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Abstract. Neural cryptanalysis is the study of cryptographic primitives
through machine learning techniques. We review recent results in neu-
ral cryptanalysis, and identify the obstacles to its application to new,
different primitives. As a response, we provide a generic tool for neural
cryptanalysis, composed of two parts. The first part is an evolution-
ary algorithm for the search of single-key and related-key input differ-
ences that works well with neural distinguishers; this algorithm fixes
scaling issues with Gohr’s initial approach and enables the search for
larger ciphers, while removing the dependency on machine learning, to
focus on cryptanalytic methods. The second part is DBitNet, a neu-
ral distinguisher architecture agnostic to the structure of the cipher.
We show that DBitNet outperforms state-of-the-art architectures on a
range of instances. Using our tool, we improve on the state-of-the-art
neural distinguishers for SPECK64, SPECK128, SIMON64, SIMON128
and GIMLI-PERMUTATION and provide new neural distinguishers for
HIGHT, LEA, TEA, XTEA and PRESENT.

1 Introduction

The field of cryptography is constantly evolving. From classic ciphers, such as
Caesar or Vigenere, to the mid-twentieth centuries and the likes of Enigma, all
the way to the era of open cryptography design competitions, a vast quantity
of methods have been proposed to encrypt data. As our understanding of the
field as a community evolved, finding vulnerabilities in the most recently pro-
posed ciphers becomes increasingly difficult, with each failure being a lesson
for future designs. Fortunately, cryptographers now have access to a wide array
of automatic tools to assist the evaluation of their new designs. In particular,
tools such as SAT, MILP or CP solvers have become prevalent to analyze ci-
phers against the main attack techniques: differential and linear cryptanalysis,
but also, for instance, the automatic search for meet-in-the-middle attacks, or
impossible differentials.
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Recently, a new family of tools was added to the existing collection: machine
learning based distinguishers. Proposed by Gohr at CRYPTO’19 [12], they ex-
ploit the ability of machine learning algorithms to recognize complex patterns,
in order to distinguish ciphertexts produced by a given block cipher from ran-
dom data. More specifically, the so-called neural distinguisher is trained to label
pairs of cipherexts as either random or not random, i.e., corresponding to the
encryption of two messages related by a fixed XOR difference. Following this
seminal paper, which showed results on the block cipher SPECK32, a body of
work dedicated to the analysis of what these distinguishers could learn started;
in parallel, several researchers investigated how to apply neural distinguishers
to different ciphers, and how to improve on the initial constructions. However, a
systematic study of how to generalize neural distinguishers is lacking. The first
obstacle is the structure of the neural network itself: the seminal paper of Gohr
relies on design decisions that are very specific to the studied cipher, and more
generic techniques are needed. Furthermore, the choice of a good input differ-
ence for non-random samples is difficult, and a poor choice results in dramatic
performance reductions.

These are the main points we address in this paper. We propose a generic
framework to evaluate a cipher through the neural distinguisher perspective. The
goal of our tool is to further assist cryptographers, by adding a new, simple way
to check for weaknesses. It does not aim at replacing traditional analysis, but
rather, at pointing to potential points of vulnerabilities for the cryptographer to
investigate.

Contributions

1. We perform a comparative review of the current state of the art in the field
of neural cryptanalysis;

2. We propose a fully automated framework to perform neural cryptanalysis of
ciphers, independently of their size; this tool is composed of:
– An evolutionary algorithm for the search of single-key and related-key

input differences that works well with neural distinguishers; this algo-
rithm fixes scaling issues with Gohr’s initial approach and enables the
search for larger ciphers, while removing the dependency on machine
learning, to focus on cryptanalytic methods;

– DBitNet, a neural distinguisher architecture agnostic to the structure of
the cipher, which matches or outperforms state-of-the-art architectures
despite a simpler training pipeline;

3. Using our tool, we improve on the state-of-the-art neural distinguishers for
SPECK64, SPECK128, SIMON64, SIMON128 and GIMLI-PERMUTATION
and propose new neural distinguishers for HIGHT, LEA, TEA, XTEA and
PRESENT (Table 1).

Organization. The remainder of this work is organized as follows. We first give a
short introduction into the ciphers which are analyzed in this work in Section 2.
We then give a systematic overview over the past, present and future of neural
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Primitive Arch. Model Tr. Val. Epochs Rounds Acc. Ref.

GIMLI-CIPHER MLP 2-2-δ-D 217.6 214.3 20 8 0.5219 [2]

GIMLI-PERM MLP 2-2-δ-D 217.6 214.3 20 8 0.5099 [2]
DBitNet 2-1-CT-R 223.25 219.93 40 11 0.5238 This work

SPECK32 ResNet 20-1-MIX-R 223.25 219.93 200 5 1 [6]
ResNet 100-1-MIX-R 223.25 219.93 200 6 1 [6]
ResNet 2-1-CT-R 223.25 219.93 200 8 0.514 [12]
DBitNet 2-1-CT-R 223.25 219.93 40 8 0.5114 This work
ResNet 64-32-δ-D 228.25 / 100 8 0.564 [17]
MLP 2-1-δ-D 227.64 226.64 / 3∗ 0.79 [28]

SPECK48 ResNet 96-48-δ-D 228.84 / 100 7 0.634 [17]

SPECK64 DBitNet 2-1-CT-R 223.25 219.93 40 8 0.5369 This work
ResNet 128-64-δ-D 229.25 / 100 8 0.632 [17]

SPECK128 DBitNet 2-1-CT-R 223.25 219.93 10 10 0.5928 This work

SIMON32 ResNet 64-32-δ-D 228.25 / 100 10 0.611 [17]
DBitNet 2-1-CT-R 223.25 219.93 40 11 0.5166 This work
SENet 2-1-M-D 231.17 229.17 10+1+2 11 0.5174 [3]
MLP 2-1-δ-D 224 227.64 / 5∗ 0.57 [28]

SIMON48 ResNet 96-48-δ-D 228.84 / 100 11 0.814 [17]

SIMON64 ResNet 128-64-δ-D 229.25 / 100 12 0.695 [17]
DBitNet 2-1-CT-R 223.25 219.93 40 13 0.5182 This work

SIMON128 DBitNet 2-1-CT-R 223.25 219.93 10 20 0.5074 This work

HIGHT DBitNet 2-1-CT-R 223.25 219.93 10 10 0.7509 This work
HIGHTRK DBitNet 2-1-CT-R 223.25 219.93 40 14 0.5633 This work

PRESENT DBitNet 2-1-CT-R 223.25 219.93 10 8 0.5122 This work

TEA DBitNet 2-1-CT-R 223.25 219.93 40 5 0.5629 This work

XTEA DBitNet 2-1-CT-R 223.25 219.93 40 5 0.5978 This work

LEA DBitNet 2-1-CT-R 223.25 219.93 10 11 0.5115 This work
RK: Related key setting. ∗:respectively 6 and 7 probabilistic rounds are prepended for
SPECK32 and SIMON32 in this work, reaching 9 and 12 round distinguishers
Table 1. Summary of the state-of-the-art and our work. Our naming convention for
the Model column is detailed in subsection 3.6. In the table, / means unknown.

distinguishers in Section 3 and discuss roadblocks to the automatic application
of neural distinguishers to new ciphers in Section 4. We present our solutions
in I) the automated finding of a good input difference (Section 5), as well as
II) cipher-agnostic neural training pipeline (Section 6.2). We discuss our best
distinguishers in Section 7 and conclude in Section 8.

2 Analyzed Ciphers

The following ciphers are analyzed in the context of differential cryptanalysis.
Differential cryptanalysis [18] studies the propagation of an input difference δ
to an output difference γ through a cryptographic primitive, usually through
differential characteristics representing the internal difference at each round of
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the primitive. Non-linearity makes this propagation non-deterministic, so that
finding high probability differential characteristics is a key step in the analysis.

SPECK and SIMON [4] are lightweight block ciphers proposed by the NSA in
2013. SPECK came out in 10 different versions, indexed by their block and key
sizes. The construction is a classic iterated ARX, that goes from a minimum of 22
rounds (with blocksize of 32 bits and keysize of 64) to a maximum of 34 (with
128-bit long blocks and 256-bit long keys). The key schedule of SPECK uses
the same round function as the main cipher. SIMON has 10 different variants
indexed as the ones of SPECK, while the main difference is in the round function:
SIMON uses a Feistel structure, with the only non-linearity being the bitwise-
and function. The smallest version of SIMON has 32 rounds, while the biggest
one has 72 of them.

LEA [15] is a lightweight block cipher published by South Korea in 2013.
Similarly to SPECK, it has an ARX construction. The blocksize of LEA is 128
bit, while its keysize ranges from 128 to 256 bits, for a total of three versions.
Its number of rounds varies from 24 to 32.

TEA [26] is a lightweight block cipher presented by Wheeler et al. at FSE’94.
The round function is built on an ARX construction and the overall structure
of the cipher is a Feistel network. TEA has a blocksize of 64 bit and a keysize
of 128 bit. In a different way than all the other listed ciphers, in TEA the round
keys are injected using the modular addition operation instead of the XOR (this
happens partially also in HIGHT, but TEA is the only one in which this is true
for all the round keys). The total number of rounds for TEA is 64.

XTEA [27] is a lightweight block cipher designed to overcome some weak-
nesses of TEA. It was firstly presented in a unpublished report in 1997, by the
same author of TEA. XTEA inherits blocksize, keysize and number of rounds
from TEA, as well as a somehow similar round structure. The most relevant
changes are the key scheduler and the fact that, in this version, the round keys
are injected using the XOR operation.

GIMLI [7] is a permutation proposed by Bernstein et al. at CHES’17. From
this permutation, the authors proposed an hashing algorithm and an authen-
ticated encryption algorithm, respectively GIMLI-HASH and GIMLI-CIPHER.
The permutation has a state size of 384 bits arranged in a 3 × 4 matrix of 32-
bit words. Its round function combines an SP-box with a linear layer, and it is
iterated for 24 times. GIMLI-HASH is built from it with a sponge construction,
while GIMLI-CIPHER uses the monkeyDuplex one.

HIGHT [16] is an hardware-oriented lightweight block cipher proposed by
Hong et al. at CHES’06. Its structure is based on a variant of the generalized
Feistel construction, with a round function using ARX operations. As TEA and
XTEA, HIGHT has a 64 bit blocksize and 128 bit keysize. Its total number of
rounds is 32.

PRESENT [9] is a lightweight block cipher presented by Bogdanov et al. at
CHES’07. It has a SPN structure, with a blocksize of 64 bits and two possible
keysizes: 80 and 128 bits. For both these versions, the number of rounds is 31.
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3 Neural Distinguishers: Past, Present and Future

We first provide a short, general introduction to machine learning and neural
networks (Section 3.1). We then focus on the introduction of Gohr’s neural dis-
tinguishers and Gohr’s neural difference search (Sections 3.2 and 3.3). We discuss
current areas of research on neural distinguishers, i.e.,, to understand what is
learnt (Section 3.4), as well as improving the neural distinguishers (Section 3.5).

3.1 Machine Learning and Neural Networks

Artificial intelligence (AI) aims to enable machines to mimic or surpass human
behavior. Machine learning (ML) is a subfield of AI, which investigates algo-
rithms that “gives computers the ability to learn without explicitly being pro-
grammed” [23] or “learn from experience” [19]. In contrast to optimization, for
ML the performance on unknown data is the key indicator, in other words the
learning progress is quantified by the generalization error of the algorithm [13].
Typical machine learning algorithms include decision trees, random forests, sup-
port vector machines (SVMs), linear and logistic regression and neural networks.
Deep learning is a subfield of ML which uses deep neural networks. The following
short introduction to neural networks is oriented on [13].

A deep neural network f maps an input x to an output y, i.e., y = fθ(x).
During the training of the neural network the values of the networks parameters
θ are learned. In a feedforward neural network the inputs x are passed through
the different layers of the neural network. For example in a network with three
layers y = f (3)(f (2)(f (1)(x))), we have one output layer (3), one hidden layer
(2), and one input layer (1). The depth of a neural network is usually given by
the number of layers with trainable parameters. Each layer of the neural network
contains neurons. The learned parameters θ are the weight and bias parameters
of those neurons.
To train the neural network, the current network output ypred is compared to a
ground truth ytrue by means of a scalar cost function J(θ) with typical choices
being the mean squared error MSE, mean-absolute error MAE, or binary cross-
entropy. The scalar cost J(θ) is back-propagated to the neural network param-
eters θ by the back-propagation algorithm [22], resulting in the gradient of the
cost function with respect to the parameters ∇θJ(θ).
The optimizer will adjust the network parameters θ based on the gradient value,
and the hyperparameters of the optimizer itself, which includes among others
the learning rate. Typical choices for the optimizer include stochastic gradient
descent SGD or ADAM.
Training of the neural network is done on three datasets: training xtrain,ytrain,
validation xval,yval and test xtest,ytest data. The goal of machine learning, in
general, is not to optimize the algorithm f on a known dataset, but to make
the algorithm generalize to previously unseen data. This is why typically θ-
parameter adjustments are done based on the training data, however, evaluation
of the training progress is done on previously unseen validation data. At some
point during the training, the network may start to get worse at generalization,
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and start to learn the training dataset “by heart”. This phenomenon is known
as overfitting.
The training of a neural network is done in batches and epochs. One epoch
means that the neural network has been optimized on the full training dataset.
The network parameters are adjusted, however, when one batch of training data
has been seen by the neural network. In the extremes are batch sizes of 1, and
batch sizes of the full training dataset. Typical are values in between, and train-
ing outcomes can vary immensely depending on the choice of the batch size.
The evaluation after each training epoch uses a metric which may not be identi-
cal to the loss function. For example, in a classification problem, the typical loss
function is binary cross-entropy, and the typical metric is the accuracy, i.e., the
percentage of correct classifications.

The design of a neural network involves choosing the number of layers, i.e.,
the depth, as well as the types of the layers. The type of each layer is determined
by the way in which the neurons of the layers are connected to each other: For
example, a layer can be dense –here, every neuron is connected to all neurons
in the previous layer– or convolutional –here, every neuron is connected only
to a subset of neurons in the previous layer, inspired by the mammalian visual
cortex.
One problem in training deep neural networks can be that one layer stops
learning. This will prevent the gradient information from successfully back-
propagating to previous layers as well. This is circumvented by the introduction
of residual or skip connections.
One of the most fundamental design choices is the choice of the network lay-
ers nonlinearities, with typical choices being ReLU, sigmoid and tanh. Without
the nonlinearity, the chained function f (3)(f (2)(f (1)(x))) will simply be a linear
function. ReLU is the most popular choice for the hidden layers, as it is fast to
compute and avoids the so-called vanishing gradient problem. The sigmoid acti-
vation is typically encountered in output layers for classification problems, as it
restricts the output to between 0 and 1. The output between 0 and 1 can either
represent a single class probability for multiple output neurons in a multiclass
problem, or directly the class itself, class 0 or class 1, in a binary classification
problem.

3.2 Gohr’s Neural Distinguishers

In his seminal paper, published at CRYPTO’19, Aron Gohr [12] proposes to use
a neural network to distinguish whether pairs of SPECK32/64 ciphertexts corre-
spond to the encryption of pairs of messages with a fixed difference (0x0040, 0x0000),
labeled as “non-random” (1), or random messages, labeled as “random” (0). The
resulting Neural Distinguisher, a residual neural network preceded by a size 1
1D-convolution, results in respectively 92.9, 78.8, 61.6 and 51.4% accuracy for 5,
6, 7 and 8 rounds of SPECK32/64, and is used to mount practical key recovery
attacks on 11 rounds. Gohr also proposes a neural difference search algorithm,
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based on transfer learning, to search for input differences that function well with
neural distinguishers.

Gohr’s neural distinguisher is a residual network with four main parts, the
first three of which are visualized in Fig. 1. At the input a 64 bit ciphertext

Fig. 1. Visualization of three main parts of Gohr’s neural distinguisher.

pair of SPECK32/64 is reshaped and permuted into a 16 bit wide tensor with
4 channels. From a cryptographic perspective the input reshaping reflects the
knowledge on the particular 16 bit word structure of SPECK32/64. In the sec-
ond part, a 1-dimensional convolution (Conv1D(k = 1, f = 32)) is used to slice
through the 4 channel bits. The “slicing” is reflected by the kernel size of k = 1.
The output channel for each filter is produced by scanning the corresponding
filter over the input in one dimension, hence Conv1D. The learnable parameters
are four filter weights, as well as one bias parameter for each of the f = 32 filters,
resulting in a total of 32× 4 + 32 = 160 learnable parameters for this Conv1D-
layer. The output tensor of the bit slicing convolution is 16 bits wide and 32
channels deep. Throughout the network, each convolutional layer is followed by
conventionally used BatchNormalization and ReLU nonlinearity.
The third part are the residual blocks: Each residual blocks consists of two con-
volutional layers Conv1D(k = 3, f = 32). In Gohr’s publication the number of
residual blocks is what denotes a depth-1 neural distinguisher, respectively a
depth-10 neural distinguisher3.
The fourth part of the network is a densely connected prediction head with ReLU
activations and an output layer with a single neuron with sigmoid activation.
Throughout Gohr’s network, each convolutional, and each dense layer is regu-
larized by an L2 = 10−5 parameter. Large weights in a network make overfitting
more likely, and the L2 regularization penalizes such large weights.
The full Python TensorFlow implementation is available on GitHub [11].

3 To refer to the number of residual blocks as depth is not used conventionally. For ex-
ample in the original publication of the first residual network ResNet [14], ResNet34
consists of 34 weighted layers in total, including a fully connected dense layer, while
it has only 16 residual blocks.

https://github.com/agohr/deep_speck/blob/master/train_nets.py
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3.3 Neural Difference Search

Gohr additionally proposes an algorithm to derive good input differences for
neural distinguishers without prior human knowledge. This algorithm is based
on few-shots learning, where the features learnt by a network are used as input
to a simpler machine learning algorithm, trained on less samples. In practice, a
one-block residual network is trained with a random (but fixed) input difference
δ on 3 rounds of Speck with 107 ciphertext pairs; the output of the penultimate
layer of this network is then used as input to train a simple ridge regression
classifier on small numbers of samples for new differences δ′.

A greedy algorithm with exploration bias is used to suggest new candidates
δ′: from a random initial difference, a random bit is flipped at each iteration,
and the resulting input difference becomes the new base if it obtains a better
score through the ridge classifier, or an exploration threshold is reached. The
algorithm is summarized in Algorithm 1.

Algorithm 1: Gohr’s optimizer: given a function F : {0, 1}b → R,
greedily optimizes it to find an input x that maximizes F . Requires in
input the number of iterations t and an exploration factor α.

x← Random(0, 2b − 1);
vbest ← F (x);
xbest ← x;
v ← vbest;
H ← hashtable with default 0;
i← 0;
while i < t do

H(x)← H(x) + 1;
r ← Random(0, b− 1);
xnew ← x⊕ (1� r);
vnew ← F (xnew);
if vnew − α log2(H(xnew)) > v − α log2(H(x)) then

v ← vnew;
x← xnew;

end
if vnew > vbest then

vbest ← v;
xbest ← x;

end
i← i+ 1;

end
return xbest;
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3.4 Understanding What is Learnt

Neural distinguishers becoming the state-of-the-art attack for 11 rounds of SPECK32
raised a lot of questions among the cryptography community. New attacks are
usually welcome, as they deepen our understanding of cryptographic algorithms;
however, when they were first presented, neural distinguisher did not unlock some
new theoretical knowledge about speck: they just worked.

For this reason, it is crucial to understand what property is being learnt by
new neural distinguishers, and determine whether they rely on some new exotic
property, potentially threatening more ciphers, or if they are simply exploiting
known properties more efficiently than we usually do. As such, neural distin-
guishers are not to be thought of as replacement for cryptanalysis, but rather
as a tool that may help identify properties that are difficult to see, so that a
cryptographer can exploit them with classical (non-neural) techniques.

The first step towards understanding the properties learnt by neural distin-
guishers was a paper by Benamira et al. [6], which identified meaningful patterns
in the behaviour of Gohr’s distinguishers on SPECK. In particular, they observed
that the pairs that were correctly classified as non-random overwhelmingly fol-
lowed a truncated differential after a few rounds; for instance, the 5-round pairs
satisfying a truncated differential labeled TD3 at round 3 are correctly clas-
sified with accuracy over 99%, and they represent 87.11% of the total pairs.
Similarly, 5-round pairs following the truncated differential labeled as TD4 at
round 4 are correctly classified with accuracy over 99%, and TD4 is followed by
around 50% of the total pairs. These observations point to the possibility that
the neural network learns a property that gives information on the difference
in previous rounds, such as a differential-linear property. The authors further
modified the neural network to use a heaviside activation function, which forces
its output to be 0 or 1, and studied the resulting boolean functions learn on
speck. From these, they were able to extract masks to apply to the input to
the neural network, creating frequency tables listing the probability of events
such as ”The concatenation of bits a, b of C0 ⊕C1, bits c, d of L0 ⊕R0, and bits
e, f of L1⊕R1 take value va||vb||vc||vd||ve||vf with probability p”. Based on the
resulting probability vector, the authors obtain a distinguisher almost as good
as Gohr’s, without the need of convolutional layers to learn complex features.
Through this research it was shown that the 1D convolutions, while efficient, can
be replaced by a more cryptographically interpretable construction, followed by
a machine learning based classifier. In addition, they experimented with a neural
distinguisher for which a sample was composed of multiple ciphertext pairs with
the same label, and reached 100% accuracy for 5 and 6 rounds of SPECK32,
with 10 and 50 samples respectively.

In [1], Bacuieti et al further investigate the structure of the neural network
itself. In particular, they focus on simplifying the neural network, in an effort to
make it more efficient and interpretable. More specifically, following the lottery
ticket hypothesis to prune Gohr’s neural network to a minimal working version,
on which they use feature visualization techniques to obtain a visual representa-
tion of the neural network’s behaviour; however, the LIME technique they used
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did not reveal any of the input to be more significant than the others in the
classification. They additionally show that, for the case of SPECK32, there is
no significant accuracy difference between the depth 1 neural network, and the
depth 10 version.

3.5 Improving the Neural Distinguishers

Besides work based on understanding the functions learnt by the neural distin-
guishers, another area of research is the improvement of the process. In particu-
lar, the task learnt by Gohr’s neural distinguishers is somehow counter-intuitive:
they learn to distinguish a given distribution from random, and to do so, receive
random samples as part of their training. However, by definition, no property
can be learnt from randomness, so training on random data seems inefficient.

This point is addressed by Baksi et al. [2], who propose a different experi-
ment: rather than distinguishing samples issued from a difference δ from random,
they focus on distinguishing which of t classes a pair belongs, where a class is
determined by an input difference δi. They apply this framework, named Model
1, to GIMLI, ASCON, KNOT, and a model closer to Gohr’s original paper, la-
beled Model 2, to Chaskey. In their experiments, the authors use custom neural
network architectures, based on simpler building blocks than Gohr’s.

In Zezhou et al. [17], the authors study another model for neural distinguish-
ers, labeled MOD for Multiple Output Differences, where the neural network
receives as input samples composed of a set of output differences, and outputs a
label 0 (random) or 1 (non-random). The authors investigate how to obtain good
input differences, and derive sets of input differences for SIMON and SPECK
from SAT solvers, by enumerating differential characteristics within a fixed dis-
tance to the optimal.

Yadav et al. [28] propose an extension of the neural distinguisher framework,
called differential-ml cryptanalysis. In essence, they observe that if we have a
good neural distinguisher, it is possible to prepend some probabilistic rounds, in
order to build longer distinguishers. They obtain a 9-round speck32 distinguisher,
a 12-round SIMON32 distinguisher, and an 8-round GIFT64 distinguisher.

At LNNS’21 [5] , Bellini and Rossi compare neural and classical distinguish-
ers for the ciphers TEA and RAIDEN injecting differences via modular addi-
tion (in contrast to XOR, used in most works). The showed that simple neural
distinguishers based on an MLP structure can outperform classical generic dis-
tinguishers based on differential characteristics also in these settings, reaching 8
rounds for both ciphers.

More recently, at Asiacrypt’22, Bao et al [3] perform an in-depth study of
the key-recovery mechanisms associated with neural distinguishers; in particular,
they compare the properties and wrong key response profiles of SPECK32 and
SIMON32. In addition, they study different formats for the input to the neural
network. For the case of SPECK32, it was shown in [6] that exploiting the
knowledge that the right part of the state at round R − 1 can be computed
from the state at round R could help gain more insight on the function learnt
by the network. Bao et al apply a similar strategy, by training networks labeled
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as NDSIMONr−1RV D on the information that can be learnt on the previous
round (the left parts, and the difference in the right part). They also study a
distinguisher based on average key rank. These experiments are, for the highest
rounds, conducted using a different neural network architecture, SENet [3], and
show that it outperforms Gohr’s choice of ResNet for SIMON-32. In this paper,
we achieve similar results on SIMON with a simpler training method.

These results are summarized in Table 1.

3.6 Summary of the Training Models

In order to have a common language to refer to the different input formats
mentioned above, we propose the following taxonomy: a neural distinguisher is
quantified by parameters n,m, T,E, where n is the number of ciphertexts used
to build each sample, m is the number of differences used, T is the type of the
input (CT for ciphertexts, δ for the difference, Mix for a mix of both), and E
is the type of experiment (R when the labels correspond to random or real, D
when the label depends on the index of the input difference).

Under this convention, for instance, Gohr’s initial experiments are 2-1-CT-R.

4 Roadblocks for Applying Neural Distinguishers
Automatically

The field being in its infancy, it is still unclear what machine learning archi-
tecture works best. Basic MLPs and CNNs have been tried in [2], as well as
significantly larger networks such as SENet [3], or combinations of hand-built
features with non-neural classifiers in [6]. We believe that, while exploration of
the capacities of neural classifiers is going on, the aim should not be to reduce
the size of the neural networks, but rather, to understand how much they can
learn.
In the following experiments we investigate limitations to what neural distin-
guishers can really learn (Section 4.1) and formulate our take-aways for what
prevents an automated application to new ciphers (Section 4.2). We then point
out limitations on another end, namely the identification of good input differ-
ences for new ciphers (Section 4.3).

4.1 What Can Neural Distinguishers Really Learn?

In Gohr’s distinguisher experiment the neural network is trained to distinguish
between two types of ciphertext pairs which originate from a SPECK32/64 en-
cryption. The ciphertext pairs (C0, C1) are either obtained from 1) a plaintext
pair with a specific plaintext difference (P0, P0+(0x0040, 0x0000)) or 2) a ran-
domly generated plaintext pair (P0, P1).

What underlies the ability of Gohr’s neural network to distinguish between
case 1) and 2)? In a simple example, the neural network could decide that the
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ciphertext pair in question is obtained from 1) if it can predict the value of sev-
eral bits in the ciphertext pair, given the remaining bits of the ciphertext pair
as input.
In more general terms, given the bits of the ciphertext pair (c1, . . . , c64), Gohr’s
neural distinguisher is likely to learn Boolean functions of the form ci = f(cj|j 6=i)
and base the distinguishing decision on the correctness of the bit prediction out-
comes. In the specific case of ciphertext generated with a reduced round version
of SPECK, the Boolean functions in question will reflect the cipher structure.
If, however, we wish to use the distinguisher on another cipher, the underlying
Boolean functions will change.

Here, we investigate the most general case of a random Boolean function
to expose any fundamental limitation of Gohr’s neural distinguisher. We show
that the random Boolean functions which can be learned by Gohr’s neural dis-
tinguisher are surprisingly limited. To understand the limitation we inspect the
construction of Gohr’s neural distinguisher, and find that in particular the in-
put restructuring of Gohr’s neural distinguisher reflects expert knowledge on
SPECK. We show that this input restructuring overcomes the limitation in the
case of SPECK.

A Motivating Example In [6], the authors observe that the performance of Gohr’s
neural distinguisher for r rounds is strongly correlated with the difference ob-
served after r − 2 rounds, hinting that the classification accuracy could be ex-
plained through differential-linear properties. For SPECK-32/64, with the input
difference fixed to (0x40, 0), we evaluated all 232 possible linear mask on the out-
put difference, and found (0x5820, 0x4020) to be the most biased for 7 rounds.
The quantity δ7 ·0x58204020, takes value 0 with average probability 0.57, where
δ7 is the output difference at round 7, and · is the bitwise dot product. A basic 7-
round distinguisher can be built through this property alone: if δ7 ·0x58204020 is
equal to zero, classify as non-random; otherwise as random. Such a distinguisher
is right when (1) the pair is indeed non-random, and the property holds, or (2)
the pair is random, and the property does not hold; in other words, its accuracy
is 1

2 · Pr[δ7 · 0x58204020 = 0|non-random] + 1
2 · Pr[δ7 · 0x58204020 = 1|random]

= 1
2 · 0.57 + 1

2 · 0.5 = 0.535.
We evaluate the hypothesis that Gohr’s neural network is able to learn such

a differential linear property, as it should weight heavily in the classification
accuracy. To do so, we build an artificial dataset for Gohr’s network, in which
the samples are random 64-bit strings, and the label Yi, corresponding to sample
Li||Ri, is equal to (Li⊕Ri) ·0x58204020. Under this setting, the neural network
is not able to go over 50% accuracy when trained on 107 samples, even with a
depth of 10. This hints that further accuracy gains might be obtained by making
the neural network better at detecting such functions, further motivating the
experiments of this section.

Limitation of Gohr’s network: An experiment on learning random Boolean func-
tions. In this experiment we evaluate how well Gohr’s network can learn a
random Boolean function. To preserve similarity to Gohr’s experiment, we still
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use 64-input bits X = (x1, . . . , x64). However, now Gohr’s network is trained
to predict the 0 or 1 outcome of the Boolean function Y = f(x1, . . . , x64). To
vary the difficulty of the Boolean function, we change its degree d and the num-
ber of terms t. For example, the random Boolean function f(x1, . . . , x64) =
x6x18x20⊕ x33⊕ x52⊕ x61 would have a (multiplicative) degree d = 3 and t = 4
terms. Note, that only 6 of the 64 input bits are “active” in the Boolean func-
tion. The remaining bits can be seen as “noise bits” which do not influence the
Boolean function outcome, but still appear at the input of the neural network.
For each random Boolean function, we train Gohr’s depth-1 neural distinguisher
to predict Y on 107 inputs X for 40 epochs. After each epoch, the accuracy is
evaluated on 106 validation datapoints. Figure 2 shows the best observed vali-
dation accuracy for each random Boolean function of degree d and t terms. Sur-
prisingly, we observe that Gohr’s network cannot easily learn random Boolean
functions already starting at t ≥ 8 terms. In conclusion, this experiment shows
that while Gohr’s neural distinguisher is excellent at SPECK, it seems to have
difficulties learning other random Boolean functions with more than seven XOR
terms.

Fig. 2. How well can Gohr’s network learn a random Boolean function?

Why is Gohr good at distinguishing SPECK, but not at learning random Boolean
functions? The following two experiments pinpoint two reasons for the difficulty
of Gohr’s neural distinguisher learning a random Boolean function of more then
t ≥ 8 terms. In the first experiment, we fix the random Boolean function to a
single one ffixed with d = 1, t = 8. Then we force all noise bits to zero and let
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Gohr’s network learn ffixed with the same training procedure as in the previous
experiment. We gradually increase the number of noise bits nnoise from 0 to 56,
where 56 is the original value in the previous experiment. Figure 3 (left) shows
that Gohr’s network can easily learn a random Boolean function with t = 8 for
a small number of noise bits nnoise. In conclusion, the noise bits prevent Gohr’s
neural network from learning random Boolean functions, even of a relatively
small number of terms.
In the second experiment, we manipulate the Boolean function itself, resulting
in Gohr’s network learning fmanual. fmanual still is of degree d = 1, t = 8 terms
and has nnoise = 56 noise bits. However, here, we change the position of the
active bits as indicated in Fig. 3 (right). The input reshaping in Gohr’s network
is such that the 64 input bits are rearranged as shown in Fig. 3 (center). The
first convolutional layer of Gohr’s network slices through four bits in each row.
Figure 3 (right) shows that if the active bits of fmanual are chosen in fashion
which reflects the particular input reshaping of the network, the Boolean function
fmanual can be learned easily (within 4 epochs with full validation accuracy).
Here, the active bits all lie within subsequent rows of the reshaped input.
However, if the active bits of fmanual are either randomly chosen, or especially
unsuited to the input reshaping, it cannot be learned easily. For example the
XOR of the first 8 input bits fmanual = x1⊕x2⊕ . . .⊕x8 cannot be learned easily
by Gohr’s neural distinguisher. In conclusion, the last experiment demonstrates
that the input reshaping in Gohr’s neural distinguisher is essential for its ability
to learn specific Boolean functions.

Fig. 3. What prevents Gohr’s network to learn a random Boolean function with t = 8
XOR terms?

4.2 Lessons Learnt

The experiments presented previously give strong indications that the appli-
cation of Gohr’s ResNet to other ciphers may not be give optimal results. In
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the following we summarize our lessons learnt from what prevents automated
attempts to apply neural distinguishers to a range of ciphers.

The Learning Rate Schedule. For the training of Gohr’s neural distinguisher the
Adam optimizer is used with a cyclic learning rate that varies over 10 epochs
between limits of 0.002 and 0.0001. Adam is known as one of the most advanced
optimizers, however, it has been observed to fail to converge to an optimal so-
lution [21]. Such convergence failure may make it necessary to manually find
an optimal learning rate schedule. For our purposes of a generic application to
a range of new target ciphers, such a manual choice should be avoided. As an
alternative mitigation of the convergence issue, Reddi et al. introduce the AMS-
Grad algorithm in “On the Convergence of Adam and Beyond” [21] at ICLR
2018.

The Neural Network Hyperparameters. The network used in Gohr’s paper uses
32 filters for each convolution layer, and 64 neurons for the first dense layer.
These parameters incidentally match the size of the difference and of the input,
respectively, for SPECK32. In order to generalize neural distinguishers to larger
primitives, a logical first step is to upscale it these parameters.

To evaluate how to rescale the parameters, we focused on SPECK128, using
the input difference (0x80, 0x0). This choice mirrors the input difference (0x40, 0)
chosen for SPECK32, which propagates to (0b100 · · · 0, 0b100 · · · 0) with probabil-
ity 1 after 1 round for SPECK32: (0x80, 0x0) propagates to (0b100 · · · 0, 0b100 · · · 0)
with probability 1 after 1 round for SPECK128. Furthermore, it is among the
top input differences returned by our low HW optimizer. As a baseline result, we
trained Gohr’s initial neural network with its default parameters, a depth of 1,
using 107 samples for training and 106 samples for testing, for 200 epochs, and
reached 9 rounds, with an accuracy 0.6519. We then trained new networks on 9
rounds, varying the number of filters (32, 64, 128) and neurons (64, 128, 256)
on depth 1, reaching at best 0.6541 accuracy with 256 filters and 64 neurons.
We then trained a network with depth 10, once with 32/64 filters/neurons, and
once with 128/256 filters/neurons, and obtained the respective final validation
accuracies 0.6564 and 0.6560.
From these experiments, we conclude that, while scaling the parameters seems
to have some impact on the final accuracy, this impact is very limited. At this
point, we could either attempt to fine-tune the structure of the network further,
or go with a more generic approach; we chose the second option, resulting in the
DBitNet network, presented in subsection 6.2.

The Reshaping of the Input. Gohr’s neural distinguisher’s structure follows the
division of SPECK into 2 words. However, when attempting to apply it to dif-
ferent ciphers, the question arises of what data shape to adapt. For instance,
for the AES cipher, a decomposition into 2 · 16 8-bit words may be beaten by a
2 · 4 32-bit columns, due to the column-oriented MixColumns operation of the
cipher. Furthermore, the chosen shape has a direct influence on the complexity,
and therefore learning power, of the network. This becomes clear when looking
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at Table 4, where ciphers with similar sizes, such as HIGHT, PRESENT, and
SPECK64, result in neural classifiers with widely different complexities depend-
ing on their number of words (2 for SPECK64, 8 for HIGHT, 16 for PRESENT).
For a higher number of words the Conv1D operation slices through a higher num-
ber of bits, compare Fig. 3 (center). This in turn means less necessary kernel
shifts, and accordingly less multiply-accumulate operations, i.e., FLOPs.

The Training Pipelines. When training a neural distinguisher, it is sometimes the
case that the highest achievable round fails to be trained using straightforward
techniques. In order to obtain an 8-rounds distinguisher for SPECK32, Gohr [12]
uses a staged training scheme: he retrains the best 5-round distinguisher on the
input difference (0x8000, 0x840a), which is the most likely to appear after 3
rounds. This distinguisher is then retrained for 8 rounds, with a 100 times more
data than the other distinguishers, to finally reach 0.514 validation accuracy. Bao
et al [3] use a similar staged training for their 10-round SIMON32 distinguisher.

These elaborated training schemes are not easily transferable to other ciphers,
as they require looking at the differential characteristics of the studied cipher.
This level of fine-tuning makes it difficult to adapt to other ciphers.

4.3 Finding a Good Input Difference for a New Cipher

It has been shown in previous work [6] that the input difference to the best
differential characteristic is, at least for SPECK, not a good choice for neural
distinguishers. This is related to the very nature of neural distinguishers: differ-
ential characteristics maximize the probability for a given output difference, but
this probability is too low for the corresponding output difference to appear of-
ten on a single pair. For instance, the best differential characteristic for 5 rounds
of SPECK-32 has probability 2−9, so that it would appear in roughly one in 500
pairs; this is clearly not enough for a neural distinguisher.

In [12], a neural difference search algorithm is proposed ( 1), which success-
fully finds the input difference used in the SPECK32 distinguishers. However,
adapting it to different ciphers is non-trivial. In particular, the choice of the
starting round (3), the number of iterations (2000) and the alpha parameters
may need to be adapted. Furthermore, the preprocessor itself is dedicated to
speck, with a specific input reshaping and learning rate, so that preliminary de-
sign decisions are necessary. Nevertheless, we study the scaling properties of the
optimizer on SPECK128. The choice of a SPECK variant minimizes the design
decisions to be made: we only change the word size parameter of the residual
network to 64, and use the neural difference search method provided in Gohr’s
Github repository.

This first experiment was run 70 times in total, 10 for each starting round,
from 1 to 7. In none of these runs was the optimizer able to produce a good input
difference. Furthermore, the evaluation function was very bad after 4 rounds, as
the preprocessor was never able to reach over 0.5 accuracy in these cases.

In order to help the preprocessor to learn, we replaced its initial random
difference by a random low Hamming weight one. This allowed the reprocessor
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to surpass 0.9 validation accuracy at least once among the 10 runs for all starting
number of rounds. The optimizer, however, still returned random differences.

In order to help the optimizer converge, we additionally forced the optimizer’s
first guess to have Hamming weight 1; this showed to be the best setup we tried
for the neural distinguisher search.

We validated the results of the optimizers by training the neural distin-
guisher for more epochs with the obtained differences. None of the results of
our first experiment, with the basic algorithm, resulted in a distinguisher for
more than 7 rounds. On the other hand, all but one of the input differences
returned in the last (low Hamming weight) experiment resulted in distinguish-
ers for 8 rounds or more. In addition, the optimizer returned 3 input differences
((0x200000, 0x2000), (0x800000000, 0x80000000), (0x1000000000, 0x100000000))
that resulted in distinguishers on 10 rounds.

From our experiments, it appears that with larger ciphers, such as SPECK128,
Gohr’s initial optimizer hits a limit. It is possible to modify it to force the use of
low hamming weight starting points, but the resulting optimizer fails at return-
ing the best input difference for SPECK128, as we show in later sections. While
further improvements to this optimizer might help, we chose a different route,
that attempts to use cryptographic knowledge to find good input differences; the
corresponding optimizer is presented in subsection 5.1.

5 Solution Part I: Automated Finding of Good Input
Differences

In the previous section, we identified generalisation issues with the neural dif-
ference search algorithm. In this section, we propose a different, non-neural ap-
proach.

The input difference to the best n-round trail is not the one that gives the
best results for neural distinguishers. For instance, for 5 rounds of speck, the
input difference leading to the best trail is (0x2400, 0x0020), which leads to a
trail with probability 2−9; Gohr’s network, trained with this input difference,
reaches 61% accuracy. On the other hand, the input difference (0x0040, 0x0000)
used in Gohr’s paper does not have better 5 rounds trails than 2−13, and yet,
the neural network obtains 92% accuracy when trained with it. This disparity
between probability of the best trail and neural network accuracy becomes higher
as the number of rounds increase: for 6 rounds, the neural network’s accuracy
does not go above 51% for the optimal input difference ((0x0211, 0xa040), 2−13

trail), but Gohr’s input difference (2−20 for the best trail) reaches 78% accuracy.

We adopt the hypothesis proposed by [6] that this disparity is related to
truncated differentials. In addition to the truncated differences TD3 and TD4,
we observe that the input difference (0x0040, 0x0000) fixes the 2 bits of the left
part to 0 after 3 rounds. Furthermore, high biases persist in higher rounds; for
instance, bit 14 at round 5, is set to 1 with probability 88%. Such strong biases
are likely to lead to high probability differential-linear properties
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We focus on the problem on finding the optimal input difference (for neural
distinguishers) cryptographically, under the assumption that this input differ-
ence maximizes the bias of intermediate difference bits. More formally, we assume
that a good input difference for neural distinguishers is one that maximizes a
bias score, defined as:

Definition 1 (Bias score). Let E : Fn2×Fk2 → Fn2 be a block cipher, and δ ∈ Fn2
be an input difference. The bias score for δ, b(δ) is the sum of the biases of each
bit position j in the output difference, i.e.,

b(δ) =

n−1∑
j=0

∣∣∣∣∣∣∣2 ·
∑

X∈Fn
2 ,K∈Fk

2−1

(EK(X)⊕ EK(X ⊕ δ))j

2n+k
− 1

∣∣∣∣∣∣∣
The Bias Score cannot be computed for practical ciphers, as it requires enu-

merating all keys and plaintexts. On the other hand, we can use an approxima-
tion, obtained from a limited number of samples t:

Definition 2 (Approximate bias score). Let E : Fn2 × Fk2 → Fn2 be a block
cipher, and δ ∈ Fn2 be an input difference. The approximate bias score for δ, b̃t(δ)
is the sum of the biases of each bit position j in the output difference, computed
for t samples i.e.,

b̃t(δ) =

n−1∑
j=0

∣∣∣∣∣∣∣∣2 ·
t∑
i=0

(EKi(Xi)⊕ EKi(Xi ⊕ δ))j

t
− 1
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Conjecture 1. Input differences δ that reach the most rounds with a neural dis-
tinguisher have a high bias score b(δ). We further assume that b̃t(δ) is a good
estimation of b(δ).

To test our conjecture, we compute b̃t(δ) for all 232 possible SPECK32 input
differences, for a small t; δ = (0x0040, 0x0000) does indeed maximize b̃t(δ) for 5
rounds.

As a further test, we compute an approximate bias score b̃2000(δ) for low Ham-
ming weight (1 and 2) input differences on SPECK-128, and obtain (0x80, 0x8000000000000000)
as the optimal on 7, 8, 9 rounds. This input difference obtains vastly superior
scores through the neural distinguisher, compared to the ones found by the neural
difference search: 0.9861, 0.8252, and 0.5898 for 8, 9 and 10 rounds respectively.

These results convince us to perform a search based not on the results of a
linear classifier, but on the significantly faster to compute biased score, which
allows us to explore more candidate input differences. To exploit the speed gain
of our approach, we propose a new evolutionary-based search algorithm.
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5.1 Evolutionary Optimizer

Optimizer Parameters The parameters used in our algorithm are:

– Initial population for each generation: 32
– Mutation probability: 0.1
– Approximate bias score samples number t: 104

– Relevance threshold Tb: 0.01

Algorithm In our algorithm, each individual of the population represents an
input difference. Starting from an initial population of 1024 random input dif-
ference, we compute an approximate bias score for each of them, and keep the
32 obtaining the highest score. Starting from these 32 input differences, we run
a total of 50 iterations, during which new individuals are derived and evaluated.
The algorithm is described in 2.

Algorithm 2: Evolutionary optimizer

starting population← [ RandomInt(0, 2n − 1) for 1024 times];

Sort starting population by b̃t(·) (descending order);
current population← first 32 elements of starting population;
for iterations← 0 to 50 do

candidates← [ ];
for i← 0 to 32 do

for j← i+ 1 to 32 do
if RandomFloat(0, 1) < 0.1 then

m← 1
else

m← 0
end
Add current populationi ⊕ current populationj ⊕ (m�

RandomInt(0, n− 1)) to candidates
end

end

Sort candidates by b̃t(·) (descending order);
current population← first 32 elements of candidates;

end
return candidates;

After these 50 iterations, the algorithm produces a list of 32 input differences,
which have a high bias score.

Accounting for the Starting Round The choice of the starting round has an
influence on the bias score. For instance, in the related key case for SPECK32-
64, any key difference of the form (x, 0, 0, 0), with a plaintext difference of 0,
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results in an output difference of 0 after 2 rounds by construction of the key
schedule algorithm, and therefore, a maximal bias score. On the other hand, not
all such input differences are equally good after 2 rounds.

In order to make our algorithm as generic as possible, we chose to start from
1 round, run our evolutionary algorithm, and increment the number of rounds
if the highest bias score returned is greater than a threshold Tb. In the end, we
have R lists of 32 differences, corresponding to the R rounds for which a bias
score greater than Tb was returned. Note that the search starts from scratch after
each round increment: the population is not carried forward from one round to
the next, in order to avoid biases. Therefore, we perform a final evaluation of all
the obtained differences from 1 to R rounds, and compute a weighted cumulative
bias score, in which each score is multiplied by the corresponding number of
rounds. This is to account for the possibility that a difference may be bad for
early rounds, but become good as the number of rounds increases. Since we are
interested in reaching as many rounds as possible, a difference that works well
in late rounds should be favored.

5.2 Optimizer Results

Our optimizer returned a large number of solutions, represented in Table 2.
These input differences are all relatively good, and the highest scoring are usually
among the best. This is, however, not so clear-cut. For instance, in the case of
SIMON32, 64 and 128, we respectively have 16, 32 and 64 input differences that
obtain virtually identical scores (within 1% of each other). On the other hand,
for SPECK128, one input difference is clearly dominating the others. Picking the
highest ranking difference gives a good approximation on the number of rounds
that can be reached (in our experiments, it was never more than 1 round short
of the best number of rounds we reached); however, finding the actual best input
difference for ciphers that have more than a few solutions is tricky, as it requires
a lengthy training process. A difficulty in the process was selecting which of the
input differences to further investigate; our first choice was to only select the
best 3, but for some of the studied ciphers, we observed a higher number of
differences sharing very similar scores; for instance, for SIMON64, there are 64
differences with scores within 1% of the highest ranking choice, and 9 with scores
within 0.1%. We therefore chose to use distance to the highest score as a metric
to chose which differences to train further, and picked 10% as a threshold. In
this restricted setting, we still had over 800 neural distinguishers to train.

The complete list of obtained input differences will be made available in a
public repository at the time of publication, as it is of independent interest. In
the next section, we present fully trained neural distinguishers for some of our
best differences.

Overall, our optimizer performs well, and retrieves known good differences
from the literature, or improves on existing ones. The first reason is that it
does not need to rely on few-shot learning, so that the evaluation function is
significantly faster. In each of the 50 iterations, up to 1024 input differences
need to be evaluated; neural difference search would be harder to scale that
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much. Secondly, the greedy optimizer of neural difference search flips one bit at
a time, which limits its ability to explore cases where several bits need to be set
together, or high hamming weight input differences; in contrast, our evolutionary
approach promotes more diversity within the solutions.

Primitive Total 0.01-close 0.1-close 0.25-close

SIMON32 135 16 16 16

SIMON64 145 32 32 32

SIMON128 266 64 64 64

SPECK32 81 1 2 2

SPECK64 69 1 2 2

SPECK128 156 1 1 1

LEA 156 1 2 2

HIGHT 140 3 27 27

TEA 73 1 3 3

XTEA 48 1 3 3

PRESENT 102 4 31 31
Table 2. For each studied primitive, the number of solutions returned by the optimizer,
and the number of ε − close solutions: solutions that have scores within a factor ε of
the best score for the primitive.

6 Solution Part II: A Cipher-Agnostic Neural Training
Pipeline

Drawing on the identified roadblocks for the automatic application of neural
distinguishers to new ciphers in Section 4, we are resolved to utilize a simple
training pipeline (Section 6.1) and develop a generic network we call DBitNet
(Section 6.2). Whenever a new network is presented, it should be characterized
in terms of its computational and memory resources. We compare DBitNet to
ResNet and SENet in Section 6.3. We conclude the section by presenting the
neural network training results in Section 6.4.

6.1 Our Training Pipeline

We propose a simple pipeline: when training a neural distinguisher for rounds
Rstart to Rend, one retrains the same network of Rstart for round Rstart+1 until
round Rend is reached. For instance, in the case of SPECK32, one would train
the network N5 for 5 rounds, retrain N5 on the 6 rounds dataset to obtain N6,
retrain N6 on 7 rounds to obtain N7, and finally retrain N7 on 8 rounds to obtain
N8. We refer to this technique as the staged pipeline in the rest of this paper.
Distinguishers are characterized in terms of their accuracy, i.e., in the percentage
of correctly identifying between ciphertext pairs of a chosen plaintext difference,
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and those of random plaintext pairs. The number of ciphertext pairs used for
training, respectively validation are 107 and 106 samples.

The Random Guess Limit. It is important to note the limit on when we can
consider a found accuracy well above a random guess limit. An experiment like
the distinguisher can be modeled as a Binomial experiment: We perform n trials
and there are two possible outcomes in each trial (random or not random). In our
case each outcome has equal probability p = 50% since our dataset has an equal
number of random and not random samples. The expected binomial standard
deviation in this case is σ =

√
n/4. Or, if we are to express it as a percentage

σ% = 1/(2
√
n). In our experiment the trials are n = 1×106 validation sequences,

resulting in an expected standard deviation of σ% = 0.05%. We set our limit for
accuracies A significantly above a random guess at ten standard deviations, i.e.,
Anot random > 50.5%.

6.2 Description of our Neural Network (DBitNet)

Gohr’s neural distinguisher is immensely successful as a distinguisher for SPECK32.
However, we demonstrated that when learning a random Boolean function weak-
nesses can be exposed which relate to the particular input reshaping that takes
place in the distinguisher. We further identified a range of hyperparameters that
prevent successful application to new ciphers in Section 4, the most important
among them again being the input reshaping.
How can the input reshaping in Gohr’s neural distinguisher be avoided alto-
gether? Speaking in a simplifying manner, the input reshaping serves to investi-
gate dependencies of far-apart as well as neighboring bits in the 64-bit input: For
example, observe that the bit-slicing filter may learn functions between bits (1,
17, 33, 49) while the following k = 3 filter may learn functions between neigh-
boring bits (1,2,3) (compare Fig. 3 (center)). In this way, near and long-range
dependencies among the bits can be learned. Therefore, the input reshaping can
potentially be avoided, given another, more generic way to investigate near, as
well as long-range dependencies.

Rationale for DBitNet. One way to tackle the problem of investigating near
as well as long-range dependencies are so-called dilated convolutions, as pre-
sented in “Multi-Scale Context Aggregation by Dilated Convolutions” by Yu
and Koltun [29]. The “Multi-Scale Context” refers to two-dimensional image
data, however, a prominent example that uses dilated convolutions and deals
with long-, as well as short-range dependencies on one-dimensional temporal
data is WaveNet of Google DeepMind [20].

A dilated convolution uses a dilation rate above one, Fig. 4a). Therefore,
instead of learning a filter function between bits 1 and 2, a convolutional layer
with dilation rate 3 can learn a filter function between bits 1 and 4. If we apply
such a dilated convolutional layer with dilation d = 8 and kernel size k = 2
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Fig. 4. a) The concept of dilated convolutions, b) The idea for DBitNet c) The actual
design of DBitNet.

to a 16-bit input, we could find a representation with 8 neurons width which
contains the information on the long-range dependencies between the bits of the
first and the second half of the input, Fig. 4b). The next layer is a d = 1 layer
to investigate the dependencies between neighboring bits. To investigate again
the long-range dependencies, we next choose d = 4 and so on.
As shown in Fig. 4b) the neuronal width is shrinking with each dilated convo-
lution by a factor of two. This shrinking of the neuronal width dimensionality
is also encountered in popular image detection networks like ResNet [14]. As
“compensation” the number of channels is increased: In ResNet34 for example
the image size is halved from 224 pixels to 112, to 56, to 28 pixels, and so on
while the number of channels increases from the 3 red-green-blue channels to
64, and 128. We follow a similar tactic and increase the number of channels
with each dilational convolution. We start with 32 filters, identical to Gohr, in
the first convolutional layer. Whenever the neuronal width is halved, we add 16
filters, resulting in 32 + i× 16 filters in the ith dilated convolution.
The TensorFlow implementation of DBitNet will be made available at the time
of publication.

Gohr settings DBitNet settings

cipher input size num. blocks word size dilation rates

SIMON32 64 2 16 [31, 15, 7, 3]
SPECK32 64 2 16 [31, 15, 7, 3]
HIGHT 128 8 8 [63, 31, 15, 7, 3]
PRESENT 128 16 4 [63, 31, 15, 7, 3]
SIMON64 128 2 32 [63, 31, 15, 7, 3]
SPECK64 128 2 32 [63, 31, 15, 7, 3]
TEA 128 2 32 [63, 31, 15, 7, 3]
XTEA 128 2 32 [63, 31, 15, 7, 3]
LEA 256 4 32 [127, 63, 31, 15, 7, 3]
SIMON128 256 2 64 [127, 63, 31, 15, 7, 3]
SPECK128 256 2 64 [127, 63, 31, 15, 7, 3]
GIMLI-PERM 768 12 32 [383, 191, 95, 47, 23, 11, 5]

Table 3. Settings for Gohr’s neural network and DBitNet.
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Neural Network Settings for Different Ciphers. When working on a different ci-
pher many model and training parameters and hyper parameters might need to
be adapted. At the minimum, and common to Gohr’s neural distinguisher and
DBitNet, the neural network input size has to be adapted when changing to a
cipher of different size. Based on this input size, for DBitNet the dilation rates
are given by dividing the input size by two and subtracting one, until a minimum
value of 3 is reached. Gohr’s network requires manual input for the number of
words (section 4.2. In principle for Gohr’s network also the number of filters, as
well as the cyclic learning rate has to be adapted. For DBitNet we restrict our-
selves to using the ADAM optimizer in its standard settings, together with the
before-mentioned AMSGrad algorithm. The settings for both neural networks
are summarized in Table 3.

6.3 A Comparison of FLOPs and Parameter Counts

The number of multiply-add operations, or FLOPs, is often used as a proxy
for the latency and memory usage of neural network models [8]. We use the
TensorFlow Keras module keras-flops to evaluate the FLOPs for each model.
TensorFlow provides a native routine model.count_params() for the parameter
count. The results are shown in Table 4. For the 32-bit ciphers the execution time
of DBitNet is in between the one for Gohr-depth1 (10s) and Gohr-depth10 (50s,
not shown in the table). The same holds for the number of FLOPs. The FLOPs
and time per epoch for DBitNet scale linearly with the input size of the cipher.
Since the FLOPs represent the operations needed to investigate a presented
cipher, we argue that an increase of the FLOPs with an increase of the cipher
size is reasonable. To achieve such an increase in the FLOPs, the number of
filters of Gohr’s network would have to be manually adapted, depending on the
input size, as well as the chosen number of blocks and word size. We have also
analyzed the neural distinguisher SENet NDSIMON8R

V V provided on the GitHub
repository of [3] for SIMON32 and find that it has 13.5M FLOPs, and 449.46k
parameters.

6.4 Neural Network Training Results

For each target cipher in Table 5 we start with the set of differences found by
the evolutionary optimizer presented in Section 5.2. We train a Gohr depth-1
neural network and DBitNet to distinguish between ciphertext pairs of the cho-
sen plaintext difference, and those of random plaintext pairs using the training
pipeline as presented in Section 6.1. For each round we train the number of
epochs as indicated in Table 5. Table 5 summarizes the highest round achieved
(best round), as well as the accuracy (best acc.) of the best distinguisher (best
NN ) in this round, once for staged training with only 10 epochs in each round,
and once for staged training with 40 epochs in each round. The green highlight
indicates an improvement of the 40 epochs over the 10 epochs staged training.

https://github.com/differential-neural-cryptanalysis/speck32_simon32/tree/main/simonNDvsDD/SENet
https://github.com/differential-neural-cryptanalysis/speck32_simon32/tree/main/simonNDvsDD/SENet
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FLOPs Parameter counts Time per epoch

cipher Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet

SIMON32 0.28M 1.76M 2.09M 44.32k 298.11k 102.50k 10s 36s
SPECK32 0.28M 1.76M 2.09M 44.32k 298.11k 102.50k 10s 36s

HIGHT 0.15M 3.52M 1.06M 28.32k 390.21k 86.50k 9s 68s
PRESENT 0.09M 3.52M 0.54M 20.64k 390.21k 78.82k 9s 68s
SIMON64 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 64s
SPECK64 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 68s
TEA 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 15s 68s
XTEA 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 68s

LEA 0.56M 7.17M 4.17M 77.22k 503.46k 135.39k 15s 129s
SIMON128 1.10M 7.17M 8.31M 142.62k 503.46k 200.80k 22s 116s
SPECK128 1.10M 7.17M 8.31M 142.62k 503.46k 200.80k 24s 129s

GIMLI-PERM 0.59M 20.37M 4.20M 77.73k 705.44k 135.91k 16s 312s

Table 4. FLOPs, parameters and runtime per epoch (on our NVidia Ampere A100
GPU) for Gohr’s neural distinguisher of depth 1 (D1), depth 10 (D10), and DBitNet.

Likely, these results would improve further when extending the training epochs
to 200, or training with a larger amount of data.

7 Our Best Distinguishers

Simon and Speck For SPECK32, we retrieve the optimal input difference used in
Gohr’s paper, with similar accuracies. In addition, we find an 8-round neural dis-
tinguisher for SPECK64 with accuracy 0.5369, and a 10-round distinguisher with
accuracy 0.5928 for SPECK128. Our SPECK128 distinguisher is new, whereas
our SPECK128 distinguisher obtains the same number of rounds, but slightly
lower accuracy than the one of Hou [17]; on the other hand, Hou uses the MOD
model with 64 pairs in each sample, so that the network has vastly more data
to classify. Interestingly, the best differential characteristic for SPECK128 given
in [24] contains one of the differences returned by our optimizer at round 15:
(0x80, 0). When training DBitNet for this input difference, we get respective
accuracies of 0.9057, 0.6507, and 0.5258 for 8, 9 and 10 rounds, therefore obtain-
ing candidate theoretical distinguishers for 23, 24 and 25 rounds respectively.
However, the signal to noise ratio of these distinguishers does not permit direct
application: the probability for the front 15 rounds is 2−110, and the evalua-
tion of C · 2−110 produces too many false positives for C true positives to be
distinguishable.

For a key recovery attack similar to [3], one can prepend the input dif-
ference (0x820200, 0x1202), which propagates to our best neural distinguisher
(0x80, 0x8000000000000000) after 2 rounds with probability 2−6. An additional
round can be added at the start, yielding a 13 rounds distinguisher.
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10 epochs 40 epochs

cipher difference best round best acc. best NN best round best acc. best NN

SIMON32 0x400 11 0.5150 DBitNet 11 0.5166 DBitNet
SPECK32 0x400000 8 0.5103 DBitNet 8 0.5114 DBitNet
HIGHT 0x800000000000 10 0.7509 DBitNet 10 0.7509 DBitNet

HIGHTRK 0x800000000... (a) 13 0.9647 DBitNet 14 0.5633 DBitNet
PRESENT 0xd000000 8 0.5122 DBitNet 8 0.5120 DBitNet
SIMON64 0x8000 13 0.5179 DBitNet 13 0.5182 DBitNet
SPECK64 0x8080000000 8 0.5332 Gohr-D1 8 0.5369 DBitNet
TEA 0x4000000000000000 5 0.5562 Gohr-D1 5 0.5629 DBitNet
XTEA 0x4000000000000000 5 0.5302 DBitNet 5 0.5978 DBitNet

LEA 0x800000008...(b) 11 0.5115 DBitNet 11 0.5113 DBitNet
SIMON128 0x8000000 20 0.5074 DBitNet 20 0.5069 DBitNet
SPECK128 0x808000000000000000 10 0.5928 DBitNet 10 0.5913 DBitNet

GIMLI-PERM 0x800000000...(c) 11 0.5237 DBitNet 11 0.5238 DBitNet
RK: Related key setting (a): 0x80000000000000000000000000000000000000800000
(b): 0x80000000800000008004000080
(c): 0x8000000000000000000000000000400000000000000000000000000000800000000000000000000000

Table 5. Summary of the best distinguishers for each target cipher for staged training
with 10 epochs per round, respectively 40 epochs per round. The detailed round-by-
round results for 40 epochs are shown in Table 6.

For SIMON32, we obtain similar results to [3], albeit with a significantly
simpler training pipeline, and less computations (Section 6.3). For SIMON64,
interestingly, we reach one more round than [17], even though [17] uses 64 pairs.
For SIMON128, we find a new 20 rounds distinguisher.

Gimli In order to evaluate our approach against [2], we studied the GIMLI
permutation, and reached 11 rounds with accuracy 0.5238, which is 3 rounds
more than [2]. This is explained by the choice of input difference, as we obtained
similar results to [2] when using the same input differences as him. This result
is to be compared with the design document of GIMLI [7], which finds at best a
differential characteristic with probability 2−188 on 12 rounds, as well as the 12-
round linear distinguisher with complexity 2−198 and the 15-round differential-
linear distinguisher with complexity 2−87.4 presented in [10]. Of course, the full-
round symmetry distinguishers [10] remains much stronger.

HIGHT We obtain a 10 rounds single-key distinguisher on HIGHT, as well as a
14 rounds related-key distinguisher. The initial paper for HIGHT [16] mentions
that no differential characteristics for more than 11 rounds should be useful
for an attack. Furthermore, it presents a related-key attack using a differential
characteristic with probability 2−23. The initial paper mentions a probability 1
10 rounds property: if the input difference has a given form, then the leftmost
byte of the output difference is non-zero. Such a property would require C · 256
(with C a small constant) to permit a reliable distinguisher. On the other hand,
our neural distinguisher requires a single pair.
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Present For PRESENT, we find an 8-round distinguisher. In comparison, the
best differential characteristic for PRESENT reduced to 8 rounds has probability
2−32 [25].

TEA and XTEA For both TEA and XTEA, we find distinguishers for 5 rounds;
interestingly, they share the same input difference. For TEA, we do not reach
as many rounds as [5], possibly because we are working in a different model,
where our difference is injected by exclusive or, whereas they study modular
addition-based differences.

LEA For LEA, we find an 11 rounds distinguisher. The original paper [15]
presented a differential characteristic with probability 2−98 for 11 rounds, and
2−128 for 12 rounds.

A Sanity Check: The Case of Related-Key TEA The block cipher TEA is known
to have equivalent keys. From an initial key k0, k1, k2, k3, the core of the round
function, updating the two halves of the state v0 and v1, is :

v0 = v0 � ((v1 << 4) � k0)⊕ (v1 � sum)⊕ ((v1 >> 5) � k1) (1)

v1 = v1 � ((v0 << 4) � k2)⊕ (v0 � sum)⊕ ((v0 >> 5) � k3) (2)

Differences in the most significant bits of k0 and k1, and of k2 and k3, cancel
out, resulting in 3 equivalent keys for each possible key. Our automated pipeline
is designed to capture such properties easily; we indeed observe that, in the
related key mode, our optimizer finds the property that differences in the most
significant bits of 2 words of the key result in a maximal bias score (as the
ciphertexts are equal). The corresponding input differences are found by the
genetic optimizer within the first few generations at round 1.

The ability of our framework to detect such properties reassures us in its abil-
ity to support the block cipher design process, by identifying similar weaknesses
easily.

8 Conclusion

In this paper, we tackle the problem of generalizing neural distinguishers to
different ciphers, and present a generic framework that can be applied out-of-
the-box to new ciphers. This framework relies on a more generic neural network
structure, enabled by the use of dilated convolutional layers, as well as generic
choices of parameters such as the learning rate. In addition, we solve the difficulty
of choosing a good input difference through an evolutionary optimizer, and apply
it to a variety of ciphers.

Through a series of experiments, we show that our framework is able to
match, or beat, the state-of-the-art for neural distinguishers, as well as to find
good ones for primitives that had not been studied yet. This study produced a
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large number of input differences with good properties for neural distinguishers,
besides the ones presented in these paper; these are of independent interest and
will be made available at the time of publication.

The main advantage of the tool is that it is fully automated, and can readily
be used for any primitive, as long as an encryption function is provided.

Preliminary experiments show that our framework is able to find good input
differences in the related-key setting, but their exploitation requires significant
effort and is left for future work. A promising research direction will be to look
for efficient ways to combine good input differences, in particular the almost-
equivalent ones for SIMON, for instance through MOD-type distinguishers [28],
to improve existing results.
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cipher round Gohr depth-1 DBitNet

(1) (2) (1) (2)

SIMON32 8 0.7400 0.7823 0.8335 0.8312
9 0.6073 0.6249 0.6560 0.6559
10 0.5414 0.5547 0.5599 0.5616
11 ≤ 0.5050 ≤ 0.5050 0.5164 0.5166

SIMON64 9 0.9467 0.9447 0.9619 0.9582
10 0.7710 0.7788 0.8096 0.8104
11 0.6411 0.6348 0.6578 0.6591
12 0.5479 0.5471 0.5623 0.5632
13 0.5002 0.5035 0.5154 0.5182
14 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

SIMON128 14 0.9010 0.9007 0.9267 0.9312
15 0.7975 0.7966 0.8384 0.8383
16 0.6867 0.6857 0.7249 0.7248
17 0.5957 0.5950 0.6259 0.6259
18 0.5390 0.5379 0.5582 0.5580
19 0.5077 0.5072 0.5222 0.5218
20 ≤ 0.5050 ≤ 0.5050 0.5060 0.5069

SPECK32 5 0.9269 0.9271 0.9280 0.9260
6 0.7860 0.7867 0.7873 0.7867
7 0.6111 0.6120 0.6152 0.6098
8 ≤ 0.5050 ≤ 0.5050 0.5107 0.5114

SPECK64 4 0.9999 0.9999 0.9998 0.9998
5 0.9884 0.9870 0.9939 0.9914
6 0.8580 0.8494 0.9229 0.9230
7 0.6679 0.6198 0.7182 0.7198
8 0.5256 0.5158 0.5357 0.5369
9 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

SPECK128 7 0.9995 0.9995 0.9994 0.9994
8 0.9722 0.9716 0.9860 0.9860
9 0.7787 0.7800 0.8296 0.8293
10 0.5814 0.5831 0.5913 0.5909
11 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

HIGHT 8 0.9990 0.9990 0.9990 0.9990
9 0.7500 0.8525 0.8598 0.8600
10 0.5617 0.5003 0.7509 0.7509
11 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

HIGHTRK 12 0.9990 0.9990 0.9990 0.9990
13 0.9647 0.7499 0.9647 0.9647
14 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 0.5633
15 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

PRESENT 5 0.8808 0.8785 0.8828 0.8829
6 0.7077 0.7053 0.7093 0.7096
7 0.5597 0.5593 0.5613 0.5612
8 0.5104 0.5106 0.5106 0.5120
9 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

TEA 3 1.0000 1.0000 1.0000 1.0000
4 0.8864 0.8747 0.9079 0.9079
5 0.5562 0.5491 0.5629 0.5619
6 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

XTEA 3 1.0000 1.0000 1.0000 1.0000
4 0.8867 0.8748 0.9700 0.9697
5 ≤ 0.5050 0.5093 0.5978 ≤ 0.5050
6 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

LEA 8 0.8475 0.8482 0.8473 0.8477
9 0.7209 0.7200 0.7233 0.7231
10 0.5952 0.6010 0.5963 0.5957
11 0.5111 0.5112 0.5113 0.5113

GIMLI-PERM 8 0.9995 0.9995 0.9987 0.9988
9 0.8735 0.8707 0.8639 0.8735
10 0.6129 0.6041 0.6052 0.6037
11 ≤ 0.5050 ≤ 0.5050 0.5238 0.5236
12 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050 ≤ 0.5050

Table 6. Results for all target ciphers round by round. The best accuracy in each row
is highlighted.
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