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Abstract. Related-key attacks (RKA) are powerful cryptanalytic at-
tacks, where the adversary can tamper with the secret key of a cryp-
tographic scheme. Since their invention, RKA security has been an im-
portant design goal in cryptography, and various works aim at design-
ing cryptographic primitives that offer protection against related-key at-
tacks. At EUROCRYPT’03, Bellare and Kohno introduced the first for-
mal treatment of related-key attacks focusing on pseudorandom functions
and permutations. This was later extended to cover other primitives such
as signatures and public key encryption schemes, but until now, a com-
prehensive formal security analysis of authenticated encryption schemes
with associated data (AEAD) in the RKA setting has been missing. The
main contribution of our work is to close this gap for the relevant class
of nonce-based AEAD schemes.
To this end, we revisit the common approach to construct AEAD from
encryption and message authentication. We extend the traditional secu-
rity notion of AEAD to the RKA setting and consider an adversary that
can tamper with the key Ke and Km of the underlying encryption and
MAC, respectively. We study two security models. In our weak setting, we
require that tampering will change both Ke and Km, while in our strong
setting, tampering can be arbitrary, i.e., only one key might be affected.
We then study the security of the standard composition methods by
analysing the nonce-based AEAD schemes N1 (Encrypt-and-MAC), N2
(Encrypt-then-MAC), and N3 (MAC-then-Encrypt) due to Namprem-
pre, Rogaway, and Shrimpton (EUROCRYPT’03). We show that these
schemes are weakly RKA secure, while they can be broken under a strong
related-key attack. Finally, based on the N3 construction, we give a novel
AEAD scheme that achieves our stronger notion.

1 Introduction

The security of cryptographic schemes fundamentally relies on the secrecy of
its keys. In particular, the secret key used by cryptographic algorithms must
neither be revealed to the adversary nor must the adversary be able to change
it. Unfortunately, countless advanced cryptanalytical attacks illustrate that the
assumption on the secrecy of a key ceases to hold in practice. Prominent exam-
ples include side-channel attacks such as power analysis or timing attacks that



partially reveal the secret key [26, 25]; or tampering and fault attacks [17], where
the adversary can change the secret key and observe the effect of this change via
the outputs. The latter type of attack often is referred to as a related-key attack
(RKA), and has been intensively studied by the research community over the
last years [8, 6, 1, 5, 4, 12, 36, 28, 20, 16, 27, 19, 22, 13, 23]. But related keys
may not only appear when the adversary actively tampers with the key. Another
important setting where we have to deal with related keys is key updates. In this
setting related-key cryptanalysis may exploit the relation of keys caused by bad
key updates [14, 24, 16, 15]. Another scenario are devices with related keys. As
a simple example consider a manufacturer that has some master key K . Rather
than generating a fresh key for each device, it derives the key from the master
key and some device id – for instance XORing the two.

The first work that provided a formal model for related-key attacks is the
seminal work of Bellare and Kohno [8]. In this model, the related-key attacker
can specify a related-key-deriving (RKD) function ϕ (from some set Φ) together
with each black-box query to the cryptographic primitive, and observe the in-
put/output behaviour for the primitive under the related key ϕ(K ). For instance,
consider a PRF F(K , ·), that the adversary can query on some input X . As a
result of a related-key attack the adversary receives F(ϕ(K ),X ), where ϕ is the
RKD function. Starting with [8], several works extend the notion of RKA secu-
rity to a wide range of cryptographic primitives. This includes pseudorandom
functions [6, 1], pseudorandom permutations [5], encryption schemes [4], and
MACs [12, 36].

Somewhat surprisingly, RKA security has not been considered for the impor-
tant case of authenticated encryption schemes with associated data3 (AEAD).
AEAD is a fundamental cryptographic primitive used, e.g., to secure commu-
nication in the Internet and is therefore ubiquitously deployed, especially in
TLS 1.3 [31]. Lately, AEAD has received a lot of attention, for instance through
the CAESAR competition [11] and the ongoing NIST standardization process
on lightweight cryptography [30]. An important type of AEAD schemes, and
simultaneously the focus of the NIST standardization process [30], are so-called
nonce-based schemes [32]. These schemes have the advantage that they are de-
terministic, and hence their security does not rely on good quality randomness
during encryption. Instead, they use nonces (e.g., a simple counter) and require
that these nonces are never repeated to guarantee security [32].

1.1 Our Contribution

The main contribution of our work is to extend the notion of RKA security
to nonce-based AEAD schemes. We study the common generic composition
paradigms to construct AEAD from encryption schemes and MACs, and explore
if RKA security of the underlying primitives carries over to the AEAD scheme.

3 Associated data corresponds to header information that has to be authenticated but
does not need to be confidential.



More concretely, let Ke and Km be the keys of the encryption and MAC, respec-
tively. Assuming that the encryption scheme is secure against the class Φe of
related-key deriving functions and the MAC is secure against Φm, then we ask
if the AEAD scheme is secure with respect to related-key derivation functions
from the Cartesian product Φe×Φm.4 In particular, we show that under certain
restrictions of Φe ×Φm the schemes N1, N2, and N3 by Namprempre et al. [29],
falling into the composition paradigms E&M, EtM, and MtE, respectively, are
secure under related-key attacks. By giving concrete attacks against all schemes
in case the restrictions are dropped, we show further that these restrictions are
necessary. Finally, on the positive side, we give a new construction for AEAD
that is secure for the general case of functions from Φe × Φm, i.e., without the
aforementioned restrictions. We provide more details on our contribution below.

RKA Security Notions for Nonce-based AEAD Schemes. We give two
RKA security notions s-RKA-AE and RKA-AE for nonce-based AEAD schemes.
In our weaker notion (RKA-AE), we assume that the key is updated such that
each underlying primitive never uses the same key twice.5 This is modelled by
imposing an additional restriction on the adversary, where the adversary is not
allowed to make queries with RKD functions that would result in keys that have
already appeared during earlier RKA queries. More precisely, let K i

e and K i
m the

result of the i-th RKA query. We require that for all i, j, we have K i
e = K j

e if
and only if K i

m = K j
m. In our stronger notion (s-RKA-AE), the above restriction

is not imposed on the adversary, i.e., it is allowed to make queries i, j such that
K i
e = K j

e and K i
m 6= K j

m. Note that any adversary can trivially make such
queries by repeating the RKD function for key Ke while using two different
RKD functions for Km. One may object that our weaker security notion looks
rather artificial for modelling tampering attacks. We believe however that it is
interesting to study for what key relations state-of-the-art AEAD constructions
that are widely deployed remain secure under related-key attacks. Moreover, we
emphasize another setting where such weak key relations may occur naturally
– so-called bad key updates. In this setting the RKA adversary may observe
ciphertexts for different related keys, where the relation stems from the key
updates described by the RKD functions. Since the users update the keys, the
relation between the keys is in fact not chosen by the adversary. Hence, the
weaker notion guarantees security if the users ensure that, after each update,
both keys Ke and Km are fresh. In contrast, the stronger notion guarantees
security even in the case when the users might only update one of the keys.
Further details on these two notions are given in Section 3.

RKA Security of the N1, N2, and N3 Construction. We study the secu-
rity of the N1, N2, and N3 constructions for nonce-based AEAD schemes [29],

4 A similar question using the Cartesian product of the related-key deriving functions
from the underlying primitives is answered in [5] for Feistel constructions.

5 Note that the adversary can still ask for several encryptions under each key.



which follow the Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), and
MAC-then-Encrypt (MtE) paradigm [9], respectively. These constructions build
a nonce-based AEAD scheme from a nonce-based encryption scheme and a MAC.
We show that all schemes achieve our weaker security notion, i.e., when it is en-
sured that both keys are updated properly. The overall proof approach is similar
to the classical setting. The challenge lies in the analysis that all queries by the
reduction are permitted due to the related keys. Regarding our stronger security
notion, we show that all schemes have limitations. We show that N1 and N2 are
insecure, irrespective of the underlying primitive, by giving concrete attacks. For
N3, we show that the security crucially depends on the underlying encryption
scheme, by giving an attack against any instantiation using a stream cipher.
These results appear in Section 4.

RKA-secure AEAD Scheme. Finally, we give a new construction, called N*,
of an AEAD scheme which is based on the N3 construction, and follows the MAC-
then-Encrypt (MtE) paradigm. The underlying encryption scheme relies on an
RKA-secure block cipher and a MAC. The resulting AEAD scheme achieves our
stronger security notion s-RKA-AE, in fact, even in the case of nonce misuse.
For simplicity we omit details regarding the nonce here, and discuss this setting
more detail in Section 3. The construction and the proof is shown in Section 5.

RKA-secure Encryption and MAC from Pseudorandom Functions. We
show that RKA-secure nonce-based encryption schemes and MACs can be built
from RKA-secure pseudorandom functions. Combined with the results for the
N1, N2, and N3 constructions, this reduces the task of constructing RKA-secure
nonce-based AEAD schemes to the task of constructing RKA-secure pseudoran-
dom functions which is a general goal in the RKA literature. More precisely, we
show that the nonce-based encryption scheme and the MAC proposed by De-
gabriele et al. [18] in the setting of leakage-resilient cryptography achieve RKA
security if the underlying pseudorandom function is RKA-secure. This is shown
in Section 6.

1.2 Related Work

Based on the initial work by Biham [13] and Knudsen [23], the first formalisation
of RKA security has been given by Bellare and Kohno [8]. They studied pseudo-
random functions as well as pseudorandom permutations and showed an inherit
limitation on the set of allowed RKD functions. Bellare and Cash [6] proposed
RKA-secure pseudorandom functions based on the DDH assumption, which al-
lowed a large class of RKD functions. Abdalla et al. [1] further increased the
allowed class of RKD functions. Several other works study the RKA security for
various primitives, e.g., pseudorandom permutations from Feistel networks [5],
encryption schemes [4], and MACs [12, 36]. Harris [21], and later Albrecht et
al. [3], showed inherent limitations of the Bellare-Kohno formalism by giving a



generic attack against encryption schemes if the set of related-key deriving func-
tions can depend on the primitive in question. The practical relevance of the
alternative model by Harris has been questioned by Vaudenay [35].

Closer to our setting is the work by Lu et al. [28], who also study RKA
security for authenticated encryption schemes. However, instead of nonce-based
authenticated encryption schemes, they analyse probabilistic authenticated en-
cryption schemes and only for the specific case of affine functions. Moreover,
Han et al. [20] found their proof to be flawed, invalidating the results. To the
best of our knowledge, these are the only works that consider RKA security for
authenticated encryption schemes.

The practical relevance of RKA security has been shown by a number of
works [16, 27, 19, 22] which present attacks against concrete primitives.

2 Preliminaries

In Section 2.1 we recall the used notation. The syntax of the cryptographic prim-
itives and existing RKA security notions are given in Section 2.2 and Section 2.3,
respectively. Additional background on security notions in the classical setting
is given in Appendix A.

2.1 Notation

By {0, 1}∗ and {0, 1}x we denote the set of bit strings with arbitrary length
and length x, respectively. We refer to probabilistic polynomial-time algorithms
as adversaries if not otherwise specified, and use the code-based game-playing
framework by Bellare and Rogaway [10]. For a game G and adversary A, we write
GA ⇒ y to indicate that the output of the game, when played byA, is y. Likewise,
AG ⇒ y indicates that A outputs y when playing game G. In case A has access to
an oracleO we writeAO. We only use distinguishing games in which an adversary
A tries to guess a secret bit b. The advantage of A in such a distinguishing
game G is defined as AdvG(A) := |2 Pr[GA ⇒ true] − 1|. Equivalent notions
using adversarial advantages are |Pr[AG ⇒ 0 | b = 0] − Pr[AG ⇒ 0 | b = 1]|
and |Pr[AG ⇒ 1 | b = 1] − Pr[AG ⇒ 1 | b = 0]|. For sets X and Y, the set of
all functions mapping from X to Y is denoted by Func(X ,Y) and the set of
permutations over X by Perm(X ). We write Func(K,X ,Y) and Perm(K,X ) for
keyed functions in Func(X ,Y) and Perm(X ), respectively, where K denotes the
key space. Tables f are initialised with ⊥ if not mentioned differently. For sets S
and T , we write S ←∪ T instead of S ← S ∪T . Our main focus lies in the RKA
setting and we use the term classical setting whenever we refer to the setting
which does not consider related-key attacks.

2.2 Primitives

A nonce-based authenticated encryption scheme with associated data (AEAD),
is a tuple of two deterministic algorithms (Enc, Dec). The encryption algorithm



Enc : K×N ×A×M→ C maps a key K , a nonce N , associated data A, and a
message M , to a ciphertext C . The decryption algorithm Dec : K×N ×A×C →
M∪ {⊥} maps a key K , a nonce N , associated data A, and a ciphertext C , to
either a message or ⊥ indicating an invalid ciphertext. The sets K, N , A, M,
and C, denote the key space, nonce space, associated data space, message space,
and ciphertext space, respectively. An AEAD scheme is called correct if for any
K ∈ K, any N ∈ N , any associated data A ∈ A, and any M ∈ M, it holds
that Dec(K ,N ,A, Enc(K ,N ,M ,A)) = M . It is called tidy if for any K ∈ K,
any N ∈ N , any associated data A ∈ A, any M ∈ M, and any C ∈ C with
Dec(K ,N ,A,C ) = M , it holds that Enc(K ,N ,A,M ) = C .

A nonce-based symmetric key encryption is similarly defined. The difference
is that neither algorithm permits associated data as an input and only rejects
ciphertext, i.e., outputs ⊥, if computed on values outside the corresponding sets.
For both primitives, we let c denote the length of a ciphertext.

A message authentication code (MAC) is a tuple of two deterministic algo-
rithms (Tag, Ver). The tagging algorithm Tag : K × X → {0, 1}t maps a key K
and message X to a tag T . The verification algorithm Ver : K × X × {0, 1}t →
{>,⊥} takes as input a key K , a message M , and a tag T , and outputs either
>, indicating a valid tag, or ⊥, indicating an invalid tag. Correctness requires
that Ver(K ,X , Tag(K ,X )) = >, for any K ∈ K and X ∈ X . We denote the
length of tags by t .

2.3 Security Notions against Related-Key Attacks

We recall some of the existing RKA security notions. All notions follow the
style introduced by Bellare and Kohno [8]. That is, the set of admissible RKD
functions is fixed at the start of the game. All our results, however, also apply to
the alternative definition given by Harris [21], where the adversary first picks the
set of RKD functions before the concrete scheme (from a family of primitives) is
chosen by the game. This prevents an inherent limitation of the Bellare-Kohno
formalism as the RKD function can not depend on the primitive.6

Φ-restricted Adversaries. For RKA security notions, the adversary is typically
restricted to a set of functions that it can query to its oracles. This restriction is
necessary, as Bellare and Kohno [8] showed that RKA security is unachievable
without such restrictions. Let K be the key space of some primitive, then the set
of permitted RKD functions is Φ ⊂ Func(K,K). We call an adversary that only
queries functions from the set Φ to its oracles, a Φ-restricted adversary.

Repeating Queries. To avoid trivial wins certain queries must be excluded from
the security games. In case of a MAC, we must forbid the adversary to query its
challenge verification oracle on a tag it obtained from its tagging oracle. To do
this, one can either adapt the game by keeping a list of such queries and let the

6 It is questionable whether RKD functions that depend on the actual primitive are
relevant in practice.



verification oracle check for such forbidden queries. The other option, would be
to simply exclude adversaries that do such queries in the security definition. For
ease of exposition, we use the latter approach.

Game rkaSUF

b←$ {0, 1}
K ←$K

b′ ← AVer,Tag()

return (b′ = b)

Ver(M ,T , ϕ)

if b = 0

return Ver(ϕ(K ),M ,T )

else

return ⊥

Tag(M , ϕ)

T ← Tag(ϕ(K ),M )

return T

Fig. 1: Security game rkaSUF.

RKA Security for MACs and Pseudorandom Functions/Permutations. We give
the definition of related-key attack security of MACs. Existing notions define
it as an unforgeability game where the adversary finally outputs a forgery at-
tempt [12, 36]. In this work, we define unforgeability of a MAC against RKA
as a distinguishing game. Here the adversary aims to distinguish whether its
challenge oracle implements the real verification algorithm or simply rejects any
queried tag.

Definition 1 (RKA-SUF Security). Let Γ = (Tag, Ver) be a MAC and Φ ⊂
Func(K,K). Let the game rkaSUF be defined as in Fig. 1. For a Φ-restricted
RKA adversary A, that never forwards a query from its oracle Tag, we define
its RKA-SUF advantage as

AdvrkaSUF
Γ (A, Φ) = 2 Pr[rkaSUFA ⇒ true]− 1 .

Game rkaPRF, rkaPRP

b←$ {0, 1}
K ←$K
F
′ ←$ Func(K,X ,Y)

P
′ ←$ Perm(K,X )

b′ ← AF()

return (b′ = b)

F(X , ϕ) in rkaPRF

if b = 0

y ← F (ϕ(K ),X )

else

y ←$ F
′(ϕ(K ),X )

return y

F(X , ϕ) in rkaPRP

if b = 0

y ← F (ϕ(K ),X )

else

y ← P
′(ϕ(K ),X )

return y

Fig. 2: Security game rkaPRF and rkaPRP.

RKA-Security for pseudorandom functions (PRFs) and pseudorandom permuta-
tions (PRPs) have been studied in many works, e.g., [8, 6, 7, 3], and are defined



as the advantage in distinguishing the real function/permutation from a random
function/permutation when having access to an oracle implementing either of
these.

Definition 2 (RKA-PRF Security). Let F : K×X → Y and Φ ⊂ Func(K,K).
Let the game rkaPRF be defined as in Fig. 2. For a Φ-restricted RKA adversary
adversary A, that never repeats a query, we define its RKA-PRF advantage as

AdvrkaPRF
F (A, Φ) = 2 Pr[rkaPRFA ⇒ true]− 1 .

Definition 3 (RKA-PRP Security). Let F : K×X → X and Φ ⊂ Func(K,K).
Let the game rkaPRP be defined as in Fig. 2. For a Φ-restricted RKA adversary
adversary A, that never repeats a query, we define its RKA-PRP advantage as

AdvrkaPRP
F (A, Φ) = 2 Pr[rkaPRPA ⇒ true]− 1 .

3 RKA Security Notions for Nonce-based AEAD

In this section, we define security for nonce-based encryption schemes and nonce-
based AEAD schemes under related-key attacks. RKA security notions for en-
cryption and authenticated encryption schemes have been proposed by Bellare
et al. [7] and Lu et al. [28], respectively. However, neither notion considers nonce-
based primitives and instead considers the case of probabilistic primitives. Fur-
thermore, both works define indistinguishability in a left-or-right sense, while
we follow the stronger IND$ (indistinguishability from random bits) approach
put forth by Rogaway [33]. For this notion, the adversary has to distinguish the
encryption of a message from randomly chosen bits. We discuss how the classical
property of nonce-respecting adversaries is extended to the RKA setting in Sec-
tion 3.1 and provide two RKA security notions for nonce-based AEAD schemes
in Section 3.2. In Section 3.3, we extend the notion to the nonce misuse case
and Section 3.4 provides the RKA security notion for nonce-based encryption
schemes.

3.1 Nonce Selection

Security notions in the classical setting are often restricted to adversaries which
are nonce-respecting. These are adversaries that never repeat a nonce across their
encryption queries. Hence, security proven against nonce-respecting adversaries
guarantees security as long as the encrypting party never repeats a nonce. Below
we argue why this adversarial restriction needs to be updated in the RKA setting.

Consider the following scenario. Alice and Bob communicate using an AEAD
scheme across several sessions. In each session, Alice will send several encrypted
messages to Bob, each time using a fresh nonce implemented as a counter. Instead
of exchanging a fresh secret key for each session, they exchange a key for the
first session and between two consecutive sessions, they update the key using
some update function F. There is no guarantee that Alice does not reuse a nonce



in different sessions. In fact, due to using a simple counter which might be reset
between the sessions, this is likely to happen. This means that an adversary can
observe encryptions using the same nonce under related keys, where the relation
is given by the update function F.

The same applies to the scenario where different devices have related keys.
Every user would only ensure unique nonces for the own device while there will
be colliding nonces across related devices.

If we declare an RKA adversary to be nonce-respecting if and only if it
never repeats a nonce, then a proof of security does not tell us anything for
the scenarios depicted above. Instead, we define an RKA adversary to be RKA-
nonce-respecting if it never repeats the pair of nonce and RKD function. An
interpretation of this definition is that nonce-respecting is defined with respect
to individual keys. Since in the classical setting there is only ever one key, this
interpretation reflects this.

3.2 RKA-Security Notions for AEAD Schemes

We extend security for AEAD schemes to the RKA setting. Instead of the ap-
proach used in [28], which defines two separate RKA security notions for con-
fidentiality and authenticity, we follow the unified security notion by Rogaway
and Shrimpton [34]. That is, the adversary has access to two oracles Enc and
Dec. The goal of the adversary is to distinguish the real world, in which the or-
acles implement the encryption and decryption algorithm, from the ideal world,
where the first oracle returns random bits while the latter rejects any ciphertext.
The adversary wins the game if it can distinguish in which world it is. To make
our new RKA security notion achievable, we impose standard restrictions on the
adversary. That is, first, the adversary is not allowed to forward the response of
an encryption query to the decryption query and, second, the adversary must
not repeat a query to its encryption oracle.7 More precisely, we say that an ad-
versary forwards a query from its encryption oracle, if it queries its decryption
oracle on a ciphertext C that it has obtained as a response from its encryption
oracle, while the other queried values N ,A, ϕ are the same for both queries. We
call the resulting notion s-RKA-AE, the “s” indicating strong. The reason for
that is that we introduce a weaker notion below.

Definition 4 (s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme
and Φ ⊂ Func(K,K). Let the game s-rka-AE be defined as in Fig. 3. For an RKA-
nonce-respecting and Φ-restricted RKA adversary A, that never repeats/forwards
a query to/from Enc, we define its RKA-AE advantage as

Advs-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true]− 1 .

7 The latter restriction can also be handled by letting the encryption oracle return
the same response as it did when the query was made the first time. For ease of
exposition, we simply forbid such queries to avoid additional bookkeeping in the
security games.



Game s-rka-AE

b←$ {0, 1}
K ←$K

b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , ϕ)

if b = 0

C ← Enc(ϕ(K ),N ,A,M )

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , ϕ)

if b = 0

M ← Dec(ϕ(K ),N ,A,C )

else

M ← ⊥
return M

Fig. 3: Security game s-rka-AE.

The above definition treats the AEAD scheme to have a single key K . Such
schemes, however, are often constructed from smaller building blocks which have
individual keys. This encompasses the N constructions [29], on which we focus in
the next section, but also all other constructions combining an encryption scheme
and a MAC into an AEAD schemes. In this case, the set of RKD functions of
the AEAD scheme is the Cartesian product of the set of RKD functions for the
individual primitives. More precisely, let E and M be the underlying primitives
and Φe and Φm be the respective sets of RKD functions. Then for the combined
primitive AE, the set of RKD functions is Φae = Φe×Φm. Thus the s-RKA-AE
security game above allows the adversary to query the encryption oracle on
(N , ϕe, ϕm) ∈ N ×Φe×Φm and later querying it on (N , ϕe, ϕ

′
m) ∈ N ×Φe×Φm,

where ϕm 6= ϕ′m. This essentially allows the adversary to bypass the nonce-
respecting property of the underlying primitive.

Recall the key-update scenario described above. Allowing the adversary to
query the same nonce while the queried RKD functions agree in exactly one
part, models a scenario in which the key update either does not update one of
the keys or later updates a key to a previously used key. We introduce a weaker
security notion, in which these queries are forbidden. Security according to this
notion then reflects security as long as the pair of keys is updated appropriately.

Definition 5 (RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme
and Φ = Φe × Φm ⊂ Func(K,K). Let the game rka-AE be defined as in Fig. 4.
For an RKA-nonce-respecting and Φ-restricted RKA adversary A, that never
repeats/forwards a query to/from Enc, we define its RKA-AE advantage as

Advrka-AE
Σ (A, Φ) = 2 Pr[rka-AEA ⇒ true]− 1 .



Game rka-AE

b←$ {0, 1}
(Ke ‖ Km)←$K
S ← ∅

b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , ϕe, ϕm)

if ∃ϕ′
e 6= ϕe st (N , ϕ′

e, ϕm) ∈ S
return ⊥

if ∃ϕ′
m 6= ϕm st (N , ϕe, ϕ

′
m) ∈ S

return ⊥
S ←∪ {(N , ϕe, ϕm)}
if b = 0

C ← Enc(ϕe(Ke) ‖ ϕm(Km),N ,A,M )

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , ϕe, ϕm)

if ∃ϕ′
e 6= ϕe st (N , ϕ′

e, ϕm) ∈ S
return ⊥

if ∃ϕ′
m 6= ϕm st (N , ϕe, ϕ

′
m) ∈ S

return ⊥
S ←∪ {(N , ϕe, ϕm)}
if b = 0

M ← Dec(ϕe(Ke) ‖ ϕm(Km),N ,A,M )

else

M ← ⊥
return M

Fig. 4: Security game rka-AE. The set S is used to detect forbidden queries, that
is, queries where the triple of nonce and the two RKD functions differ in exactly
one of the functions. Both oracles reject such queries by returning ⊥.



The weaker security notion bears similarities to split-state non-malleable codes [2].
Here, the secret is encoded in such a way that it is secure against fault attacks as
long as the left and right half of the code are tampered independently. In more
detail, the decoding of such tampered codes is independent from the original
secret and might be invalid. However, if we consider key-related devices or bad-
key updates, non-malleable codes are not helpful any more since they are used
for faults and not bad randomised keys. The reason for this is that after each
key update we need to take care that the resulting key is still valid. Further, we
do not want to update the keys independently but simultaneously such that all
keys are fresh after the key update. So the requirement to the weaker notion is
the opposite of that of non malleable codes. For key updates, it is a reasonable
assumption to say that all underlying keys have to be updated for a new session.

3.3 RKA-Security against Nonce Misuse

Similar to the classical setting, we extend security to nonce misuse resistance.
In this case, the adversary is allowed to repeat nonces to the encryption oracle.
Below we define security in this stronger sense for s-RKA-AE security. Note that
the game is the same as in Definition 4 (cf. Fig. 3), the sole difference is that
the adversary is no longer restricted to be RKA-nonce-respecting.

Definition 6 (mr-s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD
scheme and Φ ⊂ Func(K,K). Let the game s-rka-AE be defined as in Fig. 3. For
an RKA-respecting and Φ-restricted RKA adversary A, that never repeats/forwards
a query to/from Enc, we define its mr-s-RKA-AE advantage as

Advmr-s-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true]− 1 .

In the same way, we can extend RKA-AE security to the nonce misuse scenario.
However, we believe this notion not to be meaningful. The RKA-AE security
notion already requires that keys are updated properly, i.e., they do not repeat.
Since this task is way more complex than ensuring that nonces do not repeat,
it seems strange to require this one while simultaneously dropping the simple
requirement of unique nonces.

3.4 RKA-Security Notions for Encryption

The following definition extends the classical IND-CPA security notion for nonce-
based encryption schemes to the RKA setting. The adversary has to tell apart
the real encryption oracle from an idealised encryption oracle which returns
random bits. The main distinction lies in the nonce selection of the adversary as
it is allowed to repeat a nonce if the RKD functions are different.

Definition 7 (RKA-IND Security). Let Σ = (Enc, Dec) be an encryption
scheme and Φ ⊂ Func(K,K). Let the game rkaIND be defined as in Fig. 5. For
an RKA-nonce-respecting and Φ-restricted RKA adversary A, that never repeats
a query, we define its RKA-IND advantage as

AdvrkaIND
Σ (A, Φ) = 2 Pr[rkaINDA ⇒ true]− 1 .



Game rkaIND

b←$ {0, 1}
K ←$K

b′ ← AEnc()

return (b′ = b)

Enc(N ,M , ϕ)

if b = 0

C ← Enc(ϕ(K ),N ,M )

else

C ←$ {0, 1}c

return C

Fig. 5: Security game rkaIND.

4 RKA Security of the N1, N2, and N3 Constructions

In this section we study the security of the nonce-based AEAD schemes N1,
N2, and N3 [29], which fall into the generic composition paradigms Encrypt-
and-MAC (E&M), Encrypt-then-MAC (EtM), MAC-then-Encrypt (MtE) [9].
We analyse each scheme with respect to the two security notions RKA-AE and
s-RKA-AE defined above. The analysis reveals that all schemes achieve RKA-AE
security if the underlying primitives are RKA-secure. Regarding the stronger
s-RKA-AE security, the situation is more involved. We show that both N1 and
N2 are insecure irrespective of the underlying primitives. For N3, we provide
a concrete attack exploiting any instantiation using a stream cipher for the
underlying encryption scheme.

Section 4.1 covers the analysis of the N1 construction. The N2 construction
is analysed in Section 4.2 while we analyse the N3 construction in Section 4.3.
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Fig. 6: The AEAD schemes N1 (left), N2 (middle), and N3 (right) [29].

4.1 N1 - Instantiation of Encrypt-and-MAC

The N1 construction composes a nonce-based encryption scheme and a MAC
into an AEAD scheme. It follows the E&M paradigm.The encryption algorithm
is used to encrypt the message as is the MAC to compute a tag for the message.
The ciphertext of the AEAD scheme consists of the ciphertext and the tag.

The following theorem shows that the N1 construction achieves RKA-AE
security if the underlying primitives are RKA-secure. The overall proof approach



is similar to the classical setting but needs some extra treatment when analysing
that all queries of the reductions are permitted.

Theorem 1. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N1 be the
AEAD scheme built from Σ and Γ using the N1 construction with RKA function
set Φae = Φe×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N1, that never repeats/forwards a query to/from Enc, there
exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N1 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm) .

Proof (Sketch). The proof consists of multiple game hops. In the first game hop,
the decryption oracle is replaced by ⊥ which is bound by the RKA security
of Γ . In the subsequent game hops, first the tag and then the ciphertext are
replaced by random values which is bound by the RKA security of Tag and Σ,
respectively.

The following theorem shows that the N1 construction does not achieve the
stronger s-RKA-AE security. The reason is that a ciphertext is the concatena-
tion of a ciphertext from the underlying encryption scheme and tag from the
underlying MAC. By making two queries which solely differ in one of the RKD
functions, the adversary can easily distinguishing between the real and the ideal
case.

Theorem 2. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N1 be
the AEAD scheme built from Σ and Γ using the N1 construction with RKA
function set Φae = Φe×Φm. Then N1 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N1 (A) = 1 .

Proof. We construct the following two adversaries Ae and Am. Adversary Ae
picks a message M , a nonce N , and associated data A at random from the
respective sets. Furthermore, it picks ϕe ∈ Φe and ϕm, ϕ

′
m ∈ Φm such that

ϕm 6= ϕ′m. Then the adversary makes two queries to its encryption oracle Enc:
(1) it queries (N ,A,M , (ϕe, ϕm)) and (2) it queries (N ,A,M , (ϕe, ϕ

′
m)). These

queries result in two ciphertexts C1 = Ce,1 ‖ T1 and C2 = Ce,2 ‖ T2. The
adversary outputs b′ = 0 if Ce,1 = Ce,2, otherwise, it outputs b′ = 1.

Note, first, that both queries are valid as they differ in the RKD function of
the underlying MAC. If the bit b of game s-rka-AE equals 1, the adversary will
receive two randomly chosen bit strings as the ciphertexts C1 and C2. If the bit b
is 0, the adversary will receive C1 = Ce,1 ‖ T1, where Ce,1 = Enc(ϕe(Ke),N ,M ),



and C2 = Ce,2 ‖ T2, where Ce,2 = Enc(ϕe(Ke),N ,M ). Since Ce,1 equals Ce,2
this allows the adversary to distinguish the cases almost perfectly.

Adversary Am picks a message M , a nonce N , and associated data A at
random from the respective sets. Furthermore, it picks ϕm ∈ Φm and ϕe, ϕ

′
e ∈ Φe

such that ϕe 6= ϕ′e. Then the adversary makes two queries to its encryption oracle
Enc: (1) it queries (N ,A,M , (ϕe, ϕm)) and (2) it queries (N ,A,M , (ϕ′e, ϕm)).
These queries result in two ciphertexts C1 = Ce,1 ‖ T1 and C2 = Ce,2 ‖ T2. If
T1 = T2, the adversary outputs b′ = 0, otherwise, it outputs b′ = 1.

Again, note that both queries are valid as they differ in the RKD function of
the underlying encryption scheme. If the bit b of game s-rka-AE equals 1, the ad-
versary will receive two randomly chosen bit strings for C1 and C2. If the bit b is
0, the adversary will receive C1 = Ce,1 ‖ T1, where T1 = Tag(ϕm(Km),N ,A,M ),
and C2 = Ce,2 ‖ T2, where T2 = Tag(ϕm(Km),N ,A,M ). Since T1 equals T2

this allows the adversary to distinguish the cases almost perfectly.
Letting A be either of the adversaries Ae and Am proves the claim.

4.2 N2 - Instantiation of Encrypt-then-MAC

The N2 construction composes a nonce-based encryption scheme and a MAC into
an AEAD scheme. It follows the EtM paradigm and is displayed in Fig. 6. The
scheme first encrypts the message using the encryption scheme. Subsequently,
the MAC is used to compute a tag for the ciphertext. The ciphertext of the
AEAD scheme consists of both the ciphertext and the tag.

The theorem below shows that the N2 construction achieves RKA-AE secu-
rity if the underlying primitives are sound. The overall proof follows the classical
one, except for a more complex analysis regarding the permitted queries.

Theorem 3. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N2 be the
AEAD scheme built from Σ and Γ using the N2 construction with RKA function
set Φae = Φe×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N2, that never repeats/forwards a query to/from Enc, there
exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N2 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm) .

Proof (Sketch). The full proof is given in Appendix B.1. In the first game hop,
the decryption oracle is replaced by ⊥ which is bound by the RKA security
of Γ . In the subsequent game hops, first the tag and then the ciphertext are
replaced by random values which is bound by the RKA security of Tag and Σ,
respectively.

Below we show that the N2 construction does not achieve s-RKA-AE security.
It exhibits the same structure as the N1 construction, that is, a concatenation of



a ciphertext and a tag from the underlying primitives. The difference is the tag
is computed on the ciphertext rather than the message. Due to this one of the
attacks against the N1 construction, the one exploiting the encryption scheme,
also applies to the N2 construction, while the other, against the MAC, does not
apply. Nevertheless, this shows that the N2 construction is insecure.

Theorem 4. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N2 be
the AEAD scheme built from Σ and Γ using the N2 construction with RKA
function set Φae = Φe×Φm. Then N2 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N2 (A) = 1 .

Proof. We construct the following adversary A. It picks a message M , a nonce
N , and associated data A at random from the respective sets. Furthermore,
it picks ϕe ∈ Φe and ϕm, ϕ

′
m ∈ Φm such that ϕm 6= ϕ′m. Then the adversary

makes two queries to its encryption oracle Enc: (1) it queries (N ,A,M , (ϕe, ϕm))
and (2) it queries (N ,A,M , (ϕe, ϕ

′
m)). These queries result in two ciphertexts

C1 = Ce,1 ‖ T1 and C2 = Ce,2 ‖ T2. If Ce,1 = Ce,2, the adversary outputs b′ = 0,
otherwise, it outputs b′ = 1.

Note first that both queries are valid as they differ in the RKD function of
the underlying MAC. If the bit b of game s-rka-AE equals 1, the adversary will
receive two randomly chosen bit strings as the ciphertexts C1 and C2. If the bit b
is 0, the adversary will receive C1 = Ce,1 ‖ T1, where Ce,1 = Enc(ϕe(Ke),N ,M ),
and C2 = Ce,2 ‖ T2, where Ce,2 = Enc(ϕe(Ke),N ,M ). Since Ce,1 equals Ce,2
this allows the adversary to distinguish the cases almost perfectly.

4.3 N3 - Instantiation of MAC-then-Encrypt

The N3 construction composes a nonce-based encryption scheme and a MAC
into an AEAD scheme. It follows the MtE paradigm and is displayed in Fig. 6.
The message is first used as an input to the MAC and then both the message and
the tag are encrypted. In contrast to the other compositions, the ciphertext of
the AEAD scheme consists only of the ciphertext from the underlying encryption
scheme.

In the theorem below, we show that the N3 construction is RKA-AE secure
if both of the underlying primitives are secure. The overall proof follows the
classical setting, except for the analysis that all queries by the reductions are
indeed valid queries.

Theorem 5. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N3 be the
AEAD scheme built from Σ and Γ using the N3 construction with RKA function
set Φae = Φe×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N3, that never repeats/forwards a query to/from Enc, there



exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N3 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm) .

Game Gi

(Ke,Km)←$K

b′ ← AEnc,Dec()

Dec(N ,A,C , (ϕe, ϕm)) in G0

M ‖ T ← Dec(ϕe(Ke),N ,C )

if Ver(ϕm(Km),N ,A,M ,T ) = >
return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G1, G2, G3

return ⊥

Enc(N ,A,M , (ϕe, ϕm)) in G0, G1

T ← Tag(ϕm(Km),N ,A,M )

C ← Enc(ϕe(Ke),N ,M ‖ T )

return C

Enc(N ,A,M , (ϕe, ϕm)) in G2

T ←$ {0, 1}t

C ← Enc(ϕe(Ke),N ,M ‖ T )

return C

Enc(N ,A,M , (ϕe, ϕm)) in G3

C ←$ {0, 1}c

return C

Fig. 7: Hybrid games Gi used to prove Theorem 5 (RKA-AE security of N3).

Proof. We prove the theorem using the hybrid games G0, G1, G2, and G3 dis-
played in Fig. 7. For sake of simplicity, the games do not contain the set S to
detect invalid queries. Instead, we assume that the adversary does not make
such queries, which the reduction can simply answer with ⊥. Game G0 is rka-AE
instantiated with N3 and secret bit b fixed to 0. In G1, the decryption oracle is
modified to reject any ciphertext. In G2, encryption oracle computes a random
tag which is then encrypted along with the message. Game G3 equals rka-AE with
secret bit b fixed to 1, where the encryption oracle outputs random ciphertexts
and the decryption oracle rejects any ciphertext. We have

Advrka-AE
N3 (A)

= Pr[Arka-AE ⇒ 0 | b = 0]− Pr[Arka-AE ⇒ 0 | b = 1]

= Pr[AG0 ⇒ 0]− Pr[AG3 ⇒ 0]

=

3∑
i=1

Pr[AGi−1 ⇒ 0]− Pr[AGi ⇒ 0] .

To bound the term Pr[AG0 ⇒ 0] − Pr[AG1 ⇒ 0] we construct the follow-
ing adversary Amac against the RKA-SUF security of Γ . It chooses a ran-



dom key Ke for the encryption scheme Σ and then runs A. When A makes
a query (N ,A,M , (ϕe, ϕm)) to Enc, Amac proceeds as follows. It queries its or-
acle Tag on (N ,A,M , ϕm) to obtain a tag T . Then it locally computes C ←
Enc(ϕe(Ke),N ,M ‖ T ) and sends C back to A. For queries (N ,A,C , (ϕe, ϕm))
to Dec by A, Amac locally computes M ‖ T ← Dec(ϕe(Ke),N ,C ) and queries
(N ,A,M ,T , ϕm) to its challenge oracle Ver. If the response is ⊥, it forwards it
to A, otherwise, it sends M to A. When A outputs a bit b′, Amac outputs the
same bit.

Ir remains to argue that Amac never makes a forbidden query (forwarding
from Tag to Ver) conditioned on A making only permitted queries. Assume, for
sake of contradiction, that A makes a valid query (N ,A,C , ϕe, ϕm) to Dec for
which Amac makes a forbidden query. By construction Amac computes M ‖ T ←
Dec(ϕe(Ke),N ,C ) and queries Ver on (N ,A,M ,T , ϕm). This query is forbidden
if Amac has queried (N ,A,M , ϕm) to Tag which resulted in T . This happens if
A has made a query (N ,A,M , ϕ′e, ϕm) to Enc. We need to distinguish between
the case ϕ′e = ϕe and ϕ′e 6= ϕe. The former is forbidden as this means that A
forwards a query from Enc to Dec. The latter is forbidden since game rka-AE
forbids queries that agree on the nonce and exactly one of the RKD functions
while disagreeing on the other RKD function. Hence Amac only makes permitted
queries.

By construction, Amac simulates either G0 or G1 for A, depending on its
secret bit b from game rkaSUF. More precisely, it simulates G0 and G1 if its own
challenge is 0 and 1, respectively. This gives us

Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0]

≤Pr[ArkaSUF
mac ⇒ 0 | b = 0]− Pr[ArkaSUF

mac ⇒ 0 | b = 1]

≤AdvrkaSUF
Γ (Amac, Φm) .

For the term Pr[AG1 ⇒ 0] − Pr[AG2 ⇒ 0], we construct an adversary Aprf
against the RKA-PRF security of the tagging algorithm Tag. First, Aprf chooses
a random key Ke to simulate all encryption related functionalities. Queries to Dec

by A are answered with ⊥. Queries (N ,A,M , (ϕe, ϕm)) to Enc, are processed
as follows. The reduction Aprf invokes its own oracle F on (N ,A,M , ϕm) to
obtain T , locally computes C ← Enc(ϕe(Ke),N ,M ‖ T ), and sends C back to
A. When A terminates, Aprf also terminates and outputs whatever A does.

We briefly argue that Aprf never repeats a query to F. By construction, every
query (N ,A,M , ϕm) by Aprf stems from a query (N ,A,M , ϕe, ϕm) by A. The
only cases that result in a repeating query are (1) A repeats a query and (2)
A makes two queries which only differ in ϕe. However, both cases are forbidden
queries for A. This yields that every output of Tag is a random value.



The adversary Aprf simulates game G1 for A if its own challenge bit b equals
0, while it simulates G2 for A if b equals 1. Thus it holds that

Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0]

≤ Pr[ArkaPRF
prf ⇒ 0 | b = 0]− Pr[ArkaPRF

prf ⇒ 0 | b = 1]

≤ AdvrkaPRF
Γ (Aprf , Φm) .

We bound the final term Pr[AG2 ⇒ 0]− Pr[AG3 ⇒ 0] by constructing an adver-
sary Ase against the RKA-IND security of the underlying encryption scheme Σ.
At the start, Ase chooses a random key Km. Any query to Dec is answered with
⊥. When A queries its oracle Enc on (N ,A,M , (ϕe, ϕm)), Ase chooses a random
tag T of length t , invokes its oracle Enc on (N ,M ‖ T , ϕe) to obtain C , and
sends C to A. At the end, Ase outputs whatever A outputs.

It holds that Ase is RKA-nonce-respecting as any query (N ,M ‖ T , ϕe)
stems from a query (N ,A,M , ϕe, ϕm) by A. This means that Ase repeats a pair
of nonce N and RKD function ϕe if A makes two queries using (N , ϕe, ϕm)
and (N , ϕe, ϕ

′
m). We can distinguish between the cases (1) ϕm = ϕ′m and (2)

ϕm 6= ϕ′m. Case (1) does not occur, as A is RKA-nonce-respecting and case (2) is
forbidden in game rka-AE. The other option would be that A makes two queries
differing only in the associated data A. This turns out not to be an issue, as the
tag T that Ase queries along with the message depends on A, i.e., different A
results in a different message queries by Ase.

The adversary Ase perfectly simulates games G2 or G3 for A depending on
its own challenge from rkaIND. Hence we have

Pr[AG2 ⇒ 0]− Pr[AG3 ⇒ 0]

≤ Pr[ArkaIND
se ⇒ 0 | b = 0]− Pr[ArkaIND

se ⇒ 0 | b = 1]

≤ AdvrkaIND
Γ (Ase, Φe) .

Collecting the bounds above proves the claim.

Unlike for the N1 and N2 construction, the s-RKA-AE security of the N3 con-
struction is more subtle. The difference is that the tag is appended to the ci-
phertext for both the N1 and N2 construction while it is encrypted alongside the
message for the N3 construction. The attacks against the N1 and N2 construc-
tion rely on the property that the ciphertext consists of two parts which can
be manipulated separately. Due to the construction such attacks do not work
against the N3 construction.

It turns out that the s-RKA-AE security of the N3 construction crucially
depend on the used encryption scheme. Namely, if the underlying encryption
scheme is a stream cipher, then the N3 construction is s-RKA-AE insecure.
Below we show an attack against any instantiation using a stream cipher. For
such ciphers the ciphertext is the XOR of the message and a keystream derived
from the key and the nonce.



Theorem 6. Let Σ = (Enc, Dec) be a stream cipher and Γ = (Tag, Ver) be
a MAC with RKA function sets Φe and Φm, respectively. Further, let N3 be
the AEAD scheme built from Σ and Γ using the N2 construction with RKA
function set Φae = Φe×Φm. Then N3 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N3 (A) = 1 .

Proof. Adversary A chooses a nonce N , associated data A, a message M , RKD
functions ϕe, ϕm, and ϕ′m from the respective sets such that ϕm 6= ϕ′m. Then it
queries its encryption oracle Enc on (N ,A,M , (ϕe, ϕm)) and (N ,A,M , (ϕe, ϕ

′
m))

to obtain ciphertext C1 and C2. If the first |M | bits of C1 and C2 are equal, A
outputs 0, otherwise, it outputs 1.

In case b = 0, it holds thatwe have C1 = Enc(ϕe(Ke),N ,M ‖ Tag(ϕm(Km),N ,A,M ))
and C2 = Enc(ϕe(Ke),N ,M ‖ Tag(ϕ′m(Km), N ,A,M )). Since the encryption
uses the same nonce and the same key, the same keystream for the stream ci-
pher will be used. Together with the fact that the first |M | bits are identical as
the same message is encrypted, this yields that C1 and C2 agree on the first bits.
In case b = 1, both C1 and C2 are chosen at random, hence they will not agree
on the first |M | bits.

In the attack above, the RKA-nonce-respecting adversary essentially bypasses
the nonce-respecting property of the underlying encryption scheme by repeating
the nonce N and the RKD function ϕe for the encryption scheme. Then it
exploits the fact that the underlying stream cipher is secure only against nonce-
respecting adversaries. We conjecture that any instantiation using an encryption
scheme that can be broken in the nonce-misuse case results in an s-RKA-AE
insecure instantiation of the N3 construction. The problematic part is that both
the message and the tag are encrypted. While the adversary has full control
over the former, it can not choose the latter at will. This seems to thwart a
simple proof showing that any nonce-misuse adversary against the underlying
encryption scheme can be turned into an s-RKA-AE adversary against N3.

5 RKA Nonce Misuse-resistent AEAD

As described in Section 4, N1, N2, and N3 are not secure in the strong RKA set-
ting.8 In this section we give a new AE scheme, N*, that achieves mr-s-RKA-AE
security and hence also s-RKA-AE security. The construction, following the N3
construction, is displayed in Fig. 8. The message, nonce, and associated data are
first used as an input to the MAC, and then both the message and the tag are
encrypted. The difference to the N3 construction is that the encryption scheme
no longer takes the nonce as input. Instead, the (pseudorandom) tag ensures
that the encryption is randomised.

8 One solution would be to use the key derivation technique proposed in [7]. However,
this requires the usage of an additional PRF on top of the existing AE scheme.
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Fig. 8: The AEAD scheme N* [This work].

The theorem below shows that the new construction achieves our strong RKA
security notion conditioned on the encryption scheme being an RKA-secure block
cipher (pseudorandom permutation).

Theorem 7. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N* be
the AEAD scheme built from Σ and Γ using the N* construction with RKA
function set Φae = Φe × Φm. Then for any Φae-restricted RKA adversary A
against N* with q queries to the encryption and decryption oracle, that never
repeats/forwards a query to/from Enc, there exists Φe-restricted RKA adversaries
Aprp, and Φm-restricted RKA adversaries Amac and Aprf such that

Advmr-s-rka-AE
N* (A, Φae)

≤ AdvrkaSUF
Γ (Amac, Φm) + AdvrkaPRP

Σ (Aprp, Φe)

+ AdvrkaPRF
Tag (Aprf , Φm) +

2q2

2c
.

Proof. Game G0 in Fig. 9 is the mr-s-rka-AE security game instantiated with
N* and secret bit b = 0 and game G5 is the mr-s-rka-AE security game with
b = 1. To estimate the security of N*, four additional games G1, G2, G3, and
G4 are needed. Starting with mr-s-rka-AE with b = 0 (G0), we modify the inter-
mediate games as follows: In game G1 the decryption always outputs ⊥ except
the resulting message was sent to the encryption oracle with the same N , A,
and ϕm before. In G2, the underlying encryption scheme is replaced by a ran-
dom permutation. In G3, the decryption oracle always outputs ⊥. In G4, the
Tag algorithm is replaced by a random function. Finally, in game G5, the en-
cryption oracle ignores the input, and outputs a uniform random cipher C as
in mr-s-rka-AE with b = 1. With Advmr-s-rka-AE

N* (A, Φae) ≤ Adv(AG0 ,AG5) and

Adv(AG0 ,AG5) ≤
∑4
i=0 Adv(AGi ,AGi+1), Claim 1 - 5 conclude the proof.

Claim 1 For any Φae-restricted RKA distinguisher A between game G0 and G1

defined in Fig. 9, there exists a Φm-restricted RKA adversary Amac such that

Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm) .

Proof. In the following, an adversary Amac is given that wins the game with
the advantage of A. Amac simulates the game by using the oracles of the se-
curity game rkaSUF to get the tags T for the encryption and to verify T
for the decryption of the N* scheme. Further, Amac computes the encryption



Game Gi

(Ke,Km)←$K
T ← ∅
F←$ Func(Km,N ×A×M, {0, 1}t)
P←$ Perm(Ke, {0, 1}c)

b′ ← AEnc,Dec()

Enc(N ,A,M , (ϕe, ϕm)) in G0, G1

T ← Tag(ϕm(Km),N ,A,M )

T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C ← Enc(ϕe(Ke),M ‖ T )

Enc(N ,A,M , (ϕe, ϕm)) in G2, G3

T ← Tag(ϕm(Km),N ,A,M )

f [N ,A, ϕm]←∪ {(M ,T )}
T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C ← P(ϕe(Ke),M ‖ T )

Enc(N ,A,M , (ϕe, ϕm)) in G4

T ← F(ϕm(Km),N ,A,M )

return C ← P(ϕe(Ke),M ‖ T )

Enc(N ,A,M , (ϕe, ϕm)) in G5

return C ←$ {0, 1}c

Dec(N ,A,C , (ϕe, ϕm)) in G0

if (N ,A,C , (ϕe, ϕm)) ∈ T
return ⊥

M ‖ T ← Dec(ϕe(Ke),C )

V ← Ver(ϕm(Km),N ,A,M ,T )

if V = ⊥
return ⊥

return M

Dec(N ,A,C , (ϕe, ϕm)) in G1

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe 6= ϕ′

e

if Dec(ϕe(Ke),C ) = Dec(ϕ′
e(Ke),C ′)

(M ‖ T )← Dec(ϕ′
e(Ke),C ′)

return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G2

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe 6= ϕ′

e

for (M ,T ) ∈ f [N ,A, ϕm]

if C = P(ϕe(Ke),M ‖ T ))

return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G3, G4, G5

return ⊥

Fig. 9: Hybrid games Gi used to prove Theorem 7.



scheme Σ locally with a key Ke chosen uniform at random to simulate the
encryption oracle of game G0 and G1. Amac simulates both games perfectly
and A can only distinguish both games if it requests a decryption of a valid
ciphertext (N ,A,C , (ϕe, ϕm)) with (M ‖ T ) = Dec(ϕe(Ke),N ,C ), such that
(N ,A,M ,T , ϕm) is new and the Tag T is valid. Hence, (N ,A,M , ϕm) was
not forwarded to the Tag oracle of rkaSUF and Amac can use this request to
win the game rkaSUF by forwarding (N ,A,M ,T , ϕm) to the verification oracle
Ver of rkaSUF, since it was not sent to the oracle Tag of rkaSUF before. Hence,
Amac is a Φm-restricted RKA adversary because A is Φae-restricted, and it holds
Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0] ≤ Pr[ArkaSUF

mac ⇒ 0 | b = 0]− Pr[ArkaSUF
mac ⇒ 0 | b = 1],

and therefore Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm).

Claim 2 For any Φae-restricted RKA distinguisher A between game G1 and G2

defined in Fig. 9, there exists an Φe-restricted RKA adversary Aprp such that

Adv(AG1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe) .

Proof. Before we describe the simulator, we transform G1 to G′1 to avoid that
we need to query the inverse of the oracle F in rkaPRP. In G′1

9 we replace the
underling decryption function with the encryption function in such a way that
the input/output behaviour of G1 and G′1 is still the same.

Dec(N ,A,C , (ϕe, ϕm)) in G′1

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe 6= ϕ′

e

for (M ,T ) ∈ f [N ,A, ϕm]

if C = Enc(ϕ′
e(Ke),N ,M ‖ T )

return M

return ⊥

Enc(N ,A,M , (ϕe, ϕm)) in G′1

T ← Tag(ϕm(Km),N ,A,M )

C ← Enc(ϕe(Ke),N ,M ‖ T )

f [N ,A, ϕm]←∪ {(M ,T )}
T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C

In G1 the decryption oracle only returns the decrypted message M if M was
sent to the encryption oracle before. Since the underlying Enc is deterministic,
we can also save the queries to the encryption oracles in f and test if it encrypts
to C as we do in the decryption oracle of G′1. Hence, it holds that the games are
identical and it is enough to show that Adv(AG′1 ,AG2) ≤ AdvrkaPRP

Σ (Aprp, Φe).
We construct an adversary Aprp simulating G′1 and G2 by computing the MAC
locally with a uniform random key Km and using oracle F of rkaPRP for the
encryption. Aprp is Φe-restricted because A is Φae-restricted. Hence, Aprp per-
fectly simulates G′1 if the challenge bit of rkaPRP is 0, and G2 if the challenge
bit is 1. It holds Adv(AG1 ,AG2) = Adv(AG′1 ,AG2) ≤ AdvrkaPRP

Σ (Aprp, Φe) .

Claim 3 For any Φae-restricted RKA distinguisher A with q queries between
game G2 and G3 defined in Fig. 9, it holds

Adv(AG1 ,AG2) ≤ q2

2c
.

9 This transformation allows us to use a normal PRP for the simulation, and not a
strong PRP



Proof. Both games only differ if A asks for a decryption of a cipher text C which
maps to a message which was already encrypted with the same (N ,A, ϕm). Since
the underlying encryption is a random permutation this collision happens with

probability less then q2−q
2c . In detail A makes qe queries to the encryption oracle,

and qd queries to the decryption oracle with qe+qd = q . The collision probability
is less then qe

2c for each query to the decryption oracle. Hence, the probability
to get at least one collision is less then qeqd

2c with qd queries to the decryption

oracle. Hence, Adv(AG1 ,AG2) ≤ q2

2c .

Claim 4 For any Φae-restricted RKA distinguisher A between game G3 and G4

defined in Fig. 9, there exists a Φm-restricted RKA adversary Aprf such that

Adv(AG3 ,AG4) ≤ AdvrkaPRF
Tag (Aprf , Φm) .

Proof. Aprf simulates G3 and G4 for A with the oracles of the security game
rkaPRF. For any request (N ,M ,A, (ϕe, ϕm)) to the oracle Enc, Aprf forwards
(N ,A,M , ϕm) to the rkaPRF game’s oracle F to get the tag T , computes the
ciphertext C ← Enc(ϕe(Ke),N ,M ‖ T ) locally with a random key Ke, and sends
the ciphertext C to A. Since A is Φae-restricted, Aprf is Φm-restricted and Aprf
perfectly simulates Gb+3 where b is the challenge bit of game rkaPRF and outputs
b′ if A does. It holds that Pr[AG3 ⇒ 0] − Pr[AG4 ⇒ 0] ≤ Pr[ArkaPRF

prf ⇒ 0 | b =

0]− Pr[ArkaPRF
prf ⇒ 0 | b = 1]. Hence, Adv(AG3 ,AG4) ≤ AdvrkaPRF

Tag (Aprf , Φm).

Claim 5 For any Φae-restricted RKA distinguisher A between game G4 and G5

with q queries to the encryption oracle defined in Fig. 9, it holds

Adv(AG4 ,AG5) ≤ q2

2c
.

Proof. Both games only differ from the choice of the underlying encryption.
Game G4 uses a random permutation and G5 generates randomly chosen cipher-
texts. Since the adversary is not allowed to query the same tuple (N ,A,M , (ϕe, ϕm))
and F is a real random function, it follows T is fresh and uniform distributed or
ϕe is fresh. In case of a fresh ϕe, it follows directly that C is chosen uniformly at
random. If ϕe was already used, an adversary can only distinguish both games
if it finds a collision in G5 since G4 uses a permutation it is not possible to get
the same C twice with the same ϕe. The probability for such a collision is less

then q2−q
2c . In detail we know that the probability to get a collision for the ith

query is less then i−1
2c and hence Adv(AG4 ,AG5) ≤

∑q
i=1

i−1
2c ≤

q2

2c . This proves
the claim.

Similar to the N* construction, we can also initialize the N3 construction with
a block cipher (PRP) to achieve security in the stronger security model. As
discussed in the previous section this only works for N3 since the attack on N1
and N2 work independent of the underlying encryption scheme. Further, the
security proof for N3 is similar to the proof of Theorem 7, we only have to adapt
the block cipher that it also takes the nonce as input. We emphasize that the



new construction N* is more efficient then N3, since the block cipher does not
receive the nonce as an input. For the instantiation of the block cipher we refer
to [5], where the authors construct an RKA-secure PRP using a three-round
Feistel construction. The construction contains three RKA-secure PRFs, where
the last two PRFs are initialized with the same key. Hence, with Theorem 7, we
can build an mr-s-RKA-AE-secure AE scheme out of four RKA-secure PRFs,
three to instantiate the block cipher and one for the MAC (cf. Section 6.2).

6 RKA-Secure Encryption and MAC

In this section we show that RKA-secure encryption and RKA-secure MACs can
be built from RKA-secure pseudorandom functions. We investigate the FGHF’
construction by Degabriele et al. [18] and show that the underlying encryption
scheme and MAC are RKA-secure if the pseudorandom function is RKA-secure.

⊕

M

N C

K

F G
M T

K

FH

Fig. 10: Encryption scheme FG (left) and message authentication code HF
(right) [18].

6.1 Related-Key Attack Secure Encryption

In this section we show that the encryption scheme FG proposed by Degabriele et
al. [18] is RKA-secure. The scheme comprises a function F and a pseudorandom
generator G and is displayed in Fig. 10. The ciphertext is computed by feeding
the nonce N into the function F, expanding the output using the PRG G, and
XORing the output to the message. The scheme achieves RKA-IND security
against RKA-nonce-respecting and Φ-restricted adversaries, where Φ is specified
from the RKA-PRF security of the underlying function F. The result is given in
the following theorem.

Theorem 8. Let Σ = (Enc, Dec) be an encryption scheme built from a function
F : K × {0, 1}k → {0, 1}m and a pseudorandom generator G : {0, 1}m → {0, 1}m
as displayed in Fig. 10. Then for any RKA-nonce-respecting and Φ-restricted
RKA adversary A, making q queries to Enc, that never repeats a query, there
exists a Φ-restricted RKA adversary Aprf and an adversary Aprg such that

AdvrkaIND
Σ (A) ≤ AdvrkaPRF

F (Aprf ) + q AdvPRG
G (Aprg) .



Proof (Sketch). The full proof is given in Appendix B.2. It consists of two game
hops. In the first, the function F is replaced by a random function, in the second,
the output of the PRG is replaced by random. The game hops are bound by the
RKA security of the function F and the security of the PRG, respectively.

6.2 Related-Key Attack Secure Message Authentication

In this section we show that the message authentication code HF proposed by
Degabriele et al. [18] is RKA-secure. The scheme comprises a hash function H

and a function F and is displayed in Fig. 10. The tag is obtained by evaluating
the hash function H on the message M and evaluating the function F on the hash
value.

RKA-Secure MAC from RKA-secure PRF. The theorem below shows
that an RKA-secure pseudorandom function yields an RKA-secure MAC via
the canonical MAC construction. That is, the tag is computed by evaluating
the function on the message and verification works by recomputing the tag and
comparison with the candidate tag.

Theorem 9 (RKA-PRF yields RKA-MAC). Let F : K×X → Y be a func-
tion and Γ be the canonical MAC built from F. Then for any Φ-restricted RKA
adversary A against Γ playing rkaSUF, making q queries to Ver, there exists a
Φ-restricted RKA adversary Aprf against F playing rkaPRF such that

AdvrkaSUF
Γ (A, Φ) ≤ 2 AdvrkaPRF

F (Aprf , Φ) +
q

|Y|
.

Proof (Sketch). The full proof is given in Appendix B.3. It consists of three game
hops. In the first hop, which is bound by the RKA security of F, the function is
replaced by a random function in both oracles. In the second hop, the verification
oracle always rejects, which is bound by a simple combinatorial argument. In the
third hop, we switch back to the real function F for the tagging oracle, which is
again bound by the RKA security of F.

RKA-Secure PRF from RKA-secure PRF and Hash. Theorem 9 shows
that we can construct a RKA-secure MAC from a RKA-secure pseudorandom
function. The main restriction is that the message space of the MAC equals
the message space of the function. The following theorem shows that this is not
a hindrance. It shows that the message space of a RKA-secure pseudorandom
function can be extended to arbitrary long messages by first hashing the input
and then applying the function to the hash value.

Theorem 10 (Hash and RKA-PRF yields RKA-PRF). Let F : K×X → Y
be a function, H : {0, 1}∗ → X be a hash function and F′ : {0, 1}∗ → Y, F′(X ) 7→
F(H(X )) be a function. Then for any Φ-restricted RKA adversary A against F′

playing rkaPRF, there exists a Φ-restricted RKA adversary Aprf against F playing
rkaPRF and an adversary Ahash against H playing CR such that

AdvrkaPRF
F′ (A, Φ) ≤ 2 AdvCR

H (Ahash) + AdvrkaPRF
F (Aprf , Φ) .



Proof (Sketch). The proof consists of two hops which are bound by the collision
resistance of the hash function. This allows us bound the resulting games by a
straightforward reduction from the RKA security of F.
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A Additional Preliminaries

We recall the classical security notion for AEAD schemes given by Rogaway and
Shrimpton [34]. The adversary gets access to two oracles: an encryption oracle
Enc and a decryption oracle Dec. Depending on a randomly chosen bit b, Enc and
Dec implement either the real encryption and decryption algorithm (if b = 0)
or an idealised version, i.e., Enc returns random bit and Dec always returns ⊥,
(if b = 1). The adversary wins the game if it guesses the bit b correctly. For
nonce-based schemes, the adversary can specify the nonce for each of its queries.
The standard restriction imposed on the adversary is called nonce-respecting and
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forbids the adversary to query a nonce more than once to its encryption oracle.
Note that there is no restriction on the queried nonces to the decryption oracle.
Below we define security for nonce-based AEAD schemes.

Game AE

b←$ {0, 1}
K ←$K

b′ ← AEnc,Dec()

return (b′ = b)

oracle Enc(N ,A,M )

if b = 0

C ← Enc(K ,N ,A,M )

else

C ←$ {0, 1}c

return C

oracle Dec(N ,A,C )

if b = 0

M ← Dec(K ,N ,A,C )

else

M ← ⊥
return M

Fig. 11: Security game AE.

Definition 8 (AE Security). Let Σ = (Enc, Dec) be an AEAD scheme and
the game AE be defined as in Fig. 11. For a nonce-respecting adversary A, that
never repeats/forwards a query to/from Enc, we define its AE advantage as

AdvAE
Σ (A) = 2 Pr[AEA ⇒ true]− 1 .

For pseudorandom generators and hash functions we use the standard security
notions. For a pseudorandom generator the adversary has to distinguish the
outputs of a pseudorandom generator on a randomly chosen seed from a random
output. For a hash function the adversary has to find two distinct inputs that
yield the same hash value.

B Full Proofs

In this section we give the full proofs for the sketches given in Section 4.1,
Section 6.1, and Section 6.2.

B.1 Proof of Theorem 3

Proof. We prove the theorem using the hybrid games G0, G1, G2, and G3 dis-
played in Fig. 12. For ease of exposition, the games do not contain the set S to
detect forbidden queries. Instead, we assume that the adversary does not make
such a queries, in which case the reduction would simply return ⊥. Game G0 is
rka-AE instantiated with N2 and secret bit b fixed to 0. In G1, the decryption
oracle is modified to reject any ciphertext. In G2, the tag appended to the ci-
phertext is chosen at random. Game G3 equals rka-AE with secret bit b fixed to
1, where the encryption oracle outputs random ciphertexts and the decryption



Game Gi

(Ke,Km)←$K

b′ ← AEnc,Dec()

Dec(N ,A,C , (ϕe, ϕm)) in G0

Ce ‖ T ← C

if Ver(ϕm(Km),N ,A,Ce,T ) = >
M ← Dec(ϕe(Ke),N ,Ce)

return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G1, G2, G3

return ⊥

Enc(N ,A,M , (ϕe, ϕm)) in G0, G1

Ce ← Enc(ϕe(Ke),N ,M )

T ← Tag(ϕm(Km),N ,A,Ce)

C ← Ce ‖ T
return C

Enc(N ,A,M , (ϕe, ϕm)) in G2

Ce ← Enc(ϕe(Ke),N ,M )

T ←$ {0, 1}t

C ← Ce ‖ T
return C

Enc(N ,A,M , (ϕe, ϕm)) in G3

Ce ←$ {0, 1}c

T ←$ {0, 1}t

C ← Ce ‖ T
return C

Fig. 12: Hybrid games Gi used to prove Theorem 3 (RKA-AE security of N2).

oracle rejects any ciphertext. We have

Advrka-AE
N2 (A) = Pr[Arka-AE ⇒ 0 | b = 0]− Pr[Arka-AE ⇒ 0 | b = 1]

= Pr[AG0 ⇒ 0]− Pr[AG3 ⇒ 0]

=

3∑
i=1

Pr[AGi−1 ⇒ 0]− Pr[AGi ⇒ 0] .

To bound the first game hop, we construct an adversary Amac playing rkaSUF.
It picks a key Ke for the encryption scheme at random and runs adversary A
answering queries as follows. Encryption queries of the form (N ,A,M , (ϕe, ϕm))
are processed by computing Ce ← Enc(ϕe(Ke),N ,M ), querying (N ,A,Ce, ϕm)
to Tag to obtain T , and sending C ← Ce ‖ T back to A. For decryption queries
(N ,A,C , (ϕe, ϕm)), Amac parses C as Ce ‖ T queries Ver on (N ,A,Ce,T , ϕm)
to get V . If V = >, Amac computes M ← Dec(ϕe(Ke),N ,Ce) and sends M back
to A. If V = ⊥, Amac sends ⊥ back to A. When A terminates by outputting a
bit b′, Amac outputs the same bit.

It holds that Amac perfectly simulates game G0 and G1 based on its own chal-
lenge bit from game rkaSUF being 0 and 1, respectively. Let (N ,A,C , (ϕe, ϕm)),
with C = Ce ‖ T , be the decryption query that allows A to distinguish. For
this query Amac invokes its oracle Ver on (N ,A,Ce,T , ϕm). It remains to ar-
gue that this query is not forbidden, i.e., Amac did not query its oracle Tag on
(N ,A,Ce, ϕm) resulting in T . Assume for sake of contradiction, that Amac did



query (N ,A,Ce, ϕm) to Tag. By construction, this means that A has made a
query (N ,A,M , (ϕ′e, ϕm)) to Enc, such that Ce = Enc(ϕ′e(Ke,N ,M )) for which
the response was Ce ‖ T . Note that both cases ϕ′e = ϕe and ϕ′e 6= ϕe are
forbidden queries by A. Thus we conclude with

Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0]

≤ Pr[ArkaSUF
mac ⇒ 0 | b = 0]− Pr[ArkaSUF

mac ⇒ 0 | b = 1]

≤ AdvrkaSUF
Γ (Amac, Φm) .

For the remaining to game hops, we omit the decryption oracle since any reduc-
tion merely needs to respond with ⊥. To bound the advantage between game
G1 and G2 we construct an adversary Aprf against Tag. It picks a key Ke for
the encryption scheme and runs A. For each query (N ,A,M , (ϕe, ϕm)) that
A makes to Enc, Aprf locally computes Ce ← Enc(ϕe(Ke),N ,M ), and queries
(N ,A,Ce, ϕm) to F to get T . Then it sends C ← Ce ‖ T back to A. Finally,
Aprf outputs whatever A outputs.

It holds that Aprf perfectly simulates G1 for A it its own challenge oracle is
initialised with b = 0. Likewise, Aprf perfectly simulates G2 if its own challenge
oracle is initialised with b = 1. This yields

Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0]

≤ Pr[ArkaPRF
prf ⇒ 0 | b = 0]− Pr[ArkaPRF

prf ⇒ 0 | b = 1]

≤ AdvrkaPRF
Tag (Aprf , Φm) .

To bound the last game hop, we construct the following adversary Ase against
Σ playing rkaIND. It runs A and answers its queries (N ,A,M , (ϕe, ϕm)) to Enc
as follows. It picks T at random of appropriate length, queries its own oracle
Enc on (N ,M , ϕe) to obtain Ce and sends C ← Ce ‖ T to A. At the end, Ase
outputs whatever A outputs.

If its own challenge bit b equals 0, Ase simulates game G2 for A, if the bit b
equals 1, it simulates game G3 for A. Thus we get

Pr[AG2 ⇒ 0]− Pr[AG3 ⇒ 0]

≤ Pr[ArkaIND
se ⇒ 0 | b = 0]− Pr[ArkaIND

se ⇒ 0 | b = 1]

≤ AdvrkaIND
Σ (Ase, Φe) .

Collecting the bounds from the individual game hops proves the claim.

B.2 Proof of Theorem 8

Proof. The theorem is proven via the games G0, G1, and G2 displayed in Fig. 13.
Game G0 equals game rkaIND instantiated with Σ and secret bit fixed to 0. In
game G1, the output of F is chosen at random and in game G2 the output of G
is chosen at random. While G2 is not exactly rkaIND with secret bit fixed to 1,
it is easy to see that the games are perfectly indistinguishable as they output



identically distributed ciphertexts. Hence, Claim 6 and 7 conclude the proof. It
holds that

AdvrkaIND
Σ (A) = Adv(AG0 ,AG2)

≤ Adv(AG0 ,AG1) + Adv(AG1 ,AG2)

≤ AdvrkaPRF
F (Aprf ) + q AdvPRG

G (Aprg) .

Distinguishing games G0 and G1 is bound the the RKA-PRF security of the
function F.

Claim 6 For any Φe-restricted RKA distinguisher A between game G0 and G1

defined in Fig. 13, there exists a Φe-restricted RKA adversary Aprf such that

Adv(AG0 ,AG1) ≤ AdvrkaPRF
F (Aprf ) .

Proof. We give an adversary Aprf who simulates G0 or G1 to win game rkaPRF
with the help of A. For any encryption query (N ,M , ϕ) by A, Aprf forwards
(N , ϕ) to the oracle F of the security game rkaPRF to get y. Then, Aprf locally
computes the ciphertext C = G(y) ⊕M sends it to A. Whenever A outputs its
guess, Aprf outputs the same. by construction, Aprf perfectly simulates game
Gb for A where b is the challenge bit in game rkaPRF. Hence we have

Adv(AG0 ,AG1)

= Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0]

= Pr[ArkaPRF
prf ⇒ 0 | b = 0]− Pr[ArkaPRF

prf ⇒ 0 | b = 1]

= AdvrkaPRF
F (Aprf , Φ) .

The advantage in distinguishing games G1 and G2 is bound by the security of
the pseudorandom generator G.

Claim 7 For any RKA-nonce-respecting distinguisher A between game G1 and
G2 defined in Fig. 13, there exists an adversary Aprg such that

Adv(AG1 ,AG2) ≤ q AdvPRG
G (Aprg) ,

where q is the number of queries that A makes to oracle Enc.

Proof. The security game PRG provides only one PRG output, therefore the
proof is done by q + 1 hybrid games H0, . . . ,Hq . In hybrid game Hi, the first i
queries to Enc are answered as in game G2 while the remaining q − i queries are
answered as in game G1. Hence H0 equals G1 while Hq equals G2. Via a standard
hybrid argument, we can construct an adversary Aprg that picks a query i at
random for which it will use its own challenge from the PRG security game
to compute the ciphertext. The inputs of the PRG can be chosen uniformly at
random since it is the output of the random function F′ and each input of F′ is
only used once because A is RKA-nonce-respecting. This yields

Adv(AG1 ,AG2) = Adv(AH0 ,AHq )

≤ q AdvPRG
G (Aprg) .

The last inequality concludes the proof.



Game Gi

K ←$K
F
′ ←$ Func(K,N , {0, 1}m)

b′ ← AEnc()

Enc(N ,M , ϕ) in G0

C ← G(F(ϕ(K ),N ))⊕M

return C

Enc(N ,M , ϕ) in G1

C ← G(F′(ϕ(K ),N ))⊕M

return C

Enc(N ,M , ϕ) in G2

x←$ {0, 1}|M |

C ← x⊕M

return C

Fig. 13: Games used to prove the rkaIND security of Theorem 8.

B.3 Proof of Theorem 9

Games G0, G1, G2, G3

K ←$K
F
′ ←$ Func(K,X ,Y)

b′ ← ATag,Ver()

return (b′ = b)

Ver(M ,T , ϕ) in G2, G3

return ⊥

Ver(M ,T , ϕ) in G0

T ′ ← F(ϕ(K ),M )

return (T ′ = T )

Ver(M ,T , ϕ) in G1

T ′ ←$ F
′(ϕ(K ),M )

return (T ′ = T )

Tag(M , ϕ) in G0, G3

T ← F(ϕ(K ),M )

return T

Tag(M , ϕ) in G1, G2

T ←$ F
′(ϕ(K ),M )

return T

Fig. 14: Hybrid games used in the proof of Theorem 9.

Proof. We prove the theorem using the hybrid games G0, G1, G2, and G3 dis-
played in Fig. 14. Game G0 is rkaSUF instantiated with F and secret bit b = 0.
In game G1, both oracles Tag and Ver use a random function to generate the
tags. In game G2, oracle Ver rejects any queried tag. In game G3, oracle Tag uses
again F instead of choosing the tags at random, thus it corresponds to rkaSUF
with secret bit b = 1. It holds that

AdvrkaSUF
Γ (A, Φ)

= Pr[ArkaSUF ⇒ 0 | b = 0]− Pr[ArkaSUF ⇒ 0 | b = 1]

= Pr[AG0 ⇒ 0]− Pr[AG3 ⇒ 0]

=

3∑
i=1

(
Pr[AGi−1 ⇒ 0]− Pr[AGi ⇒ 0]

)
.



We transform any adversary A that distinguishes between G0 and G1 into an
adversary A0 against F. For each query (X , ϕ) to Tag, A0 queries its oracle F
on (X , ϕ) and sends the response T back to A. For each query (X ,T , ϕ) to Ver,
A0 queries its oracle F on (X , ϕ) to get T ′. If T = T ′ A0 sends > back to A,
otherwise, it sends ⊥ back. When A eventually outputs a bit b′, A0 outputs the
same.

It holds that A0 perfectly simulates game G0 and game G1 when its own
challenge bit b, from game PRF, is 0 and 1, respectively. We have

Pr[AG0 ⇒ 0]− Pr[AG1 ⇒ 0]

≤ Pr[ArkaPRF
0 ⇒ 0 | b = 0]− Pr[ArkaPRF

0 ⇒ 0 | b = 1]

≤ AdvrkaPRF
F (A0, Φ) .

The advantage in distinguishing between G1 and G2 is a simple counting argu-
ment. The adversary can only distinguish if it guesses the output of the random
function, in which case Ver returns > in G1 and ⊥ in G2. Since A makes q queries
to Ver we get

Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0] ≤ q

|Y|
.

Distinguishing G2 and G3 essentially asks to distinguish where oracle Tag is
implemented using F or a random function. We construct the following adversary
A2. It returns ⊥ for every query that A makes to Ver. For queries (X , ϕ) to Tag,
A2 forwards the query to its own oracle F to obtain T which it sends to A. When
A outputs a bit b′, A2 outputs 1− b′.

It holds that A2 perfectly simulates game G2 if its own challenge bit b equals
1 while it simulates G3 if b equals 0. Thus we have

Pr[AG2 ⇒ 0]− Pr[AG3 ⇒ 0]

≤ Pr[ArkaPRF
2 ⇒ 1 | b = 1]− Pr[ArkaPRF

2 ⇒ 1 | b = 0]

≤ AdvrkaPRF
F (A2, Φ) .

Collecting the bounds and defining Aprf to be the adversary with the higher
advantage among A0 and A2 gives the desired result.
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