
Decentralized Anonymous IoT Data Sharing
with Key-Private Proxy Re-Encryption

Esra Günsay1[0000−0001−6672−4253] and Oğuz Yayla1[0000−0001−8945−2780]

Institute of Applied Mathematics,
Middle East Technical University, Ankara, Turkey

{gunsay,oguz}@metu.edu.tr

Abstract. Secure and scalable data sharing is one of the main concerns
of the Internet of Things (IoT) ecosystem. In this paper, we introduce
a novel blockchain-based data-sharing construction designed to ensure
full anonymity for both the users and the data. To share the encrypted
IoT data stored on the cloud, users generate tokens, prove their owner-
ship using zk-SNARKs, and anonymously target the destination address.
To tackle the privacy concerns arising from uploading the data to the
cloud, we use key-private re-encryption and share as little information as
possible with the proxy. Furthermore, we provide security proof of our
construction.

Keywords: Proxy re-encryption · Blockchain · IoT data sharing · Zero-
knowledge proofs.

1 Introduction

In the past few years, IoT technology has become essential in many constructions,
such as smart home [10]s, smart grids [32]s, autonomous vehicles [21], and smart
healthcare [4] systems. With the development of 5G, the importance of this
technology will significantly increase and be widely used. According to Global
System for Mobile Communications Foundation (GSMA), 5G connections are
expected to grow to 1.8 billion, and total IoT connections are expected to touch
25.2 billion by 2025 [1]. In such systems, a massive amount of data is collected
and shared among stakeholders according to need or request. Management of the
IoT data, i.e., storing and sharing it while preserving privacy and confidentiality,
emerges as an essential problem. So that these systems have to supply some
crucial requirements such as user identification and authentication, permission
authorization, permission to access data, scaling data integrity, and others.

As an example, smart health systems are used to securely record, store and
share sensitive data without allowing any malicious changes. These systems are
of great importance for regular follow-up of the conditions of the patients. Since
the data will be used for future clinical studies, keeping these data unchanged is
essential for ensuring that these studies are reliable and trustworthy. Therewith,
while the sensitive personal information of the patients is stored, providing the

2 Günsay et al.

necessary access control to the relevant parties is of great importance in terms
of providing solutions to the system needs of the user.

Considering the technical requirements of such data storage and sharing sys-
tems, the use of distributed ledger technologies (DLT) emerges as a solution [14].
The characteristics of the blockchain technology enable us to build constructions
that provide non-tampering and anonymity in a decentralized way.

Besides privacy concerns, dealing with large-scale IoT data has essential is-
sues such as limited computing and storage capacity. Storing the encrypted data
itself on the blockchain will require extremely high resources. A common ap-
proach to deal with these restrictions is to keep the sensitive data on the cloud
servers. However, one of the drawbacks of this approach is that the cloud servers
are highly prone to malicious usage so that it is crucial to trust the cloud servers
as little as possible.

1.1 Related Works

In the literature, many recent studies are focusing on the privacy concern of data
storing and sharing. Some of them use a blockchain-assisted method together
with a proxy re-encryption (PRE) [9,24,29]. The main drawback of these studies
is that in many PRE schemes, the proxy can easily determine the participants
of the communication from the re-encryption key.

Manzoor et. al [17] proposed a blockchain-based IoT data-sharing scheme
that uses pairing-free proxy re-encryption. Their system uses dynamic smart
contracts to eliminate untrusted third parties. To protect data privacy, they use
the proxy re-encryption so that the data is only visible to the participants in
the smart contract. By employing a smart contract they managed the financial
transactions automatically so that they eliminated the manual verification steps
and some predefined requirements. Though their construction efficiently elim-
inates a need for a trusted third-party, it has challenges adapting blockchain
platforms, resulting in throughput and latency problems.

In 2021, Yang et al. [29] presented a blockchain-based data-sharing scheme
that uses a proxy re-encryption technique based on identity together with cer-
tificateless encryption for medical institutions. Since the communication is con-
structed in between medical institutions, they do not need to fully anonymize
the participants though the data is anonymous. Their construction is resistant
to identity disguise and replay attacks.

Recently, Song et al. [24] adopted blockchain-based data traceability and
sharing mechanism for the power material supply chain. They use proxy re-
encryption to ensure security and privacy. For their use case, data needs to be
traceable, which is a feature we avoid in our case to keep anonymity.

Zonda and Meddeb [33] focused on sharing data among organizations, partic-
ularly a use case of carpooling. Their scheme is integrated within smart contracts
together with a proxy re-encryption technique. They kept the encrypted data
on-chain, which may cause scalability problems. On the other hand, the identity
of the data owner is not hidden from the proxy.

Title Suppressed Due to Excessive Length 3

Feng et al. [9] proposed a blockchain privacy protection scheme based on the
zero-knowledge proof for secure data sharing via smart contracts for industrial
IoT. They keep the encrypted sensitive data in the cloud and share the hash and
the digital signature in the blockchain. Using zk-SNARKs with a combination of
a smart contract, they aim the data availability between the owner and requester.
For their use case, complete traceability of the data has importance. On the other
hand, for a fully-anonymous data-sharing scheme, data needs to be untraceable.

To protect the large-scale IoT health data, Healtchain is introduced by Xu
et al. [27]. They used two different blockchains for fine-grained access control;
one chain is for users, while the other is for doctor’s diagnoses. They used a
content-addressable distributed file system to store the data and stored only the
hash of the data on the blockchain.

FHIRChain [30] is another blockchain-based architecture to solve the data
sharing problem for clinical decision-making. They used digital signatures for
tamper-proofing and public key encryption to prevent unauthorized access and
spoofing. They also proposed a DApp to analyze the benefits and limitations of
their designed scheme.

In 2004, Ben-Sasson et al. [22] proposed Zerocash decentralized anonymous
payment (DAP) scheme using zk-SNARKs. It enables users to pay each other pri-
vately, hiding the origin and destination of the payment, and transferred amount.
That is why we take this study as a cornerstone of our proposed system.

Table 1: Comparisons of known constructions
Manzoor et al. Yang et al. Song et al. Zonda and Meddeb Feng et al. Our Scheme

Anonymity Partial Partial Partial Partial Partial ✓

Untraceability ✗ ✗ ✗ ✗ ✗ ✓

Proxy Re-Encryption CB-PRE ID-based PRE keyword search PRE Changeable ID-based PRE KP-PRE
Blockchain SC SC SC SC SC Token
Cloud Server ✓ ✓ ✗ ✗ ✓ ✓

In Table 1, we tabulated the comparison of previous data-sharing schemes
with our proposal. For the anonymity, partial means, while the data is anony-
mous by some unauthorized parties; data source or data direction is not hidden
from authorized parties i.e. medical researchers, proxy, data owner, etc. It can
be seen that many previous schemes are traceable. This is because in many
previous use cases (e.g., carpooling, medical diagnosis, vehicular communication
systems), it is desired that the data be traceable according to the problem defini-
tion. However, after some proof of validity, we want the data to be untraceable to
achieve complete anonymity. We also specified the PRE schemas used by other
studies in the literature. Note that while previous studies were based on a smart
contract (SC), our study differs from these studies in that it is a token-based
architecture.

4 Günsay et al.

1.2 Our Contribution

In order to solve the problem of IoT data privacy, security, availability, and
consistency, we propose a token-based system that allows the anonymous sharing
of secret information. We offer a novel scheme where only sensitive information
is shared with authorized users without revealing the identity of the recipients
to both the proxy and the users in the system. The recipient of the data knows
that it comes from a valid person thanks to certain zero-knowledge proofs, but
the identity of the sender is not disclosed. The contributions of our scheme are
as follows:

– We propose a scheme based on distributed ledger technology due to its wide
range of usage areas that deploy the trusted central party. The main advan-
tage of using blockchain is to keep the previous token transactions on the
chain in an immutable way. Even though we achieve full anonymity keeping
the transaction records is essential to prevent any malicious attempt. Instead
of smart contracts, we design a token-based structure to provide both scal-
ability and anonymity concerns. By revising the DAP construction in [22],
we propose a novel token-based data-sharing construction.

– We use key private proxy re-encryption to encrypt the data securely before
storing it on the cloud. Since this method allows two types of encryption,
i.e., the first level (non-re-encryptable) and the second level (re-encryptable),
we use the second level encryption to store data while using the first level
for other required system information on transactions. For this encryption
method, it is impossible to derive the participants’ identities from the re-
encryption key.

– We analyze the security of our proposed scheme, confirm its correctness, and
do its anonymity proof.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the preliminaries to the subject together with the underlying key-
private proxy re-encryption scheme. Section 3 describes our proposed architec-
ture by illustrating the pseudocode of the transactions. Section 4 analyses the
security, i.e., gives the proof of correctness and anonymity. Section 5 presents
concluding remarks and future work.

2 Preliminaries

We propose a token-based system that allows the anonymous sharing of secret
information. Our data-sharing scheme comprises of 4 entities: data owner, re-
quester, secure cloud, and blockchain network. These entities can be identified
as follows:

1. Data owner is the party who owns the IoT devices. After the IoT data is
encrypted and stored by the data owner, he/she also needs to generate a
mint transaction to generate the corresponding token. Moreover, the data
owner generates the re-encryption key and publishes the share transaction.

Title Suppressed Due to Excessive Length 5

2. Requester is the user who searches for a token by checking the public ledger
using his secret encryption key.

3. Cloud server (Proxy) is the place we store our encrypted IoT data. Proxy
scans all the share transactions published by the users and executes the re-
encryption process It also publishes a new type of share transaction, which
is scannable and readable by the users.

4. Blockchain network is where we have the public ledger and share transactions
by users and proxy. A snapshot of the ledger is available to all users whenever
they want to access it.

Because of scalability and sensitivity problems of the many data sharing
e.g., clinical data, we only add the access pointer of the encrypted data to the
blockchain system and keep the sensitive information off-chain, i.e., on a secure
cloud. An address access pointer is a reference that denotes the exact location
of the encrypted data on the cloud, which also can be considered as the address
of the encrypted data. In order to get a cost-effective designed system in terms
of storage and transaction fees, access pointers related to a data set are used
instead of adding encrypted data to a block.

The data addresses can be added to the blockchain by exposing secure access
tokens to data. These secure tokens are published on the public ledger for decen-
tralized access. For non-traceability, the data in the tokens also hold the hiding
and binding properties. In addition to those tokens, an immutable transaction
log of all events related to exchanging and actually consuming these tokens is
maintained on the public ledger.

2.1 Cryptographic Primitives

We apply a revised approach of Zerocash to our problem and use similar cryp-
tographic techniques to build our proposed scheme with anonymity.

We use a collision-resistant hash function (CRH) to compress the input
string; and a pseudorandom function (PRF) to securely generate public address
keys from a given secret address key as a seed. We use a trapdoor commitment
function commr(x) for a given trapdoor r and an input x to statistically hide
and computationally bind the input to the committed value. Digital signatures
are used in this study to verify digital messages’ authenticity. For a given secu-
rity parameter λ, KeyGenSign generates the signature key pair pksig, sksig. The
message m is signed as σ = Sign(sksig;m), and verified by checking the accuracy
of m = (pksig;m,σ).

2.2 Proxy re-encryption (PRE)

The idea of PRE was proposed by Blaze et al. [5] in 1998. After its introduction,
PRE has been used in a wide range of areas such as distributed file systems [13],
access control [19], email forwarding [12], cloud [18], and others. It is of great
importance which PRE scheme as the underlying re-encryption we will use to set
up the scheme that serves our purpose. There are different types of PRE schemes

6 Günsay et al.

with the their key features as: attribute-based setting [7,15,11], identity-based
setting [26,8], broadcast setting [31,16], schemes using keyword search [23], and
similar.

Key-private proxy re-encryption Our aim is to reveal as little information
as possible to the proxy. So that the address keys, encryption keys, and the
content of the message are kept hidden from the proxy. To encrypt the measured
data, we use key-private proxy re-encryption, which is a unidirectional, single-
hop, CPA-secure PRE method with key privacy. A detailed explanation of the
system is given in [2]. For convenience, we first give the underlying key-private
PRE scheme and then explain the overall architecture.

The scheme is based on pairing-based cryptography. Let q be a prime number
and e : G × G → GT be a bilinear map, denoted by (q, g,G,GT , e), where G
is an additive cyclic group of order q generated by g and GT is another group
of order q. There are five polynomial-time algorithms in the key-private PRE
scheme: SetUp, KeyGen, Encrypt, ReEncrypt, and Decrypt.

Setup(1k): For a randomly chosen h ∈ G, Z = e(g, h) is computed so that
the public parameters of the system are (g, h, Z).

KeyGen: Choose u1, u2
$←− Zq. For each user in the system public encryption

keys are (Zu1 , gu2), with the corresponding secret key (u1, u2).
Encryption: User A with the secret key (a1, a2) encrypts his data m with

the corresponding public key (Za1 , ga2) by first selecting a random k ∈ Zq, and
computing

E = (gk, hk,mZa1k) = (α, β, γ). (1)

We refer to the result of this encryption as the second-level ciphertext. With the
same public, the user can also generate a first-level ciphertext as:

Ẽ = (e(ga2 , h)k,mZk) = (Za2k,mZk). (2)

ReKeyGen: A re-encryption key is generated by selecting random elements
r, w ∈ Zq and computing

rkA→B = ((gb2)a1+r, hr, e(gb2 , h)w, e(g, h)w),

= (gb2(a1+r), hr, Zb2w, Zw),

= (R1, R2, R3, R4).

(3)

Re-Encryption: Using rkA→B , the re-encrypt operation on the encrypted
data (α, β, γ) is done as in the following steps.

1. Check that e(α, h) = e(g, β). If it holds, then there exist k ∈ Zq and m ∈ GT

such that α = gk, β = hk and γ = mZa1k.
2. Compute:

t1 = e(R1, β) = e(gb2(a1+r), hk) = Zb2k(a1+r).

t2 = γe(α,R2) = mZa1ke(gk, hk) = mZk(a1+r).
(4)

Title Suppressed Due to Excessive Length 7

3. Choose a random w′ ∈ Zq.
4. Re-randomize t1 and t2 into θ and δ respectively as:

θ = t1.R
w′

3 = Zb2k(a1+r).(Zwb2)w
′
= Zb2(k(a1+r)+ww′).

δ = t2.R
w′

4 = mZk(a1+r).(Zw)w
′
= mZk(a1+r)+ww′

.
(5)

5. Publish the ciphertext E′ = (θ, δ), which is called as the second-level cipher-
text.

Decryption: User B can decrypt the first-level ciphertext Ẽ with his secret
key (b1, b2) as follows:

m = δ/θ1/b2 . (6)

He can also decrypt the second-level ciphertext E′ as:

m = γ/e(α, h)b1 . (7)

3 Proposed Scheme

The overall architecture for secure storing and anonymous sharing of the mea-
sured IoT data is demonstrated in Figure 1.

IoT Data

Owner

Requester

Cloud Server

(Proxy)

BlockChain

Network

(1) Sends the encrypted IoT data

(2)-(3)
Tokenizes
the data

(2) Mint tx(4) Share tx for the Proxy

(5) Checks the proof, goes to AP

re-encrypts

(6) Share tx for Users

(7) Scans the ledger,

gets the AP using

her secret key

(8) Goes to the AP, de
cr

yp
ts

 it
 w

ith
 h

er
 s

ec
re

t e
nc

 k
ey

Fig. 1: Workflow of our proposed scheme.

8 Günsay et al.

1. The data owner, user A, encrypts his measured IoT data using his key-
private public key and stores it on the cloud server. Note that the result of
this encryption is a second-level (i.e., re-encryptable) ciphertext.

2. User A generates a token including his public address key and information
to reach out to data. He publishes a mint transaction to the ledger. At the
same time, he sends the commitment of the token to the commitment list,
namely CMList. This token will be used to prove his ownership in a secret
way.

3. When he wants to share his data with some other user B, he generates a new
token, including the address public key of the B. Note that he also shares a
mint transaction for the new token and sends the commitment of the token
to the CMList.

4. He publishes a share transaction including:
- Merkle root of commitment list,
- commitment of the token related to requester,
- re-encryption key,
- digital signatures,
- a zk-SNARK proof that proves his ownership without revealing his ad-
dress,

- encryption of trapdoors and access pointer as first-level ciphertext using
the public encryption key of user B,

- encryption of trapdoors and access pointer as first-level ciphertext using
the public encryption key of the proxy.

5. As soon as the transaction is added to the ledger, the proxy reads the trans-
action and checks the accuracy of the zero-knowledge proof. If the proof is
valid, it decrypts the related area with its secret encryption key and gets
the AP , and then re-encrypts the value in AP with the corresponding re-
encryption key.

6. Proxy publishes a new share transaction, which is quite similar to the share
transaction the user A generates; it just eliminates the parts that are not
related to user B so that the transaction includes:
- Merkle root of commitment list,
- commitment of the token related to requester,
- digital signatures,
- a zk-SNARK proof that proves his ownership without revealing his ad-
dress,

- encryption of trapdoors and access pointer as first-level ciphertext using
the public encryption key of user B.

7. User B scans the share transactions on the ledger; using her secret encryption
key, she finds the related transaction and decrypts it.

8. After learning the address access pointer AP shared with her, she decrypts
the ciphertext on the cloud using her secret encryption key.

Note that the system has two types of share transactions. One type is gen-
erated by the users, and such transactions are only scanned by the proxy. The
other type is generated by the Proxy and published to all the users in the system.

Title Suppressed Due to Excessive Length 9

Data Owner BlockchainRequesterProxy

Register

RegisterStores the encrypted data
on AP

Generate

the tokens

Generate ZKP, compute re-encryption key, send a share transaction for proxy

Scan the public ledger, get the AP

Re-encrypt

the data on AP

send a share transaction for users

Scan the public ledger,

find AP

Decrypt the data

on AP

Generate a mint transaction for each token

Fig. 2: The timing diagram of our data sharing scheme.

3.1 Architecture Description

We give the pseudocode of the system beginning from minting in Figure 3. In
our construction, pp denotes the public parameters. defined by the trusted setup.
Note that this setup only occurs at the very beginning of the system, afterwise
there will be no need for any type of trusted party.

Each user has a pair of address keys (apk, ask), which will be used for hid-
ing the origin of the transactions, and a pair of encryption keys (pkenc, skenc)
to encrypt the secret information. We will represent these keys as addrpk :=
(apk, pkenc), addrsk := (ask, skenc). To be able to give users the flexibility to
change their addresses; we use a pseudo-random function PRFask

() for address
keys. After choosing a random secret address key ask, a user generates the cor-
responding address public key as apk := PRFask

(0). Note that encryption keys
are pkenc = (Za1 , ga2), skenc = (a1, a2) as defined previously.

Storing the data on the cloud Assume that (pkAenc, sk
A
enc) denotes the key-

private encryption keys of the data owner. The data owner encrypts the mea-
sured data m with his public encryption key pkAenc = (Za1 , ga2), and gets the
second-level ciphertext E = Enc(pkAenc;m). He stores the encrypted data on a
cloud storage server, where the access pointer AP denotes the exact location of
the data on the server.

Tokenizing the data After storing the measured data m as encrypted in the
cloud, the data owner knows the exact location of the data. However, to send
the data anonymously, he somehow needs to prove that he owns the data in a

10 Günsay et al.

zero-knowledge way. To this end, for each encrypted data on the cloud, users
generate a token t including the information of the ownership, i.e., the address
key of the owner.

The tokens are generated to be able to exchange data. When a user wants to
share his measured data, he sends the corresponding token to the other party,
which is a certain way of sending the decryption rights of the data. We also need
to keep the sensitive information in the tokens hidden to maintain anonymity.
For this aim, we use a statistically hiding non-interactive commitment scheme.
User A generates a token for the access pointer AP as follows:

k : = commr(a
A
pk),

cmA : = comms(k || AP),
(8)

The data owner chooses random trapdoors r and s, then commits his address
public key to hide the origin of the token together with the access pointer. To
do so, he would prove that given the access pointer, he owns the data on the
location of AP indicates without revealing his address key. Similar to the DAP
scheme of Zerocash, he sends cmA to the CMList. To reduce the time and space
complexity, we compress the CMList as an efficiently updatable append-only
CRH-based Merkle-tree structure whose root is denoted by rt.

He sets his token as tA := (aApk, AP, r, s, cmA). The token commitments are
appended to the ledger after they are minted. Subsequently, he generates a mint
transaction as:

txMint = (k, s, cmA) (9)

A mint transaction indicates that for a given location AP , there exists a token
whose commitment cmA is at the CMList.

Sending a transaction for proxy If the data owner wants to share his data
anonymously with some other user B, he needs to generate a share transaction.
Using the address public key committed in tA, he is able to prove the origin in
a zero-knowledge way. On the other hand, to prove the direction of the transac-
tion anonymously, he generates another token that commits the address of the
recipient.

First, the data owner generates a new token to indicate the direction of
sharing; to this end includes the address public key of user B to the new token
as follows:

k′ : = commr′(a
B
pk),

cmB : = comms′(k
′ || AP),

txBMint = (AP, k′, s′, cmB).

(10)

The new token is set as tB := (aBpk, AP, r′, s′, cmB). User A mints this new token

and sends the corresponding commitment cmB to the CMList.
Second, user A computes a re-encryption key rkA→B by using his own secret

encryption key skAenc and the public encryption key of the requester pkBenc as
described in Eq.(3).

Title Suppressed Due to Excessive Length 11

Third, to tackle the trace problems that might arise from sending AP dis-
closed, the user A sends it encrypted to the proxy. Aside from our little trust in
the proxy, the reason for this encryption is to hide AP from other users scanning
the ledger. Even if the proxy acts maliciously, the leaked information about AP
does not violate the anonymity. The leaked information is just a random ac-
cess pointer for an outside user. Hence, user A encrypts the AP with the public
encryption key of the proxy:

PC : = Enc(pkProxy
enc ; AP || nonce). (11)

He also needs to send trapdoors r′ and s′ in a secret way to let the user B
open up the commitments. So that he encrypts the trapdoors using the public
encryption key of user B. Since there is no need to re-encrypt these ciphertexts,
he uses first-level encryption in this step. Let UC denotes the encryption of
{r′, s′} under pkBenc:

UC : = Enc(pkBenc; AP, r′, s′). (12)

Third, to prove his ownership of the data located on AP , he generates a
zk-SNARK proof πshare containing:

Given Merkle root rt, access pointer AP, and commitment cmB, I know tA

and tB s.t.:

– The tokens tA and tB are well-formed.
– Address secret key matches with the address public key: aApk = PRFaA

sk
(0).

– The token commitment cmA appears as a leaf of a Merkle tree with root rt.

Lastly, the data owner samples a signature key (pksig, sksig) to prevent the
malleability attacks on the transaction he will share. He computes;

hsig : = CRH(pksig),

h1 : = CRH(hsig).
(13)

Later, generates two signatures; σ1 for the proxy, and the σ2 for the requester.

σ1 : = Sign(sksig, (rt, cm
B , hsig, h1, πshare, PC))

σ2 : = Sign(sksig, (rt, cm
B , hsig, h1, πshare, UC))

(14)

Then adds the πshare to prove that these two signatures are well formed, i.e.,
computed correctly, and appends these signatures to the share transactions. Re-
member that in the overall system, we have two types of share transactions: one
is generated by the users while the proxy generates the other. Now he publishes
the share transaction for the proxy:

txUshare := (rt, cmB , rkA→B , pksig, h1, πshare, PC,UC, σ1, σ2) (15)

12 Günsay et al.

Fig. 3: Algorithm description of our proposed data sharing scheme.

Title Suppressed Due to Excessive Length 13

Proxy cloud operations As soon as a user publishes a transaction proxy is
notified and operates on it. The proxy first checks the accuracy of the πshare, and
σ1. Then it decrypts the PC using its secret encryption key and gets the access
pointer AP . After that, using rkA→B , he re-encrypts the data on the AP . At
the end of this re-encryption, it generates a new share transaction for the users:

txPshare := (rt, cmB , pksign, h1, πshare, UC, σ2). (16)

Note that the Proxy does not compute any instances; it simply copies the related
information from the share transaction generated by user A and appends it to
the ledger, which is public to all users.

Decrypting the message Using his secret encryption key skBenc, the user B
can find and decrypt the message by scanning the pour transactions. To be able
to find txPshare = (rt, cmB , πshare, RP, UC), he computes:

(AP, r′, s′) = Dec(skBenc;UC) (17)

If the output of the decryption is not ⊥, he verifies that

cmB ?
= comms′(AP || commr′(a

B
pk)). (18)

If these equations hold, this is a valid transaction for sending data to the user
B.

4 Security Analysis

In this section, we analyze the security of our proposed architecture.

4.1 Correctness Proof

For the correctness of our proposed scheme, we need to consider the transaction
shared by the Proxy. It is easy to see that the requester, user B, can decrypt the
UC using his secret encryption key (b1, b2), as follows:

(AP, r′, s′) = δ/θ1/b2 . (19)

Re-encrypted ciphertext on the AP can be decrypted as:

m = γ/e(α, h)b1 . (20)

Thus, the correctness holds as the correct execution of the each previous step.

14 Günsay et al.

4.2 Security Proof

We start by giving the definition of two well-known assumptions.

Definition 1 (Extended Decisional Bilinear Diffie-Hellman (eDBDH)
Assumption [3]). Let (q, g,G,GT , e) be a map generated with a security pa-
rameter 1k. For all probabilistic polynomial time adversary A, there exists a
negligible function ϵ such that:

Pr[a, b, c, d← Zq; x1 ← e(g, g)abc; z ← {0, 1};

z
′
← A(g, ga, gb, gc, e(g, g)bc

2

, xz) : z = z
′
] ≤ 1

2
+ ϵ(k).

Definition 2 (Decision Linear Assumption [6]). Let (q, g,G,GT , e) be a
map generated with a security parameter 1k. Given that h, f are random gen-
erators in G, for all probabilistic polynomial time adversary A, there exists a
negligible function ϵ such that:

Pr[x, y, r ← Zq; q1 ← fx+y; q0 ← fr; z ← {0, 1};

z
′
← A(g, h, f, gx, hy, qz, xz) : z = z

′
] ≤ 1

2
+ ϵ(k).

Confidentiality. To prove confidentiality, two conditions need to be satisfied.
First, the ciphertexts (we will assume a commitment is also ciphertext) leak no
information about the messages. Second, the trapdoors reveal no information
about the message. In order to prove these two clauses, we define two security
games. These games are run between the challenger C and the adversary A. The
adversary A interacts with the oracles of hash functions and commitments.

1. Setup: C first takes a security parameter λ and sets up the system parameters,
then sends the public parameters to adversary A, and the secret parameters
are kept hidden from A.

2. Phase 1: For the different public address keys of the system, A adaptively
issue the queries to the following oracle that is controlled by the C:

Commitment oracle Oc: Given a message m, the oracle runs the comm
algorithm and generates the corresponding commitment cm with related
trapdoor r.

3. Challenge: A chooses two messages (m0,m1) to be challenged. C flips a
random coin b, and computes the comm, then sends the commitment cm∗

to A.
4. Phase 2: The adversary A adaptively issues queries.
5. The adversary outputs a guess b

′ ∈ {0, 1} of b. A wins the game if b
′
= b.

We define the A’s advantage as:

AdvA =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣

Title Suppressed Due to Excessive Length 15

Lemma 1. If the eDBDH assumption holds and the hash function is collision-
resistant, then our scheme satisfies the confidentiality in the random oracle
model.

We prove through the following games, which are constructed as defined
above. Our aim is to show the advantages of A to win these games are negligible.

Game 0: Algorithm C simulates the challenger and interacts with A. The
challenger C first generates the public parameters pp = (q, g,G,GT , e), and two
address key pairs (apki , aski) and (apkj , askj). Then, C publishes the public in-
formation pp, apki , apkj and in response to commitment query, C generates two
tokens:

k1 = commr1(apki), k2 = commr2(apkj),

cm1 = comms(k || AP1), cm2 = comms(k || AP2),
(21)

where r1, r2, s1, s2 chosen randomly. To response to trapdoor oracle query, C
computes k∗ = commr1r2(apki

). Hence, A’s ability to acquire the trapdoors is
simulated.

By repeating the above queries, the adversary guesses the challenge commit-
ment based on the information it has. We indicate the advantage of A to win
this game as:

AdvGame 0
A (λ) = AdvIND

A (λ)

Game 1: The setup of this game is the same as Game 0. Note that CRH,
PRF, and comm functions are constructed via the SHA256 hash function, which
maps an arbitrary size input to 256-bit output. Challenger C selects new trap-
door values r∗, s∗ and computes the new challenge commitment cm∗. Adversary
A distinguishes cm∗ from cm1, so that A can find a path that reveals the com-
mitment corresponding to a particular token as if it can break the collision
resistancy of the hash function. One can see that the advantage of the adversary
A to win this game is negligible, i.e., AdvGame 1

A (λ) = AdvGame 0
A (λ) under the

condition of the security of SHA256 hashing function [20]. Therefore adversary’s
advantage in finding a path in the CMList is negligible.

Game 2: In this game, challenger C selects new random trapdoors r
′
, s

′

and to challenge the commitments in the share transaction computes the new
commitment cm∗ = comms′(AP || commr′(apk1

), which is published on share
transaction on the blockchain. On the share transaction, the adversary A can
decrypt (AP, r′, s′) = Dec(skenc∗ ;UC) under the condition of ability to break
eBDBH difficulty, later verify cm = comms′(AP || commr′(apk)) under the con-
dition of breaking hash security.

Thus, if the attacker A can win Game 2, then an algorithm C can be con-
structed to break the eDBDH problem and collusion resistance of the hash func-
tion. Therefore, we denote the advantage ofA to win this game as,AdvGame 2

A (λ) =
AdvGame 1

A (λ). Note that this game is valid for both share transaction types in
the scheme, i.e., generated by users or generated by the proxy. Based on the dif-
ficulty of the eDBDH problem and hash function, our proposed scheme satisfies
the security of the share transaction.

16 Günsay et al.

Lemma 2. If eDBDH and Decision Linear assumptions hold, our scheme sat-
isfies the anonymity of the both parties, the data owner and the requester.

Proof. Our protocol uses key-private proxy re-encryption, which is CPA-secure
under eDBDH assumption in G for message domain GT [2]. Under the Decision
Linear assumption in G, the encryption method we use provides the key privacy.

Lemma 3. If eDBDH assumption holds, our scheme satisfies the immutability
of the data.

Proof. In our scheme, each user stores the data after encrypting it via a second-
level encryption as E = Enc(pkAenc;m) = (gk, hk,mZu1k) = (α, β, γ), where u1

is the part of user’s secret signing key. Under the eBDBH assumption, A cannot
decrypt the ciphertext and alter the data. Therefore, based on the security of
the eDBDH assumption, the advantage of A to forge immutability is negligible.

5 Properties and performance analysis

5.1 Properties analysis

Our scheme has the following properties:

1. Anonymity: Without any pre-assumptions, our proposed scheme satisfies
user anonymity, i.e., it is difficult to reveal the identity of the data sharer
and the receiver. The sensitive data is stored in the cloud in the form of
ciphertext. At this point, we assume that the computing power of the adver-
saries is limited so that the secret key of the participants’ cannot be obtained
by the adversaries. Therefore the secret keys are secure. Note that only the
access pointer of the encrypted data is transmitted as tokens. Since address
public keys are kept hidden using a statistically hiding commitment scheme,
the tokens leak no information about the transaction’s origin or direction so
that user anonymity is achieved. The data owner proves his ownership of the
stored data in a zero-knowledge way.
Our scheme achieves high anonymity as a result of the following properties.

– The access pointers leak no information about the tokens.
– The commitments in the CMList are not directly related to the tA.
– tA leaks no information about its owner, i.e., the address public key of

the new token targeted.
– The participants’ keys and the re-encryption keys are infeasible to be

related.

2. Non-traceability: For non-traceability, the data in the tokens holds the
hiding and binding properties. We use a commitment scheme and key-private
encryption to hide data in the tokens. Although an immutable transaction log
of all events related to exchanging and consuming these tokens is maintained
on the public ledger, these logs reveal nothing to trace access tokens or the
data itself.

Title Suppressed Due to Excessive Length 17

3. Access controllable: Transactions for related tokens are published on the
public ledger for decentralized access. At the very beginning, we create the
tokens with the address public keys of the relevant persons, i.e., the data
owner or the requester. In case of an attempt of malicious access, it will fail,
as it is impossible to decrypt the ciphertext without a corresponding secret
encryption key.

4. Authentication: Authentication means users prove their identity as a pre-
requisite to allowing access to resources in an information system [25]. In our
system, each user has a unique secret address key, and when a user wants
to share data with another user a token is generated with the public key of
the related secret address key. Only the secret key of the requester is able to
decrypt the encrypted data. Since we have fixed the address secret keys, we
guarantee the link between the identity and the public key.

5. Immutable: Immutability means that the data can only be written, not
modified or deleted [28]. Since the encrypted measured data is stored on a
cloud server; the data owner could decrypt it using his secret encryption key
to check integrity. At the same time, the requester could verify the equations
above, and the integrity was ensured.

5.2 Performance analysis

Our proposed scheme is based on the bilinear map operations on (e,G,GT).
Therefore, the complexity of our scheme is dominated by the operations of ex-
ponentiation, pairing, signature, commitment, and CRH. Hence, we give the
number of these operations in Table 2 to evaluate the computation complexity
of our scheme. Exponentiation on the group G and GT are denoted by te and
teT respectively. The cost of pairing operation is denoted by tp. In addition, we
denote the cost of signature generation, signature verification, CRH and com-
mitment as ts, tv, th and tc, respectively.

As the first step, the encryption of the measured IoT data uses second-
level encryption (2te + teT), and the ciphertext size is given by 2|G|+ |GT |. The
tokenization step includes four commitments for two tokens (tc). To construct the
share transaction, the data owner computes two first-level encryptions (2(2teT +
tp)), two CRH (2th), two commitments (2tc), the re-encryption key (2te+2teT +
tp) and two signatures (2ts). After that, the proxy uses a first-level decryption
(teT) and a re-encryption (4tp + 2teT). Since the proxy will share the same
transaction by discarding some parts, there will be no computational cost in
re-sharing process. Consequently, the requester scans the ledger and decrypts
the first-level ciphertext (teT), after finding the correct transaction, checks the
commitment (tc) and decrypts the second-level ciphertext (tp + teT).

Please note that since here as the first time in the literature we have in-
tegrated a token-based blockchain and a key private proxy re-encryption to
achieve a fully anonymous data sharing scheme.In addition, we proposed the
cryptographic components in our scheme as a proof of concept. Hence, it would
be a good future direction to implement our architecture to get the communica-

18 Günsay et al.

tion cost together with the transaction cost, and latency analysis in blockchain
measurements.

Table 2: Cost of parties in our scheme
Data owner Proxy Blockchain Requester

Cost 2te + 6teT + 3tp + 2th + 2tc + 2ts 4tp + 3teT teT + 2tv + th tc + 2teT + tp

6 Concluding Remarks

In this paper, we have proposed a decentralized data-sharing architecture with
the combination of a key-private proxy re-encryption scheme to ensure anonymity
for both the data owner and the requester. The underlying encryption method
we used is CPA-secure under eDBDH assumption. To recapitulate, our scheme
stores the encrypted IoT data in the cloud to ensure the efficiency. For each data,
a token including the address public key is generated. When a user wants to share
his/her data, he simply generates another token including the requester’s address
public key, and generates a transaction with the related zero-knowledge proof
of the ownership. Proxy re-encrypts the corresponding data without knowing
the owner or the requester. The proxy publishes a new transaction by simply
eliminating some parts that are not necessary for the requester.

References

1. The internet of things by 2025. GSMA (2018), https://www.gsma.com/iot/

wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf

2. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) Topics in Cryptology – CT-RSA 2009. pp. 279–294. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (feb 2006). https://doi.org/10.1145/1127345.1127346, https://
doi.org/10.1145/1127345.1127346

4. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare:
Technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017).
https://doi.org/10.1109/ACCESS.2017.2775180

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) Advances in Cryptology — EUROCRYPT’98. pp.
127–144. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual interna-
tional cryptology conference. pp. 41–55. Springer (2004)

7. Deng, H., Qin, Z., Wu, Q., Guan, Z., Zhou, Y.: Flexible attribute-based proxy
re-encryption for efficient data sharing. Information Sciences 511, 94–113 (2020)

https://www.gsma.com/iot/wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf
https://www.gsma.com/iot/wp-content/uploads/2018/08/GSMA-IoT-Infographic-2019.pdf
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1109/ACCESS.2017.2775180

Title Suppressed Due to Excessive Length 19

8. Dutta, P., Susilo, W., Duong, D.H., Roy, P.S.: Collusion-resistant identity-based
proxy re-encryption: lattice-based constructions in standard model. Theoretical
Computer Science 871, 16–29 (2021)

9. Feng, T., Yang, P., Liu, C., Junli, F., Ma, R.: Blockchain data privacy protection
and sharing scheme based on zero-knowledge proof. Wireless Communications and
Mobile Computing 2022, 1–11 (02 2022). https://doi.org/10.1155/2022/1040662

10. Fogli, D., Lanzilotti, R., Piccinno, A.: End-user development tools for the smart
home: A systematic literature review. In: Streitz, N., Markopoulos, P. (eds.) Dis-
tributed, Ambient and Pervasive Interactions. pp. 69–79. Springer International
Publishing, Cham (2016)

11. Ge, C., Susilo, W., Baek, J., Liu, Z., Xia, J., Fang, L.: A verifiable and fair attribute-
based proxy re-encryption scheme for data sharing in clouds. IEEE Transactions
on Dependable and Secure Computing 19(5), 2907–2919 (2021)

12. Ibraimi, L., Tang, Q., Hartel, P., Jonker, W.: A type-and-identity-based proxy re-
encryption scheme and its application in healthcare. vol. 5159, pp. 185–198 (08
2008). https://doi.org/10.1007/978-3-540-85259-912

13. Kirshanova, E.: Proxy re-encryption from lattices. In: PKC. pp. 77–94.
Springer (2014). https://doi.org/10.1007/978-3-642-54631-05, https://www.iacr.
org/archive/pkc2014/83830204/83830204.pdf

14. Leeming, G., Cunningham, J., Ainsworth, J.: A ledger of me: personalizing health-
care using blockchain technology. Frontiers in medicine 6, 171 (2019)

15. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Generation Computer Systems 52, 95–108 (2015)

16. Liu, Y., Ren, Y., Ge, C., Xia, J., Wang, Q.: A cca-secure multi-conditional proxy
broadcast re-encryption scheme for cloud storage system. Journal of Information
Security and Applications 47, 125–131 (2019)

17. Manzoor, A., Braeken, A., Kanhere, S.S., Ylianttila, M., Liyanage, M.: Proxy
re-encryption enabled secure and anonymous iot data sharing platform based
on blockchain. Journal of Network and Computer Applications 176, 102917
(2021). https://doi.org/https://doi.org/10.1016/j.jnca.2020.102917, https://www.
sciencedirect.com/science/article/pii/S1084804520303763

18. Nuñez, D., Agudo, I., Lopez, J.: Proxy re-encryption: Analysis of
constructions and its application to secure access delegation. Jour-
nal of Network and Computer Applications 87, 193–209 (2017).
https://doi.org/https://doi.org/10.1016/j.jnca.2017.03.005, https://www.

sciencedirect.com/science/article/pii/S1084804517301078

19. Pareek, G., Purushothama, B.: Proxy re-encryption for fine-grained access con-
trol: Its applicability, security under stronger notions and performance. Journal of
Information Security and Applications 54, 102543 (2020)

20. Penard, W., van Werkhoven, T.: On the secure hash algorithm family. Cryptogra-
phy in context pp. 1–18 (2008)

21. Philip, B.V., Alpcan, T., Jin, J., Palaniswami, M.: Distributed real-time iot for
autonomous vehicles. IEEE Transactions on Industrial Informatics 15(2), 1131–
1140 (2019). https://doi.org/10.1109/TII.2018.2877217

22. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
symposium on security and privacy. pp. 459–474. IEEE (2014)

23. Shao, J., Cao, Z., Liang, X., Lin, H.: Proxy re-encryption with keyword search.
Information Sciences 180(13), 2576–2587 (2010)

https://doi.org/10.1155/2022/1040662
https://doi.org/10.1007/978-3-540-85259-9_12
https://doi.org/10.1007/978-3-642-54631-0_5
https://www.iacr.org/archive/pkc2014/83830204/83830204.pdf
https://www.iacr.org/archive/pkc2014/83830204/83830204.pdf
https://doi.org/https://doi.org/10.1016/j.jnca.2020.102917
https://www.sciencedirect.com/science/article/pii/S1084804520303763
https://www.sciencedirect.com/science/article/pii/S1084804520303763
https://doi.org/https://doi.org/10.1016/j.jnca.2017.03.005
https://www.sciencedirect.com/science/article/pii/S1084804517301078
https://www.sciencedirect.com/science/article/pii/S1084804517301078
https://doi.org/10.1109/TII.2018.2877217

20 Günsay et al.

24. Song, J., Yang, Y., Mei, J., Zhou, G., Qiu, W., Wang, Y., Xu, L., Liu, Y., Jiang,
J., Chu, Z., Tan, W., Lin, Z.: Proxy re-encryption-based traceability and sharing
mechanism of the power material data in blockchain environment. Energies 15(7)
(2022). https://doi.org/10.3390/en15072570, https://www.mdpi.com/1996-1073/
15/7/2570

25. Song, Z., Li, Z., Dou, W.: Different approaches for the formal definition of authen-
tication property. In: 9th Asia-Pacific Conference on Communications (IEEE Cat.
No. 03EX732). vol. 2, pp. 854–858. IEEE (2003)

26. Wang, X.A., Xhafa, F., Zheng, Z., Nie, J.: Identity based proxy re-encryption
scheme (ibpre+) for secure cloud data sharing. In: 2016 International Conference
on Intelligent Networking and Collaborative Systems (INCoS). pp. 44–48 (2016).
https://doi.org/10.1109/INCoS.2016.83

27. Xu, J., Xue, K., Li, S., Tian, H., Jianan, H., Hong, P., Yu, N.:
Healthchain: A blockchain-based privacy preserving scheme for large-scale
health data. IEEE Internet of Things Journal PP, 1–1 (06 2019).
https://doi.org/10.1109/JIOT.2019.2923525

28. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Nistir 8202 blockchain technology
overview. National Institute of Standards and Technology, US Department of Com-
merce, Washington, USA (2018)

29. Yang, X., Li, X., Chen, A., Xi, W.: Blockchain-based searchable proxy re-
encryption scheme for ehr security storage and sharing. Journal of Physics:
Conference Series 1828, 012120 (02 2021). https://doi.org/10.1088/1742-
6596/1828/1/012120

30. Zhang, P., White, J., Schmidt, D.C., Lenz, G., Rosenbloom, S.T.: Fhirchain: ap-
plying blockchain to securely and scalably share clinical data. Computational and
structural biotechnology journal 16, 267–278 (2018)

31. Zhang, Q., Cui, J., Zhong, H., Liu, L.: Toward data transmission security based on
proxy broadcast re-encryption in edge collaboration. ACM Transactions on Sensor
Networks (TOSN) (2022)

32. Zheng, D., Deng, K., Zhang, Y., Zhao, J., Zheng, X., Ma, X.: Smart grid power
trading based on consortium blockchain in internet of things. In: Vaidya, J., Li, J.
(eds.) Algorithms and Architectures for Parallel Processing. pp. 453–459. Springer
International Publishing, Cham (2018)

33. Zonda, D., Meddeb, M.: Proxy re-encryption for privacy enhance-
ment in blockchain: Carpooling use case. In: 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain). pp. 482–489 (2020).
https://doi.org/10.1109/Blockchain50366.2020.00070

https://doi.org/10.3390/en15072570
https://www.mdpi.com/1996-1073/15/7/2570
https://www.mdpi.com/1996-1073/15/7/2570
https://doi.org/10.1109/INCoS.2016.83
https://doi.org/10.1109/JIOT.2019.2923525
https://doi.org/10.1088/1742-6596/1828/1/012120
https://doi.org/10.1088/1742-6596/1828/1/012120
https://doi.org/10.1109/Blockchain50366.2020.00070

	Decentralized Anonymous IoT Data Sharing with Key-Private Proxy Re-Encryption

