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Abstract
Secure aggregation enables a server to learn the sum of client-
held vectors in a privacy-preserving way, and has been suc-
cessfully applied to distributed statistical analysis and ma-
chine learning. In this paper, we both introduce a more effi-
cient secure aggregation construction and extend secure ag-
gregation by enabling input validation, in which the server
can check that clients’ inputs satisfy required constraints such
as L0, L2, and L∞ bounds. This prevents malicious clients
from gaining disproportionate influence on the computed ag-
gregated statistics or machine learning model.

Our new secure aggregation protocol improves the compu-
tational efficiency of the state-of-the-art protocol of Bell et
al. (CCS 2020) both asymptotically and concretely: we show
via experimental evaluation that it results in 2-8X speedups
in client computation in practical scenarios. Likewise, our
extended protocol with input validation improves on prior
work by more than 30X in terms of client communication
(with comparable computation costs). Compared to the base
protocols without input validation, the extended protocols
incur only 0.1X additional communication, and can process
binary indicator vectors of length 1M, or 16-bit dense vectors
of length 250K, in under 80s of computation per client.

1 Introduction

Single-server secure aggregation, which enables a server to
learn the sum of client-held vectors in a privacy-preserving
way, can be used for the secure computation of distributed
histograms or for averaging model updates in federated learn-
ing systems. As some concrete examples, it supports crypto-
graphic protocols for the distributed computation of private lo-
cation heatmaps [6], recommendation systems [30], and time
series analysis [37], and is also used in large-scale real-world
deployments for predictive typing and selection [1, 2, 24].

In the single-server setting, a powerful server talks to a
large number of (resource-constrained) clients with limited
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connectivity. Along with limited bandwidth, the latter consti-
tutes a central challenge in production systems [8, 24]. The
server might be corrupted and even collude with a subset
of the clients. This threat model strikes a good balance be-
tween trust and efficiency for large-scale distributed com-
putation, and is used by several existing aggregation proto-
cols [7, 9, 30, 34, 35, 37, 39] and more general results [5, 14].

To achieve acceptable levels of accuracy and privacy, the
minimum number of clients contributing to an aggregation
ranges between 100 and 10,000 [24], depending on the appli-
cation, with larger numbers resulting in better privacy or better
trade-offs between privacy and accuracy. On the other hand,
input vector sizes correspond to model sizes or histogram
sketches, so lengths are easily in the range of hundred of thou-
sands or millions. Therefore, a secure aggregation protocol
suitable for practical applications must be scalable in terms
of being able to tolerate large inputs and a large number of
clients, and dropout-robust in terms of tolerating a relatively
high fraction of clients that abort during the protocol exe-
cution, e.g. due to poor network connectivity. While client
computation is a natural concern addressed in several previ-
ous works, client bandwidth consumption (both in download
and upload) is often a determining factor in practice [24].
Achieving both practical computational and communication
efficiency is the main focus of this work.

Privacy-preserving input validation. Another important
aspect crucial for deploying secure aggregation in practice,
beyond robustness and scalability, is correctness in the face
of corrupted clients. This corresponds to enhancing protocols
to incorporate defenses against malicious clients who seek to
bias the aggregate data. In the machine learning setting, this
sort of malicious behavior is referred as poisoning attacks,
where the goal of the attacker(s) is to prevent the global model
from converging, or back-door attacks, where the goal is to
impose specific behavior on the final model [24]. Effective
(and practical) defenses involve limiting the norm of client
contributions to bound the influence of malicious clients [36,
41]. Analogously, in statistics applications such as frequency
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counting, malicious clients should be prevented from having
a disproportionate influence on the output, e.g. contributing
a value other than 1 to a histogram bucket or contributing to
a large number of buckets. This corresponds to a k-hotness
check (i.e. an L0 bound), on the input vectors of clients.

To implement the above defenses, the server can perform
input validation on the data sent by clients, relying on zero-
knowledge proofs to preserve input privacy. Crucially, this
must be done without requiring significant client computation.
Input validation comes in different forms, with the simplest
method providing only detection of malicious client behavior
(but still having it cause the protocol to abort), and the most
advanced providing not only identification of misbehaving
clients but also on-the-fly removal of their contributions from
the final aggregate statistics.

1.1 Our Contributions

We introduce and evaluate three protocols in this paper:
RLWE-SecAgg, ACORN-detect, and ACORN-robust. Their
security and efficiency properties, as well as comparison with
existing approaches, are presented in Table 1.

Our first contribution is RLWE-SecAgg, a new secure ag-
gregation protocol based on lattice cryptography that im-
proves the state of the art protocol due to Bell et al. [7] in
terms of both concrete and asymptotic efficiency. More pre-
cisely, it retains the low communication of this protocol but
achieves optimal computational costs.

Our second contribution includes protocol variants
ACORN-detect and ACORN-robust with input validation
based on zero-knowledge proofs that are practical in terms of
both computation and communication. For example, in under
80s computation, a client running ACORN-detect in a stan-
dard laptop can (a) show k-hotness of a binary input of length
1M, or (b) show that a dense vector of length 250K has L∞

norm bounded by 216. For shorter vector lengths, i.e., in the
thousands, the client’s runtime is just a few seconds. In terms
of communication, the overhead of ACORN-detect over basic
(non-validated) secure aggregation is roughly 0.1X. This is in
contrast with previous works [13, 15] with double-digit factor
overheads (see Table 1 for concrete numbers). To enable this,
a core algorithmic ingredient in our solution, of potential inde-
pendent interest, is a new zero-knowledge construction with
logarithmic proof size for proving an L∞ bound on a private
vector (committed to in a constant-size commmitment).

In our evaluation of these protocols, we consider two sce-
narios: analytics and learning. The former corresponds to the
secure computation of a size-` histogram with inputs from
n = 104 devices, where the protocol ensures that each clients
contributes no more than once to a bounded number of buck-
ets. The latter corresponds to a federated learning application,
where the goal is to average length-` model updates from
n = 500 devices, while showing a bound on the norm of each
client’s input. We experiment with values of ` up to a million,

and show that our protocols remain practical in that range.

RLWE-SecAgg: Secure aggregation from (R)LWE. As
a starting point, we formulate a generalization of the Bell et
al. secure aggregation protocol [7], which we refer to as PRG-
SecAgg. Our generalized protocol recovers the original PRG-
SecAgg construction if we instantiate it using a PRG-based
encoding of the input, but we also present a new instantiation—
RLWE-SecAgg—that uses a lattice-based encoding. This con-
struction reduces client and server computation costs, both
asymptotically and in terms of concrete efficiency. In more
detail, for n clients and length-` input vectors, PRG-SecAgg
requires clients to do O(` logn) work and the server to do
O(n` logn) work. In RLWE-SecAgg these costs improve to
O(`+ logn) and O(n(`+ logn)), respectively. This means
that for logn≤ `, which is the case in all known applications,
our new protocol’s client computation and communication
costs are O(`), which is optimal in that it matches the insecure
baseline where clients just send their data.

ACORN: Practical private input validation. We propose
secure aggregation protocols that support two types of in-
put validation: our basic construction, ACORN-detect, sup-
ports detection of malicious client behavior, while a more
advanced construction, ACORN-robust, provides robustness
to misbehaving clients, as it has the ability to identify them
and adaptively exclude their inputs from the final sum.

Our protocols extend the generalized SecAgg protocol and
thus can be instantiated with both PRG-SecAgg and RLWE-
SecAgg. One complicating factor is that, in the SecAgg pro-
tocol, clients encode their inputs using pairwise correlated
keys. This design decision is justified by its communication
efficiency [9], as the correlated randomness can be computed
in an input-independent way using constant-sized seeds. Pre-
vious works like EIFFeL [15] and RoFL [13] use alternative
underlying aggregation schemes (with quadratic and linear
dependence in the number of clients, see Table 1) that result
in much higher communication than ACORN.

A consequence of the approach based on correlated keys
is that enforcing correctness becomes complex: clients must
individually prove a norm bound on the input being encoded
but collectively prove that the keys used in the encoding step
of the protocol are correctly correlated. This latter property
would be guaranteed if each client proved individually that it
formed its key honestly, but this would be expensive. Instead,
in ACORN-detect we use a distributed proof that does not re-
quire clients to interact among themselves. In ACORN-robust,
we instead require neighboring clients to form identical com-
mitments to their pairwise shared masks. As long as one of
the pair is honest, the server can thus identify a mismatch and
exclude the cheating client. This sort of client-aided verifica-
tion is efficient, but does not work if two malicious clients are
neighbors. We thus require clients to commit to shares of their
correlated randomness before knowing who their neighbors
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Clear
Bell et al.

[7]
RLWE-SecAgg

(Sec. 3)
RoFL

[13]
EIFFeL

[15]
ACORN-detect

(Sec. 4)
ACORN-robust

(Sec. 4)

Client communication ` `+ log(n) `+ log(n) `+n `n2 `+ log(n) `+ log2(n)

n ` γ = δ

102 104 0.05 31KB 45KB 45KB >2MB*† 94MB 47KB 365KB
103 218 0.05 705KB 1030KB 1111KB >51MB† 240GB* 1032KB 1350KB
103 218 0.33 705KB 1062KB 1144KB >51MB† N/A 1064KB 14MB

Client computation ` ` log(n) `+ log(n) `n `n2 ` log(n) ` log(n)+ log2(n)

Secure against

server & up to γn clients #   G#   G#
up to n clients X X X X × X X

Input validation X × × X X X X

Robustness

δn dropouts X X X X X X X
δn invalid inputs X × × × X × X

Table 1: The concrete communication, security properties, and communication and computation asymptotics of various secure
aggregation algorithms (Big Os are omitted for brevity). The concrete rows are all based on proving an L∞ bound of 232/n, with
security against a semi-honest server and malicious clients. The bottom rows show which of the approaches protect client inputs,
validate client inputs, function in the presence of (limited) dropouts, and function in the presence of (limited) malicious clients.
*Values extrapolated via asymptotics from others in the column via asymptotics. † RoFL links to Bonawitz et al. for how to agree
on a sharing of zero but don’t provide details of how to use this, so these communication statements don’t include that part of the
cost (which is likely only a small fraction of the total cost). By G# and  we denote that the protocol provides semi-honest and
malicious security, respectively.

will be, and also need to add a logarithm number of rounds to
recursively perform this exclusion.

Succinct ZK proofs of bounded norm. Besides using an
appropriate underlying SecAgg protocol, an important tech-
nique to achieve efficient communication is ciphertext pack-
ing: encoding several plaintext elements in a single ciphertext.
While this keeps ciphertext expansion low even when working
in a large group, it complicates the client’s proof of correct
encoding, as it needs to show an L∞ bound for correctness
of the (linear) packing function. For this we rely on Bullet-
proofs [12], a discrete log-based zero-knowledge proof system
with logarithmic proof size. Using Bulletproofs to prove a
bound on each entry of the input vector (as in RoFL [13])
results in linear communication, and moreover this technique
is not compatible with ciphertext packing. Instead we show
how the recent techniques by Gentry et al. [20] for approxi-
mate proofs of L∞ bounds via random projections, combined
with known tricks for range proofs [22], allow us to reduce
our correct encoding proof to a single linear constraint that
can be proved using Bulletproofs. Moreover, verification of
multiple of such proofs can be batched, which is crucial for
our protocol to scale to large cohort sizes.

1.2 Related Work

There are several well-known works on verifiable secure ag-
gregation in the two-server or multi-server models [3, 10, 16],
but we focus our discussion on the single-server trust model.

Stevens et al. perform differentially private secure aggre-
gation (without input validation) using an LWE-based proto-
col [40]. This work is similar to our first contribution, RLWE-
SecAgg. However, they overlook a subtlety in the security of
their scheme, claiming that “[a secure aggregation of keys]
reveals nothing about their individual [key] values.” This is
untrue, because the output itself conveys information even if
computed securely. Our security proof addresses this issue.

Burkhalter et al. [13] and Chowdhury et al. [15] introduce
schemes for secure aggregation with input validation called
RoFL and EIFFel, respectively. RoFL requires each client
to send individual commitments to each vector entry to the
server. They report a 48x increase in required communication
(to 51MB) compared to plaintext submission of vectors of
length 262,000, when proving a uniform bound. That 48x
increase is without the plaintext encoding taking advantage of
compression available due to the inputs being bounded. EIF-
FeL shares the computation amongst the clients, using them
to replace the servers in Prio [16]. This allows them to deal
with a constant fraction of malicious clients and dropouts.
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However, their communication scales quadratically in the
number of clients and linearly in length of the vector. Thus
even for a vector of length 104 with 100 clients they report
94MB of communication. This is about three orders of mag-
nitude greater than the cost in the clear. EIFFeL and RoFL
suffer from the difficulties of offering input validation without
blowing up communication, which is one of the focus of our
contribution. In Table 1 we offer a detailed comparison in
terms of both asymptotic and concrete efficiency

Karakoç et. al. [25] also provide secure aggregation with
range validation using an oblivious programmable pseudoran-
dom function. They describe this work as a proof of concept
and provide experiments only for vectors of length 16 due to
the currently prohibitive computational costs.

2 Preliminaries

We use the standard simulation-based formalism [21, 27] in
our security proofs. By ≈σ,λ we denote indistinguishability
with computational parameter λ and statistical parameter σ.
We denote by x← χ sampling according to a distribution χ. If
X is a finite set, we denote by x← X uniform sampling from
X . We assume key agreement, authenticated encryption, and
signature primitives, which we denote as KA, Eauth, and Sig.

2.1 Setting and Threat Model
We consider n clients 1, . . . ,n, each holding a private vector
xi ∈ Z`

t , and a server with communication channels estab-
lished with all clients. The goal is for the server to obtain the
sum of all client vectors (∑n

i xi), with robustness to a certain
fraction of client dropouts. To make this concrete, the func-
tionality is parameterized by a maximum fraction of dropouts
δ ∈ [0,1], defined as follows:

f (x1, . . . ,xn) =

{
∑i∈[n]\D xi if |D| ≤ δn
⊥ otherwise

(1)

where D ⊆ [n] is the set of clients that dropped out during
the protocol execution and the sum happens in Z`

t . We aim to
withstand an adversary consisting of a coalition of γn clients,
for γ∈ [0,1], and possibly also colluding with the server. As in
previous works [7, 9], we assume that corrupt clients are fully
malicious. For RLWE-SecAgg and ACORN-detect, we also
assume the server is fully malicious,1 but for ACORN-robust
we prove security only in the case of a semi-honest server.

2.2 Lattices and Polynomial Rings
A lattice is a discrete subgroup Λ⊂ RN , and it can be repre-
sented as the set of all integer combinations of a basis B such

1We technically assume that the server behaves semi-honestly in a key
distribution phase but otherwise maliciously, which is implied by assuming a
fully malicious server with a PKI.

that Λ=BZN . We use the cyclotomic ring R=Z[X ]/(XN +1)
for a power-of-two N, and write Rq = Z[X ]/(q,XN + 1)
for the residual ring of R modulo q. The cofficient em-
bedding of any polynomial a = ∑

N−1
i=0 aiX i ∈ R is the vec-

tor (a0,a1, . . . ,aN−1), and we define the L∞ norms on a as
‖a‖∞ = ‖(a0,a1, . . . ,aN−1)‖∞ = maxi |ai|. As a convention,
we use bold a to denote the coefficient embedding of a poly-
nomial a ∈ R. We also define the negacyclic matrix represen-
tation of a ∈ R as

ϕ(a) =


a0 −aN−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
aN−1 aN−2 · · · a0

 ∈ ZN×N .

We can naturally extend the map ϕ to vectors a over R such
that ϕ(a) is a matrix produced by vertically concatenating
ϕ(ai) for all ai ∈ a. Without loss of generality, since the prod-
uct of two polynomials a,b∈ R has the coefficient embedding
A ·b for A = ϕ(a), we represent a ·b as a matrix-vector prod-
uct A ·b. When q = 1 (mod 2N), this computation can be
done more efficiently via Number Theoretic Transformation
(NTT) than a naïve matrix-vector multiplication.

2.3 Ring LWE and Encryption
The ring learning-with-errors (RLWE) assumption [29], pa-
rameterized by a ring Rq and distributions χs,χe over R, states
that for a secret s← χs the distribution {(a,as+ e) ∈ R2

q |
a← Rq,e← χe} is pseudorandom. As we sometimes work
with coefficient embedding of polynomials, we can rewrite a
RLWE sample as (A,As+ e) for s← χs ⊆ ZN

q , a public ma-
trix A = ϕ(a) ∈ ZN×N

q for a← Rq, and an error e← χe ⊆ ZN .
To encrypt a plaintext message x ∈ ZN

T , we can compute

Enc(s,x) = (A,As+T · e+x mod q), (2)

and decrypt using Dec(s,(A,y))= (y−As) mod T . When the
plaintext modulus T is coprime to q, a sample (a,as+T · e)
with a← Rq and e← χe is indistinguishable from uniform
under the RLWE assumption. In our protocol we treat A as
a public parameter and omit it from the ciphertext. Two im-
portant properties that we use in our protocol are key ho-
momorphism and message homomorphism, i.e. (informally)
Enc(s1,x1)+Enc(s2,x2) = Enc(s1 + s2,x1 +x2).

2.4 Commitment and Zero-Knowledge Proofs
Let G be a cyclic group of order q. The vector Pedersen com-
mitment of v ∈ Zn

q using commitment keys g0,g1, . . . ,gn← G

and randomness r ∈ Zq is C = gr
0 ∏

n
i=1 gvi

i ∈ G, and we de-
note the commitment algorithm using the notation com =
Commit(v;r). It is perfectly hiding and computationally bind-
ing under the discrete logarithm assumption. We build our
zero-knowledge proofs using Bulletproofs [12], which we
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described in more detail in Section 5. Bulletproofs satisfies
zero knowledge, meaning a simulator without knowledge of
a witness can produce proofs that are indistinguishable from
honest ones, and knowledge soundness, meaning it is possible
to extract a valid witness from any proof that verifies. We
describe our proof systems as interactive, but make them non-
interactive via the Fiat-Shamir heuristic [18], which means
we operate in the random oracle model.

3 Generalized Secure Aggregation

In this section we present a generalized version of the secure
aggregation protocol of Bell et al. [7] (SecAgg), where we
abstract the method used by each party to hide its input as an
encoding scheme (Encode,Decode). This encoding scheme
should be additively homomorphic in both keys and values,
meaning ∑iEncode(ski,xi) = Encode(∑i ski,∑i xi), and thus
Decode(∑i ski,∑iEncode(ski,xi)) = ∑i xi.

A simplified version of SecAgg is in Figure 1, and a full
formal specification is in Algorithm 5 (in the appendix). This
also contains the additional interactions needed to support
input verification, which we ignore for now but describe in
the next section. We then provide two examples of how this
encoding can be instantiated: the first allows us to recover
the original Bell et al. PRG-SecAgg construction, while the
second provides a more efficient construction, RLWE-SecAgg
(as we confirm experimentally in Section 6).

Commitments, distributed graph generation, and seed
sharing. At heart, SecAgg consists of two interactions be-
tween a set of clients and a server. In the first, ShareSeeds,
each client i takes as input some randomness and learns four
pieces of information: (1) a pairwise seed seedi, j that it shares
with each neighbor j in some defined communication graph,
(2) a self seed seedi, and sets of shares (3) sharesi,D , corre-
sponding to shares of these different seeds that this client
should provide to the server for neighbors that drop out and
(4) sharesi,S that the client should provide to the server for
neighbors that do not. In a slight abuse of notation, we write
this as (ε,{{seedi, j} j∈N(i),seedi,sharesi,D ,sharesi,S}i) ←
ShareSeeds(ε,{randi}i), where the first input (and output)
denote the input (and output) of the server, which in this pro-
tocol should learn nothing, and the remaining sets denote the
individual inputs (and outputs) of the clients. Some of the
main challenges of this first protocol lie in ensuring that hon-
est clients do not have too many malicious neighbors in the
communication graph, and that seedi, j = seed j,i for all pairs
of honest neighbors i and j. This latter property is crucial in
ensuring that the derived masks cancel when masked inputs
are aggregated by the server.

Masking. Using the information learned in this first inter-
active protocol, client i can then mask its input xi using an

encoding key computed as

ski = si + ∑
j∈Ai, j<i

sij− ∑
j∈Ai,i< j

sij, (3)

where sij = F(seedi j), si = F(seedi) for a length-expanding
function F, and Ai are the neighbors that i believes to be
survivors at this step in the protocol. It then encodes its input
as yi = Encode(ski,Gxi), where G is a matrix that allows us
to pack multiple entries of xi into a single plaintext slot; we
discuss this in more detail below.

Dropout agreement and unmasking. If all clients are honest
and do not drop out, then all their pairwise masks cancel,
meaning ∑i ski = ∑i si. In this case, each client could just
provide their individual self mask si to the server at the end
of the protocol, who could then take advantage of the dual-
homomorphic property of the encoding scheme to compute
∑i xi = G−1(Decode(∑si,∑yi)). To account for clients who
drop out, however, the server must have a way to recover their
pairwise masks in order to cancel them out itself from the keys
of surviving clients (e.g., if a surviving client i used sij for a
dropped out client j in forming ski, there is no corresponding
sk j containing −sij to cancel out the masks “naturally”).

The second interactive protocol that SecAgg pro-
vides is thus ∑si,{Di,Si} ← RecoverAggKey(ε,
{sharesi,D ,sharesi,S}), which allows the server to re-
cover the aggregate key and thus compute the aggregated
input as described above. Intuitively, in this protocol each
client i sends a share of the self seed for each surviving
neighbor (in Si) and a share of the pairwise seed for each
dropped out neighbor (in Di), which allows the server to
recompute the mask and learn the aggregate encoding key. In
more detail, the server computes the aggregate key sk as

sk = ∑
i∈S

(si + ∑
j∈Di, j<i

sij− ∑
j∈Di,i< j

sij),

where si is reconstructed from the shares provided by the
neighbors of a surviving client i and sij is reconstructed from
the shares provided by i for dropped out neighbors j. Cru-
cially, this process requires clients and the server to agree
on the set of dropouts and survivors, as otherwise even hon-
est clients could inadvertently reveal information that would
allow the server to unmask an individual honest contribution.

3.1 PRG-SecAgg

We can recover the original PRG-SecAgg protocol [7] by
instantiating F as a seed-stretching PRG and the encoding
scheme as follows, for ski,xi,y ∈ Z`

q:

Encode(ski,xi) := ski +xi mod q

Decode(ski,y) := y− ski mod q
(4)

5



Public parameters: Vector length `, input domain X`, secret distribution
χs, and seed expansion function F : {0,1}λ 7→ supp(χs)

`

Client i’s input: xi ∈ X`

Server output: z ∈ X`

1. Using the server to send messages, clients engage in the ShareSeeds
protocol, with each surviving client i learning {seedi, j} j∈N(i), seedi,
sharesi,D , and sharesi,S . The server aborts if there are fewer than
(1−δ)n surviving clients.

2. Each surviving client i performs the following:
• Computes its packed encrypted input yi = Encode(ski,Gxi)

with key defined as ski = si +∑ j∈Ai , j<i si j−∑ j∈Ai ,i< j si j for
si j = F(seedi, j), si = F(seedi) (as in Equation 3).

• Forms commitments comsk,i and comx,i to its key and input
respectively.

• Computes proofs πEnc(ski ,xi), π0≤xi<t , and πvalid(xi) of encod-
ing, smallness, and validity.

• Sends to the server yi, comsk,i, comx,i, πEnc(ski ,xi), π0≤xi<t ,
πvalid(xi).

3. The server aborts if it receives fewer than (1− δ)n messages or if
any of the proofs fail to verify. Otherwise, the server and the clients
engage in the RecoverAggKey protocol, with the server taking as
input the global sets D and S of dropouts and survivors and each
client i taking as input its sets sharesi,D and sharesi,S and providing
the appropriate shares to the server according to the status of their
neighbors. At the end of the protocol the server learns the aggregate
key sk.

4. Each client, acting as a distributed prover, engages with the server
(acting as the verifier) in the distributed key correctness protocol. The
server aborts if the collective proof fails to verify.

5. The server outputs ∑i∈S xi as G−1(Decode(sk,∑i∈S yi)).

Figure 1: General SecAgg protocol with input verification.

3.2 RLWE-SecAgg

Our second SecAgg instantiation, RLWE-SecAgg, leverages
an encoding based on RLWE. In this case, the key expansion
algorithm samples a key from the appropriate RLWE secret
distribution χs and then generates the masks as RLWE sam-
ples using the expanded key. This combined process of key
sampling and mask generation is much more computationally
efficient than the key expansion in PRG-SecAgg.

Unlike PRG-SecAgg, this encoding requires a set of public
parameters: a polynomial ring R = Z[X ]/(XN + 1) and its
residual ring Rq = Z[X ]/(q,XN +1) for a modulus q, a plain-
text modulus T that is coprime to q, a plaintext dimension `, a
secret key distribution χs and an error distribution χe over R,
and a matrix A generated as discussed in Section 2.3. These
parameters can be distributed to the clients by the server or
through a public channel. They are used in the encoding and
decoding algorithms, defined as follows:

Encode(ski,xi) = yi := A · ski +T (e+ f)+xi mod q,

where e, f← χ
`/N
e . (5)

Decode(sk,y) := (y−A · sk mod q) mod T.

We present formal proofs of the correctness and security
of this encoding in Appendix A, but provide some intuition
for them here.

Correctness. To ensure that the obtained result is the sum of
the xi ∈ Zt over the integers we need that (i) the sum of errors
and messages does not overflow the ciphertext modulus q, and
(ii) the sum of the messages does not overflow the plaintext
modulus T . These result in the constraints 2nT be < q and
nt < T , where be is an L∞ bound on the error e← χe.

Security. It is tempting to claim that all we need for security
is to choose RLWE parameters in a way that ensures the indi-
vidual encodings yi of client contributions are pseudorandom
in isolation. However, the server gets more information than
just n independent RLWE ciphertexts, as it can also recover
∑i ei from ỹ = ∑yi. A common approach to eliminate leak-
age is to add a large noise to “drown” the error [19, Chapter
21], in a way analogous to how circuit privacy is achieved
in some (R)LWE-based homomorphic encryption schemes.
The resulting modulus q would be very large, however, which
hurts both computation and communication.

Instead, we argue in Appendix A that the encodings of all
clients’ inputs are indistinguishable from random values that
sum up to an encoding of the sum of all inputs. This property
can be established from the hardness of an RLWE variant,
Hint-RLWE, in which samples consist of standard RLWE pairs
(a,as+ e) ∈ R2

q and a “hint” e+ f , where f is sampled from
the same Gaussian distribution as e. The additional noise
term f allows us to gradually break the correlation among the
shared secrets used in the ciphertexts of neighboring clients,
via a carefully constructed hybrid argument (see Lemma 4 for
details). Lee et al. [26] showed that the Hint-RLWE problem
with error size σ is as hard as the standard RLWE with error
size (1/

√
2)σ. The error terms in our RLWE encodings are

thus only slightly larger than standard RLWE encryption,
avoiding the need for noise flooding.

Ciphertext expansion. PRG-SecAgg has very limited ci-
phertext expansion, which is optimal in the sense that the
modulus q can be chosen to be exactly tn, to ensure that the
result of adding all n values fits in the modulus. This results
in only a 1+ log2 n

log2 t factor overhead with respect to an insecure
solution where clients just send their values. A naïve encoding
in RLWE-SecAgg that puts each entry of xi in a polynomial
coefficient would result in a 1+ log2 q

log2 t factor overhead. This
can be quite wasteful, as q needs to be large (≥ 246) for se-
curity. However, we can use a larger plaintext modulus T to
pack multiple entries of xi in a plaintext slot.
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In more detail, let G be the gadget matrix G =
(1, t, t2, . . . , t p−1)⊗ Il/p for p = blogT/ log(nt)c. Then by
computing µi = Gxi ∈ [T ]l/p, we effectively pack every p
entries of the input xi into a single plaintext slot of µi while
ensuring that the result of the packed sum fits in T . To decode
from a packed slot, one can apply a digit extraction algorithm
for base t, denoted by G−1, which can be naturally extended
to a packed vector. Importantly, this packing operations is
linear, and thus it can be incorporated into the input validity
constraints we consider in the next section.

4 Adding Input Validation

In this section we present ACORN, an extension to the gener-
alized SecAgg protocol that allows for client input validation.
Specifically, we provide a way for the server to check that
the (hidden) inputs of clients satisfy some pre-defined no-
tion of validity and that their messages in the protocol have
been computed according to its specification. We first present
ACORN-detect, where the server can detect that misbehavior
has occurred but cannot attribute it to an individual client or
recover from it, and then present ACORN-robust, in which
the server can both identify misbehaving clients and remove
their contributions from the final sum.

To achieve this, as described below we require non-
interactive zero-knowledge proofs of vector smallness and
valid encoding, and an interactive proof for the correctness of
an aggregated key. We instantiate these primitives in Section 5
with efficient discrete log-based protocols.

4.1 Detecting Client Misbehavior

We present our summary protocol of ACORN-detect in Fig-
ure 1 and our detailed protocol in Figure 5, where the addi-
tional steps required for input validation are in red. Across
the entire protocol, we require a zero-knowledge proof of the
following relation R:

{
(x,w) | x = ((yi,comx,i,comsk,i)i∈S ,sk, t, `,G),w = (xi,ski,ri,si)i∈S ,

∀i ∈ S :
(
comx,i = Commit(xi;ri),comsk,i = Commit(ski;si),

yi = Encode(ski,Gxi),xi ∈ Z`
t ,valid(xi)

)
,∑

i∈S
ski = sk

}

We first observe that the witness for this relation is dis-
tributed among the clients, with each client i holding xi and
ski (and the relevant randomness) but being unaware of the
other inputs. All the conditions of the relation except the last
one, however, are on the individual components and thus each
client can prove them independently. This means forming

1. A proof πEnc(ski,xi) that yi = Encode(ski,Gxi), where
ski and xi are the values contained in the relevant com-
mitments.

2. A proof πvalid(xi) that valid(xi) holds.

3. A proof π0≤xi<t that xi ∈ Z`
t . This condition is needed to

prove that no wraparound happens modulo the plaintext
space, and thus that the packed sum can be decoded
using G−1.

These proofs and the two commitments comsk,i and comx,i
are sent to the server at the same time as the masked input yi.

With individual proofs for these individual constraints, the
only remaining requirement of R is that ∑i ski = sk. Clients
could prove this individually by proving that they formed ski
as specified by the protocol (Equation 3), but as the formation
of ski requires key agreements and applications of a length-
expanding function F this would be highly inefficient.

Instead, we have the clients prove collectively that ∑i ski =
sk, which is the minimal requirement needed for the server
to decode and recover the aggregated inputs. This is done by
having each client i provide a (partial) proof π

∑ski
i , which they

can do without interacting with other clients. These proofs
collectively demonstrate the correctness of the aggregated key
sk. Unlike the individual proofs, this proof cannot be made
non-interactive, so we instead consider it as an interaction
between each client and the server. In our summarized presen-
tation in Figure 1 we present this as a separate step (Step 4),
but in our detailed presentation in Figure 5 we show how
this protocol can be woven into the broader SecAgg protocol
without requiring any additional rounds of interaction.

Security. We formally prove the security of ACORN-detect,
following a standard simulation-based argument [21, 27], in
Appendix B. Briefly, security in the honest server case fol-
lows directly from the knowledge soundness of the proofs,
which gives the simulator the ability (acting as the server) to
extract the underlying inputs. Security in the malicious server
setting is largely orthogonal to the question of input valida-
tion, and thus our proof follows closely the one of Bell et
al. [7], with the simulator additionally relying on zero knowl-
edge to ensure that its interactions with the adversary are
indistinguishable from what it expects.

Efficiency. The asymptotic costs for the protocol, using the
instantiations in Section 5, are in Table 1. Step 1 requires
log(n) work per client, and is concretely very cheap. Client
costs are thus dominated by the following tasks in Step 2:
(1) encoding, i.e. running Encode and expanding seeds to
compute ski, (2) commitment generation, i.e. committing to
xi and ski, and (3) proof generation. The server’s work is
dominated by the analogous tasks: (1) proof verification in
Step 3 and (2) key recovery, i.e. computing sk, in Step 4.

In PRG-SecAgg, the encoding step corresponds to PRG
expansions (implemented with AES) and in RLWE-SecAgg,
it corresponds to the noisy linear transformation in Equa-
tion 5. As we show in Section 5, we use a discrete log-based
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proof system, and thus commitment generation boils down to
computing two Pedersen vector commitments (requiring two
length-` group multi-exponentiations), and proof generation
requires O(` log(`)) computation to produce a logarithmic
size proof.

4.2 Robustness in the Face of Misbehavior
We next present a protocol, ACORN-robust, that allows the
server to not only identify misbehaving clients, but also ex-
clude their input from the result on-the-fly. This property,
sometimes refereed to as guaranteed output delivery [23],
ensures in this context that as long as the number of cheating
clients stays below a given threshold α and no more than
(δ−α)n other clients drop out, an honest server is guaranteed
a valid output. We present and prove ACORN-robust secure
assuming a semi-honest server; an extension to a malicious
server seems possible, but we leave this as future work.

In ACORN-detect, clients proved the correctness of the ag-
gregated key by providing the minimal amount of information
needed to do so: each client committed to its overall secret
key rather than the pairwise masks or seeds used to form it.
This allowed the server to be convinced of the correctness
of the aggregate key, but not to identify which clients were
cheating if the proof failed.

ACORN-robust thus replaces this proof of aggregated key
correctness with a more fine-grained approach in which in-
stead of a commitment comsk,i, clients form commitments
comsij , comseedi, j , comsi , and comseedi to, respectively, their
pairwise masks sij and seeds seedi, j and self masks si and
seeds seedi. We see below how this allows honest clients to
support the server in verifying each of their neighbors’ masks,
but first confirm the effect this has on the “individual” proofs
used in ACORN-detect.

1. The proof of valid encoding πEnc(ski,xi) is still provided
with respect to the commitment comx,i as before, but
commitments comsi and {comsij} j∈Si replace the single
“monolithic” commitment comsk,i. However, the proof
does not change, as the server can obtain comsk,i by
combining the commitments to comsi and {comsij} j∈Si

according to the formula for ski (Equation 3).

2. The proof πvalid(xi) remains the same, with respect to
comx,i.

3. The proof π0≤xi<t also remains the same, with respect
to comx,i.

Whereas ACORN-detect could use the Bell et al. proto-
cols for ShareSeeds and RecoverAggKey as a black box,
ACORN-robust requires changing them. We thus summarize
these changes here, focusing on the way they allow the server
to robustly reconstruct the aggregated key; the formal protocol
descriptions are in Appendix C.

ShareSeeds (Algorithm 2). Our new protocol variant pro-
vides three main guarantees:

Correct seed sharing. All neighbors of a client i receive a
correct sharing of seedi, j (resp. seedi), i.e. a sharing match-
ing comsij (resp. comseedi). We achieve this by switching
from Shamir secret sharing for pairwise seeds to Feldman’s
verifiable secret sharing (VSS) [17]. If a malicious client
does not correctly share a seed they are thus dropped by the
ShareSeeds protocol.

Seed-mask consistency, for honestly supervised pairwise
masks. ShareSeeds also ensures that the pairwise mask
sij used by neighbors i and j was correctly computed as
sij = F(seedi, j), as long as either i or j are honest. To do
this, client i generates seedi, j and sends it to j, encrypted un-
der j’s public key, along with a deterministic commitment
gseedi, j and a commitment comsij to sij that uses randomness
si, j derived from seedi, j. Client j can then decrypt to recover
seedi, j, expand it to recover both sji and si, j, and form its own
commitment comsji . It can then check that (1) seedi, j matches
the commitment sent by i and that (2) comsji = comsij (i.e.
that the commitments are identical). If either of these checks
fails, j can complain to the server by sending it the decryp-
tion key; this allows the server to rerun these steps, check the
inequalities to confirm that i misbehaved, and drop it.

Independence of supervised and inconsistent masks. The
previous guarantee does not ensure consistency of pairwise
masks if both i and j are malicious clients, as j can simply
not supervise i’s mask as prescribed. Therefore, it might be
the case that sij = F(seedi, j) does not hold after ShareSeeds,
but in that case both i and j must have misbehaved. The
RecoverAggKey protocol in ACORN-robust handles that
case by checking consistency after reconstruction, as we dis-
cuss below. To enable this, client i must commit to seedi,·
before it gets assigned to neighbor j, which is done at random.
Therefore, i’s decision to violate sij = F(seedi, j) is indepen-
dent of the fact that j is malicious.
ShareSeeds only handles seed-mask inconsistency for

pairwise masks sij, but this sort of inconsistency is also a
problem for the self-mask si. As we see below, however, an
inconsistency in a self-mask is analogous to an inconsistency
in a pairwise mask, given the guarantees of ShareSeeds de-
scribed above: whenever the server discovers an inconsistent
mask in the recovery phase, it also identifies a misbehaving
client and proceeds to drop it in an additional round. We
describe how this is done next.

RecoverAggKey (Algorithm 4). When it comes to recon-
structing the self masks si for surviving clients i, we consider
two cases: one in which the server is unable to reconstruct
seedi given the shares provided by i’s neighbors, and one
in which it can reconstruct but F(seedi) 6= si. Given com-
mitments and signatures that i provided in ShareSeeds, the
server can identify i as the only possible misbehaving client
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in either case and seek to retrospectively drop them from the
protocol. This requires one extra round, and is discussed later.

When it comes to reconstructing the pairwise masks sij,
we consider the same two cases: one in which reconstruction
fails and the one in which reconstruction succeeds but the
reconstructed seed is such that sij 6= F(seedi, j), i.e. inconsis-
tent with the corresponding committed mask. Luckily, we can
argue that the former case cannot happen because we assume
a sufficient threshold of honest clients (this follows from Bell
et al. [7]). We thus focus on the latter case: sij 6= F(seedi, j).

Recall that the server needs to reconstruct seedi, j to recover
sij because i dropped out but j did not. If sij 6= F(seedi, j), the
server can conclude that j is also dishonest thanks to the guar-
antees of ShareSeeds, and proceed to drop it.

Retrospectively dropping clients. In three cases discussed
above we need to drop a client i after it submits its masked
input. This involves reaching out to all neighbors j of i to ob-
tain shares to recover seedi, j. In doing so, however, the server
might discover that a neighbor j is dishonest and also needs to
be dropped, which requires another round. In this process, the
server uncovers all remaining inconsistent seed-mask pairs, i.e.
pairs such that sij 6= F(seedi, j), which necessarily correspond
to pairs of dishonest client i and j. Since the total number of
dishonest clients is γn = O(n), naïvely the adversary could
delay output delivery for O(n) rounds. This is exactly why we
require clients to commit to their seeds before being assigned
their neighbors, and in particular is the benefit of our guar-
anteed independence of supervised and inconsistent masks.
By doing this a corrupted client has at most constant proba-
bility of having another corrupted client as its neighbor, and
thus we can show via a random graphs argument that with
high probability the number of rounds required to exclude αn
clients is O(logα−1(n)). We discuss this in more detail below.

Security. We formally prove the security of ACORN-robust
in Appendix C.2. The proof for the honest server case is very
similar to the proof for ACORN-detect, with the main differ-
ence being that the server aborts only if there have been too
many dropouts (i.e., it does not abort just because proofs fail
to verify). The proof for the semi-honest server closely fol-
lows the proof by Bell et al. As expected, the main difference
with the detection-only case is that the ideal functionality for
ACORN-robust is slightly modified to account for the fact
that invalid inputs are dropped from the final sum.

Efficiency. We now discuss the overhead of ACORN-robust
on top of ACORN-detect. Asymptotic costs are in Table 1.

Additional commitments. As opposed to just committing to
sk, clients need to commit to self and pairwise masks, re-
sulting in k/2 additional length-` vector commitments in the
first step of the protocol, where k = O(logn) is the number
of neighbors. For reference, k ≤ 70 and k ≤ 150 are large
enough to provide statistical security σ = 40 up to n = 105,
for a semi-honest and malicious server, respectively.

Checking commitments. Recall that clients check commit-
ments for seed-mask consistency, and the server verifies incon-
sistencies. This is another k length-` multi-exponentiations
for each client and O(kn) for the server. These computations
can be batched, however, and can of course be avoided if
no inconsistent masks are found. It is cheaper than the first
step as long as the fraction of misbehaving clients is below a
third. It is possible to optimize the task of efficiently finding
inconsistent masks (i.e. identifying which m commitments
amongst n are bad), but as a rough bound it can be done with
O(m+ log(n)) multi-exponentiations. Each client must also
expand k+1 seeds.

Additional secret-sharing. There are k = O(logn) times as
many secrets to share as in the ACORN-detect case (i.e. O(k2)
shares rather than O(k)), but this is still independent of ` and
share generation is very efficient. The total communication is
thus still dominated by the masked input for even moderately
large values of `.

Round complexity. ACORN-detect takes five rounds, while
ACORN-robust takes six rounds if no inconsistent masks
are found. If they are, however, the total number of rounds
increases according to the number of rounds needed to retro-
spectively drop clients. We can bound this number of rounds
using the following theorem, which we prove in Appendix C.

Theorem 4.1. Consider an execution of ACORN-robust
where at most αn < n/3 clients misbehave, where α plus
the fraction of dropouts is less than δ. Then the probability
that ACORN-robust requires at least 6+ r rounds to finish is
bounded by negl(σ)+(αn/2+n/k)(

√
8α)r−1, where σ is a

statistical security parameter.

5 Zero-Knowledge Constructions

In this section we provide constructions of the zero-
knowledge proof required in ACORN (Figure 5). Specifically,
we instantiate proofs of aggregated keys, correct encoding,
input smallness, and input validity. For ACORN-detect, we
present the distributed proof of aggregated key correctness in
Appendix D.2, which is a variant of a Schnorr proof with an
additional step to ensure that the interactive protocol achieves
(full) zero knowledge. For ACORN-robust, this proof is inte-
grated into the protocol itself. For the latter three predicates,
we leverage the Bulletproofs proof system, which we present
before presenting our proofs for these individual predicates.

5.1 Inner Product Proofs

We build our zero-knowledge proofs using Bulletproofs [12].
In the context of this work, similarly to Gentry et al. [20], we
regard Bulletproofs as a zero-knowledge proof of knowledge
of vectors x,y ∈ Zn

q that satisfy an inner product constraint
〈x,y〉= a in an order-q group G, where a is a public scalar.
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At a high level, to prove 〈x,y〉= a the prover recursively
computes a new equation 〈x′,y′〉= a′ for vectors of half the
length, and computes commitments given a challenge sent
by the verifier. This requires both the prover and verifier to
compute new generators at each recursive step, with the prover
also computing new commitments to x′ and y′. In the non-
interactive variant compiled using the Fiat-Shamir heuristic
the generator computation can be unfolded, resulting in a
single multi-exponentiation of length 2n.

We state the concrete costs for Bulletproofs in terms of
multi-exponentiation operations, for which efficient sublin-
ear algorithms are known [32]. The full protocol details are
described by Gentry et al. [20, Section E.2], which uses the
Bulletproofs constructions for succinct range proofs and arith-
metic relations [12].

Lemma 1 ( [12, 20]). Let C ∈ G be a group element, and let
h ∈ G2,g ∈ G2n be sets of generators in G known to both the
prover and verifier. Bulletproofs allows the prover to prove
knowledge of vectors x,y ∈ Zn

q and randomness r ∈ Zq such

that C = hr
0h〈x,y〉1 ∏

n
i=1 gxi

i gyi
i+n. It satisfies perfect complete-

ness, statistical zero knowledge, and computational knowl-
edge soundness under the discrete logarithm assumption.

When compiled into a NIZK proof, the prover performs
6n+8(log2(n)+1) group exponentiations (computed as sev-
eral multi-exponentiations), and the verifier performs a sin-
gle multi-exponentiation of length 2(n+ log2(n)+3). More-
over, batched verification of m proofs requires a single multi-
exponentiation of length 2n+2+m log2(2n+4). The proof
size is 2logn+4 group elements.

5.2 Proofs of Smallness
We consider two variants of the problem of proving in zero
knowledge that xi ∈ [0, t − 1] for all i: the first is efficient
for t = 2, which is useful for applications that rely on binary
k-hot encodings, while the second works for arbitrary values
of t, which is useful in the learning setting and in our proof
of correct encoding. Due to space constraints, the proof for
t = 2 can be found in Appendix D.1.

To show that xi ∈ [a,b] it suffices to show that (xi−a)(b−
xi) is non-negative. We thus show that ci := xi(t−1−xi)≥ 0.
A common way to do this is to exhibit a decomposition of ci
into four squares. However, a useful optimization consists of
showing that c′i := 4ci +1≥ 0 [22]. These two conditions are
equivalent over the integers, but because c′i ≡ 1 mod 4 it can
be written as a sum of three squares, where the three squares
can be efficiently determined [33].

For convenience, we write c′i as 1+(t−1)2−(2xi−t+1)2.
The protocol thus proceeds by having the client prove that
c′i ≥ 0 for all i, by showing that it knows u,v,w such that

x′ ◦x′+u◦u+v◦v+w◦w = a (6)

holds over the integers, where x′ := 2 · x− (t − 1) · 1 and
a := (−(1+(t−1)2)) ·1 is public. The prover must also show

that these computations do not wrap around the modulus q,
which means showing that

‖x′|u|v|w‖∞ <
√

q/4 (7)

At this point it might seem that we’re going in circles, as
we reduced a range proof to two constraints, one of which is
itself a range proof. However, this second bound is very loose,
because

√
q/4� t. In our implementation of Bulletproofs we

have q> 2250, while we are interested in values of t for natural
datatypes, e.g. t = 216. Therefore we can take advantage of
approximate range proofs introduced by Gentry et al. [20] and
also used in [28], whose properties (assuming Fiat-Shamir)
are summarized in the following lemma.

Lemma 2 ( [20, Lemma 3.5]). Fix a security parameter λ.
Let z ∈ Z` be a vector such that ‖z‖∞ ≤ t, and let γ > 1 be
such that γ > 2500

√
`. There is a ZK proof system to show

‖z‖∞ ≤ γ · t by proving a single constraint 〈z|y,b〉= s given
vector commitments to z and y, where b ∈ Z`+λ

q is a public
vector, y ∈ [±γt/2(1+1/λ)]λ, and s ∈ Zq.

The requirement in Lemma 2 that
√

q/(4t) > 2500
√

4`
holds for Equation 7 as long as log2(q) > 2log2(2500) +
2log2(t) + log2(`) + 6, which combined with the fact that
q > 2250 means that even for t = 264 this approach can handle
vectors of length ` > 290 (well beyond realistic input sizes).

We can now describe our range proof protocol for large t.
Let h∈G and g∈G8`+λ be public generators in G. We denote
by Commit(h,g[i : i+ `−1];v) the vector Pedersen commit-
ment to v of length `, using generators h and gi, . . . ,gi+`−1.

1. The prover finds auxiliary vectors u,v,w such that Equa-
tion 6 holds and “double-commits” to z := x|u|v|w as
C1 := Commit(h,g[` : 4`];z) and C2 := Commit(h,g[4`+
1 : 8`];z). Let 〈z|y,b〉 = s be the constraint that proves
Equation 7 as in Lemma 2. Then the prover computes
Cy = Commit(h,g[8`+1 : 8`+λ];y) and sends C1, C2, and
Cy to the verifier.

2. The verifier sends random challenge scalars σ,τ,ρ ∈ Zq to
the prover. Let rx|ru|rv|rw = (σi−1)i∈[4`] and r= (τi−1)i∈[`]
be the corresponding challenge vectors.

3. The following constraint is equivalent to Equation 6, except
with probability bounded by (`+4)/q:

〈x′,x′ ◦ r〉+ 〈u,u◦ r〉+ 〈v,v◦ r〉+ 〈w,w◦ r〉= 〈a,r〉.

Instead of proving this directly, we use a trick from Gentry
et al. [20] to express it as

〈x′+ rx,(x′− rx)◦ r〉+ 〈u+ ru,(u− ru)◦ r〉 +
〈v+ rv,(v− rv)◦ r〉+ 〈w+ rw,(w− rw)◦ r〉= s,

where s = 〈a,r〉 − (‖rx‖2 + ‖ru‖2 + ‖rv‖2 + ‖rw‖2) is a
public value. This constraint can be rewritten as a single
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inner product 〈x̄|ū|v̄|w̄, x̄′|ū′|v̄′|w̄′〉 = a for some a ∈ Zq,
where x̄ := x+ rx and x̄′ := (x− rx) ◦ r, and analogously
for the rest. By proving these constraints against C1 and
C2, the prover is effectively showing that C1 and C2 are
commitments to the same vector z. Next, to incorporate the
constraint 〈z|y,b〉 = s that proves Equation 7, the prover
can replace z with z̄ := x̄|ū|v̄|w̄ and prove an equivalent con-
straint 〈z̄|y,b〉= a′, where a′ := s−〈b,rx|ru|rv|rw|0|y|〉.
At this point, the prover has the constraints
〈z̄, x̄′|ū′|v̄′|w̄′〉 = a and 〈z̄|y,b〉 = a′, which can be
merged into a single constraint using ρ, resulting in a
single inner product:

〈z̄|y, x̄′|ū′|v̄′|w̄′|ρb〉= a+ρa′. (8)

The prover and the verifier both obtain a commitment C′ to
z̄|y|x̄′|ū′|v̄′|w̄′|ρb from C1, C2 and Cy, which can be done
using only linear operations. The prover can then use Bul-
letproofs to prove the constraint in Equation 8.

In addition to using Bulletproofs, the above protocol re-
quires three length-8` multi-exponentiations by the prover and
verifier to compute C′ in step 3. As in the protocol for t = 2,
the prover and verifier also need to switch the generators to
match the commitment C′. The prover can again combine the
process of both switching generators and updating the com-
mitment with the analogous operations in the outer loop of
Bulletproofs, thus computing them almost for free. The only
remaining overhead is two multi-exponentiations of length 8`
for the verifier, but this overhead can be batched as it depends
on public (not proof-specific) generators.

For x ∈ Zt
`, the overall proof system π0≤x<t thus has the

costs stated in Lemma 1, using n = 8`+ λ, with two addi-
tional multi-exponentiations of length 8` for the verifier and
commitment cost (to vectors of total length 8`+λ with entries
in [t]) for the prover.

5.3 Proofs of Validity of Encoding
In all variants of the protocol, πEnc(sk,x) reduces to proving an
inner product constraint involving public packing matrix G ∈
Z ¯̀×`

q and masked input yi ∈Z
¯̀
q, and a private committed input

vector xi, for each client i. In the PRG-based ACORN-detect,
for example, we rely on the constraint yi = ski +Gxi for a
committed key ski ∈ Z ¯̀

q, while for the RLWE-based variant
we rely on the constraint yi = ski + eiT +Gkxi∧‖ei‖∞ < be

for committed key and error term ski,ei ∈ Z ¯̀
q.

In general, these required constraints can be written as a
single constraint 〈x|v1| · · · |vk|,b〉= a using Schwartz-Zippel
as in the smallness proofs in Section 5.2, and then using the
smallness proofs directly to prove that ‖ei‖∞ < be. Unlike for
the smallness proofs, these reductions to a single constraint do
not have any overhead (in terms of additional exponentiations)
because y and G are known to both the prover and the verifier.

Finally, a commitment to xi|ski can be easily obtained from
individual commitments to xi and ski.

5.4 Other Validity Predicates

We have already presented proofs of one useful validity pred-
icate: valid(x) := x ∈ [0, t)`, which extends to valid(x) :=
‖x‖∞ = t. We now discuss useful variants related to bounding
L0 and L2 norms. We first observe that proving k-hotness,
i.e. valid(x) := x ∈ {0,1}` ∧‖x‖0 = k, can be achieved by
just merging the constraint 〈x,1`〉= k with the proof of Sec-
tion D.1, which does not add any overhead. Let us also con-
sider how to prove valid(x) := x ∈ [0, t)∧‖x‖2 ≤ b for some
public bound b, where t could be replaced by some natural
bit-width like 216 or 232. This can be done in two steps: first
we establish that ‖x‖2 ≤ ηb using an approximate L2 proof
such that ηb < q/2 for some gap parameter η > 1, and then
we apply Lagrange’s four-square theorem and prove that

〈x|υ0|υ1|υ2|υ3,x|υ0|υ1|υ2|υ3〉= b (9)

where υ0, . . . ,υ3 are integers guaranteed to exist if ‖x‖2 ≤ b.
Recently, Lyubashevsky et al. [28, Lemma 2.9] showed that
the approximate L2 bound proof can be adopted from the
approximate L∞ bound proof of Lemma 2. These two proofs
can be combined with the proofs of Section 5.2 to show that
Equation 9 holds over the integers, and the overhead is the
additional commitments to υ0, . . . ,υ3 (twice using different
sets of generators) and the increased inner product constraint
length (by 4). The details of this extension were given by
Gentry et al. [20, Section 3.5].

6 Implementation and Evaluation

In this section we present experimental results for our new
protocols, focusing on RLWE-SecAgg (in Section 6.1) and
ACORN-detect (in Section 6.2). We do not benchmark
ACORN-robust, but as described in Section 4.2 these costs
can be derived from those of ACORN-detect (taking into ac-
count the additional vector commitments clients must form).

We focus on two scenarios when setting experiment param-
eters: (1) federated learning applications with n = 500 clients
and input vectors x containing 16-bit integers (i.e. t = 216);
and 2) federated aggregation applications with n = 10000
clients and input vectors x containing binary values (i.e. t = 2).
In both settings, we consider input vectors of length ` ranging
from 210 to 220, which covers a wide range of real-world sce-
narios. Our experiments were performed on a laptop with an
Intel i7-1185G7 CPU running at 3GHz and with 16GB mem-
ory, in single thread mode, and we take advantage of SIMD
instructions such as AVX512. For the input validation steps
we also performed experiments on a Pixel 6 Pro smartphone.
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6.1 RLWE-SecAgg

RLWE parameters. We first set the error distribution χe for
sampling e and f in our encryption scheme to be a discrete
Gaussian Dσ1 with standard deviation σ1 = 4.5. As shown
in Appendix A, the security level of our RLWE encryption
with this error distribution can be derived from the hardness
of solving RLWE with a discrete Gaussian error distribution
of standard deviation σ = 3.2. In the implementation we use
a tail-cut discrete Gaussian with support [−60,60] to sample
e+ f, which is statistically close to D2σ1 with distance at most
2−30. We then pick ring parameters for standard RLWE with
ternary secrets and discrete Gaussian error with parameter
3.2 to achieve 115 bits of security, according to the lattice
estimator [4]. Such parameters provides roughly 100 bit of
security for our encryption scheme (Appendix A). Specifi-
cally, we pick our ring parameters as follows. When input
validation is not required, we choose a power-of-2 ring de-
gree N ∈ {211,212,213}, and we pick a prime modulus q = 1
(mod 2N) to take advantage of Number Theoretic Transform
(NTT) for fast polynomial multiplication. Furthermore we
choose q with sufficient security level such that it can opti-
mally accommodate input messages via packing. With input
validation, we need to set q = P where P≈ 2252 is the size of
the cyclic group used in our Bulletproof implementation with
curve25519; thus we set N = 213.

Ciphertext expansion. Since the RLWE modulus q is usu-
ally much larger than the input bound t, we pack multiple
input entries into a single plaintext slot. In addition, when the
packed input vector has length ¯̀< N, each client i sends just
the first ¯̀ coefficients y′i = yi[1 . . . ¯̀] instead of the full yi. The
server can still recover the aggregated input from ∑i y′i and the
first ` rows of the public randomness A. In general, a client
just needs to transmit ciphertext coefficients corresponding to
the filled plaintext slots. For PRG-SecAgg without input vali-
dation, we can set the modulus q = nt to achieve the optimal
ciphertext expansion ratio, which is the total ciphertext bit-
size over the input bit-size; when input validation is required,
we set the modulus q = P similar to RLWE encoding above.

Experimental results. We benchmarked the RLWE encoding
step for individual clients, which involves expanding seeds to
secret keys and encoding the packed input with the properly
aggregated secret keys. For comparison, we also benchmarked
the PRG encoding step, where seeds are expanded by repeat-
edly calling AES to the desired length, and masking is done
via modular addition. When validation proofs are not required,
our choices of RLWE modulus q permits fast linear time poly-
nomial multiplications when generating RLWE samples, and
we need to perform inverse NTT only once on RLWE samples
before encoding the packed input, which is more efficient than
PRG encoding. The results are in Figure 2.

For example, in the federated learning use case where
t = 216 and n= 500, when the input has length `= 216, RLWE
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Figure 2: Averaged over 100 runs and plotted on a logarithmic
scale, the message size (on the left) and encoding times (on
the right) for our two scenarios for RLWE-SecAgg, PRG-
SecAgg, and the insecure baseline where clients send the
(uncompressed) input vector in the clear.

encoding takes only 17ms while PRG encoding requires
65ms; for longer input of length `= 220, RLWE encoding runs
in 130ms while PRG encoding requires 1.06s. Figure 2 shows
our encoding benchmark results of both RLWE-SecAgg (our
new protocol introduced in Section 3.2) and PRG-SecAgg [7],
where the numbers are average running times out of 100 trials
each. Overall, RLWE encoding achieves roughly up to 5x
speedup in the federated aggregation setting for `≥ 215, and
up to more than 8x speedup in the federated learning setting
for `≥ 213; for shorter input x the time spent on RLWE secret
sampling is more significant than the PRG mask expansion.

In addition, we also benchmarked the server key recov-
ery step of both RLWE-SecAgg and PRG-SecAgg, assuming
graph parameters γ = δ = 1/10. The results are shown in
Figure 3. For RLWE-SecAgg, the key recovery step includes
expanding seeds to RLWE secrets of length N, as well as
decoding the RLWE masked sum that involves an NTT oper-
ation per RLWE ciphertext. We see from the results that the
RLWE key recovery times are dominated by seed expansion
which is independent of the input length `, and the time spent
on decoding the masked sum was not significant except when
n is small and ` is very large. Comparing to PRG-SecAgg,
the RLWE key recovery step is much more efficient for long
inputs: for example, it takes only 10.3s to recover all secrets
and decode the masked sum in RLWE-SecAgg when `= 220

for all n = 10000 clients with 10% dropout rate, while in
PRG-SecAgg the same step requires 1650s.

6.2 ACORN-detect

While RLWE-SecAgg is more efficient without input valida-
tion, it becomes less efficient when input validation is required
due to the non-NTT-friendly modulus required by curve25519.
More specifically, for this modulus the RLWE encoding is
implemented using matrix-vector multiplication of dimension
213, and its running time increases dramatically due to the
quadratic complexity of polynomial multiplication. For ex-
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Figure 3: Server key recovery experiment results for both
RLWE-SecAgg and PRG-SecAgg. The running times were
taking as the average over 100 runs and plotted on a logarith-
mic scale, where the diagram on the left showing the running
times of the FL scenario (t = 216 and n = 500), and the dia-
gram on the right are for the FA scenario (t = 2 and n = 104).
We consider cases with no dropout and with δ= 1/10 fraction
of dropouts.

ample, when input x has length 213, RLWE encoding now
requires 1.31s whereas PRG encoding takes only 8.36ms; for
length 217, RLWE encoding takes 20.3s and PRG encoding
takes 132ms. We thus focus our results only on the PRG
variant of ACORN-detect.

We benchmarked the main components of ACORN-detect
with graph parameters γ = δ = 1/10. For the client, these
consist of the encoding step and generating the necessary
commitments to sk and x and proofs π0≤x<t and πEnc(sk,x).
As discussed in Section 5.4, these costs also cover πvalid(x) for
various validity predicates (e.g., one-hotness and both L∞ and
L1 bounds). For the server, this consists of proof verification
and key recovery steps. Figure 4 shows the client and server
runtimes as well as the client communication costs for both
settings we consider, where all benchmarks were run on a
laptop. When running the client computations on the Pixel 6
Pro smartphone, we observed an average slowdown of 3X.

Encoding. We set the mask modulus q to the group size
of curve25519 to match our Bulletproofs implementation.
Comparing to PRG-SecAgg without input validation, this
modulus q is less optimal in terms of packing capacity, and
as a result, encoding times are increased by 40% to 70%.
Regardless, encoding still takes less than one second for all
but one input lengths (the exception being vectors of length
220 in the federated learning use case).

Commitment generation. When t = 2, commitment genera-
tion is fast and grows slowly even for long inputs: for inputs
of length `= 220 the commitments can be generated in 404ms.
When input entries are large (t = 216), commitment gener-
ation is slower, but can still finish in 1.13s for ` = 217. On
the Pixel 6 Pro, commitments can be generated in 734ms for
t = 2 and `= 220, and in 2.1s for t = 216 and `= 217.

Proof generation. We implemented the more efficient Bul-
letproofs variant due to Gentry et al. [20, Section E.2]. Our
implementation further optimizes proof generation by not
requiring the client to pad the inner product constraints to a
power-of-2 length, which saves almost half of the proof gen-
eration time when the input is exactly or slightly longer than a
power of 2. When t = 2, all proofs can be generated in 572ms
for inputs of length ` = 213 and in 70s for length ` = 220.
When t = 216, the combined linear constraint is roughly four
times longer than in the t = 2 case, so proof generation is
slower: it runs in 2.27s for inputs of length 213 and in 285s
for length 220. For comparison, proof generation on the Pixel
6 Pro takes 2.1s for t = 2 and ` = 213, and 8.2s for t = 216

and `= 213.

Proof verification. The verification step also takes advantage
of the lightweight linear proof optimization, and we bench-
marked the batched verification of proofs from all n clients
using the techniques mentioned in Section 5.1. As we can see,
batched proof verification in the binary case is very efficient
due to the smaller size of proofs and the SIMD acceleration:
verifying all proofs from 10,000 clients takes 1.7s for inputs
of length `= 213 and 133.2s for `= 220. When t = 216, the
proof is longer and hence verification requires more time: it
takes 9.1s for ` = 213 and 131.1s for ` = 218. Note that the
server can divide client proofs in many small batches and
fully parallelize the proof verification process.

7 Conclusion and Open Problems

We presented a new secure aggregation protocol, RLWE-
SecAgg, along with extensions, ACORN, that allow the server
to perform validity checks on the inputs provided by clients.
Our benchmarks demonstrate that the overheads of these
checks are practical. Other zero-knowledge protocols offer
lower prover runtimes, however, and may do so without mak-
ing other costs impractical for our setting. For example, lattice-
based proofs may offer a better balance between computa-
tional and communication overheads, and would also offer the
advantage when combined with RLWE-SecAgg of providing
plausible post-quantum security.
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A Security Proof of RLWE-SecAgg

In this section we provide the proofs of correctness and secu-
rity of the RLWE-SecAgg construction in Section 3. For our
proofs we assume the “good" graph properties defined by Bell
et al. [7] for the output of GENERATEGRAPH suffice for the
correctness and security of the RLWE-SecAgg construction
as well.

Theorem A.1 (Correctness). Assume Algorithm 5 is
instantiated with a good graph generation algorithm
GENERATEGRAPH. If less than a fraction δ of the clients
dropout, i.e., |A′3| ≥ (1−δ)n, then the server does not abort
and obtains z = ∑i∈A′2

xi with overwhelming probability.

Correctness follows from the key and input homomorphic
properties of the RLWE encodings which are analogous to
one-time pad, which enables the server to obtain the appropri-
ate key for decoding of the aggregated value.

Next we prove that security would rely on the fact that
the encodings under keys that cannot be canceled hide the
encoded messages.
RLWE Encoding Properties. Below, we first establish the
security properties of our RLWE encoding, which will then be
used to prove the semi-honest security of the RLWE-SecAgg
protocol.

Definition 1 (HintRLWE). For any N,q≥ 1, any σ1,σ2 > 0,
and a distribution χs over R, the HintRLWEN,q,σ1,σ2 prob-
lem is to distinguish, given arbitrary number of samples, the
following two distributions for s← χs:

AHintRLWE
N,q,σ1,σ2

(s) =
{

(A,As+ e,e+ f) :
A← Rq,e← Dσ1 , f← Dσ2

}
,

and

Arandom
N,q,σ1,σ2

=

{
(A,u,e+ f) :
A← Rq,u← Rq,e← Dσ1 , f← Dσ2

}
.

Lee at al. [26] showed that the integer lattice version of
HintRLWE problem reduced from the standard LWE prob-
lem, preserving the sample complexity and the adversary’s
distinguishing advantage. Such reduction can be naturally
adapted to the power-of-two cyclotomic ring setting. Further-
more, our RLWE encryption algorithm encodes the plaintext
in the lower order bits of the ciphertext, and thus it relies on
pseudorandomness of tuples (A,As+T e) as in the BGV ho-
momorphic encryption scheme [11]. When the plaintext mod-
ulus T is coprime to the ciphertext modulus q, T−1 (mod q)
always exists, and we can further extend the above reduction
to the following form.

Lemma 3. For any T coprime to q, any σ1,σ2 > 0, let σ =

σ1σ2/
√

σ2
1 +σ2

2, and let χs be any distribution over R. There
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exists an efficient reduction from RLWEN,q,σ to the problem
of distinguishing Arandom

N,q,σ1,σ2
and the following for s← χs:

BHintRLWE
N,q,σ1,σ2

(s) =
{

(A,As+T · e,e+ f) :
A← Rq,e← Dσ1 , f← Dσ2

}
.

Furthermore, the reduction preserves the distinguishing ad-
vantage.

As in [26], we can set σ1 = σ2, and thus σ = 1/
√

2σ1. We
obtain the following technical lemma that we will use later in
the proof of Theorem A.2. Intuitively the lemma states that
the joint distribution of encrypted inputs from honest clients
in A′2 is indistinguishable from random conditioned on the
sum of the random inputs is the same as the sum of the honest
inputs in A′2.

Lemma 4. For any σ1 > 0, for any m,N,q,T, ` ≥ 1 such
that T is coprime to q, let k = `/N and let xi, . . . ,xm ∈ Z`

T ≡
Rk

T . Assume RLWEN,q,σ is hard for σ = 1/
√

2σ1. Then, the
following two distributions are indistinguishable

(A,As1 +T (e1 + f1)+x1, . . . ,
Asm−1 +T (em−1 + fm−1)+xm−1,

−A∑
m−1
i=1 si +T (em + fm)+xm) mod q :

A← Rk
q,s1, . . . ,sm−1← χs ∧ ∀i. ei, fi← Dk

σ1


≈


(A,u1, . . . ,um−1,

−∑
m−1
i=1 ui +T ∑

m
i=1(ei + fi)+∑

m
i=1 xi) mod q :

A← Rk
q,u1, . . . ,um−1← Rk

q ∧ ∀i. ei, fi← Dk
σ1

 .

Furthermore, if RLWEN,q,σ for χs is κ-bit hard, where σ =

σ2
1/
√

2σ2
1, then the bit security of distinguishing these two

distributions is κ−2(logm+1).

Proof. Denote the two distributions as D0 and D1, and we
use the following hybrids to show that D0≈D1. Let H0 =D0,
and for 1≤ i≤ m−1, let Hi be

(A,u1, . . . ,ui,yi+1, . . . ,ym−1,
−wi−Ar+T (∑i

j=1(e j + f j)+ em + fm)+ z) :
A← Rk

q,wi = ∑
i
j=1 u j,r = ∑

m−1
j=i+1 s j,

em, fm← Dk
σ1
,z = ∑

i
j=1 x j

∧∀i < j < m. s j← χs,u j← Rk
q,e j, f j← Dk

σ1
,

y j = As j +T (e j + f j)+x j mod q


.

Note that the final hybrid Hm−1 is exactly D1.
For all 1 ≤ i ≤ m− 1, we build a reduction Bi takes as

input a tuple (A,b,v) that is either from BHintRLWE
N,q,σ1,σ1

(s) for
some s← χs as in Lemma 3 or from Arandom

N,q,σ1,σ1
:

Bi(A,b,v) = (A,u1, . . . ,ui−1,yi, . . . ,ym) where
For j = 1 . . . i−1: u j← Rq;
For j = i+1 . . .m−1: s j← χs , e j, f j← Dk

σ1
, and

y j = As j +T (e j + f j)+x j;
yi = b+T · fi +xi for fi← Dk

σ1
;

ym =−w−Ar−b+v+T (∑i−1
j=1(e j + f j)+ em)+ z

for w = ∑
i−1
j=1 u j, r = ∑

m−1
j=i+1 s j, em← Dk

σ1
,

and z = ∑
i−1
j=1 x j.

First, consider (A,b,v)← BHintRLWE
N,q,σ1,σ1

(s), i.e., b = As+T ·e
and v = e+ f for e, f← Dk

σ1
. We rewrite using fresh variable

names si = s, ei = e, and fm = f. As a result we have yi =
b+T · fi +xi = Asi +T (ei + fi)+xi and

ym =−
i−1

∑
j=1

u j−A
m−1

∑
j=i

s j +T (
i−1

∑
j=1

(ei+ fi)+em+ fm)+
i−1

∑
j=1

x j;

so the output of the reduction is the same as Hi−1.
On the other hand, consider (A,b,v)←Arandom

N,q,σ1,σ1
, i.e., b←

Rq and v = e+ f for e, f← Dk
σ1

. Denote ui = b, ei = e, and
fm = f. Then the output of the reduction is

w = (A,u1, . . . ,ui−1,ui +T fi +xi,y j+1, . . . ,ym−1,ym) ,

where

ym =−
i

∑
j=1

u j−A
m−1

∑
j=i+1

s j+T (
i

∑
j=1

e j+
i−1

∑
j=1

f j+em+fm)+
i−1

∑
j=1

x j.

Since ui = b is uniformly random, w follows exactly the
distribution Hi. By the hardness assumption of RLWEN,q,σ
and by Lemma 3, Hi−1 and Hi are indistinguishable, and
hence D0 and D1 are indistinguishable.

To estimate the bit security loss, notice that the above
proof involves m−1 hybrids. By assumption, the decisional
HintRLWE problem is κ-bit secure, so the advantage of any
time t adversary distinguishing Hi and Hi+1 is at most ε =
t/2κ. By [31], any time T adversary distinguishing H0 = D0
and Hm−1 = D1 has advantage at most 3m2t/2κ; so our en-
cryption scheme can achieve κ−2(logm−1) bit security.

Now we state and prove the security of RLWE-SecAgg.

Theorem A.2 (Semi-Honest Security). Assume Algorithm 5
is instantiated with a good graph generation algorithm
GENERATEGRAPH, a semantic secure authenticated encryp-
tion scheme Eauth, a secure key agreement protocol K A , and
the RLWE encryption instantiated with parameters N,q,σ> 0
and noise distribution χe =D√2σ

such thatRLWEN,q,σ is hard.
There exists a PPT simulator Sim such that for all sets of sur-
viving clients A1, A2, A′2, A3 as defined in Algorithm 5, all
inputs X = (xi)i∈[n], and all sets of corrupted clients C with
|C | ≤ γn, the output of Sim(z,C ,A1,A2,A′2,A3) is computa-
tionally indistinguishable from the joint view of the server
and the corrupted clients, where z = ∑i∈A′2\C xi is the sum of
inputs of surviving honest clients.

Proof. We follow the blueprint of the hybrid argument in [7,
Theorem 3.6] with the following modification.
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• Hyb1 to Hyb7: We use the same hybrids as in [7] except
that su in Hyb4 for u ∈ A2 \A′2 are sampled from χs, and
that si j for all honest i < j ∈ A′2 are sampled from χs and
s ji =−si j for all j < i. Indistinguishability still follows
from the fact that F is a secure PRG.

• Hyb8
2: In this hybrid we set yi for all honest parties

i ∈ A′2 to be yi = ui, where ui are chosen at random
subject to

∑
i∈A′2\C

ui = T · ∑
i∈A′2\C

(ei + fi)+Gz (mod q).

By the property of GENERATEGRAPH, with overwhelm-
ing probability the graph on A′2\C is connected, and thus
∑i∈A′2\C (∑ j∈A′2\C

j<i
si j−∑ j∈A′2\C

i< j
si j) = 0. So, by Lemma 4

this hybrid is indistinguishable from Hyb7.

• Hyb9: In this hybrid we set yi for all honest parties
i ∈ A2 \A′2 to be uniformly random. Since no honest
party sends shares of seedi, and due to the property of
GENERATEGRAPH, with overwhelming probability the
server does not receive a sufficient number of shares of
seedi. Thus this hybrid is indistinguishable from Hyb8
by the pseudorandomness of RLWEN,q,σ samples.

The last hybrid Hyb9 can be computed from the simulator’s
input. Therefore the security claim follows.

B Proofs of Security for ACORN-detect

In our security proofs, we assume that the set of honest clients
dropouts is public information, and thus we don’t prevent
the adversary from using that information. However, whether
malicious clients drop out is decided by the adversary, in a
possibly input-dependent way. We also assume that honest
clients always provide valid inputs, as expected.

To prove security, we follow the standard simulation-based
argument [21,27] and show that every attacker against our pro-
tocol can be simulated by an attacker in an ideal world where
a trusted party T computes a function F (vector summation
in our case) on the clients’ inputs X . Recall that we consider
an attacker A controlling at most γn clients and possibly also
the server. The ideal world consists of the following steps (see
Lindell [27] for details), which are adapted from the general
case to our simpler setting where only one party (the server)
has an output: (a) the honest clients send their inputs to T ,
(b) A chooses which corrupted clients send their input to T
and which ones abort, (c) if the server is corrupted A gets to
choose whether to abort the protocol or continue, and (d) if
the protocol is not aborted, T gives the server its prescribed

2There appears to be a typo in the proof of [7, Theorem 3.6] that Hyb9
therein is a duplicate of Hyb8, so we skip it and refer to the following hybrid
as Hyb8 in our proof.

output F(X ). Finally, (e) if the server is not corrupted then it
outputs what it received from T .

In our case, F is parameterized by the list of inputs X =
(xi)i∈[n], the set of dropouts D ⊆ [n], and the maximum frac-
tion of dropouts δ ∈ [0,1], and is defined as follows:

FD,δ(X )=

{
∑i∈D xi if |D| ≤ δn∧valid(xi) = 1 ∀i ∈D,
⊥ otherwise.

(10)
We first consider the honest server case, which is the most

relevant one for input validation. We denote by RealA(z),C(X )
(resp. IdealA(z),C(X )) the real (respectively ideal) executions
of our protocol where the adversary A has full control over
clients in C but not the server.

Theorem B.1 (Honest server). For any C such that |C| ≤ γn,
dropouts D ⊆ [n], and input X , there exists a PPT simulator
Sim such that IdealSim(z),C(X )≈ RealA(z),C(X ).

Proof. Sim starts by internally invoking A , setting the inputs
of honest clients to be some fixed valid vector v and following
the protocol honestly. As Sim honestly follows the protocol
and messages between clients are independent of their inputs,
this interaction is identical to what A expects.

Since Sim controls the server, it learns comsk,i, coms,i,
πEnc(ski,xi), πvalid(xi), π0≤xi<t , and π

∑ski
i from all corrupted

clients i that do not drop out. From any valid πEnc(ski,xi) it
can use the extractor guaranteed by knowledge soundness
to learn the witness for i, and in particular the input xi. Sim
thus learns for each corrupted client i whether it should drop
out, provide an invalid input (in the case that its proofs fail to
verify), or provide a valid input (and what that input should
be).

Using this information, Sim has the appropriate clients
abort in step (b). For surviving clients whose proofs failed
to verify, Sim picks arbitrary invalid inputs and sends them
to T . For each remaining client i, Sim sends the extracted
input xi. In step (d), the ideal-world server gets F(X ) from
the trusted party T . The simulator’s choice of inputs match
the real-world inputs, and thus the real-world and ideal-world
server have the same output.

In the ideal world, the server outputs F(X ), and the Sim out-
puts whatever A outputted in the internal simulation. Again,
this is identical to its output in the real world as Sim followed
the protocol honestly.

We now discuss the case of a malicious server. We denote
by IdealA(z),C∪{S}(X ) the output received by an adversary
A with auxiliary input z controlling both a set of C ⊆ [n]
corrupted clients and the server in an ideal world execution.
Analogously, the view of such an adversary in the real world
is denoted by RealA(z),C∪{S}(X ).

The next theorem states that our protocol achieves mali-
cious security with the exact same assumption as Bell et al.,
i.e. semi-honest server behaviour in the key distribution phase,
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which is implied by a Public Key Infrastructure (PKI). In the
case of semi-honest server and fully malicious clients the
theorem follows without that assumption. Such an attacker
can fully control clients and additionally has read access to
the protocol execution of the server. For the malicious server,
the ideal functionality computed by T is a generalization the
one in Equation 10 and is described in Bell et al. [7] [Defini-
tion 4.1]. In that functionality the trusted party outputs large
partial sums instead of a single sum, but the argument is anal-
ogous, so we stick to the simpler notion from Equation 10 for
simplicity.

The proof requires from the simulator the ability to, given
a length ` sum vector sH corresponding to the sum of inputs
of honest clients, come up with a set of plausible inputs for
the honest clients, i.e. produce (1− γ)n valid inputs that add
up to sH, i.e. In our proof we assume for simplicity that this
task can be done in polynomial time by the simulator. It is
easy to see that this is indeed the case for a validity predicate
valid that corresponds to an L0,L∞, or L1 bound, and not it is
not a loss of generality for the purpose of proving security,
as we can equip the ideal functionality, and thus the trusted
party T in the ideal world, with the ability to output this set
of plausible inputs to the simulator.

Theorem B.2 (Malicious server, with PKI). For any C such
that |C| ≤ γn, dropouts D ⊆ [n], and input X , there ex-
ists a PPT simulator Sim such that IdealSim(z),C∪{S}(X ) ≈
RealA(z),C∪{S}(X ).

Proof. (Sketch.) The proof is analogous to the one by Bell
et al., shown in [7] as a series of hybrids. The key idea is
that Sim can extract the sum sH of inputs of honest surviving
clients by querying the trusted party with 0 as input for all
corrupted clients. More precisely, Sim proceeds as follows:

1. Sim does not instruct any corrupted client to abort in
step (b), and sets their inputs to be all 0 (we assume
w.l.o.g. that valid(0) = 1). In step c), Sim does not abort
the server.

2. In step d) Sim learns sH := F(X ). Note that all honest
clients provide valid inputs, and thus sH is the sum of
inputs of honest surviving clients.

3. Sim internally invokes A controlling all honest clients,
setting their inputs arbitrarily, as long as they’re all valid
and add up to sH (we assume finding such fake inputs
can be done efficiently as discussed above). Sim then
outputs whatever A in its internal simulation outputs.

Note that the internal execution by Sim in step 3. accounts for
the fact that the output of A in the real world might depend
on the view (including output) of the (corrupted) real-world
server. This view in turn depends on honest clients’ inputs.
Since Sim set honest inputs in the internal execution to match
the sum of inputs in the real world, then by the hybrid ar-
gument in [7] the output of A in Sim’s internal execution is

indistinguishable of that of A in the real world, which con-
cludes the proof. That this hybrid argument still holds in our
case follows trivially from the fact that the proofs that we
added for validity checking are all zero-knowledge.

C ACORN-robust: Details and Proofs

In this Section we give a detailed description of ACORN-
robust, along with security and robustness proofs. The main
protocol is described in Algorithm 1, and it is almost identical
to ACORN-detect, with the exception that the ShareSeeds
and RecoverAggKey correspond to the modified version de-
scribed in Section 4, as opposed to the ones from Bell et
al. [7].

Algorithm 2 describes the ShareSeeds subprotocol. Note
that, as discussed in Section 4, in Step 1 clients commit to
seeds before they know which neighbors will be assigned to
those seeds, which happens in step 2. Moreover, a key pair is
generated for each neighbor, which is used to communicate
with that neighbor via the server securely, using authenticated
encryption. As we will see later, clients might reveal a secret
key to the server, as a way to open the communication, and ex-
pose their neighbor as a cheater, e.g., a client having produced
an inconsistent seed-mask pair. The choice of neighboring
random graph is the same of [7]. More precisely, the com-
munication graph is a k-regular Harary graph with n nodes.
Assuming even k for simplicity, this graph results from ar-
ranging n nodes in a circle and having the neighbors of each
nodes be (a) the subsequent k/2 nodes clockwise, and (b) the
k/2 preceding nodes counter-clockwise. So far this is a deter-
ministic structure, the randomness comes into the labeling of
the nodes, i.e. the placement of clients 1, . . . ,n in the nodes
of the graph. Our proof of Theorem 4.1 (which we give in the
next subsection) is tailored to this random graph construction.

The seed exchange and seed sharing stages are also anal-
ogous to [7], the only differences are that (i) the sharing of
seeds is done via Feldman’s verifiable secret sharing scheme,
described in Algorithm 3, and (ii) clients check/supervise that
the received masks match the commitment they expect. In
these steps, clients secret-share their random seeds across
their neighbors, using the server as a relay (communication
channel), and relying on public keys sent in the first step.
Thanks to Feldman’s VSS, shared seeds are consistent with
their commitments after this point, as otherwise the server
drops those clients (see Algorithm 3), and any pairs seed-
mask for all pairwise masks si,j involving an honest client are
consistent, as otherwise the server drops the dishonest client
in the second step of the seed sharing stage.

Step 2. of Algorithm 1 is analogous to ACORN-detect: yi
is formed in the exact same way and the same validity proofs
are provided (excluding the distributed Schnorr proof).

Finally, the RecoverAggKey subprotocol is described in
Algorithm 4. The server first recovers self masks si from the
corresponding seeds and drops clients for which the recovered
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Algorithm 1: ACORN-robust, Secure Aggregation with Input Verification Robust to Malicious Clients.
Parties: Clients 1, . . . ,n, and Server.
Public Parameters: Vector length `, input domain X`, and PRG F : {0,1}λ 7→ supp(χs)

`

Input: xi ∈ X` (by each client i).
Output: z ∈ X` (for the server).

1. Using the server to send messages, clients engage in a ShareSeeds protocol, with each surviving client i learning {seedi, j} j∈N(i), seedi,
sharesi,D , and sharesi,S . The server receives commitments comseedi, j and comseedi to seedi, j and seedi and also comsi, j and comsi which
if i, j are honest are commitments to si, j = F(seedi, j) and si = F(seedi). The server aborts if there are fewer than (1−δ)n surviving
clients.

2. Each surviving client i performs the following:
• Computes its packed encrypted input yi = Encode(ski,Gxi) with key defined as ski = si +∑ j∈Ai, j<i si j−∑ j∈Ai,i< j si j.

• Forms a commitment comxi to its input.
• Computes proofs πEnc(ski,xi), π0≤xi<t , and πvalid(xi) of encoding, smallness, and validity.
• Sends to the server yi, comxi , πEnc(ski,xi), π0≤xi<t , πvalid(xi).

3. The server aborts if it receives fewer than (1−δ)n messages. The server counts any client whose proofs fail as a dropout. Otherwise, the
server and the clients engage in the corresponding RecoverAggKey protocol. The server takes as input the global sets D and S of
dropouts and survivors and its commitments from the first round. Each client i takes as input its sets sharesi,D and sharesi,S . At the end
of the protocol the server learns a set R of remaining clients and the aggregate key sk = ∑i∈R ski.

4. The server outputs ∑i∈R xi as G−1(Decode(sk,∑i∈R yi)).

masks are not consistent with the commitments that where
submitted (and consequently with respect to which client
proofs were made in Step 2 of Algorithm 1). What remains
is recovering pairwise masks from dropped out clients in
Steps 3 and 4 in Algorithm 4, possibly dropping misbehaving
clients along the way, and thus requiring additional rounds
of interaction with their neighbors to recover their pairwise
masks. In the next section we show the bound on the number
of additional from Section 4 (Theorem 4.1).

C.1 Proof of Theorem 4.1
Let us restate the theorem in a slightly more explicit way for
convenience:

Theorem C.1. Suppose at most α < 1/3 fraction of clients
are malicious and that α plus the fraction of dropouts is less
than δ. Then the probability that ACORN-robust requires
at least 6+ r rounds to finish is bounded by a term that is
negligible in k and thus the security parameter plus (αn/2+
n/k)(

√
8α)r−1.

Consider the following graph model with parameters n, k, m
and (a1, ...,am). Place n vertices in a circle, label the vertices
with labels 1 through n uniformly at random. For each vertex
i ∈ [m], let Si be the set of the k/2 vertices clockwise from i
and i itself. Then for each i ∈ [m], choose ai vertices from Si
and add an edge between each of them an i. Finally remove
from the graph the vertices [n]− [m] along with any vertices
neighboring them. Call the distribution of the resulting graph
G(n,k,m,(ai)i∈[m]).

Let Pl be the path of l +1 vertices and Ll be given by Pl−1
with a self edge added to exactly one of its end points.

Theorem C.2. Consider Algorithm 1 run with n clients, each
with k neighbors. Suppose at most m clients are malicious
and m plus the number of honest dropouts is less than δ. Let
ai be the number of bad mask commitments the ith malicious
client sends in the first step of the protocol.

The probability that step 3 will be executed ≥ l times (i.e.
the number of rounds of the whole protocol is ≥ 6+ l) is
less than by the probability that G(n,k,m,(ai)i∈[m]) contains
either Pl or Ll as an induced subgraph.

Proof. Note that the graph model can be given by running
the protocol with the given parameters: having the clients
correspond to nodes, malicious clients to the nodes labelled
by [m], the as to the number of mismatching commitments
each client sends in the first round and the edges to the pairs
these are assigned to. The malicious clients who survive for
masked input encoding then induce the appropriate random
graph.

Let il be (one of) the client(s) whose edge/pairwise mask
shares are requested in the lth iteration of Step 3. For k > 1
if client ik had their shares requested in the kth iteration then
there must be some client with whom they share an edge (with
mismatched commitments) whose shares were requested in
the k−1th iteration, call this client ik−1. Clients i1, ..., il form
a subgraph isomorphic to Pl−1. In order for i1 to have their
edge masks requested for the first iteration they must either
have a bad self mask (and thus a self edge) or a bad edge mask
with someone, call them i0, who failed to provide a masked
input. This i0 must also be malicious to have not reported the
mismatch earlier. Hence there must be either a a copy of Pl or
Ll .

Finally, this subgraph must be an induced subgraph be-
cause if there is an edge between ik and ik+c then ik+c will be
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requested in the k+1th iteration, therefore c = 1.

Lemma 5. Assume m < n/3 then with probability at least
1−mexp

(
−2(1/3−m/n)2k

)
every vertex in [m] has ≤ k/3

neighbors in [m].

Proof. For each i ∈ [m] the number of neighbors of i in [m]
is given by a Hypergeometric distribution with parameters
n−1,m−1 and k. The probability that that random variable is
≥ k is bounded by exp

(
−2(1/3−m/n)2k

)
according to the

tail bound in [38]. The result follows by a union bound.

Theorem C.3. If m ≤ n/3 then the probability that
G(n,k,m,(ai)i∈[m]) contains either Pl or Ll as an induced
subgraph is at most

(m
2
+

n
k

)(√8m
n

)l−1

+mexp

(
−2
(

1
3
− m

n

)2

k

)
.

Proof. We will bound the probability of seeing a copy of Pl
by taking a union bound over ordered sequences of vertices
in [m]. There are m!/(m− l− 1)! sequences of l + 1 such
vertices.

For a specific instance of a sequence, consider assigning
each of the vertices to a place around the circle one by one.
There are 2l ways to choose whether each vertex in the se-
quence is placed clockwise or anticlockwise from the previous
one. Therefore there are 2lm!/(m− l−1)! possible choices
of sequences together with whether they are clockwise or
anticlockwise.

For all but the first vertex the probability that they are
placed as a neighbor in the Harary graph to the previ-
ous vertex, and in the correct direction, is at most k/2 di-
vided by the number of remaining vertices. Thus they form
a path in the Harary graph with probability bounded by
(k/2)l(n− l−1)!/(n−1)!.

Fix a sequence and a choice of whether each is clockwise
or anticlockwise from the previous. Assume wlog that the
vertices in the sequence are 1, ..., l +1, in that order. For each
i ∈ [l +1] vertex i is required to be the source of ri edges in
the path for ri either 0, 1 or 2.

Vertex i sends out ai− ri other edges all of which must be
to vertices in [m]\ [l +1]. Let αi be fraction of is neighbors
in the Harary graph (other than i+ 1 and i− 1) that are in
[m]\ [l +1]. The probability that vertex i is only connects to
such vertices is bounded by α

ai−ri
i .

The probability that vertex i sends edges to the clockwise
neighbors in the path is(k/2−ri

ai−ri

)(k/2
ai

) =
(k/2− ri)!ai!
(k/2)!(ai− ri)!

≤ 2riai!
kri(ai− ri)!

(11)

Assume that αi ≤ 1/3 for all i ∈ [l +1] by Lemma 5 this
will hold with all but a small probability. Then a bound on the

probability that the edges from i are as required is given by

2riai!
kri(ai− ri)!

3ri−ai

which is maximised when ai = ri.
We assume that the ai happen to be in this worst case

arrangement3. As the ri sum to l the product of these proba-
bilities is at most (

√
8/k)l .

We now take a union bound over all length l+1 sequences
in [m] and choices for clockwise or anticlockwise at each step.
Giving the probability of having a copy of Pl as bounded by

2lm!
(m− l−1)!

(k/2)l(n− l−1)!
(n−1)!

(√
8

k

)l

≤
√

8
l
ml+1

nl . (12)

However we have counted every sequence twice ( once for-
ward and once in reverse) so we can halve this to get a bound

of m
2

(√
8m
n

)l
.

The analysis for the probability of Ll is very similar and

gives a bound of n
k

(√
8m
n

)l
.

Adding these two bounds and the bound from Lemma 5 on
the probability of any αi > 1/3 gives the result.

Theorem 4.1 follows immediately from combining these
two results.

Finally, we proof security of ACORN-detect in the next
section.

C.2 Proofs of Security for ACORN-robust

In proving the security of ACORN-robust, we follow the
same approach as for ACORN-detect. We define the a slightly
different functionality. Given a set of inputs X and dropouts
D , let V (X ,D) = {i ∈D|valid(xi) = 1}, i.e. the set of valid
inputs from non-dropouts.

FD,δ(X ) =

{
∑i∈V (X ,D) xi if |V (X ,D)| ≥ (1−δ)n,
⊥ otherwise.

(13)
We define IdealA(z),C(X ),

RealA(z),C(X ),IdealA(z),C∪{S}(X ) and RealA(z),C∪{S}(X )
as in Section 4.1 except with this new functionality F in
place of the old one.

Theorem C.4 (Honest server). For any C such that |C| ≤ γn,
dropouts D ⊆ [n], and input X , there exists a PPT simulator
Sim such that IdealSim(z),C(X )≈ RealA(z),C(X ).

3Arranging this would require choosing the ai after seeing the random
placement around the circle, therefore we believe this step is probably quite
lossy.
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Proof. Sim starts by internally invoking A , setting the inputs
of honest clients to be some fixed valid vector v and following
the protocol honestly. As Sim honestly follows the protocol
(with honest dropouts specified by D) and messages between
clients are independent of their inputs, this interaction is iden-
tical to what A expects.

Since Sim controls the server, it learns πEnc(ski,xi), πvalid(xi)

and π0≤xi<t , from which it can extract any valid inputs from
adversarial clients by knowledge soundness. Sim also keeps
track of which of the clients are dropped in its internal proto-
col run.

Assume the protocol finishes with the server learning a
sum of all honest (simulated with zero input) non-dropout and
some malicious clients. Sim has the dropped clients abort in
step (b). For each remaining client i, Sim sends the extracted
input xi. In step (d), the ideal-world server gets F(X ) from
the trusted party T . The simulator’s choice of inputs match
the real-world inputs, and thus the real-world and ideal-world
server have the same output, because the effect of non-zero
honest non-dropout inputs is to be added to the output of the
protocol.

In the ideal world, the server outputs F(X ), and the Sim out-
puts whatever A outputted in the internal simulation. Again,
this is identical to its output in the real world as Sim followed
the protocol honestly.

It remains to see that the internal and thus real protocol
ends with the server learning a sum including all honest non-
dropout clients. To see this note that at each point where the
server drops a client it is only after seeing some proof of
malicious behaviour on that clients part.

Theorem C.5 (Semi-honest server). For any C such that
|C| ≤ γn, dropouts D ⊆ [n], and input X , there exists
a PPT simulator Sim such that IdealSim(z),C∪{S}(X ) ≈
RealA(z),C∪{S}(X ).

Proof. (Sketch.) This proof goes exactly like the proof of
Theorem B.2, except we have to worry that the extra mask
revelations at the end of the protocol might leak more informa-
tion about honest clients. In fact, this can’t happen because the
server is semi-honest and will only request both sets of mask
for a client if it has been given some kind of proof that that
client is malicious. Specifically, it will only request pairwise
mask shares for a client who it has requested the self-mask
for if one of their masks doesn’t expand from the appropriate
shared seed. That can only happen if the client confirmed
that the seed with a given commitment expanded to a vector
with a given commitment when it didn’t. That is malicious
behaviour so no honest client can be a victim of this.

D Additional Zero-Knowledge Proofs

D.1 Smallness Proof for t = 2

We describe the protocol for t = 2 for simplicity, which closely
follows the approach to range proofs in Bulletproofs [12]. Let
C ∈ G be a group element, and let h ∈ G and g,h ∈ G` be
generators in G (public parameters).

1. The prover finds y ∈ G` satisfying (i) x◦y = 0 and (ii)
x = 1` + y. These properties hold if and only if x is
binary. The prover commits to x|y as C = hr

∏
`
i=1 gxi

i hyi
i

and sends this to the verifier.

2. The verifier sends random challenge scalars τ,ρ ∈ Zq to
the prover. Define r = (τi−1)i∈[`].

3. By Schwartz-Zippel, 〈x,y ◦ r〉 + ρ(〈x,r〉 + 〈−1`,y ◦
r〉) = 〈1`,r〉 holds if and only if (i) and (ii) hold, ex-
cept with probability (`+ 1)/q. This can be rewrit-
ten as a single constraint 〈x′,y′〉 = (1−ρ2)〈1`,r〉, for
x′ := x−1`ρ and y′ := y◦ r+ρr. The prover and veri-
fier can obtain a commitment C′ to x′|y′ by computing
C′ =C ·∏`

i=1 g−ρ

i hρ

i . This is a commitment to x′ and y′

using generators (h,g,h′) where h′i = hτ1−i

i . The prover
then uses Bulletproofs as described in Lemma 1 to prove
that 〈x,y′〉= 0 with respect to C′.

This proof is thus a reduction to Bulletproofs (Lemma 1),
requiring three additional length-` multi-exponentiations in
Step 3 by both the prover and verifier. However, this overhead
can be reduced to only two length-` multi-exponentiations
for the verifier, as both the generator switch and commitment
update can be combined with the analogous operations in
the outer loop of Bulletproofs. Moreover, the proof can be
made non-interactive via Fiat-Shamir, by deriving τ,ρ from
the protocol transcript and proof statement.

D.2 Distributed Proof of Aggregated Key Cor-
rectness

In ACORN-detect, each client i commits to its encoding key
ski, which incorporates its self mask and pairwise masks, us-
ing some randomness ri; in other words, it creates an Pedersen
commitment Ci = gskihri . At the end of the protocol, the server
learns the sum of self masks s in the clear. The distributed
key correctness protocol thus aims to convince the server
that ∏i Ci is a commitment to s, where the witness for this
proof (consisting of the opening of ∏i Ci) is additively shared
among all the clients.

To instantiate this protocol, we use the Schnorr proof of
knowledge, with each client proving knowledge of the ran-
domness ri used to form its commitment. The server, acting
as the verifier, can combine these proofs using the fact that
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the challenge response in Schnorr is a linear function of the
committed value.

To tolerate a malicious server, we need this proof to be
(fully) zero knowledge, which the sigma protocol can be when
instantiated as a non-interactive proof using the Fiat-Shamir
transformation. However, this does not work in our setting
since clients act as distributed provers and do not have the
same view that could then be hashed to form the challenge.
Trying to send the required information to all clients to obtain
such a common view is not viable since it incurs a prohibitive
communication overhead.

Instead, we modify the execution so that the server commits
to its challenge ahead of time using parameters provided by
each client. To retain the property that this is a proof of knowl-
edge, we require that this commitment is equivocable, as the
knowledge extractor needs to be able to send two different
challenges consistent with the same commitment. For exam-
ple, Pedersen commitments provide equivocation when the
discrete logarithm between the generators g and h is known.

Correctness. We can verify that

ht = ∏
i∈[n]

hti = (∏
i∈[n]

hri)e(∏
i∈[n]

hki) =Ce
∏
i∈[n]

Ki.

Knowledge soundness. The soundness of the protocol fol-
lows similarly to the soundness of the single prover Schnorr
protocol. The extractor can rewind the execution of steps 3
and 4 with the i-th client and provide two different openings
e1 and e2 for the committed challenge using the equivocability
of the commitment scheme, and obtain two different values
ti,1 and ti,2. If the proof verifies in both cases, then hti,1 = hti,2 ,
and the extractor can compute ri = (t1− t2)(e1− e2)

−1 since
e1− e2 6= 0.

Zero knowledge. The simulator for client i rewinds step 2
and 3 after it has obtained the opening of the commitment for
challenge e. It generates ti at random and sets Ki = hti(hri)−e.
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Public parameters: Vector length `, input domain X`, secret distribution χs, and seed expansion function F : {0,1}λ 7→ supp(χs)
`

Client i’s input: xi ∈ X`

Server output: z ∈ X

Commitments
1. Client i generates keypairs (ski,1,pki,1),(ski,2,pki,2)← Sig.KeyGen(1λ) and sends (pki,1,pki,2) to the server. It performs the first step in the

distributed key correctness protocol, which results in it sending a message hi to the server.
2. The server commits to the public key vectors pk1 = (pki,1)i and pk2 = (pki,2)i using a Merkle tree. It sends the root hashes hroot,1 and hroot,2 to

each client. It also performs the second step of the distributed key correctness protocol, which means sampling its random challenge e and forming
and sending comi,chl to client i.

Distributed graph generation
3. Client i selects k neighbors by sampling randomly and without replacement k times from the set of n clients, and sends the resulting set N→(i) of

outgoing neighbors to the server. Denote by N(i) all neighbors of client i (consisting of their outgoing edges and implicitly defined incoming edges).
4. The server sends N←(i),( j,pk j,1,π j,1,pk j,2,π j,2) j∈N(i) to client i, where π j,1 and π j,2 are Merkle inclusion proofs with respect to roots hroot,1 and

hroot,2.
5. Client i aborts if the server has sent more than 3k+ k keys, if there is an index j ∈N→(i) that is not reflected in the keys sent by the server, or if the

Merkle inclusion proofs fail to verify.
Seed sharing

6. Each client i that has not dropped out performs the following:
• Generates a random seed seedi.
• Computes two sets of shares Hseed

i = {hseed
i,1 , . . . ,hseed

i,k }= ShamirSS(t,k,seedi) and Hs
i = {hs

i,1, . . . ,h
s
i,k}= ShamirSS(t,k,ski,1).

• Sends to the server messages m j = ( j,ci, j) for each j ∈N→(i), where ci, j←Eauth.Enc(ki, j, i‖ j‖hseed
i, j ‖hs

i, j) for ki, j =KA.Agree(ski,2,pk j,2).

7. If the server receives messages from fewer than (1−δ)n clients, it aborts. Otherwise, it sends all messages ( j,ci, j) to client j. Denote by A j ⊆N( j)
the set of neighbors for whom client j received such a message.

Masking
8. Each client i that has not dropped out performs the following:

• Computes a shared random seed seedi, j as seedi, j = KA.Agree(ski,1, pk j,1).
• Computes its packed encrypted input yi = Encode(ski,Gxi) with key defined as ski = si +∑ j∈Ai , j<i si j−∑ j∈A1 ,i< j si j for si j = F(seedi, j),

si = F(seedi) (as in Equation 3).
• Forms σincl

i, j ← Sig.Sign(ski,2,mi, j = “included”‖i‖ j) for all j ∈ Ai.

• Forms commitments comsk,i← Commit(ski;ri) and comx,i← Commit(xi) to its key and input respectively.

• Computes proofs πEnc(ski ,xi), π0≤xi<t , and πvalid(xi) of encoding, smallness, and validity.
• Performs the third step of the distributed key correctness protocol to form Ki.
• Sends to the server yi, (mi, j,σ

incl
i, j ) j , comsk,i,comx,i,Ki,π

Enc(ski ,xi),π0≤xi<t ,πvalid(xi).
Dropout agreement and unmasking

9. The server collects packed encoded inputs for a determined time period. If it receives fewer than (1−δ)n, it aborts. Otherwise, it defines a global set
of dropouts D and a set of survivors S . It then sends the messages and signatures (m j,i,σ

incl
j,i ) to every client i ∈ S , along with the sets Di =N(i)∩D

(its incoming neighbors that are dropouts) and Si =N(i)∩S (its incoming neighbors that are not). It also sends the opening of the commitment for
the distributed key correctness protocol (following the fourth step), containing its challenge e.

10. Each client i that has not dropped out performs the following:
• Checks that Di ∩Si = /0, that Si,Di ⊆N(i)∩Ai, and that all signatures σincl

j,i are valid on message m j,i for all j ∈ Si, aborting if any of these
checks fail.

• Computes σack
i, j ← Sign(ski,2,“ack”‖i‖ j) for all j ∈ Si.

• Performs the fifth step of the distributed key correctness protocol, which means forming values ti and αi.
• Sends (mi, j,σ

ack
i, j ) j and ti,αi to the server.

11. The server aborts if it receives fewer than (1−δ)n responses. It verifies all received proofs πEnc(ski ,xi), π0≤xi<t , πvalid(xi) and aborts if any of them
fails. Otherwise it forwards all messages ( j,mi, j,σ

ack
i, j ) to client j.

12. Each remaining client verifies its received signatures using pk j,2, aborting if they fail to verify. Once a client receives p valid signatures from its
neighbors, it sends {i,hseed

i, j } j∈Di and {i,hs
i, j} j∈Si to the server, which it has obtained by decrypting the ciphertexts ci, j received in Step 6.

13. The server aborts if it receives fewer than (1−δ)n responses, and otherwise:
• Collects, for each client i ∈D , the set of all received shares in Hseed

i , and aborts if there are fewer than t. If not it recovers seedi and si using
the t shares received from the lowest client IDs.

• Collects, for each client i ∈ S , the set of all shares in Hs
i , and aborts if there are fewer than t. If not it recovers ski,1 and si j for all j ∈N(i).

• Computes a decryption key sk = ∑i∈S (si +∑ j∈Di , j<i si j−∑ j∈Di ,i< j si j).

• Using sk, performs the final step of the distributed key correctness protocol and aborts if verification fails.
• Outputs ∑i∈S xi as G−1(Decode(sk,∑i∈A′2

yi)) .

Figure 5: Maliciously secure SecAgg from homomorphic encodings with input verification.
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Algorithm 2: ShareSeeds Robust to Malicious Clients.
Parties: Clients 1, . . . ,n, and Server.
Public Parameters: Vector length `, input domain X`, secret distribution χs, and PRG F : {0,1}λ 7→ supp(χs)

`

Input: N/A
Output: N(i), {seedi, j} j∈N(i), seedi, sharesi,D , and sharesi,S (to Client i). comseedi, j , comseedi , comsi, j and comsi (to the Server). Note

that if i and j are honest si, j = F(seedi, j) and si = F(seedi).

Communication Graph Generation and Seed and Public Key Distribution

1. Client i ∈ [n] generates k/2+1 seeds seedi,· and computes gseedi,· and a commitment to F(seedi,·) with blinding also derived from seedi,·.
It then generates k key pairs (ski,·,pki,·). It then sends the public keys and all commitments to the server.

2. The server:

• Generates a k-regular Harary graph G as in [7]. Let N+(i) be the neighbors of i clockwise from i and N−(i) be the other neighbors
and N(i) the union of these.

• Passes to each client j ∈ N+(i) the commitment pair for one of the seedi,· and one of the public keys pki,·, which are henceforth
denoted seedi, j and pki, j. The final seed is denoted seedi.

• Passes to each client j ∈ N−(i) a public key from i henceforth denoted pki, j.

• Informs client i which seed commitment was sent to whom.

Seed Exchange

3. Each client i computes, for each j ∈ N+(i), Enc(ki, j,seedi, j) where ki, j = KA.Agree(ski, j,pk j,i).

4. The server forwards all these messages to the corresponding clients j.

Seed Sharing

5. Each client i:

• Decrypts the value of each seed j,i. Checks that this gives the correct gseed j,i , if not it sends ski, j to the server.

• Computes each F(seed j,i) and checks they give the right commitments, if not it sends ski, j to the server.

• Computes shares: {hi,1, . . . ,hi,k}= ShamirSS(t,k,seedi),

• Computes shares (hi, j,m)m∈N(i) of each seedi, j along with deterministic coefficient commitments as per Algorithm 3.

• Computes shares (h̃i, j,m)m∈N(i) of seed j,i with deterministic commitments, for each j that sent the correct seed j,i.

• For each m ∈ N(i) sends ci,m = Enc(ki,m,(seedi,m,(hi, j,m) j∈N+(i),(h̃i, j,m) j∈N−(i),(hi,m)sgn(ski)
)) to the server.

• Sends the server the deterministic coefficient commitments.

6. The server aborts if fewer than (1−δ)n clients remain otherwise it:

• Forwards (ci,m)i∈N(m) to client m.

• Checks that the coefficient commitments match the original seed commitments and computes ghi, j,m and gh̃i, j,m and sends it to client
m

Bad Message Resolution

7. Client m opens each ci,m and checks that the hi, j,m gives the correct ghi, j,m and that the signature on hi,m is valid. If either check fails it
sends skm,i to the server.

8. The server uses each skm,i it has received (which it checks match the pkm,i from earlier) to check whether i sent a bad seedi,m or ci,m and
if so it drops i, otherwise it drops m. It informs each client i of the set Ni of their remaining neighbors.
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Algorithm 3: Sharing of seeds with verification (Feldman’s scheme).
Parties: Client i, their neighbours m ∈ N(i) (including j) and Server.
Public Parameters: t
Input: seedi, j from client i.
Output: A sharing of seedi, j amongst the clients in N(i).

1. Client i, chooses a random degree t−1 polynomial P subject to P(0) = a0 = seedi, j given by P(x) = a0 +a1x+ ...+at−1xt−1.

2. Client i then evaluates P(m) for every m ∈ N(i), encrypts it using a shared key with party m and sends it to the server.

3. Client i also computes gal for each l ∈ [0, ..., t−1] and sends these to the server.

4. For each m ∈ N(i) the server computes gP(m) from the gal and sends it along with the encryption of P(m) to client m.

5. Each client m decrypts the value of P(m) and from it computes gP(m) checking that it matches the gP(m) provided by the server. If it
doesn’t match, client m sends sk1

m,i to the server so they can confirm this, otherwise they report that it matched.

6. If any client m reports that there was a mismatch the server uses sk1
m,i to check this. If there is indeed a mismatch the server labels client i

dishonest. In Algorithm 1 client i is dropped at this point.

7. The server informs all clients m ∈ N(i) whether i has been labelled dishonest or not.

8. If i is dishonest the other clients abort else they output their share P(m).

Algorithm 4: RecoverAggKey Robust to Malicious Clients.
Parties: Clients 1, . . . ,n, and Server.
Public Parameters: Vector length `, input domain X`, secret distribution χs, and PRG F : {0,1}λ 7→ supp(χs)

`

Input: A set S of remaining clients, N(i), {seedi, j} j∈N(i), seedi, sharesi,D , and sharesi,S (to Client i). comseedi, j , comseedi , comsi, j and
comsi (to the Server). Note that if i and j are honest si, j = F(seedi, j) and si = F(seedi).

Output: A set R of clients (including all honest clients that didn’t dropout) and the aggregate key sk = ∑i∈R ski.

Removing Some Masks from Clients

1. Each client m sends {(hi, j,m, h̃i, j,m)}i∈Nm\Fm, j∈N(i)∪{(i,(hi,m)sgn(sk2
i )
)}i∈Fm , obtained by decrypting ci, j from Step 5.

2. The server

• For each client i ∈ S, if possible using the shares provided with good signatures, recovers seedi and si, and checks them against
their commitments from earlier.

• Drop all caught clients, remove them from S and request their edge mask sharing.

• If no client cheated the server tells the clients they are done and skips to Step 4.

Loop to Remove Edge Masks

3. Client m provides any requested {(hi, j,m, h̃i, j,m)} j∈N(i)

4. The server then:

• If there are sufficient shares, recovers seedi, j, seed j,i and si j for all j ∈ N(i).

• Computes ski as client i did in Step 2 of Algorithm 1.

• For all ski that don’t match their commitments: drop client i, remove i from F and request their edge mask secrets.

• If any new requests were sent return to Step 3.

• Outputs (S,∑i∈S ski).
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Public parameters: group G,H with generators g ∈ G` and
h ∈H

Client i’s input: ski, ri, Ci = Commit(ski;ri)

Server’s input: s ∈ |G|`, {Ci}i

1. Client i samples αi randomly and sends hi = hαi to the server.

2. The server samples a random challenge e and forms a com-
mitment comi,chl = gehsi

i for each client i, using some ran-
domness si. The server sends comi,chl to client i.

3. Each client i samples a random value ki ∈ |H| and sends
Ki = hki to the server.

4. The server opens the committed challenge by sending e and
si to client i.

5. Client i checks that comi,chl = gehsi
i , where comi,chl is the

value it received in Step 2. If not, it aborts. Otherwise, it
computes ti = ri · e+ ki and sends it and αi to the server.

6. The server checks that hi = hαi . If so, it computes C =

∏i∈[n]Ci/gs and t = ∑i∈[n] ti. It checks that ht =Ce
∏i∈[n] Ki

and outputs 1 if this check passes and 0 otherwise.

Figure 6: Distributed key correctness protocol for proving
that ∑i ski = s.
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