZ

Here is the tableau that they generate:



plaintext letters
abcdefaghijklmnopgrstuvwXxy?z

key
letters |

RISUINVWKXZFGLADYMCBETH
SKUVIJIOWXNZLGIADYMCBETHTEF
QI RSGKUVIWXHFZLADYMCBET
UNVWKPXZOLAIJDYMCBETHTEFSG

SUVOWXNQZLPADJIKYMCBETHFGTI
SUVWPXZORLAQDYKNMCBETHFGTI]J

Q
R
P
S

o oo

ETHFMGIYBJKCNOADPQRSUVWXZL
IJKNHOPTGQRFSUBEVWXZLADYMC
GIJKTNOEFPQHRSCBUVWXZLADYM
THFGCIJMEKNBOPDYQRSUVWXZLA
JKNOFPQHIRSGUVETWXZLADYMCSB

BETHYFGDCIJIJMKNLAOPQRSUVWXZ
FGIJEKNBHOPTQRMCSUVWXZLADY

RLAQUDYSMCOPBETHFGTIJKN

QZLPSADRYMNOCBETHFGTIJK
WXZLSADRVYMUCBPQETHFGIJKNDO

X N

XZLAUDYSWMCVBEQRTHFGIJKNOP
ZLADVYMUXCBWETRSHFGIJKNOPAQ Q

LADYWMCVZBEXTHSUFGIJKNOPAQR

KNOPGQRFJISUIVWTHXZLADYMCBE

ADYMXCBWLETZHFUVGTIJKN

noO>=0
x v D>
o D
o ox N

0
P
Q
R

HFGIBJKCTNOEPQYMRSUVWX

DYMCZBEXATHLFGVWIJKNDO

P

YMCBLETZDHFAGIWXJKNO
MCBEATHLYFGDIJXZKNOPAQ Q

CBETDHFAMGIYJKZLNOPQRSUVWX

Our original h is

h = ko k,' = PATHBFGDJKMOLNQRSTUCVWXYEZ

and its inverse is

h™' = BETHYFGDCIJMKNLAOPQRSUVWXZ

which appears in the tableau as the key for shift L.

Here is Hamlet’s soliloquy encrypted with this Q4:

DAGYEZXAWRENISBBLJASBYWDIRWCEWCYERHGLSHQVTOCEPIWDYEKIWQSMQA
QRMURHGACHNQLNOJBXZHWVLPTYSUBQGHUVFEZDURYEZDAWBSGNQQQJRNBRQ
LKAMFLPALAXEGGAERHKBHDCLZJXIENOAGMQREPKMWLZIIMCNEVHQEBVPOZF
QGGIDWLZKEWEYVPDYEDFKLSFTHGNOJRHGDYMSZKXFRBLDLETQHTPKVRHKDG
TYZFKRBYIZDAWCZKPARQAVWEWCEWQMZLAAJZWLKGCBVDOAHFHYLTACEYTAH

RTYFHFMUTHKXHEREPLMFKJBDYEPFLDYEPANRAUCVAGEWQGGIDMFOGNSBVHK
DFUYJVANFXNTWMLDFWCMBBDGAYXFPIIFMFPAGBVKEZDETTEJJINXQLRKVESZ
HNUVYLFIQEQLFIQEQTGPSWDJAWEPYZONCFKIAEAKQEIHONMIQIGMPYFHWMS



GPOMFPLFIWBCTLNOJQNTLOVLPAKNERHTFDUYZLHQVVXTXIWDFHLAXHUKXRI
LVAYNEMCAGMCBVRAAKHILFQHZOIHVERHGJELQOGJEDRHGKOVLGGXHELPTRG
HTFKXFWDFLFUUNZAGEWAJAKMRRUGLBWLPAGURVEZDYDRJUIRLDFWGMBCULI
CKKIRGSBCZXYBERALWEPYYJDYFEJZITMHSIXWBLYTYCJFJZQMTQKGNQWLQZ
YOWBVPAWEBLDXFEPJMIEUXGJRMGSLAGEWRHGQQEBOTRRMKFAGBRGJQDMUHF
KDYWDFDXFHQNTMMUYOOHURRXBRQMKYFHREEEDLORLLZNVEMGGLQERAZXRCS
BEJMVRHGCBTMJWQNFJFLYRUBLFIQGYJZDYMQFJJCVVFFNVERHKXGTXLTHSB
YXLDYFRYGVOMVVTDAKRHDAHMNZOKMRTFPHSBKJUIHMVJZQRMFALNCTBVPDY
XQLFIOFRIYIYXYEQLMVLGDDBMNILABIJGJIFMYXMKSBRHGFETYNKASMFLFH
UNDLKXFENLGLDUCZGAAKGXGNSCCLFNOJKEVIOWVIAGSBCZZIIFPOAGMHPND
LQENLLDUUNJMLZFNOIHRERHGXEQYEQNHWCEW

Since we need more knowledge, and without enough of it the procedure will fail. Fifty characters are
not enough for this example, so we take the first seventy-five characters as the crib:

DAGYEZ XAWREN ISBBLJ ASBYWD IRWCEW CYERHG LSHQVT
tobeor nottob ethati sthequ estion whethe rtisno

OCEPIW DYEKIW QSMQAQ RMURHG ACHNQL NOJ
blerin themin dtosuf ferthe slings and

This is the extent of our knowledge of the key table from this crib:

abcdefghijklmnopgrstuvwxXxyz
ki | NO QIR X L AD C
ko | M Y C 0 A RS
ks | G J E B H M U W
ki | B Y C K N PQR
ks | QHI V E W L A
ke | N G Q J W T Z L D
OK, so let’s begin by choosing our multiplier as ki:
h:k1 = NO QIR ....... XLADC
Its inverse is
ht=S.WT::--E:--R-AB:DF::: .. N- -

If we multiply this on the left of each of the Q4 keys, we have



abcdefghijklmnopgrstuvwXy?z
h™k;, | A B DEF N RST W
h_lokzl W B S F
h™'eks |
h'ek, | W A DF
hoks | D E RS
h_1°ke| A D R T

It’s not much to work with: the first is naturally the identity, and we know nothing about the third.
Nevertheless, we can apply the procedure for amplification of a Q3 key table and get

abcdefghijklmnopgrstuvwXy?z
h'ki, | ABCDEFGHIJKLMNOPQRSTUVWXYZ
h'ok, | W BS DFG
h71°k3|
hlok, | W A R DFG
h'oks | D E RS
h™oks | A D F L E RST

We have added a few letters to the table. Now multiply each on the left by h to return to the Q4 key
space:

abcdefghijklmnopgrstuvwxyz
ki | NO QIR X L AD C
ke | C O0A Q R
k3|
k| C N[L Q R
ks | Q I L A
ke | N QR I LIA D

We acquired five new letters, highlighted in pink. We can merge this knowledge into our key table:

abcdefghijklmnopgrstuvwxyz
ki | NO QIR X L AD C
ko | M Y C O0A QRS
ks | G J E B H M U W
ki | B Y C KN L PQR
ks | QHI VE W L A
ks | N GQR J I W T Z LAD



We proceed in this way, each time choosing a different h and whether to multiply h™' on the right or
left. In the end, we reach a state in which no new letters can be added. At that point, we have this key
table:

abcdefghijklmnopgrstuvwxyz
ki | NO QIRSG J X H ZLADY C
kn | ET MGIYSB C 0 A PQRSU W
ks | G J E N BH T R M SUV WX L
ki | B E HY GDC M KNL OPQRS \Y
ks | J 0O PQHTI G VE WXZLA Y
ks | N PGQR J I W T XZLAD M

That’s quite an improvement. And, for this example, if we had been allowed 150 characters of crib, we
could have filled all but the c, j, v, X, and z columns.

This is about all we have to say about the quagmire 4 cipher, so here is where the story ends.

Conclusion
We showed how the knowledge of a quagmire’s key table can be amplified. A quagmire’s base
keys hold only so much information, so there is a lot of redundancy in a key table. The structure of the

ciphers in light of group theory helps us to fill in missing information.

We hope you found all this useful, or at least interesting.
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