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Abstract. Attribute-based encryption (ABE) enables fine-grained access control on encrypted
data and has a large number of practical applications. This paper presents FABEO: faster pairing-
based ciphertext-policy and key-policy ABE schemes that support expressive policies and put no
restriction on policy type or attributes, and the first to achieve optimal, adaptive security with
multiple challenge ciphertexts. We implement our schemes and demonstrate that they perform
better than the state-of-the-art (Bethencourt et al. S&P 2007, Agrawal et al., CCS 2017 and
Ambrona et al., CCS 2017) on all parameters of practical interest.
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1 Introduction

Attribute-based encryption (ABE) [45,29] extends classical public-key encryption to support fine-grained
access control on encrypted data. ABE has applications in a variety of settings including electronic medi-
cal records [5], messaging systems [40], online social networks [9] and information-centric networking [34].
Companies like Cloudflare already use ABE to distribute private key storage across data centers [48].

ABE comes in two variants: ciphertext-policy (CP-ABE) and key-policy (KP-ABE), depending on
whether access policies are attached to ciphertexts or to keys [12,29]. In CP-ABE, keys are associated
with sets of attributes, and a key is able to recover the message hidden in a ciphertext if and only if
the set of attributes satisfy the access policy attached to the ciphertext. For instance, a policy P could
say ‘(Zipcode:90210 OR City:BeverlyHills) AND (AgeGroup:18-25)’ and an individual A could have a
key for Zipcode:90210, AgeGroup:Over65, in which case A would not be able to decrypt any message
encrypted under P. A KP-ABE is the dual of CP-ABE with ciphertexts attached to attribute sets and
keys associated with access policies.

There is by now a vast body of research on ABE realizing a broad spectrum of trade-offs between effi-
ciency, expressiveness, security and hardness assumptions. The state of the art for practical ABE schemes
are encapsulated by the following pairing-based schemes: (i) BSW CP-ABE scheme (Bethencourt, Sahai
and Waters [12]), (ii) FAME CP-ABE and KP-ABE schemes (Agrawal and Chase [2]), and (iii) ABGW
CP-ABE and KP-ABE schemes (Ambrona, Barthe, Gay and Wee [6]). These schemes simultaneously
achieve the following properties that are highly desirable in practice:

(1) support expressive policies described by boolean formula and monotone span programs (MSP);
(2) put no restriction on size of policies or attribute sets;
(3) allow any arbitrary string such as street addresses to be used as an attribute;
(4) achieve the strong and natural notion of adaptive security, the defacto standard for ABE.

However, these schemes achieve incomparable efficiency guarantees, and deciding which one to deploy
requires making complex performance trade-offs that depend on the policies that arise in the specific
context.

https://orcid.org/0000-0002-4990-0929


Scheme Unrestricted policies Arbitrary attributes Fast decryption Attribute multi-use Security bounds
CP-ABE
BSW [12, §4.2] [2, §D] X X × X t3/p
Waters [51, §3] [2, §E] X × × X –
ABGW [6, §5.3] X X × X t4/p
FAME [2, §3] X X X × t4/p
Ours FABEO [Fig 1] X X X X t2/p

KP-ABE
GPSW [29, §A.1] [2, §F] X × × X –
ABGW [6, §5.3] X X × X t4/p
FAME [2, §B] X X X × t4/p
Ours FABEO [Fig 1] X X X X t2/p

Table 1: A property-wise comparison of the various ABE schemes we consider. The BSW, Waters and
GPSW schemes were specified using symmetric pairings in the original works; throughout, we refer to the
asymmetric variants from [2]. The last column shows the security bounds on the adversary’s advantage in
the multi-ciphertext setting for the adaptively secure schemes, with dashes indicating selectively secure
schemes.

1.1 Our Contributions

We present FABEO, new pairing-based KP-ABE and CP-ABE schemes achieving properties (1) – (4),
with improved efficiency and quantitatively stronger security guarantees. FABEO uses asymmetric (Type-
III) prime-order bilinear groups (G1,G2,GT ) which support efficient hashing to G1 [46,23]. Ciphertexts
and secret keys in FABEO comprise mostly of elements in the smaller and faster group G1, plus 1 or 2
elements in G2. Computation for key generation, encryption and decryption are mostly carried out in
G1, with 2 to 3 pairings for decryption. We prove optimal security bounds for FABEO against adversaries
that get an arbitrary number of ciphertexts and keys: in particular, when instantiated over the popular
BLS12-381 curve, FABEO achieves close to 128-bit security.

FABEO subsumes BSW, FAME and ABGW on all parameters of practical interest. We improve
upon the ciphertext and key sizes of all three schemes, as well as the running times. In particular, our
ciphertexts are 66% smaller; encryption is (at least) 33% faster; and decryption uses fewer pairings.
FABEO also supports multi-use of attributes like in BSW and ABGW (without an a-prior bound during
set-up), with a small additive overhead in the multi-use parameter. See Table 1 for a property-wise
comparison of our schemes against BSW, FAME, ABGW and other prominent schemes in the literature,
as well as Tables 3 and 5 for a theoretical analysis and comparison for efficiency.

FABEO achieves properties (2) and (3) by hashing attributes to G1; smaller ciphertext/key sizes and
fast decryption via randomness reuse (in CP-ABE ciphertexts and KP-ABE keys); and adaptive security
without efficiency penalties by considering “generic” adversaries, a widely accepted model that captures
all known attacks. While each of these techniques is already present in BSW, FAME, ABGW and prior
works, FABEO is the first to combine them in a single design, along with a novel analysis establishing
optimal security.

Optimal security. We prove security of our schemes in the generic bilinear group model (GGM) [14,47,42]
(as with BSW and ABGW), where we model the underlying hash function as a random oracle [11] (as
with BSW and FAME). We show that any generic, adaptive adversary running in time t and sees at
most t ciphertexts and keys breaks our schemes with probability at most O(t2/p), where p is the order
of the underlying group. This bound is optimal, since an adversary can break discrete log with the same
probability. Prior ABE schemes, including BSW, FAME, and ABGW, achieve a bound of O(t3/p) or
worse, since the security proofs only consider a single challenge ciphertext, and a hybrid argument is
needed to achieve multi-ciphertext security.

Proof framework and application. In both our CP-ABE and KP-ABE schemes, the ciphertext ct for x
and secret key sk for y are of the form:

ct =
(
g
c1
x(s,b)

1 , g
c2
x(s)

2 , e(g1, g2)αs1 ·M
)
, sk =

(
g
k1
y(α,b,r)

1 , g
k2
y(r)

2

)
.
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Here, s = (s1, . . .) and r are fresh randomness; gb
1 contains the hash of every attribute in the universe3,

and c1
x, c

2
x, k

1
y, k

2
y are simple functions of degree 1 or 2. Roughly speaking, we show that for schemes of

this form4, security for a single ciphertext-key pair implies optimal, adaptive security against generic
adversaries with an arbitrary number of ciphertexts and keys. Our modular proof framework extends
and generalizes an analogous statement shown in ABGW in several ways: (i) we allow c2

x(s) to have
arbitrary length instead of length 1, as is necessary to capture our CP-ABE scheme and the one below,
(ii) we consider security with multiple ciphertexts, and (iii) we achieve optimal security.

Next, we describe an additional application of our proof framework that pertains to property (1). A
limitation of boolean formula and monotone span programs is they do not capture computation over data
of arbitrary, unbounded size, which arise settings such as genome sequencing, processing network and
event logs, tax returns and virus scanners; such computation are better captured by regular languages,
or deterministic finite automata (DFA). As a secondary contribution, we prove that Waters’ KP-ABE
scheme for DFA [52] achieves optimal, adaptive security.5 In this scheme, c2

x(s) has arbitrary length that
grows with x. Compared to prior adaptively secure KP-ABE for DFA [7,8,3,41,28], we obtain (at least)
a 50% improvement in ciphertext and key sizes as well as running times.

Implementation and evaluation. We implement FABEO in the Charm framework [4]. Our experiments
validate our theoretical analysis in Table 3 showing that FABEO improves on the performance of BSW,
FAME and ABGW, for all of key generation, encryption and decryption. FABEO compares favorably
even against the Waters CP-ABE [51] and GPSW KP-ABE [29], even though these schemes do not
achieve property (3). See Figure 3 in Section 7 for the performance of the algorithms of each scheme
under various test cases. Our code is available on GitHub [44].

All computations are performed on an ordinary laptop and we achieve practical results, even for large
attribute sets and policies. Specifically for our CP-ABE with the MNT224 curve, set-up takes less than
0.02s, and it takes around 0.09s to generate a key for 100 attributes, and 0.18s to encrypt data under a
policy that requires all 100 attributes. Decryption then takes only 0.02s. As a comparison, the ABGW
CP-ABE scheme takes 0.63s to generate a key for the same number of attributes, 0.33s to encrypt and
0.48s to decrypt. In FAME, decryption takes 0.03s, and key generation and encryption are slower than
ABGW.

Summary of Contributions. To summarize, our contributions are as follows:

– We present new KP-ABE and CP-ABE schemes for MSP with improved efficiency guarantees and
the first to achieve optimal, adaptive security with multiple challenge ciphertexts.

– We provide a more general and modular framework for proving optimal ABE security in the GGM.

– We implement our KP-ABE and CP-ABE schemes for MSP and evaluate their performance for
various parameters.

– We present and implement a new KP-ABE for DFA with optimal, adaptive security in the GGM.

1.2 Discussion and Related Work

We discuss additional context and related works.

Choosing curve parameters. When choosing curve parameters for a pairing-based scheme, practitioners
often base the decisions on the hardness of the discrete log problem, and ignore the security bounds
provided in security proof for the scheme. This is in part due to the limited number of pairing-friendly
curves that are available in practice [46], and the possibly prohibitive performance penalty from using a
curve with larger bit security. In particular, there is an implicit expectation that a scheme instantiated
over a curve with 128-bit security should also achieve close to 128-bit security. Our work takes a step
towards rigorously justifying this expectation in the context of pairing-based ABE.
3 Ignoring for now the fact that b has exponential length.
4 The ABGW CP-ABE and KP-ABE schemes we compare with are not of this form since the k1

y computes a
rational function.

5 Waters only proved weaker, selective security for his scheme. More precisely, we consider a variant of Waters’
scheme with smaller keys from [27].
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Setup(1λ). Run GroupGen(1λ) to obtain G := (p,G1,G2,GT ,
e, g1, g2). Pick α $← Zp and a hash function H : [|U|+1]→ G1.
Compute the master public key as

mpk := (G,H, e(g1, g2)α)

Let msk := α be the master secret key.

KeyGen(msk,S ⊆ U). Pick r $← Zp. Compute

sk1 := gα1 · H(|U|+ 1)r sk2,u := H(u)r sk3 := gr2

for each u ∈ S. Output sk := (sk1, {sk2,u}u∈S , sk3).

Enc(mpk, (M, π)). Pick s1
$← Zp, v $← Zn2−1

p , s′ $← Zτp . Com-
pute

ct1 := gs1
2 ct2,j := g

s′[j]
2

for j ∈ [τ ], as well as

ct3,i := H(|U|+ 1)Mi(s1‖v)> · H(π(i))s′[ρ(i)]

for each row i ∈ [n1]. Output ct := (ct1, (ct2,j)j∈[τ ],
(ct3,i)i∈[n1]) and d := e(g1, g2)αs1 .

Dec(mpk, (M, π),S, ct, sk). If S satisfies (M, π), there ex-
ist constants {γi}i∈I s.t.

∑
i∈I γiMi = (1, 0, . . . , 0). Recon-

struct d by computing

e(sk1, ct1) ·

∏
j∈[τ ] e(

∏
i∈I,ρ(i)=j(sk2,π(i))γi , ct2,j)

e(
∏
i∈I(ct3,i)γi , sk3)

and output the result.

Setup(1λ). Run GroupGen(1λ) to obtain G := (p,G1,G2,GT ,
e, g1, g2). Pick α $← Zp and a hash function H : U → G1.
Compute the master public key as

mpk := (G,H, e(g1, g2)α)

Let msk := α be the master secret key.

KeyGen(msk, (M, π)). Pick r′ $← Zτp , v $← Zn2−1
p . Compute

sk1,j := g
r′[j]
2

for j ∈ [τ ], as well as

sk2,i := g
Mi(α‖v)>
1 · H(π(i))r′[ρ(i)]

for each row i ∈ [n1]. Output sk := ((sk1,j)j∈[τ ], (sk2,i)i∈[n1]).

Enc(mpk,S ⊆ U). Pick s $← Zp. For each u ∈ S compute

ct1,u := H(u)s ct2 := gs2

Output ct := ((ct1,u)u∈S , ct2) and d := e(g1, g2)αs.

Dec(mpk,S, (M, π), ct, sk). If S satisfies (M, π), there ex-
ist constants {γi}i∈I s.t.

∑
i∈I γiMi = (1, 0, . . . , 0). Recon-

struct d by computing

e(
∏
i∈I(sk2,i)γi , ct2)∏

j∈[τ ] e(
∏
i∈I,ρ(i)=j(ct1,π(i))γi , sk1,j)

and output the result.

Fig. 1: Our CP-ABE (left) and KP-ABE (right) scheme for monotone span programs (M ∈ Zn1×n2
p , π :

[n1]→ U). We define ρ(i) := |{z | π(z) = π(i), z ≤ i}| and τ = maxi∈[n1] ρ(i) corresponding to maximum
number of times an attribute is used in M.

Achieving adaptive security. There are two main approaches for realizing adaptive security for ABE
schemes in the literature: (1) prove security against generic adversaries as was done in BSW, ABGW
and this work, and (2) adopt the dual system encryption framework [50,39,53,7] as used in FAME, which
allows us to base security on SXDH and DLIN (and in some settings, with the additional use of q-type
assumptions). While the latter yields theoretically stronger results, it incurs a huge penalty in efficiency:
for security from k-LIN (k = 1 corresponds to SXDH and k = 2 to DLIN), it requires (at least) a factor
k + 1 blow-up in ciphertext and key sizes as well as running times for encryption, key generation and
decryption [16,8,3]. Moreover, the schemes have a more complex structure, and the security proofs are
also substantially more complex. Another drawback is that the proofs typically require a hybrid argument
over the keys and the ciphertexts, so we cannot hope for a security bound better than O(t4/p).

GGM security. We argue that GGM security is sufficient for most practical applications. The reasoning is
two-fold: First, our understanding of pairing curves has advanced substantially over the past two decades,
with increasing adoption (e.g. Cloudflare and ZCash) as well as on-going standardization [46]. The known
attacks fall broadly into two categories: (1) attacks on discrete log, most notably the exTNFS in [35],
rendering the curves unsuitable for any applications, (2) attacks that are captured by the GGM [19]. In
short, there is in practice no discernible distinction between the standard assumptions like SXDH and
GGM security. Second, it is much easier to break a real-world system via side channel attacks or poor
security practices (e.g. phishing attacks or weak passwords) than to come up with an attack outside of
the GGM. Indeed, a large number of recent works also use the GGM to analyze practical cryptosystems,
e.g. [30,10,31].

Optimal and tight security. This work falls under a broader cryptographic research agenda of achieving
optimal security and tight security reductions, for instance, recent works on symmetric-key encryption
[32], signature schemes [21] and TLS 1.3 [25,22]. In the context of ABE, optimal security was only
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previously known in very limited settings, namely identity-based encryption and its hierachical variant
[24,18,13,33,26,37,15,17]; we clarify that these works focus on the more challenging goal of basing security
on static assumptions such as DLIN. In particular, these are the only settings where we know how to
carry out a dual system encryption proof with security bound better than O(t4/p).

Benchmarking ABE schemes. Two very recent works [43,20] looked into benchmarking pairing-based
ABE schemes, focusing on low-level optimizations (whereas our work focuses on high-level design as well
as new security guarantees and proof techniques): the first for CP-ABE covering BSW, Waters, and
FAME but not ABGW, and the second for broadcast encryption. Both works highlight the complexity
of effective benchmarking due to incomparable trade-offs between efficiency, expressiveness, security
and hardness assumptions, which we alluded to at the beginning of the paper. Our results, together
with those in ABGW and the preceding discussion, support the thesis that one should consider GGM-
based schemes for benchmarking, since we can achieve the strongest notion of adaptive security without
efficiency penalties.

1.3 Technical Overview

Let (G1,G2,GT ) be an (asymmetric) bilinear group of prime order p, along with a pairing e : G1×G2 →
GT and generators g1, g2 for G1,G2 respectively. In general, the bit sizes of group elements in G2 are
2-3 times that of G1 and group operations in G2 take (at least) twice as much time. In addition, we can
securely hash into G1 at the cost of roughly one exponentiation in G1.

High-level design. We begin with a high-level overview of our KP-ABE scheme described in Figure 1.
An MSP is given by a matrix M and a function π that maps each row of M to an attribute (for this
overview, assume π is injective, i.e., no attribute multi-use). Following [29], we design the ciphertexts
and secret keys so that for each row i in M such that π(i) appears in the attribute set, decryption will
compute

e(g1, g2)s1αi (1)

where αi is a share of the master secret key α and s1 ← Zp is the encryption randomness. The values in
(1) can then be combined to recover the blinding factor e(g1, g2)s1α.

To realize the above invariant, we have

(gs1
2 ,H(π(i))s1) ∈ ct, (gr2, g

αi
1 H(π(i))r) ∈ sk

so that we can compute (1) using e(gαi1 H(π(i))r, gs1
2 )/e(H(π(i))s1 , gr2). In addition, we use the same r

across all the rows in M, to keep the key size small. This way, we can also carry out decryption using
two pairings6. and with most of the computation in the faster group G1. In contrast,

– BSW uses a different ri for each share, namely (gri2 , g
αi
1 H(π(i))ri) ∈ sk (here, we are describing the

KP-ABE analogue of the BSW CP-ABE). This incurs a factor 2 blow-up in key size, and decryption
requires computing a pairing for each row of M.

– ABGW uses (
gs−si1 , g

si(b1+π(i)b2)
1

)
∈ ct,

(
g

αi
b1+π(i)b2
2 , gαi2

)
∈ sk

where gb1
1 , g

b2
1 comes from mpk. This incurs (at least) a factor 2 blow-up in ciphertext and key sizes,

and an extra exponentation per attribute during encryption. Decryption requires computing a pairing
for each attribute.

– FAME replaces gs1
2 , g

r
2 with DLIN-tuples in G3

2 in order to achieve security under the DLIN assump-
tion using the dual system encryption framework as described in Section 1.2. Overall, this incurs
a factor 3 blow-up in ciphertext and key sizes, as well as a factor 3-6 blow-up in running time for
encryption and key generation.

6 by writing
∏
i
(e(g1, g2)s1αi)γi as e(

∏
i
(gαi1 H(π(i))r)γi , gs1

2 ) · e(
∏
i
(H(π(i))s1 )γi , gr2)−1
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Our CP-ABE scheme is conceptually the dual of our KP-ABE, though algebraically more intricate and
less intuitive (the same holds for BSW, FAME, and ABGW). Briefly, instead of (1), decryption computes
e(g1, g2)µib′r where µi is a share of the encryption randomness s1; gb

′

1 is specified in the public key; and
r comes from key generation randomness. These values can then be combined to compute e(g1, g2)s1b

′r,
which is in turn used to recover the blinding factor e(g1, g2)s1α. Our CP-ABE scheme is the same as the
AC17-LU-OK and AC17-LU-CP schemes in the independent work [43], which asserts selective security
under q-type assumptions without a formal security proof.

Proof strategy. We provide a unified proof security of our KP-ABE and CP-ABE schemes in the GGM,
where we model H as a random oracle. At a high level, we follow the framework in [6]. Both our KP-ABE
and CP-ABE schemes have the following structure where the ciphertext is associated with a label x and
the secret key with a label y (x is an attribute set for KP-ABE and a policy for CP-ABE, and vice-versa
for y)

ctx =
(
g
c1
x(s⊗b)

1 , g
c2
x(s)

2 , e(g1, g2)αs1 ·M
)
, sky =

(
g
k1
y(α,r,b⊗r)

1 , g
k2
y(r)

2

)
,

where7

– s = (s1, . . .) and r are random vectors over Zp corresponding to randomnness for encryption and key
generation;

– gb
1 contains the hash of every attribute in the universe, along with gb′1 for our CP-ABE (note that
the length of b is exponential, but the c1

x, k
1
y only depend on a polynomial number of entries of b);

– c1
x, c

2
x, k

1
y, k

2
y are linear functions over Zp (therefore c1

x and k1
y computes degree 2 functions of s,b, r, α);

– decryption uses the pairing to compute e(g1, g2)c
1
x(s⊗b)⊗k2

y(r) and e(g1, g2)k
1
y(α,r,b⊗r)⊗c2

x(s), followed
by additional linear computation in the exponent to recover the blinding factor e(g1, g2)αs1 .

We refer to ABE schemes with the above structure as a PES-ABE (PES is short for pair encoding
schemes [7]). Towards proving GGM security, we consider notions of symbolic security for PES-ABE,
where an adversary sees abstract expressions for group elements in the form of polynomials. The proof
of security of our KP-ABE and CP-ABE schemes follows the following modular framework:

Step 1. We show that our KP-ABE and CP-ABE schemes satisfy the syntax of a PES-ABE and (1,1)
symbolic security, a relaxation of ABE security where the adversary is selective8 and only receives a
single ciphertext and single secret key.

Step 2. We prove that any PES-ABE satisfying (1,1) symbolic security also satisfies strong symbolic
security, where the adversary is still selective but can see the public key as well as an arbitrary
number of ciphertexts and secret keys.

Step 3. We prove that any PES-ABE satisfying strong symbolic security is adaptively secure in the
GGM with optimal security.

We now describe the key differences between our framework and the one in ABGW:

– The syntax for PES-ABE is different: (i) both ctx and sky contain elements from both G1 and G2,
and (ii) we generate gb

1 using a random oracle.

– We introduce a strengthening of (1,1) symbolic security where we essentially require that all of
[αc1

x(s)]T are pseudorandom, and not just [αs1]T . Our notion is also weaker in that the proof only
needs to reason about the terms e(g1, g2)c

1
x(s⊗b)⊗k2

y(r) and e(g1, g2)k
1
y(α,r,b⊗r)⊗c2

x(s).

– The ABGW KP-ABE and CP-ABE schemes for MSP do not satisfy the syntax of a PES-ABE since
k2
y computes rational functions with linear functions b in the denominator and therefore proving

security of these schemes require directly establishing strong symbolic security;
7 The tensor product u ⊗ v of two vectors u = (u1, u2, . . .) and v = (v1, v2, . . .) is a vector (u1v1, u1v2, . . .)
containing all pairwise products of the entries in u and v.

8 In this overview, we use selective to refer to an adversary that specifies all of its ciphertext and key queries in
advance.
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– The analogue of strong symbolic securty in ABGW in Steps 2 and 3 considers only a single challenge
ciphertext.

– We achieve a security bound of O(t2/p) in Step 3, whereas ABGW achieves O(t3/p). Our proof
crucially relies on the fact that c1

x, c
2
x, k

1
y, k

2
y compute functions of degree at most 2 in the inputs so

that we only need to apply Schwartz-Zippel to constant-degree polynomials. The proof in ABGW
applies Schwartz-Zippel to polynomials of degree t in order to “clear the denominators” across t keys.

2 Preliminaries

We will first fix some notation that we will use throughout the paper. For integers m, n where m < n,
[m,n] denotes the set m,m+ 1, ..., n. For m = 1, we simply write [n]. For a prime p, let Zp denote the
set [0, p−1], where addition and multiplication are computed modulo p. For a set S, s $← S denotes that
s is sampled uniformly and independently at random from S. y ← A(x1, x2, . . .) denotes that on input
x1, x2, . . . the probabilistic algorithm A returns y. AO denotes that algorithm A has access to oracle
O. An adversary is a probabilistic algorithm. A probabilistic algorithm is called efficient or PPT if its
running time is bounded by some polynomial in the length of its input.

We use lower case bold-face letters for row vectors, where ‖ denotes concatenation of row vectors.
v[i] denotes the i-th coordinate of the vector v. Given a vector v of polynomials of length m over Zp, we
write span

(
v
)
to denote {v ·e> : e ∈ Zmp }. Formal variables are marked with a tilde. We write ṽ← Varn

to pick n formal variables.

2.1 Pairing Groups

Let GroupGen be a PPT algorithm that takes a security parameter 1λ as input and returns a group
description G := (p,G1,G2,GT , e, g1, g2), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, e : G1 × G2 → GT is a non-degenerate bilinear map (also called pairing) and g1 resp. g2 or
generators ofG1 resp.G2. The generator gT ofGT can be computed as e(g1, g2). We require that the group
operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time in λ.
In this work, we only consider asymmetric (or Type-III) pairing groups where there exists no efficiently
computable homomorphism between G1 and G2. In some cases we will use implicit representation of
group elements: for a vector v over Zp, we define [v]1 := gv

s for s ∈ {1, 2, T}, where exponentiation is
carried out component-wise.

2.2 Attribute-based Encryption

Throughout the paper, we will use a KEM-style definition of ABE. However note that it is implied by
the corresponding definition in the PKE setting.

Syntax. An attribute-based encryption (ABE) scheme for some class P consists of four algorithms:

Setup(1λ,P) → (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class
description P. It outputs the master public key mpk and the master secret key msk. We assume mpk
defines the key space K.

Enc(mpk, x) → (ctx, d). The encryption algorithm gets as input mpk and an input x. It outputs a
ciphertext ctx and an encapsulated key d ∈ K.

KeyGen(mpk,msk, y)→ sky. The key generation algorithm gets as input mpk, msk and y ∈ P. It outputs
a secret key sky.

Dec(mpk, x, y, ctx, sky)→ m. The decryption algorithm gets as input sky and ctx such that P(x, y) = 1
along with mpk. It outputs a key d.

Correctness. For all input x and y with P(x) = 1, we require

Pr

Dec(mpk, x, y, ctx, sky) = d :
(mpk,msk)← Setup(1λ,P)
sky ← KeyGen(mpk,msk, y)
(ctx, d)← Enc(mpk, x)

 = 1.
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Many-Ciphertext CPA Security. We define security by a game between a challenger and an adversary
A. The challenger picks a random challenge bit β and provides the following oracles to A.

– Setup oracle Ompk: This oracle can only be queried once and it must be the first query. The challenger
runs Setup to obtain (msk,mpk) and outputs mpk to A.

– Ciphertext (or challenge) oracle Oct: On the i-th query, A provides xi ∈ X . The challenger runs
(cti, d(0)

i )← Enc(mpk, xi), chooses a random key d(1)
i

$← K and outputs (cti, d(β)
i ).

– Secret key oracleOsk: On the j-th query,A provides yj ∈ Y. The challenger runs skj ← KeyGen(msk, yj)
and outputs skj .

Oct and Osk can be queried adaptively and an arbitrary polynomial number of times. Finally, A outputs
a bit β′. We say that A wins the game if β = β′ and P(xi, yj) = 0 for all queries xi and yj .

Definition 1. An ABE scheme is adaptively many-ciphertext secure if for all efficient A,

AdvABE,A(λ) :=
∣∣Pr[β = β′]− 1

2
∣∣

is negligible in λ.

Boolean formulae and MSP Boolean formulae are a common way to model access control. A (monotone)
boolean formula consists of and and or gates, where each input is associated with an attribute in
the universe of attributes denoted by U . Monotone means that an authorized user who acquires more
attributes will not lose any privileges. Let S ⊆ U be a set of attributes. We say that S satisfies a boolean
formula if we set all inputs of the formula that map to an attribute in S to true and the others to false
and the formula evaluates to true.

Monotone span programs (MSP) are a more general class of functions and include boolean formulae.
We encode an access structure by a policy (M, π), where M ∈ Zn1×n2

p and π : [n1] → U . Note that we
can compute (M, π) for any (monotone) boolean formula in polynomial time [38]. Then every row Mi

corresponds to an input to the formula and the number of columns is the same as the number of and
gates. If the mapping π is not injective, we use the notation ρ(i) := |{z | π(z) = π(i), z ≤ i}| to denote
the ρ(i)-th occurrence of attribute π(i).

Let S ⊆ U be a set of attributes and I = {i | i ∈ [n1], π(i) ∈ S} be the indices of rows in M that
are associated with S. We say that (M, π) accepts S if the vector (1, 0, . . . , 0) lies in the span of rows
associated with S. This means, there exist constants γi ∈ Zp for i ∈ I such that

∑
i∈I γiMi = (1, 0, . . . , 0).

These constants can be computed in time polynomial in the size of M. On the contrary, (M, π) does not
accept S if there exist a vector w ∈ Zn2

p such that w is orthogonal to all rows Mi for π(i) ∈ S, but not
to (1, 0, . . . , 0). That means 〈w,Mi〉 = 0. W.l.o.g. we can set w[1] = 1.

Polynomials. Let p be a prime and n ∈ N. We denote the set of multi-variate polynimals over Zp with
indeterminates x̃1, . . . , x̃n by Zp[x̃1, . . . , x̃n].

3 PES-ABE

We consider PES-ABE, which is a standard ABE scheme augmented with 3 deterministic algorithms
Setup0, Enc0, KeyGen0 used in Setup, Enc, KeyGen, Dec respectively, where:

– Setup0(1λ,X ,Y) outputs n ∈ N,

– Enc0(x) outputs linear functions c1 : Zwnp → Zw1
p , c2 : Zwp → Zw2

p ,

– KeyGen0(y) outputs linear functions k1 : Z1+m+mn
p → Zm1

p , k2 : Zmp → Zm2
p ,

and

– Setup(1λ): Run G := (p,G1,G2,GT , e, g1, g2)← GroupGen(1λ), n← Setup0. Pick α $← Zp and a hash
function H : [n]→ G1 Output

mpk := (G,H, [α]T ), msk := α

Using H, we implictly define b ∈ Znp via [b[i]]1 = H(i).
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– Enc: Run (c1, c2) ← Enc0(x). Pick s ← Zwp . Compute [c1]1 := c1([s ⊗ b]1), [c2]2 := c2([s]2) where
c2[1] = s[1]. Output

ct := ([c1]1, [c2]2), kem := [αs[1]]T
– KeyGen: Run (k1, k2)← KeyGen0(y). Pick r← Zmp . Compute [k1]1 := k1([α]1, [r]1, [b⊗ r]1), [k2]2 :=
k2([r]2). Output

sk := ([k1]1, [k2]2)

Note that Enc and KeyGen compute the linear functions c1, k1 “in the exponent” since it only knows
[b]1 and not b. We also require that c1, k1 depend only on a polynomial number of entries in b, so
that Enc,KeyGen only need to make a polynomial number of calls to H to compute [c1(s ⊗ b)]1 and
[k1(α, r,b ⊗ r)]1 respectively. Depending on the application, some of these calls to H can also be pre-
computed.

Remark 1 (Decryption). Note that we can augment PES-ABE with an additional deterministic algorithm
Dec0 used in Dec where

– Dec0(x, y) outputs e ∈ Zw1m2
p , e′ ∈ Zw2m1

p ;

– Dec(mpk, x, y, ct = ([c1]1, [c2]2), sk = ([k1]1, [k2]2): Run (e, e′)← Dec0(x, y). Compute [k1⊗c2]T , [c1⊗
k2]T using e, and output [(k1 ⊗ c2) · e> + (c1 ⊗ k2) · e′>]T .

It would then follow from ABE correctness that if P(x, y) = 1, (k1⊗c2) ·e>+ (c1⊗k2) ·e′> = αs[1]. We
omit Dec0 in our presentation and instead, specify and analyze Dec for correctness directly. This does
not affect our security notions and proofs which only refer to Enc,KeyGen,Enc0,KeyGen0.

4 Symbolic Security of PES-ABE

Following previous work [3,6], we define symbolic security for PES-ABE, where we replace the inputs
(α,b, s, r)← Zp×Znp ×Zwp ×Zmp to the linear functions (c1, c2, k1, k2) with vectors of formal variables

(α̃, b̃, s̃, r̃)← Var × Varn × Varw × Varm

In particular, c1(s̃⊗ b̃), c2(s̃), k1(b̃⊗ r̃), k2(r̃) are now (vectors of) polynomials in Zp[α̃, b̃, s̃, r̃].

4.1 Definitions

Fix x ∈ X , y ∈ Y. ABE correctness tells us that if P(x, y) = 1, then

α̃s̃[1] ∈ span
(
c1(s̃⊗ b̃)⊗ k2(r̃)‖k1(α̃, r̃, b̃⊗ r̃)⊗ c2(s̃)

)
On the other hand, if P(x, y) = 0, it should be the case that

α̃s̃[1] /∈ span
(
c1(s̃⊗ b̃)⊗ k2(r̃)‖k1(α̃, r̃, b̃⊗ r̃)⊗ c2(s̃)

)
Our basic formulation of symbolic security stipulates something stronger, where we basically replace
α̃s̃[1] with α̃ ⊗ c2(s̃) and require c2(s̃)[1] = s̃[1]. In the special case where c2(s̃) = s̃[1] (as is the case
when w2 = 1), these two requirements are equivalent.

Definition 2 ((1, 1) Symbolic Security). For all x ∈ X , y ∈ Y such that P(x, y) = 0: we have

span
(
α̃⊗ c2) ∩ span

(
c1 ⊗ k2 ‖ k1 ⊗ c2) = {0} ,

where

(α̃, b̃)← Var × Varn

(c1, c2) := (c1(s̃⊗ b̃), c2(s̃)), s̃← Varw, (c1, c2)← Enc0(x)
(k1,k2) := (k1(α̃, r̃, b̃⊗ r̃), k2(r̃)), r̃← Varm, (k1, k2)← KeyGen0(y).
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The symbolic property captured by this definition will be required to prove many-ciphertext CPA security
of our ABE scheme. To capture the ABE security experiment more closely, we extend the definition such
that it also include many secret keys, many ciphertexts as well as the public key. Also we consider that
in the ABE security experiment the adversary may ask for the same x or y multiple times. In Lemma 1
below, we show that this stronger symbolic property is actually implied by the weaker one above.

Definition 3 (Strong Symbolic Security). For all Qct, Qsk ∈ N, X ∈ XQct , Y ∈ YQsk such that
P(X[i], Y [j]) = 0 for all i ∈ [Qct], j ∈ [Qsk], we have

span
(
α̃⊗ c2

X

)
∩ span

(
α̃ ‖ (1‖b̃‖c1

X‖k1
Y )⊗ (1‖c2

X‖k2
Y )
)

= {0} ,

where

(α̃, b̃)← Var × Varn

(c1
i , c2

i ) := (c1(s̃i ⊗ b̃), c2(s̃i)), s̃i ← Varw, (c1
i , c

2
i )← Enc0(X[i]),∀i ∈ [Qct],

(k1
j ,k2

j ) := (k1(α̃, r̃j , b̃⊗ r̃j), k2(r̃j)), r̃j ← Varm, (k1
j , k

2
j )← KeyGen0(Y [j]),∀j ∈ [Qsk],

c1
X := (c1

1‖ · · · ‖c1
Qct

), c2
X := (c2

1‖ · · · ‖c2
Qct

)
k1
Y := (k1

1‖ · · · ‖k1
Qsk

),k2
Y := (k2

1‖ · · · ‖k2
Qsk

) .

4.2 Relations

Now we can establish the desired implication in the following lemma.

Lemma 1. If a PES-ABE scheme satisfies (1, 1) symbolic security (Definition 2), then it also satisfies
strong symbolic security (Definition 3).

The proof follows the high-level strategy laid out in [6, Theorem 4.1] with two main differences: (i)
the proof of Claim 2 where we handle w2 > 1 (see also Remark 2) and (ii) Step 2 where we handle
many-ciphertext security.

Proof. Fix a PES-ABE satisfying (1, 1) symbolic security as well asQsk, Qct, X, Y satisfying the conditions
in Definition 3. We want to show that

span
(
α̃⊗ c2

X

)
∩ span

(
α̃ ‖ (1‖b̃‖c1

X‖k1
Y )⊗ (1‖c2

X‖k2
Y )
)

= {0} . (2)

The proof proceeds in three steps.

Step 1. First, we show that for all i ∈ [Qct],

span
(
α̃⊗ c2

i

)
∩ span

(
c1
i ⊗ k2

Y ‖ k1
Y ⊗ c2

i

)
= {0} .

The proof proceeds by contradiction. Suppose on the contrary that there exist i∗ ∈ [Qct], e∗ ∈ Zw2
p ,

ej ∈ Zw1m2
p , e′j ∈ Zm1w2

p for all j ∈ [Qsk] such that e∗ 6= 0 and

(α̃⊗ c2
i∗) · e∗> =

∑
j∈[Qsk]

(c1
i∗ ⊗ k2

j ) · e>j + (k1
j ⊗ c2

i∗) · e′j
>
. (3)

We claim that {ej , e′j}j∈[Qsk] then satisfies

– Claim 1: (c1
i∗ ⊗ k2

j ) · e>j + (k1
j (0, r̃j , b̃⊗ r̃j)⊗ c2

i∗) · e′>j = 0 for all j ∈ [Qsk].

– Claim 2: there exists j∗ ∈ [Qsk],µ ∈ Zw2
p such that µ 6= 0 and (α̃⊗c2

i∗) ·µ> = (k1
j∗(α̃,0,0)⊗c2

i∗) ·e′>j∗ .

Combining the two claims with the fact that k1
j∗ = k1

j∗(0, r̃j∗ , b̃⊗ r̃j∗) + k1
j∗(α̃,0,0), we have

(α̃⊗ c2
i∗) · µ> = (c1

i∗ ⊗ k2
j∗) · e>j∗ + (k1

j∗ ⊗ c2
i∗) · e′>j∗ .

which contradicts (1, 1) symbolic security since P(X[i∗], Y [j∗]) = 0. It remains to establish Claims 1 and
2 to complete the proof:
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– Fix j ∈ [Qsk]. Claim 1 follows from evaluating (3) on α̃ = 0, r̃j′ = 0 ∀j′ ∈ [Qsk] \ {j}.

– Next, evaluating (3) on r̃j = 0 ∀j ∈ [Qsk] yields

0 6= (α̃⊗ c2
i∗) · e∗> =

∑
j∈[Qsk]

(k1
j (α̃,0,0)⊗ c2

i∗) · e′>j .

Therefore, there exists j∗ ∈ Y such that (k1
j∗(α̃, 0, 0)⊗ c2

i∗) · e′>j∗ 6= 0. Moreover, since the polynomial
k1
j∗(α̃,0,0) is linear in α̃, there exists µ 6= 0 such that (k1

j∗(α̃, 0, 0)⊗ c2
i∗) · e′>j∗ = (α̃⊗ c2

i∗) · µ> and
Claim 2 follows.

Step 2. We show that

span
(
α̃⊗ c2

X

)
∩ span

(
c1
X ⊗ k2

Y ‖ k1
Y ⊗ c2

X

)
= {0} .

As in the previous step, the proof proceeds by contradiction. Suppose the above statement is false, which
means there exist {e∗i ∈ Zw2

p , ei ∈ ZQsk·w1m2
p , e′i ∈ ZQsk·m1w2

p }i∈[Qct] and i∗ ∈ [Qct] such that∑
i∈[Qct]

(α̃⊗ c2
i ) · e∗>i =

∑
i∈[Qct]

(c1
i ⊗ k2

Y ) · e>i + (k1
Y ⊗ c2

i ) · e′>i , (4)

and e∗i∗ 6= 0. We evaluate (4) on s̃i′ = 0 ∀i′ ∈ [Qct] \ {i∗} and get

(α̃⊗ c2
i∗) · e∗>i∗ = (c1

i∗ ⊗ k2
Y ) · e>i∗ + (k1

Y ⊗ c2
i∗) · e′>i∗ .

That is, span
(
α̃⊗ c2

i∗
)
∩ span

(
c1
i∗ ⊗ k2

Y ‖k1
Y ⊗ c2

i∗
)
6= {0}, which contradicts what we showed in Step 1.

Step 3. We now prove (2), which also proceeds by contradiction. Suppose on the contrary that

span
(
α̃⊗ c2

X

)
∩ span

(
α̃‖(1‖b̃‖c1

X‖k1
Y )⊗ (1‖c2

X‖k2
Y )
)
6= {0} .

Then there exist e∗ ∈ ZQct·w2
p , ePK ∈ Z2+n

p , eX ∈ ZQct·(w1+w2+w1w2+nw2)
p , eY ∈ ZQsk·(m1+m2+m1m2+nm2)

p ,
eXY ∈ ZQct·Qsk·(w1m2+m1w2)

p such that

(α̃⊗ c2
X) · e∗> = (1‖α̃‖b̃) · e>PK + (c1

X‖c2
X‖c1

X ⊗ c2
X‖b̃⊗ c2

X) · e>X
+ (k1

Y ‖k2
Y ‖k1

Y ⊗ k2
Y ‖b̃⊗ k2

Y ) · e>Y (5)
+ (c1

X ⊗ k2
Y ‖k1

Y ⊗ c2
X) · e>XY

and e∗ 6= 0. First, we look at the first three terms on the RHS of (5):
– Evaluating (5) on α̃ = 0, r̃Y = 0, and s̃X = 0 yields (1‖0‖b̃) · e>PK = 0.

– Evaluating (5) on α̃ = 0, r̃Y = 0 yields (1‖0‖b̃) · e>PK + (c1
X‖c2

X‖c1
X ⊗ c2

X‖b̃⊗ c2
X) · e>X = 0.

– Evaluating (5) on s̃X = 0 yields (1‖α̃‖b̃) · e>PK + (k1
Y ‖k2

Y ‖k1
Y ⊗ k2

Y ‖b̃⊗ k2
Y ) · e>Y = 0.

Subtracting the first equality from the sum of the second and third implies that the sum of the first three
terms on the RHS of (5) is 0. This means

(α̃⊗ c2
X) · e∗> = (c1

X ⊗ k2
Y ‖k1

Y ⊗ c2
X) · e>XY

which contradicts what we showed in Step 2.

Remark 2 (handling w1 > 1). In the proof of the analogue of Claim 2 in [6], they start with

α̃c2
i∗ [1] =

∑
j∈[Qsk]

(k1
j (α̃,0,0)⊗ c2

i∗) · e′>j .

They show that if w2 = 1 (a requirement mentioned in the proof9 but not in the theorem statement),
then there exists j∗ ∈ Y such µ · c2

i∗ [1] = k1
j∗(1,0,0)⊗ c2

i∗ · e′>j∗ and µ 6= 0. However, if we allow w2 > 1,
then this claim does not hold in general. In particular, it could be that for all j, c2

i∗ [1] only appears in a
linear combination with other elements of c2

i∗ , which then all together sum up to c2
i∗ [1]. For this reason,

we need to strengthen our definition accordingly.
9 On page 662, they wrote "since we assumed w1 = 0". Here, c2(s̃) corresponds to −→S = (S0, . . . , Sw1 ) in [6].
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5 Optimal ABE Security in the GGM

We prove symbolic security of PES-ABE implies optimal, adaptive security in the generic group model
(GGM). For that, we first recall the generic group model.

5.1 Generic Group Model

In the generic group model, an adversary can perform group operations only via oracle access. We adopt
the model by Maurer [42] extended to the pairing group setting, where apart from the group operation,
the adversary can also compute the pairing via an oracle. A third party implements the pairing group
and maintains a list for G1, G2 and GT . Each list stores group elements of queries by the adversary.
Depending on the query, one or multiple entries are appended to the different lists. The adversary can
access each entry of the lists by a handle, which is a list index i ∈ N and a list identifier s ∈ {1, 2, T}. It
can also perform equality queries to check if two entries of the same list contain the same group element.

In game G0 in Figure 2, we model the ABE security game from Section 2.2 in the GGM. That is, the
adversary also gets access to oracles Ompk, Oct and Osk. On each query, the corresponding oracle returns
the current length of all modified lists from which the adversary can deduce the corresponding handles
since length of ciphertexts and secret keys follow from the definition of the scheme. Furthermore, we
model the hash function in our scheme as random oracle, so we additionally provide an oracle H, which
also modify the lists. The adversary can then use these indices in further group operation and equality
queries as described above.

5.2 Security

The following theorem states that symbolic security implies optimal, adaptive security in GGM.

Theorem 1. Let λ ∈ N be the security parameter and A be an adversary that on input (1λ, p) makes
Qadd, Qpair, Qct, Qsk, Qeq queries to oracles Oadd, Opair, Oct, Osk, Oeq and QH queries to the random
oracle H. If PES-ABE is (1,1) symbolically secure (Definition 2), then it is adaptively Many-CT secure
in the GGM. In particular,

AdvGGM
ABE,A(λ) ≤ 3 · (QH + (w′ + 1) ·Qct +m′ ·Qsk +Qadd +Qpair)2

p
,

where w′ := w1 + w2 and m′ := m1 +m2.

We first recall a useful lemma that is commonly used to prove security in the GGM.

Lemma 2 (Schwartz-Zippel Lemma). For any prime p and t ∈ N∗, any polynomial f ∈ Zp[x̃1, . . . , x̃t]
of degree d > 0,

Pr[f(x) = 0] ≤ d

p
,

where the probability is taken over x $← Ztp.

We will now state the full proof of Theorem 1. In fact, it is similar to that in [6, Theorem 3.3]. The
latter only considers single-ciphertext ABE security, and achieves an additional loss of Qsk, since they
apply Schwartz-Zippel to polynomials of degree Qsk in order to handle rational fractions arising in their
schemes.

Proof. The proof will be done by a hybrid argument over the queries to oracle Oeq. The first hybrid G0
is the many-CT CPA security game for the ABE scheme in the generic group model. We will proceed in
two main steps.

1. In each hybrid, we replace the check whether two elements are equal by checking whether their
corresponding polynomials are equal;

2. in the last game GQeq , we use the symbolic security property of the ABE scheme to show that outputs
are independent of the challenge bit β.

Now consider the games G0-GQeq given in Figure 2. In the following we denote the advantage of adversary
A in Gµ by Advµ.
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Games {Gµ}µ∈[0,Qeq]

00 i = j := 0, ν := 0, X = Y = H := ∅
01 for s ∈ {1, 2, T}: Ls := ∅, L∼s := ∅
02 β $← {0, 1}
03 β′ ← AOmpk,Oadd,Opair,Oct,Osk,Oeq,H(1λ, p)
04 return Jβ = β′K and

JP(X[i], Y [j]) = 0 ∀i ∈ [Qct], j ∈ [Qsk]K

Ompk � first query, only once
05 n← Param
06 (α,b) $← Zp × Znp , (α̃, b̃)← Var × Varn

07 L1.append(1), L2.append(1), LT .append(α)

08 L∼1 .append(1), L∼2 .append(1), L∼T .append(α̃)
09 return |L1|, |L2|, |LT |

Oadd(s ∈ {1, 2, T}, i′, j′ ∈ N)
10 Ls.append(Ls[i′] + Ls[j′])
11 L∼s .append(L∼s [i′] + L∼s [j′])
12 return |Ls|

Opair(i′, j′ ∈ N)
13 LT .append(L1[i′] · L2[j′])
14 L∼T .append(L∼1 [i′] · L∼2 [j′])
15 return |LT |

Oeq(s ∈ {1, 2, T}, i′, j′)
16 ν := ν + 1
17 if ν ≤ µ : return L∼s [i′] = L∼s [j′]
18 return Ls[i′] = Ls[j′]

Oct(x ∈ X )
19 (c1

i (s̃i ⊗ b̃), c2
i (s̃i))← Enc0(x)

20 si $← Zwp , s̃i ← Varw

21 d
(0)
i := αsi[1], d(1)

i := ωi
$← Zp

22 d̃
(0)
i := α̃s̃i[1], d̃(1)

i := ω̃i ← Var
23 L1.append(c1

i (si ⊗ b)), L2.append(c2
i (si)), LT .append(d(β)

i )

24 L∼1 .append(c1
i (s̃i ⊗ b̃)), L∼2 .append(c2

i (s̃i)), L∼T .append(d̃(β)
i )

25 X.append(x), i := i+ 1
26 return |L1|, |L2|, |LT |

Osk(y ∈ Y)
27 (k1

j (α̃, r̃j , b̃⊗ r̃j), k2
j (r̃j))← KeyGen0(y)

28 rj $← Zmp , r̃j ← Varm

29 L1.append(k1
j (α, rj ,b⊗ rj)), L2.append(k2

j (rj))

30 L∼1 .append(k1
j (α̃, r̃j , b̃⊗ r̃j)), L∼2 .append(k2

j (r̃j))
31 Y.append(y), j := j + 1
32 return |L1|, |L2|

H(u)

33 L1.append(b[u]) , L∼1 .append(b̃[u])
34 H := H ∪ {u}
35 return |L1|

Fig. 2: Games Gµ for µ ∈ [0, Qeq] for the proof of Theorem 1. Note that the games only differ in oracle Oeq
(which depends on µ). Here, G0 corresponds to the GGM experiment that makes only use of components
in light gray frames, whereas GQeq makes only use of components in dark gray frames. W.l.o.g. we assume
that no query to Oadd,Opair,Oeq contains indices i′, j′ ∈ N which exceed the size of the involved lists.

Game G0. This game captures the ABE security experiment for PES-ABE as described in Section 3 in
the generic group model, thus

Adv0 = AdvGGM
ABE,A(λ) .

We use lists L1, L2 and LT to store scalars in Zp which correspond to public parameters, ciphertexts
and secret keys in G1, G2 and GT , respectively. To keep track of queries to Oct and Osk, we store them
in lists X and Y .

We also already store polynomials in separate lists which we denote by L∼1 , L∼2 and L∼T . As in the
previous section, we label formal variables with a tilde, e.g. α̃ is the formal variable corresponding to the
master secret key α ∈ Zp. Note that in Ompk we already define formal variables b̃i for all i ∈ U , but they
are only added to L1, when the random oracle is queried on i. All queries to H are additionally stored
in a set H.

Game {Gµ}µ∈[Qeq]. We now proceed using a hybrid argument. Note that the only difference between Gµ−1
and Gµ lies in how we answer the µ-th query to oracle Oeq: in Gµ−1, we are using LT thus comparing
scalars, and in Gµ, we are using L∼T and thus comparing polynomials. Let (s, i, j) denote the µ-th query
to oracle Oeq. We claim that

|Advµ−1 − Advµ| ≤ Pr[(Ls[i′] 6= Ls[j′]) ∧ (L∼s [i′] = L∼s [j′])] ≤ 3
p
.

where the randomness is over α $← Zp, b $← Znp , si $← Zwp , rj $← Zmp , ωi $← Zp. Let d̃(β)
X := (d̃(β)

1 ‖ · · · ‖d̃
(β)
|X|)

and define c1
X , c2

X ,k1
Y ,k2

Y as in Definition 2.
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It is easy to see that:

L∼1 ⊆ span
(Ompk︷︸︸︷

1 ‖
H︷︸︸︷
b̃ ‖

Oct︷︸︸︷
c1
X ‖

Osk︷︸︸︷
k1
Y

)
L∼2 ⊆ span

(Ompk︷︸︸︷
1 ‖

Oct︷︸︸︷
c2
X ‖

Osk︷︸︸︷
k2
Y

)
L∼T ⊆ span

( Oct︷︸︸︷
d̃(β)
X ‖

Ompk︷︸︸︷
α̃ ‖

Opair︷ ︸︸ ︷
(1‖b̃‖c1

X‖k1
Y )⊗ (1‖c2

X‖k2
Y )
)

(6)

where span
(
·
)
captures queries to Oadd. Since c1

X ,k1
Y have degrees at most 2 and c2

X ,k2
Y have degrees at

most 1, the polynomials in L∼1 , L∼2 and L∼T have degrees at most 1, 2 and 3 respectively (in the formal
variables α̃, b̃, s̃X , r̃Y , ω̃X). The claim then follows readily from the Schwartz-Zippel Lemma.

Game GQeq . We show that AdvQeq = 0. In particular, we claim that the view of the adversary in GQeq is
independent of the challenge bit β. Observe that the only leakage about β is the output of Oeq on a query
of the form (T, i′, j′). By (6), there exists ei′ , ej′ ∈ ZQct

p and vi′ ,vj′ ∈ span
(
α̃‖(1‖b̃‖c1

X‖k1
Y )⊗(1‖c2

X‖k2
Y )
)

such that

L∼T [i′] = d̃(β)
X · e>i′ + vi′ , L∼T [j′] = d̃(β)

X · e>j′ + vj′ .

It suffices to show that
L∼T [i′] = L∼T [j′]⇐⇒ ei′ = ej′ ∧ vi′ = vj′

since the RHS is independent of β.
First, we show that for both cases β = 0 and β = 1, it holds that

span
(
d̃(β)
X

)
∩ span

(
α̃‖(1‖b̃‖c1

X‖k1
Y )⊗ (1‖c2

X‖k2
Y )
)

= {0} , (7)

where d̃(0)
X = (α̃s̃1[1]‖ · · · ‖α̃s̃Qct [1]) and d̃(1)

X = (ω̃1‖ · · · ‖ω̃Qct).
– We first look at the case β = 1. Obviously, (7) holds since ω̃i are fresh random variables for all

challenges and do not appear anywhere else.
– For β = 0 first note that since c2

i [1] = si[1], we have

span
(
d̃(0)
X

)
⊆ span

(
α̃⊗ c2

X

)
.

Hence, (7) holds due to strong symbolic security of the ABE scheme, which in turn follows from
(1, 1) symbolic security via Lemma 1.

From (7), we have
L∼T [i′] = L∼T [j′]⇐⇒ d̃(β)

X · e>i′ = d̃(β)
X · e>j′ ∧ vi′ = vj′ .

It remains to argue that for both β = 0 and β = 1

d̃(β)
X · e>i′ = d̃(β)

X · e>j′ ⇐⇒ ei′ = ej′ .

This follows from the fact that all terms in d̃(β)
X are mutually independent. For this, note that s̃i[1] as

well as ω̃i are mutually independent for all i and we get AdvQeq = 0.

Summing everything up, we obtain
AdvGGM

ABE,A(λ) ≤ 3 ·Qeq
p

.

Then, observing that

Qeq ≤ (|L1|+ |L2|+ |LT |)2

≤ (QH + (w1 + w2 + 1) ·Qct + (m1 +m2) ·Qsk +Qadd +Qpair)2

yields the bound stated in the theorem.
Note that the upper bound on Qeq comes from the number of elements the adversary observes during

the GGM experiment. Thus, Qeq ≤ (|L1|+ |L2|+ |LT |)2 which corresponds to the fact that a real-world
adversary can detect collisions amongst the group elements it has seen so far in time quasi-linear in
|L1|+ |L2|+ |LT | via sorting, but needs to make (|L1|+ |L2|+ |LT |)2 queries to Oeq to detect collisions.
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6 Our Schemes: Putting Everything Together

We now show that the FABEO CP-ABE and KP-ABE schemes for monotone span programs described in
Figure 1 satisfy the PES-ABE framework and (1, 1) symbolic security described in Section 2.2. Combined
with the statements from Lemma 1 and Theorem 1, this establishes optimal, adaptive security of our CP-
ABE and KP-ABE schemes in GGM (Corollaries 1 and 2). Nonetheless, we additionally prove selective
security of our CP-ABE and KP-ABE schemes under the more conservative q-type assumptions in
Appendix B.

6.1 CP-ABE

Our CP-ABE scheme is shown in Figure 1. It builds upon the pair encoding scheme 11 in [7] and that
in Appendix B.1 in [3] and extends them by attribute hashing and multi-use of attributes. In particular,
we can describe the underlying PES-ABE as follows.

– Setup0. Output n := |U|+ 1.

– Enc0(M, π). Set w = n1 + τ , w1 = n1, w2 = τ + 1, and output (c1, c2) where we parse s as (s1‖v‖s′)
and

c1(s⊗ b) := (Mi(s1‖v)> · b[|U|+ 1] + s′[ρ(i)] · b[π(i)])i∈[n1],

c2(s1) := (s1‖s′)

– KeyGen0(S). Set m = 1, m1 = |S|+ 1, m2 = 1, and output (k1, k2) where we parse r as (r) and

k1(α, r,b⊗ r) := (α+ rb[|U|+ 1]‖(rb[u])u∈S),
k2(r) := (r)

Correctness. Let ct = (ct1, (ct2,j)j∈[τ ], (ct3,i)i∈[n1]) be a ciphertext for (M, π) and sk = (sk1, (sk2,u)u∈S , sk3)
be a secret key for S as defined in Figure 1. Further let b[u] such that H(u) = g

b[u]
1 and b′ such that

H(|U| + 1) = gb
′

1 . If S satisfies (M, π), then there exist constants (γi)i∈[n1] such that
∑
i∈I γiMi =

(1, 0, . . . , 0) and decryption computes

(1) e(gα1 · H(|U|+ 1)r, gs1
2 ) = [αs1 + b′rs1]T

(2)
∏
j∈[τ ] e(

∏
i∈I,ρ(i)=j H(π(i))γir, gs′[j]

2 ) = [r
∑
j∈[τ ]

∑
i∈I,ρ(i)=j γib[π(i)]s′[j]]T

(3) e(
∏
i∈I(H(|U|+1)γiMi(s1‖v)> ·H(π(i))γis′[ρ(i)]), gr2) = [br′

∑
i∈I

γiMi((s1‖v)>︸ ︷︷ ︸
=s1

]T ·[r
∑
i∈I

γib[π(i)]s′[ρ(i)]]T︸ ︷︷ ︸
=(2)

Note that by definition of ρ, (2) and the second term of (3) are the same. Thus computing (1) · (2)/(3)
yields d = [αs1]T .

Symbolic Security. We need to show that for all (M, π) ∈ X , S ∈ Y such that P((M, π),S) = 0, it holds
that

span
(
α̃⊗ (s̃1‖s̃′)

)
∩ span

(
(Mi(s̃1, ṽ)>b̃′ + s̃′[ρ(i)]b̃[π(i)])i∈[n1] ⊗ r̃‖(α̃+ r̃b̃′‖(r̃b̃[u])u∈S)⊗ (s̃1‖s̃′)

)
= {0} ,

where we define b̃′ := b̃[|U|+ 1].
We prove this property by contradiction. So assume there exists e∗ ∈ Z2

p, e, e′(1), e′(2), e′(3) such that
e∗ 6= 0 and

(α̃⊗ (s̃1‖s̃′)) · e∗> = (Mi(s̃1‖ṽ)>b̃′r̃ + s̃′[ρ(i)]b̃[π(i)]r̃)i∈[n1] · e> + ((α̃+ r̃b̃′)⊗ (s̃1‖s̃′)) · e′(1)>

+ ({r̃b̃[u]s̃1}u∈S) · e′(2)> + ({r̃b̃[u]⊗ s̃′}u∈S) · e′(3)> .
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Now we use the fact that P((M, π),S) = 0. Recall that this means that there exists a vector w ∈ Zn2
p

such that 〈w,Mi〉 = 0 for all π(i) ∈ S and that w[1] = 1. So evaluating on (s̃1‖ṽ) = w gives us

(α̃⊗ (1‖s̃′)) · e∗> = (s̃′[ρ(i)]b̃[π(i)]r̃)i∈[n1],π(i)∈S · e> + (Miw>b̃′r̃ + s̃′[ρ(i)]b̃[π(i)]r̃)i∈[n1],π(i)/∈S · e>

+ ((α̃+ r̃b̃′)⊗ (1‖s̃′)) · e′(1)> + (r̃b̃[u])u∈S · e′(2)> + (r̃b̃[u]⊗ s̃′)u∈S · e′(3)> ,

where we split e into two vectors e ∈ Z|S|p and e ∈ Zn1−|S|
p , capturing those rows of M that belong

to u ∈ S and those that do not belong to an attribute in S. Note that the monomials {r̃b̃[u] ⊗ s̃′}u∈S
only appear in the first and the last term. By definition of ρ, the monomials s̃′[ρ(i)]b̃[π(i)]r̃ in the first
term are mutually distinct. Thus, we must have e[i] = −e′(3)[j] for all i ∈ [n1] such that π(i) ∈ S and
unique indices j, while all other entries in e′(3) must be 0. Further looking at monomials on the RHS,
s̃′[ρ(i)]b̃[π(i)]r̃ for π(i) /∈ S and r̃b̃[u] for u ∈ S are also mutually distinct and only appear in one of the
terms, thus e as well as e′(2) must be 0. Therefore, the following equation must be satisfied

(α̃⊗ (1‖s̃′)) · e∗> = ((α̃+ r̃b̃′)⊗ (1‖s̃′)) · e′(1)> ,

which leads to a contradiction that e∗ 6= 0 since r̃b̃′ only appears on the RHS.

Corollary 1. Let λ ∈ N be the security parameter and A be an adversary that on input (1λ, p) makes
Qop group operation queries to oracles Oadd and Opair, as well as Qct, Qsk queries to oracles Oct, Osk,
and QH queries to the random oracle H. CP-ABE is adaptively secure in the GGM such that

AdvGGM
CP-ABE,A(λ) ≤ 3 · (QH + (n1 + 3) ·Qct + (|S|+ 2) ·Qsk +Qop)2

p
,

where |S| is the maximum size of the attribute sets queried to Osk and n1 is the maximum number of
rows of M queried to Oct.

6.2 KP-ABE

Our KP-ABE scheme is shown in Figure 1. It builds upon the pair encoding scheme 9 in [7] and that in
Appendix B.1 in [3] and extends them by attribute hashing and multi-use of attributes. The underlying
PES-ABE can be described as follows.

– Setup0. Output n := |U|.

– Enc0(S). Set w = 1, w1 = |S|, w2 = 1, and output (c1, c2) where we parse s as (s) and

c1(s⊗ b) := (sb[u])u∈S , c2(s1) := (s)

– KeyGen0(M, π). Set m = τ + n2 − 1, m1 = n1, m2 = τ , and output (k1, k2) where we parse r as
(r′‖v), and and output

k1(α, r,b⊗ r) := (Mi(α‖v)> + r′[ρ(i)]b[π(i)])i∈[n1]

k2(r) := (r′)

Correctness. Let ct = ((ct1,u)u∈S , ct2) be a ciphertext for S and sk = ((sk1,j)j∈[τ ], (sk2,i)i∈[n1]) be a
secret key for (M, π) as defined in Figure 1. Further let b[u] such that H(u) = g

b[u]
1 . If S satisfies (M, π),

then there exist constants (γi)i∈[n1] such that
∑
i∈I γiMi = (1, 0, . . . , 0) and decryption computes

(1) e(
∏
i∈I(g

Mi(α‖v)>
1 · H(π(i))r′[ρ(i)])γi , gs2) = [s

∑
i∈IγiMi(α‖v)>︸ ︷︷ ︸

=α

]T · [s
∑
i∈Iγib[π(i)]r′[ρ(i)]]T︸ ︷︷ ︸

=(2)

(2)
∏
j∈[τ ] e(

∏
i∈I,ρ(i)=j H(π(i))γis, gr′[j]

2 ) = [s
∑
j∈[τ ]

∑
i∈I,ρ(i)=j γib[π(i)]r′[j]]T

Note that by definition of ρ, the second term of (1) is the same as (2). Thus computing (1)/(2) yields
d = [αs]T .
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Symbolic Security. Since |s̃| = 1, we need to show that for all S ∈ X , (M, π) ∈ Y such that P(S, (M, π)) =
0, it holds that

α̃s̃ /∈ span
(
(s̃b̃[u])u∈S ⊗ r̃‖(Mi(α̃‖ṽ)> + r̃[ρ(i)]b̃[π(i)])i∈[n1] ⊗ s̃

)
.

We prove this property by contradiction. So assume there exists e, e′ such that

α̃s̃ = (s̃b̃[u]⊗ r̃)u∈S · e> + (Mi(α̃‖ṽ)>s̃+ r̃[ρ(i)]b̃[π(i)]s̃)i∈[n1] · e′> .

Now we use the fact that P(S, (M, π)) = 0. Recall that this means that there exists a vector w ∈ Zn2
p

such that 〈w,Mi〉 = 0 for all π(i) ∈ S and that w[1] = 1. So evaluating on (α‖ṽ) = w gives us

α̃s̃ = (s̃b̃[u]⊗ r̃)u∈S · e> + (r̃[ρ(i)]b̃[π(i)]s̃)i∈[n1],π(i)∈S · e′>

+ (Mi(α̃‖ṽ)>s̃+ r̃[ρ(i)]b̃[π(i)]s̃)i∈[n1],π(i)/∈S · e′> .

where we split e′ into two vectors e′ ∈ Z|S|p and e′ ∈ Zn1−|S|
p , capturing those rows of M that belong

to attributes u ∈ S and those that do not belong to an attribute in S. Note that the monomials
{s̃b̃[u]⊗ r̃}u∈S only appear in the first two terms. By definition of ρ, the monomials r̃[ρ(i)]b̃[π(i)]s̃ in the
second term are mutually distinct. Thus, we must have e′[i] = −e[j] for all i ∈ [n1] such that π(i) ∈ S
and unique indices j, while all other entries in e must be 0. Therefore, the following equation must be
satisfied as well

α̃s̃ = (Mi(α̃‖ṽ)>s̃+ r̃[ρ(i)]b̃[π(i)]s̃)i∈[n1],π(i)/∈S · e′> .

However, this leads to a contradiction since the monomials (r̃[ρ(i)]b̃[π(i)]s̃)π(i)/∈S are mutually distinct
and only appear on the RHS.

Corollary 2. Let λ ∈ N be the security parameter and A be an adversary that on input (1λ, p) makes
Qop group operation queries to oracles Oadd and Opair, as well as Qct, Qsk queries to oracles Oct, Osk,
and QH queries to the random oracle H. KP-ABE is adaptively secure in the GGM such that

AdvGGM
KP-ABE,A(λ) ≤ 3 · (QH + (|S|+ 2) ·Qct + (n1 + 1) ·Qsk +Qop)2

p
,

where |S| is the maximum size of the attribute sets queried to Oct and n1 is the maximum number of
rows of M queried to Osk.

7 Implementation and Evaluation

We use two metrics to compare our scheme with prior work, the first is in terms of efficiency and the
second is in terms of tightness.

7.1 Efficiency

We implemented several ABE schemes in Python 2.7.12 using the Charm 0.43 framework [4] and the
MNT224 curve for pairings.10 We ran the schemes on a Lenovo Thinkpad Yoga X1 laptop with a 1.80GHz
Intel Core i7-10510U CPU and 16GB RAM. Our implementation extends the code of Agrawal and Chase
[1] and we provide the implementation on GitHub [44]. In particular, we compare the CP-ABE and KP-
ABE schemes described in Table 1.

All schemes are implemented in the asymmetric setting. Agrawal and Chase already transferred the
original constructions of BSW, Waters and GPSW that use symmetric bilinear maps to the asymmetric
setting [2, Appendices D-F]. Apart from our schemes, we additionally implement the unbounded CP-ABE
and KP-ABE of ABGW, see Appendix C for a self-contained description.

In our experiment, we use access policies of the form “Attr1 and Attr2 and ... and AttrN” for
N ∈ {10, 20, . . . , 100} without re-use (i.e., τ = 1). This way, |S| = n1 = n2 := N and all attributes
are used in decryption. As [2], we first convert the policies into a Boolean formula and then to an MSP
using the Lewko-Waters’ method [38]. This way, the matrix M has only entries in {0, 1,−1} and the
reconstruction coefficients are always 0 or 1, reducing the number of exponentiations.
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Fig. 3: Running times for CP-ABE (top) and KP-ABE (bottom) schemes. We use one-use formulas
(i.e., τ = 1). In particular, for 100 attributes, CP-ABE decryption takes 0.016s in FABEO and 0.032s in
FAME, and KP-ABE decryption takes 0.011s in FABEO and 0.031s in FAME.

In Figure 3, we show the average running times for the key generation, encryption and decryption
algorithms. For additional reference, the average execution time for different group operations on the
MNT224 curve is summarized in Table 2. All our experiments compute the average time in 20 executions.
It is worth noting that each algorithm of our two schemes performs better or comparatively the same as
all the others. These results are supported by our theoretical overview in Table 3 which lists the number
of multiplications and exponentiations for each group as well as the number of hashing and pairing
operations. Recall also that exponentiation in G2 is much slower than in G1 and the pairing operation
is comparatively expensive. Additionally, we provide the number of group elements of secret keys and
ciphertexts in Table 5. Since in general elements in G2 are about 2 to 3 times the size of elements in
G1, our keys and ciphertexts always achieve the same size or even improve considerably upon the other
schemes. We provide a more detailed explanation on running times and sizes below.

One-use restriction. FAME has a one-use restriction described in [2, Section 4]. A common way to work
around this problem is to make τ̂ copies of each attribute, for some τ̂ chosen at set-up11; this way, FAME
can support τ̂ -use MSPs. The downside of this transformation is that in the CP-ABE, the size of the
10 The implementations in FAME and ABGW also use the Charm framework. Unfortunately, the PBC library

used in Charm does not support BLS12-381.
11 For FAME and more generally, “unbounded” ABE schemes, this parameter could also be chosen on on a

per-key basis during key generation for CP-ABE, or a per-ciphertext basis during encryption for KP-ABE

Groups Multiplication Exponentiation Hash Pairing
G1 .002 .638 .040 3.836
G2 .017 4.717 12.342
GT .005 1.078 -

Table 2: Average time (in milliseconds) for operations on the MNT224 curve.
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Key generation Encryption Decryption
G1 G2 G1 G2 G1 GT

Schemes Mul Exp Hash Mul Exp Mul Exp Hash Mul Exp Mul Mul Pair
BSW m+ 1 m+ 2 m - m - n1 n1 - n1 + 1 - 2I + 1 2I + 1
Waters 1 m+ 1 - - 1 n1 2n1 - - n1 + 1 I I + 2 I + 2
FAME 6τ̂m+ 9 9τ̂m+ 9 6τ̂m+ 6 - 3 6n1n2 + 3n1 6n1 6n1 + 6n2 - 3 6I + 3 6 6
ABGW - - - - 2m+ 1 2n1 5n1 - - - 2I I + 2 I + 2
Ours 1 m+ 2 m+ 1 - 1 n1 2n1 n1 + 1 - τ + 1 2I τ + 2 τ + 2
GPSW - - - - n1 - m - - - - I I

FAME 9n1n2 + 3n1 9n1 + 3n2 6n1 + 6n2 - 3 3τ̂m 6τ̂m 6τ̂m - 3 6I 6 6
ABGW - - - - 2n1 2m 3m+ 1 - - - - 2I 2I
Ours n1 2n1 n1 - τ - m m - 1 2I τ + 1 τ + 1

Table 3: Number of group operations in G1 and G2 for key generation and encryption of CP-ABE (top)
and KP-ABE (bottom) schemes. m denotes the number of attributes in the set S, n1 and n2 are the
number of rows and columns of the MSP matrix and τ denotes the maximum number of multi-use. I
denotes the number of attributes used in decryption (counted with multiplicity). Note that τ ≤ I. The
experiments and most comparison in the text consider τ̂ = τ = 1.

keys grow by a factor of τ̂ though encryption and decryption time are not affected. Similarly, in the
KP-ABE, the ciphertexts and encryption time grow by a factor of τ̂ . We explicitly account for τ̂ when
describing FAME in our comparison tables. For applications where τ may be large and fast decryption
is paramount, we can apply the same transformation to our schemes so that decryption only requires
2-3 pairings. For this reason, the experiments and most comparison in the text consider τ̂ = τ = 1. A
follow-up to FAME by Tomida, Kawahara and Nishimaki (TKN) [49] shows how to remove the one-use
restriction using techniques from [36], paying a multiplicative factor τ in the number of pairings required
for decryption, and a much larger security loss in the reduction to DLIN. The TKN scheme essentially
coincides with FAME when τ = 1, and for larger τ , remains at least 2-3 times less efficient than FABEO.
All of our experiments are for τ = 1, hence the omission of TKN.

Setup. In Table 4, we show the setup time of all schemes listed in our evaluation. For schemes, where the
universe size is bounded, we used the minimal bound N . Both our schemes have the shortest setup times
(around 0.14s), however all schemes that support large universes are almost equally fast. The universe
size of Waters and GPSW are bounded, thus the time increases with the universe size and for N = 100,
they are about 3-7 times slower than the other schemes.

CP-ABE. Looking at running times of CP-ABE schemes given in Figure 3, only the key generation time
of Waters CP-ABE can compete with ours, being only slightly faster (<0.01s for all test samples). This
is due to the fact that the number of operations performed by Waters and our scheme are essentially the
same. Whereas for our scheme it takes only 0.09s to generate a key for a set of 100 attributes, it takes at
least 7 times longer for BSW, ABGW and FAME. This can be explained by that the fact that ABGW
and BSW both perform exponentiations in G2 that are linear in the number of attributes (cf. Table 3).
Also it is easy to see that FAME is around 9 times slower than our scheme because of the number of
exponentiations in G1.

Scheme Uni size Time (s)
BSW - 0.025
Waters 100 0.096
ABGW - 0.016
FAME - 0.030
Ours - 0.014

Scheme Uni size Time (s)
GPSW 100 0.095
ABGW - 0.015
FAME - 0.030
Ours - 0.013

Table 4: Setup times for CP-ABE (left) and KP-ABE (right) schemes.
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Key size Ciphertext size
Schemes G1 G2 G1 G2

BSW m+ 1 m n1 n1 + 1
Waters m+ 1 1 n1 n1 + 1
FAME 3τ̂m+ 3 3 3n1 3
ABGW - m+ 2 3n1 -
Ours m+ 1 1 n1 τ + 1
GPSW - n1 m -
FAME 3n1 3 3τ̂m 3
ABGW - 2n1 2m -
Ours n1 τ m 1

Table 5: Key and ciphertext sizes of CP-ABE (top) and KP-ABE (bottom) schemes. The columns G1
and G2 denote the number of elements in the respective group (in general, |G2| ≥ 2|G1|). m denotes the
number of attributes in the set S, n1 and n2 are the number of rows and columns of the MSP matrix
and τ denotes the maximum number of multi-use. The experiments consider τ̂ = τ = 1.

The encryption times vary a bit more, with our scheme being the fastest (0.18s for policies of 100
attributes), followed by ABGW and FAME, which are around 2 and 3 times slower. This also shows
up in Table 3 and the number of exponentiations in G1. BSW and Waters both perform n1 number of
exponentiations in G2, therefore they are the least efficient schemes here.

FAME is the only other scheme that supports fast decryption which does not depend on the number
of attributes. Without multi-use of attributes, our scheme is still 2 times faster than FAME. We can see
this also in Table 3, since FAME performs 6 pairing operations and our scheme 3 (for τ = 1). For both
FAME and our scheme, decryption that uses 100 attributes takes less than 0.04s, whereas it takes almost
0.5s for ABGW and Waters. Those schemes need to perform a pairing operation for each attribute that
is used in decryption.

KP-ABE. Looking at KP-ABE, the key generation time of our scheme is much lower than for all the
others. Compared to GPSW and ABGW this can be explained by the fact that these two schemes perform
all exponentiations in G2 instead of G1, whereas our scheme only performs τ (and therefore 1 operation
in our experiment) in G2. On the other hand, the number of exponentiations in FAME depends on n1
and n2 and thus is already around 6 times higher than for our scheme. Therefore, in our scheme it takes
less than 0.2s for a policy size of 100, whereas GPSW needs more than half a second and FAME and
ABGW more than a second. In terms of encryption time, GPSW is slightly below that of our scheme
(around 0.01s), but both are around twice as fast as ABGW and considerably faster than FAME. This
can be justified by the constant factors in the number of exponentiations in G1 in Table 3. For decryption
we get the same results as in the CP-ABE case since GPSW and ABGW do not support fast decryption
and need to perform pairing operations that are linear in the number of attributes.

Key and Ciphertext Sizes. In Table 5, we also show the number of group elements of secret keys and
ciphertexts. Note that in general, elements in G2 are about 2 to 3 times the size of elements in G1. The
secret keys of our CP-ABE scheme consist of m+1 elements in G1 and only 1 element in G2, which is the
same as in Waters. BSW uses fresh randomness for all attributes, thus their keys additionally include m
elements in G2. The number of group elements of keys in ABGW is the same as for our scheme, however
all group elements are in G2, which makes secret keys about three times larger. Secret keys in FAME
are also three times larger since they consist of more group elements. The ciphertext sizes of BSW and
Waters are exactly the same, requiring about the same number of elements in G1 and G2. Our scheme
allows randomness reuse and therefore only needs τ + 1 additional elements in G2. ABGW and FAME
both need around 3 times more elements than our scheme. Looking at KP-ABE, the advantage of our
scheme is that most elements of the secret keys are in G1, as is the case for FAME, which again requires
around 3 times more elements. Secret keys in GPSW and ABGW contain only elements in G2. The
ciphertext of our scheme is comparable to that of GPSW and about 2 resp. 3 times smaller than those
of ABGW and FAME.
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Resources Bit Security
t Qsk Qct ABGW FAME BSW Ours

240 220 220 2−176 2−176 2−196 2−216

240 210 230 2−176 2−176 2−196 2−216

260 230 230 2−136 2−136 2−166 2−196

260 220 240 2−136 2−136 2−156 2−196

280 240 240 2−96 2−96 2−136 2−176

280 230 250 2−96 2−96 2−126 2−176

2128 240 240 2−48 2−48 2−88 2−128

2128 230 250 2−48 2−48 2−78 2−128

Table 6: Bit security of ABE schemes depending on the adversary’s running time t and number of secret
key queries Qsk and ciphertext queries Qct. Bit security is defined as Adv/t, where we use p = 2256. The
values coincide for CP-ABE and KP-ABE schemes. For ABGW and FAME we use Adv = O(QctQskt

2/p),
for BSW we use Adv = O(Qctt

2/p) and for ours we use Adv = O(t2/p) (cf. evaluation).

7.2 Bit Security based on Tightness

Whereas considering multiple secret key queries in the security definition is considered standard in terms
of ABE security, we additionally consider many ciphertext or challenge queries in our security proof. The
two definitions are polynomially equivalent, but the non-trivial implication from one to many ciphertexts
incurs a security loss linear in the number of ciphertext queries. On the contrary, if the security loss is
only constant, we say that the bound is tight, as is the case for our bounds. The security loss plays an
important role in choosing the system parameters of the scheme, e.g., the size of the underlying pairing
group which provides a determined level of security, which is usually stated in bits. Further, we can define
the success ratio of an adversary A by its advantage Adv and its running time t. For λ-bit security, we
then require that Adv/t ≤ 2−λ. From this value, we can then deduce whether a concrete instantiation
provides the desired security level.

In Table 6, we compute the bit security of our scheme, as well as ABGW, FAME and BSW in
different scenarios, that is we use different numbers of secret key and ciphertext queries. The running
time t captures the offline time of an adversary, e.g. to perform group operations or also to evaluate a hash
function (thus including random oracle queries). We assume t to be rather large, whereas secret key and
ciphertext queries are considered online running time and therefore considerably lower. The advantage
also depends on the order of the underlying group and for our comparison we assume p = 2256. Since
a discrete logarithm attack on the elliptic curve group yields a bound O(t2/p), this parameter choice is
based on a security level of around 128 bit and this should be the target for the bit security of the ABE
schemes as well.

We consider four different scenarios from small-scale to large-scale adversaries, based on the running
time t ∈ {240, 260, 280, 2128}. For each scenario, we choose the number of secret key queries Qsk and
ciphertexts Qct accordingly, once for Qct = Qsk and once for Qsk < Qct, since in practice an adversary
may easily observe a large number of ciphertexts, rather than a large number of keys.

Evaluation. We omit Waters and GSPW here as those schemes are only selectively secure. The numbers
in Table 6 are based on the security bounds stated in the corresponding papers as well as an additional
hybrid argument on the number of ciphertexts as mentioned above. In particular, the security bounds
that we use in our comparison in Table 6 can be explained as follows.

– ABGW: Similar to our work, ABGW uses a pair encoding approach and proves security in the the
GGM. However, the use of rational fractions does not allow for the optimal bound and they get an
advantage of O(QctQskt

2

p ), where the additional factor Qct comes from the hybrid argument.

– FAME: The schemes achieve security under the DLIN assumption using the dual system encryption
framework, which also incurs a security loss in the number of secret keys. Since they also only consider
the single-ciphertext setting, they achieve the same bound as ABGW, namely O(QctQskt

2

p ).
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– BSW: The scheme in BSW is proven secure in the GGM and single-ciphertext setting, thus there is
no security loss in the number of secret keys. We get O(Qctt

2

p ) to account for many ciphertexts as
well.

– Ours: Since we prove security directly in the many-ciphertext setting and in the GGM, we achieve
the optimal bound O( t

2

p ).

Although all schemes meet the target bound in a small to medium-scale scenario (cf. Table 6), one can
already observe the gap between the theoretical security level of ABGW or FAME and that of our
schemes, which comes from their lose bounds. This becomes now relevant in the large-scale scenarios.
For t = 280, Qct = Qsk = 240, both ABGW and FAME only provide a security level of 296 bits, compared
to the target of 2128. BSW and our scheme both still meet the target, however BSW is slightly below
the target when increasing the number of ciphertexts to 250, since their bound depends on t and Qct.
When allowing for a running time of 2128, then ABGW and FAME only provide 48 bits of security and
therefore not suitable for applications in a large-scale scenario. BSW still achieves 78 resp. 88 bits, which
may be sufficient for some applications. Due to the tight bound, our scheme exactly meets the target of
128 bits.

Exact bounds. The numbers in Table 6 are computed based on the most dominating terms in the bounds
as described above. In fact, when looking at our security statement, our bounds also depend on the
number of secret keys and ciphertext and even their corresponding sizes (cf. terms |ct|Qct and |sk|Qsk in
Theorem 1). However, since |ct|Qct + |sk|Qsk � t, these do not have a huge impact on the exact security
of the schemes. For n1 = m = 100, we lose less than two bits of security. The same applies to BSW.
Due to the rational fractions used in ABGW, the ciphertext and key sizes are actually an additional
multiplicative factor in the bound, i.e., the dominating term is |ct| · |sk| ·QctQskt

2. For large policies this
has a considerable impact on the security. In this case, we lose 19 bits of security when n1 = m = 100.
Compared to the values in Table 6, a small security loss of around 3 bits also occurs in FAME, which is
due to constant factors.

8 Extensions

In this section, we briefly describe how we can extend our definition of PES-ABE to capture more
schemes, e.g., ABE for deterministic finite automata (DFA).

8.1 A variant of PES-ABE

We want to capture PES-ABE schemes as in ABGW with Setup0, Enc0, KeyGen0 as before, except:

mpk := ([b]1, [α]T ),
msk := (b, α),

ct := ([c1]1, [c2]1),
sk := ([k1]2, [k2]2)

For such schemes, we impose an additional constraint on k1, k2 as with ABGW, namely that r = (r′‖r′′)
and k1(α, r′′,b ⊗ r′), k2(r′) (that is, we removed r′,b ⊗ r′′ from the input to k1 and r′′ from the input
to k2).12 This way, we can ensure that span

(
k1) ∩ span

(
k2) = {0}, which we will need in the proof of

strong symbolic security.

Strong Symbolic Security (Variant). For all Qct, Qsk ∈ N, X ∈ XQct , Y ∈ YQsk such that P(X[i], Y [j]) = 0
for all i ∈ [Qct], j ∈ [Qsk], we have

span
(
α̃⊗ c2

X

)
∩ span

(
α̃ ‖ (1‖b̃‖c1

X‖c2
X)⊗ (1‖k1

Y ‖k2
Y )
)

= {0} ,

where X,Y, c1
X , c2

X ,k1
Y ,k2

Y are as in Definition 3.
12 ABGW refers to r′ as the non-lone variables and r′′ as the lone variables. Also, ABGW considers a more

general setting for c1, c2 with s = (s′‖s′′) and c2(s′), c1(s′′,b⊗ s′). To the best of our knowledge, none of the
existing ABE schemes exploit this generalization.
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Claim. If PES-ABE satisfies (1, 1)-symbolic security (Definition 2), then it also satisfies the variant of
strong symbolic security.

Proof. The proof is similar to that of Lemma 1. Step 1 and step 2 already tell us that (1, 1) symbolic
security implies that

span
(
α̃⊗ c2

X

)
∩ span

(
c1
X ⊗ k2

Y ‖k1
Y ⊗ c2

X

)
= {0} .

We need to slightly modify the last step of the proof. We also prove the claim by contradiction. So assume
there exist e∗, e(1), e(2), e(3) such that

(α̃⊗ c2
X) · e∗> = (α̃‖c1

X‖c2
X‖(1‖b̃)⊗ (1‖k1

Y ‖k2
Y )) · e(1)> + (c1

X ⊗ k1
Y ‖c2

X ⊗ k2
Y ) · e(2)>

+ (c1
X ⊗ k2

Y ‖k1
Y ⊗ c2

X) · e(3)>

In the same way as in the proof of Lemma 1, we can show that the first term evaluates to 0. It remains
to show that also the second term evaluates to 0, which follows from the fact that

span
(
α̃⊗ c2

X

)
∩ span

(
c1
X ⊗ k1

Y ‖c2
X ⊗ k2

Y

)
= {0}

together with
span

(
c1
X ⊗ k2

Y ‖c2
X ⊗ k1

Y

)
∩ span

(
c1
X ⊗ k1

Y ‖c2
X ⊗ k2

Y

)
= {0}

The first equation holds since span
(
c1
X ⊗k1

Y

)
contains monomials of the form (s̃X ⊗ b̃)⊗ (α‖r̃′′Y ‖b̃⊗ r̃′Y )

and span
(
c2
X ⊗ k2

Y

)
contains monomials of the form s̃⊗ r̃′, which all do not appear in span

(
α̃⊗ c2

X

)
.

The second equation holds since span
(
c1
X ⊗ k2

Y

)
contains monomials of the form s̃X ⊗ b̃ ⊗ r̃′Y and

span
(
c2
X ⊗ k1

Y

)
contains monomials of the form s̃X ⊗ (α‖r̃′′Y ‖b̃ ⊗ r̃′Y ), which all do not appear on the

RHS of ∩. Note that here we use that span
(
r̃′
)
∩ span

(
r̃′′
)

= 0.

8.2 ABE for DFA

We consider the ABE scheme for DFAs in [27, equation (1)] (building on [52]). Recall that a DFA is
specified by a tuple (Q,Σ, δ, F ) where the state space is [Q] := {1, 2, . . . , Q}; 1 is the unique start state;
F ⊆ [Q] is the set of accept states, and δ : [Q]×Σ → [Q] is the state transition function.

We provide a self-contained overview of our ABE scheme for DFA in Figure 4. In the following, we
describe the underlying PES-ABE.

– Setup0. Output n := 3 + |Σ|, where we parse b as (wstart, wend, z, {wσ}σ∈Σ).

– Enc0(x). Set w = ` + 1, w1 = ` + 2, w2 = ` + 1, and output (c1, c2) where we parse s as
(s`, s0, s1, . . . , s`−1) and

c1(s⊗ b) := (s0wstart ‖ {si−1z + siwxi}i∈[`] ‖ s`wend),
c2(s) := (s)

– KeyGen0(Q,Σ, δ, F ). Set m = 2Q, m1 = 1 + Q + Q · |Σ| + |F |, m2 = Q, and output (k1, k2) where
we parse r = (r′‖r′′) := ({ru}u∈[Q] ‖ {du}u∈[Q]) and

k1(α, r′′,b⊗ r′) := (d1 + wstartr1 ‖ {−du + zru}u∈[Q] ‖ {dδ(u,σ) + wσru}u∈[Q],σ∈Σ ‖
{α− du + wendru}u∈F )

k2(r) := (r′)

In applications, think of ` � |Σ|, Q. We note that our scheme differs from Waters’ scheme in that we
reuse ru for all the transitions starting from u instead of a fresh ru,σ for each (u, σ). This modification
yields a smaller secret key (cf. Table 7).

We now prove correctness and symbolic security.
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Setup(1λ). Run GroupGen(1λ) to obtain G := (p,G1,G2,GT , e, g1, g2). Pick α,wstart, wend, z
$← Zp, {wσ}σ∈Σ $← Z|Σ|p .

Compute the master public key as

mpk := (G, gwstart
1 , gwend

1 , gz1 , {gwσ1 }σ∈Σ , e(g1, g2)α)

Let msk := (α,wstart, wend, z, {wσ}σ∈Σ) be the master secret key.

KeyGen(msk, (Q,Σ, δ, F )). Pick {ru}u∈[Q]
$← ZQp , {du}u∈[Q]

$← ZQp . Compute

sk0 := gd1+wstartr1
2 sk1,u := gru2 ,

for all u ∈ [Q]. Then compute
sk2,u := g−du+zru

2 sk3,u,σ := gdv+wσru
2 ,

for all u ∈ [Q], σ ∈ Σ, where v = δ(u, σ), and

sk4,u = gα−du+wendru
2

for all u ∈ F . Output sk := (sk0, (sk1,u)u∈[Q], (sk2,u, sk3,u,σ)u∈[Q],σ∈Σ , (sk4,u)u∈F ).

Enc(mpk, x). Pick (s`, s0, s1, . . . , s`−1) $← Z`+1
p , where ` = |x|. Compute

ct0 := gs0
1 ct1 := gs0wstart

1 ct2,i := gsi1 ct3,i := g
si−1z+siwxi
1 ct4 := g

s`wend
1

for all i ∈ [`]. Output ct := (ct0, ct1, (ct2,i, ct3,i)i∈[`], ct4) and d := e(g1, g2)αs` .

Dec(mpk, x, (Q,Σ, δ, F ), ct, sk). If (Q,Σ, δ, F ) accepts x, then there exists a sequence u1, . . . , u` ∈ Q such that u1 = 1,
δ(ui, xi) = ui+1 ∀i ∈ [`− 1] and δ(u`, x`) ∈ F . Compute

B := e(ct0, sk0)
e(ct1, sk1,1) ·

∏
i∈[`]

e(ct2,i−1, sk2,ui) · e(ct2,i, sk3,ui,xi)
e(ct3,i, sk1,ui)

and output

B ·
e(ct2,`, sk4,δ(u`,x`))
e(ct4, sk1,δ(u`,x`))

.

Fig. 4: Our KP-ABE scheme for DFA.

Key size Ciphertext size
Schemes G1 G2 G1 G2

Waters - 3Q|Σ|+ 2|F |+ 2 2`+ 3 -
Ours - Q|Σ|+Q+ |F |+ 1 2`+ 3 -

Table 7: Key and ciphertext sizes of ABE schemes for DFA.

Correctness. Let ct be a ciphertext for x and sk be a secret key for (Q,Σ, δ, F ) as defined in Figure 4. If
(Q,Σ, δ, F ) accepts x, then there exists a sequence u1, . . . , u` ∈ Q such that u1 = 1, δ(ui, xi) = ui+1 ∀i ∈
[`− 1] and δ(u`, x`) ∈ F . Then decryption computes

(1) e(ct0,sk0)
e(ct1,sk1,1) = [s0(d1 + wstartr1)− s0wstartr1]T = [s0d1]T

(2) e(ct2,i−1,sk2,ui )·e(ct2,i,sk3,ui,xi )
e(ct3,i,sk1,ui ) = [si−1(−dui + zrui) + si(dδ(ui,xi) + wxirui)− (si−1z + siwxi)rui ]T

= [sidδ(ui,xi) − si−1dui ]T

(3) e(ct2,`,sk4,δ(u`,x`))
e(ct4,sk1,δ(u`,x`)) = [s`(α− dδ(u`,x`) + wendrδ(u`,x`))− s`wendrδ(u`,x`)]T = [αs` − s`dδ(u`,x`)]T

Correctness follows from the fact that (1) ·
∏
i∈[`](2) · (3) yields d = [αs`]T .

Symbolic security. We need to show that for all x and all (Q,Σ, δ, F ) such that P(x, (Q,Σ, δ, F )) = 0, it
holds that

span
(
α̃⊗ c2) ∩ span

(
c1 ⊗ k2 ‖ k1 ⊗ c2) = {0} .
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W.l.o.g. one can assume that |F | = 1, i.e., there is only one accepting state and that it has no outgoing
transitions. In the following, we will denote the accepting state by ac. Further, we will denote the sequence
of states on input x by (u1, . . . , u`, fin), where u1 = 1 is the start state, ui+1 = δ(ui, xi) for i ∈ [`] is the
state reached upon reading x1, . . . , xi, and fin = δ(u`, x`) is the final state.

We will prove the above claim by contradiction. Thus, assume on the contrary that

span
(
α̃⊗ c2) ∩ span

(
c1 ⊗ k2 ‖ k1 ⊗ c2) 6= {0} .

We now proceed in three steps and make the following claims.

– Claim 1: span
(
α̃⊗ (s̃0‖ · · · ‖s̃`−1)

)
∩ span

(
c1 ⊗ k2 ‖ k1 ⊗ c2) = {0}.

– Claim 2: If α̃s̃` ∈ span
(
c1 ⊗ k2‖k1 ⊗ c2), then
s̃`d̃ac ∈ span

(
s̃0d̃1‖{s̃id̃δ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
.

– Claim 3: s̃`d̃ac /∈ span
(
s̃0d̃1‖{d̃s̃iδ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
.

Claim 1 basically tells us that we can ignore all terms in span
(
α̃ ⊗ c2) except for α̃s̃`. Claim 2 shows

that the only degree two monomials we learn from span
(
c1⊗k2‖k1⊗ c2) are linear combinations of the

terms s̃id̃δ(u,xi) − s̃i−1d̃u. Claim 3 then yields a contradiction to claims 1 and 2, thus proving symbolic
security.

Step 1. To prove claim 1, we look at the monomials on the RHS of ∩. Note that the terms α̃s̃i for
i ∈ {0, . . . , `−1} only appear together with w̃endr̃acs̃i. However, these monomials do not appear anywhere
else, since w̃end only appears in w̃endr̃us̃` and the above equation must hold.

Step 2. Assume
α̃s̃` ∈ span

(
c1 ⊗ k2‖k1 ⊗ c2) . (8)

In order to prove claim 2, we want to look at the monomials on the RHS. The definition of the scheme
tells us that

span
(
c1 ⊗ k2) = span

(
{w̃starts̃0r̃u‖w̃ends̃`r̃u}u∈[Q]‖{(z̃s̃i−1 + w̃xi s̃i)r̃u}u∈[Q],i∈[`]

)
and

span
(
k1 ⊗ c2) = span

(
(α̃− d̃ac + w̃endr̃ac)⊗ (s̃0‖ · · · ‖s̃`−1‖s̃`)‖(d̃1 + w̃startr̃1)⊗ (s̃0‖s̃1‖ · · · ‖s̃`)‖

({−d̃u + z̃r̃u‖d̃δ(u,σ) + w̃σ r̃u
::::::::::::

}u∈[Q],σ∈Σ)⊗ s̃
)

where terms that are underlined will be removed in the next step. We also show that some of the
terms that are underlined with a wavy line can also be removed. We will explain the details in the next
paragraph.

In particular, we first look at the terms containing w̃start and w̃end. Only the monomial w̃startr̃1s̃0
appears more than once, so we can remove all terms with w̃startr̃us̃i for i ∈ [`], u ∈ [Q] \ {1} since their
coefficients must be 0. Also note that we can ignore w̃startr̃1s̃0 in (d̃1 + w̃startr̃1)s̃0 and in span

(
c1 ⊗ k2)

since their coefficients must always match to cancel out. The same applies for w̃endr̃acs̃`. Monomials
w̃endr̃us̃i for u ∈ [Q] \ {ac} and i ∈ [0, ` − 1] do not appear anywhere else and we can also ignore
w̃endr̃acs̃` in (α̃− d̃ac + w̃endr̃ac)s̃`.

Now we look at the terms underlined with a wave. The monomials w̃σ r̃us̃i for σ 6= xi only appear
once in (d̃δ(u,σ) + w̃σ r̃u)s̃i and thus these coefficients must also be 0. Also w̃σ r̃us̃0 only appears once, so
we can remove this term as well.

Using these observations, we must have that

α̃s̃` ∈ span
(
(α̃− d̃ac)s̃`‖s̃0d̃1‖{(z̃s̃i−1 + w̃xi s̃i)r̃u}u∈[Q],i∈[`]‖{(−d̃u + z̃r̃u)s̃i}i∈[0,`],u∈[Q]‖

{(d̃δ(u,xi) + w̃xi r̃u)s̃i}i∈[`],u∈[Q]
)
.

(9)

Since α̃s̃` only appears together with s̃`d̃ac, it follows that s̃`d̃ac must be in the span of everything that
comes after the first ‖ on the RHS.
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Finally, fix i ∈ [`] and u ∈ [Q]. Note that the coefficients of the last three terms must be such that

s̃id̃δ(u,xi) − s̃i−1d̃u = s̃i(d̃δ(u,xi) + w̃xi r̃u)− (z̃s̃i−1 + w̃xi s̃i)r̃u + s̃i−1(−d̃u + z̃r̃u) ,

since the monomials containing w̃xi and z̃ only appear on the RHS of (9) and only together with s̃id̃u.
From (9) and the observation above, we get

s̃`d̃ac ∈ span
(
s̃0d̃1‖{s̃id̃δ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
,

which proves claim 2.

Step 3. We prove the final claim by contradiction. Assume on the contrary that

s̃`d̃ac ∈ span
(
s̃0d̃1‖{s̃id̃δ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
. (10)

Since fin is the final state, correctness tells us that

s̃`d̃fin ∈ s̃0d̃1 + span
(
{s̃id̃δ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
.

Then we can rewrite (10) as

s̃`d̃ac ∈ span
(
s̃`d̃fin‖{s̃id̃δ(u,xi) − s̃i−1d̃u}i∈[`],u∈[Q]

)
.

We now argue that all coefficients of elements on the RHS must be 0 and thus we get a contradiction to
(10). We look at the monomials that appear in the above equation. Since s̃0d̃u for u ∈ [Q] only appears
on the RHS, the coefficients of {s̃1d̃δ(u,x1) − s̃0d̃u}u∈[Q] must be 0. However, now the only term where
s̃1d̃u appears is (s̃2d̃δ(u,x2)− s̃1d̃u), so these coefficients must also be 0 for all u ∈ [Q]. We can go on with
this argument until we reach the terms (s̃`d̃δ(u,x`) − s̃`−1d̃u). Obviously, the coefficients of these terms
must also be 0 and thus we get

s̃`d̃ac ∈ span
(
s̃`d̃fin

)
.

However, this yields a contradiction to the fact that P(x, (Q,Σ, δ, F )) = 0 since ac 6= fin, which concludes
the proof of symbolic security.

Acknowledgements

Doreen Riepel was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and the European Union (ERC
AdG REWORC - 101054911). Part of this work was done during an internship at NTT Research and a
visit at UC Berkeley. We would also like to thank Kei Karasawa and his team for motivating discussions,
as well as Sanjam Garg for hosting Doreen Riepel at UC Berkeley.

References

1. Agrawal, S., Chase, M.: Attribute-based encryption. https://github.com/sagrawal87/ABE (2017)
2. Agrawal, S., Chase, M.: FAME: Fast attribute-based message encryption. In: Thuraisingham, B.M., Evans,

D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 665–682. ACM Press (Oct / Nov 2017)
3. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. In: Coron,

J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 627–656. Springer, Heidelberg
(Apr / May 2017)

4. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a
framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3(2), 111–128 (Jun
2013)

5. Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.J., Rubin, A.D.: Securing elec-
tronic medical records using attribute-based encryption on mobile devices. In: Jiang, X., Bhattacharya, A.,
Dasgupta, P., Enck, W. (eds.) SPSM’11, Proceedings of the 1st ACM Workshop Security and Privacy in
Smartphones and Mobile Devices, Co-located with CCS 2011, October 17, 2011, Chicago, IL, USA. pp.
75–86. ACM (2011), http://doi.acm.org/10.1145/2046614.2046628

26

http://doi.acm.org/10.1145/2046614.2046628


6. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the generic group model: Auto-
mated proofs and new constructions. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017. pp. 647–664. ACM Press (Oct / Nov 2017)

7. Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully secure functional
encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 557–577. Springer, Heidelberg (May 2014)

8. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer,
Heidelberg (Dec 2016)

9. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: An online social network with user-
defined privacy. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication. pp. 135–
146. SIGCOMM ’09, ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1592568.1592585

10. Bauer, B., Fuchsbauer, G., Plouviez, A.: The one-more discrete logarithm assumption in the generic group
model. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021. pp. 587–617. Springer
International Publishing, Cham (2021)

11. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In:
Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press
(Nov 1993)

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Sympo-
sium on Security and Privacy. pp. 321–334. IEEE Computer Society Press (May 2007)

13. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg
(Aug 2014)

14. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ciphertext. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (May 2005)

15. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: Tighter and broader reductions of q-type
assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 655–681.
Springer, Heidelberg (Dec 2016)

16. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer,
Heidelberg (Apr 2015)

17. Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master public key. In: Fehr, S. (ed.)
PKC 2017, Part I. LNCS, vol. 10174, pp. 207–231. Springer, Heidelberg (Mar 2017)

18. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (Aug 2013)

19. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (May / Jun 2006)

20. Chhatrapati, A., Hohenberger, S., Trombo, J., Vusirikala, S.: A performance evaluation of pairing-based
broadcast encryption systems. In: Applied Cryptography and Network Security. Springer International Pub-
lishing (2022)

21. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security.
In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 1–31. Springer, Heidelberg (May 2021)

22. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically sound cryptographic parameters for
real-world deployments. Journal of Cryptology 34(3), 30 (Jul 2021)

23. Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing to elliptic curves.
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/ (2022)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (May / Jun 2006)

25. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg
(Aug 2018)

26. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the
multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
624–654. Springer, Heidelberg (Dec 2016)

27. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 732–764. Springer, Heidelberg (Aug 2019)

28. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 278–308. Springer, Heidelberg (May 2020)

29. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of
encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp. 89–98.
ACM Press (Oct / Nov 2006), available as Cryptology ePrint Archive Report 2006/309

27

http://doi.acm.org/10.1145/1592568.1592585


30. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S. (eds.) EU-
ROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (May 2016)

31. Groth, J., Shoup, V.: On the security of ECDSA with additive key derivation and presignatures. Cryptology
ePrint Archive, Report 2021/1330 (2021), https://eprint.iacr.org/2021/1330

32. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM, revisited: Tight bounds for
nonce randomization. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1429–1440.
ACM Press (Oct 2018)

33. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight security in the multi-
instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer,
Heidelberg (Mar / Apr 2015)

34. Ion, M., Zhang, J., Schooler, E.M.: Toward content-centric privacy in ICN: attribute-based encryption and
routing. In: Ohlman, B., Polyzos, G.C., Zhang, L. (eds.) ICN’13, Proceedings of the 3rd, 2013 ACM SIG-
COMM Workshop on Information-Centric Networking, August 12, 2013, Hong Kong, China. pp. 39–40. ACM
(2013), http://doi.acm.org/10.1145/2491224.2491237

35. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for the medium prime case.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg
(Aug 2016)

36. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 3–33. Springer, Heidelberg (May 2019)

37. Langrehr, R., Pan, J.: Hierarchical identity-based encryption with tight multi-challenge security. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 153–183. Springer,
Heidelberg (May 2020)

38. Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (May 2011)

39. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through
selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198.
Springer, Heidelberg (Aug 2012)

40. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: Feng, D.,
Basin, D.A., Liu, P. (eds.) ASIACCS 10. pp. 60–69. ACM Press (Apr 2010)

41. Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: Beyond NC1 and towards NL. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 247–277. Springer, Heidelberg (May
2020)

42. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.) 10th
IMA International Conference on Cryptography and Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(Dec 2005)

43. de la Piedra, A., Venema, M., Alpár, G.: ABE squared: Accurately benchmarking efficiency of attribute-
based encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(2), 192–239 (2022), https://doi.org/
10.46586/tches.v2022.i2.192-239

44. Riepel, D., Wee, H.: https://github.com/DoreenRiepel/FABEO (2022)
45. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,

vol. 3494, pp. 457–473. Springer, Heidelberg (May 2005)
46. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.: Pairing-friendly curves. Internet-Draft

https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/ (2021)
47. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT’97.

LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (May 1997)
48. Sullivan, N.: Geo Key Manager: How it works. https://blog.cloudflare.com/geo-key-manager-how-it-works/

(2017)
49. Tomida, J., Kawahara, Y., Nishimaki, R.: Fast, compact, and expressive attribute-based encryption. In:

Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 3–33.
Springer, Heidelberg (May 2020)

50. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (Aug 2009)

51. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure real-
ization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70.
Springer, Heidelberg (Mar 2011)

52. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (Aug 2012)

53. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 616–637. Springer, Heidelberg (Feb 2014)

28

https://eprint.iacr.org/2021/1330
http://doi.acm.org/10.1145/2491224.2491237
https://doi.org/10.46586/tches.v2022.i2.192-239
https://doi.org/10.46586/tches.v2022.i2.192-239


A Attribute-based Encryption in the PKE Setting

Many-Ciphertext CPA Security. We define security by a game between a challenger and an adversary B.
The challenger picks a random challenge bit b and provides the following oracles to B.
– Setup oracle Ompk: This oracle can only be queried once and it must be the first query. The challenger

runs Setup to obtain (msk,mpk) and outputs mpk to B.

– Ciphertext (or challenge) oracle Oct: On the i-th query, B provides xi ∈ X as well as two messages
(m(0)

i ,m
(1)
i ) of equal length. The challenger runs cti ← Enc(mpk, xi,m(b)

i ) and outputs cti.
– Secret key oracleOsk: On the j-th query, B provides yj ∈ Y. The challenger runs skj ← KeyGen(msk, yi)

and outputs skj .
Finally, B outputs a bit b′. We say that B wins the game if b = b′ and for all queries xi and yj , either
P(xi, yj) = 0 or m(0)

i = m
(1)
i . Note that this ensures that B cannot win trivially.

Definition 4. An ABE scheme is adaptively many-ciphertext secure in the PKE setting if for all efficient
B

AdvABE,B(λ) :=
∣∣Pr[b = b′]− 1

2
∣∣

is negligible in λ.

It is commonly known that the security notions in the KEM and PKE setting are equivalent. For
completeness, we briefly sketch the proof that many-challenge KEM security as used in the main body
of this paper tightly implies the many-ciphertext CPA security as defined above. Let B be an adversary
against many-ciphertext CPA security in the PKE setting. We construct a reduction A against many-
challenge KEM security. A draws a random challenge bit b $← {0, 1} and then runs adversary B. It
answers B’s queries as follows.
– When B queries Ompk, A queries its own Ompk oracle to receive the master public key mpk which it

forwards to B.

– When B issues a ciphertext query (xi,m(0)
i ,m

(1)
i ), where m(0)

i 6= m
(1)
i , A queries its own challenge

oracle on xi to receive an encapsulation ci and challenge key d(β)
i , where β is the challenge bit of the

KEM security experiment. It outputs cti = (ci, d(β)
i ⊕m(b)

i ) as ciphertext.

– When B issues a ciphertext query of the form (xi,mi,mi), A runs the encapsulation algorithm on
its own using the master public key to compute a pair (ci, di) and outputs cti = (ci, di ⊕mi).

– When B issues a secret key query yj , A forwards this query to its own secret key oracle and returns
the result back to B.

Note that queries of the third type are the only possibility for B to issue queries such that P(xi, yj) = 1
for some secret key query yj . Since A does not query any of its own oracles at this point, it behaves
correctly.

Finally B outputs a bit b′ and if b′ = b, A outputs β′ = 0 (real key). Otherwise, it outputs β′ = 1
(random key).

We analyze the success probability by distinguishing two cases:
– Case β = 0: In this case A always receives the real KEM key and it perfectly simulates the many-

ciphertext CPA game for B. Thus, Pr[β = β′ | β = 0] = AdvABE,B(λ) + 1/2.

– Case β = 1: In this case A always receives a random KEM key. Thus, the challenge ciphertexts do
not leak any information about β. Also queries of the second type are independent of β. We get
Pr[β = β′ | β = 1] = 1/2.

Collecting the probabilities yields AdvABE,B(λ) ≤ 2 · AdvABE,A(λ).

B Selective Security from q-type Assumptions

We can prove selective security of our CP-ABE and KP-ABE scheme (in the standard one-ct, many-sk
setting) under a q-type assumption. In the selective security setting, the adversary must first commit on
a challenge x∗. We recall the formal definition below.
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Selective CPA Security. We define security by a game between a challenger and an adversary A. At the
beginning of the experiment, A chooses a challenge x∗ and sends it to the challenger. Then the challenger
picks a random challenge bit β and provides the following oracles to A.
– Setup oracle Ompk: This oracle can only be queried once and it must be the first query. The challenger

runs Setup to obtain (msk,mpk) and outputs mpk to A.

– Ciphertext (or challenge) oracle Oct: The challenger runs (ct, d(0))← Enc(mpk, x∗), chooses a random
key d(1) $← K and outputs (ct, d(β)).

– Secret key oracleOsk: On the j-th query,A provides yj ∈ Y. The challenger runs skj ← KeyGen(msk, yj)
and outputs skj .

We consider the single-challenge setting here, which means that Oct can only be queried once, whereas
Osk can be queried adaptively and an arbitrary polynomial number of times. Finally, A outputs a bit β′.
We say that A wins the game if β = β′ and P(x∗, yj) = 0 for all queries yj .

Definition 5. An ABE scheme is selectively secure if for all efficient A,

Advselective
ABE,A (λ) :=

∣∣Pr[β = β′]− 1
2
∣∣

is negligible in λ.

Our q-type assumption. Our new assumption is parameterized by n. It allows us to prove security of both
schemes based on the same assumption but for different parameters n (see Appendices B.1 and B.2).
In Appendix B.3 we show how to relate our assumption to another assumptions used in the literature
which in turn has been analyzed in the GGM. Our new assumption is defined below.

Definition 6 (n-q-type Assumption). Let G = (p,G1,G2,GT , e, g1, g2) be a pairing group. Pick
(x‖δ‖y) $← Zp × Zp × Znp . Compute

D1 =
(
g1, g

x
1 ,

{
g
δy[i]
1 , g

1
xy[i]
1

}
i∈[n]

,

{
g
δy[i]
xy[j]
1

}
i,j∈[n],i6=j

)
,

D2 =
(
g

1
δ
2 , g

x
δ
2 ,

{
g

y[i]
2

}
i∈[n]

)
and T0 = e(g1, g2), T1

$← GT . The n-q-type assumption says that

Advq-type
D,n (1λ) :=

∣∣Pr[D(p,G1,G2,GT , e,D1, D2, T0)⇒ 1]− Pr[D(p,G1,G2,GT , e,D1, D2, T1)⇒ 1]
∣∣

is negligible in λ.

B.1 CP-ABE

We prove security of our CP-ABE scheme (cf. Figure 1) for τ = 1 in the random oracle model under
the above q-type assumption for n = n2, where n2 is the number of columns of M used in the challenge
query.

Theorem 2. Let λ be the security parameter. For any adversary A against selective security of CP-ABE
with τ = 1 that issues at most Qsk queries to Osk, one query to Oct and at most QH queries to the random
oracle H, there exists an adversary D such that

Advselective
CP-ABE,A(1λ) ≤ Advq-type

D,n2
(1λ) + 1

p
,

where n2 is the number of columns of M used in the challenge query.

Proof. We prove the theorem by reduction. Let A be an adversary against selective security of the KP-
ABE scheme in Figure 1. We construct an adversary D against our q-type assumption that simulates
the security game for A.
D inputs (p,G1,G2,GT , e,D1, D2, Tb) and runs adversary A. First A commits on a challenge (M, π).

Now D must simulate the first query to Ompk, the challenge query to Oct and adaptive queries to Osk
and H.
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Simulating Ompk. We implicitly set α = δ
x . Output public parameters(

p,G1,G2,GT , e, g1, g
1
δ
2 , e(g1, g

1
δ
2 )α

)
,

where the last term can be computed by e(g
1

xy[1]
1 , g

y[1]
2 ).

Simulating H. We simulate the random oracle by lazy sampling and using a list H to store all (distinct)
queries and outputs. In particular, the list contains entries of the form (u,H(u)), where u is the string
(attribute) queried to H and H(u) is a group element. On rach query, we first check if u is contained in
the list and if this is the case, answer consistent to the previous query. Otherwise, we will simulate the
output as follows. First pick a new exponent εu $← Zp which will be used for randomization. Then we
distinguish three cases and compute

H(u) :=


g
− 1
xy[1]

1 if u = |U|+ 1

g

∑
j∈[n2]

Mi,j
xy[j]

1 · gεu1 if ∃i s. t. π(i) = u

gεu1 otherwise

Then add (u,H(u)) to the list and output H(u). Note that we can compute all the terms using g1, g
1

xy[j]
1

provided by the assumption.

Simulating Oct. To compute the challenge for (M, π) provided at the beginning, we (implicitly) set
s1 = x+ ε1, s′ = x+ ε′ and v[j] = xy[1]

y[j] + εj for j ∈ [2, n2].

ct1 := g
x
δ
2 · g

ε1
δ

2

ct2 := g
x
δ
2 · g

ε′
δ

2

ct3,i := g
−Mi(s1‖v)>

xy[1]
1 ·

(
g

∑
j∈[n2]

Mi,j
xy[j]

1 · gεπ(i)
1

)s′
d := Tb · e(g

1
xy[1]
1 , g

y[1]
2 )ε1

It is easy to see that we can simulate ct1 and ct2 using the terms provided by the assumption. For ct3,i
we take a closer look at the exponent. Applying the definition of s1, s′ and v, we get

−
Mi

(
x+ ε1

∥∥∥xy[1]
y[2] + ε2

∥∥∥ · · · ∥∥∥ xy[1]
y[n2] + εn2

)>
xy[1] +

∑
j∈[n2]

Mi,j(x+ ε′)
xy[j] + επ(i)(x+ ε′) (11)

= −
∑
j∈[n2]

Mi,j

y[j] −
Mi(ε1‖ · · · ‖εn2)>

xy[1] +
∑
j∈[n2]

Mi,j

y[j] +
∑
j∈[n2]

Mi,jε
′

xy[j] + επ(i)x+ επ(i)ε
′ (12)

Observe that the first and the third term sum up to 0 and that the other terms can be simulated using
the g1 terms of the assumption.

Also note that if b = 0, then d = e(g1, g2) · e(g1, g2)
ε1
x = e(g1, g

1
δ
2 ) δx (x+ε1) = e(g1, g

1
δ
2 )αs1 is the real

KEM key and if b = 1, then d is uniformly distributed in GT .

Simulating Osk. On a query S to Osk, first compute w ∈ Zn2
p such that 〈w,M>i 〉 = 0 for all i ∈ [n1]

such that π(i) ∈ S. Note that such a vector w is efficiently computable and we can assume that w.l.o.g.
w[1] = 1. We implicitly set r = δ

∑
j∈[n2] w[j]y[j]+γ, where γ $← Zp. Now we can compute sk as follows:

sk1 := g
δ
x
1 · g

−
δ
∑

j∈[n2]
w[j]y[j]+γ

xy[1]
1 = g

−

∑
j∈[2,n2]

δw[j]y[j]

xy[1]
1 · g

− γ
xy[1]

1
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sk2,u := H(u)δ
∑

j∈[n2]
w[j]y[j]+γ

sk3 := (g
1
δ
2 )δ

∑
j∈[n2]

w[j]y[j]+γ = g

∑
j∈[n2]

w[j]y[j]
2 · g

γ
δ
2

Observe that sk1 and sk3 can be simulated using the terms provided by the assumption. For sk2,u we
take a closer look at the exponent. Since the value depends on H(u), we distinguish two cases, starting
with the case that there exists an index i such that π(i) = u. Applying the definition of H(u), we get ∑

j∈[n2]

Mi,j

xy[j] + εu

δ ∑
j∈[n2]

w[j]y[j] + γ


=

∑
j∈[n2]
k∈[n2]

δMijw[k]y[k]
xy[j]

︸ ︷︷ ︸
δMiw>

x +
∑

j∈[n2]
k∈[n2]
j 6=k

δMijw[k]y[k]
xy[j]

+
∑
j∈[n2]

Mi,jγ

xy[j] +
∑
j∈[n2]

δεuw[j]y[j] + εuγ

The first term underneath the curly bracket is 0 since w is chosen such that Miw> = 0 for all π(i) ∈ S.
The other terms can be simulated using the g1 terms of the assumption.

It remains to show that we can simulate sk2,u in case there does not exist an index for all i such that
π(i) = u. In this case H(u) is simply gεu1 , so we get

g
εu

(
δ
∑

j∈[n2]
w[j]y[j]+γ

)
1 = g

εuδ
∑

j∈[n2]
w[j]y[j]

1 · gεuγ1 ,

which can be computed using the terms provided by the assumption.

Finalize. At the end, the adversary A will output a bit β′ which will also be D’s output. Note that if A
wins, then D will always output the correct bit except when T1 coincides with T0 which happens with
probability 1/p. This concludes the proof of Theorem 2.

B.2 KP-ABE

In a similar way, we prove security of our KP-ABE scheme (cf. Figure 1) for τ = 1 in the random oracle
model for parameter n = QH, where QH is the number of queries to the random oracle H.

Theorem 3. Let λ be the security parameter. For any adversary A against selective security of KP-ABE
with τ = 1 that issues at most Qsk queries to Osk, one query to Oct and at most QH queries to the random
oracle H, there exists an adversary D such that

Advselective
KP-ABE,A(1λ) ≤ Advq-type

D,QH
(1λ) + 1

p
.

Proof. The proof is similar to that of Theorem 2. Let A be an adversary against selective security of the
KP-ABE scheme in Figure 1. We construct an adversary D against our q-type assumption that simulates
the security game for A.
D inputs (p,G1,G2,GT , e,D1, D2, Tb) and runs adversary A. First A commits on a challenge attribute

set S. Now D must simulate the first query to Ompk, the challenge query to Oct and adaptive queries to
Osk and H.

Simulating Ompk. This is done as in the proof of Theorem 2. We implicitly set α = δ
x and output public

parameters (
p,G1,G2,GT , e, g1, g

1
δ
2 , e(g1, g

1
δ
2 )α

)
.
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Simulating H. The random oracle is simulated by lazy sampling as described above. Note that the
assumption is parameterized by the maximum number of random oracle queries and we index each
element of the vector y by the values u queried to H, i.e., y[u]. Thus, on each query which is distinct to
previous ones, we will first pick a new exponent εu $← Zp and output

H(u) :=
{
g

1
xy[u]
1 · gεu1 if ∃u /∈ S
gεu1 otherwise

Simulating ct. To compute the challenge for S provided at the beginning, we (implicitly) set s = x+ ε
for ε $← Zp. Then compute and output

ct1,u := H(u)x+ε = gxεu1 · gεuε1

ct2 := g
x
δ
2 · g

ε
δ
2

d := Tb · e(g
1

xy[1]
1 , g

y[1]
2 )ε

Note that if b = 0, then d = e(g1, g2) · e(g1, g2) εx = e(g1, g
1
δ
2 ) δx (x+ε) = e(g1, g

1
δ
2 )αs is the real KEM key

and if b = 1, then d is uniformly distributed in GT .

Simulating sk. On a query (M, π) to Osk, first compute w ∈ Zn2
p such that 〈w,M>i 〉 = 0 for all i ∈ [n1]

such that π(i) ∈ S. Note that such a vector w is efficiently computable and we can assume that w.l.o.g.
w[1] = 1. We implicitly set r′ = −δ

∑
i∈[n1] Miw>y[π(i)] + γ1 and v[j] = δw[j]

x + γj for j ∈ [2, n2], where
γ1, . . . , γn2

$← Zp. Now we can compute sk as follows:

sk1 := (g
1
δ
2 )−δ

∑
i∈[n1]

Miw>y[π(i)]+γ1 = g

∑
i∈[n1]

Miw>y[π(i)]
2 · g

γ1
δ

2

sk2,i := g
Mi( δx‖v)>
1 · H(π(i))−δ

∑
i∈[n1]

Miw>y[π(i)]+γ1

It is easy to see that we can simulate sk1 using g
1
δ
2 and gv

2 [u] terms of the assumption. For sk2,i we take a
closer look at the exponent. Since the value depends on H(π(i)), we distinguish two cases, starting with
the case that π(i) /∈ S. Applying the definition of v and H(u), we get

Mi

(
δ

x

∥∥∥∥δw[2]
x

+ γ2

∥∥∥∥ · · · ∥∥∥∥δw[n2]
x

+ γn2

)>
−
(

1
xy[π(i)] + επ(i)

) ∑
k∈[n1]

δMkw>y[π(k)] + γ1


= δMiw>

x
+

∑
j∈[2,n2]

Mi,jγj −
∑
k∈[n1]

δMkw>y[π(k)]
xy[π(i)]︸ ︷︷ ︸

δMiw>
x +

∑
k∈[n1]
k 6=i

δMkw>y[π(k)]
xy[π(i)]

−
∑
k∈[n1]

δMkw>y[π(k)]επ(i) −
γ1

xy[π(i)] − επ(i)γ1

Observe that the first term cancels with the first term underneath the curly bracket and that the other
terms can be simulated using the g1 terms of the assumption.

It remains to show that we can simulate sk2,i for all i such that π(i) ∈ S. In this case H(π(i)) is
simply gεπ(i)

1 , so we get

δMiw>

x
+

∑
j∈[2,n2]

Mi,jγj −
∑
k∈[n1]

δMkw>y[π(k)]επ(i) − επ(i)γ1

where the first term is 0 since w is chosen such that Miw> = 0 for all π(i) ∈ S. The remaining terms
can be computed using the terms provided by the assumption.

Finalize. At the end, the adversary A will output a bit β′ which will also be D’s output. Note that if A
wins, then D will always output the correct bit except when T1 coincides with T0 which happens with
probability 1/p. This concludes the proof of Theorem 3.
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B.3 Relation to Other q-type Assumptions

In order to justify our new q-type assumption, we show that it is implied by another known assumption.
We recall the expanded Diffie-Hellman exponent assumption-2 (EDHE2) introduced by Attrapadung [7,
Def. 4]. The assumption is defined for a group G1 of prime order p with generator g̃1. It is parameterized
by two integers n,m and says that given

g̃1, g̃1
a, g̃1

b, g̃1
an−1c
z ,

∀i ∈ [n], j, j′ ∈ [m], j 6= j′ : g̃1

ai

d2
j , g̃1

aib
dj , g̃1

dj , g̃1

aidj

d2
j′ , g̃1

aibdj
d
j′ , g̃1

ai

d6
j , g̃1

aidj

d6
j′ ,

∀i ∈ [0, n− 1] : g̃1
aic , g̃1

aibcdj ,

∀i ∈ [0, n], j ∈ [m] : g̃1
aibcd5

j ,

∀i ∈ [2n− 1], j, j′ ∈ [m], j 6= j′ : g̃1

aibcdj

d2
j′ , g̃1

aibcd5
j

d6
j′ ,

∀i ∈ [2n− 1], i 6= n, j ∈ [m] : g̃1
aibc
dj ,

∀i ∈ [2n− 1], j, j′ ∈ [m] : g̃1

aic

d2
j , g̃1

aib2cdj
d
j′ , g̃1

aibcdj

d6
j′ , g̃1

aic

d6
j , g̃1

aibcd5
j

d2
j′ , g̃1

aib2cd5
j

d
j′ ,

T̃0 = g̃1
abz is computationally indistinguishable from a random element T̃1

$← G1.
We will look at the asymmetric version of the assumption where the adversary is also given g̃2 raised

to the same exponents and the challenge is provided in G2. The terms highlighted in gray will be needed
for our reduction. Then we can show that the asymmetric (2, n)-EDHE2 assumption implies our n-q-
type assumption. Given an adversary A against the n-q-type assumption, we construct a reduction B
as follows. B inputs the terms of the asymmetric (2, n)-EDHE2 assumption as described above, it then
(implicitly) sets

g1 = g̃1
ac

g2 = g̃2
ab

δ = bγ

c
where γ $← Zp

x = ω

a
where ω $← Zp

y[i] = di
ab

It computes the terms of the n-q-type assumption as

gx1 = (g̃1
ac)ωa = (g̃1

c)ω

g
δy[i]
1 = (g̃1

ac)
bγ
c ·

di
ab =

(
g̃1
di
)γ

g
1

xy[i]
1 = (g̃1

ac)
a
ω ·

ab
di =

(
g̃1

a3bc
di

) 1
w

g
δy[i]
xy[j]
1 = (g̃1

ac)
bγ
c ·

a
ω ·

di
dj =

(
g̃1

a2bdi
dj

) γ
ω

g
1
δ
2 = (g̃2

ab)
c
bγ = (g̃2

ac)
1
γ

g
x
δ
2 = (g̃2

ab)
ω
a ·

c
bγ = (g̃2

c)
ω
γ

g
y[i]
2 = (g̃2

ab)
di
ab = g̃2

di

Tb = e(g̃1
ac
z , T̃b)

Note that for T̃0 = gabz2 , we have Tb = e(g̃1
ac
z , g̃2

abz) = e(g̃1
ac, g̃2

ab) = e(g1, g2) and for T̃1
$← G2, Tb is a

random group element in GT . Thus, if A outputs the correct bit, so does the reduction B.
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C ABGW Schemes

Below are the CP-ABE and KP-ABE scheme of ABGW [6] that we implemented. M, π are defined as
in Section 2.2.

The CP-ABE scheme is defined as follows.

– Setup(1λ). Run GroupGen(1λ) to obtain G := (p,G1,G2,GT , e, g1, g2). Pick (α‖b) $← Zp×Z4
p. Output

(G, (gb[j]
1 )j∈[4], e(g1, g2)α) as the master public key mpk and (α,b) as the master secret key msk.

– KeyGen(msk,S). Pick r $← Zp. Compute

sk1 := g
α−b[4]r
2 , sk2 := gr2

as well as
sk3,u := g

rb[3]
b[1]+ub[2]
2

for all u ∈ S. Output the secret key sk := (sk1, sk2, (sk3,u)u∈S).

– Enc(mpk, (M, π)). Pick (s1‖s′‖v) $← Zp × Zn1
p × Zn2

p . Let µi := Mi(s1‖v)> for all i ∈ [n1]. Then
compute

ct1,i := gµi1 , ct2,i := g
−b[3]s′[i]
1 · gb[4]µi

1 , ct3,i :=
(
g

b[1]
1 · gb[2]π(i)

1

)s′[i]

and d := e(g1, g2)αs1 . Output the ciphertext ct := (ct1,i, ct2,i, ct3,i)i∈[n1] and key d.

– Dec(mpk, (M, π),S, ct, sk). If S satisfies (M, π), there exist constants {γi}i∈I s.t.
∑
i∈I γiMi =

(1, 0, . . . , 0). Reconstruct d by computing

e

(∏
i∈I

ctγi1,i, sk1

)
· e

(∏
i∈I

ctγi2,i, sk2

)
·
∏
i∈I

e(ct3,i, sk3,π(i))γi

and output the result.

The KP-ABE scheme is defined as follows.

– Setup(1λ). Run GroupGen(1λ) to obtain G := (p,G1,G2,GT , e, g1, g2). Pick (α‖b) $← Zp×Z2
p. Output

(G, gb[1]
1 , g

b[2]
1 , e(g1, g2)α) as the master public key mpk and (α,b) as the master secret key msk.

– KeyGen(msk, (M, π)). Pick r $← Zn2−1
p . Let µi := Mi(α‖r)> for all i ∈ [n1]. Then compute

sk1,i := gµi2 , sk2,i := g
µi

b[1]+π(i)b[2]
2

and output the secret key sk := (sk1,i, sk2,i)i∈[n1].

– Enc(mpk,S). Pick (s1‖s′) $← Zp × Z|S|p . For all u ∈ S, compute

ct1,u := g
s1−s′[u]
1 , ct2,u :=

(
g

b[1]
1 · gb[2]u

1

)s′[u]

and d := e(g1, g2)αs1 . Output the ciphertext ct := (ct1,u, ct2,u)u∈S and key d.

– Dec(mpk,S, (M, π), ct, sk). If S satisfies (M, π), there exist constants {γi}i∈I s.t.
∑
i∈I γiMi =

(1, 0, . . . , 0). Reconstruct d by computing∏
i∈I e(ct1,π(i), sk1,i)γi∏
i∈I e(ct2,π(i), sk2,i)γi

and output the result.
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