
Vulnerability Assessment of Ciphers To Fault
Attacks Using Reinforcement Learning

Hao Guo1, Sayandeep Saha2, Satwik Patnaik1, Vasudev Gohil1, Debdeep
Mukhopadhyay2 and Jeyavijayan (JV) Rajendran1

1 Texas A&M University, College Station, Texas, USA
{guohao2019,satwik.patnaik,gohil.vasudev,jv.rajendran}@tamu.edu

2 Indian Institute of Technology, Kharagpur, India
{sayandeep.iitkgp,Debdeep.mukhopadhyay}@gmail.com

Abstract. A fault attack (FA) is one of the most potent threats to cryptographic
applications. Implementing a FA-protected block cipher requires knowledge of the
exploitable fault space of the underlying crypto algorithm. The discovery of exploitable
faults is a challenging problem that demands human expertise and time. Current
practice is to rely on certain predefined fault models. However, the applicability
of such fault models varies among ciphers. Prior work discovers such exploitable
fault models individually for each cipher at the expanse of a large amount of human
effort. Our work completely replaces human effort by using reinforcement learning
(RL) over the huge fault space of a block cipher to discover the effective fault models
automatically. Validation on an AES block cipher demonstrates that our approach can
automatically discover the effective fault models within a few hours, outperforming
prior work, which requires days of manual analysis. The proposed approach also
reveals vulnerabilities in the existing FA-protected block ciphers and initiates an
end-to-end vulnerability assessment flow.
Keywords: Reinforcement Learning · Fault Attack

1 Introduction
A fault attack (FA) is a class of active implementation-based attacks in which an adver-
sary deliberately perturbs the computation to extract secrets through the faulty system
response or bypass some security mechanism. FAs are applicable over a wide range of
computing platforms starting from small embedded systems (e.g., RFID tags) running 8-bit
processors [BBB+10, SJR+20], medium-scale 32-bit ARM processors [RRB+19, HPP21a],
to high-end cloud applications running Intel chips and GPUs [SFK20, BM16, QWLQ19,
MOG+20]. Hardware circuits such as FPGA and ASIC are also vulnerable [SBR+20,
BLMR19, CML+11] to FAs. Some popular and recent exploits of FAs include Sony
Play-stations [Lu19], bitcoin wallets [bit22], Starlink User Terminal [att22], deep neural
nets [HFK+19], and many more. The that FAs can be launched on such commercial
products at very low cost makes them extremely potent threats.

While applicable to symmetric and public-key cryptosystems, FAs have seen sig-
nificant progress for keyed symmetric-key primitives (e.g., block ciphers). This is at-
tributed to the widespread applicability of such primitives, even in modern post-quantum
schemes [HPP21b]. Therefore, protecting and testing symmetric-key cryptosystems for
potential FA threats remains one of the most active research areas in hardware security.

Even though FAs in block ciphers are well-explored, developing protected implemen-
tations (even for well-known attacks) remains challenging. This is partly because FAs
are often algorithm-specific. Secondly, FAs require logical abstraction of physical faults,

mailto:{guohao2019,satwik.patnaik,gohil.vasudev,jv.rajendran}@tamu.edu
mailto:{sayandeep.iitkgp,Debdeep.mukhopadhyay}@gmail.com

2 Vulnerability Assessment of Ciphers To Fault Attacks Using Reinforcement Learning

called fault models, to perform the attacks. In general, the attacks have to be discov-
ered separately for each block-cipher algorithm and each fault model, which requires
(mathematically intense) expertise and time. For instance, it took roughly 8 years (after
the introduction of faults attacks) to find out the most optimal approach to attacking
AES [TMA11]. While finding out a single attack instance is sufficient for an adversary, a
defender has to find all of them. Such a process is extremely tedious and error-prone, and
depends on the considered fault models. Research in this area has seen numerous failures,
mainly for not considering proper fault models. For example, Statistical Ineffective Fault
Analysis (SIFA) [DEG+18, DEK+18] in 2018 and Fault Template Attacks (FTA) in 2020
have rendered most of the existing FA countermeasures ineffective [SBR+20]. In summary,
the interaction between a fault model and a cipher is often complex and cipher-specific,
which could only be explored with manual effort to date.

Quite evidently, designing and especially certifying FA countermeasures is not something
that can be performed manually. Given that the attacks are complex, the first step is to
understand the exploitable fault space (and, therefore, the exploitable fault models) in an
unprotected cipher algorithm. Then, the design and testing of the countermeasures should
proceed based on the exploitable faults in the unprotected version. Also, in the end, one
should verify whether or not the inclusion of countermeasures adds some vulnerability.
Surprisingly, only a handful of work have addressed this problem to date. Existing tools in
this regard aim to discover vulnerabilities in either unprotected or protected algorithms.
However, most of them work on a given fault-list based on some well-known fault model
(byte/bit). The main problem with this approach is that it can be highly specific to certain
fault models and may eventually result in a false sense of security. In particular, there is
no guarantee that if a fault model is unexploitable for one cipher, it will not be exploitable
for the other one.

1.1 Our Goals and Contributions
This work aims to address the problem of automated exploitable fault model identification
in a block cipher or its protected implementation. This bridges one of the major gaps
in the automation efforts for fault analysis. In order to mimic human expertise in this
regard, we propose using reinforcement learning (RL) combined with a t-test [SKP+19].
While ALAFA maybe effective in analyzing the leakage due to a fault, the identification of
the effective fault space remains an open problem. We note that the proposed approach
is based on simulation data, and therefore, easy to realize for any block cipher without
spending much time behind formalization (this is clearly an advantage over developing a
formal approach in this regard). The simplicity of a simulation-based approach also leaves
the scope for integrating several implementation-based constraints, eventually leading to
application-specific security guarantees. As a potential example, we demonstrate that all
the known exploitable fault models for AES (including the target rounds) can be identified
automatically by the RL agent. Finally, the RL-based framework scales for analyzing
protected implementations without significant changes. We establish this by exploring
vulnerabilities in an FA countermeasure. The major contributions of this work are as
follows.

1. We bridge the gap in state-of-the-art FA automation by devising an automated
fault-model discovery methodology.

2. To the best of our knowledge, for the first time, RL has been utilized in the context
of FAs. We note that RL is an appropriate choice in this, given its exploration
power through complex search spaces. We note that one of the major challenges in
FA testing is the size and complexity of the search space, which can be efficiently
explored with RL.

Hao Guo, Sayandeep Saha, Satwik Patnaik, Vasudev Gohil, Debdeep Mukhopadhyay and
Jeyavijayan (JV) Rajendran 3

3. We present two distinct use cases: unprotected AES and one protected version
of AES. The success of RL on two use cases establishes that FA testing for both
protected and unprotected implementations is feasible under a unified framework.

2 Methodology
In this section, we formulate the intricacies of the fault space exploration problem as a
Markov decision process and introduce its five critical components (X , A, P, R, γ). X is the
set of states. State st represents the current state of AES with injected faults. A is the set
of actions. Action at is the bit location where RL selected to inject a fault according to
policy π. For State transition P , we can identify the next state st+1 in a deterministic
manner by flagging the bits in the current state st according to action at. Thus, the
transition probability function reduces to a deterministic mapping P : S × A → S. The
reward function is rt+1 = R(xt, at). Reward rt relies on the t-test statistic (denoted
as t), which is based on the current faulty state of AES. The t-test examines whether a
faulty state is distinguishable from the uniform distribution [SMD18]. If t-test value is
larger than a given threshold tth, rt is 1, otherwise, it’s 0. Discount rate γ, 0 ≤ γ ≤ 1,
discounts future rewards to their present value.

State vector s0 is initialized to zeros. At time step t, the RL agent makes the current
action at of selecting ith bit in AES state to inject a fault. This changes the ith entry of
next state vector st+1 to be flagged as a 1. Once fault injection is completed, we collect
10,000 faulty ciphertexts and their correct ciphertexts and calculate the t-test value based
on these faulty ciphertexts, followed by obtaining reward rt. In this way, the RL agent
explores the fault space by taking actions and acquiring the corresponding reward. After
certain interactions, the RL agent can obtain an optimal policy π∗ in the end.

0 250 500 750 1000 1250 1500 17500.25

0.00

0.25

0.50

0.75

1.00

1.25

Re
wa

rd

AES (Unprotected)

Number of training episodes

Figure 1: Rewards (moving average) vs. number of training episodes for evaluation on unprotected
AES. The shaded region represents the standard deviation.

Bit selected by RL Location
21, 23 Byte 2

60, 62, 63 Byte 7
66 Byte 8

104, 106, 107, 108, 109 Byte 13

Table 1: Bits selected by RL Figure 2: Fault Induced in 8th round of AES

Figure 1 illustrates the reward recorded during the training of RL. As the training
episodes increase, the RL agent learns to make a sequence of actions that favor the t-test
statistic and finally converges to an optimal policy. We can get a t-test statistic of around

4 Vulnerability Assessment of Ciphers To Fault Attacks Using Reinforcement Learning

267 for the discovered fault model. Table 1 lists the fault model derived according to the
converged optimal policy, and Figure 2 depicts the fault model presenting in the 8th round
of AES. This fault model is called the diagonal fault model, which was found by Saha et
al. [SMC09]. Furthermore, the RL agent also discovers the bit fault model and byte fault
model while exploring the fault space. This demonstrates that the RL agent can figure
out all fault models researchers have discovered previously in the context of DFA of AES.

3 Experimental Results
3.1 Experiments Setup
We implement our work using Python 3.8.10 and conduct experiments on a 20.04 Ubuntu
machine with an AMD 32-core 3.5GHz CPU processor and an NVIDIA A5000 24GB
GPU. We select Proximal Policy Optimization [SWD+17] as our reinforcement learning
algorithm. The custom RL environment and PPO algorithm were implemented based on
the framework provided by Stable-Baselines3 and PyTorch1.6 packages. We employ
vectorized environment in this package to compute multiple episodes of the RL pipeline in
parallel, drastically reducing our training time. We set the parameter tth as 4.5.

3.2 Evaluation on AES block Cipher with Redundancy Countermeasure

0 25 50 75 100 125 150 175 200

1

0

1

Re
wa

rd

1e6 AES (Protected)

Number of training episodes

Figure 3: Rewards (moving average) vs. number of training episodes for evaluation on AES. The
shaded region represents the standard deviation.

We first evaluated the proposed framework on unprotected AES. Figure 3 shows
the reward plot. It demonstrated that the proposed RL architecture could tackle an
unprotected AES. We then investigated RL’s capability of fault space exploration on AES
with one countermeasure in [SKP+19]. The countermeasure utilizes a redundant cipher
computation creating two computational branches. The ciphertexts in these two branches
are compared at the end of the computation. If they are different, the leakage can be
observed by examining those ciphertexts. To evade this countermeasure, RL learned to
inject the same set of faults sampled at those two computational branches automatically.
The reward plot in Figure 3 demonstrates that our proposed framework can be extended
to protected AES.

4 Conclusion
To the best of our knowledge, we report the first work in utilizing RL for fault space
exploration in the context of FA of block cipher. Instead of relying on a human expert,
our RL can achieve the same outcome by prior work but automatically. We demonstrated
our proposed framework on two distinct use-cases: unprotected AES and AES with one
countermeasure. This advancement can greatly reduce design effort for exploring effective
fault space for FA of block cipher.

Hao Guo, Sayandeep Saha, Satwik Patnaik, Vasudev Gohil, Debdeep Mukhopadhyay and
Jeyavijayan (JV) Rajendran 5

References
[att22] Researcher hacks elon musk’s starlink system with $25 homemade device, 2022.

https://www.business-standard.com/article/international/resear
cher-hacks-elon-musk-s-starlink-system-with-25-homemade-devic
e-122081300454_1.html.

[BBB+10] Alessandro Barenghi, Guido M Bertoni, Luca Breveglieri, Mauro Pellicioli, and
Gerardo Pelosi. Low voltage fault attacks to AES. In Proceedings of 3rd IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST),
pages 7–12, Anaheim, CA USA, June 2010. IEEE.

[bit22] Glitching the keepkey hardware wallet, 2022. https://www.riscure.com/bl
og/glitching-the-keepkey-hardware-wallet.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against
dfa attacks. IACR Transactions on Symmetric Cryptology, 2019(1):5–45, 2019.

[BM16] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious case of rowhammer:
flipping secret exponent bits using timing analysis. In Proceedings of 18th
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 602–624, Santa Barbara, USA, Aug 2016. Springer.

[CML+11] Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent Valette,
and Marc Renaudin. Glitch and laser fault attacks onto a secure AES imple-
mentation on a SRAM-based FPGA. Journal of Cryptology, 24(2):247–268,
2011.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Proceedings of 24th International Confer-
ence on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), pages 315–342, Brisbane, QLD, Australia, Dec 2018. Springer.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(3):547–572, 2018.

[HFK+19] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor
Dumitras, . Terminal brain damage: Exposing the graceless degradation in
deep neural networks under hardware fault attacks. In 28th USENIX Security
Symposium (USENIX Security 19), pages 497–514, 2019.

[HPP21a] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled chosen-
ciphertext attacks on kyber. In International Conference on Cryptology in
India, pages 311–334. Springer, 2021.

[HPP21b] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled chosen-
ciphertext attacks on kyber. In International Conference on Cryptology in
India, pages 311–334. Springer, 2021.

[Lu19] Yifan Lu. Attacking hardware AES with DFA. arXiv preprint arXiv:1902.08693,
2019.

https://www.business-standard.com/article/international/researcher-hacks-elon-musk-s-starlink-system-with-25-homemade-device-122081300454_1.html
https://www.business-standard.com/article/international/researcher-hacks-elon-musk-s-starlink-system-with-25-homemade-device-122081300454_1.html
https://www.business-standard.com/article/international/researcher-hacks-elon-musk-s-starlink-system-with-25-homemade-device-122081300454_1.html
https://www.riscure.com/blog/glitching-the-keepkey-hardware-wallet
https://www.riscure.com/blog/glitching-the-keepkey-hardware-wallet

6 Vulnerability Assessment of Ciphers To Fault Attacks Using Reinforcement Learning

[MOG+20] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based fault injection attacks against
Intel SGX. In Proceedings of 41st IEEE Symposium on Security and Privacy
(S&P), pages 1466–1482, San Francisco„ USA, May 2020. IEEE.

[QWLQ19] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. Voltjockey:
Breaking sgx by software-controlled voltage-induced hardware faults. In Pro-
ceedings of 4th Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), pages 1–6, Xi’an, P.R. China, Dec 2019. IEEE.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number “not used” once-practical fault attack
on pqm4 implementations of nist candidates. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 232–250.
Springer, 2019.

[SBR+20] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Proceedings of 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 612–643, Zagreb, Croatia, May 2020. Springer.

[SFK20] Majid Sabbagh, Yunsi Fei, and David Kaeli. A novel GPU overdrive fault
attack. In Proceedings 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, San francisco, USA, Sep 2020. IEEE.

[SJR+20] S. Saha, D. Jap, D. Basu Roy, A. Chakraborty, S. Bhasin, and D. Mukhopad-
hyay. A framework to counter statistical ineffective fault analysis of block
ciphers using domain transformation and error correction. IEEE Transactions
on Information Forensics and Security, 15:1905–1919, 2020.

[SKP+19] Sayandeep Saha, S Nishok Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay,
and Pallab Dasgupta. ALAFA: Automatic leakage assessment for fault attack
countermeasures. In Proceedings of the 56th ACM/IEEE Design Automation
Conference (DAC), pages 136–142, Las Vegas, USA, June 2019. ACM.

[SMC09] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. A
diagonal fault attack on the advanced encryption standard. IACR Cryptology
ePrint Archive, 2009.

[SMD18] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. ExpFault:
an automated framework for exploitable fault characterization in block ci-
phers. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(2):242–276, 2018.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In Proceedings
of 5th Information Security Theory and Practice. Security and Privacy of
Mobile Devices in Wireless Communication (WISTP), pages 224–233, Crete,
Greece, June 2011. Springer.

	Introduction
	Our Goals and Contributions

	Methodology
	Experimental Results
	Experiments Setup
	Evaluation on AES block Cipher with Redundancy Countermeasure

	Conclusion

