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Abstract

A cryptographic primitive based on the Learning With Errors (LWE) problem with its variants is a
promising candidate for the efficient quantum-resistant public key cryptosystem. The recent schemes use
the LWE problem with a small-norm or sparse secret key for better efficiency. Such constraints, however,
lead to more tailor-made attacks and thus are a trade-off between efficiency and security. Improving the
algorithm for the LWE problem with the constraints thus has a significant consequence in the concrete
security of schemes.

In this paper, we present a new hybrid attack on the LWE problem. This new attack combines the
primal lattice attack and an improved MitM attack called Meet-LWE, answering an open problem posed
by May [Crypto’21].

According to our estimation, the new hybrid attack performs better than the previous attacks for the
LWE problems with a sparse ternary secret key, which plays the significant role for the efficiency of fully
homomorphic encryption schemes.

In terms of the technical part, we generalize the Meet-LWE algorithm to be compatible with Babai’s
nearest plane algorithm. As a side contribution, we remove the error guessing step in Meet-LWE, resolving
another open question.

Keywords: LWE, Hybrid lattice attack, Meet-in-the-middle algorithm

1 Introduction

The (search) learning with errors (LWE) problem [49] asks to find the secret key s given (A, b) ∈ Zm×(n+1)
q

such that b = As+ e mod q, where e is a small noisy integer vector. The LWE problem and its variants have
been used as the security ground for lattice-based cryptography with plenty of applications [7,19,30,31,44].
The hardness of the LWE problem is well established by the reduction from the worst-case lattice problems.
This hardness provides strong confidence in the security of LWE-based cryptosystems. However, this so-
called provable security is only guaranteed on a somewhat restricted parameter range, where the schemes
have poor efficiency. Most practical LWE-based schemes have used the other parameters for efficiency, far
from the provable range, and concrete security is measured against known attacks.

Many LWE-based cryptosystems use the binary/ternary secret/error vectors [21, 27, 32] or even sparse
vectors [12] for the efficient implementation, or for the (perfect) correctness of decryption [28]. Further-
more, fully homomorphic encryption (FHE) schemes take advantage of the small norm of secret keys for
efficiency. Indeed, most FHE libraries use or support the sparse secret keys [1,2,4,5]; in particular, HEAAN
and Lattigo explicitly use the Hamming weight 64 and 192, respectively.

Of course, using a sparse small secret vector opens new possibilities in the adversary’s view: The num-
ber of candidates of such a sparse small vector is much smaller than that of small or uniform secret keys.
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The combinatorial attacks have exploit exactly this feature by directly guessing the secret key space of size
S. Beside the exhaustively searching secret key that takes (roughly) S time, the Meet-in-the-middle (MitM)
strategy due to Odlyzko [36] is shown to find the secret key in time S0.5, and had remained the best algo-
rithm up to recently.

Last year, a new combinatorial attack called Meet-LWE is presented by May [46], based on the repre-
sentation technique in the subset sum-type problems [15,17,38]. The Meet-LWE attack takes asymptotically
Sc time to solve the LWE problem for c < 0.5, heuristically c ≈ 0.25. However, the current practical LWE
parameters use a high dimensional vector as secret key so that the search space size S is extremely large. It
turns out that the combinatorial algorithms, even including Meet-LWE, themselves cannot beat the lattice
attacks (e.g., [10, 43]) in the practical parameter setting.

The hybrid attack framework has leveraged lattice reduction algorithms to take advantage of both sides.
This attack first reduces the dimension of search space as the first step; then, the combinatorial strategies are
applied to solve the remaining part with a much smaller search space. This line of works has been initiated
by the seminal work of Howgrave-Graham [37], which can be understood as a combination of the lattice
reduction and the MitM algorithm.

The hybrid strategies [37, 47, 50, 52] are presumably the best known attack for the LWE problem with
sparse ternary keys. As Meet-LWE improves over Odlyzko’s MitM, the hybrid attack that combines the lat-
tice reduction algorithm and Meet-LWE is apparently expected to have some implications on the hardness
of LWE. This combination already was considered in the original paper, but it appears that the direct ap-
plication of Meet-LWE failed [46, Section 10]. This lattice and Meet-LWE hybrid attack remains as a central
open problem in this landscape of LWE attacks.

1.1 Our Contribution

We present a new hybrid attack against the LWE problem that combines the primal lattice attack and Meet-
LWE, resolving the open question posed in [46]. To this end, we generalize the Meet-LWE algorithm to be
compatible with Babai’s nearest plane algorithm. As a side contribution, we remove the error guessing step
in Meet-LWE, resolving another open problem [46].1 It requires several technically non-trivial considera-
tions, whose overview is presented in Section 2.

We also estimate the concrete complexity of our attack based on lattice-estimator [3] with some modi-
fications. According to the estimation, our new attack is stronger than the previous attacks for the sparse
small key LWE parameter, and has an actual impact against currently deployed FHE parameters in recent
works [18, 41, 42], by showing that the parameters in those papers are below the claimed security. Our at-
tack also lowers the security of some PQC schemes [6, 13] which takes highly sparse secret keys. However,
this sparse choice is considered somewhat deprecated now, and the attack has little impact on currently
deployed PQC schemes, especially on the finalists of NIST PQC standardization. We refer to Table 1 and
Section 6.1 for a numerical estimation for the readers.

1.2 Discussions

Necessity of sparse ternary/binary secrets. As several attacks against sparse keys have been continuously
reported [23,24] (including ours), one may wonder the benefit of sparse keys; if the benefit is not substantial,
it is tempting to exclude sparse keys for LWE-based scheme parameterizations for preventing the potential
future stronger attacks exploiting this feature. We stress that, at least in most FHE schemes, sparse keys still
play a significant role on the performance of so-called bootstrapping operations, despite worse parameteriza-
tion due to the sparse key tailored attacks. Although a line of works [41,42] has reported the improvements
in the efficiency of bootstrapping even for the non-sparse key [18], the sparse-key bootstrapping procedures
still perform much better in practice and have better asymptotic complexity.

1Strictly speaking, Kirshanova and May independently suggested a similar approach, but we argue their algorithm is problematic.
For more detailed discussions, see Appendix A.
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Dual hybrid attacks. There is another line of hybrid attack strategy called dual hybrid [8, 23, 33, 45]. It also
comes from the combination of the lattice reduction and searching strategy of a fraction of the secret key,
but with a large difference in a way to construct the target lattice. This difference enables dual strategy to
leverage another searching strategy. In particular, the most recent dual hybrid attacks [33, 45] combine the
dual lattice strategy with a novel brute-force search using the Fourier distinguisher [29] on the secret key
fraction. For the dimension d of the searching partial secret key space and the number S of partial secret
keys, the dual-Fourier hybrid attack [33] takes O(min(2d, |S|)) time complexity. Since our attack takes about
Sc time for c ≈ 0.25 to execute Meet-LWE part, our attack would be better as long as |S|c < 2d. While
the accurate comparison is extremely tough due to several other issues, this inequality justifies that our
algorithm outperforms when a sparse secret key is employed.

Further related works. Wunderer [52] and Nguyen [47] pointed out several issues in literature’s primal-
MitM hybrid attack [37] estimation, and provided refined analysis. Our analysis follows their analysis when
required, and also reflects most issues pointed out by them. In fact, the main issue raised by [52] was
the ignorance of admissible probability in the attack complexity estimation. We see the similar situation
when analyzing our algorithm, and we faithfully reflect the probability in estimation. We use the torus LSH
suggested in [47] with a new analysis for our setting.

Concurrently, a hybrid of dual and Meet-LWE attack suggested by [16]. This attack is a rather straight-
forward combination of two attacks, as the dual lattice attack can be used as a dimension-error trade-off of
LWE [8, 23]. The combination of dual lattice reduction and Meet-LWE in [16] still requires a huge overhead
in the exhaustive error enumeration step.2 We believe that applying our near-collision finding algorithm
in Section 4 to the dual and Meet-LWE hybrid attack will improve the efficiency, let alone the dual-MitM
hybrid attack [23].

Future directions. The above discussion naturally motivates the possibility of other combinations of differ-
ent algorithms. For example, can we construct the primal-Fourier hybrid? Constructing an efficient hybrid
algorithm of combinatorial attacks is also an interesting question, such as the Fourier-MitM distinguisher.
Any such hybrid attack will be competitive for some LWE instances if it appears possible. The other di-
rection is to explore the quantum version of hybrid attacks and examine their costs for the post-quantum
parameters.

Providing a more robust analysis can be the opposite direction of research. In fact, the hybrid attacks [37,
47, 50, 52] including ours, rely on several heuristic assumptions, and so do representation technique-based
algorithms [15, 17, 26, 38, 46]. While we suggest some explanations for our assumptions, validating them
rigorously as in [47, 52] or finding the minimal assumption for the algorithms would be an interesting
problem.

2 Technical Overview

We provide an overview of our attack along with the lattice background in this section. In Section 2.1
presents preliminaries, and Section 2.2 gives a high-level description of Meet-LWE. The overview of our
generalization and technical contributions are summarized in Section 2.3.

2.1 Preliminaries

Notations. For a positive integer n, [n] denotes the set {1, ..., n}. The elements of Zq := Z/qZ are identified
with the representatives in Z∩ [−q/2, q/2). We write the uniform distribution over a set S by U(S), and the
Gaussian distribution of standard deviation σ by Gσ . For a (ordered) basis B = (b1, ..., bn) of vector space
(or lattice) with column vectors bi for i ∈ [n], we identify the basis B with the matrix (b1|b2|...|bn) and vice
versa. We let B∗ = (b∗1, ..., b

∗
n) be the Gram-Schmidt orthogornalized basis of B and B̃∗ = (b̃∗1, ..., b̃

∗
n) be the

2In other words, the current dual and Meet-LWE hybrid attack is simply prevented by slightly increasing the standard deviation
of error from σ = 3.2 to, say, σ = 6.4.
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normalized Gram-Schmidt basis of B, i.e. b̃∗i = b∗i /∥b∗i ∥. For a matrix B = (b1, ..., bn) and a vector v, we
write the coordinates of v with respect to B̃∗ by τB(v) = (B̃∗)−1 · v to denote the coordinates of vector v

with respect to the basis B̃∗. For a matrix B ∈ Rn×n, the fundamental parallelepiped P(B) is defined by
{B · x : x ∈ [− 1

2 ,
1
2 )

n}.

Definition 1 ((Search) Learning with error problem). For a secret key s sampled from a distributionDs, the LWE
problem asks to find the secret key s given a tuple (A, b = As+ e mod q) ∈ Zm×n

q × Zm
q where the uniform random

matrix A and an error vector e sampled from De.

This paper focuses on the LWE problem with sparse ternary secret key. More precisely, we denote the
set of n-dimensional ternary vectors with weight 2w splitting evenly in ±1-entries by

T n(w) = {s ∈ {±1, 0}n | s has w (±1)-nonzero entries respectively} ,

and we assume that Ds = U(T n(w)) for some w > 0 without special mention. We also consider that the
error distribution is sampled from the discrete Gaussian distribution over Z with the standard deviation
σ, denoted by Gσ . When an m-dimensional vector is sampled from Gmσ , we sometimes omit the superscript
m if it is clear from the context. The discrete Gaussian distribution is occasionally approximated by the
continuous Gaussian distribution with the same standard deviation.

Lattice backgrounds. A lattice is a discrete subgroup of Rn. For a full-rank matrix B = (b1, ..., bn) ∈ Rn×n,
the sets L(B) denote the lattice defined by {v =

∑n
i=1 aibi | ai ∈ Z}. The lattice reduction algorithm takes

a basis of lattice L of rank n as input and returns a short basis of L. Typically, BKZ algorithm is exploited
for lattice reduction, which takes a block size β, and outputs a reduced basis B. As a widely used heuristic
that represents the degree of basis reduction, the Geometric Series Assumption (GSA) predicts that the
Gram-Schmidt norms ∥b∗i ∥ of the basis B reduced by BKZ-β is estimated as follow for i = 1, ..., n,

∥b∗i ∥ = δ
−2(i−1)+n
0 · det(B)

1
n ,

where δ0 =
(

β
2πe (πβ)

1/β
)1/(2(β−1))

.

2.2 Overview of Meet-LWE

We start with a brief review of original Meet-LWE [46]. Suppose that we are given a matrix M and integer q
as inputs, and want to find s ∈ T n(w(0)) for some w(0) such that Ms = e mod q for a unknown small error
vector e.

Core idea of Meet-LWE. Meet-LWE starts from the fact that we may have quite many pairs (s
(1)
1 , s

(1)
2 ) ∈

T n(w(1)) for w(1) ≥ w(0)/2 such that s = s
(1)
1 − s

(1)
2 , which we call representations of s. In order to exploit the

redundancy of representations, it considers the projection map πr : Zm → Zr on the first r coordinates to
define the following sets with special constraints of the form πr(Ms(1) mod q) = e, precisely

T̃ n
1 (w(1)) = {s(1) ∈ T n(w(1)) | πr(Ms(1) mod q) = e1}

T̃ n
2 (w(1)) = {s(1) ∈ T n(w(1)) | πr(Ms(1) mod q) = e2},

where e1, e2 are proper guesses for πr(e) such that πr(e) = e1+e2. Assuming e1, e2 are correctly guessed, an
(exact) collision search over T̃ n

1 (w(1))×T̃ n
2 (w(1)) suffices to find s, provided that there exists a representation

(s
(1)
1 , s

(1)
2 ) such that

πr(Ms
(1)
1 mod q) = e1 and πr(Ms

(1)
2 mod q) = e2.

In fact, the projection dimension r is chosen so that at least one representation (s
(1)
1 , s

(1)
2 ) survives in

T̃ n
1 (w(1))× T̃ n

2 (w(1)) with high probability.
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An extension to higher level. The Meet-LWE algorithm comes from a recursive application this idea, where
the depth of recursion is called by level. As the underlying idea of recursion, it utilizes the fact that each
element of s(1) ∈ T̃ (1) also has several representations s(1) = s

(2)
1 − s

(2)
2 for s

(2)
1 , s

(2)
2 ∈ T n(w(2)) where

w(2) ≥ w(1)/2. Then the above constraint idea can be applied again to define a smaller lists T̃ n(w(2)), so that
one can recover T̃ n(w(1)). In words, the Meet-LWE algorithm is a recursive application of list reconstruction
using the standard MitM approach.

Error guessing by enumeration. Remark that this strategy succeeds only when the error guessing e1, e2 for
the level-1 lists are correct, that is, when it holds that πr(e) = e1+e2. Regarding this, the original Meet-LWE
simply enumerates all possible error candidates ei. As the projection dimension r is set to be a sub-linear
number O(n/ log n), this enumeration is quite affordable and can be asymptotically neglected. In practice,
however, this error guessing step takes a huge overhead, and removing this step is another open question
posed in [46].

2.3 Generalization of Meet-LWE

A conventional primal hybrid attack for LWE is composed of two stages, where NPB(·) denotes the output
of Babai’s nearest plane (NP) algorithm with respect to a basis B:

1. Convert given LWE instances (A, b = As′+ e′ mod q) into another problem that, given M and B, asks
to find s such that NPB(Ms) = e for some small e, where s is a part of the LWE secret key s′.

2. Recover the solution of s of NPB(Ms) = e using combinatorial approaches.

Our main technical contribution in this formulation is solving the second stage NPB(Ms) = e via the
Meet-LWE algorithm [46], which is the main target on this overview. For the first conversion, we follow the
almost similar procedure to the previous hybrid attacks, whose details are presented in Section 3.

Babai’s NP algorithm and matrix modulus. As a preparation, we recall Babai’s nearest plane (NP) algo-
rithm and introduce a matrix modulus notation. Writing the Gram-Schmidt basis of B by B∗ and the fun-
damental parallelepiped of B∗ by P(B∗), Babai’s NP algorithm takes a target vector t and a basis matrix B
of lattice L as inputs, and outputs NPB(t) ∈ P(B∗) such that t− NP(t)B ∈ L. Regarding this, we introduce
a notation of matrix modulus by

tmod B := NPB(t),

which indeed satisfies similar properties to mod q. See Section 3.1 and Lemma 2 for formal descriptions.
We again note that the primal hybrid attacks [37, 52] are to transform the given problem instance to

another problem, which we usually refer the matrix modulus case (of LWE), of the form

Ms = e mod B (1)

for some small e, and to find s using the combinatorial strategy such as the exhaustive search or MitM.
As the previous primal hybrid attacks already developed technical tools for dealing with the search

problem over the Babai’s nearest plane, one may think that to apply Meet-LWE on the same setting can be
analogously done. However, it turns out that there are (at least) two technical problems for (primal,Meet-
LWE)-hybrid: The first one is the incompatibility between two different bases when considering the con-
straints, and the other is the error guessing step. We describe these difficulties below.

Projection for matrix modulus. The constraint of original Meet-LWE is based on the projection map πr, and
implicitly uses the standard basis to take r coordinates. However, we should work with the output of NP
algorithm for solving Eq. (1), and it appears that the projection to standard basis and map mod B are not
compatible well in general. Precisely, it would happen that

πr (v mod B) ̸= πr(v) mod πr(B),

where πr(B) is defined by column-wise projection.
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Figure 1: The blue points denote the integer coordinate points with respect to the standard basis. The dotted
line represents the axis from B∗, and the gray lines show the projection τB,r. Different to the projection over
standard basis, the number of points remains the same even after projection.

To resolve this issue, we come up with another basis and corresponding projection map that is compat-
ible with Babai’s NP algorithm. More precisely, we consider the Gram-Schmidt orthogonalized basis B∗ and
a projection map τB,r that takes the last r coordinates with respect to B∗-basis coordinate representation.
Under this representation, we prove that τB,r is well-compatible with the matrix modulus as follows

τB,r (v mod B) = τB,r(v) mod τB,r(B).

We note that the choice of last r coordinates is important, as the above compatibility does not hold for the
other choices. For a more detailed description, we refer to Lemma 5.

Approximate constraint. Applying the new projection map on Eq. (1) gives

τB,r(Ms mod B) = τB,r(e) mod τB,r(B).

We further can check that τB,r(Ms mod B) = τB,r(M)s mod τB,r(B) holds. Unfortunately, this equation
itself is not sufficient to complete Meet-LWE over matrix modulus because of the error guessing step.

Recall that the original Meet-LWE algorithm performs a brute-force guess on the noise vector πr(e)
to find out the solution s. This strategy does not work for the matrix modulus case. Due to the non-
orthogonality between the standard basis and B∗, the projection map τB,r provide no reduction on the
number of τB,r(e) candidates, as Figure 1 shows. Therefore, guessing all possible τB,r(e) results in an ex-
tremely inefficient algorithm.

To circumvent the difficulty from error guessing, we consider an approximate constraint for defining the
lists as τB,r(Ms(1) mod B) ≈ 0. To be precise, we consider a small neighborhood A of origin, and define a
level-1 list by

T̃ n(w(1)) = {s(1) ∈ T n(w(1)) | τB,r(M)s(1) mod τB,r(B) ∈ A}. (2)

Similarly to the original Meet-LWE, we choose the projection dimension r and the neighborhood A so that
there exists one representation (s

(1)
1 , s

(1)
2 ) of s on expectation such that

τB,r(M)s
(1)
1 ∈ A, and τB,r(M)s

(1)
2 ∈ A. (3)

Here and below, we omitted mod τB,r(B) for brevity. Our goal is then to find a representation (s
(1)
1 , s

(1)
2 )

that satisfies Eq. (3). At this point, two technical problems remain: 1) The choice of r and A to ensure the
existence of such (s

(1)
1 , s

(1)
2 ) in the list with approximate constraint, which requires a more delicate argument
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A

τB,r(P(B∗))

τB,r(e)

Figure 2: The blue and red points represent τB,r(M)s
(1)
1 and τB,r(M)s

(2)
2 respectively, which are at distance

τB,r(e). We need a representation (s
(1)
1 , s

(2)
2 ) that makes both points are in A, emphasized by a thick line.

Note that it may happens that one point is in the area A, but the other lies outside due to the error τB,r(e)

than the original Meet-LWE, and 2) an alternative algorithm to find such a pair, provided that the existence,
from the list defined in an approximate manner.

The choice of parameters. In the original Meet-LWE, the event that s(1)1 is included in the level-1 list di-
rectly implies that s(2)2 is also included in the (opposite) list. However, this is not the case for approximate
constraints; for example, for y = τB,r(M)s

(1)
2 ∈ A and z = τB,r(e), their addition y+ z = τB,r(M)s

(1)
1 (mod-

ulo τB,r(B)) may not be included in A as Figure 2 shows.3 Because of this possibility, we should carefully
analyze the relation between two events y ∈ A and y + z ∈ A. This situation is in fact highly similar to the
admissible property of the context of previous primal hybrids [37,52], especially for z follows some Gaussian
distribution. We adapt some parts of corresponding analysis therein.

List reconstruction using locality sensitive hashing. With the appropriate parameter choice of r and A, we
expect that there is a representation (s

(1)
1 , s

(1)
2 ) satisfying Eq. (3) in the list T̃ n(w(1)). The main observation

for finding such a pair without error guessing is that for any representation s = s
(1)
1 − s

(1)
2 naturally gives a

near-collision pair Ms
(1)
1 and Ms

(1)
2 modulo B, that is, the following equation holds

Ms
(1)
1 = Ms

(1)
2 + e mod B. (4)

In other words, the problem we are given can be understood as a near-collision search problem from the list,
regardless of constraints. This problem is a variant of well-studied nearest neighbor search (NNS) problem,
and the original primal-MitM hybrid attack [37] already took this approach. We solve the near-collision
finding problem using the locality-sensitive hashing technique adapting the similar result for NNS [35], but
with some modifications for our purpose as elaborated in Remark 1. This also can be seen as a generalization
of the original approach of Howgrave-Graham [37].

An extension to higher levels. Interestingly, approximate constraints allow us to extend this strategy to
higher levels, despite it was originally proposed to remove error guessing. To describe the extension, we
recast the problem to find s satisfying Equation (1) as to construct the set

T̃ n(w(0)) = {s ∈ T n(w(0)) |Ms mod B ≈ 0}.

Hence, the aforementioned argument reduces the original problem into constructing

T̃ n(w(1)) = {s(1) ∈ T n(w(1)) | τB,r(M)s(1) mod τB,r(B) ≈ 0}
3In fact, this is related to the flaw of [40], which is described in Appendix A.
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for appropriately chosen parameters. By setting M (1) := τB,r(M) and B(1) := τB,r(B), the two lists are
essentially the same, except that 1) the list T̃ n(w(1)) has many elements while T̃ n(w(0)) is a singleton set,
and 2) the error term hides in ≈ of T̃ n(w(1)) is determined by A. It turns out that the LSH-based near-
collision finding algorithm works well for higher levels even though these differences. In this perspective,
we can extend this strategy for higher level lists, for example by considering

T̃ n(w(2)) = {s(2) ∈ T n(w(2)) | τB,r(2)(M)s(2) mod τB,r(2)(B) ≈ 0}

for w(2) ≈ w(1)/2 and appropriate r(2) and so on forth.
In summary, we can find the solution s of Ms = e mod B given the list with approximate constraint

in Eq. (2) using the LSH-based near-collision finding algorithm, which is again reconstructed by using the
higher level lists with approximate constraint. The actual algorithm will do this iteration in a top-down
manner; first construct a list without constraint as a top level, and recover the lower level lists in order.

3 Previous Primal Hybrid Attacks

In this section, we review the primal hybrid attacks suggested in literature, e.g., in [20, 37, 50, 52]. These
attacks share the similar structures; the combination of lattice reduction and meet-in-the-middle attack
exploiting Babai’s nearest plane algorithm, with some differences in targets, analysis, and optimizations.

We recall Babai’s nearest plane algorithm in Section 3.1 and then summarize the framework of the primal
hybrid attacks in Section 3.2.

3.1 Babai’s Nearest Plane Algorithm and Matrix Modulus

Let L = L(B) be a lattice with the basis B. Babai’s nearest plane algorithm on inputs B and a target vector
t is given by Algorithm 1.

Algorithm 1: Babai’s Nearest Plane Algorithm
Input: Basis matrix B = {b1, . . . , bn}

a target vector t∈ span(B)
Output: t− v ∈ P(B∗) with v ∈ L(B)

1 Compute Gram-Schmidt basis B∗ = {b∗1, . . . , b∗n}
2 Set tn = t
3 for i = n down to 1 do
4 Set li = ⟨ti, b∗i ⟩/⟨b∗i , b∗i ⟩, the i-th coordinate of τB(ti).
5 yi = ⌊li⌉ · bi
6 Set ti−1 = ti − yi
7 end
8 return t− v with v =

∑n
i=1 yi ∈ L(B) such that t− v ∈ P(B∗)

The classic fact on the output of Babai’s algorithm is as follows.

Lemma 2. Given an input vector t and basis B = (b1, ..., bn), the output s of Algorithm 1 lies in the parallelepiped
P(B∗). Further, the vector s is the unique vector in P(B∗) such that t− s is in L(B).

Note that we define the output of the algorithm by t − v for convenience, while the standard Babai’s
nearest plane algorithm aims at finding a lattice point v ∈ L(B) such that t− v ∈ P(B∗). Given basis B and
target v, we denote the output of Babai’s algorithm by NPB(v), and the B∗-basis representation of NPB(v)
by [v]B , equivalently

[v]B := τB (NPB(v)) .
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Moreover, we introduce a matrix modulus notation by

a = b mod B ⇐⇒ NPB(a) = NPB(b).

The following equation justifies the use of the matrix modulus notation mod B, and can be proved by Lemma 2.

NPB(a+ b) = NPB(NPB(a) + NPB(b))

3.2 Primal Hybrid Attacks for LWE

We proceed to the primal hybrid attack framework, mainly adapted from the previous works [20, 50, 52].
Consider an LWE instance (A, b = As′ + e′ mod q) ∈ Zm′×n

q × Zm′

q with a secret key s′ ∈ T n(w) and an
error vector e′ sampled from a certain distribution, e.g., the discrete Gaussian distribution Gm′

σ . For ease of
representation, we consider an augmented matrix M := (−A||b) and s = (s′, 1) ∈ T n+1(w + 1) so that the
LWE equation b = As′+ e′ mod q is equivalent to M · s = e′ mod q. The primal attack strategy considers the
lattice LP defined by the following basis matrix P .

P =

(
qIm′ M

In+1

)
∈ Z(m′+n+1)×(m′+n+1)

Note that LP contains a short vector (e′, s) = P · (x, s) for a vector x ∈ Zm′
.

We divide the matrix and secret key into

M = (M1,M2) ∈ Zm′×(n−d+1)
q × Zm′×d

q and s = (s1, s2) ∈ T n−d+1 × T d

for a guessing dimension parameter 0 ≤ d ≤ n, and represent the basis matrix by

P =

(
B M2

Id

)
where B =

(
qIm′ M1

In+1−d

)
. (5)

From this representation, we have the relation

Bk +M2s2 = e (6)

where e = (e′, s1) and k = (x, s1). It implies M2s2 − e ∈ L(B), or equivalently

M2s2 = emod L(B).

The primal hybrid attacks [20, 37, 50, 52] can be abstracted using the above relation as follows.

Primal hybrid attack proceeds as follows.

1. Sufficiently reduce the basis matrix B using lattice reduction algorithms so that e is included
in the parallelepiped P(B∗), that is, the following equation holds

NPB(e) = e. (7)

2. Using some combinatorial guessing strategies, finding the partial secret key s2 such that

NPB(M2s2) = e

Success probability. It should be remarked that the event NPB(e) = e of Eq. (7) does not always happen,
even if the basis B is highly reduced. Thus the probability of the event, denoted by pNP , should be taken
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into account when estimating the attack complexity. Regarding this, the previous works [50, 52] provided
the detailed analysis for pNP , especially when e follows (continuous) Gaussian Gσ :

pNP = Pre←Gσ [NPB(e) = e] =

m+n+1−d∏
i=1

erf

(
∥b∗i ∥
√
2

σ

)
,

where ∥b∗i ∥ is the length of i-th length of B∗.

Normalizing the new error vector. It remains as an issue that the error vector e = (e′, s1) is quite far from
Gaussian: e′ follows a discrete Gaussian Dσ and s1 is a sparse ternary vector. We found no previous works
explicitly deal with this, and suggest two explanations regarding this. One is theoretically correct, and the
other is somewhat heuristic but leads to a more efficient attack.

The first method is to replace the partial secret key by a part of the error vector using the transformation
proposed in [11]. This transform changes the distribution of some secret key entries to follow the error
distribution. We can apply this to a part of secret key s1, which makes e = (e′, s1) to exactly follow Gσ .

The other method is to introduce the scaling factor as in [8,14]. More precisely, we choose a new param-
eter ν > 0 and consider an error vector eν = (e′, νs1) in order to balance the norm of both parts. For the

exact choice of ν, we follow the choice of previous works: ν ≈ σ√
2π
·
√

n−d
w . Note that the scaled error eν

can be easily reflected in the attack scenario by considering Bν =

(
qIm M2

νIn+1−d

)
instead of B in Eq. (5).

However, even with the scaling factor ν, the latter part of eν obviously does not follow the Gaussian distri-
bution. At this point, we establish a heuristic that each coordinate of eν with respect to the Gram-Schmidt
basis B∗ behaves as Gaussian sampled from Gσ , whose justification is provided in Appendix B.

4 Finding Near-collisions

This section describes the near-collision finding algorithm of the list L using locality sensitive hashing
(LSH), which will be used in Section 5 as a subroutine.

We first clarify the problem setting. Let B :=
∏r

i=1[−qi/2, qi/2) be an r-dimensional box. A ℓ-near-
collision pair (y1, y2) ∈ B × B is defined by

|y1 − y2|∞ ≤ ℓ, (8)

which can be efficiently verified given two elements y1, y2.
In the near-collision finding problem, we are given a list L ⊂ B having several ℓ-near-collision pairs

in L × L, and our goal is to find out the near-collision pairs. We assume that the list L consists of a small
number of near-collision pairs and many additional random points in B. In particular, each near-collision
pair (y1, y2) are sampled by a certain error distribution D as follows.4

y1 ← U(B), e← D, y2 := y1 + e, reject if y2 /∈ B. (9)

We further treat the error e as a random variable in the analysis, which we call by a D-random/near model. A
similar models have been (at least implicitly) used in the previous works on the LWE cryptanalysis [40, 47,
50, 52] as well as in the context of representation techniques such as [26, 38].

Proposition 3 below states the main result of this section. We need some parameters and notations. First
of all, we consider a block-length parameter b, and define the following probability p:

p(ℓ, b) = Pr [b+ e ∈ [0, b) | b← U [0, b), e← U [−ℓ, ℓ)] .
4The reason behind the rejection (rather than to define modulo B) is to be consistent with the setting of the Meet-LWE for matrix

modulus in Section 5.
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This can be easily computed by

p(ℓ, b) =

{
1− ℓ

2b if ℓ ≤ b/2,
1
4 + b

4ℓ if b/2 ≤ ℓ < b.
(10)

We then write ni := ⌈qi/b⌉ and bi := qi/ni for each 1 ≤ i ≤ r.

Proposition 3. Let B =
∏r

i=1[−qi/2, qi/2) an r-dimensional box. Let L ⊂ B be a list of size |L| = N , which
contains some ℓ-near-collision pairs, under the D-random/near model. There is a randomized algorithm that outputs
a list P of pairs such that a random near-collision pair in L is included in P with probability at least 0.95, and takes

1. O(N/pgood) hash evaluations,

2. O(N2pbad/pgood) near-collision checks on expectation, and

3. O(N) words of space for hash evaluation,

where pgood, pbad are defined as follows

1. pgood ≥
∏

1≤i≤r p(ℓ, bi) ≥ p(ℓ, b)r for D = U([−ℓ, ℓ]r),

2. pgood =
(
erf(x) + e−x2

−1√
πx

)r
for D = Grσ, where x = b√

2σ
, and

3. pbad =
∏

1≤i≤r(1/ni) for any D.

Remark 1. This proposition is indeed an adaptation of [35], but we made some modifications and considerations for
our purpose: 1) We require an average-case algorithm, 2) we need to find almost all near-collision pairs while the
original result tries to find a single solution, and 3) we cannot sample sufficiently many independent locality sensitive
hash functions for amplifying pbad ≈ 1/N in many cases, which is assumed in the original paper. We refer a similar
discussion in [39] for LSH-like approaches in lattice sieving.

4.1 LSH-based Near-collision Finding Algorithm

We describe the procedure to find the near-collision pairs using the locality sensitive hashing technique,
and analyze the performance of this algorithm.

Hash functions. We start with the torus LSH functions, adapting [47]. Recall that for a block-length param-
eter b, we define ni := ⌈qi/b⌉, and bi := qi/ni for each 1 < i ≤ r. The family of torus LSH functions H(B; b)
with the block-length parameter b is defined over the domain B as follows.{

hc

(
(yi)i∈[r]

)
=

(⌊
yi + ci

bi

⌋
mod ni

)
1≤i≤r

∣∣∣∣∣ c ∈ πr(B)

}

The algorithm. Now we describe the near-collision finding algorithm. The algorithm do: randomly select
a hash function hc from H(B; b), and label each element y in L with hc(y). Then, check if the elements with
the same label are the near-collision pair or not. This procedure is repeated R times to collect almost all
near-collisions. Formally, the algorithm proceeds as in Algorithm 2. The number of repetition R is to be
determined below.

Analysis. We discuss the correctness and efficiency of Algorithm 2 here. We say that a pair (y1, y2) is hash-
collision if hc(y1) = hc(y2) for a hash function hc used in the algorithm. The following lemma shows that
the quantities pgood and pbad in Proposition 3 are precisely the probabilities that the near-collision pair and
two random points are hash-collision in a single iteration of the outer for-loop (line 4).

Lemma 4. In the D-random/near model, for a ℓ-near-collision pair (y1, y2), it holds that over the random choice of
hc ∈ H and D,
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Algorithm 2: LSH-based near-collision finding algorithm
Input: A domain B, a list L ⊂ B, a block parameter b, and a distribution D
Output: A set S of near-collision pairs in L

1 Compute pgood using Proposition 3, and set repetition numbers R = ⌈3/pgood⌉
2 Set a family of torus LSH functionsH = H(B; b)
3 If D = Gσ , set the near-collision bound ℓ = 6σ
4 Set S ← ∅
5 for i = 1 to R do
6 Sample a function hc ← H uniformly at random
7 for each address addr in Range(hc) do
8 Initialize an empty bin T (addr)
9 end

10 for each y ∈ L do
11 Store y in the table T (hc(y))
12 end
13 for each address addr in Range(hc) do
14 for each pair (y1, y2) in T (addr)× T(addr) do
15 if |πr(y1 − y2)|∞ ≤ ℓ then
16 S ← S ∪ {(y1, y2)}
17 end
18 end
19 end
20 end
21 return S

1. for D = U([−ℓ, ℓ)r), Pr[hc(y1) = hc(y2)] ≥
∏

1≤i≤r p(ℓ, bi) ≥ p(ℓ, b)r and

2. for D = Grσ , Pr[hc(y1) = hc(y2)] =
(
erf(x) + e−x2

−1√
πx

)r
where x = b√

2σ
.

If at least one of (y1, y2) is random, then

3. Pr[hc(y1) = hc(y2)] =
∏

1≤i≤r 1/ni over the random choice of hc ∈ H.

We assume Lemma 4 for now and analyze the main algorithm first.

Proof of Proposition 3. Consider each iteration of line 4. By the first two claims of Lemma 4, the iteration
finds a near-collision pair with probability pgood. By repeating this procedure R = 3/pgood times with the
different randomness, the algorithm finds the near-collision pair with probability at least

1− (1− pgood)
3/pgood ≥ 1− 1/e3 ≥ 0.95.

For the two points that are not collide, the model says that at least one of them is randomly sampled
from D. The third claim of Lemma 4 asserts that they collide by a single iteration with probability pbad.

Therefore the expected number of hash-collisions is
(
N
2

)
pbad = O(N2pbad) for each single iteration, and the

full algorithm is expected to check whether O(N2pbad/pgood) hash-collision pairs are near-collision or not.
Finally, the space complexity is clear since each iteration only takes the O(N) hash evaluations.

It remains to verify Lemma 4. The second case of D = Gσ is essentially the same to [50, Lemma 4.2], and
the third case is obvious, because a random point is uniformly distributed over B.

The case ofD = U(B) is slightly involved. Consider the one-dimensional case r = 1 with B = [−q/2, q/2)
and fix y ∈ B. If y is not in the boundary, meaning that y + e for e ← [−ℓ, ℓ] never lies outside of B, the
probability that y, y + e have the same image under a random hash function inH is exactly p(ℓ, b). If y is in
the boundary, the condition that y+ e ∈ B only increases the probability, thus p(ℓ, b) is a lower bound of the
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near-collision finding probability over the one-dimensional space [−q/2, q/2). Multiplying these bounds
over each axis, we obtain the first item.

Remark 2. In the actual estimation, we sometimes use better bounds for peculiar cases. For example, if b ≥ qi holds
for some i, then we have bi = qi and the probabilities for such coordinates by 1, instead of using the function p(ℓ, b).
We also note that when D = Gσ , we define the corresponding ℓ-near collision pair so that the sampled pair (y, y + e)
in the model becomes ℓ-near collision with high probability, e.g. ℓ = 6σ.

Remark 3. The previous version of this paper includes another hash function family called Hamming LSH, which is
now removed because it has essentially a negligible effect on the attack.

5 Meet-LWE for Matrix Modulus

In this section, we describe how to generalize Meet-LWE attack to the matrix modulus setting. First, we
start with a key observation that enables the projection concept to matrix modulus Section 5.1. Then, we
will introduce a main technical contribution in Section 5.2 and Section 5.3. The final description of attack is
given in Section 5.4.

5.1 Projection of Matrix Modulus

We first define the projection map with respect to matrix modulus that is compatible with Babai’s nearest
plane algorithm in some sense. Recall that we write v mod B to denote NPB(v), the normalized Gram-
Schmidt orthogonalized matrix B̃∗ and the coordinate of vector v with respect to B̃∗ written by τB(v) =
(τB(v)1, ..., τB(v)n).

The projected coordinate map τB,r(v) for an n-dimensional vector v is defined by the last r coordinates
of τB(v), that is, τB,r(v) := (τB(v)n−r+1, ..., τB(v)n). Note that when we project the matrix B = [b1, · · · , bn]
using τB,r, we can neglect the first n − r vectors τB,r(bi) for i ∈ [n − r] as they become all zeroes. In this
regard, we now only consider the last r vectors and define τB,r(B) := (τB,r(bn−r+1), ..., τB,r(bn)) , which is
the r × r lower-right submatrix of RB = τB(B).

The following lemma states the commutativity of the projection map and Babai’s algorithm. Intuitively,
this lemma holds because of the top-down iteration of Babai’s algorithm.

Lemma 5. For any basis B ∈ Zn×n
q and any vector v ∈ span(B), it holds that

τB,r (NPB(v)) = NPτB,r(B) (τB,r(v)) .

In particular, it holds that τB (NPB(v)) = NPRB
(τB(v)) by choosing r = n.

Proof. We first write the matrix B as B = B̃∗·RB for an upper triangular matrix RB using QR-decomposition.
Let us consider the case r = n first. Note that τB(v) = (B̃∗)−1 · v and RB = (B̃∗)−1 · B. Thus the left

hand side is the Babai’s algorithm with the inputs that are transformed by v 7→ (B̃∗)−1 · v. Since the inner
products are all the same and the resulting vector is also transformed by the same map, the identity for
r = n presents the result of Babai’s algorithm with different basis.

For an arbitrary r, the left hand side is the projection of τB (NPB(v)) to the last r coordinates. To ana-
lyze the right hand side, we define the other projection map pr into span(b∗n−r+1, ..., b

∗
n), and write Br :=

pr(bn−r+1, ..., bn) and vr := pr(v). With these notations, we have τBr
(Br) = τB,r(B) and τB,r(v) = τBr

(v).
The right hand side is equal to

NPτB,r(B) (τB,r(v)) = NPτBr (Br)(τBr
(vr)) = τBr

(NPBr
(vr))

where the last equality is derived from the above special case by substituting B and v by Br and vr, respec-
tively. In other words, the right hand side is the last r coordinates with basis B̃∗ of the output of Algorithm 1
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with projected inputs by pr. This is the same to the left hand side because the last r coordinates with basis
B̃∗ is only changed by the first r iterations; in the last n − r iterations, the algorithm only subtracts bi for
1 ≤ i ≤ n− r, which satisfies τB,r(bi) = 0.

With this lemma, we can define the projected matrix modulus reduction by

[v]B,r := τB,r(NPB(v)) = NPτB,r(B) (τB,r(v)) = τB,r(v) mod τB,r(B).

5.2 Meet-LWE for Matrix Modulus: Overview

In this section, we describe the overview of meet-LWE attack for matrix modulus. This section conveys an
intuition of our attack, and the necessary details are filled in Section 5.3 separately.

Recall that our goal is to find s ∈ T d(w(0)) given (M,B) such that NPB(Ms) = e where M ∈ Zm×d, B ∈
Zm×m, and e is sampled from the Gaussian distribution Gmσ for some standard deviation σ. For ease of ex-
planation, we (informally) rephrase this problem as the other problem to find the level-0 list by suppressing
e to ≈ 0,

L(0) = {s(0) ∈ T n(w(0)) |Ms(0) mod B ≈ 0},

which would be a singleton set {s}with high probability.
In what follows, we will define level-i lists L(i) inductively up to top level t. Once the lists are correctly

defined, the attack proceeds by constructing from the top level list L(t) down to the level-0 list L(0). In
particular, each i-th level element can be recovered from the near-collision in the (i+1)-level list, and these
near-collision pairs will be found by the near-collision finding algorithm of Section 4 for L(i+1) × L(i+1). In
other words, the list L(i) is constructed by invoking the near-collision finding algorithm to the above level
L(i+1), except the top level list L(t) that should be directly computed.

List definitions. We consider a level-1 weight w(1) ≈ w(0)/2, and a pair (s
(1)
1 , s

(1)
2 ) ∈ T d(w(1)) × T d(w(1))

such that s = s
(1)
1 − s

(1)
2 , called a level-1 representation of s. For any level-1 representation (s

(1)
1 , s

(1)
2 ) of s, it

holds that Ms
(1)
1 = Ms

(1)
2 + e mod B. That is, we have Ms

(1)
1 and Ms

(1)
2 is at distance e modulo B so that

they become near-collision.
The main idea of [46] starts by observing that the number of representation is fairly large so that we

may focus on the specific representation and avoid the redundant representations by using constraints.
Similarly, we restrict our attention to a special representation such that [Ms

(1)
1 ]B,r(1) and [Ms

(1)
2 ]B,r(1) are

both small. More precisely, we consider a representation (s
(1)
1 , s

(1)
2 ) such that [Ms

(1)
1 ]B,r(1) and [Ms

(1)
2 ]B,r(1)

are both contained in some neighborhood of origin, say A(1). By taking proper dimension r(1) and area of
A(1) whose details are presented in Section 5.3, we expect at least one representation satisfy that condition
with high probability. Based on this intuition, we define a level-1 list by

L(1) = {(s(1), [Ms(1)]B) | s(1) ∈ T d(w(1)) ∧ [Ms(1)]B,r(1) ∈ A(1)}.

Then, thanks to our choice of r(1) and A(1), at least one representation (s
(1)
1 , s

(2)
2 ) of s survives in L(1) ×L(1)

on expectation. In particular, we will choose the length of each edge of A(1) to be larger than the size of e
(or σ), [Ms

(1)
1 ]B,r(1) and [Ms

(1)
2 ]B,r(1) becomes a near-collision pair in L(1). In other words, we can recover s

given L(1) using near-collision finding on L(1) × L(1).

We then reduce the construction of L(1) to another level-2 list L(2) using a similar strategy. Note that
each element s(1) ∈ L(1) also has several level-2 representations (s

(2)
1 , s

(2)
2 ) ∈ T d(w(2)) × T d(w(2)) for some

w(2) ≈ w(1)/2. Then with a proper choice of r(2) and A(2), we define the level-2 list

L(2) = {(s(2), [Ms(2)]B) | s(2) ∈ T d(w(2)) ∧ [Ms(2)]B,r(2) ∈ A(2)}

so that at least one representation of s(1) survives in L(2) × L(2) with high probability.
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Remark 4. It would be confused that we have to consider different list L(2) for each target s(1) ∈ L(1), but this is not
the case. Note that the definition of L(2) is independent to target s(1) ∈ L(1). It implies that one near-collision search
over L(2) × L(2) can find each s(1) ∈ L(1) with the same probability.

Optimization for the top level. The above recursive definitions of list can be continued toward an arbitrary
level, but we slightly tweak the top level list construction as an optimization. For the ease of explanation,
let the top level t = 3. In the top level, we have to directly construct the list instead of reducing it to higher
level. The direct construction requires an expensive exhaustively searching for every s(3) ∈ T d(w(3)) that
takes O(|T d(w(3))|) time, even if the top level list may have some constraint, say [Ms(3)]B,r(3) ∈ A(3). In
other words, the constraint idea provides no benefit on the list construction timing cost in the top level.

Instead, we exploit the redundancy of representations by defining L(3) as a random subset of T d(w(3))

L(3) ⊂ {(s(3), [Ms(3)]B) | s(3) ∈ T d(w(3))},

where the size of L(3) is chosen so that at least one level-3 representation in L(3) × L(3) for each s(2) ∈ L(2)

with high probability, whose detailed choice is analyzed in Section 5.3.

Remark 5 (The primal-MitM hybrid). The primal MitM attack of [37] can be understood as the top level t = 1
case of the attack described here. Roughly speaking, the original description of [37] repeatedly samples random element
s(1) from T d(w(1)) and store it in a sort of LSH, until it finds one representation (s

(1)
1 , s

(1)
2 ) of s. Our attack with the

top level t = 1 case is slightly different since it considers a random subset of T d(w(1)) in advance, but the core idea
that aims to find only one representation is exactly same.

5.3 Filling Details of Meet-LWE for Matrix Modulus

We first recall the following lemma from [46] that computes the number of representations.

Lemma 6. For weight parameters w(i) and w(i−1) such that w(i) ≥ w(i−1)/2, define ϵ(i) = w(i) − w(i−1)/2. Then
the number of level-i representations R(i) is

R(i) =

(
w(i−1)

w(i−1)/2

)2

·
(
d− 2w(i−1)

ϵ(i), ϵ(i), ·

)
.

where
(

n
a1,...,ak,·

)
=
(

n
a1,...,ak,n−a1−...−ak

)
= n!

a1!a2!...ak!(n−a1−...−ak)!

Concrete choice of small area. We specify the area A(i) by a 0-centered box of dimension r(i) of each edge
length 2ℓ(i), equivalently [−ℓ(i), ℓ(i))r(i) . We write the level-i area by Ar(i),ℓ(i) to clarify the dimension r(i)

and the length ℓ(i). As mentioned in Section 5.2, the parameter choice should allow us to expect that for
each element s(i−1) ∈ L(i−1), there is one representation (s

(i)
1 , s

(i)
2 ) of s(i−1) such that

[Ms
(i)
1 ]B,r(i) , [Ms

(i)
2 ]B,r(i) ∈ Ar(i),ℓ(i) . (11)

among R(i) of i-level representation pairs.
Note that since s(i−1) ∈ L(i−1), we know ei−1 := [Ms(i−1)]B,r(i−1) is also a relatively small vector con-

tained in Ar(i−1),ℓ(i−1) , i.e., ei−1 ∈ Ar(i−1),ℓ(i−1) . The equation s(i−1) = s
(i)
1 − s

(i)
2 implies that

[Ms
(i)
2 ]B,r(i) = [Ms

(i)
1 ]B,r(i) + [ei−1]B,r(i) mod τB,r(i)(B)

Thus, we can re-write the condition Eq. (11) as follows:

[Ms
(i)
1 ]B,r(i) , [Ms

(i)
1 ]B,r(i) + [ei−1]B,r(i) ∈ Ar(i),ℓ(i) where ei−1 ∈ Ar(i),ℓ(i−1) . (12)
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By writing p
(i)
rep the probability that the condition Eq. (12) holds for a randomly chosen pair (s1, s2) among

R(i) representations, we expect R(i) · p(i)rep number of level-i pairs satisfying Eq. (11). We set hypercube
parameters r(i) and ℓ(i) so that R(i) · p(i)rep ≳ 1, and achieve our desired goal: Now we can expect one
representation (s

(i)
1 , s

(i)
2 ) survives in L(i).

It remains to specify the probability p
(i)
rep in terms of other parameters. For that, we assume that [Ms

(i)
1 ]B

uniformly distributes over P(B∗), which was already used implicitly in the previous work [37,40,46] to an-
alyze the performance of each algorithm. We also remark that it may happens that the hypercube length ℓ(i)

is larger than Gram-Schmidt norm on some last coordinates. Thus, in fact, the k-th coordinate of hypercube
length is set by min(ℓ(i), ∥b∗m−k∥).

Lemma 7. For a level i lower than the top level, let p(i)rep be the probability of Eq. (11) over the random choice of level-i
representation (s

(i)
1 , s

(i)
2 ) of s ∈ L(i−1). It holds that,

• for i = 1, p(1)rep = (2ℓ(1))r
(i)∏r(i)

k=1 ∥b∗m−k+1∥
·
(
erf(x) + e−x2

−1√
πx

)r(i)
where x = ℓ(1)/

√
2σ

• for i > 1, p(i)rep = (2ℓ(1))r
(i)∏r(i)

k=1 ∥b∗m−k+1∥
·
(
p(ℓ(i−1), ℓ(i))

)r(i)
where p(ℓ, b) is defined in Section 4, and ∥b∗k∥ is the norm

of k-th Gram-Schmidt basis.

Proof. (Sketch) First, we compute the probability of first part of representation, s(i)1 , satisfies [Ms
(i)
1 ]B,r(i) ∈

Ar(i),ℓ(i−1) . This can be easily computed considering volume ratio between the projected parallelepiped
and the area Ar(i),ℓ(i−1) , which is the first term of the results. We then have to consider the other part s(i)2

also satisfies [Ms
(i)
1 ]B,r(i) ∈ Ar(i),ℓ(i−1) , conditioned on the above. Note that this is almost similar to LSH

probability of Lemma 4: We have some (uniform) random point x in some area, and want to compute the
probability of the random point remains in the hypercube after adding some error. One can obtain the
statement by appropriately substituting block-length and errors with the probability in Lemma 4.

Top level list size. Recall that the top level list L(t) is defined as a random subset without constraint.
We compute the explicit set size of L(t), which is essentially identical to the analysis of previous hybrid
attacks [37, 52]. For that, we consider a representation of s(t−1) ∈ L(t−1) by s(t−1) = s

(t)
1 − s

(t)
2 . If the

following condition holds

[Ms
(t)
1 ]B,r(t−1) = [Ms

(t)
2 ]B,r(t−1) + [Ms(t−1)] mod τB,r(t−1)(B), (13)

a near-collision finding algorithm on L(t) can recover the representation (s
(t)
1 , s

(t)
2 ). Writing the probability of

Eq. (13) by p
(t)
adm over a randomly chosen representation, we expect

√
R(t) · p(t)adm number of representations

satisfying Eq. (13). For any random subset L(t) of T d(w(t)), each element of T d(w(t)) is included in L(t) with
probability |L(t)|/|T d(w(t))|. Therefore, by taking

|L(t)| ≈ |T d(w(t))| /
√
R(t) · p(t)adm. (14)

we can expect one representation included in L(t). Finally, padm is computed by the following lemma.

Lemma 8. Let p(t)adm be the probability of Eq. (13) over the random choice of the top level t representation (s
(t)
1 , s

(t)
2 )

of s ∈ L(t−1). It holds that p(t)adm =
∏r(t)

k=1 p(ℓ
(t−1), ∥b∗m−k+1∥) where p(ℓ, b) is defined in Section 4, and ∥b∗k∥ is the

norm of k-th Gram-Schmidt basis.

Proof. (Sketch) The proof can be done similarly Lemma 7, by understanding L(t) uses the entire hypercube
τr(t−1)(B∗) as a constraint area.
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5.4 Full Description and Analysis

Recall our target matrix modulus equation Ms = e mod B with s ∈ T d(w(0)). Our Meet-LWE algorithm
with top level t is parameterized by

• Weight parameters w(i) for 1 ≤ i ≤ t,

• Hypercube length parameters ℓ(i) for 1 ≤ i < t, and

• Torus LSH length parameters b(i) for 0 ≤ i < t.

Given the above parameters, the number of representations R(i) from w(i) and w(i−1) are determined by
Lemma 6. Then, the projection dimension r(i), that totally determines the constraint area Ar(i),ℓ(i) along
with the other parameters, are iteratively determined as follows: Take the minimal r(1) so that R(1) ·p(1)rep ≥ 1
using Lemma 7 with the bottom level error Gσ . Higher levels except the top level projection dimension r(i+1)

is chosen so that R(i+1) · p(i+1)
rep ≥ 1 also using Lemma 7 with the lower level error; uniform distribution

bounded by ℓ(i). Finally, we compute the top level list size |L(t)| ≈ |T d(w(t))|/
√
R(t) · p(t)adm (Eq. (14)), where

p
(t)
adm is computed using Lemma 8. This completes the parameter setting.

After determining all parameters, the actual Meet-LWE for matrix modulus algorithm proceeds by per-
forming the actual list construction. First, it directly constructs the top level list L(t), and repeatedly con-
structs the lower level lists down to L(0). Except the top level list L(t), each level-i list construction requires
an investigation of L(i+1) × L(i+1). We make use of the near-collision algorithm of Algorithm 2, on input
list L(i+1) and near-collision condition derived from L(i). As a summary, Algorithm 3 shows the detailed
procedures for the top level t = 3 case.

Algorithm 3: Meet-LWE for matrix modulus with the top level t = 3

Input: Matrices M ∈ Zm×d and B ∈ Zm×m such that NPB(Ms) = e,
a standard deviation σ for the error distribution Gσ ,
the solution weight w(0) of s ∈ T d(w(0))

Parameters : The weight parameters w(1), w(2), w(3),
the hypercube length parameters ℓ(1), ℓ(2),
the torus LSH length parameters b(0), b(1), b(2)

Output: The solution s such that NPB(Ms) = e.
1 Compute the number of representations R(1), R(2), R(3) using Lemma 6
2 Determine the projection dimensions r(1), r(2) so that R(i) · p(i)rep ≥ 1 where p

(i)
rep is computed by Lemma 7.

3 Construct the list L(3) of size |T d(w(3))|/
√

R(3) · p(3)adm by randomly sampling elements from T d(w(3)) where

p
(3)
adm is computed by Lemma 8.

4 for i = 3 down to i = 1 do
5 Construct L(i−1) from Algorithm 2 on inputs B(i), L(i), b(i−1),D(i−1) where B(i) is defined by Eq. (16), and

D(i−1) by Eq. (15).
6 end
7 return s ∈ L(0)

Success probability. Recall that the constraint hypercube Ar(i),ℓ(i) is chosen so that one representation of
s(i−1) ∈ L(i−1) survives in L(i) × L(i) on expectation. In other words, each element s(i−1) is recovered with
some constant probability, and it implies that only a subset of L(i−1) will be recovered during the attack pro-
cess. Regarding this, one may think that the attack succeeds only when each list L(i) are fully constructed,
whose probability is devastating. However, note that our attack implicitly fixes a target representation for
each level i when the lists L(i) are defined. Therefore, the success of our attack only depends on whether
each list L(i) contains that fixed representation, which happens with constant probability.
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Time complexity analysis. By denoting the cost of list construction by Tbuild(·) and the cost of near-collision
finding algorithm by TLSH(·), the total time complexity is

Tguess = Tbuild(L
(t)) + TLSH(L(t)) + TLSH(L(t−1)) + · · ·+ TLSH(L(1)).

Note that this cost estimation assumes that each list L(i) is fully constructed. However, as said in the above
paragraph, the attack only recovers a subset of L(i), and this is rather an overestimation of attack complexity.

The list construction cost Tbuild is rather immediate, as the size of the top level list can be computed

by |L(t)| ≈ |S(t)|/
√
R(t) · p(t)adm. Note that it takes one NPB(·) call to construct one element in L(t). We

assume that Babai’s NP call for m × m basis B takes O(m) time by following [52], which concludes that
Tbuild(L

(t)) = O(m · |L(t)|).
We proceed to the details of TLSH(L(i)), where we want to build L(i−1) using Algorithm 2 from the

upper level list L(i). We use the LSH block length b(i−1) given as parameter, but need further clarifications
on the domain B(i) and the distribution D(i) in order to compute time complexity TLSH(L(i)) using Propo-
sition 3. First, the distribution D(i) for near-collision is totally determined by the constraint of L(i−1). To
explicitly represent, we have

D(i) =

{
U(Ar(i−1),ℓ(i−1)) if i > 1,

Gmσ if i = 1.
(15)

Then it is clear that the domain B(i) should be a subset of the last r(i−1) coordinates ofP(B∗). As a critical
detail, note that the last r(i) coordinates of each element L(i) are restricted by i-th constraint hypercube
Ar(i),ℓ(i) , except the top level list L(t). Considering this, the domain B(i) is explicitly determined as

B(i) =


r(t)∏
k=1

[−∥b∗m−k+1∥/2, ∥b∗m−k∥/2) if i = t,

r(i−1)∏
k=r(i)+1

[−∥b∗m−k+1∥/2, ∥b∗m−k+1∥/2)× [−ℓ(i), ℓ(i))r(i) if i < t

(16)

where ∥b∗k∥ denotes the norm of k-th Gram-Schmidt basis. With the above clarifications on D(i) and B(i),
we can compute pgood and pbad using Proposition 3, which finally determines TLSH(L(i)) = O(|L(i)|2 ·
pbad/pgood).

Remark 6. Rigorously speaking, each element of L(i) is of the form (s, [Ms]B). We then actually consider a list

L̂(i) := {[Ms]B,r(i) | (s, [Ms]B) ∈ L(i)},

and feed it to Algorithm 2. For each near-collision ([Ms1]B,r(i) , [Ms2]B,r(i)) in L̂(i), we take the corresponding pair
(s1, [Ms1]B) and (s2, [Ms2]B) in L(i) and insert (s1 − s2, [Ms1]B − [Ms2]B) in L(i−1). In the main algorithm
description of Algorithm 3, we do not bother to clarify this and simply state to run Algorithm 2 with a list L(i).

6 Primal-Meet-LWE

Finally, we propose a new attack algorithm, Primal-Meet-LWE, for the standard LWE instance b = As +
e mod q; the lattice reduction phase that converts the given LWE instance into Ms = e mod B, and the
guessing phase that mounts Meet-LWE. The formal description is given in Algorithm 4.

Time complexity analysis. The time complexity would be Tlat + Tguess modulo the repetition of the main
loop, for the success probability amplification. Tlat is clearly dominated by BKZ-β execution time, and
Tguess is analyzed in Section 5.4. Note that the permutation in each repetition acts as a shuffle on the secret
key s′ ∈ T n(w), producing a new LWE instance.
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Algorithm 4: Primal-Meet-LWE

Input: LWE instance (A, b) ∈ Zm′×(n+1)
q and the standard deviation σ

Parameters : For defining matrix modulus equation Ms = e mod B
m: the rank of basis matrix B
β: the blocksize for the BKZ reduction
d: the guessing dimension

Parameters : For Meet-LWE for matrix modulus
wg : the (expected) number of ±1 in guessing dimension d
w(i): the weight parameters
ℓ(i): the hypercube length parameters
b(i): the torus LSH length parameters

Output: The secret key s′ ∈ T n(w) such that b = As′ + e′

1 repeat
2 Randomly permute the columns of A
3 Using BKZ-β and (A, b), define the problem that solves [Ms]B = e given M ∈ Zm×d, B ∈ Zm×m, as

described in Section 3.2.
4 Recover s by solving matrix modulus equation [Ms]B = e from Algorithm 3 with input

M,B, σ,wg = w(0), and optimization parameters.
5 until s ∈ T d(wg)
6 Recover the remaining sr from B−1(Ms2 − e) = (x, sr)
7 return (sr, s)

It remains to discuss the number of repetitions, which is estimated by 1/psuc for attack success prob-
ability psuc. There are two events to consider for attack success. First we assume that NP(e) = e, whose
probability pNP is already analyzed in Section 3.2. Second, as we restrict the searching space for Meet-
LWE by T d(wg), the attack succeeds only when s2 ∈ T d(wg), whose probability is computed by pHW =(
n−2w
d−2wg

)(
w
wg

)2
/
(
n
d

)
. Because Algorithm 3 succeeds with a constant probability, we conclude that Algorithm 4

succeeds with probability psuc = pNP · pHW . The final attack complexity is estimated by 1
psuc

(Tlat +Tguess).

6.1 Concrete Estimations

Given an input LWE parameters such as n, q, σ, w, there would be the optimal parameterizations of Algo-
rithm 4 giving the minimal complexity. For a quick search of optimal parameters, we search the parame-
terization space by the binary search for each parameters in a plausible range. For example, we take the
hypercube lengths by ℓ(1) = 2σ and ℓ(i+1) = 2ℓ(i) for i ≥ 1, and LSH block size b(i) = ℓ(i). For someone’s
interest, this opens some possibility to further reduce the attack complexity by parameter fine-tuning. We
implement a python script for this procedure, which can be found in the supplementary material.

Finally, we estimate the concrete attack complexity of several LWE parameters, from homomorphic
encryption to post-quantum cryptography regime via our code. To compare with previous attacks, we take
the cost estimations of other attacks from lattice-estimator [3], which continuously updates the advances in
lattice-based attacks [23, 25, 33, 48, 50, 52]. To ensure the reliability of our estimation, we rightly check that
our script and lattice-estimator are consistent, in the sense that they output almost similar attack costs for
the previous attack strategy, such as Primal hybrid MitM [37]. In particular, we use the default BKZ cost
model of lattice-estimator [3]5.

The fully homomorphic encryption regimes. The fully homomorphic encryption schemes employ huge
LWE parameters such as n ≥ 215 and q ≥ 2500. Many recent schemes and implementations choose the
sparse secret key for supporting efficient bootstrapping procedures [18, 22, 34, 42]. Homomorphic encryp-
tion libraries set the Hamming weight of the secret key by 64 or 192 [1,4], arguing the 128-attack complexity

5Precisely, it assumes BKZ with block-size β and basis dimension n takes 5.46n · 20.296β+20.388 [45]
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of schemes. Table 1 shows our estimation results on the LWE problem for homomorphic encryptions. The
estimation shows that our attack algorithm has the best performance on the homomorphic encryption pa-
rameter regime.

Lattice Search (15, 699, 128) (15, 768, 192) (16, 1553, 192) (16, 1450, 64)

Primal Meet-LWEt=2 126.0 126.0 127.5 104.4
Meet-LWEt=3 125.3 125.5 126.5 104.0

Primal
None [10] 160.5 145.0 144.6 155.4

Brute-force [9] 160.3 137.6 - 127.3
MitM [37, 50] 133.4 132.1 - 112.1

Dual
None [8] 161.6 146.4 145.6 156.5
FFT [33] 144.4 140.0 140.1 125.6

MitM [23] 133.3 133.1 135.9 108.4

Table 1: Complexity estimations of LWE attacks on FHE regime parameters found from [18, 34, 41, 42]. Our
proposals correspond to the combination of Primal and Meet-LWE. The costs of our attacks and the best
of previous attacks are marked by bold. The parameters are of the form (log n, log q, w), where n is the
dimension of secret key and q is the ciphertext modulus, and w is the hamming weight of secret key. The
standard deviation of error σ is fixed by 3.2. The dash (-) denotes the case that the estimator failed to find
the optimal cost because of out of memory.

The post-quantum cryptography regimes. We also applied our estimation algorithm to the LWE parame-
ters for the post-quantum cryptography schemes. We mainly tested the schemes with (sparse) ternary secret
keys [12, 13, 21, 36].

The concrete security of the schemes with a highly sparse secret key is fairly reduced by our attack.
For example, our attack reduces the attack complexity of IEEE standard NTRU [6] parameter (n, q, w, σ) =
(659, 2048, 76) from 131.2 (Dual FFT) to 114.6 (Lv 2), and Round2 [13] parameter (n, q, w, σ) = (500, 214, 74, 2.29)
from 104.2 (Dual FFT) to 92.5 (Lv 2).

However, these extremely sparse secret keys are now considered deprecated, and the recent PQC schemes
with sparse secret keys, such as Round5 [12] (an updated version of Round2 scheme) and NTRU [21], have
much larger Hamming weights. Our estimation predicts that the LWE problems for such schemes are less
susceptible to our new hybrid attack. This is a predictable result because the previous primal hybrid at-
tacks have much higher attack costs than the other attacks; the difference in attack costs between the primal
MitM hybrid and the other attacks, say > 20-bit, is beyond the improvement from our attack. For example,
the attack cost of the NTRU parameter setting (n, q, w) = (509, 2048, 254) is 131.4 against the non-hybrid
primal, while the primal hybrid attack cost is about 183.9.
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As noted in the introduction, Kirshanova and May suggested the improved Meet-LWE algorithm based on
the locality sensitive hashing, called LSH-Meet-LWE [40]. We briefly describe some steps of the LSH-Meet-
LWE algorithm and the flaw in the analysis, which was confirmed by the personal conversation with the
authors.
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Suppose that we are given a simplified LWE instance As = e mod q with the secret key s ∈ T n(w)
that has w (±1)-entries each6 and the ternary error vector e. The following sets are the level-1 lists in the
LSH-Meet-LWE algorithm

L
(1)
1 =

{
s
(1)
1 ∈ T n(w/2) : As

(1)
1 ∈ Zn−r

q × {0}r/2 × {±1, 0}r/2
}

L
(1)
2 =

{
s
(1)
2 ∈ T n(w/2) : As

(1)
2 ∈ Zn−r

q × {±1, 0}r/2 × {0}r/2
}
.

These two lists have the different constraints on the last r coordinates; half of the r coordinates are fixed to
0, and the other half is bounded by 1.

The number of representations (s(1)1 , s
(1)
2 ) ∈ T n(w/2)× T n(w/2) such that s(1)1 + s

(1)
2 = s is R =

(
w

w/2

)2.
The authors claim that the choice of r such that

R ≈ qr/2 · (q/3)r/2 (17)

ensures that there is a representation (s
(1)
1 , s

(1)
2 ) ∈ L

(1)
1 × L

(1)
2 on expectation. However, this claim turns out

to be false.
Let us clarify the details of the problem. Since the list L(1)

1 has 3r/2 possible entries in the last r coordi-
nates, the choice of Eq. (17) indeed ensures that there is a representation (s

(1)
1 , s

(1)
2 ) such that s(1)1 ∈ L

(1)
1 on

expectation. In the original Meet-LWE attack (with the corresponding list definitions therein), s(1)1 ∈ L
(1)
1

automatically implies the event s(1)2 ∈ L
(1)
2 [46, Section 5]. This is because the algorithm essentially enumer-

ates all the possible r coordinates of the error vector.
This automatic implication is not the case for LSH-Meet-LWE, which does not enumerate the partial

error vector. The condition s
(1)
1 ∈ L

(1)
1 says that

πr(As
(1)
1 ) ∈ {0}r/2 × {±1, 0}r/2.

From the (simplified) LWE identity As = e mod q, we have

πr(As
(1)
2 ) = πr(e)− πr(As

(1)
1 ).

To make πr(As
(1)
2 ) ∈ {±1, 0}r/2 × {0}r/2 to be true, it must hold that

πr/2(As
(1)
1 ) = πr/2(e)

which only happens with probability 1/3r/2 (assuming e is sampled from the uniform random ternary
vector.) This probability is neglected in the original analysis, and the algorithm becomes impractical if this
analysis is included.

We remark that the paper [40] suggested an alternative algorithm in the appendix, which does not use
the locality sensitive hashing technique.

B Heuristic on Scaling Factor Normalization

We provide a more explanation for the heuristic described in the end of Section 3.2. First, the lattice reduc-
tion algorithm in the first step randomizes the Gram-Schmidt basis of B, so we can regard B∗ as a random
orthogonal basis independent of eν . The distribution of the coordinate vector of any vector with respect to
the random orthogonal vector follows the spherical distribution of the same norm. In a high dimensional
space, an n-dimensional Gaussian distribution of variance σ is highly concentrated in a thin spherical shell
of width O(1) around the sphere of radius

√
nσ (See e.g., [51, Chapter 3]). In our case, the distribution of

eν is very similar to the same dimensional Gaussian distribution with an appropriate variance, assuming
more mild assumptions. Note that a similar assumption was used in e.g., [52].

6Note that the original paper used T n(w/2) as the secret key of LWE, while we use T n(w).
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