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Abstract. During the last decades there has been an increasing inter-
est in Elliptic curve cryptography (ECC) and, especially, the Elliptic
Curve Digital Signature Algorithm (ECDSA) in practice. The rather re-
cent developments of emergent technologies, such as blockchain and the
Internet of Things (IoT), have motivated researchers and developers to
construct new cryptographic hardware accelerators for ECDSA. Differ-
ent types of optimizations (either platform dependent or algorithmic)
were presented in the literature. In this context, we turn our attention
to ECC and propose a new method for generating ECDSA moduli with
a predetermined portion that allows one to double the speed of Barrett’s
algorithm. Moreover, we take advantage of the advancements in the Ar-
tificial Intelligence (AI) field and bring forward an AI-based approach
that enhances Schoof’s algorithm for finding the number of points on an
elliptic curve in terms of implementation efficiency. Our results represent
algorithmic speed-ups exceeding the current paradigm as we are also pre-
occupied by other particular security environments meeting the needs of
governmental organizations.

Keywords: Elliptic curve, elliptic curve cryptography, ECDSA, artificial intel-
ligence, Schoof’s algorithm, Barrett’s algorithm.

1 Introduction

Elliptic curve cryptographic (ECC) was initially proposed in [25,31] as an alter-
native to the already established public key cryptographic schemes. As a side
note, the credit for the first use of elliptic curves in a cryptology related context
is given to Lenstra for his factorization algorithm [28]. ECC has received an in-
creasing amount of attention in time not only for the high level provable security
offered, but especially due to a desired property concerning the implementation
efficiency: the cryptographic keys are significantly shorter compared to, e.g., the
case of RSA [34].

For more than a decade now, ECC has become a central piece for the
Blockchain technology. To be more specific, the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) [22] is widely adopted in the construction of cryp-
tocurrency and, implicitly, blockchains. Thus, there has been a justified hype
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with respect to efficient implementations of ECDSA and other ECC schemes
in recent years, especially using Field Programmable Gate Arrays (FPGAs)
[6–8,15,16,19,36,38,40]. Hence, FPGA-based hardware accelerators represent the
main applied research topic when dealing with (permissioned) blockchains. To un-
derline the importance of the subject, we have to mention that the main FPGA
technology producer, Xilinx [4], organized a competition in 2021 [5], which en-
couraged R&D representants to propose, among other topics, blockchain-related
projects [3].

Nonetheless, ECC grew compelling for another important emergent technol-
ogy, i.e., the Internet of Things (IoT) [33]. Again, the interest for (hardware)
optimized implementations of ECC algorithms is clearly shown in theory and
practice [12, 13, 18, 20, 23, 24, 26, 27, 29, 30, 32, 35, 39]. Microprocessor, ASIC, and
FPGA-based accelerators are proposed. Alongside hardware-specific optimiza-
tions, these cryptographic cores make use of different customary algorithmic
improvements from the literature, mainly related to modular arithmetic.

Motivated by all the above and following the work of Géraud et al. from [14],
this paper aims at building the foundation for new techniques of optimizing the
implementation of ECDSA. As in the case of most public-key cryptosystems,
the basic arithmetic operation used in ECC is the modular reduction. [14] de-
scribes a method allowing to double the speed of Barrett’s algorithm [9] by using
specific RSA moduli with a predetermined portion. The result is then applied
in order to generate DSA [17] parameters. As an extension, our article presents
a technique for generating ECDSA moduli with a predetermined portion that
allows one to double the speed of Barrett’s algorithm, a widely adopted efficient
technique for performing modular reduction in a costly reduced manner. We also
provide the reader with mathematical proof of our algorithm.

Moreover, we target a more general type of optimization suitable not only
for ECDSA, but for various ECC algorithms. Thus, we propose an artificial in-
telligence (AI) based approach that enhances the speed of Schoof’s algorithm for
finding the number of points on an elliptic curve [37]. Schoof’s method is the first
deterministic polynomial time algorithm for counting points on elliptic curves
defined over finite fields. The result represented, undoubtedly, a breakthrough
in terms of designing ECC algorithms.

While the first result we propose is rather particular and can be applied for a
certain digital signature scheme (ECDSA), the latter can be of general interest
in terms of ECC algorithms. We underline that the AI-optimized variant of
Schoof’s algorithm is rather a proof of concept for a future series of results, with
respect to this research direction.

We stress that all the related works regarding the ECC implementation opti-
mizations [7,8,12,13,15,16,18–20,23,24,26,27,29,30,32,35,36,38–40] are target-
ting either specific curves (e.g., NIST P-256 [22], Secp256k1), curves over binary
fields GF (2m), or curves over prime fields GF (p). Note that our studies are
different from the previously mentioned results, as we point out in Section 1.1.

Nonetheless, our methods can also be combined with already established
algorithmic improvements to obtain even better implementation timings.
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1.1 Specific Supplementary Motivation

The common practice when using ECC is to have specific curves [10, 22] rather
than choose them every time when the algorithm is run in order to ease compu-
tations (by applying dedicated formulae for point addition and scalar multiplica-
tion). Nonetheless, speeding-up ECDSA in the general case can be advantageous,
e.g., either for cryptographic implementations, requiring a higher level of secu-
rity than the standard one, or simply for proprietary cryptographic algorithms
(of course, given that a step consisting of checking the security of the generated
curve is performed.). Such needs are customary, especially for governmental or-
ganizations. Moreover, in the aforementioned example, implementations for re-
source constrained devices and cryptographic hardware may be of great interest.
Thus, when proposing our results, we do not seek to compare them with existing
targeted ECC implementations in terms of speed, as we consider performing an
initial costly step: the parameter generation.

In addition to the above, we believe that our AI-based strategy will benefit
from the rapid advances in the field of AI in the near future.

1.2 Structure of the Paper

In Section 2, we introduce the notations and briefly describe Barrett’s algorithm
for modular reduction, Schoof’s algorithm for point counting on elliptic curves,
and ECDSA. The main results are discussed in Section 3, namely the algorithm
for generating the ECDSA parameters and the method for finding the number of
points of an elliptic curve. Details regarding the straightforward, unoptimized im-
plementations of the previously mentioned algorithms are presented in Section 4.
We conclude and provide the reader with future work ideas in Section 5. More-
over, we recall ECDSA in Appendix A and Schoof’s algorithm in Appendix B.

2 Preliminaries

2.1 Notations

Throughout this paper, we denote by NextPrime(r) the smallest prime p, such
that p ≥ r. #S represents the cardinality of the set S. We let P be the bit-length
of p, such that P = ||p||. The value of P is fixed from now onwards. The binary
shift-to-the-right of x by y positions is further denoted by x≫ y.

2.2 Barrett’s Algorithm

Let d and m be integer numbers. Barrett’s algorithm (Algorithm 1) only uses
two bit-shifts and one multiplication to produce an approximate value of the
quotient obtained when d is divided by m. This approximation is denoted by c3
and it satisfies the following inequality⌊ d

m

⌋
− 2 ≤ c3 ≤

⌊ d

m

⌋
,
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which means that the whole loop is not repeated more than two times. The bit-
lengths of d and m are represented by D and M . Algorithm 1 also requires a
quantity that is denoted by L and which represents the maximal bit-length of the
numbers that can be reduced. Barrett’s algorithm works as long as the condition
D ≤ L is satisfied. In most cases, these constants can be chosen such that
D = L = 2M , provided that the reduction is performed after every operation.
The constant k is computed only once, since it does not depend on the value of
d. Further details regarding Algorithm 1 can be found in [9].

Algorithm 1: Barrett’s algorithm for modular reduction.

Input: m < 2M , d < 2D, k =
⌊

2L

m

⌋
such that M ≤ D ≤ L

Output: c4 = d (mod m)
1 c1 ← d≫ (M − 1)
2 c2 ← c1k

3 c3 ← c2 ≫ (L−M + 1)
4 c4 ← d− c3m

5 while c4 ≥ m do
6 c4 ← c4 −m
7 return c4

2.3 Elliptic Curves in Cryptography

Schoof’s Algorithm. The elliptic curves considered are of the form y2 = x3+ax+b
and are defined over a finite field Fp, where p is prime. An important result, which
will be used throughout this paper, is the following theorem.

Theorem 1 (Hasse). The number of points n of an elliptic curve defined over
a finite field of size p satisfies the inequality

|n− p− 1| ≤ 2√p.

In [37], Schoof published the first deterministic and polynomial-time algo-
rithm that computes the order of an elliptic curve, which is defined over a finite
field. This algorithm starts off by using Theorem 1, which provides an interval
of possible values for the order of the elliptic curve. That specific interval has
the width 4√p.

Since the order can be written as #E(Fp) = p + 1 − t, where t is the trace
of the Frobenius endomorphism [41], the problem of finding the order reduces
to that of finding the value of t. The next step involves computing the value of
t modulo for some primes, such that their product is greater than 4√p. Finally,
the Chinese Remainder Theorem [41] produces the value of t, which is needed
for finding the order.

The details of Schoof’s algorithm are included in Appendix A as Algorithm 6.
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ECDSA. ECDSA [22] is a digital signature scheme based on cyclic groups of
elliptic curves defined over finite fields. Its security relies on the Elliptic Curve
Discrete Logarithm Problem [21]. Details about setting-up the parameters of
ECDSA, generating a signature and verifying it are included in Appendix A.

3 Main Results

3.1 Double-Speed Barrett for ECDSA

For the setup of ECDSA, two prime numbers p and n are required: p represents
the size of the finite field and n is the order of the group E(Fp), since we are
only considering the case when the order of this group is prime. Note that both
the multiplications performed in Algorithm 1 are multiplications by constants,
namely k and n.

Our aim is to generate the primes p and n such that their leading bits do not
have to be computed. Moreover, we want this to happen also for the associated
constants kp =

⌊
2L

p

⌋
and kn =

⌊
2L

n

⌋
. The idea of Algorithm 2 is that if we

choose the prime p in a convenient way, then we can control the most significant
bits of n.

Algorithm 2: Generator for Barrett-compatible ECDSA parameters.
Input: P, the bit-length of the prime p, which has to be even and large
Output: (p, a, b, n), the parameters needed for ECDSA

1 L← 2P

2 U ← P/2

3 Choose r ∈R (0, 2U )

4 α = 2P −1 + 2U+1 + r

5 p = NextPrime(α)
6 if p− α ≥ 0.7(P − 1) then go back to step 3
7 Choose a, b ∈ [0, p− 1] such that #E(Fp) is prime
8 n← #E(Fp)
9 return (p, a, b, n)

Lemma 1. Consider the notations used in Algorithm 2. Let Q = 2P −1 +2U+1 +
2U + 0.7(P − 1). Then p, n, kp and kn satisfy the following inequalities:

1. 2P −1 < p < Q;
2. 2P −1 < n < Q + 1 + 2

√
Q;

3.
⌊

22P

Q

⌋
≤ kp < 2P +1;

4.
⌊

22P

Q+1+2
√

Q

⌋
≤ kn < 2P +1.
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Proof.

1. Using the inequality r < 2U and Line 6 of Algorithm 2, we obtain that
p < Q.

2. From Theorem 1 we have that p + 1−2√p < n < p + 1 + 2√p. Let ϵ = p−α.
For the left side of the inequality, i.e., 2P −1 < n, we obtain that

2P −1 + 2U+1 + r + ϵ + 1− 2
√

2P −1 + 2U+1 + r + ϵ = p + 1− 2√p.

Thus,
2P −1 = (2P −1 + 2U+1)− 2

√
2P −1 + 2P −1 <

< (2P −1 + 2U+1 + r + ϵ + 1)− 2
√

2P −1 + 2U+1 + r + ϵ = p + 1− 2√p.

For the right side of the inequality, i.e., n < Q + 1 + 2
√

Q, we know from
Line 1 that p < Q. Therefore, we get p + 1 + 2√p < Q + 1 + 2

√
Q.

3. Using Line 2 of Algorithm 2, we can deduce that

22P

Q
<

22P

p
<

22P

2P −1 .

Hence, ⌊22P

Q

⌋
≤
⌊22P

p

⌋
< 2P +1.

4. Similarly, using Line 2 of Algorithm 2, we obtain that

22P

Q + 1 + 2
√

Q
<

22P

n
<

22P

2P −1

Therefore, ⌊ 22P

Q + 1 + 2
√

Q

⌋
≤
⌊22P

n

⌋
< 2P +1.

Remark 1. In Line 6 of Algorithm 2, we do not allow the distance between α
and the next prime p to be too large. Additionally, we choose α in a specific way
so that we can control p’s size. This implies that the probability of the first U
bits of p being different than the first U bits of α is negligible. We performed
105 experiments with the value P = 256, and the success rate was 100%.

Example 1. This example illustrates Algorithm 2. For the values P = 256,
L = 512, and U = 128, we get:

r = 0xbba46de2b4b53e20b97d41941c01a6b0
α = 0x80000000000000000000000000000002bba46de2b4b53e20b97d41941c01a6b0
p = 0x80000000000000000000000000000002bba46de2b4b53e20b97d41941c01a6ef
n = 0x80000000000000000000000000000001b97deb5c74f4115fd2d9ec6ae5cb520f
kp = 0x1fffffffffffffffffffffffffffffff5116e48752d2b077d1a0af9af8ff9647f
kn = 0x1fffffffffffffffffffffffffffffff91a08528e2c2fba80b4984e5468d2b7db
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3.2 Enhancing Schoof’s Algorithm Using AI
Our aim is to modify Schoof’s algorithm by replacing Hasse’s interval with an-
other one containing the order, such that the width of the new interval is smaller.

In order to obtain such a result, we can use a neural network that takes input
triplets of the form (pi/2P , ai/2P , bi/2P ) and returns as output elements ŷi given
by

ŷi =
n̂i − (pi + 1) + 2√pi

4√pi
, 0 < ŷi < 1,

where we denote by n̂i that the estimate of the actual order ni. Here we use
the sigmoid activation function for the output layer to ensure that the output
is in the appropriate range. The labels used for training the neural network are
written as

yi =
ni − (pi + 1) + 2√pi

4√pi
, 0 < yi < 1.

The elements of the training, validation, and test sets will be written in the
form (p∗

i /2P , a∗
i /2P , b∗

i /2P , y∗
i ), where instead of ∗, we will have the superscripts

tr, v, and t, respectively. These three sets will have the cardinal numbers equal
to Ntr, Nv, and Nt, respectively.

At training time, we choose to use as loss function the mean squared loga-
rithmic error, since we want this to work well for large primes. This function is
given by

L = 1
Ntr

Ntr∑
i=1

[
log
(

1 + ytr
i

1 + ŷtr
i

)]2

= 1
Ntr

Ntr∑
i=1

[
log

(
ntr

i − ptr
i − 1 + 6

√
ptr

i

n̂tr
i − ptr

i − 1 + 6
√

ptr
i

)]2

.

Let us denote by ϵ the average distance between the actual order and the
estimate of the order, which is computed on the validation set,

ϵ =
⌊ 1

Nv

Nv∑
i=1
|nv

i − n̂v
i |
⌋
.

Our approach is a probabilistic one, since we need to assume that the order
n satisfies the inequality

n̂− 2ϵ < n < n̂ + 2ϵ. (1)

This leads to the following result involving t,

(p + 1− n̂)− 2ϵ < t < (p + 1− n̂) + 2ϵ.

Notice that in the above inequality, we have doubled ϵ in order to increase
the probability that our assumption is true. Hence, if we manage to determine
the value of t0 ≡ t (mod 4ϵ), then we can find t by replacing t0 in the formula
t = (p + 1− n̂)− 2ϵ + t0, and thus we know the order of the group. The benefit
of using the estimate given by the neural network is that Schoof’s algorithm can
be applied for an interval of width equal to 4ϵ instead of one of width equal
to 4√p. This means that if the neural network is good at estimating the order,
i.e., ϵ <

√
p, then this approach will be faster than the standard one.
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Remark 2. Since our algorithm is probabilistic, after obtaining a value of ϵ, which
is significantly lower than √p, instead of assuming that n lies in the interval (n̂−
2ϵ, n̂+2ϵ), we can assume that it lies in an interval of greater width, for example
(n̂− 4ϵ, n̂ + 4ϵ). By doing this, we are able to increase the success probability of
the algorithm.

Remark 3. The difference between Schoof’s algorithm and our proposed tech-
nique is that we choose the set of primes from Line 1 of Appendix B, such that
the product of the elements is greater than 4ϵ. All the steps that follow remain
unchanged.

4 Implementation

4.1 GitHub Implementation

We refer the reader to [1] for the source code representing the implementation
of our proposed results.

Note that for simplicity, we overlooked the initial part of Algorithm 2 (i.e., from
Line 1 to Line 6) in our implementation.

4.2 Implementation Results

We ran the code for our algorithm on a standard laptop using Ubuntu 20.04.5
LTS OS, with the following specifications: Intel Core i3-1005G1 with 2 cores and
8 Gigabytes of RAM. The programming language we used for implementing our
algorithms was Python, and the AI library we chose was TensorFlow.

AI-Based Speed-Up. Our AI-based technique can speed up the search for an
elliptic curve of prime order. This speed-up depends initially on the model archi-
tecture and then on the accuracy of the AI-model. Within the current section,
we report our (proof of concept) results.

To achieve our proof of concept goal, in our implementation we initially
considered primes p of length 32 bits. Thus, we generated 60,000 elliptic curves of
the form (p, a, b, n) by means of Schoof’s algorithm. Based on these examples, we
trained, validated, and tested the neural network model we chose. This network
was composed of 7 dense hidden layers with the number of units decreasing
from 512 to 8. Note that decreasing the number of units, as stated before, is a
straightforward technique used in AI algorithms. The reason we decided to have
7 hidden layers was to obtain the best compromise in terms of error rate and
code optimization (especially with respect to time complexity). We provide the
reader with a graphical representation of the relationship between the number of
neural network layers and the error rate of our proposed algorithm in Figure 1.
Note that the error rate stabilizes at 7%, starting with the use of 7 layers.

Hence, using the previously described neural network, we managed to re-
place Hasse’s interval with another interval, with the width approximately 15%
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Fig. 1. The relationship between the number of neural network layers and the error
rate of our proposed algorithm.

smaller than the original one. In this case, the probability that the order n sat-
isfies Equation (1) was 93%, which was also the success rate of our probabilistic
algorithm. The obtained probability was computed by finding the number of
testing examples, which satisfied Equation (1).

We provide the reader with a graphical representation of the relationship
between the number of neural network layers and the reduced Hasse interval of
our proposed algorithm in Figure 2. Note that the percent by which the width
of our reduced Hasse’s interval is smaller than the original one stabilizes right
after 7 layers at 16%. Note that the next value considered after 7 is 9 given that
the AI models work better in the case of an odd number of layers.

Thus, given the results presented in Figures 1 and 2, we chose to use 7 lay-
ers in our implementation as a trade-off between accuracy and time complexity.
Table 4.2 shows that the difference between the timing of the 7 layers implemen-
tation version and the 9 layers version is significant (the latter is 55% slower)
and clearly sustains our choice of parameters.

Due to the fact that our proposed result is a particular algorithmic improve-
ment, we compare it in terms of efficiency with the original Schoof algorithm
(see Remark 3) and provide the reader with precise timings in Table 4.2. The
average timings we report are given for 32, 48, and 64 bits prime numbers. It is
straightforward for any other publicly available implementation optimization to
be applied in our case too, and, thus, we can obtain the best timings.

Barrett-Based ECDSA Speed-Up. Based on the results in [14], we showed that
using Barrett-compatible ECDSA parameters doubles the speed of Barrett’s al-
gorithm when performing the modular reductions required for generating (Al-
gorithm 4) and verifying (Algorithm 5) ECDSA signatures. Thus, in such an
optimized ECDSA implementation, the steps including modular reduction are
performed two times faster than in a standard ECDSA implementation.
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Fig. 2. The relationship between the number of neural network layers and the reduced
Hasse interval.

Number of Layers Timing
(seconds)

7 1032
9 1597

Table 1. Timing comparison between the implementation of our proposed algorithm
using 7 and 9 layers, respectively.

The authors of [7] report the fastest implementation of the ECDSA verifi-
cation algorithm in FPGA compared to the already established results in the
literature so far. The majority of papers presenting hardware optimizations for
blockchain applications are only discussing the verification algorithm of ECDSA.
Nonetheless, we are interested in optimizing the complete ECDSA scheme as our
proposed speed-ups can also be applied for the signature generation algorithm
(already stated in Section 4.2), not only for the verification algorithm.

Given that our FPGA implementation is work in progress, at this point, our
target is to make a software implementation comparison of both the signing and
the verification ECDSA algorithms. Thus, we considered the fastest (lightweight)
ECDSA implementation available online [2] and modified it to include our pro-
posed optimization from Section 3.1. The average time differences we obtained
after 100 runs are presented in Table 4.2. Note that in the implementation at [2],
the modular reduction steps are performed in a straightforward manner as op-
posed to our proposed double-speed Barrett optimization. Hence, the speed-up
is obvious both in theory (see Section 4.2) and in practice (see Table 4.2).
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Prime Length Algorithm Timing
(bits) (seconds)

32 Enhanced Schoof 14.97
Original Schoof 33.42

48 Enhanced Schoof 205
Original Schoof 448

64 Enhanced Schoof 1926
Original Schoof 3635

Table 2. Timing comparison between the implementation of our proposed algorithm
and the original Schoof algorithm.

ECDSA Algorithm Timing
(milliseconds)

Enhanced Signature 4
Signature 4.6

Enhanced Verification 7.5
Verification 9

Table 3. Timing comparison between a lightweight ECDSA implementation and our
enhanced version of it.

5 Conclusions and Future Work

We briefly described Barrett’s algorithm for modular reduction, Schoof’s algo-
rithm for point counting on elliptic curves, and ECDSA as an example for ap-
plying our proposed speed-ups. We presented as main results an algorithm for
generating implementation-friendly ECDSA parameters and a method for find-
ing the number of points of an elliptic curve, representing an enhancement of
Schoof’s algorithm. We also gave details regarding the unoptimized implementa-
tions of the previously mentioned algorithms.

Future Work. We consider that timing comparisons between our enhanced Schoof
algorithm and already established implementations of SEA [11] represent an in-
teresting idea to be tackled in the near future.

Next, a valuable idea is looking into more sophisticated AI optimizations for
the mathematical computations inside Schoof’s algorithm.

Another interesting research direction is the implementantion of ECDSA in
cryptographic hardware while using our proposed optimizations, together with a
complexity analysis of other implementations in the literature. We are currently
working on such an approach using FPGA-based equipment.
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A ECDSA

Algorithm 3: ECDSA Setup
Input: q, a, b, defining the elliptic curve y2 = x3 + ax+ b over Fq

Output: g, n, d,R
1 choose the subgroup G ⊂ E(Fq) such that the order of G is prime and G = (g)
2 n← #G
3 the private key d given by d ∈R [1, n− 1]
4 the public key R is given by R← dg

5 return g, n, d,R

Algorithm 4: ECDSA Signature
Input: m, q, a, b, g, n, d
Output: the signature generated is the pair (r, s)

1 h← hash(m) ∈ [0, n− 1]
2 k ∈R [1, n− 1]
3 (x, y)← kg

4 r ← x (mod n)
5 if r = 0 then go back to line 2
6 s← (h+ rd)/k (mod n)
7 if s = 0 then go back to line 2
8 return r, s

Algorithm 5: ECDSA Verification
Input: m, q, a, b, g, n,R, r, s
Output: the signature is valid if and only if the algorithm returns 1

1 w ← s−1 (mod n)
2 u← hw (mod n)
3 v ← rw (mod n)
4 (xQ, yQ)← ug + vR

5 if xQ ≡ r (mod n) then return 1
6 else return 0
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B Schoof’s Algorithm

Algorithm 6: Schoof’s Algorithm
Input: q, a, b, defining the elliptic curve y2 = x3 + ax+ b over Fq

Output: #E(Fq)
1 choose a set of primes S = {2, 3, . . . , L} such that char(Fq) ̸∈ S and
P =

∏
ℓ∈S

ℓ > 4√q

2 if gcd(x3 + ax+ b, xq − x) ̸= 1 then t ≡ 0 (mod 2)
3 else t ≡ 1 (mod 2)
4 for ℓ ∈ S \ {2} do
5 qℓ ← q (mod ℓ) such that |qℓ| < ℓ/2
6 compute the x-coordinate of the point (x′, y′), where

(x′, y′) = (xq2
, yq2

) + qℓ(x, y) (mod ψℓ)

7 for j = 1, 2, . . . , (ℓ− 1)/2 do
8 compute the x-coordinate of the point (xj , yj), where

(xj , yj) = j(x, y)

if x′ − xq
j ≡ 0 (mod ψℓ) then

9 compute y′ and yj

10 if (y′ − yq
j )/y ≡ 0 (mod ψℓ) then t ≡ j (mod ℓ)

11 else t ≡ −j (mod ℓ)
12 if all values of j have been tried without success then
13 if q is not a quadratic residue modulo ℓ then t ≡ 0 (mod ℓ)
14 else
15 Let w be such that w2 ≡ q (mod ℓ)
16 if gcd(numerator(xq − xw), ψℓ) = 1 then t ≡ 0 (mod ℓ)
17 else
18 if gcd(numerator((yq − yw)/y), ψℓ) ̸= 1 then t ≡ 2w (mod ℓ)
19 else t ≡ −2w (mod ℓ)
20 solve the system of congruences to find t (mod P)
21 choose the value of t such that |t| ≤ 2√q
22 return q + 1− t
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