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Abstract. A fully homomorphic encryption (FHE) scheme allows a
client to encrypt and delegate its data to a server that performs com-
putation on the encrypted data that the client can then decrypt. While
FHE gives con�dentiality to clients' data, it does not protect the server's
input and computation. Nevertheless, FHE schemes are still helpful in
building delegation protocols that reduce communication complexity, as
FHE ciphertext's size is independent of the size of the computation per-
formed on them.
We can further extend FHE by a property called circuit privacy, which
guarantees that the result of computing on ciphertexts reveals no infor-
mation on the computed function and the inputs of the server. Thereby,
circuit private FHE gives rise to round optimal and communication ef-
�cient secure two-party computation protocols. Unfortunately, despite
signi�cant e�orts and much work put into the e�ciency and practical
implementations of FHE schemes, very little has been done to provide
useful and practical FHE supporting circuit privacy. In this work, we
address this gap and design the �rst randomized bootstrapping algo-
rithm whose single invocation sanitizes a ciphertext and, consequently,
serves as a tool to provide circuit privacy. We give an extensive analysis,
propose parameters, and provide a C++ implementation of our scheme.
Our bootstrapping can sanitize a ciphertext to achieve circuit privacy
at an 80-bit statistical security level in 1.4 seconds. In addition, we can
perform non-sanitized bootstrapping in around 0.14 seconds on a laptop
without additional public keys. Crucially, we do not need to increase the
parameters signi�cantly to perform computation before or after the san-
itization takes place. For comparison's sake, we revisit the Ducas-Stehlé
washing machine method. In particular, we give a tight analysis, estimate
e�ciency, review old and provide new parameters.

1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme that allows per-
forming arbitrary computation on encrypted data. A client encrypts a message
m and sends the ciphertext to a server which, given a function F , returns another
ciphertext that decrypts to F (m). The concept of FHE was �rst introduced by
Rivest, and Dertouzos [60], and the �rst theoretical realization of that concept
is due to Gentry [35].
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A critical property for FHE is circuit privacy. Roughly speaking, the cipher-
text that is the product of the server computing a function F on encrypted data
should not reveal any information about F except that the ciphertext decrypts
to F (m). To prove circuit privacy, we need to show a simulator that, on input
F (m) and a public key, outputs a fresh encryption of F (m), which is indistin-
guishable from the servers' computed ciphertext. In particular, the distribution
of an evaluated ciphertext should be close to or the same as the distribution of
a fresh encryption.

We can easily see that circuit private FHE gives us semi-honest two-party
computation with optimal communication. Namely, we only need one round
of communication. The �rst message can be reused, and the communication
complexity is independent of the size of the computation. Furthermore, we can
reuse the ciphertexts output from the evaluation process and keep computing on
them. Since circuit private FHE gives us two-party computation, all applications
for two-party computation protocols apply here as well. Among other these are
private set intersection [43, 54, 20], neural network inference [28, 17, 51, 45, 46,
12, 3, 18, 59, 10] or analysis on genomic data [47, 48, 10]. Note that circuit
privacy is not always needed. Without circuit privacy FHE reduces to secure
delegation. For example, in (single-server) private information retrieval we are
only interested in protecting the user's query, but not in the con�dentiality of a
potentially large database of the server. On the other hand, we believe that for
neural network inference, as an example, con�dentiality of the neural network is
essential. In contrast to PIR, it is di�cult to make an argument for compressing
the communication costs, as current FHE schemes require sending public keys
that are order of magnitude larger than the size of deep neural networks.

Surprisingly, despite over a decade of advances in constructing scalable fully
homomorphic encryption schemes [36, 15, 14, 37, 7, 40, 16, 8, 41, 29, 21, 19, 22,
42], and numerous implementations [1, 23, 24, 2] there is very little constructions
and nearly no implementation that we are aware of that natively provide circuit
privacy.

Current approaches to Circuit Privacy. In this paper, we are interested in
fully homomorphic encryption as in [35]. Namely, ciphertexts do not grow with
the size of computation, and evaluation results are reusable. A trivial way to
re-randomize a ciphertext is to create a fresh encryption of zero using the public
key and add it to the ciphertext resulting from the computation. Unfortunately,
such an approach is insu�cient to provide circuit privacy in current FHE schemes
because all secure FHE schemes we know are based on noisy encryptions. This
noise depends on the computed circuit and is the main obstacle to overcome
when re-randomizing (or sanitizing) a ciphertext to provide circuit privacy.

Below we summarize current approaches.

Noise Flooding: Introduced in Gentry's thesis [34] requires adding a fresh ci-
phertext of zero and a super-polynomially larger noise term to the sanitized
ciphertext. Unfortunately, in practice, this additional noise term is substantially
large and would require us to choose very big parameters. We note that it is
required to take the noise super-polynomially larger than the noise in the sani-
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tized ciphertext. Hence, if the noise in this ciphertext is already large due to some
previous computation, then the the magnitude of the additional noise must be
chosen accordingly. Nevertheless, the method has found some applications in lev-
eled homomorphic computation [20] where we do not bootstrap the ciphertexts
and can tolerate larger parameters.
Ducas-Stehlé Washing Machine: Introduced by Ducas and Stehlé [30], requires
to run a sequence of re-randomization steps (�ooding cycles), each with a smaller
noise �ooding error, followed by invocations of a bootstrapping algorithm. The
paper only roughly estimates the number of times re-randomization and boot-
strapping must be invoked. However, as the authors admit, the estimates should
be taken with great caution and defer a concrete analysis to future work. For
example, they suggest running the FHEW [29] bootstrapping algorithm between
8 and 16 times. It is not entirely clear what security level they are able to achieve
and whether the parameter set of the FHEW algorithm proposed at the time sat-
is�es the given correctness constraints. To the best of our knowledge, no concrete
analysis or implementations have been done so far.
Secure Two-Party Computation: A few works [38, 25] proposed to use gar-
bled circuit-based techniques to provide circuit privacy. Gentry, Halevi, Vaikun-
tanathan [38] give a non-compact homomorphic encryption scheme that can be
thought of as a re-randomizable version of garbled circuits. We are not aware of
the scheme's implementation; however, we note that the scheme is not compact.
In particular, the communication complexity is linear in the size of the com-
puted circuit. Finally, Chongchitmate and Ostrovsky [25] propose to use garbled
circuits to compute the decryption step.
Rerandomizing Computation: A promising result was given by Bourse, Pino,
Minelli and Wee [13]. Their approach exploits properties of the Gentry, Sahai,
Waters (GSW) cryptosystem [40]. Speci�cally, when multiplying GSW cipher-
texts, we use a randomized version of gadget decomposition instead of a de-
terministic one. In [13] the authors show that when gadget decomposition is
implemented via Gaussian sampling [56, 32] with appropriate parameters, then
we can build an FHE scheme for circuits of depth logarithmic in the number of
inputs. The results are mostly asymptotic, without concrete parameter proposals
nor implementation.

1.1 Our Contribution.

We design a randomized FHEW/TFHE-style [29, 21] bootstrapping algorithm
that can sanitize a given ciphertext. In contrast to the Ducas-Stehlé washing
machine method [30], which we shortly refer to as DS-WM, we need to run our
bootstrapping algorithm only once. Our results solve an open problem posted in
[13], in that we use their randomization concept in an FHEW-style bootstrapping
scheme. We note that porting the ideas from [13] to the ring setting is non-
trivial since there are no analogs of the leftover hash lemma [27] and Gaussian
leftover hash lemma [5, 4, 13] for the ring setting. Moreover, we can argue that
designing a �leaky� analog of the regularity lemmas [61, 53] as in [26], may
result in practically ine�cient bootstrapping. We show how to overcome both
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problems by slighly modifying the overall approach from [13], and exploiting
structural properties of FHEW/TFHE [29, 21] instantiated over the ring RQ =
ZQ[X]/(XN + 1) where N is a power of two. Along the way, we generalize the
technical lemmas from [13] to support any modulus Q ∈ N, instead of moduli of
the form Q = Lℓ for some L, ℓ ∈ N.

We compare our method with DS-WM that we believe to be the most com-
petitive. While [30] give a heuristic instantiation based on FHEW [29], they left
a serious analysis as an open problem. We resolve the problem and give a tight
error analysis, and provide scripts that automate noise and security estimations
of our randomized bootstrapping and DS-WM. We show that the parameters
proposed in [30] cannot be circuit private due to correctness issues. In general,
we show that instantiations over a ring of dimension 210, or smaller, cannot give
more than 30-bits of statistical security. Note that many e�cient bootstrapping
schemes [29, 21, 22] are instantiated over rings of dimension 210.

Finally, we give an e�cient C++ implementation1 of our bootstrapping al-
gorithms. To the best of our knowledge, this is the �rst practical realization
of a circuit private FHEW/TFHE-style FHE scheme. Our implementation sup-
ports number theoretic transform-based (NTT) and fast Fourier transform-based
(FFT) multiplication of ring elements. We tested di�erent parameters for both
cases, and as a result, we give some evidence against the feasibility of e�cient
circuit private FFT-based implementations due to numerical errors introduced
by �oating point operations. Nevertheless, our NTT-based implementation can
sanitize a ciphertext in 1.4 seconds, and, with no additional public key, compute
standard TFHE-style bootstrapping in around 0.14 seconds. We show that the
DS-WM method requires a roughly 1.6× larger blind rotation key, sanitizes a
ciphertext in over two seconds, and has a slightly worse correctness characteris-
tic.

1.2 Our Techniques.

In this section, we discuss the most important issues and problems. We only
focus on the multiplication of GSW ciphertexts with integers in ZQ, and we
omit giving an overview of FHEW/TFHE schemes so that we can showcase
ideas most critical for circuit privacy. At a high level, we use the ideas from
[13]. Remind that [13] gives a randomized version of the GSW cryptosystem
[40], which is the core algorithm underlying the bootstrapping algorithms from
[8, 29].

Brief Overview of [13]. First we de�ne a gadget vector g = [1, 2, . . . , 2ℓ] and
the matrix G = g⊗ In ∈ Zn×ℓn

Q , where In is the n dimensional identity matrix.
A GSW encryption of a message m ∈ ZQ is given as

C =

[
A

s⊤A+ e⊤

]
+m ·G,

1 Available at https://github.com/FHE-Deck.
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where s ∈ Zn
Q is the secret key, A ∈ Z(n−1)×ℓn

Q is public, and e ∈ Zℓn
Q is a noise

vector whose entries are from the discrete Gaussian distribution.
De�ne a randomized gadget decomposition algorithmX← G−1

rand
(a·G), where

a ∈ ZQ and the matrix X ∈ Zℓn×ℓn
Q is from the discrete Gaussian distribution

such that G · X = a · G. We can use G−1
rand

to multiply the GSW ciphertext

C ∈ Zn×ℓn
Q by a and randomize the outcome as follows.

C ·X+

[
0
y⊤

]
=

[
A ·X

s⊤A ·X+ e⊤X+ y⊤

]
+m · a ·G,

where y ∈ Zℓn
Q is chosen from the discrete Gaussian distribution. The main

idea and technical contribution in [13] is to show that such a product already
gives us a ciphertext that is statistically independent of the input ciphertext.
At the heart of their proof is the core randomization lemma that states that a
tuple (A·X, e⊤X+y⊤) is statistically indistinguishable from (Ā, ē⊤), where Ā ∈
Z(n−1)×ℓn
Q is from the uniform distribution and ē ∈ Zℓn

Q is an independent random
variable from the discrete Gaussian distribution with a slightly higher standard
deviation, given that X and y have su�ciently high standard deviations.

The �rst step to prove the core randomization lemma is to show that A ·X
is close to uniform from the generalized leftover hash lemma [27]. To this end,
we need to analyze the entropy of X given e⊤X + y⊤, and e. To show that
e⊤X + y⊤ is close to an independent discrete Gaussian random variable, [13]
use an adaptation of the Gaussian leftover hash lemma [5, 4].

In practice, FHE instantiated over LWE is quite slow. Hence we usually
want to instantiate a scheme in the ring setting. We are not aware of any seri-
ous implementation in the LWE setting. In this paper, we draw our attention
to FHEW/TFHE-style schemes [29, 21], which are based on an e�cient boot-
strapping algorithm that, on input an LWE ciphertext, output a refreshed LWE
ciphertext with smaller noise.
Problems with translating [13] into the Ring Setting. At the heart of
FHEW/TFHE-style bootstrapping algorithm sis an algorithm called blind rota-
tion that outputs an RLWE ciphertext c = (b, a) ∈ R2

Q whose constant coe�-
cient of the encrypted message encodes the decryption of an input ciphertext.
We can show that the ciphertext can be represented as (a⊤x, e⊤x+ y) as above
but where y ∈ RQ, a,x, e ∈ Rm

Q and elements in x have coe�cients from the

discrete Gaussian distribution. Remind that RQ = ZQ[X]/(XN + 1).
If we want to follow the technique from [13], we would need to show that

a = a⊤x is close to uniform given e⊤x + y and e. Unfortunately, there is no
analog of the leftover hash lemma lemma for rings likeRQ. Consider the example
where the j-th NTT coordinate of the elements in x and y leaks. Clearly, x and
y may still have high entropy, but anyone can distinguish a⊤x from uniform just
by looking at the j-th NTT coordinate. We may try to de�ne a �leaky� version
of the regularity lemma [53] as in [26]. But we argue that even if we would ignore
the leak, the regularity lemma from [53] produces a practically ine�cient (for our
application) solution because it requires us to choose a small decomposition basis
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resulting in high ℓ and, consequently, in relatively slow (Ring) GSW products.
Otherwise, we need to choose a high standard deviation σx of x resulting in
larger parameters or lower correctness. Concretely, we must choose the standard
deviation σx of x to be larger than N ·Q1/ℓ+2/Nℓ to achieve negligible security.
The ℓ parameter is critical as it a�ects the most time-consuming operation in
the bootstrapping scheme. Hence it is imperative to keep ℓ small in practical
implementations. Another problem is that we do not have a ring analog of the
Gaussian leftover hash lemma.

To bypass these problems, we exploit that in FHEW/TFHE-style schemes, we
extract an LWE ciphertext from c. In particular, observe that (b′,a′) ∈ ZN+1

Q ,

where b′ = b[1] ∈ ZQ is b's constant coe�cient, and a′ ∈ ZN
Q is such that

a′[1] = a[1] and a′[i] = a[N − i] for i = 0 . . . N − 2, is a correct LWE ciphertext
with respect to the secret key s′ = s (the coe�cient vector of s) encrypting the
constant coe�cient of c's message. Note that we still cannot claim that a′ is close
to uniform, but what we can do is sample a fresh LWE ciphertext of 0, add it to
(b′,a′) obtaining a ciphertext (b̄, ā) of the same message where ā is statistically
close to uniform. Finally, we can show that the error term of (b′,a′) is already
in the form required by the Gaussian leftover hash lemma [5, 4, 13]. To show
this, we exploit the speci�c structure of the ring RQ = ZQ[X]/(XN + 1) where
the product of two ring elements is a negacyclic convolution of two polynomials.
Our analysis applies only to RQ, but on the other hand, FHEW/TFHE-style
bootstrapping exploits the structure of RQ for correctness.

2 Background and Notation

We denote as RQ the ring of polynomials ZQ[X]/(XN + 1) where N is a power
of two. We only use Q and N in the context of the ring RQ. We denote vectors
with bold lowercase letters, e.g., v, and matrices with uppercase letters V. We
denote an n dimensional column vector as [f(., i)]ni=1, where f(., i) de�nes the
i-th coordinate. For brevity, we will also denote as [n] the vector [i]ni=1, and more
generally [i]mi=n the vector [n, . . . ,m]. We address the ith entry of a vector v by
v[i]. For matrices we address the ith row and jth column as A[i, j]. Sometimes
we view ring elements a ∈ RQ as vectors of coe�cients and we address the
coe�cients as vector coordinates. For a random variable x ∈ Z we denote as
Var(x) the variance of x, as stddev(x) its standard deviation and as E(x) its
expectation. For a ∈ RQ, we de�ne Var(a), stddev(a) and E(a) to be the largest
variance, standard deviation and expectation respectively among the coe�cients
of the polynomial a. By Ha(a) we denote the hamming weight of the vector a,
i.e., the number of of non-zero coordinates of a. We represent numbers in ZQ as
integers in [−Q/2, Q/2).

We say that an algorithm is PPT if it is a probabilistic polynomial-time
algorithm. We denote any polynomial as poly(.). We denote as negl(λ) a negligible
function in λ ∈ N. That is, for any positive polynomial poly(.) there exists c ∈ N
such that for all λ ≥ c we have negl(λ) ≤ 1

poly(λ) . Given two distributions X,

Y over a �nite domain D, their statistical distance is de�ned as ∆(X,Y ) =
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1
2

∑
v∈D |X(v) − Y (v)|. We say that two distributions are statistically close if

their statistical distance is negligible.
Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For
an integer k < m and a rank matrix B ∈ Rm×k, Λ(B) =

{
Bx : x ∈ Zk

}
is the

lattice generated by the columns of B. We denote Λ⊥
q (B) =

{
v ∈ Zm : B⊤v = 0

mod q}.
Gaussian distribution. For any σ > 0, the spherical Gaussian function with

parameter σ is de�ned as ρσ(x) = exp
(−π||x2||

σ2

)
, for any x ∈ Rm. Given a

lattice Λ ⊆ Rm, a parameter σ ∈ R and a vector c ∈ Rm the spherical Gaussian
distribution with parameter σ and support Λ+ c is de�ned as

DΛ+c,σ(x) =
ρσ(x)

ρσ(Λ+ c)
,∀x ∈ Λ+ c

where ρσ(Λ+ c) denotes
∑

x∈Λ+c ρσ(x).
We write x←$ DΛ+c,σ do denote that x is sampled from the discrete Gaus-

sian distribution with support Λ+ c and parameter σ. We write y←$ DZN ,σ or
y ←$ DZn,σ when sampling the coe�cients of y ∈ R or components of y ∈ ZN

from DZ,σ. For a set S we write x←$ S to denote the uniform distribution over S
unless said otherwise. Throughout the paper we denote Cδ,m =

√
ln(2m(1+1/δ))

π .

Learning With Errors. We recall the learning with errors assumption by
Regev [58]. Our description is a generalized version due to Brakerski, Gentry,
and Vaikuntanathan [14].

De�nition 1 (Generalized Learning With Errors). Let Dsk be a (not nec-
essarily uniform) distribution over RQ, and σ > 0, n ∈ N and N ∈ N be a power
of two, that are chosen according to a security parameter λ. For a ←$ Rn

Q,
e←$ DR,σ and s ∈ Dn

sk, we de�ne a Generalized Learning With Errors (GLWE)
sample of a message m ∈ RQ with respect to s, as

GLWEσ,n,N,Q(s,m) =

[
b = a⊤ · s+ e

a⊤

]
+

[
m
0

]
∈ R(n+1)

Q .

We say that the GLWEσ,n,N,Q-assumption holds if for any PPT adversary A we
have ∣∣Pr[A(GLWEσ,n,N,Q(s, 0))]− Pr[A(U (n+1)×1

Q )]
∣∣ ≤ negl(λ)

where U (n+1)×1
Q is the uniform distribution over R(n+1)

Q .

We denote a Learning With Errors (LWE) sample as LWEσ,n,Q(s, m) =
GLWEσ,n,1,Q, which is a special case of a GLWE sample where the ring is
Zq[X]/(X +1). Similarly we denote a Ring-Learning with Errors (RLWE) sam-
ple as RLWEσ(s,m) = GLWEσ,1,N,Q which is the special case of an GLWE sample
with n = 1. For simplicity, we omit to state the modulus and ring dimension
for RLWE samples because we always use RQ = ZQ[X]/(XN + 1) where N is a
power of two. For LWE samples, we will be switching between di�erent moduli
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and di�erent dimensions; hence we will indicate the current modulus in the no-
tation. Sometimes we use the notation c ∈ GLWEσ,n,1,Q(s, m) (resp. LWE and
RLWE) to indicate that a vector c is a GLWE (resp. LWE and RLWE) sample
of the corresponding parameters and inputs. Sometimes we leave the inputs un-
speci�ed and substitute them with �.� when it is not necessary to refer to them
within the scope of a function. We de�ne the phase of c = GLWEσ,n,N,Q(s,m),
as Phase(c) = [1,−s] · c. We de�ne the error of c as Error(c) = Phase(c)−m.
Fully Homomorphic Encryption. Below we recall the de�nition of fully ho-
momorphic encryption [60, 35].

De�nition 2 (Fully Homomorphic Encryption). A fully homomorphic en-
cryption FHE consists of algorithms (Setup, Enc, Eval, Dec) with the following
syntax.

Setup(λ): This PPT algorithm takes as input a security parameter λ and out-
puts an evaluation key ek and a secret key sk.

Enc(sk,m): This PPT algorithm takes as input a secret key sk, and a message
m, and returns a ciphertext ct.

Eval(ek, [cti]
n
i=1, C): Given as input an evaluation key ek, a set of ciphertexts

[cti]
n
i=1, and a circuit C, this (non-)deterministic algorithm outputs a ci-

phertext ct.
Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algo-

rithm outputs a message m.

Correctness: We say that FHE = (Setup,Enc,Eval,Dec) is correct, if for all
security parameters λ ∈ N, circuits C :Mn 7→ M over the message spaceM
of depth poly(λ), and messages [mi ∈M]ni=1 we have

Pr
[
Dec(sk, ctout) = C([mi]

n
i=1)

]
= 1− negl(λ),

where sk← Setup(λ),
[
Dec(sk, cti) = mi

]n
i=1

and ctout ← Eval([cti]
n
i=1, C).

E�ciency: We require that Setup, Enc and Dec run in poly(λ) time, and Eval
runs in poly(λ, |C|) time.

Indistinguishability Under Chosen Plaintext Attack: Let λ ∈ N be a se-
curity parameter and A = (A0,A1) be a PPT adversary. We de�ne the
advantage AdvINDCPA

A,FHE (λ) We say that a FHE scheme is INDCPA-secure if for
all PPT adversaries A the following probability

Pr

A1(ctb, st) = b:

sk← Setup(λ),

(st,m0,m1)← A
O(sk,.)
0 (λ),

b←$ {0, 1},
ctb ← Enc(λ, sk,mb)

 ,

is at most negl(λ), where the oracle O on input a message m outputs ct ←
Enc(λ, sk,m).
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Circuit Privacy: Let C : Mn 7→ M be a polynomial size circuit. A fully ho-
momorphic encryption scheme FHE is said to be circuit private there exists
a PPT simulator Sim such that

∆(Sim(ek,mout),Eval(ek, c1, . . . , cn, C)) ≤ negl(λ),

where [mi ← Dec(sk, ci)]
n
i=1,mout ← C(m1, . . . ,mn) and (ek, sk)← Setup(λ).

Our simulation-based de�nition of circuit privacy is stronger than [44, 13] in
two aspects. First, our simulator does not require us to know the size of the circuit
as in [44]. In fact, our simulator only needs to know the outcome of the circuit
and nothing else. Second, the evaluator obtains as input ciphertexts that do not
necessarily have to be fresh ciphertexts returned by the Enc algorithm. This way
our de�nition captures computation on ciphertexts, that could be returned by a
previous Eval invocation.

Remark 1. Note that the De�nition 2 algorithm cannot satisfy circuit privacy
if Eval is deterministic. We need to use the non-deterministic version of Eval
to facilitate circuit privacy. Otherwise, circuit privacy can be trivially broken
by running a deterministic Eval algorithm on a candidate circuit and verifying
whether the outcome is the same as the outcome of the server. This attack does
not require knowledge of the secret key.

3 Sanitization Bootstrapping

We describe all algorithms necessary to build the sanitization bootstrapping. For
algorithms that are part of the sanitization bootstrapping but are not crucial as
for the circuit privacy analysis in Section 4, we only de�ne the interfaces and
state their correctness and functionality. In Supplementary Material A we give
the full speci�cation and correctness proofs of these algorithms.
Gadgets and Gaussian Sampling. Let us �rst denote ℓ = ⌈logL Q⌉ for some
radix L ∈ N. In particular we denote Lbr for the blind rotation key de�ned
by Figure 2. We also use LksK as a decomposition base of the key-switching
procedure which interface we recall in Lemma 6 but device the full speci�cation
of this algorithm to Supplementary Material A.

Let gL,Q = [1, L, . . . , Lℓ−1] be the gadget vector parameterized by L andQ. We
use di�erent decomposition algorithms but refer to all with the same interface.
In particular, we have the decomposition algorithm x = G−1

ver (c, L;σ) ∈ Rℓ that
takes as input a ring element c ∈ RQ, a radix L, and optionally a Gaussian
parameter σ, and outputs a low norm vector x ∈ Rℓ such that c = g⊤

L,Q ·x ∈ RQ.

Note that G−1
ver also takes the modulus Q implicitly as input. A special case of

the above is when G−1
ver takes as input a single element from ZQ instead of a

polynomial fromRQ. We use a parameter ver that takes a value from {simul, det}.
If ver = simul then we apply the algorithm from Lemma 1 coe�cient wise. In
particular, in our implementation we implement two algorithms from [56, 32].
One for a general Q < Lℓ and one specialized for Q = Lℓ. We recall both in
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Supplementary Material C, but in Lemma 1 we refer only to the case with
Q < Lℓ since, for the other case, we found it hard to �nd e�cient parameters
(despite the Gaussian sampling for Q = Lℓ being more e�cient). We give more
details on the parameters in Section 5. Note that for ver = simul, we take the
additional σx as input. For ver = simul, we take the deterministic decomposition
algorithm like binary decomposition but generalized to any radix L ≥ 2 and apply
it coe�cient-wise to elements from RQ. We note that for the det-mode, we may
also use randomized algorithms, e.g., the subgaussian sampling algorithms [33].
We can generalize the gadget vector for some w ∈ N to a matrix GL,Q,w =
gL,Q ⊗ Iw ∈ Zw·ℓ×w

Q . Then the decomposition algorithm takes as input vectors

a ∈ Rw
Q and outputs x ∈ Rw·ℓ

L such that a = x⊤ ·GL,Q,w.

Lemma 1 (Gaussian Sampling [32]). There exists an algorithm G−1
simul(a, L, σx)

that on input a ∈ ZQ, L ∈ N and a Gaussian parameter σy, outputs y ∈ Zℓ such
that

∆
(
y,x[i] ∈ DΛ⊥

Q(gL,Q)+G−1
det (a[i],L),σx

)
≥ ℓ · δ,

if σx ≤
√
2L · (2L+ 1) · Cδ,ℓ.

Depending on the ver parameter, the distribution of the image of G−1
ver may

greatly di�er. In the correctness analysis we denote the noise of G−1
ver 's output as

B(G−1(., L)). For example, for deterministic base-L decomposition, we take L2,
or when the decomposition returns a discrete Gaussian, we take its variance. We
concretize this quantity when estimating correctness in Section 5.
Ring GSW Encryption. We recall the ring-version of the RGSW cryptosys-
tem from Gentry, Sahai, and Waters [40] on Figure 1. We also recall the external
product [21, 22], that multiplies an RGSW ciphertexts with an RLWE cipher-
text. Below we state the functionality of the external product, but we limit our
exposition to the case of binary plaintexts, which is the relevant case in our
application.

Lemma 2 (The External Product). Let c and CG be as in Figure 1. If
cout ← extProdver(CG, c;σx) and mG ∈ {0, 1} then cout ∈ RLWEσout(s,mout),
where mout = m ·mG and

σout ≤
√
2ℓbr ·N · σ2

br · B(G
−1
ver (., Lbr;σx)) +mGσ2.

Mux Gate. Informally, the Mux gate takes as input a control RGSW sample
C and two RLWE samples d and h. The gate outputs one of the input RLWE
samples depending on the bit encrypted in the RGSW sample.

Lemma 3 (Homomorphic Mux Gate). The Mux algorithm takes as input
C ∈ RGSWσC

(s,mC), d ∈ RLWEσ(s,md) and h ∈ RLWEσ(s,mh), where mC ∈
{0, 1} and md,mh ∈ RQ. Optionally it also takes a Gaussian parameter σx. If
cout ← Mux(C,d,h;σx), then cout ∈ RLWEσout(s,mout), where mout = md for
mC = 0 and mout = mh for mC = 1, and

σout ≤
√
2ℓbr ·N · σ2

br · B(G
−1
ver (., Lbr;σx)) + σ2
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RGSW(s,mG):

Input:

Secret key s ∈ RQ.

Message mG ∈ RQ.

1 : For i ∈ [ℓbr]:

2 : CG[∗, i]← RLWEσG(s,mG · Li−1
br ).

3 : For i ∈ [ℓbr + 1, 2ℓbr]:

4 : CG[∗, i]← RLWEσG(s,−s ·mG · Li−1
br ).

5 : Return CG ∈ R2×2ℓbr
Q .

extProdver(c,CG;σx):

Input:

Ciphertext c ∈ RLWEσ(s,m).

Ciphertext CG ∈ RGSWσG(s,mG).

[If simul] A Gaussian param. σx.

1 : cout ← CG · G−1
ver (c, Lbr;σx).

2 : Return cout ∈ R2
Q

Fig. 1. RGSW Encryption and External Product.

Modulus Switching and Sample Extraction. The modulus switching tech-
nique, developed by Brakerski and Vaikuntanathan [15] allows an evaluator to
change the modulus of a given ciphertext without the knowledge of the secret
key. Formally, we recall modulus switching by the following lemma.

Lemma 4 (Modulus Switching). Let c = LWEσ,n,Q(s,m). The modulus switch-

ing algorithm is de�ned asModSwitch(c, q) =
[⌊ q·c[i]

Q

⌉]
. If cout ← ModSwitch(c, q),

then cout ∈ LWEσout,n,q(s, m ·
q
Q ), where

σout ≤
√( q

Q
· σ

)2
+

1

4
· Ha(s) · Var(s).

Furthermore, the expectation of Error(cout) satis�es∣∣E(Error(cout))∣∣ ≤ ∣∣ q
Q
· E(Error(c))

∣∣+ 1

2

(
1 + Ha(s) · |E(s)|

)
Finally, if m = m′ · Qt , then m · q

Q = m′ · qt .

Sample extraction, given by Lemma 5, allows extracting an LWE sample from
an RLWE sample that encodes the constant coe�cient of the RLWE sample's
message.

Lemma 5 (Sample Extraction). Let KeyExtract(s) be an algorithm that on
input a key s ∈ RQ outputs its coe�cient vector. The sample extraction algorithm
LWE-Ext(c) takes as input c ∈ RLWEσ(s,m) and outputs cout = [b,a] ∈ ZN+1

Q

where b = b[1], and for all i ∈ [N − 1] we set a[i] ← −a[N − i + 1] and set
a[1]← a[1].

Denote the message encoded in c as m =
∑N

i=1 m[i]·Xi−1. If s′ ← KeyExtract(s)
and cout ← LWE-Ext(c), then cout ∈ LWEσout,N,Q(s

′,m[k]), where σout = σ.
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Key Switching. Key switching is an important technique for building scalable
homomorphic encryption schemes. In short, by having a key switching key, the
evaluator can map a given LWE sample to an LWE sample of a di�erent key and
dimension. We recall the interface for key switching and state its functionality
by Lemma 6. We recall the full speci�cation in Supplementary Material A.

Lemma 6 (Key Switching). We de�ne the key-switching key generation pro-
cedure ksK ← KeySwitchSetup(σksK, s, s

′), to take as input a noise parameter
σksK, and LWE secret keys s ∈ Zn

Q and s′ ∈ ZN
Q of (possibly) distinct dimensions

n,N ∈ N. The key-switch procedure cout ← KeySwitch(c, ksK) takes as input a
LWE ciphertext c ∈ LWEσ,N,Q(s

′,m) and the key-switching key ksK, and outputs
a LWE sample cout ∈ LWEσout,n,Q(s, m), where

σout ≤
√
ℓksK ·N · B(G−1

det(., LksK)) · σ2
ksK + σ2.

Randomized Blind Rotation and Sanitization Bootstrapping. In Fig-
ure 3 we show our sanitization bootstrapping. We give the sanitizing blind ro-
tation and its key generation algorithm in Figure 2. In short the algorithm is
given a LWE sample which phase is m + e (e is the noise term) and outputs
a RLWE sample of arot · Xm+e ∈ RQ. We choose the rotation polynomial arot
such that the constant coe�cient of arot ·Xm+e is set to f(m+ e) ∈ ZQ for any
function f that is negacyclic, i.e., satis�es f(x +N mod 2N) = −f(x) mod Q.
We stress that the restriction on f is imposed by structural properties of the
ring RQ = ZQ[X]/(XN + 1). In Supplementary Material A we recall a version
of the algorithm that applies a trick from [62, 52], which resolves the negacyclic-
ity restriction on the functions that we can compute on the input plaintext at
the cost of two blind rotation operations. Namely, we can program the polyno-
mial arot such that F (m + e) = arot · Xm+e[1] ∈ ZQ, where F is any function
in ZN . Such full domain functional bootstrapping got recently much attention
[50, 62, 52, 49], as it allows to compute any function on �nite �elds, conveniently
switch from �nite �eld plaintexts to binary and back, etc.

Lemma 7 (Correctness of Bootstrapping). Let br, c and all other pa-
rameters be as in Figure 3, ksK be generated as described by Lemma 6, where
s′ ← KeyExtract(s).

Let arot be such that f(m + e) = arot · Xm+e[1] ∈ RQ, where m + e =
Phase(c) and f : Z2N 7→ ZQ. If cout = Bootstrapver(br, ksK, c, arot), then cout ∈
LWEσout,N,Q(s

′, f(m+ e)), withσout ≤
√

2n · ℓbr ·N · σ2
br · B(G

−1
det(., Lbr)) if ver = det

σout ≤
√
2n · ℓbr ·N · σ2

br · B(G
−1
simul(., Lbr;σx)) + ℓR · σ2

R · σ2
rand

if ver = simul

Additionally, we have that cin from step 2 on Figure 3 is such that cin =
LWEσin,n,2N (s, .), where

σin ≤
√( q

Q
· σ1

)2
+

1

4
· Ha(s) · Var(s)
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BRKeyGen(σbr, s, s):

Input:

An error distribution σbr.

A RLWE secret key s ∈ RQ.

A LWE secret key s ∈ Zn
t .

1 : For i ∈ [n]

2 : Set br[i] = RGSWσbr(s, s[i]).

3 : Output br ∈ RGSWσbr(s, .)
n.

BlindRotatever(br, arot, c;σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

An rotation polynomial arot ∈ RQ.

A ciphertext c ∈ LWEσ,n,2N (s, .).

[If simul] A Gaussian param. σx.

1 : Let c = [b,a] ∈ Zn+1
2N .

2 : Set cacc,0 ← [arot ·Xb, 0] ∈ R2
Q

3 : For i ∈ [n]:

4 : cacc,i ← Muxver(br[i],

cacc,i−1 ·X−a[i],

cacc,i−1;

σx).

5 : Output cacc,n ∈ R2
Q.

Fig. 2. TFHE-style Blind Rotation and its Setup.

with σ1 ≤
√

N · ℓksK · B(G−1
ver (., LksK)) · σ2

ksK + σ2
out.

The full cryptosystem. Below we brie�y describe how the complete cryptosys-
tem �ts into De�nition 2.

Setup: We choose the modulus Q, a power-of-two dimension N of the ring RQ

and LWE dimension n ∈ N. Then we choose s ∈ RQ for the RLWE key, set
s′ ← KeyExtract(s), and s ∈ {0, 1}n for the LWE key2. Choose the radices
Lbr, LksK, LR ∈ N and the Gaussian parameters σ, σksK, σbr, σR, σrand, σx

> 0. Run br ← BRKeyGen(σbr, s, s), ksK← KeySwitchSetup(σksK, s, s
′), and

v ← LWEσR,n,Q(s
′, 0)ℓR , where ℓR = logLR

(Q). Finally, set the evaluation
key ek = (br, ksK, v) and the secret key sk = (s, s′, s).

Encryption: To encrypt a message m′ ∈ Zt we compute c = LWEσ,n,q(s
′,

m) ∈ ZN+1
Q , where m = Q

t · m
′ ∈ ZQ. Note that we can also use the vec-

tor v to obtain a LWE sample that is close to a �fresh� one, and then we
simply add m. Finally, we note that the ciphertexts that are input to the
circuit could be generated with the lower dimension n and modulus 2N . We
bootstrapping these ciphertexts, we can omit the key and modulus switching
steps at Figure 3.

Eval: We can represent homomorphic computation as a circuit with gates of the
form f(b+

∑k
i=1 xi · ai ∈ Zt1) ∈ Zt2 where the ai's and b are scalars known

2 Other distributions for the LWE secret key are possible. See [57] for an excelent
summary.
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Bootstrapver(br, ksK, c, arot,v, σrand, σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

A key switch key ksK ∈ LWEσksK,n,Q(s, .)
ℓksKN .

Ciphertext c = LWEσ,n,q(s
′, .) ∈ ZN+1

Q , where s′ = KeyExtract(s).

A rotation polynomial arot ∈ RQ.

A vector v = LWEσR,n,Q(s
′, 0)ℓR , where ℓR = logLR(Q).

[If simul] Gaussian parameters σrand, σx.

1 : Run cksK ← KeySwitch(c, ksK) ∈ Zn+1
Q .

2 : Run cin ← ModSwitch(cksK, 2N) ∈ Zn+1
2N .

3 : Run cacc ← BlindRotatever(br, arot, cin, σx).

4 : Run cext ← LWE-Ext(cacc).

5 : If ver = simul:

6 : Choose r←$ DΛ⊥
Q
(gLR,Q)+0,σ

rand
, r ←$ DZ,σ

rand
and y ←$ DZ,σx .

7 : Set crand ← r⊤ · v + r.

8 : Set cout ← cext + crand + y.

9 : Otherwise set cout ← cext.

10 : Return cout ∈ ZN+1
Q .

Fig. 3. Bootstrapping.

by the evaluator and the xi's are the encrypted plaintexts. We compute
the a�ne function using the additive homomorphism of the LWE samples,
and the function f : Zt1 7→ Zt2 by applying the bootstrapping algorithm
from Figure 3. The class of functions f that we can compute is restricted
to negacyclic functions, but we can extend the bootstrapping procedure to
support arbitrary functions (see Supplementary Material A). We compute
all gates with ver = det except for the output gates, where we run the
sanitization bootstrap with ver = simul. Crucially, the evaluator should �nish
the computation with a sanitization bootstrap to achieve circuit privacy. We
can continue computing on the sanitized ciphertexts, only if the following
computation is public and known to the client. Otherwise, the evaluator
should sanitize the ciphertexts again.

Decryption: Do decrypt a LWE sample cout = [aout, bout] we run Phase(cout) =
c⊤out[1,−s] = b− a⊤outs =

Q
t m

′
out + e ∈ Zt, and round the result

⌈
t
Q (Qt m

′
out +

e)
⌋
= m′

out if |e| ≤
Q
2t .
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4 Analysis of Circuit Privacy

This section contains our core analytical contribution. First, we recall some ad-
ditional mathematical preliminaries.

De�nition 3 (Smoothing Parameter). For a lattice Λ ⊆ Zm and positive
real δ > 0, the smoothing parameter ηδ is the smallest real r > 0 such that
ρ1/r(Λ

∗ \ {0}) ≤ δ, where Λ∗ = {x ∈ Rm|x⊤Λ ⊆ Z}.

Lemma 8 ([55], Lemma 3.3). Let Λ be any rank-m lattice, and δ ∈ R+. Then

ηδ ≤ λm(Λ) · Cδ,m,

where λm(Λ) is the smallest R such that the ball BR centered in the origin and
with radius R contains m linearly independent vectors of Λ. Remind that we

denote Cδ,m =
√

ln(2m(1+1/δ))
π .

4.1 Generalized Gaussian Leftover Hash and Core Randomization
Lemma.

Below we give our �xed and generalized version of the Gaussian Leftover hash
lemma from [13].

Lemma 9 (Gaussian Leftover Hash Lemma (Generalized Lemma 3.6
from [13])). Let δ, σx > 0. Let L = {v = Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈
Zm+1, Λ̂ = Λ̂⊥

Q(GL,Q,w) × Z, m = w · ℓ and Lℓ ≤ Q. Let qL,Q = [qi]
ℓ
i=1 be the

base-L decomposition of Q for Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. For any
e ∈ Zm and c ∈ Rm, if

σx ≥
√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
· Cδ,m, then

∆(e⊤x+ y, e′) < 2δ,

where x←$ DΛ⊥
Q(GL,Q,w)+c,σx

, y ←$ DZ,σx , e
′ ←$ DZ,σx·

√
1+||e||2 , and m = w · ℓ

with ℓ ∈ N. Note that the distribution of e′ is independent of the coset c, and if
e←$ DZ,σbr

, then e′ ←$ DZ,σx·
√

1+mσ2
br

.

The proof of the lemma follows from a technical lemma (Corollary 2.8 in
[39]), and a lemma (Lemma 3.7 in [13]) that bounds the smoothing parameter
ηδ for the lattice L = {v = Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1. In [13],
they prove the lemma for a modulus Q that is a power of two. We generalize the
lemma to moduli of form Q ≤ Lℓ.

Lemma 10 (Generalized Lemma 3.7 from [13]). Let δ > 0. Let L = {v =
Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1, Λ̂ = Λ̂⊥

Q(GL,Q,w) × Z, m = w · ℓ and
Lℓ ≤ Q. Furthermore, let qL,Q = [qi]

ℓ
i=1 be the base-L decomposition of Q for

Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. Then we have

ηδ ≤
√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
· Cδ,m.
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Proof. We use Lemma 8 to bound the smoothing parameter of L. Since Λ̂ =
Λ̂⊥
Q(G

⊤
L,Q,w) × Z is of dimension m + 1 and L is a sub-lattice of Λ̂ made of the

vectors that are orthogonal to e, we have that L is of dimension m. We thus
exhibit m independent short vectors of L to obtain an upper bound on λm(L).
We �rst de�ne the matrix

B̄ =



L q1
−1 L q2

−1
. . .

...
. . . L qℓ−1

−1 qℓ

 ∈ Zℓ×ℓ,

where qL,Q = [qi]
ℓ
i=1 is the base-L decomposition of the modulus Q if Q < Lℓ,

and qℓ = L and qi = 0 for i < ℓ if Q = Lℓ. Note that B̄ is a basis for the lattice
Λ⊥
Q(gL,Q). The lattice Λ̂ is then generated by the columns of the matrix:

B = [b1| . . . |bm+1] =

[
Iw ⊗ B̄ 0
0⊤ 1

]
∈ Z(m+1)×(m+1)

For k ≤ m let uk = bk−bm+1 · ê⊤ ·bk. Since ê
⊤ ·bm+1 = 1 we directly have

e⊤ · uk = 0 and thus uk ∈ L. The vectors u1, . . . ,um are linearly independent
since span(u1, . . . ,um,bm+1) = span(b1, . . . ,bm,bm+1) = Rm+1 (which comes
from the fact that B is a basis of an (m+ 1)-dimensional lattice).

We now bound the norm of uk. Note that bm+1 · ê⊤ ≤ ||ê||∞, because
bm+1 = [0, 1]. Then we have

||uk|| = ||bk − bm+1 · ê⊤ · bk||
≤ ||bk + ||ê||∞ · bk||
= ||(1 + ||ê||∞)bk||

=
√
1 + ||ê||∞ · ||bk||.

What is left to do is to bound the norm of bk. Note that for k < m + 1
the vector bk has L in its kth position, −1 in position k + 1, and 0 in all other
positions. Furthermore, the vectors bk for k = 0 mod logL(Q) contain the vector
qL,Q and are zero at all other positions. Hence, we can bound the norm by ||bk|| ≤
max

(
||qL,Q||,

√
L2 + 1

)
. In particular, for Lℓ+1 = Q the norm of bk is bounded

by
√
L2 + 1, while for Lℓ+1 > Q the bound depends on the decomposition of Q.

To summarize we obtain

λm(L) ≤ max
k≤m
||uk|| ≤

√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
.

Below we recall the Core Randomization Lemma from [13], but we update it
with our Lemma 9.
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Lemma 11 (Core Randomization Lemma (Updated Lemma 3.1 from
[13])). Let γ, ϵ > 0. Let qL,Q = [qi]

ℓ
i=1 be the base-L decomposition of Q for

Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. For any e ∈ Zm
Q and c ∈ Rm, if

σrand ≥ max
(
4
(
(1− γ)(2ϵ)2

)−1/m
,
√

1 + ||ê||∞ ·max
(
||qL,Q||,

√
L2 + 1

)
· Cγ,m

)
then

∆
(
(A,Ar, e⊤r+ r), (A,u, e′)

)
≤ ϵ+ 2γ

where r ←$ DΛ⊥
Q(GL,Q,w)+c,σrand

, A ←$ Z(w−1)×m
Q , u ←$ Zw−1

Q , r ←$ DZ,σrand
,

e′ ←$ DZ,σrand

√
1+||e||2) and m = w · ℓ. Furthermore, if e ←$ DZ,σR

, then e′ ←$

DZ,σrand·
√

1+mσ2
R

.

4.2 Distribution of Our Randomized Bootstrapping and Circuit
Privacy

Below we state and prove the core theorem on the distribution of bootstrapped
ciphertexts. Circuit privacy, that we prove at the end of this section, follows
nearly immediately from the theorem below.

Theorem 1 (Distribution of the Bootstrap). Let br be the blind rotation
key, arot ∈ RQ a rotation polynomial, and c ∈ LWEσ(s,m) a LWE sample as
de�ned in the Bootstrap algorithm in Figure 2. Assume that arot is such that
f(m) = (arot · XPhase(cin))[1] where cin is the LWE sample obtained at step 2 of
the Bootstrap algorithm. Let cout be the LWE sample returned by the Bootstrap
algorithm for ver = simul and Gaussian parameters σrand and σx where the Gaus-
sian sampling algorithm G−1

simul is as in Lemma 1. Assume that

σrand ≥ max
(
4
(
(1− γ)(2ϵ)2

)−1/ℓR
,
√

1 +BR ·max
(
||qLR,Q||,

√
L2R + 1

)
· Cγ,ℓR

)
and

σx ≥
√

1 +Bbr ·max
(
||qLbr,Q||,

√
L2br + 1

)
· Cδ,2·n·N ·ℓbr ,

where Bbr and BR are bounds on the in�nity norm of the noise terms in the
blind rotation key br and the masking vector v. Then we have

∆(cout, cfresh) ≤ max
(
ϵ+ 2γ, 2δ

)
,

where cfresh = [afresh, bfresh], bfresh = ⟨afresh, s′⟩ + f(m) + erand + eout, erand ←$

DZ,σrand·
√

1+ℓRσ2
R

, and eout ←$ DZ,σ
x
√

1+2nNσbr
.

Proof. The proof consists of two parts. First we analyze the LWE sample that
is extracted after blind rotation. In particular, we give a concise representation
of the �nal noise term. Furthermore, we show that each noise coe�cient and
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decomposition term of the randomized decomposition appears only once in the
�nal noise term. The second part of the proof consists of a hybrid argument,
where we argue step-by-step that the distribution of the extracted and �masked�
LWE sample is statistically close to a �freshly� sampled LWE sample of the same
message.

Below we give the �rst part of the proof. But to further tame complexity
we split this part in three more sub-parts. First we analyze a single external
product, then a single MUX gate and we �nalize this part with blind rotation
and extraction.
Single External Product. First let us remind that for j ∈ [ℓbr] we have

CG[∗, j] = RLWEσ(s,mG · Lj−1
br ) and

CG[∗, j + ℓbr] = RLWEσ(s,−s ·mG · Lj−1
br ).

Denote CG = [aj , bj ]
2ℓbr
j=1, and d = [ad, bd] where bd = ad ·s+ed+md. We analyze

the sample cprod ← extProdsimul(CG,d). Then in step 1 and 2 of the extProdsimul

algorithm we compute cprod = CG · G−1
simul(d, Lbr) = [aprod, bprod]. Let us denote

the vector [xj ]
2ℓbr
j=1 = G−1

simul(d, Lbr). We can write

aprod =

2ℓbr∑
j=1

aj · xj .

Furthermore, we can write

bprod = aprod · s+mG · ed + ê+mG ·mg, (1)

where ê =
∑2ℓbr

j=1 ej · xj . Equation 1 holds because we have

2ℓbr∑
j=1

bj · xj = aout · s+
ℓbr∑
j=1

(ej +mG · Lj−1) · xj +
ℓbr∑
j=1

(ej+ℓbr − s ·mG · Lj−1) · xj+ℓbr

= aout · s+
2ℓbr∑
j=1

xj · ej +mG ·
( ℓbr∑
j=1

xj · Lj−1 − s ·
2ℓbr∑

j=ℓbr+1

xj · Lj−1
)

and in particular from the properties of the Gaussian sampling algorithm (Lemma 1)
we have that

mG ·
( ℓbr∑
j=1

xj · Lj−1 − s ·
2ℓbr∑

j=ℓbr+1

xj · Lj−1
)
= mG(bd − ad · s) = mG(ed +md).

Single MUX Gate. Let us analyze a single execution of the MUX gate cout ←
Mux(CG,d,h), where CG and d are RGSW and RLWE samples as above, and
h ∈ RLWEσ(s,mh) = [ah, bh]. Since cout ← extProdsimul(C,d) + h, we can write
cout = [aprod, bprod]+ [ah, bh]. Remind that the message encoded in CG is a single
bot mG ∈ {0, 1}. That is, we are only interested in the special case where the
RGSW message is a single bit. We have two cases:
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� The case with mG = 0. In this case we can write bprod = aprod · s+ e. In other
words, the error from d cancels out. And we have that bout = bprod + bh =
aout · s+ e+mh + eh.

� The case with mG = 1. In this case we can write bprod = aprod · s+ e+md −
mh + ed − eh. And we have that bout = bprod + bh = aout · s+md + e+ ed.

Finally, note that in blind rotation we have d = h·X l ∈ R2
Q for some l ∈ Z2N .

That is, the two ring LWE samples are negacyclic rotations of one another. This
means that ed = e ·X l ∈ RQ.
Blind Rotation and Extraction. First we set the accumulator to cacc,0 = [0, arot ·
Xb]. Note that the �rst accumulator is special because its noise term is zero. Let
us denote the error term that is added in the ith iteration of the blind rotation
loop by êi. Particularly, this noise term is êi =

∑2ℓbr
j=1 ei,j · xi,j , where ei,j is the

noise term of the blind rotation keys, xi,j is the component from the randomized
decomposition algorithm. At the ith iteration we run a homomorphic MUX gate
that multiplies the input RLWE sample's noise and message by X−a[i]·s[i], and
adds a new noise term êi. Remind that the noise term of cacc,0 is zero, thus at
iteration i = 1, the resulting RLWE sample cacc,1 has noise term ê1. Then cacc,1
has noise term ê1 ·X−a[2]·s[2] + ê2. Finally after n iterations we have

Error(cacc) = Error(cacc,n) =
n∑

i=1

êi ·X
∑n

j=i+1 −a[j]·s[j] (2)

and the message is arot ·XPhase(c).
Let us denote cacc = [aacc, bacc] and the extracted LWE sample cext = [aext, bext].

Note that aext ∈ ZN
Q and bext = bacc[1] = ⟨aacc, s′⟩ + m ·XPhase(c)[1] + (

∑n
i=1 êi ·

X
∑n

j=i+1 −a[j]·s[j])[1]. In particular, note that

Error(cext) =
( n∑
i=1

êi ·X
∑n

j=i+1 −a[j]·s[j])[1]
=

n∑
i=1

2ℓbr∑
j=1

(
ei,j ·X

∑n
j=i+1 −a[j]·s[j] · xi,j

)
[1]

=

n∑
i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k]

where ei,j is a vector of discrete Gaussian random variables centered at zero
of parameter σbr. Note that in the ring RQ and assuming the coe�cients of

ei,j are centered at zero, we have that ei,j · X
∑n

j=i+1 −a[j]·s[j] = e′i,j rotates the
coe�cients of ei,j negacyclicly, meaning that e′i,j has the same distribution as
ei,j . Similarly, we have that the constant coe�cient of e′i,j · xi,j in RQ is (e′i,j ·
xi,j)[1] = xi,j [1] · e′i,j [1] +

∑N
k=2−e′i,j [N − k + 1] · xi,j [k]. Hence we can write

ei,j [k] = −e′i,j [N −k+1] for k ∈ [2, N ] and ei,j [1] = e′i,j [1]. Therefore ei,j [k] is is
from the discrete Gaussian distribution of the same parameter as ei,j given that
the distribution of the coe�cients are centered at zero.
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Distribution of the Extracted LWE Sample. Now we are ready to argue that the
cout = cext + r⊤ · v + r + y sample is statistically close to a LWE sample of the
same message that is independent of the input ciphertext. The proof is due to
the following hybrid argument.
Hybrid 0. In this hybrid the sample is as in the original scheme. Speci�cally, we
have cout ← cext+crand+y, where crand ← r⊤ ·v+r with r←$ DΛ⊥

Q(gLR,Q)+0,σrand
,

r ←$ DZ,σrand
, y ←$ DZ,σx and v is a vector of size ℓR of LWE samples of zero

with noise parameter σR.
Hybrid 1. As Hybrid 0, but we set the message in cout to f(m) instead of
arot ·XPhase(c)[1]. Assuming that Error(c) ≤ N

t and arot is such that f(m) = arot ·
XPhase(c)[1] this change is only syntactical by correctness of the bootstrapping
algorithm.
Hybrid 2. This hybrid is as Hybrid 1, but instead of computing crand ← r⊤ ·v =
[arand, brand], we take crand = [arand, brand] to be a fresh LWE encryption of zero.
In particular, we take arand ←$ ZN

Q from the uniform distribution and take
brand = ⟨arand, s⟩+ erand where erand ←$ DZ,σrand·

√
1+ℓRσ2

R

.

Claim. Given that

σrand ≥ max
(
4
(
(1− γ)(2ϵ)2

)−1/ℓR
,
√

1 +BR ·max
(
||qLR,Q||,

√
L2R + 1

)
· Cγ,ℓR

)
the statistical distance between Hybrid 2 and Hybrid 1 is at most ϵ+2γ for some
ϵ, γ > 0.

Proof. Denote v = [av,i, bv,i]
ℓR
i=1 where bv,i = ⟨av,i, s′⟩ + ev,i. Let b̃ = [bv,i]

ℓR
i=1

and ẽ = [ev,i]
ℓR
i=1. We can write Ã = [av,i, . . . ,av,ℓR ] ∈ ZN×ℓR

Q , arand ← Ã ·r and
brand ← b̃⊤ · r+ r = ⟨arand, s′⟩+ ẽ⊤ · r+ r.

Now it is easy to see that the rest of the proof follows directly by applying
Lemma 11. Note that the notation in Lemma 11 is mostly already in place,
except that we set m = ℓR and L = LR. Note that w = 1 for the lemma, because
we sample r from DΛ⊥

Q(gLR,Q)+0,σrand
. Furthermore, the matrix A from the lemma

is the matrix Ã in this hybrid and the error e from the lemma is the error ẽ in
this hybrid.

Hybrid 3. This hybrid is as Hybrid 2, except that we choose aout from the
uniform distribution. Note that both hybrids are in fact identical as from Hybrid
1, we have that arand is sampled from the uniform distribution over ZN

Q , and we

have aout = aext + arand ∈ ZN
Q . This hybrid is only a syntactic change.

Hybrid 4. This hybrid is as hybrid 3 except that we compute bout = ⟨aout, s⟩+
f(m) + erand + eout, where eout ←$ DZ,σ

x
√

1+2nNσbr
. In particular, the noise term

is independent from the bootstrapped ciphertext c and the blind rotation key
br.

Claim. Given that

σx ≥
√
1 +Bbr ·max

(
||qLbr,Q||,

√
L2br + 1

)
· Cδ,2·n·N ·ℓbr
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the statistical distance between Hybrid 3 and Hybrid 4 is at most 2δ for some
δ > 0. The notation in Lemma 11 is mostly already in place, except we set
m = 2 · n ·N · ℓbr and L = Lbr.

Proof. Note that we have

Error(cext) =
n∑

i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k] =
n∑

i=1

N∑
k=1

2ℓbr∑
j=1

ei,j [k] · xi,j [k].

We will group the terms ei,j [k] · xi,j [k] into vectors by the j iterator. We write

êi,k =
[
ei,j [k]

]2ℓbr
j=1

and x̂i,k =
[
xi,j [k]

]2ℓbr
j=1

. Note that x̂i,k ∈ DΛ⊥
Q(GLbr,2

)+G−1
det (cacc,i[k]),σx

.

In other words x̂i,k is the Gaussian sampling of the kth coe�cient (where
k ∈ [2ℓbr], meaning that we take the concatenation of the two polynomials in the
accumulator cacc,i) in the ith iteration of the blind rotation algorithm. Now we
can write

Error(cext) = erand + Error(cext) + y = erand + y +

n∑
i=1

N∑
k=1

êi,k
⊤ · x̂i,k.

We can further represent Error(cext) as a product x⊤ · e of two vectors e =

[êi,k
⊤
]n,Ni=1,k=1 and x = [x̂i,k]

n,N
i=1,k=1. Note that

x ∈ DΛ⊥
Q(GLbr,Q,2·n·N )+G−1

det ([cacc,i[k]]
n,N
i=1,k=1),σx

since it is just a concatenation of n ·N vectors from DΛ⊥
Q(GLbr,2

)+G−1
det (cacc,i[k]),σx

.

Finally, note that aout and the message are independent of Error(cext). Therefore
we can apply Lemma 9 to x⊤ · e+ y with m = 2 · n ·N · ℓbr and L = Lbr.

Finally, we have that cout is distributed as in the theorem statement, and is
in particular independent of the input ciphertext c and bootstrapping key br.

Remark 2 (On FHEW Blind Rotation.). Theorem 1 works for the blind rotation
algorithm from [21]. We chose to focus on this blind rotation algorithm as it is
currently faster in practice for binary and ternary LWE keys. We note, however,
that it is even easier to prove an analogical theorem with the blind rotation from
FHEW [29] because it is a sequence of external products. Consequently, we can
omit the �Single MUX Gate� step in the proof of Theorem 1.

Proof of Circuit Privacy. Remind that according to De�nition 2, to prove cir-
cuit privacy we have to show a simulator that, on input mout = C(m1, . . . ,mn)
outputs a ciphertexts of mout that is distributed as an output of the Eval algo-
rithm when evaluating C on encryptions of m1, . . . ,mn. We build such simulator
by sampling an encryption of zero using the vector v of LWE samples of zero
form the evaluation key, adding mout and the missing noise term eout that would
steam from blind rotation. Circuit privacy then follows from Theorem 1.
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Theorem 2. Let C be a polynomial size circuit and ctout ← Eval(ek, [cti]
n
i=1, C),

where cti ← Dec(sk,mi) and Eval is as described in Section 3, where the boot-
strapping algorithm for of the output gate is set to ver = simul. If the parameters
of the FHE scheme are chosen such that ∆(cout, cfresh) ≤ negl(λ), where cfresh is
as in Theorem 1, then the evaluation process is circuit private.

Proof. To show circuit privacy we need to show a simulator Sim that gets as input
ek and mout. The proof follows nearly immediately, from Theorem 1. The simu-
lator samples r ←$ DΛ⊥

Q(GLR
)+0,σrand

, r ←$ DZ,σrand
and eout ←$ DZ,σ

x
√

1+2nNσbr
.

Then Sim computes crand ← r⊤ · v + r and cfresh ← crand + eout + mout. De-
note crand = [arand, brand]. First we argue that Error(crand) ∈ DZ,σrand·

√
1+ℓRσ2

R

and arand ∈ ZN
Q is close to the uniform distribution, as in the proof of Theo-

rem 1 (Hybrid 1). We end up with a LWE sample cfresh = [afresh, bfresh] where
bfresh = ⟨afresh, s′⟩+ f(m)+ erand+ eout. The statistical distance between cout and
cfresh output by Sim follows now directly from Theorem 1.

5 Parameters, Implementation and Applications

In this section, we discuss our parameter choices, implementation, and experi-
ments for our method as well as for the washing machine method. Furthermore,
we give a comparison of both methods and discuss shortcomings of implemen-
tations based on �oating point arithmetic and Fast Fourier transforms, as well
as the limitations of certain ring choices.

5.1 Parameters.

We choose our parameter set to target 128-bit security for the (R)LWE samples
and 80-bits statistical security when running the bootstrapping in simul mode.
The parameters are listed in Table 1. We estimate the (R)LWE security using
the latest commit of the LWE estimator [6]. We wrote a python script that
we published alongside our source code to estimate the statistical security. We
choose similar parameters to make a good comparison between our method and
the Ducas-Stehlé washing machine method [30] that we refer to as DS-WM. For
completeness we recall the relevant lemmas from [30] that we used for our es-
timations in Supplementary Material C. The strategy is to choose the highest
modulus allowed for the RLWE problem for a given dimension but below 50-bits
to allow for faster multiplication of ring elements. Furthermore, we choose the
LWE parameters for the key switching key and the masking key v, the same
for both solutions. Then we choose the decomposition bases. We chose the high-
est decomposition base that: (1) gives us required correctness, (2) minimizes
LBk-simul, (3) LBk-det = LBk-simulk for some k ≥ 1 for deterministic gadget
decomposition gives us the required correctness as well. Note that the last con-
dition allows us to signi�cantly optimize computation when using deterministic
gadget decomposition at no additional cost to the key size. This is because, when
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using deterministic gadget decomposition we must only use every k-th RLWE ci-
phertext of the gadget ciphertext when computing the multisum in the external
product. Finally, we compute the noise parameters for the Gaussian sampling
and noise �ooding given the desired security level and all other parameters.

Method n Q N LBk, ℓBk-simul LBk, ℓBk-det LR LKsk σKsk σx Ux σrand ∆

Ours 912 48 11 8, 6 24, 2 3 7 26 12 - 17 80
DS-WM 912 48 11 5,10 25,2 3 7 26 12 32 - 20

Table 1. Parameter Sets. We list base-two logarithms of all parameters except for
the LWE dimension n. For all parameter set we set σbr = 3.2. Note that the column
LBk-simul gives the decomposition base for ver = simul and LBk-det for ver = det. The
column Ux refers to the uniform distribution interval for the noise �ooding in DS-WM.
The column ∆ refers to the statistical distance from a random ciphertext after a single
bootstrapping operation. Consequently, for DS-WM, we have to run the bootstrapping
4-times.

As we can read from Table 1, we managed to �nd parameters where our
method needs 5 = ℓbr +1 ring multiplications per gadget multiplication in simul
mode, whereas noise �ooding requires 11 = ℓbr+1. We stress that the noise �ood-
ing method is already incorrect for a decomposition base Lbr = 26. Nevertheless,
for the �ooding set, we can use a similar decomposition basis in det mode as
in our set resulting in the same e�ciency for deterministic bootstrapping. We
believe this choice allows us to compare both methods better as we can now
focus solely on discussing the di�erences between the sets in simul mode. For the
det mode e�ciency of the sets is the same and correctness is very similar.

To estimate correctness, we compute the error function which is de�ned as
erf(x) = 2√

π

∫ z

0
e−t2 dt, and which given standard deviation 1/

√
2 returns the

probability that a Gaussian distributed random variable with mean 0 lies within
the interval [−x, x]. Furthermore, we de�ne erfc(x) = 1 − erf(x). Our estima-
tor must deal with random variables of mean ̸= 0 and standard deviations other
than 1/

√
2. Hence given mean c and standard deviation σ we compute erfc( x−c

σ·
√
2
),

where x = Q
2·t is the interval given by the modulus Q and message space mod-

ulus t to obtain the probability that our noise exceeds the tolerable bound and
�shifts� the plaintext. In Table 2, we list the probabilities of having an error while
bootstrapping. The errors are given as base-two logarithms for readability. As we
may see, our method has a di�erent characteristic when it comes to correctness
than the DS-WM. First observe that correctness of cin is lower than correctness
of cout. This is due to the modulus switching to a much smaller modulus 2N
and the rounding error. Then note that when increasing the message space, our
method is still correct for cout, while DS-WM's correctness collapses already at
t = 5. This is the consequence of needing to run the bootstrapping step numer-
ous times to sanitize a ciphertext. However, since our method requires only a
single bootstrapping invocation, we can output ciphertexts of larger precision.
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Ours

t det simul

cout cin cout cin
4 −849 −197 −494 −129
5 −545 −82 −317 −54
6 −380 −33 −221 −22

...
10 −136 0.99 −82 0
11 −113 0.99 −68 0

Ducas-Stehlé Washing Machine (DS-WM)

t det simul

cout cin cout cin
4 −785 −186 −85 −85
5 −504 −78 −18 −18
6 −351 −31 −1.25 −1.25

...
10 −128 0 0 0
11 −107 0 0 0

Table 2. Correctness Estimates. We give the probability of failure to correctly decrypt
cout and cin for a given message space t. We give the correctness estimates as base-
two logarithm. We mark failure probabilities below 2−80 with green, and above that
threshold with red.

Instantiation over degree N = 210 Rings. Numerous works like [29, 21, 22]
choose parameters for the ring ZQ[X]/(XN + 1) setting the degree to N = 210.
The obvious bene�t is that the timings are fast, while the ring dimension is
high enough to give 128-security. What is important is that when assessing cor-
rectness, these works often report only on the correctness cout and ignore the
correctness of cin. Notably, Ducas and Stehlé [30] propose to instantiate their
washing machine method on a parameter set from the Ducas and Micciancio's
FHEW bootstrapping [29], albeit they note that their instantiation is heuristic
and leave a serious analysis as an open problem. We investigated the possibility
of choosing a parameter set for the rings of dimension N = 210, and, unfor-
tunately, we found it to be infeasible. We chose the highest modulus possible.
Furthermore, we took the decomposition bases to be equal to 2 (smallest possi-
ble) to maximize correctness. Even when decreasing the LWE dimension n and
noise parameter to insecure levels, we noticed that, while correctness of cout was
satisfactory, correctness of cin was below the 2−30 level. The reason for this is
the rounding error when modulus switching from Q to 2N . In other words, the
ring degree is already so small that ciphertexts modulo 2N cannot accommo-
date the rounding error within the interval N/t. Note that we use binary keys
here, which is even more bene�cial for correctness, than if we would use ternary
or Gaussian distributed keys as in FHEW-style schemes [29]. To conclude, our
analysis shows that the parameter choice in [30] for DS-WM cannot give circuit
privacy better than 30-bits, and we need to instantiate the method with a larger
ring. Furthermore, we also rule out the possibility of running parameters from
[21, 22] in simulation mode due to the small ring degree with statistical security
larger than 30-bits.

Implementations based on Fast Fourier Transforms. Let us brie�y ad-
dress the possibility of running our method or DS-WM with an implementation
that is based on the Fast Fourier Transform (FFT). As hinted in Section 3, poly-
nomial multiplication using fast Fourier transforms over a given �oating point
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arithmetic introduce additional numerical errors that depend on the magnitude
of the coe�cients, the ring dimension, and the RLWE secret key. Importantly,
note that for our method, in theory, we cannot tolerate any numerical errors
because these errors aren't masked by the noise from the Gaussian sampling al-
gorithm. When testing our implementation of negacyclic convolutions (the same
method that is used in [21, 22]), we noticed that to have the errorless computa-
tion, we would need to decrease the modulus to only 20-bits. Concretely, when
errors occurred already when computing negacyclic convolutions of a polyno-
mial with binary coe�cients and a polynomial with coe�cients larger than 220!
Unfortunately, we found it infeasible to �nd a parameter set with such a small
modulus satisfying the required correctness level. Finally, one may hope that
DS-WM could be used to sanitize such ciphertexts since we could �ood the ad-
ditional numerical error. Unfortunately, we also failed to �nd a correct parameter
set, even with a low statistical security per washing cycle. The reason is that
the numerical error also increases as we increase the modulus. To compensate,
we need to choose a larger �ooding noise, which would need to be compensated
by a larger modulus, which again increases the numerical error. Finally, we note
that the magnitude of the numerical errors may depend on the implementation
and precision used (we used 64-bit double precision, and the FFTW library [31]
to compute FFTs).

Total [s] BL [s] KS [s] Ksk [MB] Bk [MB] v [MB] ct [KB]
det simul det simul

Ours
0.14

1.44
0.14

1.44
0.01 78.53

134.47
0.12 24.57

DS-WM 2.72 0.71 224.13

Table 3. Performance. The BL and KS columns give the blind rotation and key switch-
ing timings. In the �Total� column we give the over time to run a bootstrapping oper-
ation. Remind that in the DS-WM we must run bootstrapping several times. The Ksk,
Bk, v and ct columns give sizes of the respective public key, and ciphertexts.

5.2 Implementation and Performance.

We implemented the schemes in C++11 and tested it on a machine with 11th
Gen Intel(R) Core(TM) i7-11850H 2.50GHz processor that supports AVX2 and
AVX-512 instructions. The timing results and the size of the evaluation keys for
the bootstrapping algorithms are given in Figure 3. We omit including the timing
for masking with the vector v, as it is negligible in comparison to other timings
(for our parameter sets, it takes only 16 scalar multiplication and additions of
LWE ciphertexts). To implement negacyclic convolution, we used the Intel Hexl
library [11]. The library gives a high-performance implementation of Number
Theoretic Transforms optimized for the ring ZQ[X]/(XN + 1) and takes full
advantage of Intel AVX instructions.
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For the Gaussian sampling algorithm, we implemented the method by Genise,
and Micciancio [32]. To sample from the discrete gaussian distribution, we used
the Gaussian sampler from the C++-standard library with Mersenne Twister,
with rounding to the closest integer. Note that the rounding may distort the dis-
tribution. However, in our case, we use a standard deviation of about 217. Hence
the resulting distribution should be statistically close to a discrete Gaussian.

As we may read from Table 3, our sanitization is roughly 1.88× faster than
DS-WM and has a 1.8× smaller blind rotation keys. However, our blind rotation
in simul mode is roughly 10× slower than a blind rotation in det mode. Remind
that we must run the sanitization bootstrapping only once before returning the
ciphertext. First, it needs to compute two times more NTTs, but gadget multi-
plication is also slowed down by Gaussian sampling. We stress that the Gaussian
sampling step is implemented in a straightforward way. Currently, Gaussian sam-
pling constitutes approximately 50% of the entire computation time. We believe
that there is still much room for improvement when it comes to implementation.
In particular, the method can be parallelized over the N = 211 coe�cients of
the ring. Similarly, as Intel Hexl for NTT, an optimized implementation could
take advantage of AVX vector processor extensions to parallelize parts, if not the
entire sampling algorithm. We do not see much space to improve the washing
machine method because its only di�erence from a deterministic bootstrap is
choosing the uniform �ooding noise. On the other hand, the simplicity of the
washing machine method is its main advantage over our algorithm.

6 Conclusions and Open Problems

We showed that it is practically feasible to build an e�cient FHE scheme with cir-
cuit privacy, that is competitive with the Ducas-Stehlé washing machine method
[30]. Importantly, the major bottleneck in our implementation is Gaussian sam-
pling. We believe that an optimized implementation of gaussian sampling ex-
ploiting AVX vector extentions like in Intel Hexl would greatly the improve
performance. Finally, an interesting problem is to analyze whether we can use
randomized gadget decomposition that has output from other distributions and
discrete Gaussian.
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Appendices

A Error Analysis and Missing Algorithms

In this section we give the noise analysis and correctness proofs.

Proof. (External Product, Lemma 2). Denote x = G−1
ver (c, Lbr) and c = [b, a].

Then we compute

CG · x =

ℓbr∑
i=1

RLWEσG
(s,mG · Li−1

br ) · x[i]

+

2ℓbr∑
i=ℓbr+1

RLWEσ(s,−s ·mG · Li−1
br ) · x[i]

=RLWEσ(s,mG · b) + RLWEσ(s,−s ·mG · a)
=RLWEσ1

(s,mG · (m+ e))

=RLWEσout(s,mG ·m)).

The following σ2
1 ≤ 2ℓbr · N · σ2

G · B(G−1
ver (., Lbr)) holds because we compute the

multisum
∑2ℓbr

i=1 ·ei · x[i] where ei is the error of the ith RLWE sample in CG.
Note that each coe�cient of ei ·x[i] in the ring RQ is a negacyclic convolution of
the coe�cients in ei and x[i]. Finally, σ2

out ≤ σ2 +mG · σ2
1 holds because, mG · e

is 0 or e depending on the bit mG.

Proof. (Mux Gate, Lemma 3). Note that the RGSW sample C encodes a bit
mc ∈ {0, 1}. As in the proof of Lemma 2 we have cout = RLWEσ1

(s,mc · (md −
mh + ed − ed) + h. Hence, for mC = 0, we get

cout = RLWEσ1
(s,mh + eh) = RLWEσout(s,mh),

and for mC = 1, we get

cout = RLWEσ1
(s,md + eg) = RLWEσout(s,md).

In either case, we have that σ2
out ≤ 2ℓbr · N · σ2

G · Var(G−1
ver (., Lbr)) + σ2, because

as we assumed the noise parameter for d and h is the same.

Proof. (Modulus Switching, Lemma 4). Denote c = (b,a), where b = a⊤ · s +
m+ e ∈ ZQ where e has variance σ2. Then we have the following:

Phase(⌊ q
Q
· c⌉) = ⌊ q

Q
· b⌉ − ⌊ q

Q
· a⊤⌉ · s

=
q

Q
· b+ r − q

Q
· a⊤ · s+ r⊤ · s

=
q

Q
·m+

q

Q
· e+ r + r⊤ · s

=
Q

t
·m+

q

Q
· e+ r + r⊤ · s
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where r ∈ R and r ∈ Rn are in [− 1
2 ,

1
2 ]. Then we have

σ2
out = Var(

q

Q
· e+ r + r⊤ · s)

= Var(
q

Q
· e) + Var(r⊤ · s))

=
q2

Q2
· σ2 +

n∑
i=1

Var(r[i] · s[i])

≤ q2

Q2
· σ2 +

1

4
· Ha(s) · Var(s).

The expectation of the output noise satis�es

| q
Q
· E(Error(c)) + E(

q

Q
· e+ r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r) +

n∑
i=1

E(r · s)|

≤ | q
Q
· E(Error(c))|+ 1/2 + 1/2 · Ha(s) · |E(s)|

given that the expectation of e is 0.

Proof. (Sample Extraction, Lemma 5). Denote s = s ∈ ZN
Q and b = b[1] ∈ ZQ.

Denote b = a · s + m + e ∈ RQ, m =
∑N

i=1 m[i] ·Xi−1 and e =
∑N

i=1 e[i] ·Xi−1

then it is easy to see, that b = (a · s)[1] + m[1] + e[1]. Furthermore, denote

a =
∑N

i=1 a[i] ·Xi−1 and s =
∑N

i=1 s[i] ·Xi−1. Denote s · a = (
∑N

i=1 a[i] ·Xi−1) ·
(
∑N

i=1 s[i]·Xi−1). By expanding the product we have that the constant coe�cient

is given by (s · a)[1] = s[1] · a[1]−
∑N

i=2 s[i] · a[N − i+ 2].
If we set s = s and a such that a[1] = a[1] and a[i] = −a[i] for i = 2 . . . N ,

then (b,a) is a valid LWE sample with respect to s.

Proof. (Key Switching, Lemma 6). Let us �rst note that for all i ∈ [n] we have

x⊤ · ksK =

N∑
i=1

ℓksK∑
j=1

x[ℓksK(i− 1) + j] · ksK[ℓksK(i− 1) + j]

= LWEσ1,n,Q(s,

N∑
i=1

a[i] · s′[i])

where

σ2
1 ≤

ℓksK∑
i=1

N · B(G−1
det(., LksK)) · σ

2
ksK

≤ N · ℓksK · B(G−1
det(., LksK)) · σ

2
ksK.
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KeySwitchSetup(σksK, s, s
′):

Input:

A bound σksK ∈ N.

Secret keys s ∈ Zn
Q, and s′ ∈ ZN

Q .

1 : For i ∈ [N ], j ∈ [ℓksK]

2 : Set ksK[ℓksK(i− 1) + j]← LWEσksK,n,Q(s, s
′[i] · Lj−1

ksK ).

3 : Output ksK ∈ LWEσksK,n,Q(s
′, .)NℓksK .

KeySwitch(c, ksK):

Input: A LWE ciphertext c = [b,a] ∈ LWEσ,N,Q(s
′,m)

A key switching key ksK ∈ LWEσksK,n,Q(s, .)
NℓksK .

1 : Compute x← G−1
det (a, LksK) ∈ ZN

LksKℓksK.

2 : Output cout ← [b,0]− x⊤ · ksK ∈ Zn+1
Q .

Fig. 4. Key switching algorithm and its setup.

The bound follows from the fact that we have a multisum of scalars in x and
LWE samples from the key switching key.

Let us denote b = a⊤ ·s′+m+e and x⊤ ·ksK = [b̂, â] where b̂ = â⊤s+a⊤ ·s′+ê
then

cout = [b, 0]− x⊤ · ksK

= [b− b̂,−â]
= [−â⊤s+m+ e− ê,−â]

Hence, cout is a valid LWE sample of m with respect to key s and

σ2
out ≤ N · ℓksK · B(G−1

det(., LksK)) · σ
2
ksK + σ2.

Proof. (Bootstrapping, Lemma 7). The correctness of blind rotation follows from
two observations. First, is that multiplying a RLWE sample with Xk for some
k ∈ ZN does not change the parameter of its noise, because the error polynomial
is only rotated, and we change the sign of some of the coe�cients. Second, we
run n times the homomorphic CMux gate, thus the variance of the output noise
follows from Lemma 3. Finally, note that each iteration rotates the message by
X−a[i]·s[i]. Denote c = [b,a], where b = a⊤s+m+e ∈ Z2N . After n iterations we

obtain arot·Xb−a⊤s = arot·Xm+e. What follows is (arot·Xm+e)[1] = f(m+e) ∈ ZQ

from the assumption on arot.
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FunctionalBootstrapver(br,u, ksK, c, arot, t):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

A key switch key ksK ∈ LWEσksK,n,Q(s, .)
ℓksKN .

A LWE sample c = LWEσ,n,q(s, .) = [b, a] ∈ ZN+1
Q .

A polynomial arot ∈ RQ.

An integer t ∈ N.

1 : cksK ← KeySwitch(c, ksK) ∈ Zn+1
Q .

2 : cpre ← ModSwitch(cksK, N) +
[⌊N

2t

⌉
,0

]
.

3 : accsgn ← BlindRotatedet(br, asgn, cpre).

4 : cmsb ← LWE-Ext(accsgn, 1).

5 : cmsb,ksK ← KeySwitch(cmsb, ksK) ∈ Zn+1
Q .

6 : cm̂sb ← ModSwitch(cmsb,ksK, 2N) ∈ Zn+1
2N .

7 : cin ← cpre + cm̂sb −
2N

4
∈ Zn+1

2N .

8 : accout ← BlindRotatever(br, arot, cin).

9 : Return cout ← LWE-Ext(accout, 1).

Fig. 5. Bootstrapping: The full domain functional bootstrapping from [62, 52]. For the
functional bootstrapping we additionally use a rotation polynomial asgn that is chosen
such that the blind rotation computes a special msb(.) function of the input.
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Correctness of bootstrapping trivially follows from the correctness of the
underlying algorithms. In particular, the noise parameter of the cin ciphertext
follows from the fact that we run the key switching procedure on c and then
switch the modulus to 2N . Finally, the noise parameter of cout follows from
the correctness of blind rotation, Lemma 6, Lemma 5 and Lemma 4. Finally,
if ver = simul, then we additionally compute a linear combination of of LWE
samples of zero from the vector v. Hence the additional part ℓR · σ2

R · σ2
rand

of
the noise follows from linear homomorphism of LWE samples and the fact that
all error terms are uncorrelated.

Correctness of the full domain functional bootstrapping is as follows. Denote
cpre = [bpre,apre] such that bpre = a⊤pre · s + mpre + epre+ ∈ ZN . Note that since

we add
[⌊

N
2t

⌉
,0

]
we ensure that 0 ≤ mpre + epre < N . Note that this shifting

operation is important as otherwise we would not be able to choose an appro-
priate rotation polynomial. Assuming, that the phase of cpre is in [0, N), we
set all coe�cients of the rotation polynomial asgn to Q/4. We blind rotate cpre
modulo 2N with asgn, so bpre − a⊤pre · s = mpre + epre + kN mod 2N for some
k ∈ {0, 1}, where mpre is the modulus switching of the message m that is en-
coded in c. From correctness of blind rotation we have that, and then key and
modulus switching we have that c

m̂sb
decrypts to 2N

4 if k = 0 and 3·2N
4 if k = 1.

We can write the decryption of c
m̂sb

as k · 6N4 + (1 − k) · 2N4 . So when we add

cpre + c
m̂sb
− 2N

4 , the term kN + k · 6N4 + (1 − k) · 2N4 −
2N
4 is zero for both

k ∈ {0, 1}. Hence we have bin = a⊤ ·s+mpre+ein mod 2N , where mpre+e < N .
Therefore, we can can choose the coe�cients of the rotation polynomial such
that arot = F (⌊Nt mpre + e⌉). Note that we will only multiply the rotation poly-
nomials by Xmpre+e, where 0 ≤ mpre + e < N . In particular, the negacyclicity
problem never occurs. In other words, we directly set the coe�cient to encode
the lookup table, and we do not worry that the rotation exceeds the number
of coe�cients and changes the sign of the output. Finally, the variance Var(ein)
follows from the error analysis of blind rotation, key switching, and modulus
reduction. And σout follows from the analysis of blind rotation.

Numerical Error. Finally, let us address the issue of numerical errors when
performing ring operations. In particular we focus on computing products of
ring elements (or negacyclic convolutions of polynomials for our ring choise).
Let (b, a) by a RLWE ciphertext such that b− a · s = e, where e is small. Denote

(b′, a′) = (Mul(c, b),Mul(a, c))

= (b · c+ r1, a · c+ r2),

where r1 and r2 is the numerical error introduce by the multiplication algorithm
Mul. Then we can see that the phase b′ − a′ · s = e − r2 · s + r1. We obtain an
additional error which in�nity norm is

||r2 · s+ r1|| ≤ NB(Q, c) · (||s||∞ + 1),

where ||r1||∞, ||r1||∞ < B(Q, c) and B(Q, c) being an error function determined
by the modulus Q and the polynomial c. If the external product is implemented
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using such errorenous multiplication algorithm then we need to add 2ℓbr · N ·
B(Q, c) · (||s||∞ +1) to the variance σ1 assuming that the error function B(Q, c)
is modeled by a discrete Gaussian. Consequently we need to update the bound
on σout on the cout error of the bootstrapping algorithm as follows. For ver = det
we have √

2n · ℓbr ·N · (σ2
br · B(G

−1
det(., Lbr)) +B(Q, c) · (||s||∞ + 1)),

and for ver = simul we have√
2n · ℓbr ·N · (σ2

br · B(G
−1
simul(., Lbr;σx)) + ·B(Q, c) · (||s||∞ + 1)) + ℓR · σ2

R · σ2
rand

.

B Circuit Privacy for FHEW-style Blind Rotation

We recall the FHEW blind rotation algorithm [29] at Figure 6. Theorem 3 gives
the distribution of the blind rotation when we plug the FHEW blind rotation
algorithm into the bootstrapping procedure from Figure 3, instead of the TFHE
blind rotation algorithm from Figure 2. We highlight the di�erences between

Theorem 1 and Theorem 3 with a red box .

Theorem 3 (Distribution of the Bootstrap with FHEW-Style Blind
Rotation). Let br be the blind rotation key, arot ∈ RQ a rotation polynomial,
and c ∈ LWEσ(s,m) a LWE sample as de�ned in the Bootstrap algorithm in
Figure 2. Assume that arot is such that f(m) = (arot ·XPhase(cin))[1] where cin is
the LWE sample obtained at step 2 of the Bootstrap algorithm. Let cout be the
LWE sample returned by the Bootstrap algorithm for ver = simul and Gaussian
parameters σrand and σx where the Gaussian sampling algorithm G−1

simul is as in
Lemma 1. Assume that

σrand ≥ max
(
4 ·

(
(1− γ)(2ϵ)2

)−1/ℓR
,
√
1 +BR ·max

(
||qL,Q||,

√
L2R + 1

)
· Cγ,ℓR

)
and

σx ≥
√

1 +Bbr ·max
(
||qL,Q||,

√
L2br + 1

)
· Cδ,2·n·ℓFHEW·N ·ℓbr ,

where Bbr and BR are bounds on the in�nity norm of the noise terms in the
blind rotation key br and the masking vector v. Then we have

∆(cout, cfresh) ≤ max
(
ϵ+ 2γ, 2δ

)
,

where cfresh = [afresh, bfresh], bfresh = ⟨afresh, s′⟩ + f(m) + erand + eout, erand ←$

DZ,σrand·
√

1+ℓRσ2
R

, and eout ←$ DZ,σ
x
√

1+2nℓFHEWNσbr
.

Proof (Sketch). The proof is nearly the same as the proof for Theorem 1. The
di�erence is that the FHEW blind rotation consists of a sequence of external
products, whereas the TFHE algorithm consists of a sequence of MUX gates.
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BRKeyGen(σbr, LFHEW, s, s):

Input:

An error distribution σbr.

A decomposition base LFHEW, where ℓFHEW = ⌈logLFHEW 2 ·N⌉.
A RLWE secret key s ∈ RQ.

A LWE secret key s ∈ Zn
t .

1 : For i ∈ [n], v ∈ [0, LFHEW − 1] and j ∈ [ℓFHEW]

2 : Set br[i, j, v] = RGSWσbr(s, X
v·s[i]·Lj−1

FHEW).

3 : Output br ∈ RGSWσbr(s, .)
n×ℓFHEW×LFHEW .

BlindRotatever(br, arot, c;σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n×ℓFHEW×LFHEW .

An rotation polynomial arot ∈ RQ.

A ciphertext c ∈ LWEσ,n,2N (s, .).

[If simul] A Gaussian param. σx.

1 : Let c = [b,a] ∈ Zn+1
2N .

2 : Set cacc,0 ← [arot ·Xb, 0] ∈ R2
Q

3 : Let V← G−1(s) ∈ Zn×ℓFHEW
LFHEW

.

4 : For i ∈ [n]:

5 : For j ∈ [ℓFHEW]:

6 : cacc,ℓFHEW·(i−1)+j−1 ← extProd(br[i, j,V[i, j]], cacc,ℓFHEW·(i−1)+j−2;σx).

7 : Output cacc,n·ℓFHEW ∈ R2
Q.

Fig. 6. FHEW-style Blind Rotation and its Setup.
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Thereby, for TFHE, an important part of the proof is to show that after the
sequence of MUX gates, the error term is in the form as given by Equation 2.
For the FHEW algorithm, we have that the error is already in the required form,
which follows from Equation 1 in Section 4. In particular, we have

Error(cacc) = Error(cacc,ℓFHEW·n−1) =

n∑
i=1

ℓFHEW∑
j=1

êi,j ·X−
∑n

k=i

∑ℓFHEW
l=j V[k,l]·s[k]·Ll−1

FHEW .

To summarize, the error term after FHEW blind rotation and extraction is

Error(cext) =
n∑

i=1

ℓFHEW∑
j=1

2ℓFHEW∑
k=1

N∑
l=1

ei,j,k[l] · xi,j,k[l].

The di�erence with TFHE is the number of external products. The rest of the
proof follows the same hybrids as in the proof of Theorem 1.

C Additional Preliminaries

In this section we recall some useful lemmas.

Lemma 12 (Smudging Lemma [9]). Let B1 and B2 be two be positive inte-
gers and let e1 ∈ [−B1, B1] be a �xed integer. Let e2 ←$ [−B2, B2] be chosen
uniformly at random. Then the statistical distance between e2 and e2 + e1 is

∆(e2, e2 + e1) = B1/B2.

Lemma 13 (Lemma 2.3 from [30]). Let δ ∈ [0, 1] and f : S → S be a
randomized function such that ∆(f(a), f(b)) ≤ δ holds for all a, b ∈ S. Then

∀k ≤ 0,∀a, b ∈ S, ∆(fk(a), fk(b)) ≤ δk,

where fk denotes composing the function f k-times.

C.1 Gaussian Sampling Algorithms

We recall the Gaussian sampling algorithm form [32] on Figure 8. For complete-
ness, we also recall the Gaussian sampling algorithm from [56] on Figure 7 that
is specialized for modulus in the form Q = Lℓ. We recall only the speci�ca-
tion for sampling given a one-dimensional integer target. Remind that we use
the sampling algorithm separately on every coe�cient when given as input a
polynomial.

Note that for the special case modulus, the standard deviation can be bounded
by L · Cϵ,ℓ which is much smaller than for the general case of Q < Lℓ. Our cor-
rectness estimation scripts take all the decomposition algorithms into account.
In practice, however, a modulus of the form Q = Lℓ forces us to implement
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G−1
simul(a, L, σx):

Input:

Integers a ∈ ZQ and L s.t. Q = Lℓ where ℓ ∈ N.
A Gaussian parameter σx.

1 : For each j ∈ [0, ℓ− 1]:

2 : x[j] = DLZ+a,σx .

3 : a← (a− x[i][j])/L.

4 : Output x.

Fig. 7. Gaussian Sampling Algorithm [56].

negacyclic convolution of polynomials with fast Fourier transforms on �oating
point arithmetic. As discussed in Section 5, we found it infeasible to instantiate
the scheme such that no numerical errors are induced by ring multiplications.

The algorithm on Figure 8 takes additionally the following precomputed
vectors as input. The vector l is such that l[1]2 = L(1 + 1/ℓ) and l[i]2 = L(1 +
1/(ℓ − 1)). The vector h is such that h[1] = 0 and h[i + 1]2 = L(1 + 1/(ℓ − 1))
for i ∈ [2, ℓ]. Finally, we assume that any vector at index 0 and ℓ + 1 is set to
zero. For more details on the correctness of the Gaussian sampling algorithm for
any Q < Lℓ we refer to [32]. furthermore, we refer to [56] for the analysis of the
Gaussian sampling algorithm on Figure 7 for the special case Q = Lℓ.
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G−1
simul(a, L, σx):

Input:

Integers a ∈ RQ and L s.t. Q = Lℓ, and a Gaussian parameter σx.

1 : Set q← G−1
det (Q, L) and u← G−1

det (a, L).

2 : σ = σx/(L+ 1).

3 : p← Perturb(σ, σx).

4 : For each i ∈ [ℓ]

5 : c[i]← (c[i− 1]− u[i]− p[i])/L.

6 : z← SampleD(σ, c, σx).

7 : For each i ∈ [ℓ− 1]

8 : t[i]← L · z[i]− z[i− 1] + q[i] · z[ℓ− i] + u[i].

9 : t[ℓ]← q[ℓ] · z[ℓ]− z[ℓ− 1] + u[ℓ].

10 : Return t.

SampleD(σ, c, σx):

Input:

Gaussian parameters σ and σx, and a vector c ∈ Rℓ.

1 : z[ℓ]← ⌊−c[ℓ]/d[ℓ]⌋.
2 : z[ℓ]← z[ℓ] + SampleZt(σ/d[ℓ], ⌊−c[ℓ]/d[ℓ]⌋[0,1), σx).

3 : c← c− z[ℓ] · d.
4 : For all i ∈ [ℓ− 1].

5 : z[i]← ⌊−c[i]⌋+ SampleZt(σ, ⌊−c[i]⌉[0,1), σx).

6 : Return z.

Perturb(σ, σx):

Input:

A Gaussian parameters σ and σx.

1 : β ← 0.

2 : For i in [ℓ]:

3 : c← β/l[i] and σ[i]← σ/l[i]

4 : z← ⌊c[i]⌋+ SampleZt(σ[i], ⌊c[i]⌉[0,1), σx).

5 : β ← −z[i]h[i].
6 : p[1]← (2L+ 1)z[1] + Lz[1].

7 : For i in [2, ℓ]:

8 : p← L(z[i− 1] + 2z[i] + [i+ 1]).

9 : Return p.

Fig. 8. Gaussian Sampling Algorithm [32] for Q < Lℓ. We denote ⌊c⌉[0,1) = c − ⌊c⌋.
The algorithm SampleZt(σ, c, σmax) is any Gaussian sampling algorithm that samples
over Z ∪ [c− t · σmax, c+ t · σmax] with mean c. We assume


